-
Notifications
You must be signed in to change notification settings - Fork 618
/
Copy pathreconstruction.py
194 lines (170 loc) · 5.93 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import multiprocessing
import shutil
from pathlib import Path
from typing import Any, Dict, List, Optional
import pycolmap
from . import logger
from .triangulation import (
OutputCapture,
estimation_and_geometric_verification,
import_features,
import_matches,
parse_option_args,
)
from .utils.database import COLMAPDatabase
def create_empty_db(database_path: Path):
if database_path.exists():
logger.warning("The database already exists, deleting it.")
database_path.unlink()
logger.info("Creating an empty database...")
db = COLMAPDatabase.connect(database_path)
db.create_tables()
db.commit()
db.close()
def import_images(
image_dir: Path,
database_path: Path,
camera_mode: pycolmap.CameraMode,
image_list: Optional[List[str]] = None,
options: Optional[Dict[str, Any]] = None,
):
logger.info("Importing images into the database...")
if options is None:
options = {}
images = list(image_dir.iterdir())
if len(images) == 0:
raise IOError(f"No images found in {image_dir}.")
with pycolmap.ostream():
pycolmap.import_images(
database_path,
image_dir,
camera_mode,
image_list=image_list or [],
options=options,
)
def get_image_ids(database_path: Path) -> Dict[str, int]:
db = COLMAPDatabase.connect(database_path)
images = {}
for name, image_id in db.execute("SELECT name, image_id FROM images;"):
images[name] = image_id
db.close()
return images
def run_reconstruction(
sfm_dir: Path,
database_path: Path,
image_dir: Path,
verbose: bool = False,
options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
models_path = sfm_dir / "models"
models_path.mkdir(exist_ok=True, parents=True)
logger.info("Running 3D reconstruction...")
if options is None:
options = {}
options = {"num_threads": min(multiprocessing.cpu_count(), 16), **options}
with OutputCapture(verbose):
with pycolmap.ostream():
reconstructions = pycolmap.incremental_mapping(
database_path, image_dir, models_path, options=options
)
if len(reconstructions) == 0:
logger.error("Could not reconstruct any model!")
return None
logger.info(f"Reconstructed {len(reconstructions)} model(s).")
largest_index = None
largest_num_images = 0
for index, rec in reconstructions.items():
num_images = rec.num_reg_images()
if num_images > largest_num_images:
largest_index = index
largest_num_images = num_images
assert largest_index is not None
logger.info(
f"Largest model is #{largest_index} " f"with {largest_num_images} images."
)
for filename in ["images.bin", "cameras.bin", "points3D.bin"]:
if (sfm_dir / filename).exists():
(sfm_dir / filename).unlink()
shutil.move(str(models_path / str(largest_index) / filename), str(sfm_dir))
return reconstructions[largest_index]
def main(
sfm_dir: Path,
image_dir: Path,
pairs: Path,
features: Path,
matches: Path,
camera_mode: pycolmap.CameraMode = pycolmap.CameraMode.AUTO,
verbose: bool = False,
skip_geometric_verification: bool = False,
min_match_score: Optional[float] = None,
image_list: Optional[List[str]] = None,
image_options: Optional[Dict[str, Any]] = None,
mapper_options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
assert features.exists(), features
assert pairs.exists(), pairs
assert matches.exists(), matches
sfm_dir.mkdir(parents=True, exist_ok=True)
database = sfm_dir / "database.db"
create_empty_db(database)
import_images(image_dir, database, camera_mode, image_list, image_options)
image_ids = get_image_ids(database)
import_features(image_ids, database, features)
import_matches(
image_ids,
database,
pairs,
matches,
min_match_score,
skip_geometric_verification,
)
if not skip_geometric_verification:
estimation_and_geometric_verification(database, pairs, verbose)
reconstruction = run_reconstruction(
sfm_dir, database, image_dir, verbose, mapper_options
)
if reconstruction is not None:
logger.info(
f"Reconstruction statistics:\n{reconstruction.summary()}"
+ f"\n\tnum_input_images = {len(image_ids)}"
)
return reconstruction
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sfm_dir", type=Path, required=True)
parser.add_argument("--image_dir", type=Path, required=True)
parser.add_argument("--pairs", type=Path, required=True)
parser.add_argument("--features", type=Path, required=True)
parser.add_argument("--matches", type=Path, required=True)
parser.add_argument(
"--camera_mode",
type=str,
default="AUTO",
choices=list(pycolmap.CameraMode.__members__.keys()),
)
parser.add_argument("--skip_geometric_verification", action="store_true")
parser.add_argument("--min_match_score", type=float)
parser.add_argument("--verbose", action="store_true")
parser.add_argument(
"--image_options",
nargs="+",
default=[],
help="List of key=value from {}".format(pycolmap.ImageReaderOptions().todict()),
)
parser.add_argument(
"--mapper_options",
nargs="+",
default=[],
help="List of key=value from {}".format(
pycolmap.IncrementalMapperOptions().todict()
),
)
args = parser.parse_args().__dict__
image_options = parse_option_args(
args.pop("image_options"), pycolmap.ImageReaderOptions()
)
mapper_options = parse_option_args(
args.pop("mapper_options"), pycolmap.IncrementalMapperOptions()
)
main(**args, image_options=image_options, mapper_options=mapper_options)