forked from Veason-silverbullet/NNR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMIND_corpus.py
414 lines (398 loc) · 29.6 KB
/
MIND_corpus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
import json
import pickle
import collections
import re
from nltk.tokenize import word_tokenize
from torchtext.vocab import GloVe
from config import Config
import torch
import numpy as np
def is_number(s):
try:
float(s)
return True
except ValueError:
return False
pat = re.compile(r"[\w]+|[.,!?;|]")
class MIND_Corpus:
@staticmethod
def preprocess(config: Config):
user_ID_file = 'user_ID-%s.json' % config.dataset
news_ID_file = 'news_ID-%s.json' % config.dataset
category_file = 'category-%s.json' % config.dataset
subCategory_file = 'subCategory-%s.json' % config.dataset
vocabulary_file = 'vocabulary-' + str(config.word_threshold) + '-' + config.tokenizer + '-' + str(config.max_title_length) + '-' + str(config.max_abstract_length) + '-' + config.dataset + '.json'
word_embedding_file = 'word_embedding-' + str(config.word_threshold) + '-' + str(config.word_embedding_dim) + '-' + config.tokenizer + '-' + str(config.max_title_length) + '-' + str(config.max_abstract_length) + '-' + config.dataset + '.pkl'
entity_file = 'entity-%s.json' % config.dataset
entity_embedding_file = 'entity_embedding-%s.pkl' % config.dataset
context_embedding_file = 'context_embedding-%s.pkl' % config.dataset
user_history_graph_file = 'user_history_graph-' + str(config.max_history_num) + ('' if config.no_self_connection else '-self') + ('' if config.no_adjacent_normalization else '-normalize-' + config.gcn_normalization_type) + '-' + config.dataset + '.pkl'
preprocessed_data_files = [user_ID_file, news_ID_file, category_file, subCategory_file, vocabulary_file, word_embedding_file, entity_file, entity_embedding_file, context_embedding_file, user_history_graph_file]
if not all(list(map(os.path.exists, preprocessed_data_files))):
user_ID_dict = {'<UNK>': 0}
news_ID_dict = {'<PAD>': 0}
category_dict = {}
subCategory_dict = {}
word_dict = {'<PAD>': 0, '<UNK>': 1}
word_counter = collections.Counter()
entity_dict = {'<PAD>': 0, '<UNK>': 1}
news_category_dict = {}
# 1. user ID dictionay
with open(os.path.join(config.train_root, 'behaviors.tsv'), 'r', encoding='utf-8') as train_behaviors_f:
for line in train_behaviors_f:
impression_ID, user_ID, time, history, impressions = line.split('\t')
if user_ID not in user_ID_dict:
user_ID_dict[user_ID] = len(user_ID_dict)
with open(user_ID_file, 'w', encoding='utf-8') as user_ID_f:
json.dump(user_ID_dict, user_ID_f)
# 2. news ID dictionay & news category dictionay & news subCategory dictionay
for i, prefix in enumerate([config.train_root, config.dev_root, config.test_root]):
with open(os.path.join(prefix, 'news.tsv'), 'r', encoding='utf-8') as news_f:
for line in news_f:
news_ID, category, subCategory, title, abstract, _, title_entities, abstract_entities = line.split('\t')
if news_ID not in news_ID_dict:
news_ID_dict[news_ID] = len(news_ID_dict)
if category not in category_dict:
category_dict[category] = len(category_dict)
if subCategory not in subCategory_dict:
subCategory_dict[subCategory] = len(subCategory_dict)
words = pat.findall(title.lower()) if config.tokenizer == 'MIND' else word_tokenize(title.lower())
for word in words:
if is_number(word):
word_counter['<NUM>'] += 1
else:
if i == 0: # training set
word_counter[word] += 1
else:
if word in word_counter: # already appeared in training set
word_counter[word] += 1
words = pat.findall(abstract.lower()) if config.tokenizer == 'MIND' else word_tokenize(abstract.lower())
for word in words:
if is_number(word):
word_counter['<NUM>'] += 1
else:
if i == 0: # training set
word_counter[word] += 1
else:
if word in word_counter: # already appeared in training set
word_counter[word] += 1
for entity in json.loads(title_entities):
WikidataId = entity['WikidataId']
if WikidataId not in entity_dict:
entity_dict[WikidataId] = len(entity_dict)
for entity in json.loads(abstract_entities):
WikidataId = entity['WikidataId']
if WikidataId not in entity_dict:
entity_dict[WikidataId] = len(entity_dict)
news_category_dict[news_ID] = category_dict[category]
with open(news_ID_file, 'w', encoding='utf-8') as news_ID_f:
json.dump(news_ID_dict, news_ID_f)
with open(category_file, 'w', encoding='utf-8') as category_f:
json.dump(category_dict, category_f)
with open(subCategory_file, 'w', encoding='utf-8') as subCategory_f:
json.dump(subCategory_dict, subCategory_f)
# 3. word dictionay
word_counter_list = [[word, word_counter[word]] for word in word_counter]
word_counter_list.sort(key=lambda x: x[1], reverse=True) # sort by word frequency
filtered_word_counter_list = list(filter(lambda x: x[1] >= config.word_threshold, word_counter_list))
for i, word in enumerate(filtered_word_counter_list):
word_dict[word[0]] = i + 2
with open(vocabulary_file, 'w', encoding='utf-8') as vocabulary_f:
json.dump(word_dict, vocabulary_f)
# 4. Glove word embedding
if config.word_embedding_dim == 300:
glove = GloVe(name='840B', dim=300, cache='../glove', max_vectors=10000000000)
else:
glove = GloVe(name='6B', dim=config.word_embedding_dim, cache='../glove', max_vectors=10000000000)
glove_stoi = glove.stoi
glove_vectors = glove.vectors
glove_mean_vector = torch.mean(glove_vectors, dim=0, keepdim=False)
word_embedding_vectors = torch.zeros([len(word_dict), config.word_embedding_dim])
for word in word_dict:
index = word_dict[word]
if index != 0:
if word in glove_stoi:
word_embedding_vectors[index, :] = glove_vectors[glove_stoi[word]]
else:
random_vector = torch.zeros(config.word_embedding_dim)
random_vector.normal_(mean=0, std=0.1)
word_embedding_vectors[index, :] = random_vector + glove_mean_vector
with open(word_embedding_file, 'wb') as word_embedding_f:
pickle.dump(word_embedding_vectors, word_embedding_f)
# 5. knowledge-graph entity dictionary & eneity embedding & context embedding
entity_embedding_vectors = torch.zeros([len(entity_dict), config.entity_embedding_dim])
context_embedding_vectors = torch.zeros([len(entity_dict), config.context_embedding_dim])
for prefix in [config.train_root, config.dev_root, config.test_root]:
with open(os.path.join(prefix, 'entity_embedding.vec'), 'r', encoding='utf-8') as entity_f:
for line in entity_f:
if len(line.strip()) > 0:
terms = line.strip().split('\t')
assert len(terms) == config.entity_embedding_dim + 1, 'entity embedding dim does not match'
WikidataId = terms[0]
if WikidataId in entity_dict:
entity_embedding_vectors[entity_dict[WikidataId]] = torch.FloatTensor(list(map(float, terms[1:])))
for prefix in [config.train_root, config.dev_root, config.test_root]:
with open(os.path.join(prefix, 'context_embedding.vec'), 'r', encoding='utf-8') as context_f:
for line in context_f:
if len(line.strip()) > 0:
terms = line.strip().split('\t')
assert len(terms) == config.context_embedding_dim + 1, 'context embedding dim does not match'
WikidataId = terms[0]
if WikidataId in entity_dict:
context_embedding_vectors[entity_dict[WikidataId]] = torch.FloatTensor(list(map(float, terms[1:])))
with open(entity_file, 'w', encoding='utf-8') as entity_f:
json.dump(entity_dict, entity_f)
with open(entity_embedding_file, 'wb') as entity_embedding_f:
pickle.dump(entity_embedding_vectors, entity_embedding_f)
with open(context_embedding_file, 'wb') as context_embedding_f:
pickle.dump(context_embedding_vectors, context_embedding_f)
# 6. user history graph
category_num = len(category_dict)
graph_size = config.max_history_num + category_num # graph size of |V_{n}|+|V_{p}|
prefix_mode = ['train', 'dev', 'test']
user_history_graph_data = {}
for prefix_index, prefix in enumerate([config.train_root, config.dev_root, config.test_root]):
mode = prefix_mode[prefix_index]
user_history_num = 0
with open(os.path.join(prefix, 'behaviors.tsv'), 'r', encoding='utf-8') as behaviors_f:
for line in behaviors_f:
user_history_num += 1
user_history_graph = np.zeros([user_history_num, graph_size, graph_size], dtype=np.float32)
user_history_category_mask = np.zeros([user_history_num, category_num + 1], dtype=np.float32)
user_history_category_indices = np.zeros([user_history_num, config.max_history_num], dtype=np.int64)
with open(os.path.join(prefix, 'behaviors.tsv'), 'r', encoding='utf-8') as behaviors_f:
for line_index, line in enumerate(behaviors_f):
impression_ID, user_ID, time, history, impressions = line.split('\t')
if config.no_self_connection:
history_graph = np.zeros([graph_size, graph_size], dtype=np.float32)
else:
history_graph = np.identity(graph_size, dtype=np.float32)
history_category_mask = np.zeros(category_num + 1, dtype=np.float32) # extra one category index for padding news
history_category_indices = np.full([config.max_history_num], category_num, dtype=np.int64)
if len(history.strip()) > 0:
history_news_ID = history.split(' ')
offset = max(0, len(history_news_ID) - config.max_history_num)
history_news_num = min(len(history_news_ID), config.max_history_num)
for i in range(history_news_num):
category_index = news_category_dict[history_news_ID[i + offset]]
history_category_mask[category_index] = 1.0
history_category_indices[i] = category_index
history_graph[i, config.max_history_num + category_index] = 1 # edge of E_{p}^{1} in inter-cluster graph G2
history_graph[config.max_history_num + category_index, i] = 1 # edge of E_{p}^{1} in inter-cluster graph G2
for j in range(i + 1, history_news_num):
_category_index = news_category_dict[history_news_ID[j + offset]]
if category_index == _category_index:
history_graph[i, j] = 1 # edge of E_{n} in intra-cluster graph G1
history_graph[j, i] = 1 # edge of E_{n} in intra-cluster graph G1
else:
history_graph[config.max_history_num + category_index, config.max_history_num + _category_index] = 1 # edge of E_{p}^{2} in inter-cluster graph G2
history_graph[config.max_history_num + _category_index, config.max_history_num + category_index] = 1 # edge of E_{p}^{2} in inter-cluster graph G2
if not config.no_adjacent_normalization:
if config.gcn_normalization_type == 'asymmetric':
# Asymmetric adjacent matrix normalization: D^{-\frac{1}{2}}A
D_inv = np.zeros([graph_size, graph_size], dtype=np.float32)
np.fill_diagonal(D_inv, 1 / history_graph.sum(axis=1, keepdims=False))
history_graph = np.matmul(D_inv, history_graph)
else:
# Symmetric adjacent matrix normalization: D^{-\frac{1}{2}}AD^{-\frac{1}{2}}
D_inv_sqrt = np.zeros([graph_size, graph_size], dtype=np.float32)
np.fill_diagonal(D_inv_sqrt, np.sqrt(1 / history_graph.sum(axis=1, keepdims=False)))
history_graph = np.matmul(np.matmul(D_inv_sqrt, history_graph), D_inv_sqrt)
user_history_graph[line_index] = history_graph
user_history_category_mask[line_index] = history_category_mask
user_history_category_indices[line_index] = history_category_indices
user_history_graph_data[mode + '_user_history_graph'] = user_history_graph
user_history_graph_data[mode + '_user_history_category_mask'] = user_history_category_mask
user_history_graph_data[mode + '_user_history_category_indices'] = user_history_category_indices
with open(user_history_graph_file, 'wb') as user_history_graph_f:
pickle.dump(user_history_graph_data, user_history_graph_f)
def __init__(self, config: Config):
# preprocess data
MIND_Corpus.preprocess(config)
with open('user_ID-%s.json' % config.dataset, 'r', encoding='utf-8') as user_ID_f:
self.user_ID_dict = json.load(user_ID_f)
config.user_num = len(self.user_ID_dict)
with open('news_ID-%s.json' % config.dataset, 'r', encoding='utf-8') as news_ID_f:
self.news_ID_dict = json.load(news_ID_f)
self.news_num = len(self.news_ID_dict)
with open('category-%s.json' % config.dataset, 'r', encoding='utf-8') as category_f:
self.category_dict = json.load(category_f)
config.category_num = len(self.category_dict)
with open('subCategory-%s.json' % config.dataset, 'r', encoding='utf-8') as subCategory_f:
self.subCategory_dict = json.load(subCategory_f)
config.subCategory_num = len(self.subCategory_dict)
with open('vocabulary-' + str(config.word_threshold) + '-' + config.tokenizer + '-' + str(config.max_title_length) + '-' + str(config.max_abstract_length) + '-' + config.dataset + '.json', 'r', encoding='utf-8') as vocabulary_f:
self.word_dict = json.load(vocabulary_f)
config.vocabulary_size = len(self.word_dict)
with open('entity-%s.json' % config.dataset, 'r', encoding='utf-8') as entity_f:
self.entity_dict = json.load(entity_f)
config.entity_size = len(self.entity_dict)
with open('user_history_graph-' + str(config.max_history_num) + ('' if config.no_self_connection else '-self') + ('' if config.no_adjacent_normalization else '-normalize-' + config.gcn_normalization_type) + '-' + config.dataset + '.pkl', 'rb') as user_history_graph_f:
user_history_data = pickle.load(user_history_graph_f)
self.train_user_history_graph = user_history_data['train_user_history_graph']
self.train_user_history_category_mask = user_history_data['train_user_history_category_mask']
self.train_user_history_category_indices = user_history_data['train_user_history_category_indices']
self.dev_user_history_graph = user_history_data['dev_user_history_graph']
self.dev_user_history_category_mask = user_history_data['dev_user_history_category_mask']
self.dev_user_history_category_indices = user_history_data['dev_user_history_category_indices']
self.test_user_history_graph = user_history_data['test_user_history_graph']
self.test_user_history_category_mask = user_history_data['test_user_history_category_mask']
self.test_user_history_category_indices = user_history_data['test_user_history_category_indices']
# meta data
self.negative_sample_num = config.negative_sample_num # negative sample number for training
self.max_history_num = config.max_history_num # max history number for each training user
self.max_title_length = config.max_title_length # max title length for each news text
self.max_abstract_length = config.max_abstract_length # max abstract length for each news text
self.news_category = np.zeros([self.news_num], dtype=np.int32) # [news_num]
self.news_subCategory = np.zeros([self.news_num], dtype=np.int32) # [news_num]
self.news_title_text = np.zeros([self.news_num, self.max_title_length], dtype=np.int32) # [news_num, max_title_length]
self.news_title_mask = np.zeros([self.news_num, self.max_title_length], dtype=np.float32) # [news_num, max_title_length]
self.news_title_entity = np.zeros([self.news_num, self.max_title_length], dtype=np.int32) # [news_num, max_title_length]
self.news_abstract_text = np.zeros([self.news_num, self.max_abstract_length], dtype=np.int32) # [news_num, max_abstract_length]
self.news_abstract_mask = np.zeros([self.news_num, self.max_abstract_length], dtype=np.float32) # [news_num, max_abstract_length]
self.news_abstract_entity = np.zeros([self.news_num, self.max_abstract_length], dtype=np.int32) # [news_num, max_abstract_length]
self.train_behaviors = [] # [user_ID, [history], [history_mask], click impression, [non-click impressions], behavior_index]
self.dev_behaviors = [] # [user_ID, [history], [history_mask], candidate_news_ID, behavior_index]
self.dev_indices = [] # index for dev
self.test_behaviors = [] # [user_ID, [history], [history_mask], candidate_news_ID, behavior_index]
self.test_indices = [] # index for test
self.title_word_num = 0
self.abstract_word_num = 0
# generate news meta data
news_ID_set = set(['<PAD>'])
news_lines = []
with open(os.path.join(config.train_root, 'news.tsv'), 'r', encoding='utf-8') as train_news_f:
for line in train_news_f:
news_ID, category, subCategory, title, abstract, _, title_entities, abstract_entities = line.split('\t')
if news_ID not in news_ID_set:
news_lines.append(line)
news_ID_set.add(news_ID)
with open(os.path.join(config.dev_root, 'news.tsv'), 'r', encoding='utf-8') as dev_news_f:
for line in dev_news_f:
news_ID, category, subCategory, title, abstract, _, title_entities, abstract_entities = line.split('\t')
if news_ID not in news_ID_set:
news_lines.append(line)
news_ID_set.add(news_ID)
with open(os.path.join(config.test_root, 'news.tsv'), 'r', encoding='utf-8') as test_news_f:
for line in test_news_f:
news_ID, category, subCategory, title, abstract, _, title_entities, abstract_entities = line.split('\t')
if news_ID not in news_ID_set:
news_lines.append(line)
news_ID_set.add(news_ID)
assert self.news_num == len(news_ID_set), 'news num mismatch %d v.s. %d' % (self.news_num, len(news_ID_set))
for line in news_lines:
news_ID, category, subCategory, title, abstract, _, title_entities, abstract_entities = line.split('\t')
index = self.news_ID_dict[news_ID]
self.news_category[index] = self.category_dict[category] if category in self.category_dict else 0
self.news_subCategory[index] = self.subCategory_dict[subCategory] if subCategory in self.subCategory_dict else 0
words = pat.findall(title.lower()) if config.tokenizer == 'MIND' else word_tokenize(title.lower())
offsets = [-1 for _ in range(len(title))]
offset_index = 0
for i, word in enumerate(words):
if i == self.max_title_length:
break
if is_number(word):
self.news_title_text[index][i] = self.word_dict['<NUM>']
elif word in self.word_dict:
self.news_title_text[index][i] = self.word_dict[word]
else:
self.news_title_text[index][i] = 1
self.news_title_mask[index][i] = 1
while title[offset_index] in [' ', '\t']:
offset_index += 1
for j in range(len(word)):
offsets[offset_index] = i
offset_index += 1
for entity in json.loads(title_entities):
WikidataId = entity['WikidataId']
for offset in entity['OccurrenceOffsets']:
if offsets[offset] != -1 and WikidataId in self.entity_dict:
self.news_title_entity[index][offsets[offset]] = self.entity_dict[WikidataId]
self.title_word_num += len(words)
words = pat.findall(abstract.lower()) if config.tokenizer == 'MIND' else word_tokenize(abstract.lower())
offsets = [-1 for _ in range(len(abstract))]
offset_index = 0
for i, word in enumerate(words):
if i == self.max_abstract_length:
break
if is_number(word):
self.news_abstract_text[index][i] = self.word_dict['<NUM>']
elif word in self.word_dict:
self.news_abstract_text[index][i] = self.word_dict[word]
else:
self.news_abstract_text[index][i] = 1
self.news_abstract_mask[index][i] = 1
while abstract[offset_index] in [' ', '\t']:
offset_index += 1
for j in range(len(word)):
offsets[offset_index] = i
offset_index += 1
for entity in json.loads(abstract_entities):
WikidataId = entity['WikidataId']
for offset in entity['OccurrenceOffsets']:
if offsets[offset] != -1 and WikidataId in self.entity_dict:
self.news_abstract_entity[index][offsets[offset]] = self.entity_dict[WikidataId]
self.abstract_word_num += len(words)
self.news_title_mask[0][0] = 1 # for <PAD> news
self.news_abstract_mask[0][0] = 1 # for <PAD> news
# generate behavior meta data
with open(os.path.join(config.train_root, 'behaviors.tsv'), 'r', encoding='utf-8') as train_behaviors_f:
for behavior_index, line in enumerate(train_behaviors_f):
impression_ID, user_ID, time, history, impressions = line.split('\t')
click_impressions = []
non_click_impressions = []
for impression in impressions.strip().split(' '):
if impression[-2:] == '-1':
click_impressions.append(self.news_ID_dict[impression[:-2]])
else:
non_click_impressions.append(self.news_ID_dict[impression[:-2]])
if len(history) != 0:
history = list(map(lambda x: self.news_ID_dict[x], history.strip().split(' ')))
padding_num = max(0, self.max_history_num - len(history))
user_history = history[-self.max_history_num:] + [0] * padding_num
user_history_mask = np.zeros([self.max_history_num], dtype=np.float32)
user_history_mask[:min(len(history), self.max_history_num)] = 1.0
for click_impression in click_impressions:
self.train_behaviors.append([self.user_ID_dict[user_ID], user_history, user_history_mask, click_impression, non_click_impressions, behavior_index])
else:
for click_impression in click_impressions:
self.train_behaviors.append([self.user_ID_dict[user_ID], [0 for _ in range(self.max_history_num)], np.zeros([self.max_history_num], dtype=np.float32), click_impression, non_click_impressions, behavior_index])
with open(os.path.join(config.dev_root, 'behaviors.tsv'), 'r', encoding='utf-8') as dev_behaviors_f:
for dev_ID, line in enumerate(dev_behaviors_f):
impression_ID, user_ID, time, history, impressions = line.split('\t')
if len(history) != 0:
history = list(map(lambda x: self.news_ID_dict[x], history.strip().split(' ')))
padding_num = max(0, self.max_history_num - len(history))
user_history = history[-self.max_history_num:] + [0] * padding_num
user_history_mask = np.zeros([self.max_history_num], dtype=np.float32)
user_history_mask[:min(len(history), self.max_history_num)] = 1.0
for impression in impressions.strip().split(' '):
self.dev_indices.append(dev_ID)
self.dev_behaviors.append([self.user_ID_dict[user_ID] if user_ID in self.user_ID_dict else 0, user_history, user_history_mask, self.news_ID_dict[impression[:-2]], dev_ID])
else:
for impression in impressions.strip().split(' '):
self.dev_indices.append(dev_ID)
self.dev_behaviors.append([self.user_ID_dict[user_ID] if user_ID in self.user_ID_dict else 0, [0 for _ in range(self.max_history_num)], np.zeros([self.max_history_num], dtype=np.float32), self.news_ID_dict[impression[:-2]], dev_ID])
with open(os.path.join(config.test_root, 'behaviors.tsv'), 'r', encoding='utf-8') as test_behaviors_f:
for test_ID, line in enumerate(test_behaviors_f):
impression_ID, user_ID, time, history, impressions = line.split('\t')
if len(history) != 0:
history = list(map(lambda x: self.news_ID_dict[x], history.strip().split(' ')))
padding_num = max(0, self.max_history_num - len(history))
user_history = history[-self.max_history_num:] + [0] * padding_num
user_history_mask = np.zeros([self.max_history_num], dtype=np.float32)
user_history_mask[:min(len(history), self.max_history_num)] = 1.0
for impression in impressions.strip().split(' '):
self.test_indices.append(test_ID)
if config.dataset != 'large':
self.test_behaviors.append([self.user_ID_dict[user_ID] if user_ID in self.user_ID_dict else 0, user_history, user_history_mask, self.news_ID_dict[impression[:-2]], test_ID])
else:
self.test_behaviors.append([self.user_ID_dict[user_ID] if user_ID in self.user_ID_dict else 0, user_history, user_history_mask, self.news_ID_dict[impression], test_ID])
else:
for impression in impressions.strip().split(' '):
self.test_indices.append(test_ID)
if config.dataset != 'large':
self.test_behaviors.append([self.user_ID_dict[user_ID] if user_ID in self.user_ID_dict else 0, [0 for _ in range(self.max_history_num)], np.zeros([self.max_history_num], dtype=np.float32), self.news_ID_dict[impression[:-2]], test_ID])
else:
self.test_behaviors.append([self.user_ID_dict[user_ID] if user_ID in self.user_ID_dict else 0, [0 for _ in range(self.max_history_num)], np.zeros([self.max_history_num], dtype=np.float32), self.news_ID_dict[impression], test_ID])