-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
407 lines (363 loc) · 17.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/html">
<head>
<meta charset="utf-8">
<meta name="description"
content="Practically Adopting Human Activity Recognition.">
<meta name="keywords" content="Nerfies, D-NeRF, NeRF">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>UniHAR</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/wands.png">
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Practically Adopting Human Activity Recognition</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://dapowan.github.io/">Huatao Xu</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://zhoupf.github.io/">Pengfei Zhou</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://personal.ntu.edu.sg/tanrui/">Rui Tan</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://cse.hkust.edu.hk/~lim/">Mo Li</a><sup>1,3</sup>,
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Nanyang Technological University,</span>
<span class="author-block"><sup>2</sup>University of Pittsburgh, </span>
<span class="author-block"><sup>3</sup>The Hong Kong University of Science and Technology</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://dapowan.github.io/files/UniHAR.pdf"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- <span class="link-block">-->
<!-- <a href=""-->
<!-- class="external-link button is-normal is-rounded is-dark">-->
<!-- <span class="icon">-->
<!-- <i class="ai ai-arxiv"></i>-->
<!-- </span>-->
<!-- <span>arXiv</span>-->
<!-- </a>-->
<!-- </span>-->
<!-- Slides Link. -->
<span class="link-block">
<a href="https://dapowan.github.io/files/UniHAR.pptx"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa fa-file-image"></i>
</span>
<span>Slides</span>
</a>
</span>
<!-- Video Link. -->
<span class="link-block">
<a href=""
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span>
<!-- Code Link. -->
<span class="link-block">
<a href="https://doi.org/10.5281/zenodo.8260608"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Dataset Link. -->
<!-- <span class="link-block">-->
<!-- <a href=""-->
<!-- class="external-link button is-normal is-rounded is-dark">-->
<!-- <span class="icon">-->
<!-- <i class="far fa-images"></i>-->
<!-- </span>-->
<!-- <span>Data</span>-->
<!-- </a>-->
<!-- </span>-->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="row justify-content-center">
<div class="content col-sm-12 col-md-10 col-lg-6">
<!-- Your content goes here -->
<img src="./static/images/scenario_major.jpg"
class="image-scenario"
alt="Interpolate start reference image."/>
<h4 class="subtitle has-text-centered">
Universal human activity recognition scenario.
</h4>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Can we have a universal framework that supports applying human activity recognition (HAR) models across different user groups of real-world diversities, and with realistic adoption overhead?
</p>
<p>
We present <strong>UniHAR</strong>, a <strong>uni</strong>versal <strong>HAR</strong> framework for mobile devices.
To address the challenge of data heterogeneity, we thoroughly study augmenting data with the physics of the IMU sensing process and present a novel adoption of data augmentations for the feature learning.
</p>
<p>
UniHAR is fully prototyped on the mobile platform and introduces low overhead to mobile devices.
Extensive comparative experiments demonstrate its superior performance in adapting HAR models across four open datasets.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
<!-- Paper video. -->
<!-- <div class="columns is-centered has-text-centered">-->
<!-- <div class="column is-four-fifths">-->
<!-- <h2 class="title is-3">Video</h2>-->
<!-- <div class="publication-video">-->
<!-- <iframe src="https://www.youtube.com/embed/MrKrnHhk8IA?rel=0&showinfo=0"-->
<!-- frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!--/ Paper video. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Overview. -->
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">Overview</h2>
<!-- <br/>-->
<!--/ Interpolating. -->
<!-- Re-rendering. -->
<!-- <h3 class="title is-4">Re-rendering the input video</h3>-->
<div class="row justify-content-center">
<div class="content col-sm-12 col-md-10 col-lg-8">
<img src="./static/images/overview_concise.jpg"
class="image-scenario"
alt="Interpolate start reference image."/>
<h4 class="subtitle has-text-centered">UniHAR overview.</h4>
</div>
</div>
<div class="content has-text-justified">
<p>
UniHAR has two training stages:
</p>
<ul>
<li>
<p>
<strong>Feature Extraction. </strong>
All local unlabeled datasets are first augmented to align the distributions of heterogeneous data from various clients.
To construct a generalized feature extractor (i.e., the <i>encoder</i>), the cloud server collaborates with all mobile clients to exploit massive augmented unlabeled data.
The encoder and decoder are trained on clients individually, which learn the high-level features using self-supervised learning techniques.
The cloud server combines local models and obtains a generalized model.
</p>
</li>
<li>
<p>
<strong>Activity Recognition. </strong>
Based on the generalized encoder, the server then adopts a small amount of labeled data from source users and trains an activity recognition model.
Data augmentation is also integrated to enrich the diversity of labeled data and narrow the distribution gap between the source and target domains.
The activity recognizer, including <i>encoder</i>, <i>refiner</i>, and <i>classifier</i>, jointly learn to recognize activity types of labeled IMU data.
</p>
</li>
</ul>
<p>
After the server dispatches the recognizer, each client utilizes it to classify activities without additional training.
</p>
</div>
<!--/ Re-rendering. -->
</div>
</div>
<!--/ Overview. -->
<!-- Data augmentation. -->
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">Physics-Informed Data Augmentation</h2>
<!-- <br/>-->
<!--/ Interpolating. -->
<!-- Re-rendering. -->
<!-- <h3 class="title is-4">Re-rendering the input video</h3>-->
<div class="content has-text-justified">
<p>
To mitigate the data heterogeneity, UniHAR enriches the IMU data diversity based on physical knowledge and assists the learning of generalizable features.
</p>
</div>
<div class="row justify-content-center">
<div class="content col-sm-12 col-md-10 col-lg-8">
<img src="./static/images/data_aug.jpg"
class="image-scenario"
alt="Interpolate start reference image."/>
<h4 class="subtitle has-text-centered">Data augmentation model.</h4>
</div>
</div>
<div class="content has-text-justified">
<p>
Sensor readings are observations from the underlying physical states.
A data augmentation is a mapping F(·) that transforms observations from the original space to the augmented space.
We introduce the concept of <strong><em>physical embedding</em></strong> G(·) to align the mapping F(·) between observations with the underlying physical principles, which is defined as:
</p>
<p class="definition">
<i>"G(·) is a physical embedding of F(·) if G(·) transforms physical states such that the observations from the transformed physical states equal the augmented observations of F(·).
"
</i>
</p>
<p>
In practice, a mapping F(·) that has a physical embedding G(·) indicates the transition of readings can take place through a physical process in reality.
We thus define three types of data augmentation based on the above physical embedding:
</p>
<ul>
<li>
<p>
<strong>Complete data augmentation</strong>, where its mapping F(·) is connected with a physical embedding G(·), and F(·) can be fully formulated with original observations and known physical states.
</p>
</li>
<li>
<p>
<strong>Approximate data augmentation</strong>, where its mapping F(·) is connected with a physical embedding G(·), but F(·) involves unknown physical states and can be approximated by a formulation of known states.
</p>
</li>
<li>
<p>
<strong>Flaky data augmentation</strong>, where we cannot find a physical embedding G(·) to support its mapping F(·).
</p>
</li>
</ul>
<p>
We refer complete and approximate data augmentations to <strong><em>Physics-Informed Data Augmentations (PIDA)</em></strong>, which both have underlying support of physical embeddings.
</p>
<p>
UniHAR incorporates physics-informed data augmentation methods differently during the two stages of the framework based on their respective characteristics.
During the feature extraction stage, UniHAR only employs complete data augmentations to unlabeled data for generalizing the data distributions and avoiding approximation errors at scale.
During the feature extraction stage, UniHAR applies both complete and approximate data augmentation to augment labeled data for further data representativeness.
</p>
</div>
<!--/ Re-rendering. -->
</div>
</div>
<!--/ Data augmentation. -->
<!-- Adoption. -->
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">UniHAR Adoption</h2>
<!-- <br/>-->
<!--/ Interpolating. -->
<div class="content has-text-justified">
<p>
In practical applications, UniHAR is a configurable framework that can adapt to two scenarios, i.e., <i>data-decentralized</i> and <i>data-centralized</i> scenarios.
</p>
<p>
In the data-decentralized scenario where raw data transmission is not encouraged, UniHAR collaborates with all users and integrates self-supervised and federated learning techniques to train a generalized feature extraction model using massive and augmented unlabeled data.
UniHAR then constructs an activity recognition model using limited but augmented labeled data from source users.
</p>
<p>
In the data-centralized scenario, where raw data transmissions from target users are possible, UniHAR can further leverage adversarial training techniques for improved performance.
</p>
</div>
<!--/ Re-rendering. -->
</div>
</div>
<!--/ Adoption. -->
<!-- Concurrent Work. -->
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">Related Links</h2>
<div class="content has-text-justified">
<p>
<i class="fas fa-hand-point-right"></i> Check <a href="https://dapowan.github.io/files/UniHAR.pdf" target="_blank"><i class="fas fa-file-pdf"></i>UniHAR</a> paper for more details.
</p>
<p>
<i class="fas fa-hand-point-right"></i> Check <a href="https://doi.org/10.5281/zenodo.8260608" target="_blank"><i class="fas fa-file-code"></i>UniHAR</a>
if you are interested in implementing UniHAR with Pytorch.
</p>
<p>
<i class="fas fa-hand-point-right"></i> Check <a href="https://github.com/dapowan/UniHARMobile" target="_blank"><i class="fab fa-github"></i>UniHAR Mobile</a>
if you are interested in building HAR models on Android devices with Tensorflow lite.
</p>
<p>
<i class="fas fa-hand-point-right"></i> Check our previous work <a href="https://github.com/dapowan/LIMU-BERT-Public" target="_blank"><i class="fab fa-github"></i>LIMU-BERT</a> (an <strong>IMU foundation model</strong>) if you are interested in self-supervised representation learning for IMU data.
</p>
</div>
</div>
</div>
<!--/ Concurrent Work. -->
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{xu2023practically,
title={Practically Adopting Human Activity Recognition},
author={Xu, Huatao and Zhou, Pengfei and Tan, Rui and Li, Mo},
booktitle={Proceedings of the 29th Annual International Conference on Mobile Computing and Networking},
pages={1--15},
year={2023}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
Website template borrowed from <a href="https://github.com/nerfies/nerfies.github.io">NeRFies</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>-->
<script defer src="./static/js/fontawesome.all.min.js"></script>
<!-- <script src="./static/js/jquery.min.js"> </script>-->
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/umd/popper.min.js" integrity="sha384-ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js" integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl" crossorigin="anonymous"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</body>
</html>