-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathLLM.py
33 lines (26 loc) · 1.25 KB
/
LLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, LlamaTokenizerFast
import torch
class XVERSE_LLM(LLM):
# 基于本地 XVERSE-7B-Chat 自定义 LLM 类
tokenizer: AutoTokenizer = None
model: AutoModelForCausalLM = None
def __init__(self, mode_name_or_path :str):
super().__init__()
print("正在从本地加载模型...")
self.tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
self.model = self.model.eval()
print("完成本地模型的加载")
def _call(self, prompt : str, stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any):
# 构建消息
history = [{"role": "user", "content": prompt}]
response = self.model.chat(self.tokenizer, history)
return response
@property
def _llm_type(self) -> str:
return "XVERSE_LLM"