-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappendix.tex
177 lines (172 loc) · 4.75 KB
/
appendix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
\section{Appendix}
\subsection{Trainings Loop}\label{pcsam}
\begin{algorithm}
\caption{SAM Training Algorithm}
\begin{algorithmic}[1]
\State Initialize ground truth mask $G$
\State Initialize total number of iterations $n$
\State Initialize logit mask $ P = \text{None}$
\State Initialize threshold $t$
\State Sample random integer $u\in \{k \in \mathbb{N}|k\leq n\}$
\State Uniformly sample a foreground point $p$ from $G$
\For{$i = 1$ to $n$}
\State Predict new logit mask $P$ using point $p$ and logit mask $P$
\If{i = u or i = n}
\State \textbf{continue}
\EndIf
\State Update binarized mask $M_{\text{pred}} = P > t$
\State Update error region $E = |G - M_{\text{pred}}|$
\State Update point $p$ by sampling uniformly from error region $E$
\If{$E(p)$ is false negative}
\State $p$ is a foreground point
\ElsIf{$E(p)$ is false positive}
\State $p$ is a background point
\EndIf
\EndFor
\end{algorithmic}
\end{algorithm}
\subsection{Losses and Learning Rate}\label{seclr}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{"images/lr.png"}
\caption[Learning rate \texttt{MyoSAM}]{Progression of \texttt{MyoSAM} learning rate.}
\label{figlr}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{"images/train_loss.png"}
\caption[Train loss \texttt{MyoSAM}]{Progression of \texttt{MyoSAM} train loss.}
\label{figtrainloss}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{"images/test_loss.png"}
\caption[Test loss \texttt{MyoSAM}]{Progression of \texttt{MyoSAM} test loss.}
\label{figtestloss}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{"images/train_test_loss.png"}
\caption[Train and Test loss \texttt{MyoSAM}]{Comparison of \texttt{MyoSAM} loss progression.}
\label{figtraintestloss}
\end{figure}
\subsection{Metrics}\label{secmetrics}
% Table 1: Image Specific Metrics
\begin{table}[H]
\centering
\caption{Image Specific Metrics}
\begin{tabular}{|l|c|}
\hline
Metric & Formula \\
\hline
Total myotubes & \\
\hline
Total nuclei & \\
\hline
Total myoblasts & \\
\hline
Total nuclei inside myotubes & \\
\hline
Total fusion index & Total Fusion Index = $\frac{\text{N Nuclei in Myotubes}}{\text{N Nuclei}}$ \\
\hline
Number of nuclei clusters & \\
\hline
Total myotube area & \\
\hline
Total nuclei area & \\
\hline
Total myoblasts area & \\
\hline
Total nuclei inside myotubes area & \\
\hline
\end{tabular}
\label{tabimgspec}
\end{table}
% Table 2: Myotube Specific Metrics
\begin{table}[H]
\centering
\caption{Myotube Specific Metrics}
\label{tabmyospec}
\begin{tabular}{|l|c|}
\hline
Metric & Formula \\
\hline
Predicted IoU & IoU = $\frac{\text{Area of Overlap}}{\text{Area of Union}}$ \\
\hline
Stability & \\
\hline
Is on edge & \\
\hline
RGB min & \\
\hline
RGB max & \\
\hline
RGB mean & \\
\hline
RGB median & \\
\hline
RGB mode & \\
\hline
RGB standard deviation & \\
\hline
Integrated density RGB & \\
\hline
Area & \\
\hline
Convex area & \\
\hline
Solidity & Solidity = $\frac{\text{Area}}{\text{Convex Area}}$ \\
\hline
Aspect ratio & \\
\hline
Roundness & Roundness = $\frac{4 \times \text{Area}}{\pi \times \text{Major Axis}^2}$ \\
\hline
Perimeter & \\
\hline
Feret’s Diameter (min \& max) & \\
\hline
Circularity & Circularity = $\frac{4 \pi \times \text{Area}}{\text{Perimeter}^2}$ \\
\hline
Instance fusion index & \\
\hline
Centroid & \\
\hline
Cluster information & \\
\hline
\end{tabular}
\end{table}
\begin{table}[H]
\centering
\caption{Performance Metrics and Their Corresponding Formulas}
\label{tabdefs}
\renewcommand{\arraystretch}{2}
\begin{tabular}{|l|l|}
\hline
\textbf{Performance Metric} & \textbf{Formula} \\
\hline
Precision & $Precision = \frac{TP}{TP + FP}$ \\
\hline
Recall & $Recall = \frac{TP}{TP + FN}$ \\
\hline
Accuracy & $Accuracy = \frac{TP}{TP + FP + FN}$ \\
\hline
Intersection over Union (IoU) & $IoU(R,P) = \frac{|R \cap P|}{|R \cup P|}$ \\
\hline
Intersection over Reference (IoR) & $IoR(R,P) = \frac{|R \cap P|}{|R|}$ \\
\hline
Normalized Surface Distance (NSD) & $NSD(R,P)^{(\tau_{\text{NSD}})} = \frac{|S_R \cap B_P^{(\tau_{\text{NSD}})}| + |S_P \cap B_R^{(\tau_{\text{NSD}})}|}{|S_R| + |S_P|}$
\\
\hline
Panoptic Quality (PG) & PQ = $\frac{\sum_{(R, P) \in TP} IoU(R, P)}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}$ \\
\hline
\end{tabular}\\
\end{table}
Explanation of variables:
\begin{itemize}[label={\tiny\raisebox{1ex}{\textbullet}}]
\item $R$: Reference
\item $P$: Prediction
\item $S_R$: Boundary of $R$
\item $B_R$: Border Regions of $R$
\item $S_P$: Boundary of $P$
\item $B_P$: Border Regions of $P$
\end{itemize}