-
Notifications
You must be signed in to change notification settings - Fork 364
/
Copy pathlightglue.py
655 lines (580 loc) · 25.5 KB
/
lightglue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import warnings
from pathlib import Path
from types import SimpleNamespace
from typing import Callable, List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
try:
from flash_attn.modules.mha import FlashCrossAttention
except ModuleNotFoundError:
FlashCrossAttention = None
if FlashCrossAttention or hasattr(F, "scaled_dot_product_attention"):
FLASH_AVAILABLE = True
else:
FLASH_AVAILABLE = False
torch.backends.cudnn.deterministic = True
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def normalize_keypoints(
kpts: torch.Tensor, size: Optional[torch.Tensor] = None
) -> torch.Tensor:
if size is None:
size = 1 + kpts.max(-2).values - kpts.min(-2).values
elif not isinstance(size, torch.Tensor):
size = torch.tensor(size, device=kpts.device, dtype=kpts.dtype)
size = size.to(kpts)
shift = size / 2
scale = size.max(-1).values / 2
kpts = (kpts - shift[..., None, :]) / scale[..., None, None]
return kpts
def pad_to_length(x: torch.Tensor, length: int) -> Tuple[torch.Tensor]:
if length <= x.shape[-2]:
return x, torch.ones_like(x[..., :1], dtype=torch.bool)
pad = torch.ones(
*x.shape[:-2], length - x.shape[-2], x.shape[-1], device=x.device, dtype=x.dtype
)
y = torch.cat([x, pad], dim=-2)
mask = torch.zeros(*y.shape[:-1], 1, dtype=torch.bool, device=x.device)
mask[..., : x.shape[-2], :] = True
return y, mask
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x = x.unflatten(-1, (-1, 2))
x1, x2 = x.unbind(dim=-1)
return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2)
def apply_cached_rotary_emb(freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return (t * freqs[0]) + (rotate_half(t) * freqs[1])
class LearnableFourierPositionalEncoding(nn.Module):
def __init__(self, M: int, dim: int, F_dim: int = None, gamma: float = 1.0) -> None:
super().__init__()
F_dim = F_dim if F_dim is not None else dim
self.gamma = gamma
self.Wr = nn.Linear(M, F_dim // 2, bias=False)
nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma**-2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""encode position vector"""
projected = self.Wr(x)
cosines, sines = torch.cos(projected), torch.sin(projected)
emb = torch.stack([cosines, sines], 0).unsqueeze(-3)
return emb.repeat_interleave(2, dim=-1)
class TokenConfidence(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.token = nn.Sequential(nn.Linear(dim, 1), nn.Sigmoid())
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
"""get confidence tokens"""
return (
self.token(desc0.detach()).squeeze(-1),
self.token(desc1.detach()).squeeze(-1),
)
class Attention(nn.Module):
def __init__(self, allow_flash: bool) -> None:
super().__init__()
if allow_flash and not FLASH_AVAILABLE:
warnings.warn(
"FlashAttention is not available. For optimal speed, "
"consider installing torch >= 2.0 or flash-attn.",
stacklevel=2,
)
self.enable_flash = allow_flash and FLASH_AVAILABLE
self.has_sdp = hasattr(F, "scaled_dot_product_attention")
if allow_flash and FlashCrossAttention:
self.flash_ = FlashCrossAttention()
if self.has_sdp:
torch.backends.cuda.enable_flash_sdp(allow_flash)
def forward(self, q, k, v, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
if q.shape[-2] == 0 or k.shape[-2] == 0:
return q.new_zeros((*q.shape[:-1], v.shape[-1]))
if self.enable_flash and q.device.type == "cuda":
# use torch 2.0 scaled_dot_product_attention with flash
if self.has_sdp:
args = [x.half().contiguous() for x in [q, k, v]]
v = F.scaled_dot_product_attention(*args, attn_mask=mask).to(q.dtype)
return v if mask is None else v.nan_to_num()
else:
assert mask is None
q, k, v = [x.transpose(-2, -3).contiguous() for x in [q, k, v]]
m = self.flash_(q.half(), torch.stack([k, v], 2).half())
return m.transpose(-2, -3).to(q.dtype).clone()
elif self.has_sdp:
args = [x.contiguous() for x in [q, k, v]]
v = F.scaled_dot_product_attention(*args, attn_mask=mask)
return v if mask is None else v.nan_to_num()
else:
s = q.shape[-1] ** -0.5
sim = torch.einsum("...id,...jd->...ij", q, k) * s
if mask is not None:
sim.masked_fill(~mask, -float("inf"))
attn = F.softmax(sim, -1)
return torch.einsum("...ij,...jd->...id", attn, v)
class SelfBlock(nn.Module):
def __init__(
self, embed_dim: int, num_heads: int, flash: bool = False, bias: bool = True
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
assert self.embed_dim % num_heads == 0
self.head_dim = self.embed_dim // num_heads
self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias)
self.inner_attn = Attention(flash)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2 * embed_dim, 2 * embed_dim),
nn.LayerNorm(2 * embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2 * embed_dim, embed_dim),
)
def forward(
self,
x: torch.Tensor,
encoding: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
qkv = self.Wqkv(x)
qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2)
q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2]
q = apply_cached_rotary_emb(encoding, q)
k = apply_cached_rotary_emb(encoding, k)
context = self.inner_attn(q, k, v, mask=mask)
message = self.out_proj(context.transpose(1, 2).flatten(start_dim=-2))
return x + self.ffn(torch.cat([x, message], -1))
class CrossBlock(nn.Module):
def __init__(
self, embed_dim: int, num_heads: int, flash: bool = False, bias: bool = True
) -> None:
super().__init__()
self.heads = num_heads
dim_head = embed_dim // num_heads
self.scale = dim_head**-0.5
inner_dim = dim_head * num_heads
self.to_qk = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_out = nn.Linear(inner_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2 * embed_dim, 2 * embed_dim),
nn.LayerNorm(2 * embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2 * embed_dim, embed_dim),
)
if flash and FLASH_AVAILABLE:
self.flash = Attention(True)
else:
self.flash = None
def map_(self, func: Callable, x0: torch.Tensor, x1: torch.Tensor):
return func(x0), func(x1)
def forward(
self, x0: torch.Tensor, x1: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> List[torch.Tensor]:
qk0, qk1 = self.map_(self.to_qk, x0, x1)
v0, v1 = self.map_(self.to_v, x0, x1)
qk0, qk1, v0, v1 = map(
lambda t: t.unflatten(-1, (self.heads, -1)).transpose(1, 2),
(qk0, qk1, v0, v1),
)
if self.flash is not None and qk0.device.type == "cuda":
m0 = self.flash(qk0, qk1, v1, mask)
m1 = self.flash(
qk1, qk0, v0, mask.transpose(-1, -2) if mask is not None else None
)
else:
qk0, qk1 = qk0 * self.scale**0.5, qk1 * self.scale**0.5
sim = torch.einsum("bhid, bhjd -> bhij", qk0, qk1)
if mask is not None:
sim = sim.masked_fill(~mask, -float("inf"))
attn01 = F.softmax(sim, dim=-1)
attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1)
m0 = torch.einsum("bhij, bhjd -> bhid", attn01, v1)
m1 = torch.einsum("bhji, bhjd -> bhid", attn10.transpose(-2, -1), v0)
if mask is not None:
m0, m1 = m0.nan_to_num(), m1.nan_to_num()
m0, m1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2), m0, m1)
m0, m1 = self.map_(self.to_out, m0, m1)
x0 = x0 + self.ffn(torch.cat([x0, m0], -1))
x1 = x1 + self.ffn(torch.cat([x1, m1], -1))
return x0, x1
class TransformerLayer(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.self_attn = SelfBlock(*args, **kwargs)
self.cross_attn = CrossBlock(*args, **kwargs)
def forward(
self,
desc0,
desc1,
encoding0,
encoding1,
mask0: Optional[torch.Tensor] = None,
mask1: Optional[torch.Tensor] = None,
):
if mask0 is not None and mask1 is not None:
return self.masked_forward(desc0, desc1, encoding0, encoding1, mask0, mask1)
else:
desc0 = self.self_attn(desc0, encoding0)
desc1 = self.self_attn(desc1, encoding1)
return self.cross_attn(desc0, desc1)
# This part is compiled and allows padding inputs
def masked_forward(self, desc0, desc1, encoding0, encoding1, mask0, mask1):
mask = mask0 & mask1.transpose(-1, -2)
mask0 = mask0 & mask0.transpose(-1, -2)
mask1 = mask1 & mask1.transpose(-1, -2)
desc0 = self.self_attn(desc0, encoding0, mask0)
desc1 = self.self_attn(desc1, encoding1, mask1)
return self.cross_attn(desc0, desc1, mask)
def sigmoid_log_double_softmax(
sim: torch.Tensor, z0: torch.Tensor, z1: torch.Tensor
) -> torch.Tensor:
"""create the log assignment matrix from logits and similarity"""
b, m, n = sim.shape
certainties = F.logsigmoid(z0) + F.logsigmoid(z1).transpose(1, 2)
scores0 = F.log_softmax(sim, 2)
scores1 = F.log_softmax(sim.transpose(-1, -2).contiguous(), 2).transpose(-1, -2)
scores = sim.new_full((b, m + 1, n + 1), 0)
scores[:, :m, :n] = scores0 + scores1 + certainties
scores[:, :-1, -1] = F.logsigmoid(-z0.squeeze(-1))
scores[:, -1, :-1] = F.logsigmoid(-z1.squeeze(-1))
return scores
class MatchAssignment(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
self.matchability = nn.Linear(dim, 1, bias=True)
self.final_proj = nn.Linear(dim, dim, bias=True)
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
"""build assignment matrix from descriptors"""
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
_, _, d = mdesc0.shape
mdesc0, mdesc1 = mdesc0 / d**0.25, mdesc1 / d**0.25
sim = torch.einsum("bmd,bnd->bmn", mdesc0, mdesc1)
z0 = self.matchability(desc0)
z1 = self.matchability(desc1)
scores = sigmoid_log_double_softmax(sim, z0, z1)
return scores, sim
def get_matchability(self, desc: torch.Tensor):
return torch.sigmoid(self.matchability(desc)).squeeze(-1)
def filter_matches(scores: torch.Tensor, th: float):
"""obtain matches from a log assignment matrix [Bx M+1 x N+1]"""
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
m0, m1 = max0.indices, max1.indices
indices0 = torch.arange(m0.shape[1], device=m0.device)[None]
indices1 = torch.arange(m1.shape[1], device=m1.device)[None]
mutual0 = indices0 == m1.gather(1, m0)
mutual1 = indices1 == m0.gather(1, m1)
max0_exp = max0.values.exp()
zero = max0_exp.new_tensor(0)
mscores0 = torch.where(mutual0, max0_exp, zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
valid0 = mutual0 & (mscores0 > th)
valid1 = mutual1 & valid0.gather(1, m1)
m0 = torch.where(valid0, m0, -1)
m1 = torch.where(valid1, m1, -1)
return m0, m1, mscores0, mscores1
class LightGlue(nn.Module):
default_conf = {
"name": "lightglue", # just for interfacing
"input_dim": 256, # input descriptor dimension (autoselected from weights)
"descriptor_dim": 256,
"add_scale_ori": False,
"n_layers": 9,
"num_heads": 4,
"flash": True, # enable FlashAttention if available.
"mp": False, # enable mixed precision
"depth_confidence": 0.95, # early stopping, disable with -1
"width_confidence": 0.99, # point pruning, disable with -1
"filter_threshold": 0.1, # match threshold
"weights": None,
}
# Point pruning involves an overhead (gather).
# Therefore, we only activate it if there are enough keypoints.
pruning_keypoint_thresholds = {
"cpu": -1,
"mps": -1,
"cuda": 1024,
"flash": 1536,
}
required_data_keys = ["image0", "image1"]
version = "v0.1_arxiv"
url = "https://github.com/cvg/LightGlue/releases/download/{}/{}_lightglue.pth"
features = {
"superpoint": {
"weights": "superpoint_lightglue",
"input_dim": 256,
},
"disk": {
"weights": "disk_lightglue",
"input_dim": 128,
},
"aliked": {
"weights": "aliked_lightglue",
"input_dim": 128,
},
"sift": {
"weights": "sift_lightglue",
"input_dim": 128,
"add_scale_ori": True,
},
"doghardnet": {
"weights": "doghardnet_lightglue",
"input_dim": 128,
"add_scale_ori": True,
},
}
def __init__(self, features="superpoint", **conf) -> None:
super().__init__()
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
if features is not None:
if features not in self.features:
raise ValueError(
f"Unsupported features: {features} not in "
f"{{{','.join(self.features)}}}"
)
for k, v in self.features[features].items():
setattr(conf, k, v)
if conf.input_dim != conf.descriptor_dim:
self.input_proj = nn.Linear(conf.input_dim, conf.descriptor_dim, bias=True)
else:
self.input_proj = nn.Identity()
head_dim = conf.descriptor_dim // conf.num_heads
self.posenc = LearnableFourierPositionalEncoding(
2 + 2 * self.conf.add_scale_ori, head_dim, head_dim
)
h, n, d = conf.num_heads, conf.n_layers, conf.descriptor_dim
self.transformers = nn.ModuleList(
[TransformerLayer(d, h, conf.flash) for _ in range(n)]
)
self.log_assignment = nn.ModuleList([MatchAssignment(d) for _ in range(n)])
self.token_confidence = nn.ModuleList(
[TokenConfidence(d) for _ in range(n - 1)]
)
self.register_buffer(
"confidence_thresholds",
torch.Tensor(
[self.confidence_threshold(i) for i in range(self.conf.n_layers)]
),
)
state_dict = None
if features is not None:
fname = f"{conf.weights}_{self.version.replace('.', '-')}.pth"
state_dict = torch.hub.load_state_dict_from_url(
self.url.format(self.version, features), file_name=fname
)
self.load_state_dict(state_dict, strict=False)
elif conf.weights is not None:
path = Path(__file__).parent
path = path / "weights/{}.pth".format(self.conf.weights)
state_dict = torch.load(str(path), map_location="cpu")
if state_dict:
# rename old state dict entries
for i in range(self.conf.n_layers):
pattern = f"self_attn.{i}", f"transformers.{i}.self_attn"
state_dict = {k.replace(*pattern): v for k, v in state_dict.items()}
pattern = f"cross_attn.{i}", f"transformers.{i}.cross_attn"
state_dict = {k.replace(*pattern): v for k, v in state_dict.items()}
self.load_state_dict(state_dict, strict=False)
# static lengths LightGlue is compiled for (only used with torch.compile)
self.static_lengths = None
def compile(
self, mode="reduce-overhead", static_lengths=[256, 512, 768, 1024, 1280, 1536]
):
if self.conf.width_confidence != -1:
warnings.warn(
"Point pruning is partially disabled for compiled forward.",
stacklevel=2,
)
torch._inductor.cudagraph_mark_step_begin()
for i in range(self.conf.n_layers):
self.transformers[i].masked_forward = torch.compile(
self.transformers[i].masked_forward, mode=mode, fullgraph=True
)
self.static_lengths = static_lengths
def forward(self, data: dict) -> dict:
"""
Match keypoints and descriptors between two images
Input (dict):
image0: dict
keypoints: [B x M x 2]
descriptors: [B x M x D]
image: [B x C x H x W] or image_size: [B x 2]
image1: dict
keypoints: [B x N x 2]
descriptors: [B x N x D]
image: [B x C x H x W] or image_size: [B x 2]
Output (dict):
matches0: [B x M]
matching_scores0: [B x M]
matches1: [B x N]
matching_scores1: [B x N]
matches: List[[Si x 2]]
scores: List[[Si]]
stop: int
prune0: [B x M]
prune1: [B x N]
"""
with torch.autocast(enabled=self.conf.mp, device_type="cuda"):
return self._forward(data)
def _forward(self, data: dict) -> dict:
for key in self.required_data_keys:
assert key in data, f"Missing key {key} in data"
data0, data1 = data["image0"], data["image1"]
kpts0, kpts1 = data0["keypoints"], data1["keypoints"]
b, m, _ = kpts0.shape
b, n, _ = kpts1.shape
device = kpts0.device
size0, size1 = data0.get("image_size"), data1.get("image_size")
kpts0 = normalize_keypoints(kpts0, size0).clone()
kpts1 = normalize_keypoints(kpts1, size1).clone()
if self.conf.add_scale_ori:
kpts0 = torch.cat(
[kpts0] + [data0[k].unsqueeze(-1) for k in ("scales", "oris")], -1
)
kpts1 = torch.cat(
[kpts1] + [data1[k].unsqueeze(-1) for k in ("scales", "oris")], -1
)
desc0 = data0["descriptors"].detach().contiguous()
desc1 = data1["descriptors"].detach().contiguous()
assert desc0.shape[-1] == self.conf.input_dim
assert desc1.shape[-1] == self.conf.input_dim
if torch.is_autocast_enabled():
desc0 = desc0.half()
desc1 = desc1.half()
mask0, mask1 = None, None
c = max(m, n)
do_compile = self.static_lengths and c <= max(self.static_lengths)
if do_compile:
kn = min([k for k in self.static_lengths if k >= c])
desc0, mask0 = pad_to_length(desc0, kn)
desc1, mask1 = pad_to_length(desc1, kn)
kpts0, _ = pad_to_length(kpts0, kn)
kpts1, _ = pad_to_length(kpts1, kn)
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
# cache positional embeddings
encoding0 = self.posenc(kpts0)
encoding1 = self.posenc(kpts1)
# GNN + final_proj + assignment
do_early_stop = self.conf.depth_confidence > 0
do_point_pruning = self.conf.width_confidence > 0 and not do_compile
pruning_th = self.pruning_min_kpts(device)
if do_point_pruning:
ind0 = torch.arange(0, m, device=device)[None]
ind1 = torch.arange(0, n, device=device)[None]
# We store the index of the layer at which pruning is detected.
prune0 = torch.ones_like(ind0)
prune1 = torch.ones_like(ind1)
token0, token1 = None, None
for i in range(self.conf.n_layers):
if desc0.shape[1] == 0 or desc1.shape[1] == 0: # no keypoints
break
desc0, desc1 = self.transformers[i](
desc0, desc1, encoding0, encoding1, mask0=mask0, mask1=mask1
)
if i == self.conf.n_layers - 1:
continue # no early stopping or adaptive width at last layer
if do_early_stop:
token0, token1 = self.token_confidence[i](desc0, desc1)
if self.check_if_stop(token0[..., :m], token1[..., :n], i, m + n):
break
if do_point_pruning and desc0.shape[-2] > pruning_th:
scores0 = self.log_assignment[i].get_matchability(desc0)
prunemask0 = self.get_pruning_mask(token0, scores0, i)
keep0 = torch.where(prunemask0)[1]
ind0 = ind0.index_select(1, keep0)
desc0 = desc0.index_select(1, keep0)
encoding0 = encoding0.index_select(-2, keep0)
prune0[:, ind0] += 1
if do_point_pruning and desc1.shape[-2] > pruning_th:
scores1 = self.log_assignment[i].get_matchability(desc1)
prunemask1 = self.get_pruning_mask(token1, scores1, i)
keep1 = torch.where(prunemask1)[1]
ind1 = ind1.index_select(1, keep1)
desc1 = desc1.index_select(1, keep1)
encoding1 = encoding1.index_select(-2, keep1)
prune1[:, ind1] += 1
if desc0.shape[1] == 0 or desc1.shape[1] == 0: # no keypoints
m0 = desc0.new_full((b, m), -1, dtype=torch.long)
m1 = desc1.new_full((b, n), -1, dtype=torch.long)
mscores0 = desc0.new_zeros((b, m))
mscores1 = desc1.new_zeros((b, n))
matches = desc0.new_empty((b, 0, 2), dtype=torch.long)
mscores = desc0.new_empty((b, 0))
if not do_point_pruning:
prune0 = torch.ones_like(mscores0) * self.conf.n_layers
prune1 = torch.ones_like(mscores1) * self.conf.n_layers
return {
"matches0": m0,
"matches1": m1,
"matching_scores0": mscores0,
"matching_scores1": mscores1,
"stop": i + 1,
"matches": matches,
"scores": mscores,
"prune0": prune0,
"prune1": prune1,
}
desc0, desc1 = desc0[..., :m, :], desc1[..., :n, :] # remove padding
scores, _ = self.log_assignment[i](desc0, desc1)
m0, m1, mscores0, mscores1 = filter_matches(scores, self.conf.filter_threshold)
matches, mscores = [], []
for k in range(b):
valid = m0[k] > -1
m_indices_0 = torch.where(valid)[0]
m_indices_1 = m0[k][valid]
if do_point_pruning:
m_indices_0 = ind0[k, m_indices_0]
m_indices_1 = ind1[k, m_indices_1]
matches.append(torch.stack([m_indices_0, m_indices_1], -1))
mscores.append(mscores0[k][valid])
# TODO: Remove when hloc switches to the compact format.
if do_point_pruning:
m0_ = torch.full((b, m), -1, device=m0.device, dtype=m0.dtype)
m1_ = torch.full((b, n), -1, device=m1.device, dtype=m1.dtype)
m0_[:, ind0] = torch.where(m0 == -1, -1, ind1.gather(1, m0.clamp(min=0)))
m1_[:, ind1] = torch.where(m1 == -1, -1, ind0.gather(1, m1.clamp(min=0)))
mscores0_ = torch.zeros((b, m), device=mscores0.device)
mscores1_ = torch.zeros((b, n), device=mscores1.device)
mscores0_[:, ind0] = mscores0
mscores1_[:, ind1] = mscores1
m0, m1, mscores0, mscores1 = m0_, m1_, mscores0_, mscores1_
else:
prune0 = torch.ones_like(mscores0) * self.conf.n_layers
prune1 = torch.ones_like(mscores1) * self.conf.n_layers
return {
"matches0": m0,
"matches1": m1,
"matching_scores0": mscores0,
"matching_scores1": mscores1,
"stop": i + 1,
"matches": matches,
"scores": mscores,
"prune0": prune0,
"prune1": prune1,
}
def confidence_threshold(self, layer_index: int) -> float:
"""scaled confidence threshold"""
threshold = 0.8 + 0.1 * np.exp(-4.0 * layer_index / self.conf.n_layers)
return np.clip(threshold, 0, 1)
def get_pruning_mask(
self, confidences: torch.Tensor, scores: torch.Tensor, layer_index: int
) -> torch.Tensor:
"""mask points which should be removed"""
keep = scores > (1 - self.conf.width_confidence)
if confidences is not None: # Low-confidence points are never pruned.
keep |= confidences <= self.confidence_thresholds[layer_index]
return keep
def check_if_stop(
self,
confidences0: torch.Tensor,
confidences1: torch.Tensor,
layer_index: int,
num_points: int,
) -> torch.Tensor:
"""evaluate stopping condition"""
confidences = torch.cat([confidences0, confidences1], -1)
threshold = self.confidence_thresholds[layer_index]
ratio_confident = 1.0 - (confidences < threshold).float().sum() / num_points
return ratio_confident > self.conf.depth_confidence
def pruning_min_kpts(self, device: torch.device):
if self.conf.flash and FLASH_AVAILABLE and device.type == "cuda":
return self.pruning_keypoint_thresholds["flash"]
else:
return self.pruning_keypoint_thresholds[device.type]