-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer_for_CMTL.py
344 lines (246 loc) · 12.8 KB
/
trainer_for_CMTL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
import torch
from torch import optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import StepLR
from models.M2T2OCC import CrowdCounter
from config import cfg
from misc.utils import *
import pdb
class Trainer():
def __init__(self, dataloader, cfg_data, pwd):
self.cfg_data = cfg_data
self.data_mode = cfg.DATASET
self.exp_name = cfg.EXP_NAME
self.exp_path = cfg.EXP_PATH
self.pwd = pwd
self.net_name = cfg.NET
self.train_loader, self.val_loader, self.restore_transform = dataloader()
if self.net_name in ['CMTL']:
# use for gt's class labeling
self.max_gt_count = 0.
self.min_gt_count = 0x7f7f7f
self.num_classes = 10
self.bin_val = 0.
self.pre_max_min_bin_val()
ce_weights = torch.from_numpy(self.pre_weights()).float()
loss_1_fn = nn.MSELoss()
loss_2_fn = nn.BCELoss(weight=ce_weights)
self.net = CrowdCounter(cfg.GPU_ID, self.net_name,loss_1_fn,loss_2_fn).cuda()
self.optimizer = optim.Adam(self.net.CCN.parameters(), lr=cfg.LR, weight_decay=1e-4)
# self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
self.scheduler = StepLR(self.optimizer, step_size=cfg.NUM_EPOCH_LR_DECAY, gamma=cfg.LR_DECAY)
self.train_record = {'best_mae': 1e20, 'best_mse': 1e20, 'best_model_name': ''}
self.timer = {'iter time': Timer(), 'train time': Timer(), 'val time': Timer()}
self.i_tb = 0
self.epoch = 0
if cfg.PRE_GCC:
self.net.load_state_dict(torch.load(cfg.PRE_GCC_MODEL))
if cfg.RESUME:
latest_state = torch.load(cfg.RESUME_PATH)
self.net.load_state_dict(latest_state['net'])
self.optimizer.load_state_dict(latest_state['optimizer'])
self.scheduler.load_state_dict(latest_state['scheduler'])
self.epoch = latest_state['epoch'] + 1
self.i_tb = latest_state['i_tb']
self.train_record = latest_state['train_record']
self.exp_path = latest_state['exp_path']
self.exp_name = latest_state['exp_name']
self.writer, self.log_txt = logger(self.exp_path, self.exp_name, self.pwd, 'exp', resume=cfg.RESUME)
def pre_max_min_bin_val(self):
for i, data in enumerate(self.train_loader, 0):
if i < 50:
# for getting the max and min people count
_, gt_map = data
for j in range(0, gt_map.size()[0]):
temp_count = gt_map[j].sum() / self.cfg_data.LOG_PARA
if temp_count > self.max_gt_count:
self.max_gt_count = temp_count
elif temp_count < self.min_gt_count:
self.min_gt_count = temp_count
print( '[max_gt: %.2f min_gt: %.2f]' % (self.max_gt_count, self.min_gt_count) )
self.bin_val = (self.max_gt_count - self.min_gt_count)/float(self.num_classes)
def pre_weights(self):
count_class_hist = np.zeros(self.num_classes)
for i, data in enumerate(self.train_loader, 0):
if i < 100:
_, gt_map = data
for j in range(0, gt_map.size()[0]):
temp_count = gt_map[j].sum() / self.cfg_data.LOG_PARA
class_idx = min(int(temp_count/self.bin_val), self.num_classes-1)
count_class_hist[class_idx] += 1
wts = count_class_hist
wts = 1-wts/(sum(wts));
wts = wts/sum(wts);
print( 'pre_wts:' )
print( wts )
return wts
def online_assign_gt_class_labels(self, gt_map_batch):
batch = gt_map_batch.size()[0]
# pdb.set_trace()
label = np.zeros((batch, self.num_classes), dtype=np.int)
for i in range(0, batch):
# pdb.set_trace()
gt_count = (gt_map_batch[i].sum().item() / self.cfg_data.LOG_PARA)
# generate gt's label same as implement of CMTL by Viswa
gt_class_label = np.zeros(self.num_classes, dtype=np.int)
# bin_val = ((self.max_gt_count - self.min_gt_count)/float(self.num_classes))
class_idx = min(int(gt_count/self.bin_val), self.num_classes-1)
gt_class_label[class_idx] = 1
# pdb.set_trace()
label[i] = gt_class_label.reshape(1, self.num_classes)
return torch.from_numpy(label).float()
def forward(self):
# self.validate_V1()
for epoch in range(self.epoch, cfg.MAX_EPOCH):
self.epoch = epoch
if epoch > cfg.LR_DECAY_START:
self.scheduler.step()
# training
self.timer['train time'].tic()
self.train()
self.timer['train time'].toc(average=False)
print( 'train time: {:.2f}s'.format(self.timer['train time'].diff) )
print( '=' * 20 )
# validation
if epoch % cfg.VAL_FREQ == 0 or epoch > cfg.VAL_DENSE_START:
self.timer['val time'].tic()
if self.data_mode in ['SHHA', 'SHHB', 'QNRF', 'UCF50']:
self.validate_V1()
elif self.data_mode is 'WE':
self.validate_V2()
elif self.data_mode is 'GCC':
self.validate_V3()
self.timer['val time'].toc(average=False)
print( 'val time: {:.2f}s'.format(self.timer['val time'].diff) )
def train(self): # training for all datasets
self.net.train()
for i, data in enumerate(self.train_loader, 0):
# train net
self.timer['iter time'].tic()
img, gt_map = data
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
gt_label = self.online_assign_gt_class_labels(gt_map)
gt_label = Variable(gt_label).cuda()
self.optimizer.zero_grad()
pred_map = self.net(img, gt_map, gt_label)
loss1,loss2 = self.net.loss
loss = loss1+loss2
# loss = loss1
loss.backward()
self.optimizer.step()
if (i + 1) % cfg.PRINT_FREQ == 0:
self.i_tb += 1
self.writer.add_scalar('train_loss', loss.item(), self.i_tb)
self.writer.add_scalar('train_loss1', loss1.item(), self.i_tb)
self.writer.add_scalar('train_loss2', loss2.item(), self.i_tb)
self.timer['iter time'].toc(average=False)
print( '[ep %d][it %d][loss %.8f, %.8f, %.8f][lr %.4f][%.2fs]' % \
(self.epoch + 1, i + 1, loss.item(),loss1.item(),loss2.item(), self.optimizer.param_groups[0]['lr'] * 10000,
self.timer['iter time'].diff) )
print( ' [cnt: gt: %.1f pred: %.2f]' % (gt_map[0].sum().data/self.cfg_data.LOG_PARA, pred_map[0].sum().data/self.cfg_data.LOG_PARA) )
def validate_V1(self): # validate_V1 for SHHA, SHHB, UCF-QNRF, UCF50
self.net.eval()
losses = AverageMeter()
maes = AverageMeter()
mses = AverageMeter()
for vi, data in enumerate(self.val_loader, 0):
img, gt_map = data
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
gt_label = self.online_assign_gt_class_labels(gt_map)
gt_label = Variable(gt_label).cuda()
pred_map = self.net.forward(img, gt_map, gt_label)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
pred_cnt = np.sum(pred_map) / self.cfg_data.LOG_PARA
gt_count = np.sum(gt_map) / self.cfg_data.LOG_PARA
loss1,loss2 = self.net.loss
# loss = loss1.item()+loss2.item()
loss = loss1.item()
losses.update(loss)
maes.update(abs(gt_count - pred_cnt))
mses.update((gt_count - pred_cnt) * (gt_count - pred_cnt))
if vi == 0:
vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map)
mae = maes.avg
mse = np.sqrt(mses.avg)
loss = losses.avg
self.writer.add_scalar('val_loss', loss, self.epoch + 1)
self.writer.add_scalar('mae', mae, self.epoch + 1)
self.writer.add_scalar('mse', mse, self.epoch + 1)
self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
[mae, mse, loss],self.train_record,self.log_txt)
print_summary(self.exp_name, [mae, mse, loss], self.train_record)
def validate_V2(self): # validate_V2 for WE
self.net.eval()
losses = AverageCategoryMeter(5)
maes = AverageCategoryMeter(5)
for i_sub, i_loader in enumerate(self.val_loader, 0):
for vi, data in enumerate(i_loader, 0):
img, gt_map = data
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
pred_map = self.net.forward(img, gt_map)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
for i_img in range(pred_map.shape[0]):
pred_cnt = np.sum(pred_map[i_img])/self.cfg_data.LOG_PARA
gt_count = np.sum(gt_map[i_img])/self.cfg_data.LOG_PARA
losses.update(self.net.loss.item(),i_sub)
maes.update(abs(gt_count-pred_cnt),i_sub)
if vi == 0:
vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map)
mae = np.average(maes.avg)
loss = np.average(losses.avg)
self.writer.add_scalar('val_loss', loss, self.epoch + 1)
self.writer.add_scalar('mae', mae, self.epoch + 1)
self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
[mae, 0, loss],self.train_record,self.log_txt)
print_summary(self.exp_name, [mae, 0, loss], self.train_record)
def validate_V3(self): # validate_V3 for GCC
self.net.eval()
losses = AverageMeter()
maes = AverageMeter()
mses = AverageMeter()
c_maes = {'level': AverageCategoryMeter(9), 'time': AverageCategoryMeter(8), 'weather': AverageCategoryMeter(7)}
c_mses = {'level': AverageCategoryMeter(9), 'time': AverageCategoryMeter(8), 'weather': AverageCategoryMeter(7)}
for vi, data in enumerate(self.val_loader, 0):
img, gt_map, attributes_pt = data
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
pred_map = self.net.forward(img, gt_map)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
for i_img in range(pred_map.shape[0]):
pred_cnt = np.sum(pred_map) / self.cfg_data.LOG_PARA
gt_count = np.sum(gt_map) / self.cfg_data.LOG_PARA
s_mae = abs(gt_count - pred_cnt)
s_mse = (gt_count - pred_cnt) * (gt_count - pred_cnt)
losses.update(self.net.loss.item())
maes.update(s_mae)
mses.update(s_mse)
c_maes['level'].update(s_mae, attributes_pt[i_img][0])
c_mses['level'].update(s_mse, attributes_pt[i_img][0])
c_maes['time'].update(s_mae, attributes_pt[i_img][1] / 3)
c_mses['time'].update(s_mse, attributes_pt[i_img][1] / 3)
c_maes['weather'].update(s_mae, attributes_pt[i_img][2])
c_mses['weather'].update(s_mse, attributes_pt[i_img][2])
if vi == 0:
vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map)
loss = losses.avg
mae = maes.avg
mse = np.sqrt(mses.avg)
self.writer.add_scalar('val_loss', loss, self.epoch + 1)
self.writer.add_scalar('mae', mae, self.epoch + 1)
self.writer.add_scalar('mse', mse, self.epoch + 1)
self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
[mae, mse, loss],self.train_record,self.log_txt)
c_mses['level'] = np.sqrt(c_mses['level'].avg)
c_mses['time'] = np.sqrt(c_mses['time'].avg)
c_mses['weather'] = np.sqrt(c_mses['weather'].avg)
print_GCC_summary(self.exp_name, [mae, mse, loss], self.train_record, c_maes, c_mses)