-
Notifications
You must be signed in to change notification settings - Fork 384
/
Copy pathtrain.py
executable file
·525 lines (469 loc) · 23.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#!/usr/bin/env python3
"""Trains Karras et al. (2022) diffusion models."""
import argparse
from copy import deepcopy
from functools import partial
import importlib.util
import math
import json
from pathlib import Path
import time
import accelerate
import safetensors.torch as safetorch
import torch
import torch._dynamo
from torch import distributed as dist
from torch import multiprocessing as mp
from torch import optim
from torch.utils import data, flop_counter
from torchvision import datasets, transforms, utils
from tqdm.auto import tqdm
import k_diffusion as K
def ensure_distributed():
if not dist.is_initialized():
dist.init_process_group(world_size=1, rank=0, store=dist.HashStore())
def main():
p = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument('--batch-size', type=int, default=64,
help='the batch size')
p.add_argument('--checkpointing', action='store_true',
help='enable gradient checkpointing')
p.add_argument('--clip-model', type=str, default='ViT-B/16',
choices=K.evaluation.CLIPFeatureExtractor.available_models(),
help='the CLIP model to use to evaluate')
p.add_argument('--compile', action='store_true',
help='compile the model')
p.add_argument('--config', type=str, required=True,
help='the configuration file')
p.add_argument('--demo-every', type=int, default=500,
help='save a demo grid every this many steps')
p.add_argument('--dinov2-model', type=str, default='vitl14',
choices=K.evaluation.DINOv2FeatureExtractor.available_models(),
help='the DINOv2 model to use to evaluate')
p.add_argument('--end-step', type=int, default=None,
help='the step to end training at')
p.add_argument('--evaluate-every', type=int, default=10000,
help='evaluate every this many steps')
p.add_argument('--evaluate-n', type=int, default=2000,
help='the number of samples to draw to evaluate')
p.add_argument('--evaluate-only', action='store_true',
help='evaluate instead of training')
p.add_argument('--evaluate-with', type=str, default='inception',
choices=['inception', 'clip', 'dinov2'],
help='the feature extractor to use for evaluation')
p.add_argument('--gns', action='store_true',
help='measure the gradient noise scale (DDP only, disables stratified sampling)')
p.add_argument('--grad-accum-steps', type=int, default=1,
help='the number of gradient accumulation steps')
p.add_argument('--lr', type=float,
help='the learning rate')
p.add_argument('--mixed-precision', type=str,
help='the mixed precision type')
p.add_argument('--name', type=str, default='model',
help='the name of the run')
p.add_argument('--num-workers', type=int, default=8,
help='the number of data loader workers')
p.add_argument('--reset-ema', action='store_true',
help='reset the EMA')
p.add_argument('--resume', type=str,
help='the checkpoint to resume from')
p.add_argument('--resume-inference', type=str,
help='the inference checkpoint to resume from')
p.add_argument('--sample-n', type=int, default=64,
help='the number of images to sample for demo grids')
p.add_argument('--save-every', type=int, default=10000,
help='save every this many steps')
p.add_argument('--seed', type=int,
help='the random seed')
p.add_argument('--start-method', type=str, default='spawn',
choices=['fork', 'forkserver', 'spawn'],
help='the multiprocessing start method')
p.add_argument('--wandb-entity', type=str,
help='the wandb entity name')
p.add_argument('--wandb-group', type=str,
help='the wandb group name')
p.add_argument('--wandb-project', type=str,
help='the wandb project name (specify this to enable wandb)')
p.add_argument('--wandb-save-model', action='store_true',
help='save model to wandb')
args = p.parse_args()
mp.set_start_method(args.start_method)
torch.backends.cuda.matmul.allow_tf32 = True
try:
torch._dynamo.config.automatic_dynamic_shapes = False
except AttributeError:
pass
config = K.config.load_config(args.config)
model_config = config['model']
dataset_config = config['dataset']
opt_config = config['optimizer']
sched_config = config['lr_sched']
ema_sched_config = config['ema_sched']
# TODO: allow non-square input sizes
assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
size = model_config['input_size']
accelerator = accelerate.Accelerator(gradient_accumulation_steps=args.grad_accum_steps, mixed_precision=args.mixed_precision)
ensure_distributed()
device = accelerator.device
unwrap = accelerator.unwrap_model
print(f'Process {accelerator.process_index} using device: {device}', flush=True)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
print(f'World size: {accelerator.num_processes}', flush=True)
print(f'Batch size: {args.batch_size * accelerator.num_processes}', flush=True)
if args.seed is not None:
seeds = torch.randint(-2 ** 63, 2 ** 63 - 1, [accelerator.num_processes], generator=torch.Generator().manual_seed(args.seed))
torch.manual_seed(seeds[accelerator.process_index])
demo_gen = torch.Generator().manual_seed(torch.randint(-2 ** 63, 2 ** 63 - 1, ()).item())
elapsed = 0.0
inner_model = K.config.make_model(config)
inner_model_ema = deepcopy(inner_model)
if args.compile:
inner_model.compile()
# inner_model_ema.compile()
if accelerator.is_main_process:
print(f'Parameters: {K.utils.n_params(inner_model):,}')
# If logging to wandb, initialize the run
use_wandb = accelerator.is_main_process and args.wandb_project
if use_wandb:
import wandb
log_config = vars(args)
log_config['config'] = config
log_config['parameters'] = K.utils.n_params(inner_model)
wandb.init(project=args.wandb_project, entity=args.wandb_entity, group=args.wandb_group, config=log_config, save_code=True)
lr = opt_config['lr'] if args.lr is None else args.lr
groups = inner_model.param_groups(lr)
if opt_config['type'] == 'adamw':
opt = optim.AdamW(groups,
lr=lr,
betas=tuple(opt_config['betas']),
eps=opt_config['eps'],
weight_decay=opt_config['weight_decay'])
elif opt_config['type'] == 'adam8bit':
import bitsandbytes as bnb
opt = bnb.optim.Adam8bit(groups,
lr=lr,
betas=tuple(opt_config['betas']),
eps=opt_config['eps'],
weight_decay=opt_config['weight_decay'])
elif opt_config['type'] == 'sgd':
opt = optim.SGD(groups,
lr=lr,
momentum=opt_config.get('momentum', 0.),
nesterov=opt_config.get('nesterov', False),
weight_decay=opt_config.get('weight_decay', 0.))
else:
raise ValueError('Invalid optimizer type')
if sched_config['type'] == 'inverse':
sched = K.utils.InverseLR(opt,
inv_gamma=sched_config['inv_gamma'],
power=sched_config['power'],
warmup=sched_config['warmup'])
elif sched_config['type'] == 'exponential':
sched = K.utils.ExponentialLR(opt,
num_steps=sched_config['num_steps'],
decay=sched_config['decay'],
warmup=sched_config['warmup'])
elif sched_config['type'] == 'constant':
sched = K.utils.ConstantLRWithWarmup(opt, warmup=sched_config['warmup'])
else:
raise ValueError('Invalid schedule type')
assert ema_sched_config['type'] == 'inverse'
ema_sched = K.utils.EMAWarmup(power=ema_sched_config['power'],
max_value=ema_sched_config['max_value'])
ema_stats = {}
tf = transforms.Compose([
transforms.Resize(size[0], interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(size[0]),
K.augmentation.KarrasAugmentationPipeline(model_config['augment_prob'], disable_all=model_config['augment_prob'] == 0),
])
if dataset_config['type'] == 'imagefolder':
train_set = K.utils.FolderOfImages(dataset_config['location'], transform=tf)
elif dataset_config['type'] == 'imagefolder-class':
train_set = datasets.ImageFolder(dataset_config['location'], transform=tf)
elif dataset_config['type'] == 'cifar10':
train_set = datasets.CIFAR10(dataset_config['location'], train=True, download=True, transform=tf)
elif dataset_config['type'] == 'mnist':
train_set = datasets.MNIST(dataset_config['location'], train=True, download=True, transform=tf)
elif dataset_config['type'] == 'huggingface':
from datasets import load_dataset
train_set = load_dataset(dataset_config['location'])
train_set.set_transform(partial(K.utils.hf_datasets_augs_helper, transform=tf, image_key=dataset_config['image_key']))
train_set = train_set['train']
elif dataset_config['type'] == 'custom':
location = (Path(args.config).parent / dataset_config['location']).resolve()
spec = importlib.util.spec_from_file_location('custom_dataset', location)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
get_dataset = getattr(module, dataset_config.get('get_dataset', 'get_dataset'))
custom_dataset_config = dataset_config.get('config', {})
train_set = get_dataset(custom_dataset_config, transform=tf)
else:
raise ValueError('Invalid dataset type')
if accelerator.is_main_process:
try:
print(f'Number of items in dataset: {len(train_set):,}')
except TypeError:
pass
image_key = dataset_config.get('image_key', 0)
num_classes = dataset_config.get('num_classes', 0)
cond_dropout_rate = dataset_config.get('cond_dropout_rate', 0.1)
class_key = dataset_config.get('class_key', 1)
train_dl = data.DataLoader(train_set, args.batch_size, shuffle=True, drop_last=True,
num_workers=args.num_workers, persistent_workers=True, pin_memory=True)
inner_model, inner_model_ema, opt, train_dl = accelerator.prepare(inner_model, inner_model_ema, opt, train_dl)
with torch.no_grad(), K.models.flops.flop_counter() as fc:
x = torch.zeros([1, model_config['input_channels'], size[0], size[1]], device=device)
sigma = torch.ones([1], device=device)
extra_args = {}
if getattr(unwrap(inner_model), "num_classes", 0):
extra_args['class_cond'] = torch.zeros([1], dtype=torch.long, device=device)
inner_model(x, sigma, **extra_args)
if accelerator.is_main_process:
print(f"Forward pass GFLOPs: {fc.flops / 1_000_000_000:,.3f}", flush=True)
if use_wandb:
wandb.watch(inner_model)
if accelerator.num_processes == 1:
args.gns = False
if args.gns:
gns_stats_hook = K.gns.DDPGradientStatsHook(inner_model)
gns_stats = K.gns.GradientNoiseScale()
else:
gns_stats = None
sigma_min = model_config['sigma_min']
sigma_max = model_config['sigma_max']
sample_density = K.config.make_sample_density(model_config)
model = K.config.make_denoiser_wrapper(config)(inner_model)
model_ema = K.config.make_denoiser_wrapper(config)(inner_model_ema)
state_path = Path(f'{args.name}_state.json')
if state_path.exists() or args.resume:
if args.resume:
ckpt_path = args.resume
if not args.resume:
state = json.load(open(state_path))
ckpt_path = state['latest_checkpoint']
if accelerator.is_main_process:
print(f'Resuming from {ckpt_path}...')
ckpt = torch.load(ckpt_path, map_location='cpu')
unwrap(model.inner_model).load_state_dict(ckpt['model'])
unwrap(model_ema.inner_model).load_state_dict(ckpt['model_ema'])
opt.load_state_dict(ckpt['opt'])
sched.load_state_dict(ckpt['sched'])
ema_sched.load_state_dict(ckpt['ema_sched'])
ema_stats = ckpt.get('ema_stats', ema_stats)
epoch = ckpt['epoch'] + 1
step = ckpt['step'] + 1
if args.gns and ckpt.get('gns_stats', None) is not None:
gns_stats.load_state_dict(ckpt['gns_stats'])
demo_gen.set_state(ckpt['demo_gen'])
elapsed = ckpt.get('elapsed', 0.0)
del ckpt
else:
epoch = 0
step = 0
if args.reset_ema:
unwrap(model.inner_model).load_state_dict(unwrap(model_ema.inner_model).state_dict())
ema_sched = K.utils.EMAWarmup(power=ema_sched_config['power'],
max_value=ema_sched_config['max_value'])
ema_stats = {}
if args.resume_inference:
if accelerator.is_main_process:
print(f'Loading {args.resume_inference}...')
ckpt = safetorch.load_file(args.resume_inference)
unwrap(model.inner_model).load_state_dict(ckpt)
unwrap(model_ema.inner_model).load_state_dict(ckpt)
del ckpt
evaluate_enabled = args.evaluate_every > 0 and args.evaluate_n > 0
metrics_log = None
if evaluate_enabled:
if args.evaluate_with == 'inception':
extractor = K.evaluation.InceptionV3FeatureExtractor(device=device)
elif args.evaluate_with == 'clip':
extractor = K.evaluation.CLIPFeatureExtractor(args.clip_model, device=device)
elif args.evaluate_with == 'dinov2':
extractor = K.evaluation.DINOv2FeatureExtractor(args.dinov2_model, device=device)
else:
raise ValueError('Invalid evaluation feature extractor')
train_iter = iter(train_dl)
if accelerator.is_main_process:
print('Computing features for reals...')
reals_features = K.evaluation.compute_features(accelerator, lambda x: next(train_iter)[image_key][1], extractor, args.evaluate_n, args.batch_size)
if accelerator.is_main_process and not args.evaluate_only:
metrics_log = K.utils.CSVLogger(f'{args.name}_metrics.csv', ['step', 'time', 'loss', 'fid', 'kid'])
del train_iter
cfg_scale = 1.
def make_cfg_model_fn(model):
def cfg_model_fn(x, sigma, class_cond):
x_in = torch.cat([x, x])
sigma_in = torch.cat([sigma, sigma])
class_uncond = torch.full_like(class_cond, num_classes)
class_cond_in = torch.cat([class_uncond, class_cond])
out = model(x_in, sigma_in, class_cond=class_cond_in)
out_uncond, out_cond = out.chunk(2)
return out_uncond + (out_cond - out_uncond) * cfg_scale
if cfg_scale != 1:
return cfg_model_fn
return model
@torch.no_grad()
@K.utils.eval_mode(model_ema)
def demo():
if accelerator.is_main_process:
tqdm.write('Sampling...')
filename = f'{args.name}_demo_{step:08}.png'
n_per_proc = math.ceil(args.sample_n / accelerator.num_processes)
x = torch.randn([accelerator.num_processes, n_per_proc, model_config['input_channels'], size[0], size[1]], generator=demo_gen).to(device)
dist.broadcast(x, 0)
x = x[accelerator.process_index] * sigma_max
model_fn, extra_args = model_ema, {}
if num_classes:
class_cond = torch.randint(0, num_classes, [accelerator.num_processes, n_per_proc], generator=demo_gen).to(device)
dist.broadcast(class_cond, 0)
extra_args['class_cond'] = class_cond[accelerator.process_index]
model_fn = make_cfg_model_fn(model_ema)
sigmas = K.sampling.get_sigmas_karras(50, sigma_min, sigma_max, rho=7., device=device)
x_0 = K.sampling.sample_dpmpp_2m_sde(model_fn, x, sigmas, extra_args=extra_args, eta=0.0, solver_type='heun', disable=not accelerator.is_main_process)
x_0 = accelerator.gather(x_0)[:args.sample_n]
if accelerator.is_main_process:
grid = utils.make_grid(x_0, nrow=math.ceil(args.sample_n ** 0.5), padding=0)
K.utils.to_pil_image(grid).save(filename)
if use_wandb:
wandb.log({'demo_grid': wandb.Image(filename)}, step=step)
@torch.no_grad()
@K.utils.eval_mode(model_ema)
def evaluate():
if not evaluate_enabled:
return
if accelerator.is_main_process:
tqdm.write('Evaluating...')
sigmas = K.sampling.get_sigmas_karras(50, sigma_min, sigma_max, rho=7., device=device)
def sample_fn(n):
x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
model_fn, extra_args = model_ema, {}
if num_classes:
extra_args['class_cond'] = torch.randint(0, num_classes, [n], device=device)
model_fn = make_cfg_model_fn(model_ema)
x_0 = K.sampling.sample_dpmpp_2m_sde(model_fn, x, sigmas, extra_args=extra_args, eta=0.0, solver_type='heun', disable=True)
return x_0
fakes_features = K.evaluation.compute_features(accelerator, sample_fn, extractor, args.evaluate_n, args.batch_size)
if accelerator.is_main_process:
fid = K.evaluation.fid(fakes_features, reals_features)
kid = K.evaluation.kid(fakes_features, reals_features)
print(f'FID: {fid.item():g}, KID: {kid.item():g}')
if accelerator.is_main_process and metrics_log is not None:
metrics_log.write(step, elapsed, ema_stats['loss'], fid.item(), kid.item())
if use_wandb:
wandb.log({'FID': fid.item(), 'KID': kid.item()}, step=step)
def save():
accelerator.wait_for_everyone()
filename = f'{args.name}_{step:08}.pth'
if accelerator.is_main_process:
tqdm.write(f'Saving to {filename}...')
inner_model = unwrap(model.inner_model)
inner_model_ema = unwrap(model_ema.inner_model)
obj = {
'config': config,
'model': inner_model.state_dict(),
'model_ema': inner_model_ema.state_dict(),
'opt': opt.state_dict(),
'sched': sched.state_dict(),
'ema_sched': ema_sched.state_dict(),
'epoch': epoch,
'step': step,
'gns_stats': gns_stats.state_dict() if gns_stats is not None else None,
'ema_stats': ema_stats,
'demo_gen': demo_gen.get_state(),
'elapsed': elapsed,
}
accelerator.save(obj, filename)
if accelerator.is_main_process:
state_obj = {'latest_checkpoint': filename}
json.dump(state_obj, open(state_path, 'w'))
if args.wandb_save_model and use_wandb:
wandb.save(filename)
if args.evaluate_only:
if not evaluate_enabled:
raise ValueError('--evaluate-only requested but evaluation is disabled')
evaluate()
return
losses_since_last_print = []
try:
while True:
for batch in tqdm(train_dl, smoothing=0.1, disable=not accelerator.is_main_process):
if device.type == 'cuda':
start_timer = torch.cuda.Event(enable_timing=True)
end_timer = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_timer.record()
else:
start_timer = time.time()
with accelerator.accumulate(model):
reals, _, aug_cond = batch[image_key]
class_cond, extra_args = None, {}
if num_classes:
class_cond = batch[class_key]
drop = torch.rand(class_cond.shape, device=class_cond.device)
class_cond.masked_fill_(drop < cond_dropout_rate, num_classes)
extra_args['class_cond'] = class_cond
noise = torch.randn_like(reals)
with K.utils.enable_stratified_accelerate(accelerator, disable=args.gns):
sigma = sample_density([reals.shape[0]], device=device)
with K.models.checkpointing(args.checkpointing):
losses = model.loss(reals, noise, sigma, aug_cond=aug_cond, **extra_args)
loss = accelerator.gather(losses).mean().item()
losses_since_last_print.append(loss)
accelerator.backward(losses.mean())
if args.gns:
sq_norm_small_batch, sq_norm_large_batch = gns_stats_hook.get_stats()
gns_stats.update(sq_norm_small_batch, sq_norm_large_batch, reals.shape[0], reals.shape[0] * accelerator.num_processes)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.)
opt.step()
sched.step()
opt.zero_grad()
ema_decay = ema_sched.get_value()
K.utils.ema_update_dict(ema_stats, {'loss': loss}, ema_decay ** (1 / args.grad_accum_steps))
if accelerator.sync_gradients:
K.utils.ema_update(model, model_ema, ema_decay)
ema_sched.step()
if device.type == 'cuda':
end_timer.record()
torch.cuda.synchronize()
elapsed += start_timer.elapsed_time(end_timer) / 1000
else:
elapsed += time.time() - start_timer
if step % 25 == 0:
loss_disp = sum(losses_since_last_print) / len(losses_since_last_print)
losses_since_last_print.clear()
avg_loss = ema_stats['loss']
if accelerator.is_main_process:
if args.gns:
tqdm.write(f'Epoch: {epoch}, step: {step}, loss: {loss_disp:g}, avg loss: {avg_loss:g}, gns: {gns_stats.get_gns():g}')
else:
tqdm.write(f'Epoch: {epoch}, step: {step}, loss: {loss_disp:g}, avg loss: {avg_loss:g}')
if use_wandb:
log_dict = {
'epoch': epoch,
'loss': loss,
'lr': sched.get_last_lr()[0],
'ema_decay': ema_decay,
}
if args.gns:
log_dict['gradient_noise_scale'] = gns_stats.get_gns()
wandb.log(log_dict, step=step)
step += 1
if step % args.demo_every == 0:
demo()
if evaluate_enabled and step > 0 and step % args.evaluate_every == 0:
evaluate()
if step == args.end_step or (step > 0 and step % args.save_every == 0):
save()
if step == args.end_step:
if accelerator.is_main_process:
tqdm.write('Done!')
return
epoch += 1
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()