-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathcamera.py
774 lines (613 loc) · 30 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
"""Implementation of the pinhole, simple radial, and simple divisional camera models."""
from abc import abstractmethod
from typing import Dict, Optional, Tuple, Union
import torch
from torch.func import jacfwd, vmap
from torch.nn import functional as F
from geocalib.gravity import Gravity
from geocalib.misc import TensorWrapper, autocast
from geocalib.utils import deg2rad, focal2fov, fov2focal, rad2rotmat
# flake8: noqa: E741
# mypy: ignore-errors
class BaseCamera(TensorWrapper):
"""Camera tensor class."""
eps = 1e-3
@autocast
def __init__(self, data: torch.Tensor):
"""Camera parameters with shape (..., {w, h, fx, fy, cx, cy, *dist}).
Tensor convention: (..., {w, h, fx, fy, cx, cy, pitch, roll, *dist}) where
- w, h: image size in pixels
- fx, fy: focal lengths in pixels
- cx, cy: principal points in normalized image coordinates
- dist: distortion parameters
Args:
data (torch.Tensor): Camera parameters with shape (..., {6, 7, 8}).
"""
# w, h, fx, fy, cx, cy, dist
assert data.shape[-1] in {6, 7, 8}, data.shape
pad = data.new_zeros(data.shape[:-1] + (8 - data.shape[-1],))
data = torch.cat([data, pad], -1) if data.shape[-1] != 8 else data
super().__init__(data)
@classmethod
def from_dict(cls, param_dict: Dict[str, torch.Tensor]) -> "BaseCamera":
"""Create a Camera object from a dictionary of parameters.
Args:
param_dict (Dict[str, torch.Tensor]): Dictionary of parameters.
Returns:
Camera: Camera object.
"""
for key, value in param_dict.items():
if not isinstance(value, torch.Tensor):
param_dict[key] = torch.tensor(value)
h, w = param_dict["height"], param_dict["width"]
cx, cy = param_dict.get("cx", w / 2), param_dict.get("cy", h / 2)
if "f" in param_dict:
f = param_dict["f"]
elif "vfov" in param_dict:
vfov = param_dict["vfov"]
f = fov2focal(vfov, h)
else:
raise ValueError("Focal length or vertical field of view must be provided.")
if "dist" in param_dict:
k1, k2 = param_dict["dist"][..., 0], param_dict["dist"][..., 1]
elif "k1_hat" in param_dict:
k1 = param_dict["k1_hat"] * (f / h) ** 2
k2 = param_dict.get("k2", torch.zeros_like(k1))
else:
k1 = param_dict.get("k1", torch.zeros_like(f))
k2 = param_dict.get("k2", torch.zeros_like(f))
fx, fy = f, f
if "scales" in param_dict:
fx = fx * param_dict["scales"][..., 0] / param_dict["scales"][..., 1]
params = torch.stack([w, h, fx, fy, cx, cy, k1, k2], dim=-1)
return cls(params)
def pinhole(self):
"""Return the pinhole camera model."""
return self.__class__(self._data[..., :6])
@property
def size(self) -> torch.Tensor:
"""Size (width height) of the images, with shape (..., 2)."""
return self._data[..., :2]
@property
def f(self) -> torch.Tensor:
"""Focal lengths (fx, fy) with shape (..., 2)."""
return self._data[..., 2:4]
@property
def vfov(self) -> torch.Tensor:
"""Vertical field of view in radians."""
return focal2fov(self.f[..., 1], self.size[..., 1])
@property
def hfov(self) -> torch.Tensor:
"""Horizontal field of view in radians."""
return focal2fov(self.f[..., 0], self.size[..., 0])
@property
def c(self) -> torch.Tensor:
"""Principal points (cx, cy) with shape (..., 2)."""
return self._data[..., 4:6]
@property
def K(self) -> torch.Tensor:
"""Returns the self intrinsic matrix with shape (..., 3, 3)."""
shape = self.shape + (3, 3)
K = self._data.new_zeros(shape)
K[..., 0, 0] = self.f[..., 0]
K[..., 1, 1] = self.f[..., 1]
K[..., 0, 2] = self.c[..., 0]
K[..., 1, 2] = self.c[..., 1]
K[..., 2, 2] = 1
return K
def update_focal(self, delta: torch.Tensor, as_log: bool = False):
"""Update the self parameters after changing the focal length."""
f = torch.exp(torch.log(self.f) + delta) if as_log else self.f + delta
# clamp focal length to a reasonable range for stability during training
min_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(150), self.size[..., 1])
max_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(5), self.size[..., 1])
min_f = min_f.unsqueeze(-1).expand(-1, 2)
max_f = max_f.unsqueeze(-1).expand(-1, 2)
f = f.clamp(min=min_f, max=max_f)
# make sure focal ration stays the same (avoid inplace operations)
fx = f[..., 1] * self.f[..., 0] / self.f[..., 1]
f = torch.stack([fx, f[..., 1]], -1)
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
return self.__class__(torch.cat([self.size, f, self.c, dist], -1))
def scale(self, scales: Union[float, int, Tuple[Union[float, int]]]):
"""Update the self parameters after resizing an image."""
scales = (scales, scales) if isinstance(scales, (int, float)) else scales
s = scales if isinstance(scales, torch.Tensor) else self.new_tensor(scales)
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
return self.__class__(torch.cat([self.size * s, self.f * s, self.c * s, dist], -1))
def crop(self, pad: Tuple[float]):
"""Update the self parameters after cropping an image."""
pad = pad if isinstance(pad, torch.Tensor) else self.new_tensor(pad)
size = self.size + pad.to(self.size)
c = self.c + pad.to(self.c) / 2
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
return self.__class__(torch.cat([size, self.f, c, dist], -1))
@autocast
def in_image(self, p2d: torch.Tensor):
"""Check if 2D points are within the image boundaries."""
assert p2d.shape[-1] == 2
size = self.size.unsqueeze(-2)
return torch.all((p2d >= 0) & (p2d <= (size - 1)), -1)
@autocast
def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Project 3D points into the self plane and check for visibility."""
z = p3d[..., -1]
valid = z > self.eps
z = z.clamp(min=self.eps)
p2d = p3d[..., :-1] / z.unsqueeze(-1)
return p2d, valid
def J_project(self, p3d: torch.Tensor):
"""Jacobian of the projection function."""
x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2]
zero = torch.zeros_like(z)
z = z.clamp(min=self.eps)
J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1)
J = J.reshape(p3d.shape[:-1] + (2, 3))
return J # N x 2 x 3
def undo_scale_crop(self, data: Dict[str, torch.Tensor]):
"""Undo transforms done during scaling and cropping."""
camera = self.crop(-data["crop_pad"]) if "crop_pad" in data else self
return camera.scale(1.0 / data["scales"])
@abstractmethod
def distort(self, pts: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
raise NotImplementedError("distort() must be implemented.")
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the distortion function."""
if wrt == "scale2pts": # (..., 2)
J = [
vmap(jacfwd(lambda x: self[idx].distort(x, return_scale=True)[0]))(p2d[idx])[None]
for idx in range(p2d.shape[0])
]
return torch.cat(J, dim=0).squeeze(-3, -2)
elif wrt == "scale2dist": # (..., 1)
J = []
for idx in range(p2d.shape[0]): # loop to batch pts dimension
def func(x):
params = torch.cat([self._data[idx, :6], x[None]], -1)
return self.__class__(params).distort(p2d[idx], return_scale=True)[0]
J.append(vmap(jacfwd(func))(self[idx].dist))
return torch.cat(J, dim=0)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
@abstractmethod
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
raise NotImplementedError("undistort() must be implemented.")
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
if wrt == "pts": # (..., 2, 2)
J = [
vmap(jacfwd(lambda x: self[idx].undistort(x)[0]))(p2d[idx])[None]
for idx in range(p2d.shape[0])
]
return torch.cat(J, dim=0).squeeze(-3)
elif wrt == "dist": # (..., 1)
J = []
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
def func(x):
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)
return self.__class__(params).undistort(p2d[batch_idx])[0]
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
return torch.cat(J, dim=0)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
@autocast
def up_projection_offset(self, p2d: torch.Tensor) -> torch.Tensor:
"""Compute the offset for the up-projection."""
return self.J_distort(p2d, wrt="scale2pts") # (B, N, 2)
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the distortion offset for up-projection."""
if wrt == "uv": # (B, N, 2, 2)
J = [
vmap(jacfwd(lambda x: self[idx].up_projection_offset(x)[0, 0]))(p2d[idx])[None]
for idx in range(p2d.shape[0])
]
return torch.cat(J, dim=0)
elif wrt == "dist": # (B, N, 2)
J = []
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
def func(x):
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)[None]
return self.__class__(params).up_projection_offset(p2d[batch_idx][None])
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
return torch.cat(J, dim=0).squeeze(1)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
@autocast
def denormalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert normalized 2D coordinates into pixel coordinates."""
return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2)
def J_denormalize(self):
"""Jacobian of the denormalization function."""
return torch.diag_embed(self.f) # ..., 2 x 2
@autocast
def normalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert pixel coordinates into normalized 2D coordinates."""
return (p2d - self.c.unsqueeze(-2)) / (self.f.unsqueeze(-2))
def J_normalize(self, p2d: torch.Tensor, wrt: str = "f"):
"""Jacobian of the normalization function."""
# ... x N x 2 x 2
if wrt == "f":
J_f = -(p2d - self.c.unsqueeze(-2)) / ((self.f.unsqueeze(-2)) ** 2)
return torch.diag_embed(J_f)
elif wrt == "pts":
J_pts = 1 / self.f
return torch.diag_embed(J_pts)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
def pixel_coordinates(self) -> torch.Tensor:
"""Pixel coordinates in self frame.
Returns:
torch.Tensor: Pixel coordinates as a tensor of shape (B, h * w, 2).
"""
w, h = self.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
# create grid
x = torch.arange(0, w, dtype=self.dtype, device=self.device)
y = torch.arange(0, h, dtype=self.dtype, device=self.device)
x, y = torch.meshgrid(x, y, indexing="xy")
xy = torch.stack((x, y), dim=-1).reshape(-1, 2) # shape (h * w, 2)
# add batch dimension (normalize() would broadcast but we make it explicit)
B = self.shape[0]
xy = xy.unsqueeze(0).expand(B, -1, -1) # if B > 0 else xy
return xy.to(self.device).to(self.dtype)
@autocast
def pixel_bearing_many(self, p3d: torch.Tensor) -> torch.Tensor:
"""Get the bearing vectors of pixel coordinates by normalizing them."""
return F.normalize(p3d, dim=-1)
@autocast
def world2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Transform 3D points into 2D pixel coordinates."""
p2d, visible = self.project(p3d)
p2d, mask = self.distort(p2d)
p2d = self.denormalize(p2d)
valid = visible & mask & self.in_image(p2d)
return p2d, valid
@autocast
def J_world2image(self, p3d: torch.Tensor):
"""Jacobian of the world2image function."""
p2d_proj, valid = self.project(p3d)
J_dnorm = self.J_denormalize()
J_dist = self.J_distort(p2d_proj)
J_proj = self.J_project(p3d)
J = torch.einsum("...ij,...jk,...kl->...il", J_dnorm, J_dist, J_proj)
return J, valid
@autocast
def image2world(self, p2d: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Transform point in the image plane to 3D world coordinates."""
p2d = self.normalize(p2d)
p2d, valid = self.undistort(p2d)
ones = p2d.new_ones(p2d.shape[:-1] + (1,))
p3d = torch.cat([p2d, ones], -1)
return p3d, valid
@autocast
def J_image2world(self, p2d: torch.Tensor, wrt: str = "f") -> Tuple[torch.Tensor, torch.Tensor]:
"""Jacobian of the image2world function."""
if wrt == "dist":
p2d_norm = self.normalize(p2d)
return self.J_undistort(p2d_norm, wrt)
elif wrt == "f":
J_norm2f = self.J_normalize(p2d, wrt)
p2d_norm = self.normalize(p2d)
J_dist2norm = self.J_undistort(p2d_norm, "pts")
return torch.einsum("...ij,...jk->...ik", J_dist2norm, J_norm2f)
else:
raise ValueError(f"Unknown wrt: {wrt}")
@autocast
def undistort_image(self, img: torch.Tensor) -> torch.Tensor:
"""Undistort an image using the distortion model."""
assert self.shape[0] == 1, "Batch size must be 1."
W, H = self.size.unbind(-1)
H, W = H.int().item(), W.int().item()
x, y = torch.meshgrid(torch.arange(0, W), torch.arange(0, H), indexing="xy")
coords = torch.stack((x, y), dim=-1).reshape(-1, 2)
p3d, _ = self.pinhole().image2world(coords.to(self.device).to(self.dtype))
p2d, _ = self.world2image(p3d)
mapx, mapy = p2d[..., 0].reshape((1, H, W)), p2d[..., 1].reshape((1, H, W))
grid = torch.stack((mapx, mapy), dim=-1)
grid = 2.0 * grid / torch.tensor([W - 1, H - 1]).to(grid) - 1
return F.grid_sample(img, grid, align_corners=True)
def get_img_from_pano(
self,
pano_img: torch.Tensor,
gravity: Gravity,
yaws: torch.Tensor = 0.0,
resize_factor: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Render an image from a panorama.
Args:
pano_img (torch.Tensor): Panorama image of shape (3, H, W) in [0, 1].
gravity (Gravity): Gravity direction of the camera.
yaws (torch.Tensor | list, optional): Yaw angle in radians. Defaults to 0.0.
resize_factor (torch.Tensor, optional): Resize the panorama to be a multiple of the
field of view. Defaults to 1.
Returns:
torch.Tensor: Image rendered from the panorama.
"""
B = self.shape[0]
if B > 0:
assert self.size[..., 0].unique().shape[0] == 1, "All images must have the same width."
assert self.size[..., 1].unique().shape[0] == 1, "All images must have the same height."
w, h = self.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
if isinstance(yaws, (int, float)):
yaws = [yaws]
if isinstance(resize_factor, (int, float)):
resize_factor = [resize_factor]
yaws = (
yaws.to(self.dtype).to(self.device)
if isinstance(yaws, torch.Tensor)
else self.new_tensor(yaws)
)
if isinstance(resize_factor, torch.Tensor):
resize_factor = resize_factor.to(self.dtype).to(self.device)
elif resize_factor is not None:
resize_factor = self.new_tensor(resize_factor)
assert isinstance(pano_img, torch.Tensor), "Panorama image must be a torch.Tensor."
pano_img = pano_img if pano_img.dim() == 4 else pano_img.unsqueeze(0) # B x 3 x H x W
pano_imgs = []
for i, yaw in enumerate(yaws):
if resize_factor is not None:
# resize the panorama such that the fov of the panorama has the same height as the
# image
vfov = self.vfov[i] if B != 0 else self.vfov
scale = torch.pi / float(vfov) * float(h) / pano_img.shape[-2] * resize_factor[i]
pano_shape = (int(pano_img.shape[-2] * scale), int(pano_img.shape[-1] * scale))
mode = "bicubic" if scale >= 1 else "area"
resized_pano = F.interpolate(pano_img, size=pano_shape, mode=mode)
else:
# make sure to copy: resized_pano = pano_img
resized_pano = pano_img
pano_shape = pano_img.shape[-2:][::-1]
pano_imgs.append((resized_pano, pano_shape))
xy = self.pixel_coordinates()
uv1, _ = self.image2world(xy)
bearings = self.pixel_bearing_many(uv1)
# rotate bearings
R_yaw = rad2rotmat(self.new_zeros(yaw.shape), self.new_zeros(yaw.shape), yaws)
rotated_bearings = bearings @ gravity.R @ R_yaw
# spherical coordinates
lon = torch.atan2(rotated_bearings[..., 0], rotated_bearings[..., 2])
lat = torch.atan2(
rotated_bearings[..., 1], torch.norm(rotated_bearings[..., [0, 2]], dim=-1)
)
images = []
for idx, (resized_pano, pano_shape) in enumerate(pano_imgs):
min_lon, max_lon = -torch.pi, torch.pi
min_lat, max_lat = -torch.pi / 2.0, torch.pi / 2.0
min_x, max_x = 0, pano_shape[0] - 1.0
min_y, max_y = 0, pano_shape[1] - 1.0
# map Spherical Coordinates to Panoramic Coordinates
nx = (lon[idx] - min_lon) / (max_lon - min_lon) * (max_x - min_x) + min_x
ny = (lat[idx] - min_lat) / (max_lat - min_lat) * (max_y - min_y) + min_y
# reshape and cast to numpy for remap
mapx, mapy = nx.reshape((1, h, w)), ny.reshape((1, h, w))
grid = torch.stack((mapx, mapy), dim=-1) # Add batch dimension
# Normalize to [-1, 1]
grid = 2.0 * grid / torch.tensor([pano_shape[-2] - 1, pano_shape[-1] - 1]).to(grid) - 1
# Apply grid sample
image = F.grid_sample(resized_pano, grid, align_corners=True)
images.append(image)
return torch.concatenate(images, 0) if B > 0 else images[0]
def __repr__(self):
"""Print the Camera object."""
return f"{self.__class__.__name__} {self.shape} {self.dtype} {self.device}"
class Pinhole(BaseCamera):
"""Implementation of the pinhole camera model.
Use this model for undistorted images.
"""
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates."""
if return_scale:
return p2d.new_ones(p2d.shape[:-1] + (1,))
return p2d, p2d.new_ones((p2d.shape[0], 1)).bool()
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the distortion function."""
if wrt == "pts":
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
raise ValueError(f"Unknown wrt: {wrt}")
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates."""
return pts, pts.new_ones((pts.shape[0], 1)).bool()
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
if wrt == "pts":
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
raise ValueError(f"Unknown wrt: {wrt}")
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the up-projection offset."""
if wrt == "uv":
return torch.zeros(p2d.shape[:-1] + (2, 2), device=p2d.device, dtype=p2d.dtype)
raise ValueError(f"Unknown wrt: {wrt}")
class SimpleRadial(BaseCamera):
"""Implementation of the simple radial camera model.
Use this model for weakly distorted images.
The distortion model is 1 + k1 * r^2 where r^2 = x^2 + y^2.
The undistortion model is 1 - k1 * r^2 estimated as in
"An Exact Formula for Calculating Inverse Radial Lens Distortions" by Pierre Drap.
"""
@property
def dist(self) -> torch.Tensor:
"""Distortion parameters, with shape (..., 1)."""
return self._data[..., 6:]
@property
def k1(self) -> torch.Tensor:
"""Distortion parameters, with shape (...)."""
return self._data[..., 6]
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-0.7, 0.7)):
"""Update the self parameters after changing the k1 distortion parameter."""
delta_dist = self.new_ones(self.dist.shape) * delta
dist = (self.dist + delta_dist).clamp(*dist_range)
data = torch.cat([self.size, self.f, self.c, dist], -1)
return self.__class__(data)
@autocast
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
"""Check if the distorted points are valid."""
return p2d.new_ones(p2d.shape[:-1]).bool()
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
radial = 1 + self.k1[..., None, None] * r2
if return_scale:
return radial, None
return p2d * radial, self.check_valid(p2d)
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
"""Jacobian of the distortion function."""
if wrt == "scale2dist": # (..., 1)
return torch.sum(p2d**2, -1, keepdim=True)
elif wrt == "scale2pts": # (..., 2)
return 2 * self.k1[..., None, None] * p2d
else:
return super().J_distort(p2d, wrt)
@autocast
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
b1 = -self.k1[..., None, None]
r2 = torch.sum(p2d**2, -1, keepdim=True)
radial = 1 + b1 * r2
return p2d * radial, self.check_valid(p2d)
@autocast
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
b1 = -self.k1[..., None, None]
r2 = torch.sum(p2d**2, -1, keepdim=True)
if wrt == "dist":
return -r2 * p2d
elif wrt == "pts":
radial = 1 + b1 * r2
radial_diag = torch.diag_embed(radial.expand(radial.shape[:-1] + (2,)))
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
return (2 * b1[..., None] * ppT) + radial_diag
else:
return super().J_undistort(p2d, wrt)
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the up-projection offset."""
if wrt == "uv": # (..., 2, 2)
return torch.diag_embed((2 * self.k1[..., None, None]).expand(p2d.shape[:-1] + (2,)))
elif wrt == "dist":
return 2 * p2d # (..., 2)
else:
return super().J_up_projection_offset(p2d, wrt)
class SimpleDivisional(BaseCamera):
"""Implementation of the simple divisional camera model.
Use this model for strongly distorted images.
The distortion model is (1 - sqrt(1 - 4 * k1 * r^2)) / (2 * k1 * r^2) where r^2 = x^2 + y^2.
The undistortion model is 1 / (1 + k1 * r^2).
"""
@property
def dist(self) -> torch.Tensor:
"""Distortion parameters, with shape (..., 1)."""
return self._data[..., 6:]
@property
def k1(self) -> torch.Tensor:
"""Distortion parameters, with shape (...)."""
return self._data[..., 6]
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-3.0, 3.0)):
"""Update the self parameters after changing the k1 distortion parameter."""
delta_dist = self.new_ones(self.dist.shape) * delta
dist = (self.dist + delta_dist).clamp(*dist_range)
data = torch.cat([self.size, self.f, self.c, dist], -1)
return self.__class__(data)
@autocast
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
"""Check if the distorted points are valid."""
return p2d.new_ones(p2d.shape[:-1]).bool()
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
radial = 1 - torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=0))
denom = 2 * self.k1[..., None, None] * r2
ones = radial.new_ones(radial.shape)
radial = torch.where(denom == 0, ones, radial / denom.masked_fill(denom == 0, 1e6))
if return_scale:
return radial, None
return p2d * radial, self.check_valid(p2d)
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
"""Jacobian of the distortion function."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
t0 = torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=1e-6))
if wrt == "scale2pts": # (B, N, 2)
d1 = t0 * 2 * r2
d2 = self.k1[..., None, None] * r2**2
denom = d1 * d2
return p2d * (4 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
elif wrt == "scale2dist":
d1 = 2 * self.k1[..., None, None] * t0
d2 = 2 * r2 * self.k1[..., None, None] ** 2
denom = d1 * d2
return (2 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
else:
return super().J_distort(p2d, wrt)
@autocast
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
denom = 1 + self.k1[..., None, None] * r2
radial = 1 / denom.masked_fill(denom == 0, 1e6)
return p2d * radial, self.check_valid(p2d)
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
# return super().J_undistort(p2d, wrt)
r2 = torch.sum(p2d**2, -1, keepdim=True)
k1 = self.k1[..., None, None]
if wrt == "dist":
denom = (1 + k1 * r2) ** 2
return -r2 / denom.masked_fill(denom == 0, 1e6) * p2d
elif wrt == "pts":
t0 = 1 + k1 * r2
t0 = t0.masked_fill(t0 == 0, 1e6)
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
J = torch.diag_embed((1 / t0).expand(p2d.shape[:-1] + (2,)))
return J - 2 * k1[..., None] * ppT / t0[..., None] ** 2 # (..., N, 2, 2)
else:
return super().J_undistort(p2d, wrt)
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the up-projection offset.
func(uv, dist) = 4 / (2 * norm2(uv)^2 * (1-4*k1*norm2(uv)^2)^0.5) * uv
- (1-(1-4*k1*norm2(uv)^2)^0.5) / (k1 * norm2(uv)^4) * uv
"""
k1 = self.k1[..., None, None]
r2 = torch.sum(p2d**2, -1, keepdim=True)
t0 = (1 - 4 * k1 * r2).clamp(min=1e-6)
t1 = torch.sqrt(t0)
if wrt == "dist":
denom = 4 * t0 ** (3 / 2)
denom = denom.masked_fill(denom == 0, 1e6)
J = 16 / denom
denom = r2 * t1 * k1
denom = denom.masked_fill(denom == 0, 1e6)
J = J - 2 / denom
denom = (r2 * k1) ** 2
denom = denom.masked_fill(denom == 0, 1e6)
J = J + (1 - t1) / denom
return J * p2d
elif wrt == "uv":
# ! unstable (gradient checker might fail), rewrite to use single division (by denom)
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
denom = 2 * r2 * t1
denom = denom.masked_fill(denom == 0, 1e6)
J = torch.diag_embed((4 / denom).expand(p2d.shape[:-1] + (2,)))
denom = 4 * t1 * r2**2
denom = denom.masked_fill(denom == 0, 1e6)
J = J - 16 / denom[..., None] * ppT
denom = 4 * r2 * t0 ** (3 / 2)
denom = denom.masked_fill(denom == 0, 1e6)
J = J + (32 * k1[..., None]) / denom[..., None] * ppT
denom = r2**2 * t1
denom = denom.masked_fill(denom == 0, 1e6)
J = J - 4 / denom[..., None] * ppT
denom = k1 * r2**3
denom = denom.masked_fill(denom == 0, 1e6)
J = J + (4 * (1 - t1) / denom)[..., None] * ppT
denom = k1 * r2**2
denom = denom.masked_fill(denom == 0, 1e6)
J = J - torch.diag_embed(((1 - t1) / denom).expand(p2d.shape[:-1] + (2,)))
return J
else:
return super().J_up_projection_offset(p2d, wrt)
camera_models = {
"pinhole": Pinhole,
"simple_radial": SimpleRadial,
"simple_divisional": SimpleDivisional,
}