-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpretrain_layers.py
179 lines (143 loc) · 5.8 KB
/
pretrain_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os, sys, cPickle, argparse
from pylearn2.train import Train
from pylearn2.training_algorithms.sgd import SGD
from pylearn2.costs.ebm_estimation import SML
from pylearn2.datasets.transformer_dataset import TransformerDataset
from pylearn2.termination_criteria import MonitorBased, ChannelTarget, EpochCounter
from pylearn2.training_algorithms.learning_rule import RMSProp
from pylearn2.costs.autoencoder import MeanSquaredReconstructionError
import pylearn2.config.yaml_parse as yaml_parse
from audio_dataset import AudioDataset, PreprocLayer
import pdb
'''
(Although it may be more complicated) We build our models and dataset using yaml in order to keep a record of how things were built
'''
def get_grbm(nvis, nhid):
model_yaml = '''!obj:pylearn2.models.rbm.GaussianBinaryRBM {
nvis : %(nvis)i,
nhid : %(nhid)i,
irange : .1,
energy_function_class : !obj:pylearn2.energy_functions.rbm_energy.grbm_type_1 {},
init_sigma : 1.,
init_bias_hid : 0,
mean_vis : True
}''' % {'nvis' : nvis, 'nhid': nhid}
model = yaml_parse.load(model_yaml)
return model
def get_rbm(nvis, nhid):
model_yaml = '''!obj:pylearn2.models.rbm.RBM {
nvis : %(nvis)i,
nhid : %(nhid)i,
irange : .1
}''' % {'nvis' : nvis, 'nhid': nhid}
model = yaml_parse.load(model_yaml)
return model
def get_ae(nvis, nhid):
model_yaml = '''!obj:pylearn2.models.autoencoder.DenoisingAutoencoder {
nvis : %(nvis)i,
nhid : %(nhid)i,
irange : .1,
corruptor : !obj:pylearn2.corruption.BinomialCorruptor { corruption_level : .1 },
act_enc : 'sigmoid',
act_dec : null
}''' % {'nvis' : nvis, 'nhid': nhid}
model = yaml_parse.load(model_yaml)
return model
def get_rbm_trainer(model, dataset, save_path, epochs=5):
"""
A Restricted Boltzmann Machine (RBM) trainer
"""
config = {
'learning_rate': 1e-2,
'train_iteration_mode': 'shuffled_sequential',
'batch_size': 250,
#'batches_per_iter' : 100,
'learning_rule': RMSProp(),
'monitoring_dataset': dataset,
'cost' : SML(250, 1),
'termination_criterion' : EpochCounter(max_epochs=epochs),
}
return Train(model=model,
algorithm=SGD(**config),
dataset=dataset,
save_path=save_path,
save_freq=1
)#, extensions=extensions)
def get_ae_trainer(model, dataset, save_path, epochs=5):
"""
An Autoencoder (AE) trainer
"""
config = {
'learning_rate': 1e-2,
'train_iteration_mode': 'shuffled_sequential',
'batch_size': 250,
#'batches_per_iter' : 2000,
'learning_rule': RMSProp(),
'monitoring_dataset': dataset,
'cost' : MeanSquaredReconstructionError(),
'termination_criterion' : EpochCounter(max_epochs=epochs),
}
return Train(model=model,
algorithm=SGD(**config),
dataset=dataset,
save_path=save_path,
save_freq=1
)#, extensions=extensions)
if __name__=="__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
description='Script to pretrain the layers of a DNN.')
parser.add_argument('fold_config', help='Path to dataset configuration file (generated with prepare_dataset.py)')
parser.add_argument('--arch', nargs='*', type=int, help='Architecture: nvis nhid1 nhid2 ...')
parser.add_argument('--epochs', type=int, help='Number of training epochs per layer')
parser.add_argument('--save_prefix', help='Full path and prefix for saving output models')
parser.add_argument('--use_autoencoder', action='store_true')
args = parser.parse_args()
if args.epochs is None:
args.epochs = 5
arch = [(i,j) for i,j in zip(args.arch[:-1], args.arch[1:])]
with open(args.fold_config) as f:
config = cPickle.load(f)
preproc_layer = PreprocLayer(config=config, proc_type='standardize')
dataset = TransformerDataset(
raw=AudioDataset(which_set='train', config=config),
transformer=preproc_layer.layer_content
)
# transformer_yaml = '''!obj:pylearn2.datasets.transformer_dataset.TransformerDataset {
# raw : %(raw)s,
# transformer : %(transformer)s
# }'''
#
# dataset_yaml = transformer_yaml % {
# 'raw' : '''!obj:audio_dataset.AudioDataset {
# which_set : 'train',
# config : !pkl: "%(fold_config)s"
# }''' % {'fold_config' : args.fold_config},
# 'transformer' : '''!obj:pylearn2.models.mlp.MLP {
# nvis : %(nvis)i,
# layers :
# [
# !obj:audio_dataset.PreprocLayer {
# config : !pkl: "%(fold_config)s",
# proc_type : 'standardize'
# }
# ]
# }''' % {'nvis' : args.arch[0], 'fold_config' : args.fold_config }
# }
for i,(v,h) in enumerate(arch):
if not args.use_autoencoder:
print 'Pretraining layer %d with RBM' % i
if i==0:
model = get_grbm(v,h)
else:
model = get_rbm(v,h)
save_path = args.save_prefix+ 'RBM_L{}.pkl'.format(i+1)
trainer = get_rbm_trainer(model=model, dataset=dataset, save_path=save_path, epochs=args.epochs)
else:
print 'Pretraining layer %d with AE' % i
model = get_ae(v,h)
save_path = args.save_prefix + 'AE_L{}.pkl'.format(i+1)
trainer = get_ae_trainer(model=model, dataset=dataset, save_path=save_path, epochs=args.epochs)
trainer.main_loop()
dataset = TransformerDataset(raw=dataset, transformer=model)
# dataset_yaml = transformer_yaml % {'raw' : dataset_yaml, 'transformer' : '!pkl: %s' % save_path}
# dataset = yaml_parse.load( dataset_yaml )