-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCover.v
1005 lines (863 loc) · 30.8 KB
/
Cover.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(** * Cover.v: Characteristic functions *)
From Coq Require Export Arith.
From ALEA Require Export Prog.
From ALEA Require Import Utheory.
From ALEA Require Import Sets.
Set Implicit Arguments.
Module CoverFun (Univ:Universe).
Module RP := (Rules Univ).
(* begin hide *)
Include Univ.
Import RP.
Import PP MP UP.
Open Scope U_scope.
Open Scope O_scope.
(* end hide *)
(** Properties of zero_one functions *)
Definition zero_one (A:Type)(f:MF A) := forall x, orc (f x == 0) (f x == 1).
Hint Unfold zero_one: core.
Lemma zero_one_not_one :
forall (A:Type)(f:MF A) x, zero_one f -> ~ 1 <= f x -> f x == 0.
intros; apply (H x); intros; auto.
absurd (1 <= f x); auto.
Qed.
Lemma zero_one_not_zero :
forall (A:Type)(f:MF A) x, zero_one f -> ~ f x <= 0 -> f x == 1.
intros; apply (H x); intros; auto.
absurd (0 <= f x); auto.
Qed.
Hint Resolve zero_one_not_one zero_one_not_zero: core.
Definition fesp_zero_one : forall (A:Type)(f g:MF A),
zero_one f -> zero_one g -> zero_one (fesp f g).
red; unfold fesp; intros; apply (H x); intros.
auto.
apply orc_left.
rewrite H1; auto.
apply (H0 x); intros.
auto.
apply orc_left.
rewrite H2; auto.
apply orc_right.
rewrite H1; rewrite H2; auto.
Qed.
Lemma fesp_conj_zero_one : forall (A:Type)(f g:MF A),
zero_one f -> fesp f g == fconj f g.
unfold fesp,fconj; intros; simpl; apply ford_eq_intro; intro x;
apply Uesp_zero_one_mult_left; auto.
Qed.
Lemma fconj_zero_one : forall (A:Type)(f g:MF A),
zero_one f -> zero_one g -> zero_one (fconj f g).
red; unfold fconj; intros; apply (H x); intros.
auto.
apply orc_left.
rewrite H1; auto.
apply (H0 x); intros.
auto.
apply orc_left.
rewrite H2; auto.
apply orc_right.
rewrite H1; rewrite H2; auto.
Qed.
Lemma fplus_zero_one : forall (A:Type)(f g:MF A),
zero_one f -> zero_one g -> zero_one (fplus f g).
red; unfold fplus; intros; apply (H x); intros.
auto.
apply (H0 x); intros.
auto.
apply orc_left.
rewrite H1; rewrite H2; auto.
apply orc_right.
rewrite H2; auto.
apply orc_right.
rewrite H1; auto.
Qed.
Lemma finv_zero_one : forall (A:Type)(f :MF A),
zero_one f -> zero_one (finv f).
red; unfold finv; intros; apply (H x); intros.
auto.
apply orc_right.
rewrite H0; auto.
apply orc_left.
rewrite H0; auto.
Qed.
Lemma fesp_zero_one_mult_left : forall (A:Type)(f:MF A)(p:U),
zero_one f -> forall x, f x & p == f x * p.
intros; apply Uesp_zero_one_mult_left; auto.
Qed.
Lemma fesp_zero_one_mult_right : forall (A:Type)(p:U)(f:MF A),
zero_one f -> forall x, p & f x == p * f x.
intros; apply Uesp_zero_one_mult_right; auto.
Qed.
Hint Resolve fesp_zero_one_mult_left fesp_zero_one_mult_right: core.
(** ** Covering functions *)
Definition cover (A:Type)(P:set A)(f:MF A) :=
forall x, (P x -> 1 <= f x) /\ (~ P x -> f x <= 0).
Lemma cover_eq_one : forall (A:Type)(P:set A)(f:MF A) (z:A),
cover P f -> P z -> f z == 1.
unfold cover; intros.
case (H z); intuition.
Qed.
Lemma cover_eq_zero : forall (A:Type)(P:set A)(f:MF A) (z:A),
cover P f -> ~ P z -> f z == 0.
unfold cover;intros.
case (H z); intuition.
Qed.
Lemma cover_orc_0_1 : forall (A:Type)(P:set A)(f:MF A),
cover P f -> forall x, orc (f x == 0) (f x == 1).
intros; apply (excluded_middle (A:=P x)); intros; auto.
apply orc_right; apply cover_eq_one with (P:=P) (f:=f); auto.
apply orc_left; apply cover_eq_zero with (P:=P) (f:=f); auto.
Qed.
Lemma cover_zero_one : forall (A:Type)(P:set A)(f:MF A),
cover P f -> zero_one f.
red; intros; apply cover_orc_0_1 with A P; trivial.
Qed.
Lemma zero_one_cover : forall (A:Type)(f:MF A),
zero_one f -> cover (fun x => 1 <= f x) f.
unfold zero_one,cover; intros; split; intros; auto.
(*apply (H x); intros; auto.
absurd (1 <= f x); auto.*)
Qed.
Lemma cover_esp_mult_left : forall (A:Type)(P:set A)(f:MF A)(p:U),
cover P f -> forall x, f x & p == f x * p.
intros; apply Uesp_zero_one_mult_left.
apply (cover_orc_0_1 H x).
Qed.
Lemma cover_esp_mult_right : forall (A:Type)(P:set A)(p:U)(f:MF A),
cover P f -> forall x, p & f x == p * f x.
intros; apply Uesp_zero_one_mult_right.
exact (cover_orc_0_1 H x).
Qed.
Hint Immediate cover_esp_mult_left cover_esp_mult_right: core.
Lemma cover_elim : forall (A:Type)(P:set A)(f:MF A),
cover P f -> forall x, orc (~P x /\ f x == 0) (P x /\ f x == 1).
intros; apply (excluded_middle (A:=P x)); intros; auto.
apply orc_right; split; auto; apply cover_eq_one with (P:=P) (f:=f); auto.
apply orc_left; split; auto; apply cover_eq_zero with (P:=P) (f:=f); auto.
Qed.
Lemma cover_eq_one_elim_class : forall (A:Type)(P Q:set A)(f:MF A),
cover P f -> forall z, f z == 1 -> class (Q z) -> incl P Q -> Q z.
intros; apply (excluded_middle (A:=P z)); intros; auto.
case Udiff_0_1.
rewrite <- H0.
apply Oeq_sym; apply (cover_eq_zero (P:=P) (f:=f)); auto.
Qed.
Lemma cover_eq_one_elim : forall (A:Type)(P:set A)(f:MF A),
cover P f -> forall z, f z == 1 -> ~ ~ P z.
intros.
apply (cover_eq_one_elim_class (Q:=fun z => ~ ~ P z) H); auto.
red; auto.
Qed.
Lemma cover_eq_zero_elim : forall (A:Type)(P:set A)(f:MF A) (z:A),
cover P f -> f z == 0 -> ~ P z.
intros; apply (excluded_middle (A:=P z)); intros; auto.
case Udiff_0_1.
rewrite <- H0.
apply (cover_eq_one (P:=P) (f:=f)); auto.
Qed.
Lemma cover_unit : forall (A:Type)(P:set A)(f:MF A)(a:A),
cover P f -> P a -> 1 <= mu (Munit a) f.
simpl; unfold unit,cover; firstorder.
Qed.
Lemma cover_let : forall (A B:Type)(m1: distr A)(m2: A->distr B) (P:set A)(cP:MF A)(f:MF B)(p:U),
cover P cP -> 1 <= mu m1 cP -> (forall x:A, P x -> p <= mu (m2 x) f) -> p <= mu (Mlet m1 m2) f.
intros A B m1 m2.
simpl; unfold star; intuition.
apply Ole_trans with (mu m1 (fun x => p * (cP x))).
rewrite (mu_stable_mult m1 p cP).
apply Ole_trans with (p * 1); auto.
apply (mu_monotonic m1).
intro x.
apply (cover_elim (P:=P) (f:=cP) H x); auto; intros (Hp,cPeq).
rewrite cPeq; repeat Usimpl; auto.
rewrite cPeq; repeat Usimpl; auto.
Qed.
Lemma cover_incl_fle : forall (A:Type)(P Q:set A)(f g:MF A),
cover P f -> cover Q g -> incl P Q -> f <= g.
intros; intro x.
apply (cover_elim H x); auto; intros (Hp,Hfeq).
rewrite Hfeq; auto.
rewrite (cover_eq_one x H0); auto.
Qed.
Lemma cover_incl_eq: forall (A:Type)(P:set A)(f g:MF A),
cover P f -> cover P g -> f == g.
intros; apply Ole_antisym.
apply (cover_incl_fle H H0); auto.
apply (cover_incl_fle H0 H); auto.
Qed.
Lemma cover_equiv_stable : forall (A:Type)(P Q:set A)(EQ : equiv P Q )(f:MF A),
cover P f -> cover Q f.
unfold cover; firstorder.
Qed.
Lemma cover_eq_stable : forall (A:Type)(P:set A)(f g:MF A),
cover P f -> f == g -> cover P g.
unfold cover; intros.
case (H x); case (ford_eq_elim H0 x); split; intros; apply Ole_trans with (f x); auto.
Qed.
Lemma cover_equiv_eq_stable : forall (A:Type)(P Q:set A)(f g:MF A),
cover P f -> equiv P Q -> f == g -> cover Q g.
intros; assert (cover P g).
apply cover_eq_stable with f; auto.
apply cover_equiv_stable with P; auto.
Qed.
Add Parametric Morphism (A:Type) : (cover (A:=A))
with signature equiv (A:=A) ==> Oeq (O:=MF A) ==> iff as cover_equiv_compat.
intuition.
apply cover_equiv_eq_stable with x x0; auto.
apply cover_equiv_eq_stable with y y0; auto.
Qed.
Lemma cover_union : forall (A:Type)(P Q:set A)(f g : MF A),
cover P f -> cover Q g -> cover (union P Q) (fplus f g).
unfold cover; intros.
case (H x); case (H0 x); unfold union,fplus; split; intros.
case H5; intro.
apply Ole_trans with (f x); auto.
apply Ole_trans with (g x); auto.
assert (~P x); try tauto.
assert (~Q x); try tauto.
apply Ole_trans with (0+0); auto.
apply Uplus_le_compat; auto.
Qed.
Lemma cover_inter_esp : forall (A:Type)(P Q:set A)(f g : MF A),
cover P f -> cover Q g -> cover (inter P Q) (fesp f g).
unfold cover; intros.
case (H x); case (H0 x); unfold inter,fesp; split; intros.
case H5; intros.
apply Ole_trans with (1&1); auto.
apply Uesp_le_compat; auto.
assert (orc (~ P x) (~ Q x)); auto.
apply orc_intro; tauto.
apply H6; auto; intro.
apply Ole_trans with (f x); auto.
apply Ole_trans with (g x); auto.
Qed.
Lemma cover_inter_mult : forall (A:Type)(P Q:set A)(f g : MF A),
cover P f -> cover Q g -> cover (inter P Q) (fun x => f x * g x).
unfold cover; intros.
case (H x); case (H0 x); unfold inter; split; intros.
case H5; intros.
apply Ole_trans with (1*1); auto.
apply Umult_le_compat; auto.
assert (orc (~ P x) (~ Q x)); auto.
apply orc_intro; tauto.
apply H6; auto; intro.
apply Ole_trans with (f x); auto.
apply Ole_trans with (g x); auto.
Qed.
Lemma cover_compl : forall (A:Type)(P:set A)(f:MF A),
cover P f -> cover (compl P) (finv f).
unfold cover; intros.
case (H x); unfold compl,finv; split; intros.
apply Ole_trans with ([1-]0); auto.
apply Ole_trans with ([1-]1); auto.
apply Uinv_le_compat.
apply class_double_neg with (P x); auto.
Qed.
Lemma cover_empty : forall (A:Type), cover (empty A) (fzero A).
red; unfold fzero; intuition.
case H.
Qed.
(** * Caracteristic functions *)
Definition carac (A:Type)(P:set A)(Pdec : dec P) : MF A
:= fun z => if Pdec z then 1 else 0.
Lemma carac_incl: forall (A:Type)(P Q:A -> Prop)(Pdec: dec P)(Qdec: dec Q),
incl P Q -> carac Pdec <= carac Qdec.
intros; intro x; unfold carac.
case (Pdec x); case (Qdec x); intuition.
absurd (Q x); intuition.
Qed.
Lemma carac_monotonic : forall (A B:Type)(P:A -> Prop)(Q:B->Prop)(Pdec: dec P)(Qdec: dec Q) x y,
(P x -> Q y) -> carac Pdec x <= carac Qdec y.
intros; unfold carac; case (Pdec x); intros; auto.
case (Qdec y); intros; auto.
absurd (Q y); auto.
Qed.
Hint Resolve carac_monotonic: core.
Lemma carac_eq_compat : forall (A B:Type)(P:A -> Prop)(Q:B->Prop)(Pdec: dec P)(Qdec: dec Q) x y,
(P x <-> Q y) -> carac Pdec x == carac Qdec y.
intros; apply Ole_antisym; intuition.
Qed.
Hint Resolve carac_eq_compat: core.
Lemma carac_one : forall (A:Type)(P:A -> Prop)(Pdec:dec P)(z:A),
P z -> carac Pdec z == 1.
unfold carac; intros; case (Pdec z); intuition.
Qed.
Lemma carac_zero : forall (A:Type)(P:A -> Prop)(Pdec:dec P)(z:A),
~ P z -> carac Pdec z == 0.
unfold carac; intros; case (Pdec z); intuition.
Qed.
Lemma cover_dec : forall (A:Type)(P:set A)(Pdec : dec P), cover P (carac Pdec).
red; unfold carac; intros.
case (Pdec x); intuition.
Qed.
Lemma cover_mult_fun : forall (A:Type)(P:set A)(cP : MF A)(f g:A->U),
(forall x, P x -> f x == g x) -> cover P cP -> forall x, cP x * f x == cP x * g x.
intros.
apply (cover_elim H0 x); auto; intuition.
rewrite H3; repeat Usimpl; auto.
Qed.
Lemma cover_esp_fun : forall (A:Type)(P:set A)(cP : MF A)(f g:A->U),
(forall x, P x -> f x == g x) -> cover P cP -> forall x, cP x & f x == cP x & g x.
intros.
apply (cover_elim H0 x); auto; intuition.
rewrite H3; repeat Usimpl; auto.
rewrite H3; repeat Usimpl; auto.
Qed.
Lemma cover_esp_fun_le : forall (A:Type)(P:set A)(cP : MF A)(f g:A->U),
(forall x, P x -> f x <= g x) -> cover P cP -> forall x, cP x & f x <= cP x & g x.
intros.
apply (cover_elim H0 x); auto; intuition.
rewrite H3; repeat Usimpl; auto.
rewrite H3; repeat Usimpl; auto.
Qed.
Hint Resolve cover_esp_fun_le: core.
Lemma cover_ok : forall (A:Type)(P Q:set A)(f g : MF A),
(forall x, P x -> ~ Q x) -> cover P f -> cover Q g -> fplusok f g.
red; red; intros.
intro x; unfold finv.
apply (cover_elim H0 x); auto; intuition.
rewrite H4; auto.
apply (cover_elim H1 x); auto; intuition.
rewrite H6; auto.
case (H x H3 H5).
Qed.
Hint Resolve cover_ok: core.
(** * Conditional probabilities *)
Definition mcond A (m:M A) (f:MF A) : M A.
intros; exists (fun g => (m (fconj f g)) / m f).
red; intros g h legh.
apply Udiv_le_compat_left.
apply (fmonotonic m); unfold fconj; intros; auto.
Defined.
Lemma mcond_simpl : forall A (m:M A) (f g: MF A),
mcond m f g = m (fconj f g) / m f.
trivial.
Qed.
Lemma mcond_stable_plus : forall A (m:distr A) (f: MF A), stable_plus (mcond (mu m) f).
red; intros.
repeat rewrite mcond_simpl.
simpl; rewrite <- Udiv_plus.
apply Udiv_eq_compat_left.
assert (fplusok (fconj f f0) (fconj f g)).
auto.
rewrite <- (mu_stable_plus m H0).
apply (mu_stable_eq m).
simpl; apply ford_eq_intro; intro x; unfold fconj,fplus; auto.
apply Udistr_plus_left; auto.
apply (H x).
Qed.
Lemma mcond_stable_inv : forall A (m:distr A) (f: MF A), stable_inv (mcond (mu m) f).
red; intros.
repeat rewrite mcond_simpl.
apply (Ueq_orc 0 (mu m f)); intro.
auto.
rewrite (Udiv_by_zero (mu m (fconj f (finv f0))) (y:=mu m f)); auto.
apply Ole_trans with (mu m (fminus f (fconj f f0)) / mu m f).
apply Udiv_le_compat_left.
apply (mu_monotonic m).
intro x; unfold fconj,finv,fminus; auto.
rewrite stable_minus_distr; trivial.
rewrite Udiv_minus; trivial.
Qed.
Lemma mcond_stable_mult : forall A (m:distr A) (f: MF A), stable_mult (mcond (mu m) f).
red; intros.
repeat rewrite mcond_simpl.
rewrite <- Umult_div_assoc.
apply Udiv_eq_compat_left.
apply Oeq_trans with (mu m (fmult k (fconj f f0))).
apply (mu_stable_eq m).
simpl; apply ford_eq_intro; unfold fconj, fmult; intro; auto.
apply (mu_stable_mult m).
apply (mu_monotonic m); auto.
apply fle_fconj_left.
Qed.
Lemma mcond_continuous : forall A (m:distr A) (f: MF A), continuous (mcond (mu m) f).
red; intros.
repeat rewrite mcond_simpl.
apply (Ueq_orc 0 (mu m f)); intro; auto.
rewrite (Udiv_by_zero (mu m (fconj f (lub (c:=A -O-> U) h))) (y:=mu m f)); auto.
apply Umult_div_le_right.
apply Ole_trans with (mu m (lub (c:=A -O-> U) ((Fconj A f)@h))).
apply mu_monotonic.
apply (continuous2_app (F:=Fconj A) (fconj_continuous2 (A:=A)) f h).
rewrite (mu_continuous m).
rewrite <- (lub_comp_le (UMult <_> (mu m f)) (mcond (mu m) f @ h) ).
apply (lub_le_compat (D:=U)).
intro x; simpl.
rewrite Udiv_mult; auto.
apply (mu_monotonic m); auto.
apply fle_fconj_left.
Qed.
Definition Mcond A (m:distr A) (f:MF A) : distr A :=
Build_distr (mcond_stable_inv m f) (mcond_stable_plus m f)
(mcond_stable_mult m f) (mcond_continuous m f).
(** ** Assuming m is a distribution under assumption P and cP is 0 or 1, builds
a distribution which is m if cP is 1 and 0 otherwise *)
Definition Mrestr A (cp:U) (m:M A) : M A := UMult cp @ m.
Lemma Mrestr_simpl : forall A cp (m:M A) f, Mrestr cp m f = cp * (m f).
trivial.
Qed.
Lemma Mrestr0 : forall A cP (m:M A), cP <= 0 -> forall f, Mrestr cP m f == 0.
intros.
apply Ule_zero_eq; apply Ole_trans with cP;auto.
Qed.
Lemma Mrestr1 : forall A cP (m:M A), 1 <= cP -> forall f, Mrestr cP m f == m f.
intros.
assert (H1:cP==1); auto.
rewrite Mrestr_simpl; rewrite H1; auto.
Qed.
Definition distr_restr : forall A (P:Prop) (cp:U) (m:M A),
((P -> 1 <= cp) /\ (~ P -> cp <= 0)) -> (P -> stable_inv m) ->
(P -> stable_plus m) -> (P -> stable_mult m) -> (P -> continuous m)
-> distr A.
intros A P cp m HP minv mplus mmult mcont.
exists (Mrestr cp m); case HP; intros P1 P0; red; intros; apply (excluded_middle (A:=P)); auto; intros.
repeat rewrite Mrestr1; auto.
apply minv; trivial.
repeat rewrite Mrestr0; auto.
repeat rewrite Mrestr1; auto.
apply mplus; trivial.
repeat rewrite Mrestr0; auto.
repeat rewrite Mrestr1; auto.
apply mmult; trivial.
repeat rewrite Mrestr0; auto.
repeat rewrite Mrestr1; auto.
rewrite (mcont H h); trivial.
apply lub_le_compat; intro n.
repeat rewrite fmon_comp_simpl.
repeat rewrite Mrestr1; auto.
repeat rewrite Mrestr0; auto.
Defined.
Lemma distr_restr_simpl : forall A (P:Prop) (cp:U) (m:M A)
(Hp: (P -> 1 <= cp) /\ (~ P -> cp <= 0)) (Hinv:P -> stable_inv m)
(Hplus:P -> stable_plus m)(Hmult:P -> stable_mult m)(Hcont:P -> continuous m) f,
mu (distr_restr cp Hp Hinv Hplus Hmult Hcont) f = cp * m f.
trivial.
Qed.
(** ** Modular reasoning on programs *)
Lemma range_cover : forall A (P:A -> Prop) d cP, range P d -> cover P cP ->
forall f, mu d f == mu d (fun x => cP x * f x).
intros; apply range_eq with (P:=P); auto; intros.
rewrite (cover_eq_one a H0); auto.
Qed.
Lemma mu_cut : forall (A:Type)(m:distr A)(P:set A)(cP f g:MF A),
cover P cP -> (forall x, P x -> f x == g x) -> 1<=mu m cP -> mu m f == mu m g.
intros; apply Oeq_trans with (mu m (fesp cP f)).
apply (mu_esp_one m cP f); auto.
intros; apply Oeq_trans with (mu m (fesp cP g)).
apply mu_stable_eq.
simpl; apply ford_eq_intro; intro x; unfold fesp;
apply (cover_esp_fun (P:=P) (cP:=cP)); auto.
apply Oeq_sym; apply (mu_esp_one m cP g); auto.
Qed.
(** ** Conditional probabilities *)
(** ** Uniform measure on finite sets *)
Section SigmaFinite.
Variable A:Type.
Variable decA : forall x y:A, {x=y}+{~x=y}.
Section RandomFinite.
(** *** Distribution for [random_fin P] over $\{k:nat | k \leq n\}$
The distribution associated to [random_fin P] is
$f \mapsto \Sigma_{a\in P} \frac{f(a)}{n+1}$
with $n+1$ the size of $P$
we cannot factorize $\frac{1}{n+1}$ because of possible overflow *)
Fixpoint sigma_fin (f:A->U)(P:A->Prop)(FP:finite P){struct FP}:U :=
match FP with
| (fin_eq_empty eq) => 0
| (@fin_eq_add _ _ x Q nQx FQ eq) => (f x) + sigma_fin f FQ
end.
Definition retract_fin (P:A->Prop) (f:A->U) :=
forall Q (FQ: finite Q), incl Q P -> forall x, ~(Q x) -> (P x) -> f x <= [1-](sigma_fin f FQ).
Lemma retract_fin_inv :
forall (P:A->Prop) (f:A->U),
retract_fin P f -> forall Q (FQ: finite Q), incl Q P -> forall x, ~(Q x) -> (P x) -> sigma_fin f FQ <=[1-]f x.
intros; apply Uinv_le_perm_right; auto.
Qed.
Hint Immediate retract_fin_inv: core.
Lemma retract_fin_incl : forall P Q f, retract_fin P f -> incl Q P -> retract_fin Q f.
unfold retract_fin; intros.
apply (H Q0 FQ); auto.
apply incl_trans with Q; auto.
Qed.
Lemma sigma_fin_monotonic : forall (f g : A -> U)(P:A->Prop)(FP:finite P),
(forall x, P x -> (f x)<=(g x))-> sigma_fin f FP <= sigma_fin g FP.
induction FP; simpl; intros; auto.
apply Ole_trans with (f x + sigma_fin g FP); repeat Usimpl.
apply IHFP.
intros; case (e x0); unfold add in *; intuition.
apply H; case (e x); unfold add in *; intuition.
Qed.
Lemma sigma_fin_eq_compat :
forall (f g : A -> U)(P:A->Prop)(FP:finite P),
(forall x, P x -> (f x)==(g x))-> sigma_fin f FP == sigma_fin g FP.
intros; apply Ole_antisym; apply sigma_fin_monotonic; auto.
intros; rewrite (H x); auto.
Qed.
Lemma retract_fin_le : forall (P:A->Prop) (f g:A->U),
(forall x, P x -> f x <= g x) -> retract_fin P g -> retract_fin P f.
unfold retract_fin; intros.
apply Ole_trans with (g x); auto.
apply Ole_trans with ([1-] sigma_fin g FQ); auto.
apply Uinv_le_compat.
apply sigma_fin_monotonic; auto.
Qed.
Lemma sigma_fin_mult : forall (f : A -> U) c (P:A->Prop)(FP:finite P),
retract_fin P f -> sigma_fin (fun k => c * f k) FP == c * sigma_fin f FP.
induction FP; simpl; intros.
repeat Usimpl; auto.
assert (incl Q P).
apply incl_trans with (add x Q); auto.
rewrite Udistr_plus_left; auto.
(* apply H; auto.*)
(*case (e x); intuition.*)
rewrite IHFP; auto.
apply retract_fin_incl with P; auto.
apply H; auto.
case (e x); intuition.
Qed.
Lemma sigma_fin_plus : forall (f g: A -> U) (P:A->Prop)(FP:finite P),
sigma_fin (fun k => f k + g k) FP == sigma_fin f FP + sigma_fin g FP.
induction FP; simpl; intros.
repeat Usimpl; auto.
rewrite IHFP.
repeat norm_assoc_left; repeat Usimpl.
repeat norm_assoc_right; repeat Usimpl; auto.
Qed.
Lemma sigma_fin_prod_maj :
forall (f g : A -> U)(P:A->Prop)(FP:finite P),
sigma_fin (fun k => f k * g k) FP <= sigma_fin f FP.
induction FP; simpl; auto.
Qed.
Lemma sigma_fin_prod_le :
forall (f g : A -> U) (c:U) , (forall k, f k <= c) -> forall (P:A->Prop)(FP:finite P),
retract_fin P g -> sigma_fin (fun k => f k * g k) FP <= c * sigma_fin g FP.
induction FP; simpl; intros.
repeat Usimpl; auto.
assert (incl Q P).
apply incl_trans with (add x Q); auto.
assert (retract_fin Q g).
apply retract_fin_incl with P; auto.
apply Ole_trans with ((f x) * (g x) + (c * sigma_fin g FP)); auto.
apply Ole_trans with ( c * (g x) + (c * sigma_fin g FP)); auto.
rewrite Udistr_plus_left; auto.
case (e x); intuition.
Qed.
Lemma sigma_fin_prod_ge :
forall (f g : A -> U) (c:U) , (forall k, c <= f k) -> forall (P:A->Prop)(FP:finite P),
retract_fin P g -> c * sigma_fin g FP <= sigma_fin (fun k => f k * g k) FP.
induction FP; simpl; intros.
repeat Usimpl; auto.
assert (incl Q P).
apply incl_trans with (add x Q); auto.
assert (retract_fin Q g).
apply retract_fin_incl with P; auto.
apply Ole_trans with ((f x) * (g x) + (c * sigma_fin g FP)); auto.
apply Ole_trans with ( c * (g x) + (c * sigma_fin g FP)); auto.
case (e x); intuition.
Qed.
Hint Resolve sigma_fin_prod_maj sigma_fin_prod_ge sigma_fin_prod_le: core.
Lemma sigma_fin_inv : forall (f g : A -> U)(P:A->Prop)(FP:finite P),
retract_fin P f ->
[1-] sigma_fin (fun k => f k * g k) FP ==
sigma_fin (fun k => f k * [1-] g k) FP + [1-] sigma_fin f FP.
induction FP; simpl.
repeat Usimpl; auto.
intro.
assert (incl Q P).
apply incl_trans with (add x Q); auto.
assert (retract_fin Q f).
apply retract_fin_incl with P; auto.
assert (px:P x).
case (e x); intuition.
apply Uplus_eq_simpl_right with ((f x) * (g x)).
repeat Usimpl; auto.
apply Uinv_le_perm_right.
rewrite (Udistr_inv_left (f x) (g x)).
repeat norm_assoc_right; apply Uplus_le_compat_right.
apply Ole_trans with
(sigma_fin f FP + [1-] (f x + sigma_fin f FP)); repeat Usimpl.
apply (sigma_fin_prod_maj f (fun k => [1-](g k)) FP).
assert (sigma_fin f FP <= [1-] (f x)).
apply Uinv_le_perm_right; auto.
rewrite <- (Uinv_plus_right _ _ H2); auto.
assert (sigma_fin (fun k => f k * g k) FP <= [1-] (f x * g x)).
apply Ole_trans with (sigma_fin f FP); auto.
apply Ole_trans with ([1-] (f x)); auto.
apply Uinv_le_perm_right; auto.
rewrite (Uinv_plus_left _ _ H2).
apply Oeq_trans with (1:=IHFP H1).
rewrite (Uplus_sym (f x * [1-] (g x))
(sigma_fin (fun k => f k * [1-] (g k)) FP)).
repeat norm_assoc_right;apply Uplus_eq_compat_right.
setoid_rewrite (Uplus_sym ([1-] (f x + sigma_fin f FP)) (f x * g x)).
repeat norm_assoc_left.
assert ([1-] (g x) <= [1-] (g x)); auto.
rewrite <- (Udistr_plus_left (f x) _ _ H3).
rewrite (Uinv_opp_left (g x)).
rewrite (Umult_one_right (f x)); auto.
rewrite (Uplus_sym (f x) ([1-] (f x + sigma_fin f FP))).
apply Oeq_sym; apply Uinv_plus_left; auto.
apply Uinv_le_perm_right; auto.
Qed.
Lemma sigma_fin_equiv : forall f P Q (FP:finite P) (e:equiv P Q),
(sigma_fin f (fin_equiv e FP)) = (sigma_fin f FP).
induction FP; simpl; intros; auto.
Qed.
Lemma sigma_fin_rem : forall f P (FP:finite P) a,
P a -> sigma_fin f FP == f a + sigma_fin f (finite_rem decA a FP).
induction FP; intuition.
case (equiv_empty_false a e);auto.
simpl; case (decA x a); simpl; intros.
case e0; unfold eq_rect_r;simpl; auto.
rewrite sigma_fin_equiv; auto.
rewrite (IHFP a); auto.
case (e a); unfold add; intuition.
case f0; auto.
Qed.
Lemma sigma_fin_incl : forall f P (FP:finite P) Q (FQ:finite Q),
(incl P Q) -> sigma_fin f FP <= sigma_fin f FQ.
induction FP; simpl; intros; auto.
destruct FQ; simpl; intros.
case incl_add_empty with (a:=x) (P:=Q).
apply incl_trans with Q0; auto.
apply incl_trans with P; auto.
case (decA x x0); intro.
(* case x=x0*)
subst; Usimpl; auto.
apply IHFP.
apply incl_trans with (rem x0 P); auto.
apply incl_add_rem; auto.
apply incl_trans with (rem x0 Q0); auto.
rewrite incl_rem_add_iff; auto.
(* Case x<>x0 *)
rewrite (sigma_fin_rem f FQ x).
(*
assert (P x).
red in e; rewrite e; auto.
assert (Q0 x);auto.
assert (Q1 x);auto.
case (e0 x); intuition.
case H4; intuition.*)
repeat norm_assoc_left.
rewrite (Uplus_sym (f x0) (f x)).
repeat norm_assoc_right.
Usimpl.
assert (H3:~(rem x Q1 x0)).
unfold rem; intuition.
assert (incl Q (add x0 (rem x Q1))).
red; intros; case (e0 x1); clear e0; intuition.
case (e x1); clear e; intuition.
generalize (H x1); clear H; intuition.
unfold add,rem in *; intuition.
subst; intuition.
case (decA x1 x0); intuition; subst; intuition.
case (decA x1 x); intuition; subst; intuition.
exact (IHFP (add x0 (rem x Q1)) (fin_eq_add H3 (finite_rem decA x FQ) (equiv_refl (add x0 (rem x Q1)))) H0).
assert (P x).
red in e; rewrite e; auto.
assert (Q0 x);auto.
assert (Q1 x);auto.
case (e0 x); intuition.
case H4; intuition.
Qed.
Lemma sigma_fin_unique : forall f P Q (FP:finite P) (FQ:finite Q), (equiv P Q) -> sigma_fin f FP == sigma_fin f FQ.
intros; apply Ole_antisym.
apply sigma_fin_incl; auto.
apply sigma_fin_incl; auto.
Qed.
Lemma sigma_fin_cte : forall c P (FP:finite P),
sigma_fin (fun _ => c) FP == (size FP) */ c.
induction FP; auto.
simpl sigma_fin; simpl size; rewrite IHFP; auto.
Qed.
(*
Lemma sigma_fin_continuous : forall P (FP:finite P),
continuous (fun f : fcpo A U => sigma_fin f FP).
red; intros.
induction FP; auto.
simpl sigma_fin.
apply Ole_trans with
(lub (fun n0 : nat => h n0 x) + lub (fun n : nat => sigma_fin (h n) FP)); auto.
red in H; rewrite lub_eq_plus; auto.
intro y; apply H.
intro y; apply sigma_fin_monotonic; intros; apply H.
Qed.
(** *** Definition and Properties of [random_fin] *)
Variable P : A->Prop.
Variable FP : finite P.
Let s:= (size FP - 1)%nat.
Lemma pred_size_le : (size FP <=S s)%nat.
unfold s; lia.
Qed.
Hint Resolve pred_size_le: core.
Lemma pred_size_eq : notempty P -> size FP =S s.
destruct FP; intros; simpl.
unfold notempty in *; contradiction.
unfold s; simpl; lia.
Qed.
Definition random_fin :M A := fun (f:A->U) => sigma_fin (fun k => Unth s * f k) FP.
Lemma fnth_retract_fin:
forall n, (size FP<=S n)%nat -> (retract_fin P (fun _ => [1/]1+n)).
red; intros.
rewrite sigma_fin_cte.
apply Ole_trans with ([1-] (n */ [1/]1+n)); auto.
apply Uinv_le_compat.
apply Nmult_le_compat_left.
apply le_trans with (size (finite_rem decA x FP)); auto.
apply size_incl; auto.
unfold incl, rem; intuition.
subst; intuition.
apply le_S_n.
apply le_trans with (size FP); auto.
rewrite (size_finite_rem decA x FP); auto.
Qed.
Lemma random_fin_stable_inv : stable_inv random_fin.
unfold random_fin, stable_inv, finv; intros; auto.
rewrite (@sigma_fin_inv (fun k => [1/]1+s) f P FP); auto.
apply fnth_retract_fin; trivial.
Qed.
Lemma random_fin_stable_plus : stable_plus random_fin.
unfold random_fin, stable_plus, fplus; intros; auto.
unfold fplusok, fle, finv in H.
apply Oeq_trans with
(sigma_fin (fun k => ([1/]1+s * f k) + ([1/]1+s * g k)) FP).
apply sigma_fin_eq_compat; intros; auto.
apply sigma_fin_plus with (f:=fun k => Unth s * f k)
(g:=fun k => Unth s * g k); auto.
Qed.
Lemma random_fin_stable_mult : stable_mult random_fin.
unfold random_fin, stable_mult, fmult; intros; auto.
apply Oeq_trans with (sigma_fin (fun l => k * ([1/]1+s * f l)) FP).
apply sigma_fin_eq_compat; intros; auto.
apply sigma_fin_mult with (f:=fun k => Unth s * f k).
apply retract_fin_le with (fun (k:A) => [1/]1+s); auto.
apply fnth_retract_fin; auto.
Qed.
Lemma random_fin_monotonic : monotonic random_fin.
unfold monotonic, random_fin; intros.
red in H.
apply sigma_fin_monotonic; auto.
Qed.
Lemma random_fin_continuous : continuous random_fin.
unfold random_fin, continuous; intros.
apply Ole_trans with
(sigma_fin (lub (c:=fcpo A U) (fun n => fmult ([1/]1+s) (h n))) FP).
apply sigma_fin_monotonic; intros.
simpl; rewrite <- lub_eq_mult; auto.
apply sigma_fin_continuous with (h:=fun n : nat => fmult ([1/]1+s) (h n)); auto.
intros y z; unfold fmult.
Usimpl; apply H.
Qed.
Definition Random_fin : (distr A).
exists random_fin.
apply random_fin_stable_inv; trivial.
apply random_fin_stable_plus.
apply random_fin_stable_mult; trivial.
apply random_fin_monotonic.
apply random_fin_continuous.
Defined.
Lemma random_fin_total : notempty P -> mu Random_fin (fone A) == 1.
intros; simpl; unfold random_fin.
unfold fone.
apply Oeq_trans with (sigma_fin (fun k => [1/]1+s) FP).
apply sigma_fin_eq_compat.
intros; repeat Usimpl; auto.
rewrite sigma_fin_cte.
rewrite pred_size_eq; auto.
Qed.
End RandomFinite.
Lemma random_fin_cover :
forall P Q (FP:finite P) (decQ:dec Q),
mu (Random_fin FP) (cover decQ) == size (finite_inter decQ FP) */ [1/]1+(size FP-1)%nat.
intros; simpl mu.
unfold random_fin.
pattern P at 1 3 4 5, FP at 2 3.
elim FP; intros; auto.
simpl sigma_fin.
unfold cover at 1.
rewrite H.
case (decQ x); intro.
rewrite size_inter_add_in; auto.
rewrite Nmult_S; auto.
repeat Usimpl; rewrite size_inter_add_notin; auto.
Qed.
Lemma random_fin_P : forall P (FP:finite P) (decP:dec P),
notempty P -> mu (Random_fin FP) (cover decP) ==1.
intros; rewrite random_fin_cover.
rewrite (size_inter_incl decA decP FP FP); auto.
pattern (size FP) at 1; rewrite pred_size_eq; auto.
Qed.
*)
End RandomFinite.
End SigmaFinite.
(** ** Properties of the Random distribution *)
Definition le_dec (n:nat) : dec (fun x => (x <= n)%nat).
red; intros; case (le_lt_dec x n); intuition.
Defined.
Definition lt_dec (n:nat) : dec (fun x => (x < n)%nat).
red; intros; case (le_lt_dec n x); intuition.
Defined.
Definition gt_dec : forall x, dec (lt x).
intros x y; case (le_lt_dec y x); auto with arith.
Defined.
Definition ge_dec : forall x, dec (le x).
intros x y; case (le_lt_dec x y); auto with arith.
Defined.
Definition carac_le n := carac (le_dec n).
Definition carac_lt n := carac (lt_dec n).
Definition carac_gt n := carac (gt_dec n).
Definition carac_ge n := carac (ge_dec n).
Definition is_le (n:nat) : cover (fun x => (x <=n)%nat) (carac_le n) := cover_dec (le_dec n).
Definition is_lt (n:nat) : cover (fun x => (x < n)%nat) (carac_lt n) := cover_dec (lt_dec n).
Definition is_gt (n:nat) : cover (fun x => (n < x)%nat) (carac_gt n):= cover_dec (gt_dec n).
Definition is_ge (n:nat) : cover (fun x => (n <= x)%nat) (carac_ge n) := cover_dec (ge_dec n).
(** count the number of elements between 0 and n-1 which satisfy P *)
Fixpoint nb_elts (P:nat -> Prop)(Pdec : dec P)(n:nat) {struct n} : nat :=
match n with
0 => 0%nat
| S n => if Pdec n then (S (nb_elts Pdec n)) else (nb_elts Pdec n)
end.
Lemma nb_elts_true : forall (P:nat -> Prop)(Pdec : dec P)(n:nat),
(forall k, (k < n)%nat -> P k) -> nb_elts Pdec n =n.
induction n; simpl; intros; auto.
case (Pdec n); intros; auto with arith.
absurd (P n); auto with arith.
Qed.
Hint Resolve nb_elts_true: core.
(** - the probability for a random number between 0 and n to satisfy P is equal
to the number of elements below n which satisfy P divided by n+1 *)
Lemma Random_carac : forall (P:nat -> Prop)(Pdec : dec P)(n:nat),
mu (Random n) (carac Pdec) == (nb_elts Pdec (S n)) */ [1/]1+n.
simpl mu.
unfold random,fnth; intros.
elim (S n); simpl; intros;auto.
rewrite H; unfold carac;case (Pdec n0); Usimpl; auto.
Qed.
Lemma nb_elts_lt_le : forall k n, (k <= n)%nat -> nb_elts (lt_dec k) n = k.
intros k n H; induction H; intros; auto with arith.
simpl.
case (lt_dec k m); intros; auto with arith.
absurd ((m<k)%nat); auto with arith.
Qed.
Lemma nb_elts_lt_ge : forall k n, (n <= k)%nat -> nb_elts (lt_dec k) n = n.
intros; auto with zarith.
Qed.
Hint Resolve nb_elts_lt_ge nb_elts_lt_le: core.
Lemma Random_lt : forall n k, mu (Random n) (carac_lt k) == k */ [1/]1+n.
unfold carac_lt; intros; rewrite Random_carac.
case (le_ge_dec k (S n)); intros.
rewrite nb_elts_lt_le; auto.
rewrite nb_elts_lt_ge; auto.
apply Ole_antisym; auto.
apply Ole_trans with 1; auto.
Qed.
Hint Resolve Random_lt: core.
Lemma Random_le : forall n k, mu (Random n) (carac_le k) == (S k) */ [1/]1+n.
intros; apply Oeq_trans with (mu (Random n) (carac_lt (S k))); auto.
apply (mu_stable_eq (Random n)); auto.
unfold carac_le,carac_lt.
simpl; apply ford_eq_intro; intro x.
apply carac_eq_compat; intuition.