-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdatasets.py
47 lines (40 loc) · 1.71 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import h5py
import numpy as np
from StringIO import StringIO
from PIL import Image
import fuel.datasets
import operator, functools
np_float32 = np.float32
nparray_from_image = functools.partial(np.array, dtype=np_float32)
image_open = Image.open
tostring = operator.methodcaller("tostring")
asarray = np.asarray
class FramewiseCompressedVideoDataset(fuel.datasets.H5PYDataset):
def __init__(self, path, which_set):
file = h5py.File(path, "r")
super(FramewiseCompressedVideoDataset, self).__init__(
file, sources=tuple("videos targets".split()),
which_sets=(which_set,), load_in_memory=True)
# TODO: find a way to deal with `which_sets`, especially when
# they can be discontiguous and when `subset` is provided, and
# when all the video ranges need to be adjusted to account for this
self.frames = np.array(file["frames"][which_set])
file.close()
def get_data(self, *args, **kwargs):
video_ranges, targets = super(FramewiseCompressedVideoDataset, self).get_data(*args, **kwargs)
videos = list(map(self.video_from_frames, video_ranges))
return videos, targets
def video_from_frames(self, video_range):
# we need to do a bunch of things to each frame;
# try to avoid python overhead by using builtins
return asarray(
map(nparray_from_image,
map(image_open,
map(StringIO,
map(tostring,
self.frames[video_range[0]:video_range[1]])))),
dtype=np_float32) / 255.0
class JpegVideoDataset(FramewiseCompressedVideoDataset):
pass
class PngVideoDataset(FramewiseCompressedVideoDataset):
pass