-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcross_validation.mqh
66 lines (55 loc) · 2.57 KB
/
cross_validation.mqh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
//+------------------------------------------------------------------+
//| cross_validation.mqh |
//| Copyright 2022, Fxalgebra.com |
//| https://www.mql5.com/en/users/omegajoctan |
//+------------------------------------------------------------------+
#property copyright "Copyright 2022, Fxalgebra.com"
#property link "https://www.mql5.com/en/users/omegajoctan"
//+------------------------------------------------------------------+
//| defines |
//+------------------------------------------------------------------+
#include <MALE5\Tensors.mqh>
#include <MALE5\MatrixExtend.mqh>
class CCrossValidation
{
CTensors *tensors[]; //Keep track of all the tensors in memory
public:
CCrossValidation();
~CCrossValidation(void);
CTensors *KFoldCV(matrix &data, uint n_spilts=5);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
CCrossValidation::CCrossValidation()
{
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
CCrossValidation::~CCrossValidation(void)
{
for (uint i=0; i<tensors.Size(); i++)
if (CheckPointer(tensors[i]) != POINTER_INVALID)
delete (tensors[i]);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
CTensors *CCrossValidation::KFoldCV(matrix &data, uint n_spilts=5)
{
ArrayResize(tensors, tensors.Size()+1);
tensors[tensors.Size()-1] = new CTensors(n_spilts);
int size = (int)MathFloor(data.Rows() / (double)n_spilts);
matrix split_data = {};
for (uint k=0, start = 0; k<n_spilts; k++)
{
split_data = MatrixExtend::Get(data, start, (start+size)-1);
tensors[tensors.Size()-1].Add(split_data, k);
start += size;
}
return tensors[tensors.Size()-1];
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+