This repository has been archived by the owner on Aug 31, 2021. It is now read-only.
generated from csci-e-29/0000aa-pset-0-starter
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcli.py
71 lines (58 loc) · 2.62 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import pandas as pd
from dotenv import load_dotenv
from final_project.data import load_data
from final_project.embedding import WordEmbedding, cosine_distance, delete_files, cosine_similarity
from final_project.io import atomic_write
import csv
load_dotenv()
def main(args=None):
# read query data in parquet
data = load_data("data/query_logs.parquet")
def my_distance(vec):
return 1 - cosine_similarity(vec, my_embed_vec)
# read my sql keywords text from ENV variable "MY_SQL_QUERY_MATCH_TEXT" , to match with query_logs.parquet
my_sql_match_text = os.environ.get('MY_SQL_QUERY_MATCH_TEXT')
# utilize atomic_write to export results to data
filename = "data/QueryMatchResults.parquet"
#lets generate file everytime
os.remove(filename)
if os.path.exists(filename):
df_dist_to_peers = load_data(filename)
distances = pd.Series(df_dist_to_peers['QueryText'])
else:
embedding = WordEmbedding.from_files('data/words.txt', 'data/vectors.npy.gz')
vectors = data['QueryText'].apply(embedding.embed_document)
# Calculate the distance
my_embed_vec = WordEmbedding.embed_document(embedding, my_sql_match_text)
distances = vectors.apply(my_distance)
distances = distances[pd.notnull(distances)]
distances = distances[abs(distances) > 1e-10]
with atomic_write(filename, mode="w", as_file=False) as f:
(pd.DataFrame(distances)).to_parquet(f)
# find matching sqls with those keywords
# print a summary of sql keywords and the top 4 most similar query using these keywords
print('my_matched_sql_keywords_text:')
print(my_sql_match_text)
print('\n')
print('top 3 matched with high scores / shorted distance sql texts: \n')
distances = distances.sort_values()
count = 0
os.remove("data/query_result_file.csv")
#generate a csv result file with query id and distance / score
#csv will used to upload to database
with open('data/query_result_file.csv', mode='w') as query_result_file:
qr_writer = csv.writer(query_result_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
qr_writer.writerow(['QueryID', 'MatchScore'])
for i in distances.index:
print('id : {}'.format(i))
print('distance : {}'.format(distances.loc[i]))
print('QueryText text:')
print(data.loc[i]['QueryText'])
print('\n')
count = count + 1
qr_writer.writerow([data.loc[i]['QueryID'], distances.loc[i]])
if count == 3:
break
if __name__ == "__main__":
main()