-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML_code_clean.qmd
560 lines (433 loc) · 17.7 KB
/
ML_code_clean.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
---
title: "ML_code"
format: html
editor: visual
---
#### Author
Original Author: s.prastnielsen\@gmail.com
Updated by Unnur Gudnadottir (unnur.gudnadottir\@ki.se)
Title: Machine learning master scripts for classification (two classes)
Seven different ML algorithms on metabolomics data with LOOCV, no upsampling and grid search as an example here but this can easily be adjusted to your needs
### Libraries
```{r}
library(caret)
library(doSNOW)
library(xgboost, Ckmeans.1d.dp)
library(dplyr)
library(ggplot2)
library(stringi)
library(arsenal)
library(matrixStats)
library(e1071)
library(Cubist)
library(glmnet)
library(kernlab)
library(nnet)
library(readxl)
library(writexl)
library(dplyr)
```
### Import files
```{r}
meta <- read.csv("ML_casecontrol.csv") #metadata variables
sample_id <- read.csv("ML_sampleid.csv") #one column with sample barcodes/study IDs
#selecting only my samples from the large metadata file
meta <- filter(meta, meta$kit1.vaginal_sample.barcode %in% sample_id$kit1.vaginal_sample.barcode)
```
### Data cleaning
Selecting my columns of interesting, removing NA's, set everything as factor
```{r}
cols <- c("age_3_groups", "BMI_3_groups",
"Swedish_born", 'Q1_Family_status', "low_ses_score", 'Q1_Education_uni_less', 'Primipara',
'goodselfhealth', 'high_stress_Q1',
'Depression_score_sum_Q1',
'Q1_health_seeking', 'Q1_dailyfiber', 'Q1_healthydiet',
'TTP_groups', 'regular_mens', 'PUQUE_score', 'Q1_X19_Natural_conception',
'Q1_during_allergy_antih', 'Q1_any_drugs',
'Q1_X46_Antibiotics_during_this_pregnancy',
'Q1_multiple_drugs', 'Q1_during_neuro_medication',
'Q1_during_haemato','Q1_during_bloodpressure',
'Q1_prior_mental_diseases',
"Q1_X72_Pregnancy_problems", "case")
meta <- select(meta, cols)
meta[is.na(meta)] <- 0
meta[meta==1] <- "Yes"
meta[meta==0] <- "No"
meta <- meta %>% mutate_if(is.character,as.factor)
meta <- meta %>% mutate_if(is.numeric,as.factor)
str(meta)
```
Checking cases:controls, as we want to have 50:50
```{r}
table(meta$case)
```
### Data wrangling
#### Split data
Split into training (70%) and testing (30%)
Since I had a small cohort, we wanted to create multiple test sets using the same cases but randomly picked controls (5 times)
```{r}
meta_train <- filter(meta, case=="Yes")
# Use caret to create a 70/30% split of the training data (p = 0.7)
set.seed(54321)
indexes <- createDataPartition(meta_train$case,
times = 1,
p = 0.7,
list = FALSE)
meta_Resp.train <- meta_train[indexes,]
meta_Resp.test <- meta_train[-indexes,]
table(meta_Resp.train$case)
table(meta_Resp.test$case)
#We randomly choose controls from the control pool for training
set.seed(123)
controls <- dplyr::filter(meta, meta$case == "No") %>% sample_n(., 20)
meta_Resp.train <- rbind(controls, meta_Resp.train)
table(meta_Resp.train$case)
#Create 5 random test sets
set.seed(234)
controls1 <- dplyr::filter(meta, meta$case == "No") %>% sample_n(., 8)
meta_Resp.test1 <- rbind(controls1, meta_Resp.test)
table(meta_Resp.test1$case)
set.seed(345)
controls2 <- dplyr::filter(meta, meta$case == "No") %>% sample_n(., 8)
meta_Resp.test2 <- rbind(controls2, meta_Resp.test)
table(meta_Resp.test2$case)
set.seed(456)
controls3 <- dplyr::filter(meta, meta$case == "No") %>% sample_n(., 8)
meta_Resp.test3 <- rbind(controls3, meta_Resp.test)
table(meta_Resp.test3$case)
set.seed(567)
controls4 <- dplyr::filter(meta, meta$case == "No") %>% sample_n(., 8)
meta_Resp.test4 <- rbind(controls4, meta_Resp.test)
table(meta_Resp.test4$case)
set.seed(789)
controls5 <- dplyr::filter(meta, meta$case == "No") %>% sample_n(., 8)
meta_Resp.test5 <- rbind(controls5, meta_Resp.test)
table(meta_Resp.test5$case)
```
### Train model
Check out the comments here, I was not working locally but on a server, so you may have to remove the "\#" from the start of some of these commands
```{r}
# Use the doSNOW package to enable caret to train in parallel.
#cl <- makeCluster(3, type = "SOCK")
# Register cluster so that caret will know to train in parallel. Works only on local CPU cores
#registerDoSNOW(cl)
# Set up caret to perform leave-one-out cross validation (can easily change to k-fold CV with n repeats)
# use a grid search to find optimal model hyperparamters (can be switched to "random")
train.control <- trainControl(method = "LOOCV",
search = "grid",
savePredictions = T,
classProbs=TRUE)
```
### svmRadial
```{r}
meta_svmMod <- train(case ~ .,
data = meta_Resp.train,
method = "svmRadial",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_svmMod, "meta_svmMod.rds")
```
### Elastic net
```{r}
meta_enetMod <- train(case ~ .,
data = meta_Resp.train,
method = "glmnet",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_enetMod, "meta_enetMod.rds")
```
### Random forest (ranger)
```{r}
meta_rangerMod <- train(case ~ .,
data = meta_Resp.train,
method = "ranger",
tuneLength = 18,
importance = 'permutation', #chose between 'permutation' (Mean Decrease in Accuracy, MDA) or 'impurity' (Gini or Mean Decrease in Impurity, MDI)
num.trees = 50000,
trControl = train.control,
metric="ROC")
saveRDS(meta_rangerMod, "meta_rangerMod.rds")
```
### k-Nearest Neighbor
```{r}
meta_knnMod <- train(case ~ .,
data = meta_Resp.train,
method = "knn",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_knnMod, "meta_knnMod.rds")
```
### Random forest
```{r}
meta_rfMod <- train(case ~ .,
data = meta_Resp.train,
method = "rf",
tuneLength = 26,
num.trees = 50000,
sampsize = c(5,5),
replace=F, #Metabolon used false
importance=TRUE,
trControl = train.control,
metric="ROC")
saveRDS(meta_rfMod, "meta_rfMod.rds")
stopCluster(cl)
```
### Neural Network with Feature Extraction
```{r}
meta_pcaNNetMod <- train(case ~ .,
data = meta_Resp.train,
method = "pcaNNet",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_pcaNNetMod, "meta_pcaNNetMod.rds")
```
### XGBoost
This one can take forever to run, so I skipped it
```{r}
meta_xgbMod <- train(case ~ .,
data = meta_Resp.train,
method = "xgbTree",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_xgbMod, "meta_xgbMod.rds")
```
### Evaluate results
```{r}
#Read in saved models
meta_svmMod <- readRDS("meta_svmMod.rds")
meta_enetMod <- readRDS("meta_enetMod.rds")
meta_rangerMod <- readRDS("meta_rangerMod.rds")
meta_rfMod <- readRDS("meta_rfMod.rds")
meta_knnMod <- readRDS("meta_knnMod.rds")
meta_pcaNNetMod <- readRDS("meta_pcaNNetMod.rds")
meta_xgbMod <- readRDS("meta_xgbMod.rds")
```
#### Accuracy of predictions
```{r}
modelList = list("KNN" = meta_knnMod,
"ENET" = meta_enetMod,
"RF" = meta_rfMod,
"Ranger" = meta_rangerMod,
"XGB" = meta_xgbMod,
"pcaNNet" = meta_pcaNNetMod,
"svm" = meta_svmMod)
allPreds1 <- sapply(modelList, predict, meta_Resp.test1)
DF1 <- as.data.frame(allPreds1)
DF1$run <- 1
DF1$actualValue <- meta_Resp.test1$case
DF1[sapply(DF1, is.character)] <- lapply(DF1[sapply(DF1, is.character)], as.factor)
allPreds2 <- sapply(modelList, predict, meta_Resp.test2)
DF2 <- as.data.frame(allPreds2)
DF2$run <- 2
DF2$actualValue <- meta_Resp.test2$case
DF2[sapply(DF2, is.character)] <- lapply(DF2[sapply(DF2, is.character)], as.factor)
allPreds3 <- sapply(modelList, predict, meta_Resp.test3)
DF3 <- as.data.frame(allPreds3)
DF3$run <- 3
DF3$actualValue <- meta_Resp.test3$case
DF3[sapply(DF3, is.character)] <- lapply(DF3[sapply(DF3, is.character)], as.factor)
allPreds4 <- sapply(modelList, predict, meta_Resp.test4)
DF4 <- as.data.frame(allPreds4)
DF4$run <- 4
DF4$actualValue <- meta_Resp.test4$case
DF4[sapply(DF4, is.character)] <- lapply(DF4[sapply(DF4, is.character)], as.factor)
allPreds5 <- sapply(modelList, predict, meta_Resp.test5)
DF5 <- as.data.frame(allPreds5)
DF5$run <- 5
DF5$actualValue <- meta_Resp.test5$case
DF5[sapply(DF5, is.character)] <- lapply(DF5[sapply(DF5, is.character)], as.factor)
DF <- rbind(DF1, DF2,
# DF3, DF4,
DF5)
DF[sapply(DF, is.character)] <- lapply(DF[sapply(DF, is.character)], as.factor)
dim(DF)
table(DF$run)
head(DF)
```
```{r}
n = nrow(DF)
a <- c(1, 2, 3, 4, 5)
accuracy <- data.frame(Run = double(),
Method = character(),
Accuracy = double(),
stringsAsFactors=FALSE)
for (i in a) {
for (j in colnames(select(DF, -run, -actualValue))) {
filter(DF, DF$run==i)
confusionMatrix <- confusionMatrix(DF[[j]], DF$actualValue, mode='prec_recall', positive=NULL, dnn = c("Prediction","Reference"))
results <- as.data.frame(matrix(data=c(i, j, confusionMatrix$overall['Accuracy']), nrow=1, ncol=3))
accuracy <- rbind(accuracy, results)
}
}
colnames(accuracy) <- c("Run", "Method", "Accuracy")
accuracy <- accuracy[order(accuracy$Accuracy, decreasing=TRUE),]
accuracy
```
#### AUROC
Here I compare the different methods, and then manually change the test cohort to try all. I took then the average AUROC value from the five cohorts for each algorithm to decide which method to move forward with to feature selection
meta_Resp.test1
meta_Resp.test2
meta_Resp.test3
meta_Resp.test4
meta_Resp.test5
```{r}
library(pROC)
pred_svm <- predict(meta_svmMod, newdata=meta_Resp.test1, type="prob")[,"Yes"]
pred_enet <- predict(meta_enetMod, newdata=meta_Resp.test1, type="prob")[,"Yes"]
pred_ranger <- predict(meta_rangerMod, newdata=meta_Resp.test1, type="prob")[,"Yes"]
pred_rf <- predict(meta_rfMod, newdata=meta_Resp.test1, type="prob")[,"Yes"]
pred_knn <- predict(meta_knnMod, newdata=meta_Resp.test1, type="prob")[,"Yes"]
pred_pcaNNet <- predict(meta_pcaNNetMod, newdata=meta_Resp.test1, type="prob")[,"2"]
pred_xgb <- predict(meta_xgbMod, newdata=meta_Resp.test5, type="prob")[,"Yes"]
roc_svm <- roc(meta_Resp.test1$case, pred_svm)
roc_enet <- roc(meta_Resp.test1$case, pred_enet)
roc_ranger <- roc(meta_Resp.test1$case, pred_ranger)
roc_rf <- roc(meta_Resp.test1$case, pred_rf)
roc_knn <- roc(meta_Resp.test1$case, pred_knn)
roc_pcaNNet <- roc(meta_Resp.test1$case, pred_pcaNNet)
roc_xgb <- roc(meta_Resp.test5$case, pred_xgb)
plot(roc_svm, col="#E69F00", lwd=3)
lines(roc_enet, col = "#56B4E9", lwd=3)
lines(roc_ranger, col="#009E73", lwd=3)
lines(roc_rf, col="#F0E442", lwd=3)
lines(roc_knn, col="#0072B2", lwd=3)
lines(roc_pcaNNet, col="#D55E00", lwd=3)
lines(roc_xgb, col="#CC79A7", lwd=3)
legend_svm <- sprintf("svm AUC: %.2f", auc(roc_svm))
legend_enet <- sprintf("enet AUC: %.2f", auc(roc_enet))
legend_ranger <- sprintf("ranger AUC: %.2f", auc(roc_ranger))
legend_rf <- sprintf("rf AUC: %.2f", auc(roc_rf))
legend_knn <- sprintf("knn AUC: %.2f", auc(roc_knn))
legend_pcaNNet <- sprintf("pcaNNet AUC: %.2f", auc(roc_pcaNNet))
legend_xgb <- sprintf("xgb AUC: %.2f", auc(roc_xgb))
legend("bottomright",
col=c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2"), lty=1, lwd=3, cex = 1.5,
legend=c(legend_svm, legend_enet, legend_ranger, legend_rf, legend_knn))
title("Questionnaire data", line=2.5)
#ggsave('roc_metadata_featuresel.jpg', height=12, width=15)
```
#### Feature selection
For my data, k Nearest Neighbor performed best, so I moved forward with feature selection. I decided to test the top 20, 10 and 5 variables
```{r}
knn_imp <- varImp(meta_knnMod)
knn_imp
plot(knn_imp, top=10)
#ggsave('roc_fecal_mostimportantfeatures.jpg', height=12, width=15)
```
This is just to see what the variables are
```{r}
variables_5 <-
as_tibble(varImp(meta_knnMod)$importance, rownames="variables") %>%
arrange(desc(Yes)) %>%
slice(1:5) %>%
pull(variables)
variables_5
```
```{r}
variables_20 <-
as_tibble(varImp(meta_knnMod)$importance, rownames="variables") %>%
arrange(desc(Yes)) %>%
slice(1:20) %>%
pull(variables)
meta_Resp.train_20 <- select(meta_Resp.train, case, all_of(variables_20))
meta_knnMod_20 <- train(case ~ .,
data = meta_Resp.train_20,
method = "knn",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_knnMod_20, "meta_knnMod_20.rds")
```
```{r}
variables_10 <-
as_tibble(varImp(meta_knnMod)$importance, rownames="variables") %>%
arrange(desc(Yes)) %>%
slice(1:10) %>%
pull(variables)
meta_Resp.train_10 <- select(meta_Resp.train, case, all_of(variables_10))
meta_knnMod_10 <- train(case ~ .,
data = meta_Resp.train_10,
method = "knn",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_knnMod_10, "meta_knnMod_10.rds")
```
```{r}
variables_5 <-
as_tibble(varImp(meta_knnMod)$importance, rownames="variables") %>%
arrange(desc(Yes)) %>%
slice(1:5) %>%
pull(variables)
meta_Resp.train_5 <- select(meta_Resp.train, case, all_of(variables_5))
meta_knnMod_5 <- train(case ~ .,
data = meta_Resp.train_5,
method = "knn",
tuneLength = 18,
trControl = train.control,
metric="ROC")
saveRDS(meta_knnMod_5, "meta_knnMod_5.rds")
```
Again, I check AUROC the top 20, 10 and 5 for all five datasets
```{r}
library(pROC)
pred_svm_20 <- predict(meta_knnMod_20, newdata=meta_Resp.test5, type="prob")[,"Yes"]
pred_svm_10 <- predict(meta_knnMod_10, newdata=meta_Resp.test5, type="prob")[,"Yes"]
pred_svm_5 <- predict(meta_knnMod_5, newdata=meta_Resp.test5, type="prob")[,"Yes"]
roc_svm_20 <- roc(meta_Resp.test5$case, pred_svm_20)
roc_svm_10 <- roc(meta_Resp.test5$case, pred_svm_10)
roc_svm_5 <- roc(meta_Resp.test5$case, pred_svm_5)
plot(roc_svm_20, col="#E69F00", lwd=3)
lines(roc_svm_10, col="#56B4E9", lwd=3)
lines(roc_svm_5, col="#009E73", lwd=3)
legend_svm_20 <- sprintf("svm top 20 variables: %.2f", auc(roc_svm_20))
legend_svm_10 <- sprintf("svm top 10 variables: %.2f", auc(roc_svm_10))
legend_svm_5 <- sprintf("svm top 5 variables: %.2f", auc(roc_svm_5))
legend("bottomright",
col=c("#E69F00", "#56B4E9", "#009E73"), lty=1, lwd=3, cex = 1.5,
legend=c(legend_svm_20, legend_svm_10, legend_svm_5))
title("Questionnaire data - Feature selection", line=2.5)
#ggsave('roc_metadata_featuresel.jpg', height=12, width=15)
```
Then when I have found out which one is the best (here it was the full dataset that performed better than the feature selection), I created AUROC curves to show that model for all five test sets
```{r}
library(pROC)
pred_svm_1 <- predict(meta_svmMod, newdata=meta_Resp.test1, type="prob")[,"Yes"]
pred_svm_2 <- predict(meta_svmMod, newdata=meta_Resp.test2, type="prob")[,"Yes"]
pred_svm_3 <- predict(meta_svmMod, newdata=meta_Resp.test3, type="prob")[,"Yes"]
pred_svm_4 <- predict(meta_svmMod, newdata=meta_Resp.test4, type="prob")[,"Yes"]
pred_svm_5 <- predict(meta_svmMod, newdata=meta_Resp.test5, type="prob")[,"Yes"]
roc_svm_1 <- roc(meta_Resp.test1$case, pred_svm_1)
roc_svm_2 <- roc(meta_Resp.test2$case, pred_svm_2)
roc_svm_3 <- roc(meta_Resp.test3$case, pred_svm_3)
roc_svm_4 <- roc(meta_Resp.test4$case, pred_svm_4)
roc_svm_5 <- roc(meta_Resp.test5$case, pred_svm_5)
plot(roc_svm_1, col="#E69F00", lwd=3)
lines(roc_svm_2, col="#56B4E9", lwd=3)
lines(roc_svm_3, col="#009E73", lwd=3)
lines(roc_svm_4, col="#F0E442", lwd=3)
lines(roc_svm_5, col="#0072B2", lwd=3)
legend_svm_1 <- sprintf("svm 1: %.2f", auc(roc_svm_1))
legend_svm_2 <- sprintf("svm 2: %.2f", auc(roc_svm_2))
legend_svm_3 <- sprintf("svm 3: %.2f", auc(roc_svm_3))
legend_svm_4 <- sprintf("svm 4: %.2f", auc(roc_svm_4))
legend_svm_5 <- sprintf("svm 5: %.2f", auc(roc_svm_5))
legend("bottomright",
col=c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2"), lty=1, lwd=3, cex = 1.5,
legend=c(legend_svm_1, legend_svm_2, legend_svm_3, legend_svm_4, legend_svm_5))
title("Questionnaire data - Feature selection", line=2.5)
#ggsave('roc_metadata_featuresel.jpg', height=12, width=15)
```
Then I saw that the third dataset performed best, and I generated a confusion matrix to show accuracy, and calculate (manually) sensitivity and selectivity
```{r}
DF3 <- as.data.frame(predict(meta_enetMod_2, meta_Resp.test3))
DF3$actualValue <- meta_Resp.test3$case
colnames(DF3) <- c("enet", "actualValue")
confusionMatrix=confusionMatrix(as.factor(DF3$enet), DF3$actualValue, mode='prec_recall', positive = NULL, dnn = c("Prediction","Reference"))
confusionMatrix
```