-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmes.tex
1089 lines (1027 loc) · 44.5 KB
/
mes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%!TEX root = thesis.tex
%-------------------------------------------------------------------------------
\chapter{Distinguishability of maximally entangled states}
\label{chap:mes}
%-------------------------------------------------------------------------------
In this chapter we finally bring the cone programming framework into action,
in order to answer some questions about the distinguishability of maximally entangled states.
As it was discussed in Section \ref{sec:mes-intro}, sets of maximally entangled states
constitute an important testbed for gaging the power of different classes of measurements.
As a warm-up, we first reprove a bound by \cite{Yu12} on the distinguishability
of any set of maximally entangled states.
Next, we answer an open question regarding the entanglement
cost of Bell states that was raised in \cite{Yu14}.
In the second part we study the set of states \eqref{eq:ydy_states} introduced in \cite{Yu12}.
\minitoc
%------------------------------------------------------------------------------%
\section{General bound for maximally entangled states}
\label{sec:nathansons-bound}
%------------------------------------------------------------------------------%
We show that no PPT measurement can perfectly distinguish more than $n$
maximally entangled states in $\X\otimes\Y$, where $\X = \Y = \complex^{n}$.
This result appears in \cite{Yu12} and it generalizes
a bound by Nathanson, which is valid against LOCC and separable measurements
\cite{Nathanson05}. The following lemma is central to the proof.
\begin{lemma}
\label{lemma:isometry-ppt-star}
Let $A\in\Unitary(\Y,\X)$ be a unitary operator.
It holds that
\begin{equation}
\label{eq:reduction-operator}
\I_{\X}\otimes\I_{\Y} - \vec(A) \vec(A)^{\ast} \in \PPTStar(\X:\Y).
\end{equation}
\end{lemma}
\begin{proof}
Let $W_{n}\in\Unitary(\X,\Y)$ be the swap operator from Eq.~\eqref{eq:swap-operator}.
Consider the operator
\begin{equation}
U = (\overline{A}\otimes\I_{\Y})W_{n}(A^{\t}\otimes\I_{\Y}).
\end{equation}
Since $A$ and $W_{n}$ are unitary operators, so is $U$. Notice that $U$ is also Hermitian,
and therefore its eigenvalues are either $1$ or $-1$. This implies that
\begin{equation}
\I_{\X}\otimes\I_{\Y} - U \in \Pos(\X\otimes\Y)
\end{equation}
is positive semidefinite. Moreover we have that
\begin{equation}
\begin{aligned}
\pt_{\X}(\I_{\X}\otimes\I_{\Y} - U) &= \I_{\X}\otimes\I_{\Y} -
(A\otimes\I_{\Y})\vec(\I)\vec(\I)^{\ast}(A^{\ast}\otimes\I_{\Y}) \\
&= \I_{\X}\otimes\I_{\Y} - \vec(A) \vec(A)^{\ast},
\end{aligned}
\end{equation}
and therefore
\begin{equation}
\I_{\X}\otimes\I_{\Y} - \vec(A) \vec(A)^{\ast} \in \PPTStar(\X:\Y).
\end{equation}
\end{proof}
Now, suppose that $u_1,\ldots,u_N\in\X\otimes\Y$ are vectors representing
maximally entangled pure states.
An upper-bound on the probability to distinguish these $N$ states, assuming
a uniform selection, is obtained from the dual problem \eqref{eq:ppt-dual-problem}
by considering
\begin{equation}
H = \frac{\I_{\X}\otimes\I_{\Y}}{nN}.
\end{equation}
It holds that $H$ is a feasible solution to the dual problem:
since the states are maximally entangled, for each $k\in\{1,\ldots,N\}$ one may write
\begin{equation}
u_k = \frac{1}{\sqrt{n}}\vec(A_k),
\end{equation}
for some choice of an isometry $A_k\in\Unitary(\Y,\X)$, and therefore
\begin{equation}
H - \frac{1}{N}u_k u_k^{\ast} = \frac{1}{nN}\left(
\I_{\X}\otimes\I_{\Y} - \vec(A_k) \vec(A_k)^{\ast}\right) \in \PPTStar(\X:\Y)
\end{equation}
by Lemma~\ref{lemma:isometry-ppt-star}.
Finally, the value
\begin{equation}
\tr(H) = \frac{n}{N}
\end{equation}
is an upper bound on the probability of distinguishing the states and it is smaller
than $1$ whenever the number of states $N$ is bigger than the dimension $n$ of
each subspace.
\begin{remark}
The statement of Lemma \ref{lemma:isometry-ppt-star} may become very familiar to the reader,
once it is translated in the language of linear mappings via the Choi isomorphism.
It is straightforward to see that the operator in Eq.~\eqref{eq:reduction-operator}
is the Choi operator of a mapping $\Phi_{A}:\Lin(\Y)\to\Lin(\X)$ defined as
\begin{equation}
\Phi_{A}(X) = \tr(X)\I - AXA^{\ast},
\end{equation}
for any $X\in\Lin(\Y)$, which in turn is the composition of a unitary mapping
\begin{equation}
X \to AXA^{\ast}
\end{equation}
and the mapping
\begin{equation}
\Phi(X) = \tr(X)\I - X,
\end{equation}
which is the well-known \emph{reduction map} introduced in \cite{Horodecki99}
(it is the mapping at the basis of the reduction criterion for entanglement detection).
In brief, we related the fact that PPT measurements can distinguish no more than
$n$ maximally entangled states in $\complex^{n}\otimes\complex^{n}$ with the fact
that the reduction map from $\Lin(\complex^{n})\to\Lin(\complex^{n})$ is a decomposable map.
\end{remark}
%-------------------------------------------------------------------------------
\section{Entanglement cost of distinguishing Bell states}
\label{sec:entanglement-cost}
%-------------------------------------------------------------------------------
In this section, we study state discrimination problems for sets of three or
four Bell states, by LOCC, separable, and PPT measurements, with the assistance
of an entangled pair of qubits.
In particular, we will assume that Alice and Bob aim to discriminate a set of
Bell states given that they share the additional resource state
\begin{equation}
\label{eq:tau_eps}
\ket{\tau_{\eps}} = \sqrt{\frac{1 + \eps}{2}}\,\ket{0}\ket{0} +
\sqrt{\frac{1 - \eps}{2}}\,\ket{1}\ket{1},
\end{equation}
for some choice of $\eps \in [0,1]$.
The parameter $\eps$ quantifies the amount of entanglement in the state
$\ket{\tau_{\eps}}$.
Up to local unitaries, this family of states represents every pure state of two
qubits.
Using the cone programming method discussed in the previous chapter, we obtain
exact expressions for the optimal probability with which any set of three or
four Bell states can be discriminated with the assistance of the state
\eqref{eq:tau_eps} by separable measurements (which match the probabilities
obtained by LOCC measurements in all cases).
%------------------------------------------------------------------------------%
\subsection{Discriminating three Bell states}
%------------------------------------------------------------------------------%
Notice that the state $\ket{\tau_{1}} = \ket{0}\ket{0}$ is a product state and
it does not aid the two parties in discriminating any set of Bell states,
so the probability of success for $\eps = 1$ is still at most $2/3$ for a set
of three Bell states.
If $\varepsilon = 0$, then Alice and Bob can use teleportation to perfectly
discriminate all four Bell states perfectly by LOCC measurements, and therefore
the same is true for any three Bell states.
It was proved in \cite{Yu14} that PPT measurements can perfectly
discriminate any set of three Bell states using the resource state
\eqref{eq:tau_eps} if and only if $\eps \leq 1/3$.
Here we show that a maximally entangled state ($\eps = 0$) is required to
perfectly discriminate any set of three Bell states using separable
measurements, and more generally we obtain an expression for the optimal
probability of a correct discrimination for all values of $\varepsilon$.
Because the permutations of Bell states induced by local unitaries is
transitive, there is no loss of generality in fixing the three Bell states to
be discriminated to be $\ket{\psi_1}$, $\ket{\psi_2}$, and $\ket{\psi_3}$
(as defined in \eqref{eq:Bell-states}).
\begin{theorem}
\label{thm:three-bell}
Let $\X_1 = \X_2 = \Y_1 = \Y_2 = \complex^2$, define
$\X = \X_1 \otimes \X_2$ and $\Y = \Y_1 \otimes \Y_2$, and let
$\eps \in [0,1]$ be chosen arbitrarily.
For any separable measurement $\mu\in\Meas_{\Sep}(3,\X:\Y)$, the
success probability of correctly discriminating the states corresponding to
the set
\begin{equation}
\label{eq:set-three-bells}
\bigl\{ \ket{\psi_{1}} \otimes \ket{\tau_{\eps}},\;
\ket{\psi_{2}} \otimes \ket{\tau_{\eps}},\;
\ket{\psi_{3}} \otimes \ket{\tau_{\eps}} \bigr\}
\subset (\X_1\otimes\Y_1)\otimes(\X_2\otimes\Y_2),
\end{equation}
assuming a uniform distribution $p_1 = p_2 = p_3 = 1/3$, is at most
\begin{equation}
\label{eq:probability-three-bell}
\frac{1}{3}\left(2 + \sqrt{1 - \eps^{2}}\right).
\end{equation}
\end{theorem}
To prove this theorem, we require the following lemma.
The lemma introduces a family of positive maps that, to our knowledge, has not
previously appeared in the literature.
\begin{lemma}
\label{lemma:3Bell}
Define a linear mapping
$\Xi_{t}: \Lin(\complex^2 \oplus \complex^2)\rightarrow
\Lin(\complex^2 \oplus \complex^2)$ as
\begin{equation}
\Xi_t\begin{pmatrix}
A & B\\
C & D
\end{pmatrix}
= \begin{pmatrix}
\Psi_t(D) + \Phi(D) &
\Psi_t(B) + \Phi(C)\\[2mm]
\Psi_t(C) + \Phi(B) &
\Psi_t(A) + \Phi(A)
\end{pmatrix}
\end{equation}
for every $t\in(0,\infty)$ and $A,B,C,D\in\Lin(\complex^2)$, where
$\Psi_t:\Lin(\complex^2)\rightarrow\Lin(\complex^2)$
is defined as
\begin{equation}
\Psi_t
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
=
\begin{pmatrix}
t \alpha & \beta \\
\gamma & t^{-1} \delta
\end{pmatrix}
\end{equation}
and $\Phi:\Lin(\complex^2)\rightarrow\Lin(\complex^2)$ is defined as
\begin{equation}
\Phi\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
= \begin{pmatrix}
\delta & -\beta\\
-\gamma & \alpha
\end{pmatrix},
\end{equation}
for every $\alpha,\beta,\gamma,\delta\in\complex$.
It holds that $\Xi_t$ is a positive map for all $t\in (0,\infty)$.
\end{lemma}
\begin{proof}
It will first be proved that $\Xi_1$ is positive.
For every vector
\begin{equation}
u = \begin{pmatrix}
\alpha\\ \beta
\end{pmatrix}
\end{equation}
in $\complex^2$, define a matrix
\begin{equation}
M_u = \begin{pmatrix}
\overline\alpha & \overline\beta\\[1mm]
-\beta & \alpha
\end{pmatrix}.
\end{equation}
Straightforward computations reveal that
\begin{equation}
M_u^{\ast} M_v = u v^{\ast} + \Phi(v u^{\ast})
\qquad\text{and}\qquad
M_u^{\ast} M_u = \norm{u}^2\tinyspace \I
\end{equation}
for all $u,v\in\complex^2$.
It follows that
\begin{equation}
\Xi_1 \begin{pmatrix}
u u^{\ast} & u v^{\ast}\\
v u^{\ast} & v v^{\ast}
\end{pmatrix}
= \begin{pmatrix}
v v^{\ast} + \Phi(v v^{\ast}) &
u v^{\ast} + \Phi(v u^{\ast}) \\
v u^{\ast} + \Phi(u v^{\ast}) &
u u^{\ast} + \Phi(u u^{\ast})
\end{pmatrix}
= \begin{pmatrix}
\norm{v}^2 \I & M_u^{\ast} M_v\\[1mm]
M_v^{\ast} M_u & \norm{u}^2 \I
\end{pmatrix},
\end{equation}
which is positive semidefinite by virtue of the fact that
$\norm{M_u^{\ast} M_v}\leq\norm{M_u}\norm{M_v} = \norm{u} \norm{v}$.
As every element of $\Pos(\complex^2\oplus\complex^2)$ can be written as a
positive linear combination of matrices of the form
\begin{equation}
\begin{pmatrix}
u u^{\ast} & u v^{\ast}\\
v u^{\ast} & v v^{\ast}
\end{pmatrix},
\end{equation}
ranging over all vectors $u, v \in \complex^2$, it follows that $\Xi_1$ is a
positive map.
For the general case, observe first that the mapping $\Psi_s$ may be
expressed using the Hadamard (or entry-wise) product as
\begin{equation}
\Psi_s
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
=
\begin{pmatrix}
s \alpha & \beta \\
\gamma & s^{-1} \delta
\end{pmatrix}
=
\begin{pmatrix}
s & 1\\
1 & s^{-1}
\end{pmatrix} \circ
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
\end{equation}
for every positive real number $s\in(0,\infty)$.
The matrix
\begin{equation}
\begin{pmatrix}
s & 1\\
1 & s^{-1}
\end{pmatrix}
\end{equation}
is positive semidefinite, from which it follows (by the Schur product
theorem) that $\Psi_s$ is a completely positive map.
(See, for instance, Theorem 3.7 of \cite{Paulsen02}.)
Also note that $\Phi = \Psi_s \Phi \Psi_s$ for every $s\in (0,\infty)$, which
implies that
\begin{equation}
\Xi_t = \bigl(\I_{\Lin(\complex^2)} \otimes \Psi_s\bigr) \Xi_1
\bigl(\I_{\Lin(\complex^2)} \otimes \Psi_s\bigr)
\end{equation}
for $s = \sqrt{t}$.
This shows that $\Xi_t$ is a composition of positive maps for every positive
real number~$t$, and is therefore positive.
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm:three-bell}]
For the cases that $\eps = 0$ and $\varepsilon = 1$, the theorem is known,
as was discussed previously, so it will be assumed that $\eps \in (0,1)$.
Define a Hermitian operator
\begin{equation}
H_{\eps} = \frac{1}{3}\left[\frac{\I_{\X_1\otimes\Y_1}\otimes
\tau_{\eps}}{2} + \sqrt{1 - \eps^{2}} \, \psi_{4} \otimes
\pt_{\negsmallspace\X_2}(\psi_{4}) \right],
\end{equation}
where $\tau_{\eps} = \ket{\tau_{\eps}}\bra{\tau_{\eps}}$,
$\psi_{4} = \ket{\psi_{4}}\bra{\psi_{4}}$,
and $\pt_{\negsmallspace\X_2}$ denotes partial transposition with respect to
the standard basis of $\X_2$.
It holds that
\begin{equation}
\tr(H_{\eps}) = \frac{1}{3}\left(2 + \sqrt{1 - \eps^{2}}\right),
\end{equation}
so to complete the proof it suffices to prove that $H_{\varepsilon}$ is a
feasible solution to the dual problem \eqref{eq:sep-dual-problem}
for the cone program corresponding to the state discrimination problem being considered.
In order to be more precise about the task at hand, it is helpful to define a
unitary operator $W$, mapping $\X_1\otimes\X_2\otimes\Y_1\otimes\Y_2$ to
$\X_1\otimes\Y_1\otimes\X_2\otimes\Y_2$, that corresponds to swapping the
second and third subsystems:
\begin{equation}
\label{eq:swap}
W(x_{1}\otimes x_{2}\otimes y_{1}\otimes y_{2}) =
x_{1}\otimes y_{1}\otimes x_{2}\otimes y_{2},
\end{equation}
for all vectors
$x_{1}\in\X_{1}$, $x_{2}\in\X_{2}$, $y_{1}\in\Y_{1}$, $y_{2}\in\Y_{2}$.
We are concerned with the separability of measurement operators with respect
to the bipartition between $\X_1\otimes\X_2$ and $\Y_1\otimes\Y_2$, so the
dual feasibility of $H_{\varepsilon}$ requires that the operators defined as
\begin{equation}
Q_{k, \eps} = W^{\ast} \left( H_{\eps} - \frac{1}{3}\phi_{k} \otimes
\tau_{\eps} \right) W \in \Herm(\X\otimes\Y)
\end{equation}
be contained in $\BPos(\X:\Y)$ for $k = 1,2,3$.
Let $\Lambda_{k, \eps}: \Lin(\Y) \rightarrow \Lin(\X)$ be the unique linear
map whose Choi representation satisfies
$J(\Lambda_{k,\varepsilon}) = Q_{k, \eps}$ for each $k = 1,2,3$.
As discussed in Section~\ref{sec:block-positive-operators},
the block positivity of $Q_{k, \eps}$
is equivalent to the positivity of $\Lambda_{k, \eps}$.
Consider first the case $k = 1$ and let
\begin{equation}
t = \sqrt{\frac{1+\eps}{1-\eps}}.
\end{equation}
A calculation reveals that
\begin{equation}
\Lambda_{1, \eps}(Y) = \frac{\sqrt{1 - \eps^{2}}}{3}
\left(\sigma_{3} \otimes \I_{\X_2}\right)
\Xi_{t}(Y)
\left(\sigma_{3} \otimes \I_{\X_2}\right),
\end{equation}
where $\Xi_{t}:\Lin(\Y)\rightarrow\Lin(\X)$ is the map defined in
Lemma~\ref{lemma:3Bell} and $\sigma_{3}$ denotes one of the Pauli operators
(see Eq.~\eqref{eq:Pauli-operators} for an explicit definition).
% (in general)
% \begin{equation} \label{eq:Pauli-operators}
% \begin{array}{llll}
% \sigma_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, &
% \sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, &
% \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, &
% \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
% \end{array}
% \end{equation}
% denote the Pauli operators.
As $\eps \in (0,1)$, it holds that $t\in (0,\infty)$, and therefore
Lemma~\ref{lemma:3Bell} implies that $\Xi_{t}(Y) \in \Pos(\X)$ for every
$Y \in \Pos(Y)$.
As we are simply conjugating $\Xi_{t}(Y)$ by a unitary and scaling it
by a positive real factor, we also have that
$\Lambda_{1, \eps}(Y) \in \Pos(\X)$, for any $Y \in \Pos(Y)$, which in turn
implies that $Q_{1, \eps} \in \BPos(\X:\Y)$.
For the case of $k=2$ and $k = 3$, first define
$U, V \in \Unitary(\complex^{2})$ as follows:
\begin{equation}
U = \begin{pmatrix}
1 & 0\\
0 & i
\end{pmatrix}
\quad \mbox{and} \quad
V = \frac{1}{\sqrt{2}}\begin{pmatrix}
1 & i\\
i & 1
\end{pmatrix}.
\end{equation}
These operators transform $\psi_{1} = \ket{\psi_1}\bra{\psi_1}$ into
$\psi_{2} = \ket{\psi_2}\bra{\psi_2}$ and $\psi_{3} =
\ket{\psi_3}\bra{\psi_3}$, respectively, and leave $\psi_{4}$ unchanged, in
the following sense:
\begin{equation}
\begin{aligned}
(U^{\ast}\otimes U^{\ast}) \psi_{1} (U\otimes U) = \psi_{2},\\
(V^{\ast}\otimes V^{\ast}) \psi_{1} (V\otimes V) = \psi_{3},\\
(U^{\ast}\otimes U^{\ast}) \psi_{4} (U\otimes U) = \psi_{4},\\
(V^{\ast}\otimes V^{\ast}) \psi_{4} (V\otimes V) = \psi_{4}.
\end{aligned}
\end{equation}
Therefore the following equations hold:
\begin{equation}
\begin{aligned}
Q_{2,\eps} &= \left(U^{\ast}\otimes\I \otimes U^{\ast}\otimes\I\right)
Q_{1,\eps} \left(U\otimes\I \otimes U\otimes\I\right), \\
Q_{3,\eps} &= \left(V^{\ast}\otimes\I \otimes V^{\ast}\otimes\I\right)
Q_{1,\eps} \left(V\otimes\I \otimes V\otimes\I\right).
\end{aligned}
\end{equation}
It follows that $Q_{2,\eps}\in\BPos(\X:\Y)$ and $Q_{3,\eps}\in\BPos(\X:\Y)$,
which completes the proof.
\end{proof}
%------------------------------------------------------------------------------%
\subsection{Discriminating four Bell states}
%------------------------------------------------------------------------------%
It is known that, for the perfect LOCC discrimination of all four Bell states
using an auxiliary entangled state $\ket{\tau_{\varepsilon}}$ as above,
one requires that $\varepsilon = 0$ (i.e., a maximally entangled pair of qubits
is required).
This fact follows from the method of \cite{Horodecki03}, for instance.
Here we prove a more precise bound on the optimal probability of a correct
discrimination, for every choice of $\varepsilon\in[0,1]$, along similar lines
to the bound on three Bell states provided by Theorem~\ref{thm:three-bell}.
In the present case, in which all four Bell states are considered, the result
is somewhat easier: one obtains an upper bound for PPT measurements that
matches a bound that can be obtained by an LOCC measurement,
implying that LOCC, separable, and PPT measurements are equivalent for this
discrimination problem.
\begin{theorem}
\label{thm:four-bell}
Let $\X_1 = \X_2 = \Y_1 = \Y_2 = \complex^2$, define
$\X = \X_1 \otimes \X_2$ and $\Y = \Y_1 \otimes \Y_2$, and let
$\varepsilon\in [0,1]$.
For any PPT measurement $\mu\in\Meas_{\PPT}(4,\X:\Y)$, the success
probability of discriminating the states in the set
\begin{equation}
\label{eq:set-four-bells}
\left\{ \ket{\psi_{1}} \otimes \ket{\tau_{\eps}},\;
\ket{\psi_{2}} \otimes \ket{\tau_{\eps}},\;
\ket{\psi_{3}} \otimes \ket{\tau_{\eps}},\;
\ket{\psi_{4}} \otimes \ket{\tau_{\eps}}\right\}
\subset (\X_1\otimes\Y_1)\otimes(\X_2\otimes\Y_2),
\end{equation}
assuming a uniform distribution $p_1 = p_2 = p_3 = p_4 = 1/4$, is at most
\begin{equation}
\label{eq:probability-four-bell}
\frac{1}{2}\left(1 + \sqrt{1 - \eps^2}\right).
\end{equation}
\end{theorem}
\begin{proof}
Consider the following operator:
\begin{equation}
H_{\varepsilon} = \frac{1}{8}
\Bigl[
\I_{\X_1 \otimes \Y_1} \otimes \tau_{\varepsilon}
+ \sqrt{1 - \varepsilon^2}\,
\I_{\X_1 \otimes \Y_1} \otimes \pt_{\negsmallspace\X_2}(\psi_4)
\Bigr] \in \Herm(\X_1\otimes\Y_1\otimes\X_2\otimes\Y_2).
\end{equation}
It holds that
\begin{equation}
\tr(H_{\eps}) = \frac{1}{2}\left( 1 + \sqrt{1-\eps^2} \right),
\end{equation}
so to complete the proof it suffices to prove that $H_{\varepsilon}$ is
dual feasible for the Program \eqref{eq:ppt-dual-problem}.
Dual feasibility will follow from the condition (which is sufficient but not necessary for feasibility)
\begin{equation}
(\pt_{\negsmallspace\X_1} \otimes \pt_{\negsmallspace\X_2})
\Bigl(
H_{\varepsilon} - \frac{1}{4}\,\psi_k\otimes\tau_{\varepsilon}\Bigr)
\in\Pos(\X_1\otimes\Y_1\otimes\X_2\otimes\Y_2),
\end{equation}
for $k = 1,2,3,4$.
One may observe that
\begin{equation}
\pt_{\negsmallspace\X_2}(\tau_{\varepsilon})
+ \frac{\sqrt{1-\varepsilon^2}}{2}\psi_4
= \frac{1}{2}
\begin{pmatrix}
1 + \varepsilon & 0 & 0 & 0\\[1mm]
0 & \frac{\sqrt{1 - \varepsilon^2}}{2}
& \frac{\sqrt{1 - \varepsilon^2}}{2} & 0\\[2mm]
0 & \frac{\sqrt{1 - \varepsilon^2}}{2}
& \frac{\sqrt{1 - \varepsilon^2}}{2} & 0\\[2mm]
0 & 0 & 0 & 1 - \varepsilon
\end{pmatrix}
\end{equation}
is positive semidefinite, from which it follows that
\begin{equation}
(\pt_{\negsmallspace\X_1} \otimes \pt_{\negsmallspace\X_2})
\Bigl(
H_{\varepsilon} - \frac{1}{4}\,\psi_1\otimes\tau_{\varepsilon}\Bigr)
= \frac{1}{4} \psi_4 \otimes \pt_{\negsmallspace\X_2}(\tau_{\varepsilon})
+ \frac{\sqrt{1 - \varepsilon^2}}{8} \I_{\X_1\otimes\Y_1} \otimes \psi_4
\end{equation}
is also positive semidefinite.
A similar calculation holds for $k=2,3,4$, which completes the proof.
\end{proof}
\begin{remark}
The upper bounds obtained in Theorem \ref{thm:three-bell} and Theorem \ref{thm:four-bell} are optimal,
as they are achievable by an LOCC measurement.
Those bounds can be obtained by using the resource
state $\ket{\tau_\varepsilon}$ to teleport the given Bell state from one
player to the other, followed by an optimal local measurement to discriminate
the resulting states.
\end{remark}
%-------------------------------------------------------------------------------
\section{Yu-Duan-Ying states}
%-------------------------------------------------------------------------------
In this section we prove a tight bound of $3/4$ on the maximum success
probability for any LOCC measurement to discriminate the set of states
\eqref{eq:ydy_states} exhibited by Yu, Duan, and Ying \cite{Yu12},
assuming a uniform selection of states.
The fact that this bound can be achieved by an LOCC measurement is trivial:
if Alice and Bob measure their parts of the states with respect to the standard
basis, they can easily discriminate $\ket{\phi_1}$, $\ket{\phi_2}$, and
$\ket{\phi_4}$, erring only in the case that they receive $\ket{\phi_3}$.
The fact that this bound is optimal will be proved by exhibiting a
feasible solution $H$ to the dual problem \eqref{eq:sep-dual-problem}
instantiated with the state discrimination problem at hand, such that
\begin{equation}
\tr(H) = \frac{3}{4}.
\end{equation}
With respect to the vector-operator correspondence, the states \eqref{eq:ydy_states} are given
by tensor products of the Pauli operators \eqref{eq:Pauli-operators} as follows:
\begin{align}
\begin{split}
\ket{\phi_1} = \frac{1}{2}\op{vec}(U_1),\quad
\ket{\phi_2} = \frac{1}{2}\op{vec}(U_2),\\
\ket{\phi_3} = \frac{1}{2}\op{vec}(U_3),\quad
\ket{\phi_4} = \frac{1}{2}\op{vec}(U_4),
\end{split}
\end{align}
for
\begin{equation}
\label{eq:ydy-operators}
\begin{aligned}
U_1 & =
\sigma_0\otimes\sigma_0 =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, &
U_2 & =
\sigma_1\otimes\sigma_1 =
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix},\\[3mm]
U_3 & =
i \sigma_2 \otimes \sigma_1 =
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}, \qquad &
U_4 & =
\sigma_3 \otimes \sigma_1 =
\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{pmatrix}.
\end{aligned}
\end{equation}
\subsubsection*{Bound for separable measurements}
A feasible solution of the dual problem \eqref{eq:sep-dual-problem} is based on
a construction of block positive operators that correspond, via the Choi
isomorphism, to the family of positive maps introduced by Breuer and Hall
\cite{Breuer06,Hall06}.
\begin{prop}[Breuer--Hall]
\label{prop:breuer-hall}
Let $\X = \Y = \complex^n$ and let $U,V\in\Unitary(\Y,\X)$ be unitary
operators such that $U^{\t}V \in \Unitary(\Y)$ is skew-symmetric:
$(V^{\t}U)^{\t} = -V^{\t}U$.
It holds that
\begin{equation}
\I_{\X}\otimes\I_{\Y} - \vec(U) \vec(U)^{\ast} -
\pt_{\negsmallspace\X}(\vec(V)\vec(V)^{\ast})
\in \BPos(\X:\Y).
\end{equation}
\end{prop}
\begin{proof}
For every unit vector $y\in\Y$, one has
\begin{multline} \label{eq:BH}
\qquad
(\I_{\X} \otimes y^{\ast})
(\I_{\X}\otimes\I_{\Y} - \vec(U)
\vec(U)^{\ast} - \pt_{\negsmallspace\X}(\vec(V)\vec(V)^{\ast}))
(\I_{\X} \otimes y) \\
= \I_{\X} - U \overline{y} y^{\t} U^{\ast} - \overline{V}y
y^{\ast}V^{\t}.
\qquad
\end{multline}
As it holds that $V^{\t}U$ is skew-symmetric, we have
\begin{equation}
\bigip{\overline{V}y}{U\overline{y}}
= y^{\ast} V^{\t}U \overline{y}
= \bigip{y y^{\t}}{V^{\t}U}
= 0,
\end{equation}
as the last inner product is between a symmetric and a skew-symmetric
operator.
Because $U$ and $V$ are unitary, it follows that
$U\overline{y}y^{\t}U^{\ast} + \overline{V}yy^{\ast}V^{\t}$ is a rank two
orthogonal projection, so the operator represented by \eqref{eq:BH} is also a
projection and is therefore positive semidefinite.
\end{proof}
\begin{remark}
The assumption of Proposition \ref{prop:breuer-hall} requires $n$ to be even,
as skew-symmetric unitary operators exist only in even dimensions.
\end{remark}
Now, for the ensemble
\begin{equation}
\label{eq:ydy-ensemble}
\E = \{ \ket{\phi_1}, \ket{\phi_2}, \ket{\phi_3}, \ket{\phi_4} \},
\end{equation}
one has that the following operator is a feasible solution to the dual problem
\eqref{eq:sep-dual-problem}:
\begin{equation}
\label{eq:H_2}
H = \frac{1}{16}(\I_{\X}\otimes\I_{\Y} -
\pt_{\negsmallspace\X}(\vec(V)\vec(V)^{\ast}))
\end{equation}
for
\begin{equation}
V = i \sigma_2 \otimes \sigma_3
= \begin{pmatrix}
0 & 0 & 1 & 0\\
0 & 0 & 0 & -1\\
-1 & 0 & 0 & 0\\
0 & 1 & 0 & 0
\end{pmatrix}.
\end{equation}
Due to Proposition~\ref{prop:breuer-hall}, the feasibility of $H$ follows from
the condition
\begin{equation}
(V^{\t} U_k)^{\t} = - V^{\t} U_k,
\end{equation}
which can be checked by inspecting each of the four cases.
It is easy to calculate that $\tr(H) = 3/4$, and so the required bound has been
obtained.
\subsubsection*{Bound for PPT measurements}
Interestingly, when it comes to distinguishing the Yu--Duan--Ying states,
PPT measurements can do better than separable (and LOCC) measurement,
yet without achieving perfect distinguishability. As far as we know, this is the
first example of a set consisting only of maximally entangled states for which
such a gap holds.
In this section we exhibit a tight bound of $7/8$ on the probability of distinguishing
the Yu--Duan--Ying ensemble by PPT measurements.
\begin{theorem}
\label{thm:dual-ppt-ydy}
For $\E$ being the ensemble in Eq.~\eqref{eq:ydy-ensemble}, it holds that $\opt_{\PPT}(\E)\leq 7/8$.
\end{theorem}
\begin{proof}
We show that there exists a solution of the dual program $(\DP_{\PPT})$ which achieves the bound.
It is easy to check that the following operator satisfies the constraints in of the program
and its trace is equal to $7/8$:
\[
Y = \frac{1}{16}\I\otimes\I - \frac{1}{8}\left(\psi_{2}\otimes\psi_{1}\right).
\]
We will check the constraint $Y \geq \pt_{\A}(\rho_1)$ and the reader can check the remaining constraints with
a similar calculation. By the equations in \eqref{eq:ppt-bell-states}, we have
\begin{align*}
\pt_{\A}(\rho_{1}) &= \pt_{\A}(\psi_{0}\otimes\psi_{0}) = \left(\frac{1}{2}\I - \psi_{2}\right)\otimes\left(\frac{1}{2}\I - \psi_{2}\right) \\
&= \frac{1}{4}\I\otimes\I - \frac{1}{2}\sum_{i\in\{0,1,3\}}(\psi_{i}\otimes\psi_{2}+\psi_{2}\otimes\psi_{i}),
\end{align*}
and
\begin{align*}
Y - \frac{1}{4}\pt_{\A}(\rho_{1}) &= \frac{1}{8}(\psi_{0}\otimes\psi_{2}+\psi_{1}\otimes\psi_{2}+\psi_{3}\otimes\psi_{2}
+\psi_{2}\otimes\psi_{0}+\psi_{2}\otimes\psi_{3}) \geq 0.
\end{align*}
\end{proof}
\begin{theorem}
\label{thm:primal-ppt-ydy}
For $\E$ being the ensemble in Eq.~\eqref{eq:ydy-ensemble}, it holds that $\opt_{\PPT}(\E)\geq 7/8$.
\end{theorem}
\begin{proof}
It is enough to show a feasible solution of the primal program ($\PP_{\PPT}$)
that achieves the bound.
Let $Q \in \Pos(\complex^{4}\otimes\complex^{4})$ and $R,S\in\Pos(\complex^{2}\otimes\complex^{2})$
be the following operators:
\[
Q = \frac{1}{4}\I\otimes(\psi_{1}+\psi_{2}), \qquad
R = \frac{7}{8}\psi_{0}+\frac{1}{8}\psi_{3}, \qquad
S = \frac{1}{8}\psi_{0}+\frac{7}{8}\psi_{3}.
\]
Then the following operators define a PPT measurement that achieves a success probability of $7/8$:
\begin{align*}
\mu(1) &= Q + (\frac{2}{3}\psi_{0}+\frac{1}{3}\I)\otimes R ,\\
\mu(2) &= Q + (\frac{1}{3}\psi_{0}+\psi_{1})\otimes S + \frac{1}{3}(\psi_{2}+\psi_{3})\otimes R ,\\
\mu(3) &= Q + (\frac{1}{3}\psi_{0}+\psi_{2})\otimes S + \frac{1}{3}(\psi_{1}+\psi_{3})\otimes R ,\\
\mu(4) &= Q + (\frac{1}{3}\psi_{0}+\psi_{3})\otimes S + \frac{1}{3}(\psi_{1}+\psi_{2})\otimes R .\\
\end{align*}
It is easy to check that these operators define a valid measurement, that is $\sum_{k=1}^{4}\mu(k)=\I$.
Using the equations in \eqref{eq:ppt-bell-states}, we can verify that those operators are also PPT.
Again, we check this for $\mu(1)$.
\[
\pt_{\A}(\mu(1)) =
(\psi_{1} + \psi_{2} + \psi_{4})\otimes(\frac{1}{3}\psi_{1}+\frac{1}{2}\psi_{2}+\frac{1}{3}\psi_{4})
+ \frac{1}{4}\psi_{3}\otimes(\psi_{2}+\psi_{3}) \geq 0.
\]
Finally, we have that $\ip{\mu(k)}{\rho_{k}} = 7/8$, for each $k \in \{1,\ldots,4\}$.
\end{proof}
To recap, for $\E$ being the ensemble of Yu--Duan--Ying states selected uniformly at random, we have
\begin{equation}
\opt_{\LOCC}(\E) = \opt_{\Sep}(\E) = \frac{3}{4} < \frac{7}{8} = \opt_{\PPT}(\E) < \opt(\E) = 1.
\end{equation}
\subsection{Generalization to higher dimension}
Here we generalize the Yu--Duan--Ying states in order to construct sets of $N$ orthogonal
maximally entangled states in $\complex^{N}\otimes\complex^{N}$ that are distinguishable
by separable operators only with probability $3/4$, for any $N \geq 4$ that is power of $2$.
Let $t \geq 2$ be a positive integer and, for any choice of $k \in \{ 1, \ldots, 2^{t}\}$,
we recursively define the unitary operator
\begin{equation}
\label{eq:construction}
U_{k}^{(t)} =
\begin{cases}
\sigma_{0}\otimes U_{k}^{(t-1)} &\mbox{if } 1 \leq k \leq 2^{t-1},\\
\sigma_{1}\otimes U_{k-2^{t-1}}^{(t-1)} &\mbox{if } 2^{t-1} + 1 \leq k \leq 2^{t}.\\
\end{cases}
\end{equation}
The base of the recursion, $U_{1}^{(2)}, \ldots, U_{4}^{(2)}$,
is given by the operators defined in Eq.~\eqref{eq:ydy_Us}.
In a paper by the author \cite{Cosentino14}, it was shown that the set
\begin{equation}
\label{eq:ydy_higher_dimension}
\left\{ \vec(U_{k}^{(t)})\vec(U_{k}^{(t)})^{\ast} : k = 1, \ldots, 2^{t}\right\}
\end{equation}
can be distinguished with probability at most $7/8$ by PPT measurements,
for any value of $t \geq 2$, when the states are drawn with uniform probability,
$p_{1}, \ldots, p_{2^{t}} = 1/2^{t}$.
In the rest of this section, we show that the maximum success probability for any separable
measurement to distinguish the same set of states under the same assumption is $3/4$ instead.
As in the theme of this thesis, we will exhibit a feasible solution of
the dual cone program \eqref{eq:sep-dual-problem} for which the value of
the objective function equals $3/4$.
However, we first prove a rather general lemma, which shows how to compose a separable
operator with a block positive operator, in order to construct another block positive
operator in higher dimensions.
\begin{lemma}
\label{lemma:higher-dimension}
Let $\X_{1}, \X_{2}, \Y_{1}$, and $\Y_{1}$ be complex Euclidean spaces. We denote by
$W \in \Unitary(\X_{1}\otimes\X_{2}\otimes\Y_{1}\otimes\Y_{2},
\X_{1}\otimes\Y_{1}\otimes\X_{2}\otimes\Y_{2})$
the linear isometry that swaps the second and the third subsystems, which is defined by the following equation:
\begin{equation}
\label{eq:swap-2}
W(x_{1}\otimes x_{2}\otimes y_{1}\otimes y_{2}) =
x_{1}\otimes y_{1}\otimes x_{2}\otimes y_{2},
\end{equation}
holding for all vectors $x_{1} \in \X_{1}, x_{2} \in \X_{2},
y_{1} \in \Y_{1}, y_{2} \in \Y_{2}$.
Let $S \in \Sep(\X_{1}:\Y_{1})$ be a separable operator
and $Q \in \BPos(\X_{2}:\Y_{2})$ be
a block positive operator. Then the following holds:
\begin{equation}
W^{\ast}(S \otimes Q)W\in \BPos(\X_{1}\otimes\X_{2}:\Y_{1}\otimes\Y_{2}).
\end{equation}
\end{lemma}
\begin{proof}
By the definition of block-positivity, the claim of the lemma is equivalent
to the following condition:
\begin{equation}
(\I_{\X_{1}\otimes\X_{2}} \otimes y^{\ast})W^{\ast}(S \otimes Q)W
(\I_{\X_{1}\otimes\X_{2}} \otimes y) \in \Pos(\X_{1}\otimes\X_{2}),
\end{equation}
for every $y \in \Y_{1}\otimes\Y_{2}$.
For an arbitrary $y \in \Y_{1}\otimes\Y_{2}$, consider its Schmidt decomposition,
that is, a positive integer $r$ and orthogonal sets
$\{w_{1}, \ldots, w_{r}\} \subset \Y_{1}$ and $\{z_{1}, \ldots, z_{r}\} \subset \Y_{2}$
such that
\begin{equation}
y = \sum_{i = 1}^{r}w_{i} \otimes z_{i}.
\end{equation}
It holds that
\begin{multline}
\label{eq:SandQ}
(\I\otimes y^{\ast})W^{\ast}(S \otimes Q)W(\I\otimes y)\\
\begin{aligned}
&=\left(\sum_{i=1}^{r}\I_{\X_{1}\otimes\X_{2}}\otimes w_{i}^{\ast}\otimes z_{i}^{\ast}\right)
W^{\ast}(S \otimes Q)W
\left(\sum_{i=1}^{r}\I_{\X_{1}\otimes\X_{2}}\otimes w_{i}\otimes z_{i}\right) \\
&=\left(\sum_{i=1}^{r}\I_{\X_{1}}\otimes w_{i}^{\ast}\otimes\I_{\X_{2}} \otimes z_{i}^{\ast}\right)
(S \otimes Q)
\left(\sum_{i=1}^{r}\I_{\X_{1}}\otimes w_{i}\otimes\I_{\X_{2}} \otimes z_{i}\right) \\
&= \sum_{i,j=1}^{r}(\I_{\X_{1}}\otimes w_{i}^{\ast})S(\I_{\X_{1}}\otimes w_{j})\otimes(\I_{\X_{2}} \otimes z_{i}^{\ast})Q(\I_{\X_{2}} \otimes z_{j}).
\end{aligned}
\end{multline}
The separable operator $S \in \Sep(\X_{1}:\Y_{1})$ can be expressed as
\begin{equation}
S = \sum_{j = 1}^{m}a_{j}a_{j}^{\ast}\otimes b_{j}b_{j}^{\ast},
\end{equation}
for vectors $a_{1}, \ldots, a_{m} \in \X_{1}$ and $b_{1}, \ldots, b_{m} \in \Y_{1}$.
By convexity, it is enough to argue about the operator
\begin{equation}
(\I\otimes y^{\ast})W^{\ast}(aa^{\ast}\otimes bb^{\ast} \otimes Q)W(\I\otimes y),
\end{equation}
for any vectors $a \in \X_{1}$ and $b \in \Y_{1}$.
From Eq.~\eqref{eq:SandQ}, we have that
\begin{multline}
(\I\otimes y^{\ast})W^{\ast}(aa^{\ast}\otimes bb^{\ast} \otimes Q)W(\I\otimes y)\\
\begin{aligned}
&= \sum_{i,j=1}^{r}(aa^{\ast}\otimes w_{i}^{\ast}bb^{\ast}w_{j})\otimes(\I_{\X_{2}} \otimes z_{i}^{\ast})Q(\I_{\X_{2}} \otimes z_{j})\\
&= aa^{\ast} \otimes \left(\I_{\X_{2}}\otimes\sum_{i=1}^{r}
w_{i}^{\ast} a z_{i}^{\ast}\right)Q
\left(\I_{\X_{2}}\otimes\sum_{i=1}^{r} a^{\ast}w_{i}z_{i}\right) \\
&= aa^{\ast} \otimes (\I_{\X_{2}}\otimes z^{\ast})Q
(\I_{\X_{2}}\otimes z),
\end{aligned}
\end{multline}
where we have defined the vector $z \in \Y_{2}$ to be such that
$z = \sum_{i=1}^{r} a^{\ast}w_{i}z_{i}$.
From the fact the $Q \in \BPos(\X_{2}:\Y_{2})$, it holds that
\[
(\I_{\X_{2}}\otimes z^{\ast})Q(\I_{\X_{2}}\otimes z) \in \Pos(\X_{2}),
\]
and therefore we have that
\begin{equation}
(\I_{\X_{1}\otimes\X_{2}} \otimes y^{\ast})W^{\ast}
(S \otimes Q)W
(\I_{\X_{1}\otimes\X_{2}} \otimes y) \in \Sep(\X_{1}\otimes\X_{2})
\end{equation}
is positive semidefinite.
\end{proof}
Now we are ready to show a feasible solution of the dual problem \eqref{eq:sep-dual-problem}
for the set of states \eqref{eq:ydy_higher_dimension}.
For any $t \geq 2$, we denote with $\X^{(t)}$ and $\Y^{(t)}$ two isomorphic
copies of the complex Euclidean space $\complex^{2^{t}}$,
so that the states in \eqref{eq:ydy_higher_dimension} lie in $\X^{(t)}\otimes\Y^{(t)}$.
Consider the operator
\begin{equation}
S = \frac{1}{2}\vec(\sigma_{0} + \sigma_{1})\vec(\sigma_{0} + \sigma_{1})^{\ast}
\in \Pos(\X^{(1)}\otimes\Y^{(1)}).
\end{equation}
Let $W \in \Unitary(\X^{(t)}\otimes\Y^{(t)},\X^{(1)}\otimes\Y^{(1)}\otimes\X^{(t-1)}\otimes\Y^{(t-1)})$
be the linear isometry defined in the statement of Lemma \ref{lemma:higher-dimension},
acting on the specified spaces.
The solution of the dual problem may be recursively defined as follows:
\begin{equation}
H^{(t)} = W^{\ast}(S \otimes H^{(t-1)})W,
\end{equation}
for any $t \geq 2$. The base of the
recursion $H^{(2)}$ is the operator defined in Eq. \eqref{eq:H_2}.
In the rest of the section we prove, by induction, that the cone program constraint
\begin{equation}
\label{eq:condiction_Ht}
H^{(t)} - \frac{1}{2^{t}}\vec(U_{k}^{(t)})\vec(U_{k}^{(t)})^{\ast}
\in \BPos(\X^{(t)}:\Y^{(t)})
\end{equation}
is satisfied for any $k \in \{1, \ldots, 2^{t} \}$.
Let us consider an arbitrary $1 \leq k \leq 2^{t-1}$
(the case $2^{t-1} \leq k \leq 2^{t}$ follows from a similar argument).
Eq. \eqref{eq:construction} implies that
\begin{equation}
\begin{split}
\vec(U_{k}^{(t)})\vec(U_{k}^{(t)})^{\ast}
&= W^{\ast}(\vec(\sigma_{0})\vec(\sigma_{0})^{\ast}\otimes
\vec(U_{k}^{(t-1)})\vec(U_{k}^{(t-1)})^{\ast})W \\
&\leq
W^{\ast}(\vec(\sigma_{0} + \sigma_{1})\vec(\sigma_{0} + \sigma_{1})^{\ast}
\otimes \vec(U_{k}^{(t-1)})\vec(U_{k}^{(t-1)})^{\ast})W,
\end{split}
\end{equation}
and therefore that
\begin{align}
H^{(t)} - \frac{1}{2^{t}}\vec(U_{k}^{(t)})\vec(U_{k}^{(t)})^{\ast}
&= W^{\ast}(S \otimes H^{(t-1)})W -
\frac{1}{2^{t}}\vec(U_{k}^{(t)})\vec(U_{k}^{(t)})^{\ast}\\
&\geq W^{\ast}(S \otimes (H^{(t-1)} -
\frac{1}{2^{t-1}}\vec(U_{k}^{(t-1)})\vec(U_{k}^{(t-1)})^{\ast})W.
\end{align}
The Peres-Horodecki criterion, along with the fact that
\[
\pt_{\X}(S) = S \in \Pos(\X_{1}\otimes\Y_{1}),
\]
implies that $S\in\Sep(\X_{1}:\Y_{1})$.
From Lemma \ref{lemma:higher-dimension} and the induction hypothesis, we have that
\begin{equation}
W^{\ast}(S \otimes (H^{(t-1)} -
\frac{1}{2^{t-1}}\vec(U_{k}^{(t-1)})\vec(U_{k}^{(t-1)})^{\ast})W
\in \BPos(\X^{(t)}:\Y^{(t)}),
\end{equation}
and therefore the constraint \eqref{eq:condiction_Ht} is satisfied.
Moreover, we have that $\tr(Q) = 1$ and therefore
\[
\tr(H^{(t)}) = \tr(H^{(2)}) = \frac{3}{4}
\]
\subsubsection*{Small sets of locally indistinguishable orthogonal maximally entangled states}
The main corollary of the proof above is that there exist
LOCC-indistinguishable sets of $k < n$ maximally entangled states in
$\complex^{n}\otimes\complex^{n}$.
Asymptotically, our construction allows for the cardinality $k$ of the indistinguishable
sets to be as small as $Cn$, where $C$ is a constant less than $1$.
In particular, we have that $3/4 \leq C < 1$.
It is possible that this constant can be improved by using
a different construction than the Yu--Duan--Ying states.
A further improvement would be to exhibit
indistinguishable sets of maximally entangled states with cardinality $o(n)$.
One among the smallest indistinguishable sets that come out of the above construction consists
of the states in $\complex^{8}\otimes\complex^{8}$ corresponding the following $7$ unitary operators:
\begin{equation}
\label{eq:ydy_Us}
\begin{aligned}
U_{1} &= \sigma_{0}\otimes\sigma_{0}\otimes\sigma_{0},\\
U_{2} &= \sigma_{0}\otimes\sigma_{1}\otimes\sigma_{1},\\
U_{3} &= \sigma_{0}\otimes\sigma_{2}\otimes\sigma_{1},\\
U_{4} &= \sigma_{0}\otimes\sigma_{3}\otimes\sigma_{1},\\
U_{5} &= \sigma_{0}\otimes\sigma_{0}\otimes\sigma_{0},\\
U_{6} &= \sigma_{0}\otimes\sigma_{1}\otimes\sigma_{1},\\
U_{7} &= \sigma_{0}\otimes\sigma_{2}\otimes\sigma_{1}.
\end{aligned}
\end{equation}
\begin{remark}
In a very recent result\footnote{A similar result (obtained via a different approach) appears also
in a preprint by Yu and Oh \cite{Yu15}. Notice that this has not been
published yet, neither I have verified it myself yet.},
Li et al. \cite{Li15} build up on our proof from
\cite{Cosentino14} and show that indistinguishable sets of $N$ orthogonal
maximally entangled states in $\complex^{N}\otimes\complex^{N}$ exists for all
$N$ and not just when $N$ is a power of $2$.
\end{remark}
\subsubsection*{Entanglement Discrimination Catalysis}
It is worth noting that the ``Entanglement Discrimination Catalysis''
phenomenon, observed in \cite{Yu12} for the set \eqref{eq:ydy_states},
also applies to the set