-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathmodels.py
176 lines (149 loc) · 6.52 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers as tfkl
from tensorflow_probability import distributions as tfd
from tensorflow.keras.mixed_precision import experimental as prec
import tools
class RSSM(tools.Module):
def __init__(self, stoch=30, deter=200, hidden=200, act=tf.nn.elu):
super().__init__()
self._activation = act
self._stoch_size = stoch
self._deter_size = deter
self._hidden_size = hidden
self._cell = tfkl.GRUCell(self._deter_size)
def initial(self, batch_size):
dtype = prec.global_policy().compute_dtype
return dict(
mean=tf.zeros([batch_size, self._stoch_size], dtype),
std=tf.zeros([batch_size, self._stoch_size], dtype),
stoch=tf.zeros([batch_size, self._stoch_size], dtype),
deter=self._cell.get_initial_state(None, batch_size, dtype))
@tf.function
def observe(self, embed, action, state=None):
if state is None:
state = self.initial(tf.shape(action)[0])
embed = tf.transpose(embed, [1, 0, 2])
action = tf.transpose(action, [1, 0, 2])
post, prior = tools.static_scan(
lambda prev, inputs: self.obs_step(prev[0], *inputs),
(action, embed), (state, state))
post = {k: tf.transpose(v, [1, 0, 2]) for k, v in post.items()}
prior = {k: tf.transpose(v, [1, 0, 2]) for k, v in prior.items()}
return post, prior
@tf.function
def imagine(self, action, state=None):
if state is None:
state = self.initial(tf.shape(action)[0])
assert isinstance(state, dict), state
action = tf.transpose(action, [1, 0, 2])
prior = tools.static_scan(self.img_step, action, state)
prior = {k: tf.transpose(v, [1, 0, 2]) for k, v in prior.items()}
return prior
def get_feat(self, state):
return tf.concat([state['stoch'], state['deter']], -1)
def get_dist(self, state):
return tfd.MultivariateNormalDiag(state['mean'], state['std'])
@tf.function
def obs_step(self, prev_state, prev_action, embed):
prior = self.img_step(prev_state, prev_action)
x = tf.concat([prior['deter'], embed], -1)
x = self.get('obs1', tfkl.Dense, self._hidden_size, self._activation)(x)
x = self.get('obs2', tfkl.Dense, 2 * self._stoch_size, None)(x)
mean, std = tf.split(x, 2, -1)
std = tf.nn.softplus(std) + 0.1
stoch = self.get_dist({'mean': mean, 'std': std}).sample()
post = {'mean': mean, 'std': std, 'stoch': stoch, 'deter': prior['deter']}
return post, prior
@tf.function
def img_step(self, prev_state, prev_action):
x = tf.concat([prev_state['stoch'], prev_action], -1)
x = self.get('img1', tfkl.Dense, self._hidden_size, self._activation)(x)
x, deter = self._cell(x, [prev_state['deter']])
deter = deter[0] # Keras wraps the state in a list.
x = self.get('img2', tfkl.Dense, self._hidden_size, self._activation)(x)
x = self.get('img3', tfkl.Dense, 2 * self._stoch_size, None)(x)
mean, std = tf.split(x, 2, -1)
std = tf.nn.softplus(std) + 0.1
stoch = self.get_dist({'mean': mean, 'std': std}).sample()
prior = {'mean': mean, 'std': std, 'stoch': stoch, 'deter': deter}
return prior
class ConvEncoder(tools.Module):
def __init__(self, depth=32, act=tf.nn.relu):
self._act = act
self._depth = depth
def __call__(self, obs):
kwargs = dict(strides=2, activation=self._act)
x = tf.reshape(obs['image'], (-1,) + tuple(obs['image'].shape[-3:]))
x = self.get('h1', tfkl.Conv2D, 1 * self._depth, 4, **kwargs)(x)
x = self.get('h2', tfkl.Conv2D, 2 * self._depth, 4, **kwargs)(x)
x = self.get('h3', tfkl.Conv2D, 4 * self._depth, 4, **kwargs)(x)
x = self.get('h4', tfkl.Conv2D, 8 * self._depth, 4, **kwargs)(x)
shape = tf.concat([tf.shape(obs['image'])[:-3], [32 * self._depth]], 0)
return tf.reshape(x, shape)
class ConvDecoder(tools.Module):
def __init__(self, depth=32, act=tf.nn.relu, shape=(64, 64, 3)):
self._act = act
self._depth = depth
self._shape = shape
def __call__(self, features):
kwargs = dict(strides=2, activation=self._act)
x = self.get('h1', tfkl.Dense, 32 * self._depth, None)(features)
x = tf.reshape(x, [-1, 1, 1, 32 * self._depth])
x = self.get('h2', tfkl.Conv2DTranspose, 4 * self._depth, 5, **kwargs)(x)
x = self.get('h3', tfkl.Conv2DTranspose, 2 * self._depth, 5, **kwargs)(x)
x = self.get('h4', tfkl.Conv2DTranspose, 1 * self._depth, 6, **kwargs)(x)
x = self.get('h5', tfkl.Conv2DTranspose, self._shape[-1], 6, strides=2)(x)
mean = tf.reshape(x, tf.concat([tf.shape(features)[:-1], self._shape], 0))
return tfd.Independent(tfd.Normal(mean, 1), len(self._shape))
class DenseDecoder(tools.Module):
def __init__(self, shape, layers, units, dist='normal', act=tf.nn.elu):
self._shape = shape
self._layers = layers
self._units = units
self._dist = dist
self._act = act
def __call__(self, features):
x = features
for index in range(self._layers):
x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x)
x = self.get(f'hout', tfkl.Dense, np.prod(self._shape))(x)
x = tf.reshape(x, tf.concat([tf.shape(features)[:-1], self._shape], 0))
if self._dist == 'normal':
return tfd.Independent(tfd.Normal(x, 1), len(self._shape))
if self._dist == 'binary':
return tfd.Independent(tfd.Bernoulli(x), len(self._shape))
raise NotImplementedError(self._dist)
class ActionDecoder(tools.Module):
def __init__(
self, size, layers, units, dist='tanh_normal', act=tf.nn.elu,
min_std=1e-4, init_std=5, mean_scale=5):
self._size = size
self._layers = layers
self._units = units
self._dist = dist
self._act = act
self._min_std = min_std
self._init_std = init_std
self._mean_scale = mean_scale
def __call__(self, features):
raw_init_std = np.log(np.exp(self._init_std) - 1)
x = features
for index in range(self._layers):
x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x)
if self._dist == 'tanh_normal':
# https://www.desmos.com/calculator/rcmcf5jwe7
x = self.get(f'hout', tfkl.Dense, 2 * self._size)(x)
mean, std = tf.split(x, 2, -1)
mean = self._mean_scale * tf.tanh(mean / self._mean_scale)
std = tf.nn.softplus(std + raw_init_std) + self._min_std
dist = tfd.Normal(mean, std)
dist = tfd.TransformedDistribution(dist, tools.TanhBijector())
dist = tfd.Independent(dist, 1)
dist = tools.SampleDist(dist)
elif self._dist == 'onehot':
x = self.get(f'hout', tfkl.Dense, self._size)(x)
dist = tools.OneHotDist(x)
else:
raise NotImplementedError(dist)
return dist