-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmake_dataset.py
102 lines (88 loc) · 3.51 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# -*- coding: <encoding name> -*-
"""
data processing.
"""
from __future__ import print_function, division
import h5py
import scipy.io as io
import numpy as np
import glob
from matplotlib import pyplot as plt
from scipy.ndimage.filters import gaussian_filter
import scipy
import scipy.spatial
import os
# %matplotlib inline
################################################################################
# generate density maps of the ShanghaiTech dataset.
# the density maps are stored in the density directory,
# which is at the same level as the images directory.
################################################################################
def generate_density():
# root directory
root = 'datasets/ShanghaiTech_Dataset'
# PartA train and test set directory
part_A_train = os.path.join(root, 'part_A_final/train_data', 'images')
part_A_test = os.path.join(root, 'part_A_final/test_data', 'images')
# # PartB train and test set directory
# part_B_train = os.path.join(root, 'part_B_final/train_data', 'images')
# part_B_test = os.path.join(root, 'part_B_final/test_data', 'images')
path_sets = [part_A_train, part_A_test]
# density map storage directory
for path in path_sets:
dir_path, _ = os.path.split(path)
path = os.path.join(dir_path, 'density')
if not os.path.exists(path):
os.makedirs(path)
# acquire image path
img_paths = []
for path in path_sets:
for img_path in glob.glob(os.path.join(path, '*.jpg')):
img_paths.append(img_path)
# generate density map
for img_path in img_paths:
print(img_path)
mat = io.loadmat(img_path.replace('.jpg', '.mat').replace('images', 'ground_truth').replace('IMG_', 'GT_IMG_'))
img = plt.imread(img_path)
k = np.zeros((img.shape[0], img.shape[1]))
gt = mat["image_info"][0, 0][0, 0][0]
for i in range(0, len(gt)):
if int(gt[i][1]) < img.shape[0] and int(gt[i][0]) < img.shape[1]:
k[int(gt[i][1]), int(gt[i][0])] = 1
k = gaussian_filter_density(k)
with h5py.File(img_path.replace('.jpg', '.h5').replace('images', 'density'), 'w') as hf:
hf['density'] = k
print("Over!!!")
################################################################################
# internal function.
################################################################################
def gaussian_filter_density(gt):
print(gt.shape)
density = np.zeros(gt.shape, dtype = np.float32)
gt_count = np.count_nonzero(gt)
if gt_count == 0:
return density
pts = np.array(list(zip(np.nonzero(gt)[1], np.nonzero(gt)[0])))
leafsize = 2048
# build kdtree
tree = scipy.spatial.KDTree(pts.copy(), leafsize = leafsize)
# query kdtree
distances, locations = tree.query(pts, k=4)
print('generate density...')
for i, pt in enumerate(pts):
pt2d = np.zeros(gt.shape, dtype = np.float32)
pt2d[pt[1],pt[0]] = 1.
if gt_count > 1:
sigma = (distances[i][1]+distances[i][2]+distances[i][3])*0.1
else:
sigma = np.average(np.array(gt.shape))/2./2. #case: 1 point
density += scipy.ndimage.filters.gaussian_filter(pt2d, sigma, mode='constant')
print('done.')
return density
################################################################################
# main function
################################################################################
if __name__ == '__main__':
# generate density map
generate_density()
pass