-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_all.sh
executable file
·81 lines (58 loc) · 5.25 KB
/
plot_all.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env bash
# ================================================= SDGM ===============================================================
# Plot the SDGM graphs with embeddings computed by a supervised GCN network
python -u run_dgm.py --dataset=spam --reduce_method=binary_prob --intervals=20 --overlap=0 --eps=0.01 \
--min_component_size=4 --sdgm --dir=sdgm_supervised
python -u run_dgm.py --dataset=cora --reduce_method=tsne --intervals=10 --overlap=0 --eps=0.10 \
--min_component_size=20 --sdgm --dir=sdgm_supervised
python -u run_dgm.py --dataset=pubmed --reduce_method=tsne --intervals=20 --overlap=0 --eps=0.01 \
--min_component_size=10 --sdgm --dir=sdgm_supervised
python -u run_dgm.py --dataset=citeseer --reduce_method=tsne --intervals=5 --overlap=0 --eps=0.01 \
--min_component_size=10 --sdgm --dir=sdgm_supervised
# Plot the SDGM graph with embeddings computed with unsupervised lens (DGI network)
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=20 \
--overlap=0 --eps=0.05 --min_component_size=8 --sdgm --dir=sdgm_unsupervised \
python -u run_dgm.py --dataset=citeseer --train_mode=unsupervised --reduce_method=tsne --intervals=20 \
--overlap=0 --eps=0.03 --min_component_size=8 --sdgm --dir=sdgm_unsupervised \
# SDGM ablation for dimensionality reduction method
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=20 \
--overlap=0 --eps=0.05 --min_component_size=8 --sdgm --reduce_method=tsne --dir=sdgm_reduce_ablation
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=15 \
--overlap=0 --eps=0.04 --min_component_size=10 --sdgm --reduce_method=pca --dir=sdgm_reduce_ablation
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=15 \
--overlap=0 --eps=0.04 --min_component_size=10 --sdgm --reduce_method=isomap --dir=sdgm_reduce_ablation
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=20 \
--overlap=0 --eps=0.04 --min_component_size=10 --sdgm --reduce_method=umap --dir=sdgm_reduce_ablation
# ================================================== DGM ===============================================================
# Plot the DGM graphs with embeddings computed by a supervised GCN network
python -u run_dgm.py --dataset=spam --reduce_method=binary_prob --intervals=20 --overlap=0.1 \
--min_component_size=4 --dir=dgm_supervised
python -u run_dgm.py --dataset=cora --reduce_method=tsne --intervals=8 --overlap=0.2 \
--min_component_size=15 --dir=dgm_supervised
python -u run_dgm.py --dataset=pubmed --reduce_method=umap --intervals=3 --overlap=0.05 \
--min_component_size=50 --dir=dgm_supervised
python -u run_dgm.py --dataset=citeseer --reduce_method=tsne --intervals=6 --overlap=0.2 \
--min_component_size=20 --dir=dgm_supervised
# Plot the DGM graph with embeddings computed with unsupervised lens (DGI network)
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=8 \
--overlap=0.2 --min_component_size=15 --dir=dgm_unsupervised \
python -u run_dgm.py --dataset=citeseer --train_mode=unsupervised --reduce_method=tsne --intervals=8 \
--overlap=0.2 --min_component_size=20 --dir=dgm_unsupervised \
# DGM ablation for dimensionality reduction method
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=9 \
--overlap=0.2 --min_component_size=15 --reduce_method=tsne --dir=dgm_reduce_ablation
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=9 \
--overlap=0.1 --min_component_size=15 --reduce_method=pca --dir=dgm_reduce_ablation
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=9 \
--overlap=0.1 --min_component_size=15 --reduce_method=isomap --dir=dgm_reduce_ablation
python -u run_dgm.py --dataset=cora --train_mode=unsupervised --reduce_method=tsne --intervals=9 \
--overlap=0.2 --min_component_size=15 --reduce_method=umap --dir=dgm_reduce_ablation
# ========================================== SDGM with true labels ===================================================
python -u run_dgm.py --dataset=spam --reduce_method=none --intervals=20 \
--overlap=0 --eps=0.00 --min_component_size=0 --sdgm --dir=sdgm_true_labels --true_labels
python -u run_dgm.py --dataset=cora --reduce_method=none --intervals=20 \
--overlap=0 --eps=0.00 --min_component_size=5 --sdgm --dir=sdgm_true_labels --true_labels
python -u run_dgm.py --dataset=pubmed --reduce_method=none --intervals=20 \
--overlap=0 --eps=0.00 --min_component_size=5 --sdgm --dir=sdgm_true_labels --true_labels
python -u run_dgm.py --dataset=citeseer --reduce_method=tsne --intervals=20 \
--overlap=0 --eps=0.00 --min_component_size=5 --sdgm --dir=sdgm_true_labels --true_labels