-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCA_Clustering_Filter.py
246 lines (235 loc) · 14.1 KB
/
PCA_Clustering_Filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from sklearn.cluster import DBSCAN
from sklearn.cluster import OPTICS, cluster_optics_dbscan
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn import preprocessing
from statsmodels.tsa.stattools import coint
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import sys
import math
import warnings
qb = QuantBook()
#In sample period
screening_time = datetime(2016,1,1) # This is the latest listing date for stocks to be seletced
start_time = datetime(2018, 1, 2) # start datetime for history call
end_time = datetime(2021, 4, 15) # end datetime for history call
# CCS
'''
tickers = ['AACG','ACH','AEHL','AGBA','AGBAU','AGMH','AIH','AIHS','AMBO','ANPC',
'API','APM','ATCO','ATHM','ATIF','BABA','BAOS','BEDU','BEKE','BEST','BGNE','BHAT',
'BIDU','BILI','BIMI','BLCT','BNR','BQ','BRQS','BTBT','BYSI','BZUN','CAAS','CAN',
'CANG','CBAT','CCM','CCNC','CCRC','CD','CEA','CGA','CHNR','CIH','CJJD','CLEU','CLPS',
'CLWT','CMCM','CNET','CNEY','CNF','CNTB','CO','COE','CPHI','CREG','CSCW','CSIQ','CTK','CXDC','CYD',
'DADA','DAO','DOGZ','DOYU','DQ','DSWL','DTSS','DUO','DXF','EBON','EDTK','EDU','EH','EM','EVK',
'EZGO','FAMI','FANH','FEDU','FENG','FFHL','FHS','FINV','FTFT','FUTU','GDS','GHG','GLG','GSMG',
'GSX','GTEC','GTH','GURE','HAPP','HCM','HGSH','HIHO','HLG','HNP','HOLI','HTHT','HUDI','HUIZ',
'HUSN','HUYA','HX','HYW','ICLK','IDEX','IFBD','IH','IMAB','IQ','ITP','JD','JFIN','JFU','JG','JKS',
'JOBS','JP','JRJC','JT','JWEL','KBSF','KC','KNDI','KRKR','KUKE','KXIN','LAIX','LEGN','LEJU','LFC',
'LGHL','LI','LITB','LIZI','LKCO','LLIT','LU','LX','LXEH','LYL','MARK','MDJH','METX','MFH','MKD','MLCO',
'MNSO','MOGU','MOHO','MOMO','MOXC','MSC','MTC','MYT','NCTY','NEW','NEWA','NFH','NIO','NISN','NIU',
'NOAH','NTES','NTP','NVFY','NVVE','OCFT','OCG','OIIM','ONE','OSN','PBTS','PDD','PETZ','PHCF','PLAG',
'PLIN','PME','PT','PTR','PUYI','QD','QFIN','QH','QK','QLI','QTT','RCON','REDU','RENN','RETO',
'RLX','RYB','SDH','SECO','SEED','SFUN','SGOC','SHI','SINO','SJ','SNP','SOGO','SOHU','SOL','SOS',
'SPI','STG','SVA','SVM','SXTC','SY','TAL','TANH','TAOP','TC','TCOM','TEDU','TIGR','TIRX','TKAT','TME',
'TOUR','TSP','TYHT','UCL','UPC','UTME','UTSI','UXIN','VIOT','VIPS','VNET','WAFU','WB',
'WEI','WIMI','WNW','XIN','XNET','XPEV','XYF','YGMZ','YI','YJ','YQ','YRD','YSG','YUMC','YY','ZCMD',
'ZGYH','ZGYHU','ZKIN','ZLAB','ZNH','ZTO']
'''
# ETF
#tickers = ["SPY","IVV","VTI","VOO","QQQ","VEA","IEFA","AGG","IEMG","VWO","VTV","BND","IWM","VUG","IJR","IWF","IJH","GLD","VIG","EFA","IWD","VO","VB","VXUS","VCIT","LQD","VGT","BNDX","XLF","XLK","VCSH","VNQ","ITOT","VYM","VEU","BSV","IVW","EEM","USMV","DIA","IAU","SCHX","IWR","IWB","IXUS","MBB","TIP","SCHF","XLV","RSP","IGSB","XLE","VBR","VV","IVE","SCHD","ARKK","MUB","HYG","MDY","SHY","QUAL","XLI","SCHB","VT","XLY","SDY","PFF","DVY","EMB","DGRO","SCHP","IWN","JPST","SHV","ACWI","VGK","VXF","ESGU","SCHA","VBK","TLT","MINT","IWP","SLV","GOVT","IEF","BIV","VLUE","VMBS","VHT","MTUM","GDX","SCZ","SCHG","VOE","IWS","EWJ","BIL","XLC"]
# S&P500 components
tickers = ["MMM" ,"AOS" ,"ABT" ,"ABBV" ,"ABMD" ,"ACN" ,"ATVI" ,"ADBE" ,"AAP" ,"AMD" ,"AES" ,"AFL" ,"A" ,"APD" ,"AKAM" ,"ALK" ,"ALB" ,"ARE" ,"ALXN" ,"ALGN" ,"ALLE" ,"LNT" ,"ALL" ,"GOOGL" ,"GOOG" ,"MO" ,"AMZN" ,"AMCR" ,"AEE" ,"AAL" ,"AEP" ,"AXP" ,"AIG" ,"AMT" ,"AWK" ,"AMP" ,"ABC" ,"AME" ,"AMGN" ,"APH" ,"ADI" ,"ANSS" ,"ANTM" ,"AON" ,"APA" ,"AAPL" ,"AMAT" ,"APTV" ,"ADM" ,"ANET" ,"AJG" ,"AIZ" ,"T" ,"ATO" ,"ADSK" ,"ADP" ,"AZO" ,"AVB" ,"AVY" ,"BKR" ,"BLL" ,"BAC" ,"BAX" ,"BDX" ,"BRK.B" ,"BBY" ,"BIO" ,"BIIB" ,"BLK" ,"BA" ,"BKNG" ,"BWA" ,"BXP" ,"BSX" ,"BMY" ,"AVGO" ,"BR" ,"BF.B" ,"CHRW" ,"COG" ,"CDNS" ,"CZR" ,"CPB" ,"COF" ,"CAH" ,"KMX" ,"CCL" ,"CARR" ,"CTLT" ,"CAT" ,"CBOE" ,"CBRE" ,"CDW" ,"CE" ,"CNC" ,"CNP" ,"CERN" ,"CF" ,"SCHW" ,"CHTR" ,"CVX" ,"CMG" ,"CB" ,"CHD" ,"CI" ,"CINF" ,"CTAS" ,"CSCO" ,"C" ,"CFG" ,"CTXS" ,"CME" ,"CMS" ,"KO" ,"CTSH" ,"CL" ,"CMCSA" ,"CMA" ,"CAG" ,"COP" ,"ED" ,"STZ" ,"CPRT" ,"GLW" ,"CTVA" ,"COST" ,"CCI" ,"CSX" ,"CMI" ,"CVS" ,"DHI" ,"DHR" ,"DRI" ,"DVA" ,"DE" ,"DAL" ,"XRAY" ,"DVN" ,"DXCM" ,"FANG" ,"DLR" ,"DFS" ,"DISCA" ,"DISCK" ,"DISH" ,"DG" ,"DLTR" ,"D" ,"DPZ" ,"DOV" ,"DOW" ,"DTE" ,"DUK" ,"DRE" ,"DD" ,"DXC" ,"EMN" ,"ETN" ,"EBAY" ,"ECL" ,"EIX" ,"EW" ,"EA" ,"EMR" ,"ENPH" ,"ETR" ,"EOG" ,"EFX" ,"EQIX" ,"EQR" ,"ESS" ,"EL" ,"ETSY" ,"RE" ,"EVRG" ,"ES" ,"EXC" ,"EXPE" ,"EXPD" ,"EXR" ,"XOM" ,"FFIV" ,"FB" ,"FAST" ,"FRT" ,"FDX" ,"FIS" ,"FITB" ,"FRC" ,"FE" ,"FISV" ,"FLT" ,"FLIR" ,"FMC" ,"F" ,"FTNT" ,"FTV" ,"FBHS" ,"FOXA" ,"FOX" ,"BEN" ,"FCX" ,"GPS" ,"GRMN" ,"IT" ,"GNRC" ,"GD" ,"GE" ,"GIS" ,"GM" ,"GPC" ,"GILD" ,"GPN" ,"GL" ,"GS" ,"GWW" ,"HAL" ,"HBI" ,"HIG" ,"HAS" ,"HCA" ,"PEAK" ,"HSIC" ,"HES" ,"HPE" ,"HLT" ,"HFC" ,"HOLX" ,"HD" ,"HON" ,"HRL" ,"HST" ,"HWM" ,"HPQ" ,"HUM" ,"HBAN" ,"HII" ,"IEX" ,"IDXX" ,"INFO" ,"ITW" ,"ILMN" ,"INCY" ,"IR" ,"INTC" ,"ICE" ,"IBM" ,"IFF" ,"IP" ,"IPG" ,"INTU" ,"ISRG" ,"IVZ" ,"IPGP" ,"IQV" ,"IRM" ,"JBHT" ,"JKHY" ,"J" ,"SJM" ,"JNJ" ,"JCI" ,"JPM" ,"JNPR" ,"KSU" ,"K" ,"KEY" ,"KEYS" ,"KMB" ,"KIM" ,"KMI" ,"KLAC" ,"KHC" ,"KR" ,"LB" ,"LHX" ,"LH" ,"LRCX" ,"LW" ,"LVS" ,"LEG" ,"LDOS" ,"LEN" ,"LLY" ,"LNC" ,"LIN" ,"LYV" ,"LKQ" ,"LMT" ,"L" ,"LOW" ,"LUMN" ,"LYB" ,"MTB" ,"MRO" ,"MPC" ,"MKTX" ,"MAR" ,"MMC" ,"MLM" ,"MAS" ,"MA" ,"MXIM" ,"MKC" ,"MCD" ,"MCK" ,"MDT" ,"MRK" ,"MET" ,"MTD" ,"MGM" ,"MCHP" ,"MU" ,"MSFT" ,"MAA" ,"MHK" ,"TAP" ,"MDLZ" ,"MPWR" ,"MNST" ,"MCO" ,"MS" ,"MSI" ,"MSCI" ,"NDAQ" ,"NTAP" ,"NFLX" ,"NWL" ,"NEM" ,"NWSA" ,"NWS" ,"NEE" ,"NLSN" ,"NKE" ,"NI" ,"NSC" ,"NTRS" ,"NOC" ,"NLOK" ,"NCLH" ,"NOV" ,"NRG" ,"NUE" ,"NVDA" ,"NVR" ,"NXPI" ,"ORLY" ,"OXY" ,"ODFL" ,"OMC" ,"OKE" ,"ORCL" ,"OTIS" ,"PCAR" ,"PKG" ,"PH" ,"PAYX" ,"PAYC" ,"PYPL" ,"PENN" ,"PNR" ,"PBCT" ,"PEP" ,"PKI" ,"PRGO" ,"PFE" ,"PM" ,"PSX" ,"PNW" ,"PXD" ,"PNC" ,"POOL" ,"PPG" ,"PPL" ,"PFG" ,"PG" ,"PGR" ,"PLD" ,"PRU" ,"PEG" ,"PSA" ,"PHM" ,"PVH" ,"QRVO" ,"QCOM" ,"PWR" ,"DGX" ,"RL" ,"RJF" ,"RTX" ,"O" ,"REG" ,"REGN" ,"RF" ,"RSG" ,"RMD" ,"RHI" ,"ROK" ,"ROL" ,"ROP" ,"ROST" ,"RCL" ,"SPGI" ,"CRM" ,"SBAC" ,"SLB" ,"STX" ,"SEE" ,"SRE" ,"NOW" ,"SHW" ,"SPG" ,"SWKS" ,"SNA" ,"SO" ,"LUV" ,"SWK" ,"SBUX" ,"STT" ,"STE" ,"SYK" ,"SIVB" ,"SYF" ,"SNPS" ,"SYY" ,"TMUS" ,"TROW" ,"TTWO" ,"TPR" ,"TGT" ,"TEL" ,"TDY" ,"TFX" ,"TER" ,"TSLA" ,"TXN" ,"TXT" ,"BK" ,"CLX" ,"COO" ,"HSY" ,"MOS" ,"TRV" ,"DIS" ,"TMO" ,"TJX" ,"TSCO" ,"TT" ,"TDG" ,"TRMB" ,"TFC" ,"TWTR" ,"TYL" ,"TSN" ,"USB" ,"UDR" ,"ULTA" ,"UAA" ,"UA" ,"UNP" ,"UAL" ,"UPS" ,"URI" ,"UNH" ,"UHS" ,"UNM" ,"VLO" ,"VAR" ,"VTR" ,"VRSN" ,"VRSK" ,"VZ" ,"VRTX" ,"VFC" ,"VIAC" ,"VTRS" ,"V" ,"VNO" ,"VMC" ,"WRB" ,"WBA" ,"WMT" ,"WM" ,"WAT" ,"WEC" ,"WFC" ,"WELL" ,"WST" ,"WDC" ,"WU" ,"WAB" ,"WRK" ,"WY" ,"WHR" ,"WMB" ,"WLTW" ,"WYNN" ,"XEL" ,"XLNX" ,"XYL" ,"YUM" ,"ZBRA" ,"ZBH" ,"ZION" ,"ZTS"]
Get History Data
# Get history data of tickers with listing date before 2016/1/1
for ticker in tickers:
qb.AddEquity(ticker, Resolution.Daily)
qb = QuantBook()
symbols = []
for ticker in tickers:
symbol = qb.Symbol(ticker)
date = symbol.ID.Date
if date < screening_time:
qb.AddEquity(ticker, Resolution.Daily)
symbols.append(symbol)
history = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Daily)
df = history['close'].unstack(level=0)
# calculate daily return
dpct = df.pct_change().dropna()
dpct
Functions to Be Used Later
# Use PCA to reduce the demension of features
def pca(dpct,N_PRIN_COMPONENTS = 50):
pca = PCA(n_components=N_PRIN_COMPONENTS)
pca.fit(dpct)
df_pca = pd.DataFrame(index = dpct.T.index, data = pca.components_.T)
return df_pca
# DBSCAN to cluster tickers
def dbscan(df_pca,eps=0.15,min_samples=3):
clf = DBSCAN(eps=eps,min_samples=min_samples)
clf.fit(df_pca)
labels = clf.labels_
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) # eliminate noisy samples
print("Clusters discovered by DBSCAN: %d" % n_clusters_)
clustered_series_all = pd.Series(index=df_pca.index, data=labels.flatten())
clustered_series = clustered_series_all[clustered_series_all != -1]
counts = clustered_series.value_counts()
print("Pairs to evaluate by DBSCAN: %d" % (counts * (counts - 1) / 2).sum())
return clustered_series_all, clustered_series, counts, clf
# OPTICS to cluster tickers
def optics(df_pca):
clf_op = OPTICS(min_samples=3, metric='euclidean', cluster_method='xi')
clf_op.fit(df_pca)
labels_op = clf_op.labels_
n_clusters_op = len(set(labels_op)) - (1 if -1 in labels_op else 0) # eliminate noisy samples
print("Clusters discovered by OPTICS: %d" % n_clusters_op)
clustered_series_all_op = pd.Series(index=df_pca.index, data=labels_op.flatten())
clustered_series_op = clustered_series_all_op[clustered_series_all_op != -1]
counts_op = clustered_series_op.value_counts()
print("Pairs to evaluate by OPTICS: %d" % (counts_op * (counts_op - 1) / 2).sum())
return clustered_series_all_op, clustered_series_op, counts_op, clf_op
# Show clusters‘ size
def cluster_size(series,method):
plt.figure()
plt.barh(
range(len(series.value_counts())), # cluster labels, y axis
series.value_counts()
)
plt.title('Cluster Member Counts by ' + method)
plt.xlabel('Stocks in Cluster')
plt.ylabel('Cluster Id');
# Visualize clustering result with t-SNE
def plot_TSNE(X, clf, clustered_series_all, method):
"""
This function makes use of t-sne to visualize clusters in 2d.
"""
X_tsne = TSNE(learning_rate=1000, perplexity=25, random_state=1337).fit_transform(X)
# visualization
fig = plt.figure(1, facecolor='white', figsize=(8,8), frameon=True, edgecolor='black')
plt.clf()
# axis in the middle
ax = fig.add_subplot(1, 1, 1, alpha=0.9)
# Move left y-axis and bottim x-axis to centre, passing through (0,0)
ax.spines['left'].set_position('center')
ax.spines['left'].set_alpha(0.3)
ax.spines['bottom'].set_position('center')
ax.spines['bottom'].set_alpha(0.3)
# Eliminate upper and right axes
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
# Show ticks in the left and lower axes only
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.tick_params(which='major', labelsize=18)
plt.axis('off')
# etfs in cluster
labels = clf.labels_
x = X_tsne[(labels!=-1), 0]
y = X_tsne[(labels!=-1), 1]
tickers = list(clustered_series_all[clustered_series_all != -1].index)
plt.scatter(
x,
y,
s=100,
alpha=0.95,
c=labels[labels!=-1],
cmap=cm.Paired
)
#for i, ticker in enumerate(tickers):
#plt.annotate(ticker, (x[i]-20, y[i]+12), size=15)
# remaining etfs, not clustered
x = X_tsne[(clustered_series_all==-1).values, 0]
y = X_tsne[(clustered_series_all==-1).values, 1]
''''
tickers = list(clustered_series_all[clustered_series_all == -1].index)
# WARNING: elimintate outliers
outliers = ['TWTR VLE97YS7S57P','CPRT R735QTJ8XC9X']
to_remove_x = [x[clustered_series_all[clustered_series_all==-1].index.get_loc(outliers[0])],
x[clustered_series_all[clustered_series_all==-1].index.get_loc(outliers[1])]]
to_remove_y = [y[clustered_series_all[clustered_series_all==-1].index.get_loc(outliers[0])],
y[clustered_series_all[clustered_series_all==-1].index.get_loc(outliers[1])]]
x = np.array([i for i in x if i not in to_remove_x])
y= np.array([i for i in y if i not in to_remove_y])
'''
plt.scatter(
x,
y,
s=100,
alpha=0.1,
)
#for i, ticker in enumerate(tickers):
#plt.annotate(ticker, (x[i], y[i]))#, arrowprops={'arrowstyle':'simple'})
plt.title('T-SNE of all Stocks with ' + method + ' Clusters Noted', size =18)
plt.xlabel('t-SNE Dim. 1', position=(0.92,0), size=12)
plt.ylabel('t-SNE Dim. 2', position=(0,0.92), size=12)
ax.set_xticks(range(-300, 300, 600))
ax.set_yticks(range(-300, 300, 600))
plt.show()
# Plot the log price series of stocks in each cluster
def plot_pairs(counts_op, clustered_series_op, df):
warnings.filterwarnings('ignore')
for clust in range(len(counts_op)):
symbols = list(clustered_series_op[clustered_series_op==clust].index)
means = np.log(df[symbols].mean())
series = np.log(df[symbols]).sub(means)
series.plot(figsize=(10,5))
# Plot the log price series of stocks in each cluster
def plot_pairs(counts_op, clustered_series_op, df):
warnings.filterwarnings('ignore')
for clust in range(len(counts_op)):
symbols = list(clustered_series_op[clustered_series_op==clust].index)
means = np.log(df[symbols].mean())
series = np.log(df[symbols]).sub(means)
series.plot(figsize=(10,5))
# Correlation test
def corr(pairs):
i = 0
corrs = []
s_pair = []
for pair in pairs:
df = dict()
i = i+1
a = pair[0]
c = qb.AddEquity(a)
b = pair[1]
d = qb.AddEquity(b)
series1 = qb.History(c.Symbol,start_time, end_time, Resolution.Daily)
series2 = qb.History(d.Symbol, start_time, end_time, Resolution.Daily)
m = pd.Series(series1['close'].values)
n = pd.Series(series2['close'].values)
corr=m.corr(n,method='pearson')
corrs.append(corr)
s_pair.append(pair)
ranks =pd.DataFrame({'pairs':s_pair,'corr':corrs})
ranks.sort_values(by="corr" , inplace=True, ascending=False)
#return ranks.head()
return ranks[0:10]
# Cointegration test
def coin(pairs):
i = 0
coin = []
s_pair = []
for pair in pairs:
df = dict()
i = i+1
a = pair[0]
c = qb.AddEquity(a)
b = pair[1]
d = qb.AddEquity(b)
series1 = qb.History(c.Symbol, start_time, end_time, Resolution.Daily)
series2 = qb.History(d.Symbol, start_time, end_time, Resolution.Daily)
m = pd.Series(series1['close'].values).apply(lambda x: math.log(x))
n = pd.Series(series2['close'].values).apply(lambda x: math.log(x))
coins = coint(m.values,n.values)
coin.append(coins[1])
s_pair.append(pair)
ranks =pd.DataFrame({'pairs':s_pair,'coin':coin})
ranks.sort_values(by="coin" , inplace=True, ascending=True)
#return ranks.head()
return ranks[0:10]
def pairs_to_list(df_pairs):
pairs_list = []
for pair in df_pairs['pairs']:
pairs_list.append(pair)
return pairs_list
Run This Part to Get the Output