-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_KVNet.py
307 lines (242 loc) · 12.6 KB
/
eval_KVNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# eval #
import numpy as np
import torch
import time
torch.backends.cudnn.benchmark=True
import mutils.misc as m_misc
import warping.homography as warp_homo
import models.KVNET as m_kvnet
import utils.models as utils_model
import test_utils.export_res as export_res
import test_utils.test_KVNet as test_KVNet
import matplotlib as mlt
mlt.use('Agg')
def check_datArray_pose(dat_array):
'''
Check data array pose/dmap for scan-net.
If invalid pose then use the previous pose.
Input: data-array: will be modified via reference.
Output:
False: not valid, True: valid
'''
if_valid = True
for dat in dat_array:
if np.isnan(dat['extM'].min()) or np.isnan(dat['extM'].max()):
if_valid = False
break
elif isinstance(dat['extM'], int):
if_valid = False
break
return if_valid
def main():
import argparse
print('Parsing the arguments...')
parser = argparse.ArgumentParser()
# exp name #
parser.add_argument('--exp_name', required =True, type=str,
help='The name of the experiment. Used to naming the folders')
# about testing #
parser.add_argument('--model_path', type=str, required=True, help='The pre-trained model path for KV-net')
parser.add_argument('--split_file', type=str, default=True, help='The split txt file')
parser.add_argument('--frame_interv', default=5, type=int, help='frame interval')
parser.add_argument('--t_win', type=int, default = 2, help='The radius of the temporal window; default=2')
parser.add_argument('--d_min', type=float, default=0, help='The minimal depth value; default=0')
parser.add_argument('--d_max', type=float, default=5, help='The maximal depth value; default=15')
parser.add_argument('--ndepth', type=int, default= 64, help='The # of candidate depth values; default= 128')
parser.add_argument('--sigma_soft_max', type=float, default=10., help='sigma_soft_max, default = 500.')
parser.add_argument('--feature_dim', type=int, default=64, help='The feature dimension for the feature extractor; default=64')
# about dataset #
parser.add_argument('--dataset', type=str, default='scanNet', help='Dataset name: {scanNet, 7scenes, kitti}')
parser.add_argument('--dataset_path', type=str, default='.', help='Path to the dataset')
parser.add_argument('--change_aspect_ratio', type=bool, default=False,
help='If we want to change the aspect ratio. This option is only useful for KITTI')
# parsing parameters #
args = parser.parse_args()
exp_name = args.exp_name
dataset_name = args.dataset
t_win_r = args.t_win
nDepth = args.ndepth
d_candi = np.linspace(args.d_min, args.d_max, nDepth)
sigma_soft_max = args.sigma_soft_max #10.#500.
dnet_feature_dim = args.feature_dim
frame_interv = args.frame_interv # should be multiple of 5 for scanNet dataset
d_upsample = None
d_candi_dmap_ref = d_candi
nDepth_dmap_ref = nDepth
split_file = args.split_file
# ===== Dataset selection ======== #
dataset_path = args.dataset_path
if dataset_name == 'kitti':
import mdataloader.kitti as dl_kitti
dataset_init = dl_kitti.KITTI_dataset
fun_get_paths = lambda traj_indx: dl_kitti.get_paths(traj_indx, split_txt= split_file, mode='val')
if not dataset_path == '.':
fun_get_paths = lambda traj_indx: dl_kitti.get_paths(traj_indx, split_txt= split_file,
mode='val', database_path_base = dataset_path)
else: # use default database path
fun_get_paths = lambda traj_indx: dl_kitti.get_paths(traj_indx, split_txt= split_file, mode='val')
if not args.change_aspect_ratio: # we will keep the aspect ratio and do cropping
img_size = [768, 356]
crop_w = None
else: # we will change the aspect ratio and NOT do cropping
img_size = [768, 356]
crop_w = None
n_scenes, _, _, _, _ = fun_get_paths(0)
traj_Indx = np.arange(0, n_scenes)
elif dataset_name == 'dm':
import mdataloader.dm as dl_dm
dataset_init = dl_dm.DMdataset
split_file = './mdataloader/dm_split/dm_split.txt' if args.split_file=='.' else args.split_file
fun_get_paths = lambda traj_indx: dl_dm.get_paths(traj_indx, split_txt= split_file, mode='val')
if not dataset_path == '.':
fun_get_paths = lambda traj_indx: dl_dm.get_paths(traj_indx, split_txt= split_file,
mode='val', database_path_base = dataset_path)
else: # use default database path
fun_get_paths = lambda traj_indx: dl_dm.get_paths(traj_indx, split_txt= split_file, mode='val')
if not args.change_aspect_ratio: # we will keep the aspect ratio and do cropping
img_size = [786, 256]
crop_w = None
else: # we will change the aspect ratio and NOT do cropping
img_size = [786, 256]
crop_w = None
n_scenes, _, _, _, _ = fun_get_paths(0)
traj_Indx = np.arange(0, n_scenes)
else:
raise Exception('dataset loader not implemented')
fldr_path, img_paths, dmap_paths, poses, intrin_path = fun_get_paths(0)
if dataset_name == 'kitti':
dataset = dataset_init(True, img_paths, dmap_paths, poses,
intrin_path = intrin_path, img_size= img_size, digitize= True,
d_candi= d_candi_dmap_ref, resize_dmap=.25, crop_w = crop_w)
dataset_imgsize = dataset_init(True, img_paths, dmap_paths, poses,
intrin_path = intrin_path, img_size= img_size, digitize= True,
d_candi= d_candi_dmap_ref, resize_dmap=1)
else:
dataset = dataset_init(True, img_paths, dmap_paths, poses,
intrin_path = intrin_path, img_size= img_size, digitize= True,
d_candi= d_candi_dmap_ref, resize_dmap=.25)
dataset_imgsize = dataset_init(True, img_paths, dmap_paths, poses,
intrin_path = intrin_path, img_size= img_size, digitize= True,
d_candi= d_candi_dmap_ref, resize_dmap=1)
# ================================ #
print('Initnializing the KV-Net')
model_KVnet = m_kvnet.KVNET(feature_dim = dnet_feature_dim, cam_intrinsics = dataset.cam_intrinsics,
d_candi = d_candi, sigma_soft_max = sigma_soft_max, KVNet_feature_dim = dnet_feature_dim,
d_upsample_ratio_KV_net = d_upsample, t_win_r = t_win_r, if_refined = True)
model_KVnet = torch.nn.DataParallel(model_KVnet)
model_KVnet.cuda()
model_path_KV = args.model_path
print('loading KV_net at %s'%(model_path_KV))
utils_model.load_pretrained_model(model_KVnet, model_path_KV)
print('Done')
rmse, absrel, lg10, squarel, rmselog, D1, D2, D3 = 0, 0, 0, 0, 0, 0, 0, 0
for traj_idx in traj_Indx:
res_fldr = '../results/%s/traj_%d'%(exp_name, traj_idx)
m_misc.m_makedir(res_fldr)
scene_path_info = []
print('Getting the paths for traj_%d'%(traj_idx))
fldr_path, img_seq_paths, dmap_seq_paths, poses, intrin_path = fun_get_paths(traj_idx)
dataset.set_paths(img_seq_paths, dmap_seq_paths, poses)
if dataset_name is 'scanNet':
# For each trajector in the dataset, we will update the intrinsic matrix #
dataset.get_cam_intrinsics(intrin_path)
print('Done')
dat_array = [ dataset[idx] for idx in range(t_win_r * 2 + 1) ]
DMaps_meas = []
traj_length = len(dataset)
print('trajectory length = %d'%(traj_length))
average_meter = export_res.AverageMeter()
### inference time
torch.cuda.synchronize()
start = time.time()
for frame_cnt, ref_indx in enumerate( range(t_win_r, traj_length - t_win_r - 1) ):
result = export_res.Result()
torch.cuda.synchronize()
data_time = time.time() - start
eff_iter = True
valid_seq = check_datArray_pose(dat_array)
# Read ref. and src. data in the local time window #
ref_dat, src_dats = m_misc.split_frame_list(dat_array, t_win_r)
if frame_cnt == 0:
BVs_predict = None
if valid_seq and eff_iter:
# Get poses #
src_cam_extMs = m_misc.get_entries_list_dict(src_dats, 'extM')
src_cam_poses = \
[warp_homo.get_rel_extrinsicM(ref_dat['extM'], src_cam_extM_) \
for src_cam_extM_ in src_cam_extMs ]
src_cam_poses = [
torch.from_numpy(pose.astype(np.float32)).cuda().unsqueeze(0)
for pose in src_cam_poses]
# src_cam_poses size: N V 4 4 #
src_cam_poses = torch.cat(src_cam_poses, dim=0).unsqueeze(0)
src_frames = [m_misc.get_entries_list_dict(src_dats, 'img')]
if frame_cnt == 0 or BVs_predict is None: # the first window for the traj.
BVs_predict_in = None
else:
BVs_predict_in = BVs_predict
# print('testing on %d/%d frame in traj %d/%d ... '%\
# (frame_cnt+1, traj_length - 2*t_win_r, traj_idx+1, len(traj_Indx)) )
torch.cuda.synchronize()
gpu_time = time.time() - start
# set trace for specific frame #
BVs_measure, BVs_predict = test_KVNet.test( model_KVnet, d_candi,
Ref_Dats = [ref_dat],
Src_Dats = [src_dats],
Cam_Intrinsics=[dataset.cam_intrinsics],
t_win_r = t_win_r,
Src_CamPoses= src_cam_poses,
BV_predict= BVs_predict_in,
R_net = True,
Cam_Intrinsics_imgsize = dataset_imgsize.cam_intrinsics,
ref_indx = ref_indx )
pred_depth, gt = export_res.do_evaluation(ref_dat, BVs_measure, d_candi_dmap_ref)
# print(pred_depth.shape, gt.shape)
result.evaluate(pred_depth.data, gt.data)
average_meter.update(result, gpu_time, data_time, (traj_length - 2*t_win_r))
scene_path_info.append( [frame_cnt, dataset[ref_indx]['img_path']] )
elif valid_seq is False: # if the sequence contains invalid pose estimation
BVs_predict = None
print('frame_cnt :%d, include invalid poses'%(frame_cnt ))
elif eff_iter is False:
BVs_predict = None
# Update dat_array #
dat_array.pop(0)
dat_array.append(dataset[ref_indx + t_win_r +1 ])
avg = average_meter.average()
print('\n*\n'
'RMSE={average.rmse:.3f}\n'
'AbsRel={average.absrel:.3f}\n'
'Log10={average.lg10:.3f}\n'
'SquaRel={average.squarel:.3f}\n'
'rmselog={average.rmselog:.3f}\n'
'Delta1={average.delta1:.3f}\n'
'Delta2={average.delta2:.3f}\n'
'Delta3={average.delta3:.3f}\n'
't_GPU={time:.3f}\n'.format(
average=avg, time=avg.gpu_time))
### inference time
torch.cuda.synchronize()
end = time.time()
rmse += avg.rmse
absrel += avg.absrel
lg10 += avg.lg10
squarel += avg.squarel
rmselog += avg.rmselog
D1 += avg.delta1
D2 += avg.delta2
D3 += avg.delta3
print('rmse={%.3f}\n'% (rmse / (traj_idx+1)),
'absrel={%.3f}\n' % (absrel / (traj_idx+1)),
'lg10={%.3f}\n' % (lg10 / (traj_idx+1)),
'squarel={%.3f}\n' % (squarel / (traj_idx+1)),
'rmselog={%.3f}\n' % (rmselog / (traj_idx+1)),
'D1={%.3f}\n' % (D1 / (traj_idx+1)),
'D2={%.3f}\n' % (D2 / (traj_idx+1)),
'D3={%.3f}\n' % (D3 / (traj_idx+1)))
print( (end-start)/(traj_length - 2*t_win_r))
m_misc.save_ScenePathInfo( '%s/scene_path_info.txt'%(res_fldr), scene_path_info )
if __name__ == '__main__':
main()