-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshape_completion_setup_train.conf
executable file
·57 lines (55 loc) · 1.43 KB
/
shape_completion_setup_train.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
train{
d_in = 3
plot_frequency = -1
big_checkpoint_frequency = 500
checkpoint_frequency = 10
status_frequency = 20
preprocess = True
latent_size = 256
dataset_path = /root/act_vh_ws/src/IGR/data/npy
dataset = datasets.shape_completion_dataset_train.ShapeCompletionDatasetTrain
weight_decay = 0
learning_rate_schedule = [{
"Type" : "Step",
"Initial" : 0.005,
"Interval" : 500,
"Factor" : 0.5
},
{
"Type" : "Step",
"Initial" : 0.001,
"Interval" : 500,
"Factor" : 0.5
}]
network_class = model.network.ImplicitNet
}
plot{
resolution = 100
mc_value = 0.0
is_uniform_grid = False
verbose = False
save_html = True
save_ply = True
overwrite = True
}
network{
inputs{
dims = [ 512, 512, 512, 512, 512, 512, 512, 512 ]
skip_in = [4]
geometric_init= True
radius_init = 1
beta=100
}
sampler{
sampler_type = NormalPerPoint
properties{
global_sigma = 1.8
local_sigma = 0.01
}
}
loss{
lambda = 0.1
normals_lambda = 1.0
latent_lambda = 1e-3
}
}