近年来,深度学习被广泛应用到各个领域,包括计算机视觉、语言理解、语音识别、广告推荐等。在这些不同的领域中,一个共同的特点就是模型规模越来越大,比如 GPT-3 模型的参数量达到1750亿。即使用1024张 80 GB 的 A100,那么完整训练 GPT-3 的时长都需要1个月。
模型规模的扩大,对硬件(算力、内存)的发展提出要求。然而,因为内存墙的存在,单一设备的算力及容量,受限于物理定律,持续提高芯片的集成越来越困难,难以跟上模型扩大的需求。
为了解决算力增速不足的问题,人们考虑用多节点集群进行分布式训练,以提升算力,分布式训练势在必行。
简单的机器堆叠并不一定会带来算力的增长。因为神经网络的训练并不是单纯的“把原来一个设备做的事情,现在分给多个设备各自做”,它不仅需要多个设备进行计算,还涉及到设备之间的数据传输,只有协调好集群中的计算与通信,才能做高效的分布式训练。
我们将以矩阵乘法的例子,解释数据并行、模型并行的区别。
先了解以下逻辑上的矩阵乘法例子:
假设神经网络中某一层是做矩阵乘法,其中的输入
单机单卡的训练中,以上矩阵乘法,先计算得到
分布式训练中,依据是切分
数据并行,就是将数据
如下图所示,
这样,在两台设备上,分别得到的输出,都只是逻辑上输出的一半(形状为
注意,因为数据被分发到了2个设备上,因此反向传播过程,各自设备上得到的
因此,数据并行策略下,在反向传播过程中,需要对各个设备上的梯度进行AllReduce,以确保各个设备上的模型始终保持一致。 当数据集较大,模型较小时,由于反向过程中为同步梯度产生的通信代价较小,此时选择数据并行一般比较有优势,常见的视觉分类模型,如 ResNet50,比较适合采用数据并行。
当神经网络非常巨大,数据并行同步梯度的代价就会很大,甚至网络可能巨大到无法存放到单一计算设备中,这时候,可以采用模型并行策略解决问题。
所谓的模型并行,就是每个设备上的数据是完整的、一致的,而模型$w$被切分到了各个设备上,每个设备只拥有模型的一部分,所有计算设备上的模型拼在一起,才是完整的模型。
如下图所示,
模型并行的好处是,省去了多个设备之间的梯度 AllReduce;但是,由于每个设备都需要完整的数据输入,因此,数据会在多个设备之间进行广播,产生通信代价(这里指数据不会复制多份而是通过广播来传递输入数据)。比如,上图中的最终得到的
当神经网络过于巨大,无法在一个设备上存放时,除了上述的模型并行的策略外,还可以选择流水并行。 流水并行指将网络切为多个阶段,并分发到不同的计算设备上,各个计算设备之间以“接力”的方式完成训练。 如下图,展示了一个逻辑上的4层网络(T1至T4)是如何做流水并行的。 4层网络被切分到2个计算设备上,其中GPU0上进行T1与T2的运算,GPU1上进行T3与T4的计算。 GPU0上完成前两层的计算后,它的输出被当作GPU1的输入,继续进行后两层的计算。
网络的训练中,也可以将多种并行策略混用,以 GPT-3 为例,以下是它训练时的设备并行方案: 它首先被分为 64 个阶段,进行流水并行。每个阶段都运行在 6 台 DGX-A100 主机上。在6台主机之间,进行的是数据并行训练;每台主机有 8 张 GPU 显卡,同一台机器上的8张 GPU 显卡之间是进行模型并行训练。
并行策略的选择影响着训练效率,框架对并行训练的接口支持程度,决定了算法工程师的开发效率。