forked from Veason-silverbullet/NNR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaggregate_result.py
110 lines (95 loc) · 5.47 KB
/
aggregate_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
model_dict = {
'DAE-GRU': 'EBNR',
'KCNN-CATT': 'DKN',
'PNE-PUE': 'NPA',
'CNN-LSTUR': 'LSTUR',
'NAML-ATT': 'NAML',
'MHSA-MHSA': 'NRMS',
'HDC-FIM': 'FIM',
'CNE-SUE': 'CNE-SUE'
}
class Criteria:
def __init__(self, run_index, auc, mrr, ndcg5, ndcg10):
self.run_index = run_index
self.auc = auc
self.mrr = mrr
self.ndcg5 = ndcg5
self.ndcg10 = ndcg10
def __gt__(self, value):
return self.run_index > value.run_index
def __ge__(self, value):
return self.run_index >= value.run_index
def __lt__(self, value):
return self.run_index < value.run_index
def __le__(self, value):
return self.run_index <= value.run_index
def __str__(self):
return '#%d\t%.4f\t%.4f\t%.4f\t%.4f' % (self.run_index, self.auc, self.mrr, self.ndcg5, self.ndcg10)
def aggregate_criteria(model_name, criteria_list, experiment_results_f):
sum_auc = 0
sum_mrr = 0
sum_ndcg5 = 0
sum_ndcg10 = 0
for criteria in criteria_list:
sum_auc += criteria.auc
sum_mrr += criteria.mrr
sum_ndcg5 += criteria.ndcg5
sum_ndcg10 += criteria.ndcg10
mean_auc = sum_auc / len(criteria_list)
mean_mrr = sum_mrr / len(criteria_list)
mean_ndcg5 = sum_ndcg5 / len(criteria_list)
mean_ndcg10 = sum_ndcg10 / len(criteria_list)
experiment_results_f.write('\nAvg\t%.4f\t%.4f\t%.4f\t%.4f\n' % (mean_auc, mean_mrr, mean_ndcg5, mean_ndcg10))
return mean_auc, mean_mrr, mean_ndcg5, mean_ndcg10
def list_model_name():
model_names = []
for news_encoder in ['CNE', 'CNN', 'MHSA', 'KCNN', 'PCNN', 'HDC', 'NAML', 'PNE', 'DAE', 'Inception', 'NAML_Title', 'NAML_Content', 'CNE_Title', 'CNE_Content', 'CNE_wo_CS', 'CNE_wo_CA']:
for user_encoder in ['SUE', 'LSTUR', 'MHSA', 'ATT', 'CATT', 'FIM', 'ARNN', 'PUE', 'GRU', 'OMAP', 'SUE_wo_GCN', 'SUE_wo_HCA']:
model_names.append(news_encoder + '-' + user_encoder)
return model_names
def aggregate_dev_result():
for dataset in ['small', '200k', 'large']:
if os.path.exists('results/' + dataset):
for sub_dir in os.listdir('results/' + dataset):
if sub_dir in list_model_name():
with open('results/' + dataset + '/' + sub_dir + '/experiment_results-dev.tsv', 'w', encoding='utf-8') as experiment_results_f:
experiment_results_f.write('exp_ID\tAUC\tMRR\tnDCG@5\tnDCG@10\n')
criteria_list = []
for result_file in os.listdir('results/' + dataset + '/' + sub_dir):
if result_file[0] == '#' and result_file[-4:] == '-dev':
with open('results/' + dataset + '/' + sub_dir + '/' + result_file, 'r', encoding='utf-8') as result_f:
line = result_f.read()
if len(line.strip()) != 0:
run_index, auc, mrr, ndcg5, ndcg10 = line.strip().split('\t')
criteria_list.append(Criteria(int(run_index[1:]), float(auc), float(mrr), float(ndcg5), float(ndcg10)))
if len(criteria_list) > 0:
criteria_list.sort()
for criteria in criteria_list:
experiment_results_f.write(str(criteria) + '\n')
mean_auc, mean_mrr, mean_ndcg5, mean_ndcg10 = aggregate_criteria(sub_dir, criteria_list, experiment_results_f)
def aggregate_test_result():
for dataset in ['small', '200k', 'large']:
if os.path.exists('results/' + dataset):
with open('results/%s/overall.tsv' % dataset, 'w', encoding='utf-8') as overall_f:
for sub_dir in os.listdir('results/' + dataset):
if sub_dir in list_model_name():
with open('results/' + dataset + '/' + sub_dir + '/experiment_results-test.tsv', 'w', encoding='utf-8') as experiment_results_f:
experiment_results_f.write('exp_ID\tAUC\tMRR\tnDCG@5\tnDCG@10\n')
criteria_list = []
for result_file in os.listdir('results/' + dataset + '/' + sub_dir):
if result_file[0] == '#' and result_file[-5:] == '-test':
with open('results/' + dataset + '/' + sub_dir + '/' + result_file, 'r', encoding='utf-8') as result_f:
line = result_f.read()
if len(line.strip()) != 0:
run_index, auc, mrr, ndcg5, ndcg10 = line.strip().split('\t')
criteria_list.append(Criteria(int(run_index[1:]), float(auc), float(mrr), float(ndcg5), float(ndcg10)))
if len(criteria_list) > 0:
criteria_list.sort()
for criteria in criteria_list:
experiment_results_f.write(str(criteria) + '\n')
mean_auc, mean_mrr, mean_ndcg5, mean_ndcg10 = aggregate_criteria(sub_dir, criteria_list, experiment_results_f)
overall_f.write('%s\t%.4f\t%.4f\t%.4f\t%.4f\n' % (model_dict[sub_dir] if sub_dir in model_dict else sub_dir, mean_auc, mean_mrr, mean_ndcg5, mean_ndcg10))
if __name__ == '__main__':
aggregate_dev_result()
aggregate_test_result()