-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathMatrix.cs
619 lines (523 loc) · 23.6 KB
/
Matrix.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
using System;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;
namespace LightweightMatrixCSharp {
public class Matrix
{
public int rows;
public int cols;
public double[] mat;
public Matrix L;
public Matrix U;
private int[] pi;
private double detOfP = 1;
public Matrix(int iRows, int iCols) // Matrix Class constructor
{
rows = iRows;
cols = iCols;
mat = new double[rows * cols];
}
public Matrix(double[,] matrix, bool rowMajor = true)
{
if (rowMajor) {
rows = matrix.GetLength(0);
cols = matrix.GetLength(1);
mat = matrix.Cast<double>().ToArray(); // NOTE copies elements
} else { // column-major
rows = matrix.GetLength(1);
cols = matrix.GetLength(0);
mat = new double[rows * cols];
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
this[row, col] = matrix[matrix.GetLowerBound(0) + col, matrix.GetLowerBound(1) + row];
}
}
}
}
public Boolean IsSquare()
{
return (rows == cols);
}
public double this[int iRow, int iCol] // Access this matrix as a 2D array
{
get { return mat[iRow * cols + iCol]; }
set { mat[iRow * cols + iCol] = value; }
}
public Matrix GetCol(int k)
{
Matrix m = new Matrix(rows, 1);
for (int i = 0; i < rows; i++) m[i, 0] = this[i, k];
return m;
}
public void SetCol(Matrix v, int k)
{
for (int i = 0; i < rows; i++) this[i, k] = v[i, 0];
}
public void MakeLU() // Function for LU decomposition
{
if (!IsSquare()) throw new MException("The matrix is not square!");
L = IdentityMatrix(rows, cols);
U = Duplicate();
pi = new int[rows];
for (int i = 0; i < rows; i++) pi[i] = i;
double p = 0;
double pom2;
int k0 = 0;
int pom1 = 0;
for (int k = 0; k < cols - 1; k++)
{
p = 0;
for (int i = k; i < rows; i++) // find the row with the biggest pivot
{
if (Math.Abs(U[i, k]) > p)
{
p = Math.Abs(U[i, k]);
k0 = i;
}
}
if (p == 0) // samé nuly ve sloupci
throw new MException("The matrix is singular!");
pom1 = pi[k]; pi[k] = pi[k0]; pi[k0] = pom1; // switch two rows in permutation matrix
for (int i = 0; i < k; i++)
{
pom2 = L[k, i]; L[k, i] = L[k0, i]; L[k0, i] = pom2;
}
if (k != k0) detOfP *= -1;
for (int i = 0; i < cols; i++) // Switch rows in U
{
pom2 = U[k, i]; U[k, i] = U[k0, i]; U[k0, i] = pom2;
}
for (int i = k + 1; i < rows; i++)
{
L[i, k] = U[i, k] / U[k, k];
for (int j = k; j < cols; j++)
U[i, j] = U[i, j] - L[i, k] * U[k, j];
}
}
}
public Matrix SolveWith(Matrix v) // Function solves Ax = v in confirmity with solution vector "v"
{
if (rows != cols) throw new MException("The matrix is not square!");
if (rows != v.rows) throw new MException("Wrong number of results in solution vector!");
if (v.cols != 1) throw new MException("The solution vector v must be a column vector");
if (L == null) MakeLU();
Matrix b = new Matrix(rows, 1);
for (int i = 0; i < rows; i++) b[i, 0] = v[pi[i], 0]; // switch two items in "v" due to permutation matrix
Matrix z = SubsForth(L, b);
Matrix x = SubsBack(U, z);
return x;
}
// TODO check for redundancy with MakeLU() and SolveWith()
public void MakeRref() // Function makes reduced echolon form
{
int lead = 0;
for (int r = 0; r < rows; r++)
{
if (cols <= lead) break;
int i = r;
while (this[i, lead] == 0)
{
i++;
if (i == rows)
{
i = r;
lead++;
if (cols == lead)
{
lead--;
break;
}
}
}
for (int j = 0; j < cols; j++)
{
double temp = this[r, j];
this[r, j] = this[i, j];
this[i, j] = temp;
}
double div = this[r, lead];
for (int j = 0; j < cols; j++) this[r, j] /= div;
for (int j = 0; j < rows; j++)
{
if (j != r)
{
double sub = this[j, lead];
for (int k = 0; k < cols; k++) this[j, k] -= (sub * this[r, k]);
}
}
lead++;
}
}
public Matrix Invert() // Function returns the inverted matrix
{
if (L == null) MakeLU();
Matrix inv = new Matrix(rows, cols);
for (int i = 0; i < rows; i++)
{
Matrix Ei = Matrix.ZeroMatrix(rows, 1);
Ei[i, 0] = 1;
Matrix col = SolveWith(Ei);
inv.SetCol(col, i);
}
return inv;
}
public double Det() // Function for determinant
{
if (L == null) MakeLU();
double det = detOfP;
for (int i = 0; i < rows; i++) det *= U[i, i];
return det;
}
public Matrix GetP() // Function returns permutation matrix "P" due to permutation vector "pi"
{
if (L == null) MakeLU();
Matrix matrix = ZeroMatrix(rows, cols);
for (int i = 0; i < rows; i++) matrix[pi[i], i] = 1;
return matrix;
}
public Matrix Duplicate() // Function returns the copy of this matrix
{
Matrix matrix = new Matrix(rows, cols);
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i, j] = this[i, j];
return matrix;
}
public static Matrix SubsForth(Matrix A, Matrix b) // Function solves Ax = b for A as a lower triangular matrix
{
if (A.L == null) A.MakeLU();
int n = A.rows;
Matrix x = new Matrix(n, 1);
for (int i = 0; i < n; i++)
{
x[i, 0] = b[i, 0];
for (int j = 0; j < i; j++) x[i, 0] -= A[i, j] * x[j, 0];
x[i, 0] = x[i, 0] / A[i, i];
}
return x;
}
public static Matrix SubsBack(Matrix A, Matrix b) // Function solves Ax = b for A as an upper triangular matrix
{
if (A.L == null) A.MakeLU();
int n = A.rows;
Matrix x = new Matrix(n, 1);
for (int i = n - 1; i > -1; i--)
{
x[i, 0] = b[i, 0];
for (int j = n - 1; j > i; j--) x[i, 0] -= A[i, j] * x[j, 0];
x[i, 0] = x[i, 0] / A[i, i];
}
return x;
}
public static Matrix ZeroMatrix(int iRows, int iCols) // Function generates the zero matrix
{
Matrix matrix = new Matrix(iRows, iCols);
for (int i = 0; i < iRows; i++)
for (int j = 0; j < iCols; j++)
matrix[i, j] = 0;
return matrix;
}
public static Matrix IdentityMatrix(int iRows, int iCols) // Function generates the identity matrix
{
Matrix matrix = ZeroMatrix(iRows, iCols);
for (int i = 0; i < Math.Min(iRows, iCols); i++)
matrix[i, i] = 1;
return matrix;
}
public static Matrix RandomMatrix(int iRows, int iCols, int dispersion) // Function generates the random matrix
{
Random random = new Random();
Matrix matrix = new Matrix(iRows, iCols);
for (int i = 0; i < iRows; i++)
for (int j = 0; j < iCols; j++)
matrix[i, j] = random.Next(-dispersion, dispersion);
return matrix;
}
public static Matrix Parse(string ps) // Function parses the matrix from string
{
string s = NormalizeMatrixString(ps);
string[] rows = Regex.Split(s, "\r\n");
string[] nums = rows[0].Split(' ');
Matrix matrix = new Matrix(rows.Length, nums.Length);
try
{
for (int i = 0; i < rows.Length; i++)
{
nums = rows[i].Split(' ');
for (int j = 0; j < nums.Length; j++) matrix[i, j] = double.Parse(nums[j]);
}
}
catch (FormatException) { throw new MException("Wrong input format!"); }
return matrix;
}
public override string ToString() // Function returns matrix as a string
{
StringBuilder s = new StringBuilder();
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
s.Append(String.Format("{0,5:E2}", this[i, j]) + " ");
s.AppendLine();
}
return s.ToString();
}
public static Matrix Transpose(Matrix m) // Matrix transpose, for any rectangular matrix
{
Matrix t = new Matrix(m.cols, m.rows);
for (int i = 0; i < m.rows; i++)
for (int j = 0; j < m.cols; j++)
t[j, i] = m[i, j];
return t;
}
public static Matrix Power(Matrix m, int pow) // Power matrix to exponent
{
if (pow == 0) return IdentityMatrix(m.rows, m.cols);
if (pow == 1) return m.Duplicate();
if (pow == -1) return m.Invert();
Matrix x;
if (pow < 0) { x = m.Invert(); pow *= -1; }
else x = m.Duplicate();
Matrix ret = IdentityMatrix(m.rows, m.cols);
while (pow != 0)
{
if ((pow & 1) == 1) ret *= x;
x *= x;
pow >>= 1;
}
return ret;
}
private static void SafeAplusBintoC(Matrix A, int xa, int ya, Matrix B, int xb, int yb, Matrix C, int size)
{
for (int i = 0; i < size; i++) // rows
for (int j = 0; j < size; j++) // cols
{
C[i, j] = 0;
if (xa + j < A.cols && ya + i < A.rows) C[i, j] += A[ya + i, xa + j];
if (xb + j < B.cols && yb + i < B.rows) C[i, j] += B[yb + i, xb + j];
}
}
private static void SafeAminusBintoC(Matrix A, int xa, int ya, Matrix B, int xb, int yb, Matrix C, int size)
{
for (int i = 0; i < size; i++) // rows
for (int j = 0; j < size; j++) // cols
{
C[i, j] = 0;
if (xa + j < A.cols && ya + i < A.rows) C[i, j] += A[ya + i, xa + j];
if (xb + j < B.cols && yb + i < B.rows) C[i, j] -= B[yb + i, xb + j];
}
}
private static void SafeACopytoC(Matrix A, int xa, int ya, Matrix C, int size)
{
for (int i = 0; i < size; i++) // rows
for (int j = 0; j < size; j++) // cols
{
C[i, j] = 0;
if (xa + j < A.cols && ya + i < A.rows) C[i, j] += A[ya + i, xa + j];
}
}
private static void AplusBintoC(Matrix A, int xa, int ya, Matrix B, int xb, int yb, Matrix C, int size)
{
for (int i = 0; i < size; i++) // rows
for (int j = 0; j < size; j++) C[i, j] = A[ya + i, xa + j] + B[yb + i, xb + j];
}
private static void AminusBintoC(Matrix A, int xa, int ya, Matrix B, int xb, int yb, Matrix C, int size)
{
for (int i = 0; i < size; i++) // rows
for (int j = 0; j < size; j++) C[i, j] = A[ya + i, xa + j] - B[yb + i, xb + j];
}
private static void ACopytoC(Matrix A, int xa, int ya, Matrix C, int size)
{
for (int i = 0; i < size; i++) // rows
for (int j = 0; j < size; j++) C[i, j] = A[ya + i, xa + j];
}
// TODO assume matrix 2^N x 2^N and then directly call StrassenMultiplyRun(A,B,?,1,?)
private static Matrix StrassenMultiply(Matrix A, Matrix B) // Smart matrix multiplication
{
if (A.cols != B.rows) throw new MException("Wrong dimension of matrix!");
Matrix R;
int msize = Math.Max(Math.Max(A.rows, A.cols), Math.Max(B.rows, B.cols));
int size = 1; int n = 0;
while (msize > size) { size *= 2; n++; };
int h = size / 2;
Matrix[,] mField = new Matrix[n, 9];
/*
* 8x8, 8x8, 8x8, ...
* 4x4, 4x4, 4x4, ...
* 2x2, 2x2, 2x2, ...
* . . .
*/
int z;
for (int i = 0; i < n - 4; i++) // rows
{
z = (int)Math.Pow(2, n - i - 1);
for (int j = 0; j < 9; j++) mField[i, j] = new Matrix(z, z);
}
SafeAplusBintoC(A, 0, 0, A, h, h, mField[0, 0], h);
SafeAplusBintoC(B, 0, 0, B, h, h, mField[0, 1], h);
StrassenMultiplyRun(mField[0, 0], mField[0, 1], mField[0, 1 + 1], 1, mField); // (A11 + A22) * (B11 + B22);
SafeAplusBintoC(A, 0, h, A, h, h, mField[0, 0], h);
SafeACopytoC(B, 0, 0, mField[0, 1], h);
StrassenMultiplyRun(mField[0, 0], mField[0, 1], mField[0, 1 + 2], 1, mField); // (A21 + A22) * B11;
SafeACopytoC(A, 0, 0, mField[0, 0], h);
SafeAminusBintoC(B, h, 0, B, h, h, mField[0, 1], h);
StrassenMultiplyRun(mField[0, 0], mField[0, 1], mField[0, 1 + 3], 1, mField); //A11 * (B12 - B22);
SafeACopytoC(A, h, h, mField[0, 0], h);
SafeAminusBintoC(B, 0, h, B, 0, 0, mField[0, 1], h);
StrassenMultiplyRun(mField[0, 0], mField[0, 1], mField[0, 1 + 4], 1, mField); //A22 * (B21 - B11);
SafeAplusBintoC(A, 0, 0, A, h, 0, mField[0, 0], h);
SafeACopytoC(B, h, h, mField[0, 1], h);
StrassenMultiplyRun(mField[0, 0], mField[0, 1], mField[0, 1 + 5], 1, mField); //(A11 + A12) * B22;
SafeAminusBintoC(A, 0, h, A, 0, 0, mField[0, 0], h);
SafeAplusBintoC(B, 0, 0, B, h, 0, mField[0, 1], h);
StrassenMultiplyRun(mField[0, 0], mField[0, 1], mField[0, 1 + 6], 1, mField); //(A21 - A11) * (B11 + B12);
SafeAminusBintoC(A, h, 0, A, h, h, mField[0, 0], h);
SafeAplusBintoC(B, 0, h, B, h, h, mField[0, 1], h);
StrassenMultiplyRun(mField[0, 0], mField[0, 1], mField[0, 1 + 7], 1, mField); // (A12 - A22) * (B21 + B22);
R = new Matrix(A.rows, B.cols); // result
/// C11
for (int i = 0; i < Math.Min(h, R.rows); i++) // rows
for (int j = 0; j < Math.Min(h, R.cols); j++) // cols
R[i, j] = mField[0, 1 + 1][i, j] + mField[0, 1 + 4][i, j] - mField[0, 1 + 5][i, j] + mField[0, 1 + 7][i, j];
/// C12
for (int i = 0; i < Math.Min(h, R.rows); i++) // rows
for (int j = h; j < Math.Min(2 * h, R.cols); j++) // cols
R[i, j] = mField[0, 1 + 3][i, j - h] + mField[0, 1 + 5][i, j - h];
/// C21
for (int i = h; i < Math.Min(2 * h, R.rows); i++) // rows
for (int j = 0; j < Math.Min(h, R.cols); j++) // cols
R[i, j] = mField[0, 1 + 2][i - h, j] + mField[0, 1 + 4][i - h, j];
/// C22
for (int i = h; i < Math.Min(2 * h, R.rows); i++) // rows
for (int j = h; j < Math.Min(2 * h, R.cols); j++) // cols
R[i, j] = mField[0, 1 + 1][i - h, j - h] - mField[0, 1 + 2][i - h, j - h] + mField[0, 1 + 3][i - h, j - h] + mField[0, 1 + 6][i - h, j - h];
return R;
}
private static void StrassenMultiplyRun(Matrix A, Matrix B, Matrix C, int l, Matrix[,] f) // A * B into C, level of recursion, matrix field
{
int size = A.rows;
int h = size / 2;
AplusBintoC(A, 0, 0, A, h, h, f[l, 0], h);
AplusBintoC(B, 0, 0, B, h, h, f[l, 1], h);
StrassenMultiplyRun(f[l, 0], f[l, 1], f[l, 1 + 1], l + 1, f); // (A11 + A22) * (B11 + B22);
AplusBintoC(A, 0, h, A, h, h, f[l, 0], h);
ACopytoC(B, 0, 0, f[l, 1], h);
StrassenMultiplyRun(f[l, 0], f[l, 1], f[l, 1 + 2], l + 1, f); // (A21 + A22) * B11;
ACopytoC(A, 0, 0, f[l, 0], h);
AminusBintoC(B, h, 0, B, h, h, f[l, 1], h);
StrassenMultiplyRun(f[l, 0], f[l, 1], f[l, 1 + 3], l + 1, f); //A11 * (B12 - B22);
ACopytoC(A, h, h, f[l, 0], h);
AminusBintoC(B, 0, h, B, 0, 0, f[l, 1], h);
StrassenMultiplyRun(f[l, 0], f[l, 1], f[l, 1 + 4], l + 1, f); //A22 * (B21 - B11);
AplusBintoC(A, 0, 0, A, h, 0, f[l, 0], h);
ACopytoC(B, h, h, f[l, 1], h);
StrassenMultiplyRun(f[l, 0], f[l, 1], f[l, 1 + 5], l + 1, f); //(A11 + A12) * B22;
AminusBintoC(A, 0, h, A, 0, 0, f[l, 0], h);
AplusBintoC(B, 0, 0, B, h, 0, f[l, 1], h);
StrassenMultiplyRun(f[l, 0], f[l, 1], f[l, 1 + 6], l + 1, f); //(A21 - A11) * (B11 + B12);
AminusBintoC(A, h, 0, A, h, h, f[l, 0], h);
AplusBintoC(B, 0, h, B, h, h, f[l, 1], h);
StrassenMultiplyRun(f[l, 0], f[l, 1], f[l, 1 + 7], l + 1, f); // (A12 - A22) * (B21 + B22);
/// C11
for (int i = 0; i < h; i++) // rows
for (int j = 0; j < h; j++) // cols
C[i, j] = f[l, 1 + 1][i, j] + f[l, 1 + 4][i, j] - f[l, 1 + 5][i, j] + f[l, 1 + 7][i, j];
/// C12
for (int i = 0; i < h; i++) // rows
for (int j = h; j < size; j++) // cols
C[i, j] = f[l, 1 + 3][i, j - h] + f[l, 1 + 5][i, j - h];
/// C21
for (int i = h; i < size; i++) // rows
for (int j = 0; j < h; j++) // cols
C[i, j] = f[l, 1 + 2][i - h, j] + f[l, 1 + 4][i - h, j];
/// C22
for (int i = h; i < size; i++) // rows
for (int j = h; j < size; j++) // cols
C[i, j] = f[l, 1 + 1][i - h, j - h] - f[l, 1 + 2][i - h, j - h] + f[l, 1 + 3][i - h, j - h] + f[l, 1 + 6][i - h, j - h];
}
private static Matrix StupidMultiply(Matrix m1, Matrix m2) // Stupid matrix multiplication
{
if (m1.cols != m2.rows) throw new MException("Wrong dimensions of matrix!");
Matrix result = ZeroMatrix(m1.rows, m2.cols);
for (int i = 0; i < result.rows; i++)
for (int j = 0; j < result.cols; j++)
for (int k = 0; k < m1.cols; k++)
result[i, j] += m1[i, k] * m2[k, j];
return result;
}
private static Matrix Multiply(Matrix m1, Matrix m2) // Matrix multiplication
{
if (m1.cols != m2.rows) throw new MException("Wrong dimension of matrix!");
int msize = Math.Max(Math.Max(m1.rows, m1.cols), Math.Max(m2.rows, m2.cols));
// stupid multiplication faster for small matrices
if (msize < 32)
{
return StupidMultiply(m1, m2);
}
// stupid multiplication faster for non square matrices
if (!m1.IsSquare() || !m2.IsSquare()) {
return StupidMultiply(m1, m2);
}
// Strassen multiplication is faster for large square matrix 2^N x 2^N
// NOTE because of previous checks msize == m1.cols == m1.rows == m2.cols == m2.cols
double exponent = Math.Log(msize) / Math.Log(2);
if (Math.Pow(2,exponent) == msize) {
return StrassenMultiply(m1, m2);
} else {
return StupidMultiply(m1, m2);
}
}
private static Matrix Multiply(double n, Matrix m) // Multiplication by constant n
{
Matrix r = new Matrix(m.rows, m.cols);
for (int i = 0; i < m.rows; i++)
for (int j = 0; j < m.cols; j++)
r[i, j] = m[i, j] * n;
return r;
}
private static Matrix Add(Matrix m1, Matrix m2) // Sčítání matic
{
if (m1.rows != m2.rows || m1.cols != m2.cols) throw new MException("Matrices must have the same dimensions!");
Matrix r = new Matrix(m1.rows, m1.cols);
for (int i = 0; i < r.rows; i++)
for (int j = 0; j < r.cols; j++)
r[i, j] = m1[i, j] + m2[i, j];
return r;
}
public static string NormalizeMatrixString(string matStr) // From Andy - thank you! :)
{
// Remove any multiple spaces
while (matStr.IndexOf(" ") != -1)
matStr = matStr.Replace(" ", " ");
// Remove any spaces before or after newlines
matStr = matStr.Replace(" \r\n", "\r\n");
matStr = matStr.Replace("\r\n ", "\r\n");
// If the data ends in a newline, remove the trailing newline.
// Make it easier by first replacing \r\n’s with |’s then
// restore the |’s with \r\n’s
matStr = matStr.Replace("\r\n", "|");
while (matStr.LastIndexOf("|") == (matStr.Length - 1))
matStr = matStr.Substring(0, matStr.Length - 1);
matStr = matStr.Replace("|", "\r\n");
return matStr.Trim();
}
// O P E R A T O R S
public static Matrix operator -(Matrix m)
{ return Matrix.Multiply(-1, m); }
public static Matrix operator +(Matrix m1, Matrix m2)
{ return Matrix.Add(m1, m2); }
public static Matrix operator -(Matrix m1, Matrix m2)
{ return Matrix.Add(m1, -m2); }
public static Matrix operator *(Matrix m1, Matrix m2)
{ return Matrix.Multiply(m1, m2); }
public static Matrix operator *(double n, Matrix m)
{ return Matrix.Multiply(n, m); }
}
// The class for exceptions
public class MException : Exception
{
public MException(string Message)
: base(Message)
{ }
}
}