-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathlearn_labelembedding.py
208 lines (167 loc) · 12.3 KB
/
learn_labelembedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import argparse
import pickle
import os
import shutil
from collections import OrderedDict
import keras
from keras import backend as K
import utils
from datasets import get_data_generator
def cross_entropy(logit, prob):
return K.sum(prob * K.tf.nn.log_softmax(logit), axis = 1)
def labelembed_loss(out1, out2, tar, targets, tau = 2., alpha = 0.9, beta = 0.5, num_classes = 100):
out2_prob = K.softmax(out2)
tau2_prob = K.stop_gradient(K.softmax(out2 / tau))
soft_tar = K.stop_gradient(K.softmax(tar))
L_o1_y = K.sparse_categorical_crossentropy(output = K.softmax(out1), target = targets)
pred = K.argmax(out2, axis = -1)
mask = K.stop_gradient(K.cast(K.equal(pred, K.cast(targets, 'int64')), K.floatx()))
L_o1_emb = -cross_entropy(out1, soft_tar) # pylint: disable=invalid-unary-operand-type
L_o2_y = K.sparse_categorical_crossentropy(output = out2_prob, target = targets)
L_emb_o2 = -cross_entropy(tar, tau2_prob) * mask * (K.cast(K.shape(mask)[0], K.floatx())/(K.sum(mask)+1e-8)) # pylint: disable=invalid-unary-operand-type
L_re = K.relu(K.sum(out2_prob * K.one_hot(K.cast(targets, 'int64'), num_classes), axis = -1) - alpha)
return beta * L_o1_y + (1-beta) * L_o1_emb + L_o2_y + L_emb_o2 + L_re
def labelembed_model(base_model, num_classes, **kwargs):
input_ = base_model.input
embedding = base_model.output
out = keras.layers.Activation('relu')(embedding)
out = keras.layers.BatchNormalization(name = 'embedding_bn')(out)
out1 = keras.layers.Dense(num_classes, name = 'prob')(out)
out2 = keras.layers.Dense(num_classes, name = 'out2')(keras.layers.Lambda(lambda x: K.stop_gradient(x))(out))
cls_input_ = keras.layers.Input((1,), name = 'labels')
cls_embedding_layer = keras.layers.Embedding(num_classes, num_classes, embeddings_initializer = 'identity', name = 'labelembeddings')
cls_embedding = keras.layers.Flatten()(cls_embedding_layer(cls_input_))
loss = keras.layers.Lambda(lambda x: labelembed_loss(x[0], x[1], x[2], K.flatten(x[3]), num_classes = num_classes, **kwargs)[:,None], name = 'labelembed_loss')([out1, out2, cls_embedding, cls_input_])
return keras.models.Model([input_, cls_input_], [embedding, out1, loss])
def transform_inputs(X, y, num_classes):
return [X, y], { 'labelembed_loss' : np.zeros((len(X), 1)), 'prob' : keras.utils.to_categorical(y, num_classes) }
if __name__ == '__main__':
# Parse arguments
parser = argparse.ArgumentParser(description = 'Trains a label embedding network (Sun et al.).', formatter_class = argparse.ArgumentDefaultsHelpFormatter)
arggroup = parser.add_argument_group('Data parameters')
arggroup.add_argument('--dataset', type = str, required = True, help = 'Training dataset. See README.md for a list of available datasets.')
arggroup.add_argument('--data_root', type = str, required = True, help = 'Root directory of the dataset.')
arggroup.add_argument('--class_list', type = str, default = None, help = 'Path to a file containing the IDs of the subset of classes to be used (as first words per line).')
arggroup = parser.add_argument_group('Label embedding parameters')
arggroup.add_argument('--embed_dim', type = int, default = 100, help = 'Embedding dimensionality.')
arggroup.add_argument('--tau', type = float, default = 2., help = 'Softmax temperature.')
arggroup.add_argument('--alpha', type = float, default = 0.9)
arggroup.add_argument('--beta', type = float, default = 0.5)
arggroup = parser.add_argument_group('Training parameters')
arggroup.add_argument('--architecture', type = str, default = 'simple', choices = utils.ARCHITECTURES, help = 'Type of network architecture.')
arggroup.add_argument('--lr_schedule', type = str, default = 'SGDR', choices = utils.LR_SCHEDULES, help = 'Type of learning rate schedule.')
arggroup.add_argument('--clipgrad', type = float, default = 10.0, help = 'Gradient norm clipping.')
arggroup.add_argument('--max_decay', type = float, default = 0.0, help = 'Learning Rate decay at the end of training.')
arggroup.add_argument('--nesterov', action = 'store_true', default = False, help = 'Use Nesterov momentum instead of standard momentum.')
arggroup.add_argument('--epochs', type = int, default = None, help = 'Number of training epochs.')
arggroup.add_argument('--batch_size', type = int, default = 100, help = 'Batch size.')
arggroup.add_argument('--val_batch_size', type = int, default = None, help = 'Validation batch size.')
arggroup.add_argument('--finetune', type = str, default = None, help = 'Path to pre-trained weights to be fine-tuned (will be loaded by layer name).')
arggroup.add_argument('--finetune_init', type = int, default = 3, help = 'Number of initial epochs for training just the new layers before fine-tuning.')
arggroup.add_argument('--gpus', type = int, default = 1, help = 'Number of GPUs to be used.')
arggroup.add_argument('--read_workers', type = int, default = 8, help = 'Number of parallel data pre-processing processes.')
arggroup.add_argument('--queue_size', type = int, default = 100, help = 'Maximum size of data queue.')
arggroup.add_argument('--gpu_merge', action = 'store_true', default = False, help = 'Merge weights on the GPU.')
arggroup = parser.add_argument_group('Output parameters')
arggroup.add_argument('--model_dump', type = str, default = None, help = 'Filename where the learned model definition and weights should be written to.')
arggroup.add_argument('--weight_dump', type = str, default = None, help = 'Filename where the learned model weights should be written to (without model definition).')
arggroup.add_argument('--feature_dump', type = str, default = None, help = 'Filename where learned embeddings for test images should be written to.')
arggroup.add_argument('--log_dir', type = str, default = None, help = 'Tensorboard log directory.')
arggroup.add_argument('--no_progress', action = 'store_true', default = False, help = 'Do not display training progress, but just the final performance.')
utils.add_lr_schedule_arguments(parser)
args = parser.parse_args()
if args.val_batch_size is None:
args.val_batch_size = args.batch_size
# Configure environment
K.set_session(K.tf.Session(config = K.tf.ConfigProto(gpu_options = { 'allow_growth' : True })))
# Load dataset
if args.class_list is not None:
with open(args.class_list) as class_file:
class_list = list(OrderedDict((l.strip().split()[0], None) for l in class_file if l.strip() != '').keys())
try:
class_list = [int(lbl) for lbl in class_list]
except ValueError:
pass
else:
class_list = None
data_generator = get_data_generator(args.dataset, args.data_root, classes = class_list)
# Construct and train model
if (args.gpus <= 1) or args.gpu_merge:
embed_model = utils.build_network(args.embed_dim, args.architecture)
model = labelembed_model(embed_model, data_generator.num_classes, tau = args.tau, alpha = args.alpha, beta = args.beta)
par_model = model if args.gpus <= 1 else keras.utils.multi_gpu_model(model, gpus = args.gpus, cpu_merge = False)
else:
with K.tf.device('/cpu:0'):
embed_model = utils.build_network(args.embed_dim, args.architecture)
model = labelembed_model(embed_model, data_generator.num_classes, tau = args.tau, alpha = args.alpha, beta = args.beta)
par_model = keras.utils.multi_gpu_model(model, gpus = args.gpus)
if not args.no_progress:
model.summary()
batch_transform_kwargs = { 'num_classes' : data_generator.num_classes }
# Load pre-trained weights and train last layer for a few epochs
if args.finetune:
print('Loading pre-trained weights from {}'.format(args.finetune))
model.load_weights(args.finetune, by_name=True, skip_mismatch=True)
if args.finetune_init > 0:
print('Pre-training new layers')
for layer in model.layers:
layer.trainable = (layer.name in ('embedding', 'embedding_bn', 'prob', 'out2', 'labelembeddings'))
embed_model.layers[-1].trainable = True
par_model.compile(optimizer = keras.optimizers.SGD(lr=args.sgd_lr, momentum=0.9, nesterov=args.nesterov, clipnorm = args.clipgrad),
loss = { 'labelembed_loss' : lambda y_true, y_pred: y_pred[:,0], 'embedding' : None, 'prob' : lambda y_true, y_pred: K.tf.zeros(K.shape(y_true)[:1], dtype=K.floatx()) },
metrics = { 'prob' : 'accuracy' })
par_model.fit_generator(
data_generator.train_sequence(args.batch_size, batch_transform = transform_inputs, batch_transform_kwargs = batch_transform_kwargs),
validation_data = data_generator.test_sequence(args.val_batch_size, batch_transform = transform_inputs, batch_transform_kwargs = batch_transform_kwargs),
epochs = args.finetune_init, verbose = not args.no_progress,
max_queue_size = args.queue_size, workers = args.read_workers, use_multiprocessing = True)
for layer in model.layers:
layer.trainable = True
print('Full model training')
# Train model
callbacks, num_epochs = utils.get_lr_schedule(args.lr_schedule, data_generator.num_train, args.batch_size, schedule_args = { arg_name : arg_val for arg_name, arg_val in vars(args).items() if arg_val is not None })
if args.log_dir:
if os.path.isdir(args.log_dir):
shutil.rmtree(args.log_dir, ignore_errors = True)
callbacks.append(keras.callbacks.TensorBoard(log_dir = args.log_dir, write_graph = False))
if args.max_decay > 0:
decay = (1.0/args.max_decay - 1) / ((data_generator.num_train // args.batch_size) * (args.epochs if args.epochs else num_epochs))
else:
decay = 0.0
par_model.compile(optimizer = keras.optimizers.SGD(lr=args.sgd_lr, decay=decay, momentum=0.9, nesterov=args.nesterov, clipnorm = args.clipgrad),
loss = { 'labelembed_loss' : lambda y_true, y_pred: y_pred[:,0], 'embedding' : None, 'prob' : lambda y_true, y_pred: K.tf.zeros(K.shape(y_true)[:1], dtype=K.floatx()) },
metrics = { 'prob' : 'accuracy' })
par_model.fit_generator(
data_generator.train_sequence(args.batch_size, batch_transform = transform_inputs, batch_transform_kwargs = batch_transform_kwargs),
validation_data = data_generator.test_sequence(args.val_batch_size, batch_transform = transform_inputs, batch_transform_kwargs = batch_transform_kwargs),
epochs = args.epochs if args.epochs else num_epochs,
callbacks = callbacks, verbose = not args.no_progress,
max_queue_size = args.queue_size, workers = args.read_workers, use_multiprocessing = True)
# Evaluate final performance
print(par_model.evaluate_generator(data_generator.test_sequence(args.val_batch_size, batch_transform = transform_inputs, batch_transform_kwargs = batch_transform_kwargs)))
try:
test_pred = par_model.predict_generator(data_generator.flow_test(args.val_batch_size, False), data_generator.num_test // args.val_batch_size)[1].argmax(axis = -1)
class_freq = np.bincount(data_generator.labels_test)
print('Accuracy: {:.4f}'.format(np.mean(test_pred == np.asarray(data_generator.labels_test))))
print('Average Accuracy: {:.4f}'.format(
((test_pred == np.asarray(data_generator.labels_test)).astype(np.float) / class_freq[np.asarray(data_generator.labels_test)]).sum() / len(class_freq)
))
except:
pass
# Save model
if args.weight_dump:
try:
model.save_weights(args.weight_dump)
except Exception as e:
print('An error occurred while saving the model weights: {}'.format(e))
if args.model_dump:
try:
model.save(args.model_dump)
except Exception as e:
print('An error occurred while saving the model: {}'.format(e))
# Save test image embeddings
if args.feature_dump:
pred_features = embed_model.predict_generator(data_generator.flow_test(1, False), data_generator.num_test)
with open(args.feature_dump,'wb') as dump_file:
pickle.dump({ 'feat' : dict(enumerate(pred_features)) }, dump_file)