-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
394 lines (298 loc) · 14.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# config
'''
Main difference:
1. No complex img_name -> mat_name -> npy_name changes.
All the corresponding names are the same except the extension part.
2. Delete 'dataset.shuffle()', using official shuffle in Dataloader
3. Using float16 npy to save memory
'''
import sys
import time
import torch.nn.functional as F
import os
import numpy as np
import torch
from config import config
import net.networks as networks
from eval.Estimator import Estimator
from options.train_options import TrainOptions
from Dataset.DatasetConstructor import TrainDatasetConstructor,EvalDatasetConstructor
from ipdb import launch_ipdb_on_exception
opt = TrainOptions().parse()
# Mainly get settings for specific datasets
setting = config(opt)
log_file = os.path.join(setting.model_save_path, opt.dataset_name+'.log')
log_f = open(log_file, "w")
# Data loaders
train_dataset = TrainDatasetConstructor(
setting.train_num,
setting.train_img_path,
setting.train_gt_map_path,
mode=setting.mode,
dataset_name=setting.dataset_name,
device=setting.device,
is_random_hsi=setting.is_random_hsi,
is_flip=setting.is_flip,
fine_size=opt.fine_size,
opt=opt
)
eval_dataset = EvalDatasetConstructor(
setting.eval_num,
setting.eval_img_path,
setting.eval_gt_map_path,
mode=setting.mode,
dataset_name=setting.dataset_name,
device=setting.device,
no_sort=False)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=setting.batch_size, shuffle=True, num_workers=opt.nThreads, pin_memory=True, drop_last=True)
def my_collfn(batch):
img_path = [item[0] for item in batch]
imgs = [item[1] for item in batch]
gt_map = [item[2] for item in batch]
class_id = [item[3] for item in batch]
gt_H = [item[4] for item in batch]
gt_W = [item[5] for item in batch]
pH = [item[6] for item in batch]
pW = [item[7] for item in batch]
bz = len(batch)
gt_H = torch.stack(gt_H, 0)
gt_W = torch.stack(gt_W, 0)
pH = torch.stack(pH, 0)
pW = torch.stack(pW, 0)
gt_h_max = torch.max(gt_H)
gt_w_max = torch.max(gt_W)
ph_max = torch.max(pH)
pw_max = torch.max(pW)
imgs_new = torch.zeros(bz, 9, 3, ph_max, pw_max) # bz * 9 * c * gth_max * gtw_max
gt_map_new = torch.zeros(bz, 1, 1, gt_h_max, gt_w_max)
# put map
for i in range(bz):
imgs_new[i, :, :, :pH[i], :pW[i]] = imgs[i]
# h, w
gt_map_new[i, :, :, :gt_H[i], :gt_W[i]] = gt_map[i]
class_id = torch.stack(class_id, 0)
return img_path, imgs_new, gt_map_new, class_id, pH, pW, gt_H, gt_W
assert opt.eval_size_per_GPU == 1, "Using this is fast enough and for large size evaluation"
batch_eval_size = opt.eval_size_per_GPU * len(opt.gpu_ids)
eval_loader = torch.utils.data.DataLoader(dataset=eval_dataset, batch_size=batch_eval_size, collate_fn=my_collfn)
# model construct
net = networks.define_net(opt)
net = networks.init_net(net, gpu_ids=opt.gpu_ids)
net_ema = None
if opt.model_ema:
from timm.utils import get_state_dict, ModelEma
print('~~')
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
net_ema = ModelEma(
net,
decay=opt.model_ema_decay,
device='cpu' if opt.model_ema_force_cpu else None,
)
criterion = torch.nn.MSELoss(reduction='sum').to(setting.device) # first device is ok
#crit_cls = torch.nn.NLLLoss().to(setting.device)
estimator = Estimator(opt, setting, eval_loader, criterion=criterion)
optimizer = networks.select_optim(net, opt)
scheduler = networks.get_scheduler(optimizer, opt)
def convert_to_one_hot(cls_num, label, border_cls_num):
# convert something like [2, 3, 0] -> [[0,0,1,0], [0,0,0,1],[1,0,0,0]]
one_hot = F.one_hot(label, cls_num)
# additonal add border labels in
one_hot = torch.cat([one_hot, torch.zeros(label.shape[0], border_cls_num).to(label)], dim=1)
return one_hot
"""
inputs: logits
"""
def SoftCrossEntropy_forlt(logits, target, weight, reduction='average'):
loss = - (weight * (target * torch.log_softmax(logits, dim=1)).sum(dim=1)).sum()
return loss
#
def SoftCrossEntropy_ori(inputs, target, reduction='average'):
log_likelihood = -F.log_softmax(inputs, dim=1)
batch = inputs.shape[0]
if reduction == 'average':
loss = torch.sum(torch.mul(log_likelihood, target)) / batch
else:
loss = torch.sum(torch.mul(log_likelihood, target))
return loss
# linear decay the alpha value
# alpha * pred
def cal_alpha(cur_ep, start_ep, final_alpha, final_ep):
if cur_ep < start_ep:
return 0.
else:
return (cur_ep - start_ep) * (1-final_alpha) / (final_ep - start_ep)
# index template for assigning confidents of real labels to border labels
def get_template(cls_num):
if cls_num == 4:
idx_ori_mat = [[1,2,3], [0,2,3], [0,1,3], [0,1,2]]
idx_des_mat = [[4,5,6], [4,7,8], [5,7,9], [6,8,9]]
elif cls_num == 3:
idx_ori_mat = [[1,2], [0,2], [0,1]]
idx_des_mat = [[3,4], [3,5], [4,5]]
elif cls_num == 5:
idx_ori_mat = [[1,2,3,4], [0,2,3,4], [0,1,3,4], [0,1,2,4], [0,1,2,3]]
idx_des_mat = [[5,6,7,8], [5,9,10,11], [6,9,12,13], [7,10,12,14], [8,11,13,14]]
else:
raise ValueError('Currently, only 3/4/5 classes are supported')
return torch.tensor(idx_ori_mat), torch.tensor(idx_des_mat)
if opt.pretrain:
print('-----------')
print('-----------')
print('-----------')
print('-----------')
print('Loading prtrained model:', opt.pretrain_model)
net.module.load_state_dict(torch.load(opt.pretrain_model, map_location=str(setting.device)))
step = 0
eval_loss, eval_mae, eval_rmse = [], [], []
base_mae_sha, base_mae_shb, base_mae_qnrf, base_mae_nwpu = opt.base_mae.split(',')
base_mae_sha = float(base_mae_sha)
base_mae_shb = float(base_mae_shb)
base_mae_qnrf = float(base_mae_qnrf)
base_mae_nwpu = float(base_mae_nwpu)
# should be N_imgs * (4+6) for 4 classes
cls_num = net.module.cls_num
out_cls_num = net.module.out_cls_num
border_tuple_labels = net.module.border_labels
print('net.module.cls_num: ', net.module.cls_num)
print('net.module.out_cls_num: ', net.module.out_cls_num)
print('net.module.border_labels: ', net.module.border_labels)
print('train_dataset.gt_label_all:', len(train_dataset.gt_label_all))
# get correction conf mats
idx_ori_mat, idx_des_mat = get_template(cls_num)
idx_ori_mat = idx_ori_mat.to(setting.device)
idx_des_mat = idx_des_mat.to(setting.device)
pred_cul_label = torch.zeros(train_dataset.__len__(), out_cls_num).to(setting.device)
gt_label_all = convert_to_one_hot(cls_num, train_dataset.gt_label_all, out_cls_num - cls_num)
gt_label_all = gt_label_all.to(setting.device)
my_gt_label = pred_cul_label.clone() # before 105 epoch, it is useless, then for epoch [106, max_epoch], use it
test_time_start = time.time()
with launch_ipdb_on_exception():
for epoch_index in range(setting.epoch):
# eval
if epoch_index % opt.eval_per_epoch == 0 and epoch_index > opt.start_eval_epoch:
print('Evaluating epoch:', str(epoch_index))
torch.cuda.empty_cache()
if opt.model_ema:
net_eval = net_ema.ema
else:
net_eval = net
# pred_mae and pred_mse are for seperate datasets
# mention: __len__() returns the `number of batches`, so the total validate num is *batch_size_eval
validate_MAE, validate_RMSE, validate_loss, time_cost, pred_mae, pred_mse = estimator.evaluate(net_eval, eval_dataset.__len__())
# validate the code of eval
if opt.start_eval_epoch==-1 and opt.test_eval==1:
print('Test over~')
break
eval_loss.append(validate_loss)
eval_mae.append(validate_MAE)
eval_rmse.append(eval_rmse)
log_f.write(
'In step {}, epoch {}, loss = {}, eval_mae = {}, eval_rmse = {}, mae_SHA = {}, mae_SHB = {}, mae_QNRF = {}, mae_NWPU = {}, mse_SHA = {}, mse_SHB = {}, mse_QNRF = {}, mse_NWPU = {},, time cost eval = {}s\n'.format(step, epoch_index, validate_loss, validate_MAE, validate_RMSE, pred_mae[0], pred_mae[1], pred_mae[2], pred_mae[3],
pred_mse[0], pred_mse[1], pred_mse[2], pred_mse[3], time_cost))
log_f.flush()
# save model with epoch and MAE
save_now = False
# multi-4
if pred_mae[0] < base_mae_sha and pred_mae[1] < base_mae_shb and pred_mae[2] < base_mae_qnrf and pred_mae[3] < base_mae_nwpu:
save_now = True
# # multi-3
# if pred_mae[0] < base_mae_sha and pred_mae[2] < base_mae_shb and pred_mae[3] < base_mae_nwpu:
# save_now = True
if save_now:
best_model_name = setting.model_save_path + "/MAE_" + str(round(validate_MAE, 2)) + \
"_MSE_" + str(round(validate_RMSE, 2)) + '_mae_' + str(round(pred_mae[0], 2)) + \
'_' + str(round(pred_mae[1], 2)) + '_' + str(round(pred_mae[2], 2)) + '_' + str(round(pred_mae[3], 2)) + '_mse_' + str(round(pred_mse[0], 2)) + \
'_' + str(round(pred_mse[1], 2)) + '_' + str(round(pred_mse[2], 2)) + '_' + str(round(pred_mse[3], 2)) + \
'_Ep_' + str(epoch_index) + '.pth'
if len(opt.gpu_ids) > 0 and torch.cuda.is_available():
torch.save(net_eval.module.cpu().state_dict(), best_model_name)
# yes, seems this line of code can be deleted
# net.cuda(opt.gpu_ids[0])
net_eval.cuda(opt.gpu_ids[0])
else:
torch.save(net_eval.cpu().state_dict(), best_model_name)
if epoch_index >=200:
opt.conf_window=7
if epoch_index >=400:
opt.conf_window=5
# update my_gt_label
if epoch_index > opt.start_faith_epoch + opt.conf_window:
# from epoch 106, so epoch_index - 1 - opt.start_faith_epoch
# meaning, before training epoch 106, we get my_gt_label, and select target_label from `my_gt_label`
# Before epoch 106, we totally believe gt label, and use gt label (ie, class_id) as the target label.
if (epoch_index - 1 - opt.start_faith_epoch) % opt.conf_window == 0:
# # correct pred_cul_label
# helper_idx = torch.arange(pred_cul_label.shape[0]).view(1, -1).repeat(1, cls_num-1)
# manual_label = gt_label_all[]
# pred_cul_label[helper_idx, idx_des_mat[cla
if opt.avg_pred:
pred_cul_label = pred_cul_label / opt.conf_window
# update my_gt_label
cur_alpha = cal_alpha(epoch_index, opt.start_faith_epoch, opt.final_conf, opt.max_epochs)
my_gt_label = cur_alpha * pred_cul_label + (1 - cur_alpha) * gt_label_all
# and softmax with T temperature
my_gt_label = torch.softmax(my_gt_label/opt.Temp, dim=1)
# clear out the pred_cul_label
pred_cul_label.fill_(0)
time_per_epoch = 0
for train_img, train_gt, class_id, img_path, idx in train_loader:
train_img = train_img.to(setting.device)
train_gt = train_gt.to(setting.device)
class_id = class_id.to(setting.device)
gt_id = convert_to_one_hot(cls_num, class_id, out_cls_num-cls_num)
idx = idx.to(setting.device)
# convert class_id to one_hot version, from 106 epoch
if epoch_index > opt.start_faith_epoch + opt.conf_window:
# select target label from `my_gt_label`
target_label = my_gt_label[idx]
else: # directly use gt label as target label
target_label = gt_id
net.train()
x, y = train_img, train_gt
start = time.time()
prediction, logitH, logitT, pred_cur_label = net(x)
if epoch_index > opt.start_faith_epoch:
# for epoch in the window, eg: 101, 102, 103, 104, 105
pred_cul_label[idx.view(-1)] += pred_cur_label.detach()
# for the final epoch in the window; eg. 105
# correct the conf
if (epoch_index - opt.start_faith_epoch) % opt.conf_window == 0:
# idx.view(-1, 1).repeat(1, cls_num-1): [[img_id_i, img_id_i, img_id_i], [img_id_j, img_id_j, img_id_j], ...]
# then select true label accumlated conf from pred_cul_label with index: idx_ori_mat[class_id.view(-1)]
# and assign these confidents to the values in pred_cul_label with index: idx_des_mat[class_id.view(-1)]
pred_cul_label[idx.view(-1, 1).repeat(1, cls_num-1), idx_des_mat[class_id.view(-1)]] += pred_cul_label[idx.view(-1, 1).repeat(1, cls_num-1), idx_ori_mat[class_id.view(-1)]]
if opt.weight_with_target:
weightH = target_label.sum(dim=1)
if opt.cls_num == 4:
weightT = target_label[:, [1, 4, 7, 8]].sum(dim=1)
elif opt.cls_num == 3:
# SHB
weightT = target_label[:, [1, 3, 5]].sum(dim=1)
# here, directly using `gt_id` of `shb` as the tail class
else:
weightH = gt_id.sum(dim=1)
weightT = gt_id[:,1].sum(dim=1)
loss_ice = (SoftCrossEntropy_forlt(logitH, target_label, weightH) + SoftCrossEntropy_forlt(logitT, target_label, weightT)) / (weightH.sum() + weightT.sum()).float()
logit = logitH + logitT
loss_fce = SoftCrossEntropy_ori(logit, target_label)
loss_cls = loss_ice * opt.reslt_beta + (1 - opt.reslt_beta) * loss_fce
loss_cls = loss_cls * opt.cls_w
loss = criterion(prediction, y)
optimizer.zero_grad()
(loss + loss_cls).backward()
# update ema
if opt.model_ema:
print('~~')
net_ema.update(net)
loss_item = loss.detach().item()
loss_cls_item = loss_cls.item()
optimizer.step()
step += 1
end = time.time()
time_per_epoch += end - start
if step % opt.print_step == 0:
print("Step:{:d}\t, Epoch:{:d}\t, Loss:{:.4f}, Cls Loss:{:.4f}".format(step, epoch_index, loss_item, loss_cls_item))
scheduler.step()
test_time_end = time.time()
lr = optimizer.param_groups[0]['lr']
print('lr now: %.7f' % lr)