-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcalc_FPS.py
193 lines (170 loc) · 9.48 KB
/
calc_FPS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import os
import time
import torch
from torch import nn
import torch.backends.cudnn as cudnn
from IMDN import IMDN_CAM, IMDN_SAM, IMDN_CAM_add_MAXpool, IMDN_SAM_add_AVGpool, IMDN_CBAM, IMDN_BLANCED_ATTENTION, \
IMDN_BLANCED_ATTENTION_ADD, IMDN
from DRLN.drln import DRLN, DRLN_BlancedAttention
def cals_fps(modelname, model,size):
net = model
time_count = 0.0
for i in range(800):
image = torch.randn(1, 3, size[0], size[1]).cuda()
torch.cuda.synchronize()
start_time = time.time()
pred_semantic = net(image)
torch.cuda.synchronize()
# print(time.time() - start_time)
if i >= 100:
time_count = time_count + time.time() - start_time
print(700 / time_count)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--choose_net', type=str, default="AWSRN_blanced_attention",
help="RCAN or RCAN_blancedattention or myNet or myNet2 or myNet3 or myNet4 or myNet4_8layer or myNet4_16 or myNet4_ or myNet4__ or "
"myNet5 or RRDBNet or RDN or MDSR or SRRESNET or SRCNN or "
"IMDN_CBAM or IMDN_BLANCED_ATTENTION or IMDN" # 消融实验(Ablation experiments)
"IMDN_CAM or IMDN_SAM or IMDN_CAM_add_MAXpool or IMDN_SAM_add_AVGpool or IMDN_BLANCED_ATTENTION_ADD" # 消融实验(Ablation experiments)
"or CARN or CARN_blanced_attention or CARN_m or CARN_m_blanced_attention"
"or MSRN or MSRN_blanced_attention"
"or EDSR or EDSR_blanced_attention"
"or AWSRN or AWSRN_blanced_attention"
"or MDSR or MDSR_blanced_attention"
"or oisr_LF_s or oisr_LF_s_blanced_attention or oisr_LF_m_blanced_attention"
"or LWSR_blanced_attention"
"or RCAN_ori_blanced_attention"
"or SAN or SAN_Blanced_Attention"
"or PAN or PAN_Blanced_attention"
"IDN or IDN_blanced_attention")
# parser.add_argument('--eval_file', type=str, required=False, default="./h5file_Set5_x3_test")
parser.add_argument('--outputs_dir', type=str, required=False, default="./checkpoint")
parser.add_argument('--weights_file', type=str)
parser.add_argument('--num_features', type=int, default=64)
parser.add_argument('--growth_rate', type=int, default=64)
parser.add_argument('--num_blocks', type=int, default=20)
parser.add_argument('--num_layers', type=int, default=8)
parser.add_argument('--scale', type=int, default=2)
parser.add_argument('--patch_size', type=int, default=64)
parser.add_argument('--lr', type=float, default=8e-5)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_epochs', type=int, default=1000)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--seed', type=int, default=123)
# RCAN
parser.add_argument('--num_rg', type=int, default=12)
parser.add_argument('--num_rcab', type=int, default=20)
parser.add_argument('--reduction', type=int, default=16)
parser.add_argument('--load', type=bool, default=True)
# AWSRN
# parser.add_argument('--n_resblocks', type=int, default=4,
# help='number of LFB blocks')
# parser.add_argument('--n_feats', type=int, default=32,
# help='number of feature maps')
parser.add_argument('--n_resblocks_awsrn', type=int, default=4,
help='number of LFB blocks')
parser.add_argument('--n_awru_awsrn', type=int, default=4,
help='number of n_awru in one LFB')
parser.add_argument('--n_feats_awsrn', type=int, default=32,
help='number of feature maps')
parser.add_argument('--block_feats_awsrn', type=int, default=128,
help='number of feature maps')
parser.add_argument('--res_scale_awsrn', type=float, default=1,
help='residual scaling')
# EDSR
parser.add_argument('--n_resblocks', type=int, default=16,
help='number of LFB blocks')
parser.add_argument('--n_feats', type=int, default=64,
help='number of feature maps')
parser.add_argument('--n_colors', type=int, default=3,
help='number of color channels to use')
parser.add_argument('--rgb_range', type=int, default=255,
help='maximum value of RGB')
# s_LWSR
parser.add_argument('--n_feats_s_LWSR', type=int, default=32,
help='number of feature maps')
# RCAN_ORI
parser.add_argument('--chop', action='store_true',
help='enable memory-efficient forward')
# options for residual group and feature channel reduction
parser.add_argument('--n_resgroups', type=int, default=10,
help='number of residual groups')
parser.add_argument('--n_resblocks_rcan_ori', type=int, default=20,
help='number of residual blocks')
parser.add_argument('--n_feats_rcan_ori', type=int, default=64,
help='number of feature maps')
# oisr_LF
parser.add_argument('--n_resblocks_oisr_LF_s', type=int, default=8,
help='number of residual blocks')
parser.add_argument('--n_feats_oisr_LF_s', type=int, default=64,
help='number of feature maps')
parser.add_argument('--n_resblocks_oisr_LF_m', type=int, default=8,
help='number of residual blocks')
parser.add_argument('--n_feats_oisr_LF_m', type=int, default=122,
help='number of feature maps')
parser.add_argument('--precision', type=str, default='single',
choices=('single', 'half'),
help='FP precision for test (single | half)')
parser.add_argument('--act', type=str, default='prelu',
help='activation function')
parser.add_argument('--res_scale', type=float, default=1,
help='residual scaling')
# MDSR
# scale_list = [int(scale) for scale in opt['scale'].split(',')]
# IDN
parser.add_argument('--nFeat_IDN', type=int, default=64, help='number of feature maps')
parser.add_argument('--nDiff_IDN', type=int, default=16, help='number of diff feature')
parser.add_argument('--nFeat_slice_IDN', type=int, default=4, help='scale of slice feature')
parser.add_argument('--patchSize_IDN', type=int, default=96, help='patch size')
parser.add_argument('--nChannel_IDN', type=int, default=3, help='number of color channels to use')
# EDSR
# EDSR
# parser.add_argument('--n_feats_edsr', type=int, default=64, help='number of feature maps')
# parser.add_argument('--n_resblocks_edsr', type=int, default=16, help='number of diff feature')
parser.add_argument('--n_feats_edsr', type=int, default=256, help='number of feature maps')
parser.add_argument('--n_resblocks_edsr', type=int, default=32, help='number of diff feature')
# SAN
parser.add_argument('--n_resblocks_san', type=int, default=10,
help='number of residual blocks')
parser.add_argument('--n_feats_san', type=int, default=64,
help='number of feature maps')
parser.add_argument('--n_resgroups_san', type=int, default=20,
help='number of residual groups')
# PAN
parser.add_argument('--in_nc_pan', type=int, default=3,
help='number of residual blocks')
parser.add_argument('--out_nc_pan', type=int, default=3,
help='number of feature maps')
parser.add_argument('--nf_pan', type=int, default=40,
help='number of residual groups')
parser.add_argument('--unf_pan', type=int, default=24,
help='number of feature maps')
parser.add_argument('--nb_pan', type=int, default=16,
help='number of residual groups')
opt = parser.parse_args()
if not os.path.exists(opt.outputs_dir):
os.makedirs(opt.outputs_dir)
cudnn.benchmark = True
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(opt.seed)
scales = [2,3,4]
# networks = ["LWSR"]
networks = ["IMDN","IMDN_BLANCED_ATTENTION","DRLN","DRLN_BlancedAttention"]
# "IMDN_BLANCED_ATTENTION","PAN_Blanced_attention","IMDN","PAN"
for scale in scales:
opt.scale = scale
for network in networks:
opt.choose_net = network
# 消融实验(Ablation experiments)
if opt.choose_net == "IMDN_BLANCED_ATTENTION":
model = IMDN_BLANCED_ATTENTION(upscale=opt.scale).to(device)
elif opt.choose_net == "IMDN":
model = IMDN(upscale=opt.scale).to(device)
elif opt.choose_net == "DRLN_BlancedAttention":
model = DRLN_BlancedAttention(opt).to(device)
elif opt.choose_net == "DRLN":
model = DRLN(opt).to(device)
print(opt.choose_net)
for size_ in range(160,240,20):
cals_fps(opt.choose_net, model,[size_,size_])