-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathtrain_PRN_r.py
138 lines (112 loc) · 5.48 KB
/
train_PRN_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.utils as utils
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from DerainDataset import *
from utils import *
from torch.optim.lr_scheduler import MultiStepLR
from SSIM import SSIM
from networks import *
parser = argparse.ArgumentParser(description="PReNet_train")
parser.add_argument("--preprocess", type=bool, default=False, help='run prepare_data or not')
parser.add_argument("--batch_size", type=int, default=18, help="Training batch size")
parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs")
parser.add_argument("--milestone", type=int, default=[30,50,80], help="When to decay learning rate")
parser.add_argument("--lr", type=float, default=1e-3, help="initial learning rate")
parser.add_argument("--save_path", type=str, default="logs/PReNet_test", help='path to save models and log files')
parser.add_argument("--save_freq",type=int,default=1,help='save intermediate model')
parser.add_argument("--data_path",type=str, default="datasets/train/RainTrainL",help='path to training data')
parser.add_argument("--use_gpu", type=bool, default=True, help='use GPU or not')
parser.add_argument("--gpu_id", type=str, default="0", help='GPU id')
parser.add_argument("--recurrent_iter", type=int, default=6, help='number of recursive stages')
opt = parser.parse_args()
if opt.use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
def main():
print('Loading dataset ...\n')
dataset_train = Dataset(data_path=opt.data_path)
loader_train = DataLoader(dataset=dataset_train, num_workers=4, batch_size=opt.batch_size, shuffle=True)
print("# of training samples: %d\n" % int(len(dataset_train)))
# Build model
model = PRN_r(recurrent_iter=opt.recurrent_iter, use_GPU=opt.use_gpu)
print_network(model)
# loss function
# criterion = nn.MSELoss(size_average=False)
criterion = SSIM()
# Move to GPU
if opt.use_gpu:
model = model.cuda()
criterion.cuda()
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
scheduler = MultiStepLR(optimizer, milestones=opt.milestone, gamma=0.2) # learning rates
# record training
writer = SummaryWriter(opt.save_path)
# load the lastest model
initial_epoch = findLastCheckpoint(save_dir=opt.save_path)
if initial_epoch > 0:
print('resuming by loading epoch %d' % initial_epoch)
model.load_state_dict(torch.load(os.path.join(opt.save_path, 'net_epoch%d.pth' % initial_epoch)))
# start training
step = 0
for epoch in range(initial_epoch, opt.epochs):
scheduler.step(epoch)
for param_group in optimizer.param_groups:
print('learning rate %f' % param_group["lr"])
## epoch training start
for i, (input_train, target_train) in enumerate(loader_train, 0):
model.train()
model.zero_grad()
optimizer.zero_grad()
input_train, target_train = Variable(input_train), Variable(target_train)
if opt.use_gpu:
input_train, target_train = input_train.cuda(), target_train.cuda()
out_train, _ = model(input_train)
pixel_metric = criterion(target_train, out_train)
loss = -pixel_metric
loss.backward()
optimizer.step()
# training curve
model.eval()
out_train, _ = model(input_train)
out_train = torch.clamp(out_train, 0., 1.)
psnr_train = batch_PSNR(out_train, target_train, 1.)
print("[epoch %d][%d/%d] loss: %.4f, pixel_metric: %.4f, PSNR: %.4f" %
(epoch+1, i+1, len(loader_train), loss.item(), pixel_metric.item(), psnr_train))
if step % 10 == 0:
# Log the scalar values
writer.add_scalar('loss', loss.item(), step)
writer.add_scalar('PSNR on training data', psnr_train, step)
step += 1
## epoch training end
# log the images
model.eval()
out_train, _ = model(input_train)
out_train = torch.clamp(out_train, 0., 1.)
im_target = utils.make_grid(target_train.data, nrow=8, normalize=True, scale_each=True)
im_input = utils.make_grid(input_train.data, nrow=8, normalize=True, scale_each=True)
im_derain = utils.make_grid(out_train.data, nrow=8, normalize=True, scale_each=True)
writer.add_image('clean image', im_target, epoch+1)
writer.add_image('rainy image', im_input, epoch+1)
writer.add_image('deraining image', im_derain, epoch+1)
# save model
torch.save(model.state_dict(), os.path.join(opt.save_path, 'net_latest.pth'))
if epoch % opt.save_freq == 0:
torch.save(model.state_dict(), os.path.join(opt.save_path, 'net_epoch%d.pth' % (epoch+1)))
if __name__ == "__main__":
if opt.preprocess:
if opt.data_path.find('RainTrainH') != -1:
prepare_data_RainTrainH(data_path=opt.data_path, patch_size=100, stride=80)
elif opt.data_path.find('RainTrainL') != -1:
prepare_data_RainTrainL(data_path=opt.data_path, patch_size=100, stride=80)
elif opt.data_path.find('Rain12600') != -1:
prepare_data_Rain12600(data_path=opt.data_path, patch_size=100, stride=100)
else:
print('unkown datasets: please define prepare data function in DerainDataset.py')
main()