-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainwindow.cpp
279 lines (241 loc) · 10.2 KB
/
mainwindow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#include "mainwindow.h"
#include "ui_mainwindow.h"
#include <random>
#include <chrono>
#include <unordered_map>
#include <QGraphicsRectItem>
const int kMinPoints = 4;
const int kMaxPoints = 8;
const double kMinCoord = 0.0;
const double kMaxCoord = 100.0;
const double kProbeRadius = 10.0;
std::random_device seeder;
std::mt19937 generator;
struct Point {
Point() {}
Point(double xcoord, double ycoord) : x(xcoord), y(ycoord) {}
Point(const Point& copy) : Point(copy.x, copy.y) {}
double x = 0.0;
double y = 0.0;
};
inline double distance_sqr(const Point& p1, const Point& p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
inline double distance(const Point& p1, const Point& p2) {
return std::sqrt(distance_sqr(p1, p2));
}
double distance(const Point& p, const Point& p1, const Point& p2) {
auto t = std::max(0.0, std::min(1.0, ((p.x - p1.x) * (p2.x - p1.x) + (p.y - p1.y) * (p2.y - p1.y)) /
distance_sqr(p1, p2)));
Point projection(p1.x + t * (p2.x - p1.x),
p1.y + t * (p2.y - p1.y));
return distance(p, projection);
}
// ==========================================
// Supporting methods for DSU data structure
int dsu_get(std::vector<int>& dsu, int v) {
return (v == dsu[v]) ? v : dsu[v] = dsu_get(dsu, dsu[v]);
}
void dsu_unite(std::vector<int>& dsu, int a, int b) {
a = dsu_get(dsu, a);
b = dsu_get(dsu, b);
if (std::rand() & 1) std::swap(a, b);
if (a != b) dsu[a] = b;
}
// ==========================================
int image_dfs(const QImage& image, std::vector<std::vector<int>>& used_mask,
int x, int y, int component_number) {
int count = 1;
used_mask[x][y] = component_number;
std::vector<std::pair<int, int>> moves = {{0, -1}, {0, 1}, {1, 0}, {-1, 0}};
for (auto move : moves) {
if (image.valid(x + move.first, y + move.second) &&
image.pixelColor(x + move.first, y + move.second) == image.pixelColor(x, y) &&
!used_mask[x + move.first][y + move.second]) {
count += image_dfs(image, used_mask, x + move.first, y + move.second, component_number);
}
}
return count;
}
void removeScraps(QImage& image, QColor transparent_color) {
int biggest_component = 0;
int biggest_component_size = 0;
int component_count = 0;
std::vector<std::vector<int>> processed_mask(image.width(), std::vector<int>(image.height(), 0));
for (int x = 0; x < image.width(); ++x)
for (int y = 0; y < image.height(); ++y) {
if (image.pixelColor(x, y) != transparent_color &&
!processed_mask[x][y]) {
auto connected_component_size = image_dfs(image, processed_mask, x, y, ++component_count);
if (connected_component_size > biggest_component_size) {
biggest_component_size = connected_component_size;
biggest_component = component_count;
}
}
}
for (int x = 0; x < image.width(); ++x)
for (int y = 0; y < image.height(); ++y) {
if (image.pixelColor(x, y) != transparent_color) {
if (processed_mask[x][y] != biggest_component) image.setPixelColor(x, y, transparent_color);
}
}
}
void MainWindow::generateSpot() {
auto start_time = std::chrono::steady_clock::now();
std::uniform_int_distribution<> vertex_distribution(kMinPoints, kMaxPoints);
std::uniform_real_distribution<> coordinate_distribution(kMinCoord + 2 * kProbeRadius, kMaxCoord - 2 * kProbeRadius);
// Generate graph vertices with certain separation between them
std::vector<Point> vertices;
int n = vertex_distribution(generator);
double safe_distance = kMaxCoord / 2 / std::sqrt(n - 1);
while (n--) {
int iterations_left = 1000;
bool added_point = false;
while (iterations_left--) {
auto new_point = Point(coordinate_distribution(generator),
coordinate_distribution(generator));
bool collision_found = false;
for (auto point : vertices) {
if (distance(point, new_point) < safe_distance) {
collision_found = true;
break;
}
}
if (!collision_found) {
vertices.push_back(new_point);
added_point = true;
break;
}
}
if (!added_point) break;
}
n = static_cast<int>(vertices.size());
if (n < 2) return;
// Generate edges, sort them according to length, and prepare to build MST
std::map<double, std::pair<int, int>> sorted_edges;
for (int v1 = 0; v1 < n - 1; ++v1) {
for (int v2 = v1 + 1; v2 < n; ++v2) {
sorted_edges[distance(vertices[v1], vertices[v2])] = std::make_pair(v1, v2);
}
}
std::uniform_int_distribution<> edge_distribution(n - 1, n * (n - 1) / 2);
int m = edge_distribution(generator);
std::vector<std::pair<int, int>> edges, not_used_edges;
std::vector<std::pair<int, int>> edge_candidates;
for (auto edge : sorted_edges) edge_candidates.push_back(edge.second);
std::vector<int> vertex_dsu(n);
for (int i = 0; i < n; ++i) vertex_dsu[i] = i;
// Build MST with Kruskal's algo
for (size_t i = 0; i < edge_candidates.size() && static_cast<int>(edges.size()) < n - 1; ++i) {
int v1 = edge_candidates[i].first;
int v2 = edge_candidates[i].second;
if (dsu_get(vertex_dsu, v1) != dsu_get(vertex_dsu, v2)) {
dsu_unite(vertex_dsu, v1, v2);
edges.push_back(edge_candidates[i]);
} else not_used_edges.push_back(edge_candidates[i]);
}
// Add some number of extra edges to have previously selected m in total
std::reverse(not_used_edges.begin(), not_used_edges.end());
while (static_cast<int>(edges.size()) < m && !not_used_edges.empty()) {
edges.push_back(not_used_edges.back());
not_used_edges.pop_back();
}
// Build a kProbeRadius-separated complement -- final image
int min_coordinate = std::floor(kMinCoord);
int max_coordinate = std::ceil(kMaxCoord);
QPixmap pixmap(max_coordinate - min_coordinate + 1, max_coordinate - min_coordinate + 1);
QImage image1 = pixmap.toImage();
QImage image2 = pixmap.toImage();
for (int x = min_coordinate; x <= max_coordinate; ++x)
for (int y = min_coordinate; y <= max_coordinate; ++y) {
bool include = true;
for (auto edge : edges) {
if (distance(Point(x, y), vertices[edge.first], vertices[edge.second]) < 2 * kProbeRadius) {
include = false;
break;
}
}
image1.setPixelColor(x - min_coordinate, y - min_coordinate, include ? Qt::blue : Qt::white);
image2.setPixelColor(x - min_coordinate, y - min_coordinate, Qt::blue);
}
removeScraps(image1, Qt::white);
// Concavity smoothing algorithm - currently in progress
std::vector<std::pair<double, double>> radius_vectors;
for (int i = 0; i < 60; ++i)
radius_vectors.push_back(std::make_pair(kProbeRadius * std::cos(2 * M_PI / 60 * i),
kProbeRadius * std::sin(2 * M_PI / 60 * i)));
for (int x = min_coordinate; x <= max_coordinate; ++x)
for (int y = min_coordinate; y <= max_coordinate; ++y) {
bool include = false;
for (int i = 0; i < 60; ++i) {
Point circle(x + radius_vectors[i].first,
y + radius_vectors[i].second);
if (image1.valid(static_cast<int>(round(circle.x)),
static_cast<int>(round(circle.y))) &&
image1.pixelColor(static_cast<int>(round(circle.x)),
static_cast<int>(round(circle.y))) == Qt::blue) {
include = true;
break;
}
}
image2.setPixelColor(x - min_coordinate,
y - min_coordinate, include ? Qt::white : Qt::red);
}
auto end_generation_time = std::chrono::steady_clock::now();
std::chrono::duration<double> generation_time = end_generation_time - start_time;
ui->graphics_view->scene()->clear();
backbone.clear();
result.clear();
complement.clear();
// Render the backbone graph
//ui->graphics_view->scene()->addRect(kMinCoord, kMinCoord, kMaxCoord - kMinCoord, kMaxCoord - kMinCoord, QPen(QBrush(Qt::blue), 1))->setOpacity(0.2);
for (auto point : vertices) {
auto ellipse = ui->graphics_view->scene()->addEllipse(point.x - 2, point.y - 2, 4, 4);
ellipse->setVisible(ui->backbone_checkbox->isChecked());
backbone.push_back(ellipse);
}
for (auto edge : edges) {
const auto& p1 = vertices[edge.first];
const auto& p2 = vertices[edge.second];
auto line = ui->graphics_view->scene()->addLine(p1.x, p1.y, p2.x, p2.y,
QPen(QBrush(Qt::blue), 3, Qt::SolidLine, Qt::RoundCap, Qt::RoundJoin));
line->setOpacity(0.2);
line->setVisible(ui->backbone_checkbox->isChecked());
backbone.push_back(line);
}
// Render the image
auto pixmap_item1 = ui->graphics_view->scene()->addPixmap(QPixmap::fromImage(image1));
pixmap_item1->setOpacity(0.2);
pixmap_item1->moveBy(min_coordinate, min_coordinate);
pixmap_item1->setVisible(ui->complement_checkbox->isChecked());
complement.push_back(pixmap_item1);
auto pixmap_item2 = ui->graphics_view->scene()->addPixmap(QPixmap::fromImage(image2));
pixmap_item2->setOpacity(0.2);
pixmap_item2->moveBy(min_coordinate, min_coordinate);
result.push_back(pixmap_item2);
auto end_total_time = std::chrono::steady_clock::now();
std::chrono::duration<double> total_time = end_total_time - start_time;
ui->time_label->setText(QString("Generation time: %1 ms total time: %2 ms").arg(generation_time.count() * 1000, 0, 'g', 3)
.arg(total_time.count() * 1000, 0, 'g', 3));
}
void MainWindow::updateVisibility() {
for (auto& item : backbone) {
item->setVisible(ui->backbone_checkbox->isChecked());
}
for (auto& item : complement) {
item->setVisible(ui->complement_checkbox->isChecked());
}
}
MainWindow::MainWindow(QWidget *parent)
: QMainWindow(parent) , ui(new Ui::MainWindow) {
generator = std::mt19937(seeder());
ui->setupUi(this);
ui->graphics_view->setScene(new QGraphicsScene());
ui->graphics_view->scale(3, 3);
connect(ui->next_button, &QPushButton::clicked, this, &MainWindow::generateSpot);
connect(ui->backbone_checkbox, &QCheckBox::clicked, this, &MainWindow::updateVisibility);
connect(ui->complement_checkbox, &QCheckBox::clicked, this, &MainWindow::updateVisibility);
}
MainWindow::~MainWindow() {
delete ui;
}