-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenergyclassify_v2.m
executable file
·171 lines (123 loc) · 3.02 KB
/
energyclassify_v2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function [err,yy,Value]=energyclassify_v2(Min_L,Min_xTr,Min_yTr,Min_xTe,Min_yTe,Kg,varargin);
% function [err,yy,Value]=energyclassify_v2(Min_L,Min_xTr,Min_yTr,Min_xTe,Min_yTe,Kg,varargin);
%
% INPUT:
% Min_L : transformation matrix (learned by KMMNN)
% Min_xTr : training vectors (each row is an instance)
% Min_yTr : training labels (column vector!!)
% Min_xTe : test vectors
% Min_yTe : test labels
% Kg : number of nearest neighbors
%
% Good luck!
%
% copyright by Kilian Q. Weinberger, 2006
% Modifed by Renqiang Min (02/2008)
L = Min_L;
x = Min_xTr';
y = Min_yTr';
xTest = Min_xTe';
yTest = Min_yTe';
% checks
D=length(L);
x=x(1:D,:);
xTest=xTest(1:D,:);
if(size(x,1)>length(L)) error('x and L must have matching dimensions!\n');end;
% set parameters
pars.alpha=1e-09;
pars.tempid=0;
pars.save=0;
pars.speed=10;
pars.skip=0;
pars.factor=1;
pars.correction=15;
pars.prod=0;
pars.thresh=1e-16;
pars.ifraction=1;
pars.scale=0;
pars.obj=0;
pars.union=1;
pars.margin=0;
pars.tabularasa=Inf;
pars.blocksize=500;
%pars=extractpars(varargin,pars);
%pars
%tempname=sprintf('temp%i.mat',pars.tempid);
% Initializationip
[D,N]=size(x);
[gen,NN]=getGenLS(x,y,Kg,pars);
Lx=L*x;
Lx2=sum(Lx.^2);
LxT=L*xTest;
for inn=1:Kg
Ni(inn,:)=sum((Lx-Lx(:,NN(inn,:))).^2)+1;
end;
MM=min(y);
y=y-MM+1;
un=unique(y);
Value=zeros(length(un),length(yTest));
B=pars.blocksize;
if(size(x,2)>50000) B=250;end;
NTe=size(xTest,2);
for n=1:B:NTe
%fprintf('%2.2f%%: ',n/NTe*100);
nn=n:n+min(B-1,NTe-n);
DD=distance(Lx,LxT(:,nn));
for i=1:length(un)
% Main Loopfor iter=1:maxiter
testlabel=un(i);
%fprintf('%i.',testlabel+MM-1);
enemy=find(y~=testlabel);
friend=find(y==testlabel);
Df=mink(DD(friend,:),Kg);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NOTE: change here %%%%%
%Value(i,nn)=sumiflessv2(DD,Ni(:,enemy),enemy)+sumiflessh2(DD,Df,enemy)+sum(Df);
%%%%%%%%%%%%% ignore distances between genuine nearest neighbors
Value(i,nn)=sumiflessv2(DD,Ni(:,enemy),enemy)+sumiflessh2(DD,Df,enemy);
%Value(i,nn)=sumiflessh2(DD,Df+pars.margin,enemy)+sum(Df);
end;
%fprintf('\n');
end;
%fprintf('\n');
[temp,yy]=min(Value);
yy=un(yy)+MM-1;
err=sum(yy~=yTest)./length(yTest);
fprintf('Energy error:%2.2f%%\n',err*100);
function [gen,NN]=getGenLS(x,y,Kg,pars);
fprintf('Computing nearest neighbors ...\n');
[D,N]=size(x);
un=unique(y);
Gnn=zeros(Kg,N);
for c=un
%fprintf('%i nearest genuine neighbors for class %i:',Kg,c);
i=find(y==c);
nn=LSKnn(x(:,i),x(:,i),2:Kg+1);
Gnn(:,i)=i(nn);
%fprintf('\n');
end;
NN=Gnn;
gen1=vec(Gnn(1:Kg,:)')';
gen2=vec(repmat(1:N,Kg,1)')';
gen=[gen1;gen2];
function NN=LSKnn(X1,X2,ks,pars);
B=2000;
[D,N]=size(X2);
NN=zeros(length(ks),N);
DD=zeros(length(ks),N);
for i=1:B:N
BB=min(B,N-i);
% fprintf('.');
Dist=distance(X1,X2(:,i:i+BB));
% fprintf('.');
% [dist,nn]=sort(Dist);
[dist,nn]=mink(Dist,max(ks));
clear('Dist');
% fprintf('.');
% keyboard;
NN(:,i:i+BB)=nn(ks,:);
clear('nn','dist');
% fprintf('(%i%%) ',round((i+BB)/N*100));
end;
function v=vec(M);
% vectorizes a matrix
v=M(:);