-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdump.py
108 lines (93 loc) · 3.92 KB
/
dump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import tempfile, os.path, cPickle, zipfile, shutil
from collections import OrderedDict
import numpy as np
import theano
from blocks.extensions import SimpleExtension, Printing
from blocks.serialization import secure_dump
import blocks.config
import util
class PrintingTo(Printing):
def __init__(self, path, **kwargs):
super(PrintingTo, self).__init__(**kwargs)
self.path = path
with open(self.path, "w") as f:
f.truncate(0)
def do(self, *args, **kwargs):
with util.StdoutLines() as lines:
super(PrintingTo, self).do(*args, **kwargs)
with open(self.path, "a") as f:
f.write("\n".join(lines))
f.write("\n")
class DumpLog(SimpleExtension):
def __init__(self, path, **kwargs):
kwargs.setdefault("after_training", True)
super(DumpLog, self).__init__(**kwargs)
self.path = path
def do(self, callback_name, *args):
secure_dump(self.main_loop.log, self.path, use_cpickle=True)
class DumpGraph(SimpleExtension):
def __init__(self, path, **kwargs):
kwargs["after_batch"] = True
super(DumpGraph, self).__init__(**kwargs)
self.path = path
def do(self, which_callback, *args, **kwargs):
try:
self.done
except AttributeError:
if hasattr(self.main_loop.algorithm, "_function"):
self.done = True
with open(self.path, "w") as f:
theano.printing.debugprint(self.main_loop.algorithm._function, file=f)
class DumpBest(SimpleExtension):
"""dump if the `notification_name` record is present"""
def __init__(self, notification_name, save_path, **kwargs):
self.notification_name = notification_name
self.save_path = save_path
kwargs.setdefault("after_epoch", True)
super(DumpBest, self).__init__(**kwargs)
def do(self, which_callback, *args):
if self.notification_name in self.main_loop.log.current_row:
secure_dump(self.main_loop, self.save_path, dump_main_loop)
class LightCheckpoint(SimpleExtension):
def __init__(self, save_path, **kwargs):
kwargs.setdefault("after_epoch", True)
super(LightCheckpoint, self).__init__(**kwargs)
self.save_path = save_path
def do(self, which_callback, *args, **kwargs):
secure_dump(self.main_loop, self.save_path, dump_main_loop)
PARAMETER_FILENAME = "parameters.npz"
LOG_FILENAME = "log.pkl"
def dump_main_loop(main_loop, path):
# dump a zip file with parameters.npz and log.pkl
try:
temp_dir = tempfile.mkdtemp(dir=blocks.config.config.temp_dir)
parameter_path = os.path.join(temp_dir, PARAMETER_FILENAME)
log_path = os.path.join(temp_dir, LOG_FILENAME)
dump_model_parameters(main_loop.model, parameter_path)
cPickle.dump(main_loop.log, open(log_path, "w"))
with zipfile.ZipFile(path, "w") as archive:
archive.write(parameter_path, PARAMETER_FILENAME)
archive.write(log_path, LOG_FILENAME)
finally:
if "temp_dir" in locals():
shutil.rmtree(temp_dir)
def load_main_loop(main_loop, path):
# load parameters.npz and log.pkl from a zip file
try:
temp_dir = tempfile.mkdtemp(dir=blocks.config.config.temp_dir)
with zipfile.ZipFile(path, "r") as archive:
archive.extractall(temp_dir)
load_model_parameters(
main_loop.model,
os.path.join(temp_dir, PARAMETER_FILENAME))
main_loop.log = cPickle.load(open(
os.path.join(temp_dir, LOG_FILENAME)))
finally:
if "temp_dir" in locals():
shutil.rmtree(temp_dir)
# ensure the algorithm and extensions will be initialized
main_loop.log.status["training_started"] = False
def dump_model_parameters(model, file):
np.savez(file, **model.get_parameter_values())
def load_model_parameters(model, file):
model.set_parameter_values(np.load(file))