-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathprocess_win.cc
1131 lines (1008 loc) · 36.1 KB
/
process_win.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h"
#if defined(HOST_OS_WINDOWS)
#include "bin/process.h"
#include <process.h> // NOLINT
#include <psapi.h> // NOLINT
#include <vector>
#include "bin/builtin.h"
#include "bin/dartutils.h"
#include "bin/eventhandler.h"
#include "bin/lockers.h"
#include "bin/socket.h"
#include "bin/thread.h"
#include "bin/utils.h"
#include "bin/utils_win.h"
#include "platform/syslog.h"
namespace dart {
namespace bin {
static const int kReadHandle = 0;
static const int kWriteHandle = 1;
int Process::global_exit_code_ = 0;
Mutex* Process::global_exit_code_mutex_ = nullptr;
Process::ExitHook Process::exit_hook_ = NULL;
// ProcessInfo is used to map a process id to the process handle,
// wait handle for registered exit code event and the pipe used to
// communicate the exit code of the process to Dart.
// ProcessInfo objects are kept in the static singly-linked
// ProcessInfoList.
class ProcessInfo {
public:
ProcessInfo(DWORD process_id,
HANDLE process_handle,
HANDLE wait_handle,
HANDLE exit_pipe)
: process_id_(process_id),
process_handle_(process_handle),
wait_handle_(wait_handle),
exit_pipe_(exit_pipe) {}
~ProcessInfo() {
BOOL success = CloseHandle(process_handle_);
if (!success) {
FATAL("Failed to close process handle");
}
success = CloseHandle(exit_pipe_);
if (!success) {
FATAL("Failed to close process exit code pipe");
}
}
DWORD pid() { return process_id_; }
HANDLE process_handle() { return process_handle_; }
HANDLE wait_handle() { return wait_handle_; }
HANDLE exit_pipe() { return exit_pipe_; }
ProcessInfo* next() { return next_; }
void set_next(ProcessInfo* next) { next_ = next; }
private:
// Process id.
DWORD process_id_;
// Process handle.
HANDLE process_handle_;
// Wait handle identifying the exit-code wait operation registered
// with RegisterWaitForSingleObject.
HANDLE wait_handle_;
// File descriptor for pipe to report exit code.
HANDLE exit_pipe_;
// Link to next ProcessInfo object in the singly-linked list.
ProcessInfo* next_;
DISALLOW_COPY_AND_ASSIGN(ProcessInfo);
};
// Singly-linked list of ProcessInfo objects for all active processes
// started from Dart.
class ProcessInfoList {
public:
static void Init();
static void Cleanup();
static void AddProcess(DWORD pid, HANDLE handle, HANDLE pipe) {
// Register a callback to extract the exit code, when the process
// is signaled. The callback runs in a independent thread from the OS pool.
// Because the callback depends on the process list containing
// the process, lock the mutex until the process is added to the list.
MutexLocker locker(mutex_);
HANDLE wait_handle = INVALID_HANDLE_VALUE;
BOOL success = RegisterWaitForSingleObject(
&wait_handle, handle, &ExitCodeCallback, reinterpret_cast<void*>(pid),
INFINITE, WT_EXECUTEONLYONCE);
if (!success) {
FATAL("Failed to register exit code wait operation.");
}
ProcessInfo* info = new ProcessInfo(pid, handle, wait_handle, pipe);
// Mutate the process list under the mutex.
info->set_next(active_processes_);
active_processes_ = info;
}
static bool LookupProcess(DWORD pid,
HANDLE* handle,
HANDLE* wait_handle,
HANDLE* pipe) {
MutexLocker locker(mutex_);
ProcessInfo* current = active_processes_;
while (current != NULL) {
if (current->pid() == pid) {
*handle = current->process_handle();
*wait_handle = current->wait_handle();
*pipe = current->exit_pipe();
return true;
}
current = current->next();
}
return false;
}
static void RemoveProcess(DWORD pid) {
MutexLocker locker(mutex_);
ProcessInfo* prev = NULL;
ProcessInfo* current = active_processes_;
while (current != NULL) {
if (current->pid() == pid) {
if (prev == NULL) {
active_processes_ = current->next();
} else {
prev->set_next(current->next());
}
delete current;
return;
}
prev = current;
current = current->next();
}
}
private:
// Callback called when an exit code is available from one of the
// processes in the list.
static void CALLBACK ExitCodeCallback(PVOID data, BOOLEAN timed_out) {
if (timed_out) {
return;
}
DWORD pid = reinterpret_cast<DWORD>(data);
HANDLE handle;
HANDLE wait_handle;
HANDLE exit_pipe;
bool success = LookupProcess(pid, &handle, &wait_handle, &exit_pipe);
if (!success) {
FATAL("Failed to lookup process in list of active processes");
}
// Unregister the event in a non-blocking way.
BOOL ok = UnregisterWait(wait_handle);
if (!ok && (GetLastError() != ERROR_IO_PENDING)) {
FATAL("Failed unregistering wait operation");
}
// Get and report the exit code to Dart.
int exit_code;
ok = GetExitCodeProcess(handle, reinterpret_cast<DWORD*>(&exit_code));
if (!ok) {
FATAL1("GetExitCodeProcess failed %d\n", GetLastError());
}
int negative = 0;
if (exit_code < 0) {
exit_code = abs(exit_code);
negative = 1;
}
int message[2] = {exit_code, negative};
DWORD written;
ok = WriteFile(exit_pipe, message, sizeof(message), &written, NULL);
// If the process has been closed, the read end of the exit
// pipe has been closed. It is therefore not a problem that
// WriteFile fails with a closed pipe error
// (ERROR_NO_DATA). Other errors should not happen.
if (ok && (written != sizeof(message))) {
FATAL("Failed to write entire process exit message");
} else if (!ok && (GetLastError() != ERROR_NO_DATA)) {
FATAL1("Failed to write exit code: %d", GetLastError());
}
// Remove the process from the list of active processes.
RemoveProcess(pid);
}
// Linked list of ProcessInfo objects for all active processes
// started from Dart code.
static ProcessInfo* active_processes_;
// Mutex protecting all accesses to the linked list of active
// processes.
static Mutex* mutex_;
DISALLOW_ALLOCATION();
DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessInfoList);
};
ProcessInfo* ProcessInfoList::active_processes_ = NULL;
Mutex* ProcessInfoList::mutex_ = nullptr;
// Types of pipes to create.
enum NamedPipeType { kInheritRead, kInheritWrite, kInheritNone };
// Create a pipe for communicating with a new process. The handles array
// will contain the read and write ends of the pipe. Based on the type
// one of the handles will be inheritable.
// NOTE: If this function returns false the handles might have been allocated
// and the caller should make sure to close them in case of an error.
static bool CreateProcessPipe(HANDLE handles[2],
wchar_t* pipe_name,
NamedPipeType type) {
// Security attributes describing an inheritable handle.
SECURITY_ATTRIBUTES inherit_handle;
inherit_handle.nLength = sizeof(SECURITY_ATTRIBUTES);
inherit_handle.bInheritHandle = TRUE;
inherit_handle.lpSecurityDescriptor = NULL;
if (type == kInheritRead) {
handles[kWriteHandle] =
CreateNamedPipeW(pipe_name, PIPE_ACCESS_OUTBOUND | FILE_FLAG_OVERLAPPED,
PIPE_TYPE_BYTE | PIPE_WAIT,
1, // Number of pipes
1024, // Out buffer size
1024, // In buffer size
0, // Timeout in ms
NULL);
if (handles[kWriteHandle] == INVALID_HANDLE_VALUE) {
Syslog::PrintErr("CreateNamedPipe failed %d\n", GetLastError());
return false;
}
handles[kReadHandle] =
CreateFileW(pipe_name, GENERIC_READ, 0, &inherit_handle, OPEN_EXISTING,
FILE_READ_ATTRIBUTES | FILE_FLAG_OVERLAPPED, NULL);
if (handles[kReadHandle] == INVALID_HANDLE_VALUE) {
Syslog::PrintErr("CreateFile failed %d\n", GetLastError());
return false;
}
} else {
ASSERT((type == kInheritWrite) || (type == kInheritNone));
handles[kReadHandle] =
CreateNamedPipeW(pipe_name, PIPE_ACCESS_INBOUND | FILE_FLAG_OVERLAPPED,
PIPE_TYPE_BYTE | PIPE_WAIT,
1, // Number of pipes
1024, // Out buffer size
1024, // In buffer size
0, // Timeout in ms
NULL);
if (handles[kReadHandle] == INVALID_HANDLE_VALUE) {
Syslog::PrintErr("CreateNamedPipe failed %d\n", GetLastError());
return false;
}
handles[kWriteHandle] = CreateFileW(
pipe_name, GENERIC_WRITE, 0,
(type == kInheritWrite) ? &inherit_handle : NULL, OPEN_EXISTING,
FILE_WRITE_ATTRIBUTES | FILE_FLAG_OVERLAPPED, NULL);
if (handles[kWriteHandle] == INVALID_HANDLE_VALUE) {
Syslog::PrintErr("CreateFile failed %d\n", GetLastError());
return false;
}
}
return true;
}
static void CloseProcessPipe(HANDLE handles[2]) {
for (int i = kReadHandle; i < kWriteHandle; i++) {
if (handles[i] != INVALID_HANDLE_VALUE) {
if (!CloseHandle(handles[i])) {
Syslog::PrintErr("CloseHandle failed %d\n", GetLastError());
}
handles[i] = INVALID_HANDLE_VALUE;
}
}
}
static void CloseProcessPipes(HANDLE handles1[2],
HANDLE handles2[2],
HANDLE handles3[2],
HANDLE handles4[2]) {
CloseProcessPipe(handles1);
CloseProcessPipe(handles2);
CloseProcessPipe(handles3);
CloseProcessPipe(handles4);
}
static int SetOsErrorMessage(char** os_error_message) {
int error_code = GetLastError();
const int kMaxMessageLength = 256;
wchar_t message[kMaxMessageLength];
FormatMessageIntoBuffer(error_code, message, kMaxMessageLength);
*os_error_message = StringUtilsWin::WideToUtf8(message);
return error_code;
}
// Open an inheritable handle to NUL.
static HANDLE OpenNul() {
SECURITY_ATTRIBUTES inherit_handle;
inherit_handle.nLength = sizeof(SECURITY_ATTRIBUTES);
inherit_handle.bInheritHandle = TRUE;
inherit_handle.lpSecurityDescriptor = NULL;
HANDLE nul = CreateFile(L"NUL", GENERIC_READ | GENERIC_WRITE, 0,
&inherit_handle, OPEN_EXISTING, 0, NULL);
if (nul == INVALID_HANDLE_VALUE) {
Syslog::PrintErr("CloseHandle failed %d\n", GetLastError());
}
return nul;
}
typedef BOOL(WINAPI* InitProcThreadAttrListFn)(LPPROC_THREAD_ATTRIBUTE_LIST,
DWORD,
DWORD,
PSIZE_T);
typedef BOOL(WINAPI* UpdateProcThreadAttrFn)(LPPROC_THREAD_ATTRIBUTE_LIST,
DWORD,
DWORD_PTR,
PVOID,
SIZE_T,
PVOID,
PSIZE_T);
typedef VOID(WINAPI* DeleteProcThreadAttrListFn)(LPPROC_THREAD_ATTRIBUTE_LIST);
static InitProcThreadAttrListFn init_proc_thread_attr_list = NULL;
static UpdateProcThreadAttrFn update_proc_thread_attr = NULL;
static DeleteProcThreadAttrListFn delete_proc_thread_attr_list = NULL;
static Mutex* initialized_mutex = nullptr;
static bool load_attempted = false;
static bool EnsureInitialized() {
HMODULE kernel32_module = GetModuleHandleW(L"kernel32.dll");
if (!load_attempted) {
MutexLocker locker(initialized_mutex);
if (load_attempted) {
return (delete_proc_thread_attr_list != NULL);
}
init_proc_thread_attr_list = reinterpret_cast<InitProcThreadAttrListFn>(
GetProcAddress(kernel32_module, "InitializeProcThreadAttributeList"));
update_proc_thread_attr = reinterpret_cast<UpdateProcThreadAttrFn>(
GetProcAddress(kernel32_module, "UpdateProcThreadAttribute"));
delete_proc_thread_attr_list = reinterpret_cast<DeleteProcThreadAttrListFn>(
GetProcAddress(kernel32_module, "DeleteProcThreadAttributeList"));
load_attempted = true;
return (delete_proc_thread_attr_list != NULL);
}
return (delete_proc_thread_attr_list != NULL);
}
const int kMaxPipeNameSize = 80;
template <int Count>
static int GenerateNames(wchar_t pipe_names[Count][kMaxPipeNameSize]) {
UUID uuid;
RPC_STATUS status = UuidCreateSequential(&uuid);
if ((status != RPC_S_OK) && (status != RPC_S_UUID_LOCAL_ONLY)) {
return status;
}
RPC_WSTR uuid_string;
status = UuidToStringW(&uuid, &uuid_string);
if (status != RPC_S_OK) {
return status;
}
for (int i = 0; i < Count; i++) {
static const wchar_t* prefix = L"\\\\.\\Pipe\\dart";
_snwprintf(pipe_names[i], kMaxPipeNameSize, L"%s_%s_%d", prefix,
uuid_string, i + 1);
}
status = RpcStringFreeW(&uuid_string);
if (status != RPC_S_OK) {
return status;
}
return 0;
}
class ProcessStarter {
public:
ProcessStarter(const char* path,
char* arguments[],
intptr_t arguments_length,
const char* working_directory,
char* environment[],
intptr_t environment_length,
ProcessStartMode mode,
intptr_t* in,
intptr_t* out,
intptr_t* err,
intptr_t* id,
intptr_t* exit_handler,
char** os_error_message)
: path_(path),
working_directory_(working_directory),
mode_(mode),
in_(in),
out_(out),
err_(err),
id_(id),
exit_handler_(exit_handler),
os_error_message_(os_error_message) {
stdin_handles_[kReadHandle] = INVALID_HANDLE_VALUE;
stdin_handles_[kWriteHandle] = INVALID_HANDLE_VALUE;
stdout_handles_[kReadHandle] = INVALID_HANDLE_VALUE;
stdout_handles_[kWriteHandle] = INVALID_HANDLE_VALUE;
stderr_handles_[kReadHandle] = INVALID_HANDLE_VALUE;
stderr_handles_[kWriteHandle] = INVALID_HANDLE_VALUE;
exit_handles_[kReadHandle] = INVALID_HANDLE_VALUE;
exit_handles_[kWriteHandle] = INVALID_HANDLE_VALUE;
// Transform input strings to system format.
const wchar_t* system_path = StringUtilsWin::Utf8ToWide(path_);
wchar_t** system_arguments;
system_arguments = reinterpret_cast<wchar_t**>(
Dart_ScopeAllocate(arguments_length * sizeof(*system_arguments)));
for (int i = 0; i < arguments_length; i++) {
system_arguments[i] = StringUtilsWin::Utf8ToWide(arguments[i]);
}
// Compute command-line length.
int command_line_length = wcslen(system_path);
for (int i = 0; i < arguments_length; i++) {
command_line_length += wcslen(system_arguments[i]);
}
// Account for null termination and one space per argument.
command_line_length += arguments_length + 1;
// Put together command-line string.
command_line_ = reinterpret_cast<wchar_t*>(
Dart_ScopeAllocate(command_line_length * sizeof(*command_line_)));
int len = 0;
int remaining = command_line_length;
int written =
_snwprintf(command_line_ + len, remaining, L"%s", system_path);
len += written;
remaining -= written;
ASSERT(remaining >= 0);
for (int i = 0; i < arguments_length; i++) {
written = _snwprintf(command_line_ + len, remaining, L" %s",
system_arguments[i]);
len += written;
remaining -= written;
ASSERT(remaining >= 0);
}
// Create environment block if an environment is supplied.
environment_block_ = NULL;
if (environment != NULL) {
wchar_t** system_environment;
system_environment = reinterpret_cast<wchar_t**>(
Dart_ScopeAllocate(environment_length * sizeof(*system_environment)));
// Convert environment strings to system strings.
for (intptr_t i = 0; i < environment_length; i++) {
system_environment[i] = StringUtilsWin::Utf8ToWide(environment[i]);
}
// An environment block is a sequence of zero-terminated strings
// followed by a block-terminating zero char.
intptr_t block_size = 1;
for (intptr_t i = 0; i < environment_length; i++) {
block_size += wcslen(system_environment[i]) + 1;
}
environment_block_ = reinterpret_cast<wchar_t*>(
Dart_ScopeAllocate(block_size * sizeof(*environment_block_)));
intptr_t block_index = 0;
for (intptr_t i = 0; i < environment_length; i++) {
intptr_t len = wcslen(system_environment[i]);
intptr_t result = _snwprintf(environment_block_ + block_index, len,
L"%s", system_environment[i]);
ASSERT(result == len);
block_index += len;
environment_block_[block_index++] = '\0';
}
// Block-terminating zero char.
environment_block_[block_index++] = '\0';
ASSERT(block_index == block_size);
}
system_working_directory_ = NULL;
if (working_directory_ != NULL) {
system_working_directory_ =
StringUtilsWin::Utf8ToWide(working_directory_);
}
attribute_list_ = NULL;
}
~ProcessStarter() {
if (attribute_list_ != NULL) {
delete_proc_thread_attr_list(attribute_list_);
}
}
int Start() {
// Create pipes required.
int err = CreatePipes();
if (err != 0) {
return err;
}
// Setup info structures.
STARTUPINFOEXW startup_info;
ZeroMemory(&startup_info, sizeof(startup_info));
startup_info.StartupInfo.cb = sizeof(startup_info);
if (mode_ != kInheritStdio) {
startup_info.StartupInfo.hStdInput = stdin_handles_[kReadHandle];
startup_info.StartupInfo.hStdOutput = stdout_handles_[kWriteHandle];
startup_info.StartupInfo.hStdError = stderr_handles_[kWriteHandle];
startup_info.StartupInfo.dwFlags = STARTF_USESTDHANDLES;
bool supports_proc_thread_attr_lists = EnsureInitialized();
if (supports_proc_thread_attr_lists) {
// Setup the handles to inherit. We only want to inherit the three
// handles for stdin, stdout and stderr.
SIZE_T size = 0;
// The call to determine the size of an attribute list always fails with
// ERROR_INSUFFICIENT_BUFFER and that error should be ignored.
if (!init_proc_thread_attr_list(NULL, 1, 0, &size) &&
(GetLastError() != ERROR_INSUFFICIENT_BUFFER)) {
return CleanupAndReturnError();
}
attribute_list_ = reinterpret_cast<LPPROC_THREAD_ATTRIBUTE_LIST>(
Dart_ScopeAllocate(size));
ZeroMemory(attribute_list_, size);
if (!init_proc_thread_attr_list(attribute_list_, 1, 0, &size)) {
return CleanupAndReturnError();
}
inherited_handles_ = {stdin_handles_[kReadHandle],
stdout_handles_[kWriteHandle],
stderr_handles_[kWriteHandle]};
if (!update_proc_thread_attr(
attribute_list_, 0, PROC_THREAD_ATTRIBUTE_HANDLE_LIST,
inherited_handles_.data(),
inherited_handles_.size() * sizeof(HANDLE), NULL, NULL)) {
return CleanupAndReturnError();
}
startup_info.lpAttributeList = attribute_list_;
}
}
PROCESS_INFORMATION process_info;
ZeroMemory(&process_info, sizeof(process_info));
// Create process.
DWORD creation_flags =
EXTENDED_STARTUPINFO_PRESENT | CREATE_UNICODE_ENVIRONMENT;
if (!Process::ModeIsAttached(mode_)) {
creation_flags |= DETACHED_PROCESS;
}
BOOL result = CreateProcessW(
NULL, // ApplicationName
command_line_,
NULL, // ProcessAttributes
NULL, // ThreadAttributes
TRUE, // InheritHandles
creation_flags, environment_block_, system_working_directory_,
reinterpret_cast<STARTUPINFOW*>(&startup_info), &process_info);
if (result == 0) {
Syslog::PrintErr("CreateProcessW failed %d\n", GetLastError());
return CleanupAndReturnError();
}
if (mode_ != kInheritStdio) {
CloseHandle(stdin_handles_[kReadHandle]);
CloseHandle(stdout_handles_[kWriteHandle]);
CloseHandle(stderr_handles_[kWriteHandle]);
}
if (Process::ModeIsAttached(mode_)) {
ProcessInfoList::AddProcess(process_info.dwProcessId,
process_info.hProcess,
exit_handles_[kWriteHandle]);
}
if (mode_ != kDetached) {
// Connect the three stdio streams.
if (Process::ModeHasStdio(mode_)) {
FileHandle* stdin_handle = new FileHandle(stdin_handles_[kWriteHandle]);
FileHandle* stdout_handle =
new FileHandle(stdout_handles_[kReadHandle]);
FileHandle* stderr_handle =
new FileHandle(stderr_handles_[kReadHandle]);
*in_ = reinterpret_cast<intptr_t>(stdout_handle);
*out_ = reinterpret_cast<intptr_t>(stdin_handle);
*err_ = reinterpret_cast<intptr_t>(stderr_handle);
}
if (Process::ModeIsAttached(mode_)) {
FileHandle* exit_handle = new FileHandle(exit_handles_[kReadHandle]);
*exit_handler_ = reinterpret_cast<intptr_t>(exit_handle);
}
}
CloseHandle(process_info.hThread);
// Return process id.
*id_ = process_info.dwProcessId;
return 0;
}
int CreatePipes() {
// Generate unique pipe names for the four named pipes needed.
wchar_t pipe_names[4][kMaxPipeNameSize];
int status = GenerateNames<4>(pipe_names);
if (status != 0) {
SetOsErrorMessage(os_error_message_);
Syslog::PrintErr("UuidCreateSequential failed %d\n", status);
return status;
}
if (mode_ != kDetached) {
// Open pipes for stdin, stdout, stderr and for communicating the exit
// code.
if (Process::ModeHasStdio(mode_)) {
if (!CreateProcessPipe(stdin_handles_, pipe_names[0], kInheritRead) ||
!CreateProcessPipe(stdout_handles_, pipe_names[1], kInheritWrite) ||
!CreateProcessPipe(stderr_handles_, pipe_names[2], kInheritWrite)) {
return CleanupAndReturnError();
}
}
// Only open exit code pipe for non detached processes.
if (Process::ModeIsAttached(mode_)) {
if (!CreateProcessPipe(exit_handles_, pipe_names[3], kInheritNone)) {
return CleanupAndReturnError();
}
}
} else {
// Open NUL for stdin, stdout, and stderr.
stdin_handles_[kReadHandle] = OpenNul();
if (stdin_handles_[kReadHandle] == INVALID_HANDLE_VALUE) {
return CleanupAndReturnError();
}
stdout_handles_[kWriteHandle] = OpenNul();
if (stdout_handles_[kWriteHandle] == INVALID_HANDLE_VALUE) {
return CleanupAndReturnError();
}
stderr_handles_[kWriteHandle] = OpenNul();
if (stderr_handles_[kWriteHandle] == INVALID_HANDLE_VALUE) {
return CleanupAndReturnError();
}
}
return 0;
}
int CleanupAndReturnError() {
int error_code = SetOsErrorMessage(os_error_message_);
CloseProcessPipes(stdin_handles_, stdout_handles_, stderr_handles_,
exit_handles_);
return error_code;
}
HANDLE stdin_handles_[2];
HANDLE stdout_handles_[2];
HANDLE stderr_handles_[2];
HANDLE exit_handles_[2];
const wchar_t* system_working_directory_;
wchar_t* command_line_;
wchar_t* environment_block_;
std::vector<HANDLE> inherited_handles_;
LPPROC_THREAD_ATTRIBUTE_LIST attribute_list_;
const char* path_;
const char* working_directory_;
ProcessStartMode mode_;
intptr_t* in_;
intptr_t* out_;
intptr_t* err_;
intptr_t* id_;
intptr_t* exit_handler_;
char** os_error_message_;
private:
DISALLOW_ALLOCATION();
DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessStarter);
};
int Process::Start(Namespace* namespc,
const char* path,
char* arguments[],
intptr_t arguments_length,
const char* working_directory,
char* environment[],
intptr_t environment_length,
ProcessStartMode mode,
intptr_t* in,
intptr_t* out,
intptr_t* err,
intptr_t* id,
intptr_t* exit_handler,
char** os_error_message) {
ProcessStarter starter(path, arguments, arguments_length, working_directory,
environment, environment_length, mode, in, out, err,
id, exit_handler, os_error_message);
return starter.Start();
}
class BufferList : public BufferListBase {
public:
BufferList() : read_pending_(true) {}
// Indicate that data has been read into the buffer provided to
// overlapped read.
void DataIsRead(intptr_t size) {
ASSERT(read_pending_ == true);
set_data_size(data_size() + size);
set_free_size(free_size() - size);
ASSERT(free_size() >= 0);
read_pending_ = false;
}
// The access to the read buffer for overlapped read.
bool GetReadBuffer(uint8_t** buffer, intptr_t* size) {
ASSERT(!read_pending_);
if (free_size() == 0) {
if (!Allocate()) {
return false;
}
}
ASSERT(free_size() > 0);
ASSERT(free_size() <= kBufferSize);
*buffer = FreeSpaceAddress();
*size = free_size();
read_pending_ = true;
return true;
}
intptr_t GetDataSize() { return data_size(); }
uint8_t* GetFirstDataBuffer() {
ASSERT(head() != NULL);
ASSERT(head() == tail());
ASSERT(data_size() <= kBufferSize);
return head()->data();
}
void FreeDataBuffer() { Free(); }
private:
bool read_pending_;
DISALLOW_COPY_AND_ASSIGN(BufferList);
};
class OverlappedHandle {
public:
OverlappedHandle() {}
void Init(HANDLE handle, HANDLE event) {
handle_ = handle;
event_ = event;
ClearOverlapped();
}
bool HasEvent(HANDLE event) { return (event_ == event); }
bool Read() {
// Get the data read as a result of a completed overlapped operation.
if (overlapped_.InternalHigh > 0) {
buffer_.DataIsRead(overlapped_.InternalHigh);
} else {
buffer_.DataIsRead(0);
}
// Keep reading until error or pending operation.
while (true) {
ClearOverlapped();
uint8_t* buffer;
intptr_t buffer_size;
if (!buffer_.GetReadBuffer(&buffer, &buffer_size)) {
return false;
}
BOOL ok = ReadFile(handle_, buffer, buffer_size, NULL, &overlapped_);
if (!ok) {
return (GetLastError() == ERROR_IO_PENDING);
}
buffer_.DataIsRead(overlapped_.InternalHigh);
}
}
Dart_Handle GetData() { return buffer_.GetData(); }
intptr_t GetDataSize() { return buffer_.GetDataSize(); }
uint8_t* GetFirstDataBuffer() { return buffer_.GetFirstDataBuffer(); }
void FreeDataBuffer() { return buffer_.FreeDataBuffer(); }
#if defined(DEBUG)
bool IsEmpty() const { return buffer_.IsEmpty(); }
#endif
void Close() {
CloseHandle(handle_);
CloseHandle(event_);
handle_ = INVALID_HANDLE_VALUE;
overlapped_.hEvent = INVALID_HANDLE_VALUE;
}
private:
void ClearOverlapped() {
memset(&overlapped_, 0, sizeof(overlapped_));
overlapped_.hEvent = event_;
}
OVERLAPPED overlapped_;
HANDLE handle_;
HANDLE event_;
BufferList buffer_;
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(OverlappedHandle);
};
bool Process::Wait(intptr_t pid,
intptr_t in,
intptr_t out,
intptr_t err,
intptr_t exit_event,
ProcessResult* result) {
// Close input to the process right away.
reinterpret_cast<FileHandle*>(in)->Close();
// All pipes created to the sub-process support overlapped IO.
FileHandle* stdout_handle = reinterpret_cast<FileHandle*>(out);
ASSERT(stdout_handle->SupportsOverlappedIO());
FileHandle* stderr_handle = reinterpret_cast<FileHandle*>(err);
ASSERT(stderr_handle->SupportsOverlappedIO());
FileHandle* exit_handle = reinterpret_cast<FileHandle*>(exit_event);
ASSERT(exit_handle->SupportsOverlappedIO());
// Create three events for overlapped IO. These are created as already
// signalled to ensure they have read called at least once.
static const int kHandles = 3;
HANDLE events[kHandles];
for (int i = 0; i < kHandles; i++) {
events[i] = CreateEvent(NULL, FALSE, TRUE, NULL);
}
// Setup the structure for handling overlapped IO.
OverlappedHandle oh[kHandles];
oh[0].Init(stdout_handle->handle(), events[0]);
oh[1].Init(stderr_handle->handle(), events[1]);
oh[2].Init(exit_handle->handle(), events[2]);
// Continue until all handles are closed.
int alive = kHandles;
while (alive > 0) {
// Blocking call waiting for events from the child process.
DWORD wait_result = WaitForMultipleObjects(alive, events, FALSE, INFINITE);
// Find the handle signalled.
int index = wait_result - WAIT_OBJECT_0;
for (int i = 0; i < kHandles; i++) {
if (oh[i].HasEvent(events[index])) {
bool ok = oh[i].Read();
if (!ok) {
if (GetLastError() == ERROR_BROKEN_PIPE) {
oh[i].Close();
alive--;
if (index < alive) {
events[index] = events[alive];
}
} else if (err != ERROR_IO_PENDING) {
DWORD e = GetLastError();
oh[0].Close();
oh[1].Close();
oh[2].Close();
SetLastError(e);
return false;
}
}
break;
}
}
}
// All handles closed and all data read.
result->set_stdout_data(oh[0].GetData());
result->set_stderr_data(oh[1].GetData());
DEBUG_ASSERT(oh[0].IsEmpty());
DEBUG_ASSERT(oh[1].IsEmpty());
// Calculate the exit code.
ASSERT(oh[2].GetDataSize() == 8);
uint32_t exit_codes[2];
memmove(&exit_codes, oh[2].GetFirstDataBuffer(), sizeof(exit_codes));
oh[2].FreeDataBuffer();
intptr_t exit_code = exit_codes[0];
intptr_t negative = exit_codes[1];
if (negative != 0) {
exit_code = -exit_code;
}
result->set_exit_code(exit_code);
return true;
}
bool Process::Kill(intptr_t id, int signal) {
USE(signal); // signal is not used on Windows.
HANDLE process_handle;
HANDLE wait_handle;
HANDLE exit_pipe;
// First check the process info list for the process to get a handle to it.
bool success = ProcessInfoList::LookupProcess(id, &process_handle,
&wait_handle, &exit_pipe);
// For detached processes we don't have the process registered in the
// process info list. Try to look it up through the OS.
if (!success) {
process_handle = OpenProcess(PROCESS_TERMINATE, FALSE, id);
// The process is already dead.
if (process_handle == INVALID_HANDLE_VALUE) {
return false;
}
}
BOOL result = TerminateProcess(process_handle, -1);
return result ? true : false;
}
void Process::TerminateExitCodeHandler() {
// Nothing needs to be done on Windows.
}
intptr_t Process::CurrentProcessId() {
return static_cast<intptr_t>(GetCurrentProcessId());
}
int64_t Process::CurrentRSS() {
PROCESS_MEMORY_COUNTERS pmc;
if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) {
return -1;
}
return pmc.WorkingSetSize;
}
int64_t Process::MaxRSS() {
PROCESS_MEMORY_COUNTERS pmc;
if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) {
return -1;
}
return pmc.PeakWorkingSetSize;
}
static SignalInfo* signal_handlers = NULL;
static Mutex* signal_mutex = nullptr;
SignalInfo::~SignalInfo() {
FileHandle* file_handle = reinterpret_cast<FileHandle*>(fd_);
file_handle->Close();
file_handle->Release();
}
BOOL WINAPI SignalHandler(DWORD signal) {
MutexLocker lock(signal_mutex);
const SignalInfo* handler = signal_handlers;
bool handled = false;
while (handler != NULL) {
if (handler->signal() == signal) {
int value = 0;
SocketBase::Write(handler->fd(), &value, 1, SocketBase::kAsync);
handled = true;
}
handler = handler->next();
}
return handled;
}
intptr_t GetWinSignal(intptr_t signal) {
switch (signal) {
case kSighup:
return CTRL_CLOSE_EVENT;
case kSigint:
return CTRL_C_EVENT;
default:
return -1;
}
}
intptr_t Process::SetSignalHandler(intptr_t signal) {
signal = GetWinSignal(signal);
if (signal == -1) {
SetLastError(ERROR_NOT_SUPPORTED);
return -1;
}
// Generate a unique pipe name for the named pipe.
wchar_t pipe_name[kMaxPipeNameSize];
int status = GenerateNames<1>(&pipe_name);
if (status != 0) {
return status;
}
HANDLE fds[2];
if (!CreateProcessPipe(fds, pipe_name, kInheritNone)) {