-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_classification_scanobj.py
111 lines (92 loc) · 3.9 KB
/
test_classification_scanobj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
Author: Zhiyuan Zhang
Date: Dec 2021
Email: [email protected]
Website: https://wwww.zhiyuanzhang.net
"""
import torch
from data_utils.ScanObjectNNLoader import ScanObjectNN
import argparse
import numpy as np
import os
import torch
import logging
from tqdm import tqdm
import sys
import importlib
import provider
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('Testing')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
parser.add_argument('--batch_size', type=int, default=16, help='batch size in training')
parser.add_argument('--num_category', default=15, type=int, help='training on ModelNet10/40')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number')
parser.add_argument('--log_dir', type=str, default='pretrained', help='log root')
parser.add_argument('--data_type', type=str, default='OBJ_NOBG', help='data type')
parser.add_argument('--use_uniform_sample', type=bool, default=True, help='use uniform sampiling')
return parser.parse_args()
def test(model, loader, num_class=15):
mean_correct = []
classifier = model.eval()
class_acc = np.zeros((num_class, 3))
for j, (points, target) in tqdm(enumerate(loader), total=len(loader)):
pred, feat = classifier(points.cuda())
if len(pred.shape) == 3:
pred = pred.mean(dim=1)
pred_choice = pred.data.max(1)[1].cpu()
for cat in np.unique(target.cpu()):
classacc = pred_choice[target == cat].eq(target[target == cat].long().data).cpu().sum()
class_acc[cat, 0] += classacc.item() / float(points[target == cat].size()[0])
class_acc[cat, 1] += 1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points.size()[0]))
class_acc[:, 2] = class_acc[:, 0] / class_acc[:, 1]
class_acc = np.mean(class_acc[:, 2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
'''CREATE DIR'''
experiment_dir = 'log/classification_scanobj/' + args.log_dir + '/' + args.data_type
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/eval.txt' % experiment_dir)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
'''DATA LOADING'''
log_string('Load dataset ...')
if args.data_type == 'OBJ_NOBG':
data_path = '../data/scanobjectnn/main_split_nobg/'
elif args.data_type == 'hardest' or 'OBJ_BG':
data_path = '../data/scanobjectnn/main_split/'
else:
raise NotImplementedError()
test_dataset = ScanObjectNN(root=data_path, args=args, split='test')
testDataLoader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=2)
'''MODEL LOADING'''
num_class = args.num_category
model = importlib.import_module('riconv2_cls')
classifier = model.get_model(num_class, 1)
classifier = classifier.cuda()
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
classifier.load_state_dict(checkpoint['model_state_dict'])
with torch.no_grad():
instance_acc, class_acc = test(classifier.eval(), testDataLoader, num_class=num_class)
log_string('Test Instance Accuracy: %f, Class Accuracy: %f' % (instance_acc, class_acc))
if __name__ == '__main__':
args = parse_args()
main(args)