-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
78 lines (59 loc) · 2.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import torch.nn as nn
class SliceNet(nn.Module):
def __init__(self, cfg):
super().__init__()
self.output_type = ['infer', 'loss']
self.cfg = cfg
self.encoder_in_dim = 3
self.encoder = resnet18d(pretrained=False, in_chans=self.encoder_in_dim)
#----------------------------------------------------
self.norm = nn.LayerNorm(512)
self.pos_embed = nn.Parameter(
positional_encoding(32, 512)
)
self.decoder = nn.Sequential(
TransformerBlock(512,8),
TransformerBlock(512,8),
TransformerBlock(512,8),
)
#----------------------------------------------------
self.slice_logit = nn.Linear(512, 1)
def infer(self, image):
batch_size, D, H, W = image.shape
x = image.reshape(batch_size*D//self.encoder_in_dim, self.encoder_in_dim, H, W )
f = self.encoder.forward_features(x)
_,d,h,w = f.shape
pool = F.adaptive_avg_pool2d(f, 1)
pool = pool.flatten(1)
p = pool.reshape(batch_size,-1,d)
#------
embed = self.norm(p) + self.pos_embed
d = self.decoder(embed)
slice_logit = self.slice_logit(d).squeeze(-1)
slice_prob = F.sigmoid(slice_logit)
slice_prob = F.interpolate(slice_prob.unsqueeze(1), size=(D,), mode='linear', align_corners=False).squeeze(1)
return slice_prob
class MainNet(nn.Module):
def __init__(self, cfg=None):
super().__init__()
self.liver_logit = nn.Linear()
self.spleen_logit = nn.Linear()
self.kidney_logit = nn.Linear()
def forward(self, batch):
image = batch['image']
batch_size, D, H, W = image.shape #(B, 96, 256, 256)
...
f = self.encoder.forward_features(x)
....
....
f = self.decoder(f)
flatten = f.mean(dim=[2,3,4]) # pool
split = torch.split_with_sizes(flatten, batch['num_series'])
pool = torch.stack([
p.max(0)[0] + p.mean(0)
for p in split])
liver_logit = self.liver_logit(pool)
spleen_logit = self.spleen_logit(pool)
kidney_logit = self.kidney_logit(pool)
...