-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_gen.py
42 lines (31 loc) · 1.23 KB
/
dataset_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import os
import librosa
import librosa.display
import spiegelib
import matplotlib.pyplot as plt
#create class for mel featres
class melSpectrogramFeatures(spiegelib.features.features_base.FeaturesBase):
def get_features(self, audio):
features = librosa.feature.melspectrogram(y=audio.get_audio(), sr=self.sample_rate,)
return features
#create class for raw audio
class audioFeatures(spiegelib.features.features_base.FeaturesBase):
def get_features(self, audio):
return audio.get_audio()
#load synth to use
synth = spiegelib.synth.SynthVST("/Library/Audio/Plug-Ins/Components/Serum.component")
#make class for extracting mel spectrogram features
melSpec = melSpectrogramFeatures()
#class instance for getting audio features
audioFet = audioFeatures()
#setup location for dataset generation
output_location = "/Volumes/USB30FD/Synth_DataSet"
#setup generator
generator = spiegelib.DatasetGenerator(synth,melSpec,output_folder=".",save_audio=True)
generator.generate(2, file_prefix="mel_")
#generate audio
generator.generate(3000, file_prefix="train_1_")
generator.generate(3000, file_prefix="train_2_")
generator.generate(3000, file_prefix="train_3_")
generator.generate(2000, file_prefix="test_")