-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtesting.py
434 lines (365 loc) · 16.2 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
'''
1. Read from benchmarking dataset (use argument?)
2. detect and aligned all face
- save original face coordinate
saved_data = aligned_face (np.array of uint8), koordinat wajah asli
3. Predict using the model
- run model.preprocess
- run model.predict (use saved weight)
- map the prediction (from np_utils.to_categorical format, use numpy argmax)
4. Save predicted result, measure
5. Visualize the result
- use bounding box
- put text (age, gender)
'''
import argparse, os, glob, cv2, dlib, time
import pandas as pd
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from keras import backend as K
from model import AgenderNetVGG16, AgenderNetInceptionV3, AgenderNetXception, SSRNet, AgenderNetMobileNetV2
from generator import DataGenerator
from SSRNET_model import SSR_net, SSR_net_general
import logging
import timeit
from keras.models import Model
def get_one_aligned_face(image,
padding=0.4,
size=140,
predictpath='shape_predictor_5_face_landmarks.dat'):
"""
Get aligned face from a image using dlib
Parameters
----------
image : numpy array -> with dtype uint8 and shape (W, H, 3)
Image to be used in alignment
padding : float
Padding to be applied around aligned face
size : int
Size of aligned_face to be returned
predictpath : str
Path to predictor being used to get facial landmark (5 points, 68 points, etc)
Returns
----------
aligned face : numpy array -> with dtype uint8 and shape (H, W, 3)
if detect only 1 face
return aligned face
else
return resized image
position : dict
Dictionary of left, top, right, and bottom position from face
"""
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictpath)
rects = detector(image, 1)
aligned = None
# position = None
if len(rects) == 1: # detect 1 face
shape = predictor(image, rects[0])
aligned = dlib.get_face_chip(image, shape, padding=padding, size=size)
# position = {'left' : rects[0].left(),
# 'top' : rects[0].top(),
# 'right' : rects[0].right(),
# 'bottom': rects[0].bottom()}
else :
aligned = resize_image(image, size=size)
# position = {'left' : 0,
# 'top' : 0,
# 'right' : image.shape[1],
# 'bottom': image.shape[0]}
return aligned #, position
def resize_image(image,
size=140):
"""
Resize image and make it square
Parameters
----------
image : numpy array -> with dtype uint8 and shape (W, H, 3)
Image to be resized
size : int
Size of image after resizing
Returns
-------
resized : numpy array -> with dtype uint8 and shape (W, H, 3)
Resized and squared image
"""
BLACK = [0,0,0]
h = image.shape[0]
w = image.shape[1]
if w < h: # add border at right
border = h - w
image= cv2.copyMakeBorder(image,0,0,border,0,
cv2.BORDER_CONSTANT,value=BLACK)
else:
border = w - h # add border at top
image= cv2.copyMakeBorder(image,border,0,0,0,
cv2.BORDER_CONSTANT,value=BLACK)
resized = cv2.resize(image, (size,size),
interpolation = cv2.INTER_CUBIC)
return resized
def get_result(model, list_x):
"""
Get prediction from model
Parameters
----------
model : Keras Model instance
Model to be used to make prediction
list_x : list
List of aligned face
Returns
-------
gender_predicted : numpy array
Gender prediction, encode 0=Female 1=Male
age_predicted : numpy array
Age prediction in range [0, 100]
"""
list_x = model.prepImg(list_x)
predictions = model.predict(list_x)
return model.decodePrediction(predictions)
def get_metrics(age_predicted, gender_predicted, age_true, gender_true):
"""
Calculate the score for age and gender prediction
Parameters
----------
age_predicted : numpy array
Age prediction's result
gender_predicted : numpy array
Gender prediction's result
"""
gender_acc = (gender_predicted == gender_true).sum() / len(gender_predicted)
age_mae = abs(age_predicted - age_true).sum() / len(age_predicted)
return age_mae, gender_acc
def visualize(fullimage, result):
pass
def getPosFromRect(rect):
return (rect.left(), rect.top(), rect.right(), rect.bottom())
def temp():
print('[LOAD MODEL]')
model = SSRNet(64, [3, 3, 3], 1.0, 1.0)
print('[LOAD WEIGHT]')
model.setWeight('trainweight/agender_ssrnet/model.31-7.5452-0.8600-7.4051.h5')
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_5_face_landmarks.dat')
image = cv2.imread('faces/nodeflux.png')
rects = detector(image, 1)
print('Faces =', len(rects))
print('[DETECT FACE]')
shapes = dlib.full_object_detections()
for rect in rects:
shapes.append(predictor(image, rect))
print('[ALIGN]')
faces = dlib.get_face_chips(image, shapes, size=64, padding=0.4)
faces = np.array(faces)
print('[PREDICT]')
# genders, ages = get_result(model, faces)
faces = faces.astype('float16')
result = model.predict(faces)
print(result)
genders = np.round(result[0]).astype('int')
ages = result[1]
genders = np.where(genders == 0, 'F', 'M')
print('[VIZ]')
for (i, rect) in enumerate(rects):
(left, top, right, bottom) = getPosFromRect(rect)
cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
cv2.putText(image, "{:.0f}, {}".format(ages[i], genders[i]), (left - 10, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.imwrite('result.jpg', image)
def main():
logger.info('Load InceptionV3 model')
inceptionv3 = AgenderNetInceptionV3()
inceptionv3.setWeight('trainweight/inceptionv3_2/model.16-3.7887-0.9004-6.6744.h5')
logger.info('Load MobileNetV2 model')
mobilenetv2 = AgenderNetMobileNetV2()
mobilenetv2.setWeight('trainweight/mobilenetv2/model.10-3.8290-0.8965-6.9498.h5')
logger.info('Load SSRNet model')
ssrnet = SSRNet(64, [3, 3, 3], 1.0, 1.0)
ssrnet.setWeight('trainweight/ssrnet/model.37-7.3318-0.8643-7.1952.h5')
logger.info('Load pretrain imdb model')
imdb_model = SSR_net(64, [3, 3, 3], 1.0, 1.0)()
imdb_model.load_weights("tes_ssrnet/imdb_age_ssrnet_3_3_3_64_1.0_1.0.h5")
imdb_model_gender = SSR_net_general(64, [3, 3, 3], 1.0, 1.0)()
imdb_model_gender.load_weights("tes_ssrnet/imdb_gender_ssrnet_3_3_3_64_1.0_1.0.h5")
logger.info('Load pretrain wiki model')
wiki_model = SSR_net(64, [3, 3, 3], 1.0, 1.0)()
wiki_model.load_weights("tes_ssrnet/wiki_age_ssrnet_3_3_3_64_1.0_1.0.h5")
wiki_model_gender = SSR_net_general(64, [3, 3, 3], 1.0, 1.0)()
wiki_model_gender.load_weights("tes_ssrnet/wiki_gender_ssrnet_3_3_3_64_1.0_1.0.h5")
logger.info('Load pretrain morph model')
morph_model = SSR_net(64, [3, 3, 3], 1.0, 1.0)()
morph_model.load_weights("tes_ssrnet/morph_age_ssrnet_3_3_3_64_1.0_1.0.h5")
morph_model_gender = SSR_net_general(64, [3, 3, 3], 1.0, 1.0)()
morph_model_gender.load_weights("tes_ssrnet/morph_gender_ssrnet_3_3_3_64_1.0_1.0.h5")
utk = pd.read_csv('dataset/UTKface.csv')
fgnet = pd.read_csv('dataset/FGNET.csv')
utk_paths = utk['full_path'].values
fgnet_paths = fgnet['full_path'].values
logger.info('Read UTKface aligned images')
utk_images = [cv2.imread('UTKface_aligned/'+path) for path in tqdm(utk_paths)]
logger.info('Read FGNET aligned images')
fgnet_images = [cv2.imread('FGNET_aligned/'+path) for path in tqdm(fgnet_paths)]
utk_X = np.array(utk_images)
fgnet_X = np.array(fgnet_images)
utk_pred_age = dict()
utk_pred_gender = dict()
fgnet_pred_age = dict()
logger.info('Predict with InceptionV3')
start = time.time()
utk_pred_gender['inceptionv3'], utk_pred_age['inceptionv3'] = get_result(inceptionv3, utk_X)
_, fgnet_pred_age['inceptionv3'] = get_result(inceptionv3, fgnet_X)
elapsed = time.time() - start
logger.info('Time elapsed {:.2f} sec'.format(elapsed))
del utk_X, fgnet_X
logger.info('Resize image to 96 for MobileNetV2')
utk_images = [cv2.resize(image, (96, 96), interpolation = cv2.INTER_CUBIC) for image in tqdm(utk_images)]
fgnet_images = [cv2.resize(image, (96, 96), interpolation = cv2.INTER_CUBIC) for image in tqdm(fgnet_images)]
utk_X = np.array(utk_images)
fgnet_X = np.array(fgnet_images)
logger.info('Predict with MobileNetV2')
start = time.time()
utk_pred_gender['mobilenetv2'], utk_pred_age['mobilenetv2'] = get_result(mobilenetv2, utk_X)
_, fgnet_pred_age['mobilenetv2'] = get_result(mobilenetv2, fgnet_X)
elapsed = time.time() - start
logger.info('Time elapsed {:.2f} sec'.format(elapsed))
del utk_X, fgnet_X
logger.info('Resize image to 64 for SSR-Net')
utk_images = [cv2.resize(image, (64, 64), interpolation = cv2.INTER_CUBIC) for image in tqdm(utk_images)]
fgnet_images = [cv2.resize(image, (64, 64), interpolation = cv2.INTER_CUBIC) for image in tqdm(fgnet_images)]
utk_X = np.array(utk_images)
fgnet_X = np.array(fgnet_images)
logger.info('Predict with SSR-Net')
start = time.time()
utk_pred_gender['ssrnet'], utk_pred_age['ssrnet'] = get_result(ssrnet, utk_X)
_, fgnet_pred_age['ssrnet'] = get_result(ssrnet, fgnet_X)
elapsed = time.time() - start
logger.info('Time elapsed {:.2f} sec'.format(elapsed))
logger.info('Predict with IMDB_SSR-Net')
start = time.time()
utk_pred_gender['ssrnet-imdb'] = np.around(imdb_model_gender.predict(utk_X).squeeze()).astype('int')
utk_pred_age['ssrnet-imdb'] = imdb_model.predict(utk_X).squeeze()
fgnet_pred_age['ssrnet-imdb'] = imdb_model.predict(fgnet_X).squeeze()
elapsed = time.time() - start
logger.info('Time elapsed {:.2f} sec'.format(elapsed))
logger.info('Predict with Wiki_SSR-Net')
start = time.time()
utk_pred_gender['ssrnet-wiki'] = np.around(wiki_model_gender.predict(utk_X).squeeze()).astype('int')
utk_pred_age['ssrnet-wiki'] = wiki_model.predict(utk_X).squeeze()
fgnet_pred_age['ssrnet-wiki'] = wiki_model.predict(fgnet_X).squeeze()
elapsed = time.time() - start
logger.info('Time elapsed {:.2f} sec'.format(elapsed))
logger.info('Predict with Morph_SSR-Net')
start = time.time()
utk_pred_gender['ssrnet-morph'] = np.around(morph_model_gender.predict(utk_X).squeeze()).astype('int')
utk_pred_age['ssrnet-morph'] = morph_model.predict(utk_X).squeeze()
fgnet_pred_age['ssrnet-morph'] = morph_model.predict(fgnet_X).squeeze()
elapsed = time.time() - start
logger.info('Time elapsed {:.2f} sec'.format(elapsed))
utk_pred_age = pd.DataFrame.from_dict(utk_pred_age)
utk_pred_gender = pd.DataFrame.from_dict(utk_pred_gender)
fgnet_pred_age = pd.DataFrame.from_dict(fgnet_pred_age)
utk_pred_age = pd.concat([utk['age'], utk_pred_age], axis=1)
utk_pred_gender = pd.concat([utk['gender'], utk_pred_gender], axis=1)
fgnet_pred_age = pd.concat([fgnet['age'], fgnet_pred_age], axis=1)
utk_pred_age.to_csv('result/utk_age_prediction.csv', index=False)
utk_pred_age.to_csv('result/utk_gender_prediction.csv', index=False)
fgnet_pred_age.to_csv('result/fgnet_age_prediction.csv', index=False)
def wrapper(func, *args, **kwargs):
def wrapped():
return func(*args, **kwargs)
return wrapped
def predictone(model, x):
res = model.predict(x)
def proces_time(wrapped):
number = 100
elapsed = timeit.repeat(wrapped, repeat=10, number=number)
elapsed = np.array(elapsed)
per_pass = elapsed / number
mean = np.mean(per_pass) * 1000
std = np.std(per_pass) * 1000
result = '{:6.2f} msec/pass +- {:6.2f} msec'.format(mean, std)
return result
def check_inference_time():
age_layer = 'age_prediction'
gender_layer = 'gender_prediction'
logger.info('Load InceptionV3 model')
inceptionv3 = AgenderNetInceptionV3()
inceptionv3.setWeight('trainweight/inceptionv3_2/model.16-3.7887-0.9004-6.6744.h5')
inceptionv3_age = Model(inputs=inceptionv3.input,
outputs=inceptionv3.get_layer(age_layer).output)
inceptionv3_gender = Model(inputs=inceptionv3.input,
outputs=inceptionv3.get_layer(gender_layer).output)
logger.info('Load MobileNetV2 model')
mobilenetv2 = AgenderNetMobileNetV2()
mobilenetv2.setWeight('trainweight/mobilenetv2/model.10-3.8290-0.8965-6.9498.h5')
mobilenetv2_age = Model(inputs=mobilenetv2.input,
outputs=mobilenetv2.get_layer(age_layer).output)
mobilenetv2_gender = Model(inputs=mobilenetv2.input,
outputs=mobilenetv2.get_layer(gender_layer).output)
logger.info('Load SSRNet model')
ssrnet = SSRNet(64, [3, 3, 3], 1.0, 1.0)
ssrnet.setWeight('trainweight/agender_ssrnet/model.31-7.5452-0.8600-7.4051.h5')
ssrnet_age = Model(inputs=ssrnet.input,
outputs=ssrnet.get_layer(age_layer).output)
ssrnet_gender = Model(inputs=ssrnet.input,
outputs=ssrnet.get_layer(gender_layer).output)
logger.info('Load pretrain imdb model')
imdb_model = SSR_net(64, [3, 3, 3], 1.0, 1.0)()
imdb_model.load_weights("tes_ssrnet/imdb_age_ssrnet_3_3_3_64_1.0_1.0.h5")
imdb_model_gender = SSR_net_general(64, [3, 3, 3], 1.0, 1.0)()
imdb_model_gender.load_weights("tes_ssrnet/imdb_gender_ssrnet_3_3_3_64_1.0_1.0.h5")
images = cv2.imread('UTKface_aligned/part1/34_1_0_20170103183147490.jpg')
image = cv2.resize(images, (64, 64), interpolation = cv2.INTER_CUBIC)
X = image.astype('float16')
X = np.expand_dims(X, axis=0)
logger.info('Predict age and gender with SSR-Net')
wrapped = wrapper(predictone, ssrnet, X)
logger.info(proces_time(wrapped))
logger.info('Predict age with SSR-Net')
wrapped = wrapper(predictone, ssrnet_age, X)
logger.info(proces_time(wrapped))
logger.info('Predict gender with SSR-Net')
wrapped = wrapper(predictone, ssrnet_gender, X)
logger.info(proces_time(wrapped))
logger.info('Predict age with IMDB_SSR-Net')
wrapped = wrapper(predictone, imdb_model, X)
logger.info(proces_time(wrapped))
logger.info('Predict gender with IMDB_SSR-Net')
wrapped = wrapper(predictone, imdb_model_gender, X)
logger.info(proces_time(wrapped))
del X
image = cv2.resize(images, (96, 96), interpolation = cv2.INTER_CUBIC)
X = image.astype('float16')
X = np.expand_dims(X, axis=0)
logger.info('Predict age and gender with MobileNetV2')
wrapped = wrapper(predictone, mobilenetv2, X)
logger.info(proces_time(wrapped))
logger.info('Predict age with MobileNetV2')
wrapped = wrapper(predictone, mobilenetv2_age, X)
logger.info(proces_time(wrapped))
logger.info('Predict gender with MobileNetV2')
wrapped = wrapper(predictone, mobilenetv2_gender, X)
logger.info(proces_time(wrapped))
del X
X = images.astype('float16')
X = np.expand_dims(X, axis=0)
logger.info('Predict age and gender with InceptionV3')
wrapped = wrapper(predictone, inceptionv3, X)
logger.info(proces_time(wrapped))
logger.info('Predict age with InceptionV3')
wrapped = wrapper(predictone, inceptionv3_age, X)
logger.info(proces_time(wrapped))
logger.info('Predict gender with InceptionV3')
wrapped = wrapper(predictone, inceptionv3_gender, X)
logger.info(proces_time(wrapped))
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.tensorflow_backend.set_session(sess)
start = time.time()
# check_inference_time()
main()
stop = time.time()
print('Time taken (sec) :', stop-start)