
Security Assessment

Credbull
CertiK Assessed on May 13th, 2024

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 2 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 2 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 1 Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY CREDBULL

CertiK Assessed on May 13th, 2024

Credbull

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

EVM Compatible

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 05/13/2024

KEY COMPONENTS

N/A

CODEBASE
https://github.com/credbull/credbull-

defi/tree/main/packages/contracts/src

View All in Codebase Page

COMMITS
da9877c0823663a5fca5f75f3a09b84e040dab8e

9b86f2af463028173079c7180e231c6f14325c56

View All in Codebase Page

Withdraws can be disabled

8
Total Findings

4
Resolved

0
Mitigated

0
Partially Resolved

4
Acknowledged

0
Declined

https://github.com/credbull/credbull-defi/tree/main/packages/contracts/src
https://github.com/credbull/credbull-defi/tree/da9877c0823663a5fca5f75f3a09b84e040dab8e/packages/contracts/src
https://github.com/credbull/credbull-defi/tree/9b86f2af463028173079c7180e231c6f14325c56/packages/contracts/src

TABLE OF CONTENTS CREDBULL

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

CBV-02 : Centralization Related Risks in `CUSTODIAN` Address

GLOBAL-01 : Centralization Related Risks

SRC-02 : Potential Asset Lock in `FixedYieldVault` and `UpsideVault` Contracts

UVB-01 : Inconsistent Use of `Pausable` Contract in `UpsideVault`

CBV-01 : Tokens Transferred to Vault Will Be Locked

SRC-01 : Incompatibility With Deflationary Tokens (Non-standard ERC20 Token)

SRC-03 : Third-Party Dependencies

UVB-03 : Shadowing State Variable

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS CREDBULL

CODEBASE CREDBULL

Repository

https://github.com/credbull/credbull-defi/tree/main/packages/contracts/src

Commit

da9877c0823663a5fca5f75f3a09b84e040dab8e

9b86f2af463028173079c7180e231c6f14325c56

CODEBASE CREDBULL

https://github.com/credbull/credbull-defi/tree/main/packages/contracts/src
https://github.com/credbull/credbull-defi/tree/da9877c0823663a5fca5f75f3a09b84e040dab8e/packages/contracts/src
https://github.com/credbull/credbull-defi/tree/9b86f2af463028173079c7180e231c6f14325c56/packages/contracts/src

AUDIT SCOPE CREDBULL

30 files audited 2 files with Acknowledged findings 28 files without findings

ID Repo File SHA256 Checksum

CBV
credbull/credbull-

defi
base/CredbullBaseVault.sol

746d77413ed9e406ea61e32cde5ae555ff23c

112dfd40dc9b73fd6f7f761b7a5

UVB
credbull/credbull-

defi
vaults/UpsideVault.sol

24b73c346770cd0b044ee45c0c8401725175

72261d086e73cd474608569c4d44

CKY
credbull/credbull-

defi
CredbullKYCProvider.sol

1b9228c7f2e6b2289ae5b18cd64373796dc4

adf3910bb1ce838f8680ba6329b4

CFY
credbull/credbull-

defi

CredbullFixedYieldVaultWithUpsid

e.sol

b020e54eb3fb146c8e9d997177a1197b8641

77693707b66c04dbd567a11d620a

CFV
credbull/credbull-

defi
CredbullFixedYieldVault.sol

07f7969bf5a99cc944bf92506659663634e7f7

a1e9964ada22bd9a395c0b8140

MVB
credbull/credbull-

defi
extensions/MaturityVault.sol

24619b65444c6bc19e69350145681b8e71b0

341b52aaff45fac8d032c2adb864

CFF
credbull/credbull-

defi

factories/CredbullFixedYieldVaultFa

ctory.sol

7b8658de2db4e7c17dd01bf149ad7b25ed71

a098037fc4e68b2a33bb195330a6

CUV
credbull/credbull-

defi

factories/CredbullUpsideVaultFacto

ry.sol

6eb9b98e837fb1f2d7c61d34ab354e7c40135

8f860003286531b31c2163e581c

CVF
credbull/credbull-

defi
factories/CredbullVaultFactory.sol

be881491aa86d2d203146ac91dbd92539a09

851b94086d564267fe55dbeef729

MCP
credbull/credbull-

defi
plugins/MaxCapPlug.sol

6a088c4f87a285941f97d1267b848fb0c5cd2

5f89f9fa2a1b4341514430b7035

WPI
credbull/credbull-

defi
plugins/WhitelistPlugIn.sol

c3e4faaa4bb6ef3c05abdb6480ffad6bfc04e4

d9b545bf3213cc2f53b4aaa370

WIN
credbull/credbull-

defi
plugins/WindowPlugIn.sol

c79b09843e9b2038710f7a33fa56b8810533d

26a9262a597441ed1d05c7fd775

FYV
credbull/credbull-

defi
vaults/FixedYieldVault.sol

c7aa8297b9288698541a92a95197cecfef8f8

ddcc7dbee8d11cf6d3268c73db7

AUDIT SCOPE CREDBULL

ID Repo File SHA256 Checksum

ICB
credbull/credbull-

defi
interface/ICredbull.sol

ce476844f5b7b27820becf49288f263d83034

68a3710b166dc746880dfab0fe1

IKY
credbull/credbull-

defi
interface/IKYCProvider.sol

6bdbdec57340f10c318c08f47c9ca20b77290

268de80ecc6e9cc9aaf71751bac

CRE
credbull/credbull-

defi
base/CredbullBaseVault.sol

95d97f2861995ce59308b87f0a5e8b300197c

64f660e998bc1d0f1f73dba8182

MVU
credbull/credbull-

defi
extensions/MaturityVault.sol

24619b65444c6bc19e69350145681b8e71b0

341b52aaff45fac8d032c2adb864

CYF
credbull/credbull-

defi

factories/CredbullFixedYieldVaultFa

ctory.sol

7b8658de2db4e7c17dd01bf149ad7b25ed71

a098037fc4e68b2a33bb195330a6

CUF
credbull/credbull-

defi

factories/CredbullUpsideVaultFacto

ry.sol

6eb9b98e837fb1f2d7c61d34ab354e7c40135

8f860003286531b31c2163e581c

CRD
credbull/credbull-

defi
factories/CredbullVaultFactory.sol

be881491aa86d2d203146ac91dbd92539a09

851b94086d564267fe55dbeef729

ICU
credbull/credbull-

defi
interface/ICredbull.sol

ce476844f5b7b27820becf49288f263d83034

68a3710b166dc746880dfab0fe1

IKC
credbull/credbull-

defi
interface/IKYCProvider.sol

6bdbdec57340f10c318c08f47c9ca20b77290

268de80ecc6e9cc9aaf71751bac

MAX
credbull/credbull-

defi
plugins/MaxCapPlug.sol

6a088c4f87a285941f97d1267b848fb0c5cd2

5f89f9fa2a1b4341514430b7035

WHI
credbull/credbull-

defi
plugins/WhitelistPlugIn.sol

c3e4faaa4bb6ef3c05abdb6480ffad6bfc04e4

d9b545bf3213cc2f53b4aaa370

WID
credbull/credbull-

defi
plugins/WindowPlugIn.sol

c79b09843e9b2038710f7a33fa56b8810533d

26a9262a597441ed1d05c7fd775

FIX
credbull/credbull-

defi
vaults/FixedYieldVault.sol

57b1a685c6050ac8ac95b0f2401145afa765a

b8e9d243dbfead354d9d4c5bbfc

UVU
credbull/credbull-

defi
vaults/UpsideVault.sol

3c3f66d642d7c9837285edb18400bf0581cb9

ae019df7edd8b292515317cb58e

CYV
credbull/credbull-

defi
CredbullFixedYieldVault.sol

07f7969bf5a99cc944bf92506659663634e7f7

a1e9964ada22bd9a395c0b8140

AUDIT SCOPE CREDBULL

ID Repo File SHA256 Checksum

CFW
credbull/credbull-

defi

CredbullFixedYieldVaultWithUpsid

e.sol

b020e54eb3fb146c8e9d997177a1197b8641

77693707b66c04dbd567a11d620a

CKC
credbull/credbull-

defi
CredbullKYCProvider.sol

1b9228c7f2e6b2289ae5b18cd64373796dc4

adf3910bb1ce838f8680ba6329b4

AUDIT SCOPE CREDBULL

APPROACH & METHODS CREDBULL

This report has been prepared for Credbull to discover issues and vulnerabilities in the source code of the Credbull project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS CREDBULL

FINDINGS CREDBULL

This report has been prepared to discover issues and vulnerabilities for Credbull. Through this audit, we have uncovered 8

issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CBV-02
Centralization Related Risks In

CUSTODIAN Address
Centralization Major Acknowledged

GLOBAL-01 Centralization Related Risks Centralization Major Acknowledged

SRC-02
Potential Asset Lock In FixedYieldVault

And UpsideVault Contracts
Logical Issue Medium Resolved

UVB-01
Inconsistent Use Of Pausable Contract In

UpsideVault

Access

Control
Medium Resolved

CBV-01 Tokens Transferred To Vault Will Be Locked Design Issue Minor Resolved

SRC-01
Incompatibility With Deflationary Tokens

(Non-Standard ERC20 Token)
Volatile Code Minor Acknowledged

SRC-03 Third-Party Dependencies Volatile Code Minor Acknowledged

UVB-03 Shadowing State Variable Coding Style Informational Resolved

FINDINGS CREDBULL

8
Total Findings

0
Critical

2
Major

2
Medium

3
Minor

1
Informational

CBV-02 CENTRALIZATION RELATED RISKS IN CUSTODIAN

ADDRESS

Category Severity Location Status

Centralization Major base/CredbullBaseVault.sol (da9877): 82 Acknowledged

Description

The CredbullBaseVault contract utilizes a designated CUSTODIAN address to receive tokens from depositors. This setup

centralizes the control of deposited assets to a single account. If this custodian account is compromised, malicious actors

could misuse the assets, potentially resulting in the contract not having sufficient funds to fulfill withdrawal requests by

legitimate depositors.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

CBV-02 CREDBULL

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Credbull Team, 05/13/2024]:

This is implemented as designed. The CUSTODIAN address will be an account with our Virtual Asset Service Provider (e.g.

Circle or Coinbase Institutional).

We will use Multi-Sig and/or MPC to ensure this and all sensitive accounts are protected.

[CertiK, 05/13/2024]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK

strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

CBV-02 CREDBULL

GLOBAL-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major Acknowledged

Description

In the contract FixedYieldVault the role DEFAULT_ADMIN_ROLE has authority over the functions shown in the diagram

below. Any compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and

enable/disable security checks, pause/unpause deposits and withdrawals, and update critical variables. Moreover, the

account can withdraw tokens from the contract at any time, it could lead to insufficient tokens available for depositors when

attempting to withdraw.

GLOBAL-01 CREDBULL

Authenticated Role

Function

Function

Function Internal Calls

Function Internal Calls

Function Internal Calls

Function Internal Calls

Function Internal Calls

Function

Function Internal Calls

Internal Calls

Internal Calls

Internal Calls

DEFAULT_ADMIN_ROLE

toggleWhitelistCheck

updateWindow

withdrawERC20

toggleMaturityCheck

toggleWindowCheck

updateMaxCap

toggleMaxCapCheck

pauseVault

unpauseVault

_toggleWhitelistCheck

_updateWindow

_withdrawERC20

_toggleMaturityCheck

_toggleWindowCheck

_updateMaxCap

_toggleMaxCapCheck

_pause

_unpause

In the contract FixedYieldVault the role OPERATOR_ROLE has authority over the following function:

mature()

Any compromise to the OPERATOR_ROLE account may allow a hacker to take advantage of this authority and permit

withdrawals.

GLOBAL-01 CREDBULL

In the contract UpsideVault the role OPERATOR_ROLE has authority over the following function:

setTWAP()

Any compromise to the OPERATOR_ROLE account may allow a hacker to take advantage of this authority and set twap .

In the contract AccessControl the role adminRole has authority over the following functions:

grantRole()

revokeRole()

Any compromise to the adminRole account may allow the hacker to take advantage of this authority and grant associated

role to any account or revoke the role from any account. Note that DEFAULT_ADMIN_ROLE is the admin role for all roles.

In the contract AccessControl the role role has authority over the following function:

renounceRole()

Any compromise to the role account may allow the hacker to take advantage of this authority and renounce corresponding

privileges to functions within other contracts.

In the contract CredbullKYCProvider the role _owner has authority over the following function:

updateStatus()

Any compromise to the _owner account may allow a hacker to take advantage of this authority and add/remove addresses

from the whitelist.

In the contract Ownable the role _owner has authority over the following functions:

transferOwnership()

renounceOwnership()

Any compromise to the _owner account may allow a hacker to take advantage of this authority and transfer or renounce the

ownership.

In the contract CredbullFixedYieldVaultFactory the role OPERATOR_ROLE has authority over the following function:

createVault()

Any compromise to the OPERATOR_ROLE account may allow a hacker to take advantage of this authority and deploy a new

CredbullFixedYieldVault contract.

GLOBAL-01 CREDBULL

In the contract CredbullUpsideVaultFactory the role OPERATOR_ROLE has authority over the following function:

createVault()

Any compromise to the OPERATOR_ROLE account may allow a hacker to take advantage of this authority and deploy a new

CredbullFixedYieldVaultWithUpside contract.

In the contract CredbullVaultFactory the role DEFAULT_ADMIN_ROLE has authority over the following functions:

allowCustodian()

removeCustodian()

Any compromise to the DEFAULT_ADMIN_ROLE account may allow a hacker to take advantage of this authority and

add/remove an account from allowedCustodians .

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

GLOBAL-01 CREDBULL

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Credbull Team, 05/13/2024]:

To protect sensitive accounts, Credbull uses wallets with advanced security features such as Multi-Sig and MPC.

We will also add a Time-lock with reasonable latency for privileged operations.

Once we have deployed to Mainnet, Credbull will share relevant information for transparency.

[CertiK, 05/13/2024]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK

strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

GLOBAL-01 CREDBULL

SRC-02 POTENTIAL ASSET LOCK IN FixedYieldVault AND

UpsideVault CONTRACTS

Category Severity Location Status

Logical

Issue
Medium

base/CredbullBaseVault.sol (da9877): 103; vaults/UpsideVault.sol (da

9877): 92
Resolved

Description

The FixedYieldVault and UpsideVault contracts use the totalAssetDeposited variable to track the total assets

deposited into the vault. This variable is adjusted upward during deposits and downward during withdrawals. However, if

assets are directly transferred into the vault without using the _deposit() function (e.g., through donations or direct

transfers), these assets are not recorded in totalAssetDeposited . they will be locked in the contract indefinitely.

Although this issue is somewhat mitigated since both contracts inherit from the MaturityVault contract, which includes a

_mature() function that adjusts totalAssetDeposited to match the current balance, this adjustment is not guaranteed to

occur before withdrawals are permitted. Moreover, tokens transferred after _mature() has been called would still be

locked.

Recommendation

It is recommended to prevent tokens from being locked in the contract.

Alleviation

[Credbull Team, 05/13/2024]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c56.

SRC-02 CREDBULL

UVB-01 INCONSISTENT USE OF Pausable CONTRACT IN

UpsideVault

Category Severity Location Status

Access Control Medium vaults/UpsideVault.sol (da9877): 52, 80 Resolved

Description

The UpsideVault contract inherits from the Pausable contract, which provides functionality to pause and unpause

contract operations. However, the UpsideVault does not utilize the whenNotPaused modifier from the Pausable contract

in its _deposit() and _withdraw() functions. This oversight nullifies the benefits of having a pausable mechanism.

Recommendation

It is recommended to apply whenNotPaused modifier in the UpsideVault 's _deposit() and _withdraw() functions.

Alleviation

[Credbull Team, 05/07/2024]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c56.

UVB-01 CREDBULL

CBV-01 TOKENS TRANSFERRED TO VAULT WILL BE LOCKED

Category Severity Location Status

Design Issue Minor base/CredbullBaseVault.sol (da9877): 132, 140 Resolved

Description

The comments of the transfer() and transferFrom() functions in the CredbullBaseVault contract indicate that

tokens sent to the contract should allow for asset redemption. However, there appears to be no mechanism in the provided

code to handle the tokens once they reach the contract. This could lead to tokens being locked within the contract with no

clear method for users to retrieve the corresponding assets.

 /// @notice The share token should be soul bound. Should be transferable only to

vault to receive assets back

 function transfer(address to, uint256 value) public override(ERC20, IERC20)

returns (bool) {

 if (to != address(this)) revert CredbullVault__TransferOutsideEcosystem();

 address owner = _msgSender();

 _transfer(owner, to, value);

 return true;

 }

 /// @notice The share token should be soul bound. Should be transferable only to

vault to receive assets back

 function transferFrom(address from, address to, uint256 value) public

override(ERC20, IERC20) returns (bool) {

 if (to != address(this)) revert CredbullVault__TransferOutsideEcosystem();

 address spender = _msgSender();

 _spendAllowance(from, spender, value);

 _transfer(from, to, value);

 return true;

 }

Recommendation

It is recommended to revert any call to transfer() or transferFrom() .

Alleviation

[Credbull Team, 05/07/2024]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c56.

CBV-01 CREDBULL

SRC-01 INCOMPATIBILITY WITH DEFLATIONARY TOKENS (NON-
STANDARD ERC20 TOKEN)

Category Severity Location Status

Volatile

Code
Minor

base/CredbullBaseVault.sol (da9877): 82, 106; vaults/UpsideVault.s

ol (da9877): 71, 72, 94, 97
Acknowledged

Description

The vault contracts are not equipped to handle non-standard ERC20 tokens, including deflationary or rebase tokens, which

may apply transaction fees or adjust balances dynamically. The contract's reliance on transferFrom() and transfer()

methods without validating the actual transferred amounts could result in discrepancies between expected and actual token

balances. This issue is particularly critical because it could lead to insufficient tokens available for depositors when

attempting to withdraw, potentially disrupting contract functionality and user transactions.

Scenario

When transferring deflationary ERC20 tokens, the input amount may not equal the received amount due to the charged

transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually

arrive to the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

Proof of Concept

Foundry test:

SRC-01 CREDBULL

// SPDX-License-Identifier: UNLICENSED

pragma solidity 0.7.5;

pragma abicoder v2;

import "forge-std/Test.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract DeflationaryToken is ERC20 {

 address deadAddress = 0x000000000000000000000000000000000000dEaD;

 constructor () ERC20 ("Test", "TEST") {

 _mint(msg.sender, 1000000);

 }

 function _transfer(address sender, address recipient, uint256 amount) internal

override {

 uint256 burnAmount = 10 * amount / 100;

 uint256 transferAmount = amount - burnAmount;

 super._transfer(sender, deadAddress, burnAmount);

 super._transfer(sender, recipient, transferAmount);

 }

}

contract VictimContract {

 address public token;

 mapping(address => uint256) public stakedAmount;

 constructor (address _token) {

 token = _token;

 }

 function stake(uint256 amount) public {

 ERC20(token).transferFrom(msg.sender, address(this), amount);

 stakedAmount[msg.sender] += amount;

 }

 function unstake() public {

 uint256 amount = stakedAmount[msg.sender];

 ERC20(token).transfer(msg.sender, amount);

 stakedAmount[msg.sender] = 0;

 }

}

contract DeflationaryTokenTest is Test {

 DeflationaryToken public deflationaryToken;

 VictimContract public victimContract;

 address public user = vm.addr(1);

 function setUp() public {

 deflationaryToken = new DeflationaryToken();

SRC-01 CREDBULL

 victimContract = new VictimContract(address(deflationaryToken));

 deflationaryToken.transfer(address(victimContract), 10000);

 deflationaryToken.transfer(user, 10000);

 }

 function testIssue() public {

 vm.startPrank(user);

 deflationaryToken.approve(address(victimContract), 1000);

 uint256 victimBalanceBefore =

deflationaryToken.balanceOf(address(victimContract)); // balance before staking

 victimContract.stake(1000);

 victimContract.unstake();

 uint256 victimBalanceAfter =

deflationaryToken.balanceOf(address(victimContract)); // balance after unstaking

 vm.stopPrank();

 require(victimBalanceAfter < victimBalanceBefore, "error"); // victim

contract lost tokens

 }

}

Recommendation

We advise the client to regulate the set of tokens supported and add necessary mitigation mechanisms to keep track of

accurate balances if there is a need to support non-standard ERC20 tokens.

Alleviation

[Credbull Team, 05/07/2024]: Acknowledged, our Vaults will be using well-known ERC-20 stablecoins only, e.g. USDC and

USDT.

SRC-01 CREDBULL

SRC-03 THIRD-PARTY DEPENDENCIES

Category Severity Location Status

Volatile

Code
Minor

base/CredbullBaseVault.sol (da9877): 55; vaults/UpsideVault.sol (d

a9877): 16
Acknowledged

Description

The contract is serving as the underlying entity to interact with third-parties asset token and collateral token. The scope of the

audit treats third-party entities as black boxes and assumes their functional correctness. However, in the real world, third

parties can be compromised and this may lead to lost or stolen assets.

Recommendation

We recommend that the project team constantly monitor the functionality of these contracts to mitigate any side effects that

may occur when unexpected changes are introduced.

Alleviation

[Credbull Team, 05/07/2024]:

Understood and agreed regarding third-party dependencies overall. For more context:

Asset Token will always be a USDC or USDT stablecoin.

Collateral Token will only be our own Credbull ($CBL) ERC20 token. Credbull will develop this contract from

OpenZeppelin standards.

SRC-03 CREDBULL

UVB-03 SHADOWING STATE VARIABLE

Category Severity Location Status

Coding Style Informational vaults/UpsideVault.sol (da9877): 23 Resolved

Description

The state variable _balances in the UpsideVault contract is shadowing the same named component in the parent

contract ERC20 . This means that when the derived contract accesses the state variable by its name, it will use the one

defined in the derived contract, not the one in the parent contract. This can lead to confusion.

Recommendation

It is suggested to rename the state variable that shadows another definition.

Alleviation

[Credbull Team, 05/07/2024]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c56.

UVB-03 CREDBULL

FORMAL VERIFICATION CREDBULL

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of Standard Ownable Properties

We verified partial properties of the public interfaces of those token contracts that implement the Ownable interface. This

involves:

function owner that returns the current owner,

functions renounceOwnership that removes ownership,

function transferOwnership that transfers the ownership to a new owner.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

ownable-renounce-ownership-is-permanent Once Renounced, Ownership Cannot be Regained

ownable-transferownership-correct Ownership is Transferred.

ownable-renounceownership-correct Ownership is Removed.

ownable-owner-succeed-normal owner Always Succeeds

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract CredbullKYCProvider
(packages/contracts/src/CredbullKYCProvider.sol) In Commit
da9877c0823663a5fca5f75f3a09b84e040dab8e

FORMAL VERIFICATION CREDBULL

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounce-ownership-is-permanent True

ownable-renounceownership-correct True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct True

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal True

FORMAL VERIFICATION CREDBULL

APPENDIX CREDBULL

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Access

Control
Access Control findings are about security vulnerabilities that make protected assets unsafe.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

APPENDIX CREDBULL

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed Ownable Properties

Properties related to function renounceOwnership

ownable-renounce-ownership-is-permanent

The contract must prohibit regaining of ownership once it has been renounced.

Specification:

constraint \old(owner()) == address(0) ==> owner() == address(0);

ownable-renounceownership-correct

Invocations of renounceOwnership() must set ownership to address(0).

Specification:

ensures this.owner() == address(0);

Properties related to function transferOwnership

APPENDIX CREDBULL

ownable-transferownership-correct

Invocations of transferOwnership(newOwner) must transfer the ownership to the newOwner .

Specification:

ensures this.owner() == newOwner;

Properties related to function owner

ownable-owner-succeed-normal

Function owner must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX CREDBULL

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER CREDBULL

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER CREDBULL

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Credbull Security Assessment CertiK Assessed on May 13th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

