From 7b7c0b8229cb9e59337b1ebbd4fd0d3d074f2600 Mon Sep 17 00:00:00 2001 From: latasianguy <54046695+latasianguy@users.noreply.github.com> Date: Tue, 22 Sep 2020 19:28:04 -0400 Subject: [PATCH] Revert "Merge remote-tracking branch 'upstream/master'" This reverts commit f48f6c283dfd2702564fb6e96f14efe4398c5cd9, reversing changes made to aa3ecf1fc62b19f67e9da587609f306146d1b841. --- .coveragerc | 6 +- CONTRIBUTING.md | 4 +- README.md | 2 +- docs/contributing.rst | 12 +- .../parity_experiment/experiment.ipynb | 958 ------------------ .../parity_experiment/generate_paper_plot.py | 270 ----- .../parity_experiment/plots/parity_exp.pdf | Bin 68830 -> 0 bytes experiments/rotation_xor/bte_90/experiment.py | 97 ++ experiments/rotation_xor/figs/RXOR_suite.pdf | Bin 0 -> 23738 bytes experiments/rotation_xor/plot.py | 82 ++ .../rotation_xor/te_exp/fte_bte_exp.py | 100 ++ experiments/xor_nxor_exp/control_exp.py | 174 ++++ experiments/xor_nxor_exp/experiment.py | 425 ++++++++ experiments/xor_nxor_exp/result/figs/TE.pdf | Bin 0 -> 13791 bytes .../result/figs/control_xor_rxor.pdf | Bin 0 -> 15154 bytes .../result/figs/control_xor_rxor.png | Bin 0 -> 800075 bytes .../result/figs/gaussian-nxor.pdf | Bin 0 -> 19009 bytes .../xor_nxor_exp/result/figs/gaussian-xor.pdf | Bin 0 -> 18713 bytes .../result/figs/generalization_error_nxor.pdf | Bin 0 -> 14096 bytes .../result/figs/generalization_error_xor.pdf | Bin 0 -> 14413 bytes .../xor_rxor_experiment.py | 422 ++++++++ proglearn/base.py | 96 +- proglearn/forest.py | 92 -- proglearn/sims/make_XOR.py | 80 ++ .../tests/test_KNNClassificationVoter.py | 45 + proglearn/tests/test_forest.py | 49 - .../test_lifelongclassificationforest.py | 50 + proglearn/tests/test_system.py | 3 +- ...nsformer.py => test_treeclassification.py} | 32 +- proglearn/tests/test_voter.py | 56 +- proglearn/voters.py | 4 +- pytest.ini | 3 +- runtime.txt | 1 - ...taintyForest_Tutorial_1-Installation.ipynb | 80 -- ...aintyForest_Tutorial_2-Package-Setup.ipynb | 72 -- 35 files changed, 1553 insertions(+), 1662 deletions(-) delete mode 100644 experiments/parity_experiment/experiment.ipynb delete mode 100644 experiments/parity_experiment/generate_paper_plot.py delete mode 100644 experiments/parity_experiment/plots/parity_exp.pdf create mode 100644 experiments/rotation_xor/bte_90/experiment.py create mode 100644 experiments/rotation_xor/figs/RXOR_suite.pdf create mode 100644 experiments/rotation_xor/plot.py create mode 100644 experiments/rotation_xor/te_exp/fte_bte_exp.py create mode 100644 experiments/xor_nxor_exp/control_exp.py create mode 100644 experiments/xor_nxor_exp/experiment.py create mode 100644 experiments/xor_nxor_exp/result/figs/TE.pdf create mode 100644 experiments/xor_nxor_exp/result/figs/control_xor_rxor.pdf create mode 100644 experiments/xor_nxor_exp/result/figs/control_xor_rxor.png create mode 100644 experiments/xor_nxor_exp/result/figs/gaussian-nxor.pdf create mode 100644 experiments/xor_nxor_exp/result/figs/gaussian-xor.pdf create mode 100644 experiments/xor_nxor_exp/result/figs/generalization_error_nxor.pdf create mode 100644 experiments/xor_nxor_exp/result/figs/generalization_error_xor.pdf create mode 100644 experiments/xor_rxor_spiral_exp/xor_rxor_experiment.py create mode 100755 proglearn/sims/make_XOR.py create mode 100755 proglearn/tests/test_KNNClassificationVoter.py delete mode 100644 proglearn/tests/test_forest.py create mode 100644 proglearn/tests/test_lifelongclassificationforest.py rename proglearn/tests/{test_transformer.py => test_treeclassification.py} (54%) delete mode 100644 runtime.txt delete mode 100644 tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_1-Installation.ipynb delete mode 100644 tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_2-Package-Setup.ipynb diff --git a/.coveragerc b/.coveragerc index 345d6f55a8..7d8e453937 100644 --- a/.coveragerc +++ b/.coveragerc @@ -3,8 +3,4 @@ exclude_lines = # Have to re-enable the standard pragma pragma: no cover @abstract - NotImplementedError - -[run] -omit = - *__init__.py + NotImplementedError \ No newline at end of file diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 38ebacfb55..98eb056d0c 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -11,7 +11,7 @@ being contribution of code or documentation to the project. Improving the documentation is no less important than improving the library itself. If you find a typo in the documentation, or have made improvements, do not hesitate to submit a GitHub pull request. Documentation can be found under the -[docs/](https://github.com/neurodata/progressive-learning/tree/master/docs) directory. +[doc/](https://github.com/neurodata/progressive-learning/tree/master/docs) directory. But there are many other ways to help. In particular answering queries on the [issue tracker](https://github.com/neurodata/progressive-learning/issues), and @@ -27,4 +27,4 @@ Code of Conduct --------------- We abide by the principles of openness, respect, and consideration of others -of the Python Software Foundation: https://www.python.org/psf/codeofconduct/. +of the Python Software Foundation: https://www.python.org/psf/codeofconduct/. \ No newline at end of file diff --git a/README.md b/README.md index 3f203a12e4..13def3bd43 100644 --- a/README.md +++ b/README.md @@ -60,7 +60,7 @@ python3 setup.py install ``` # Contributing -We welcome contributions from anyone. Please see our [contribution guidelines](https://github.com/neurodata/progressive-learning/blob/master/CONTRIBUTING.md) before making a pull request. Our +We welcome contributions from anyone. Please see our [contribution guidelines](http://docs.neurodata.io/progressive-learning/) before making a pull request. Our [issues](https://github.com/neurodata/progressive-learning/issues) page is full of places we could use help! If you have an idea for an improvement not listed there, please [make an issue](https://github.com/neurodata/progressive-learning/issues/new) first so you can discuss with the diff --git a/docs/contributing.rst b/docs/contributing.rst index 3794f89e43..106450ef4d 100644 --- a/docs/contributing.rst +++ b/docs/contributing.rst @@ -46,7 +46,7 @@ good feedback: - If an exception is raised, please **provide the full traceback**. - Please include your **operating system type and version number**, as well as - your **Python and ProgL versions**. This information + your **Python and hyppo versions**. This information can be found by running the following code snippet:: import platform; print(platform.platform()) @@ -61,7 +61,7 @@ good feedback: Contributing Code ----------------- -The preferred workflow for contributing to `ProgL` is to fork the main +The preferred workflow for contributing to `hyppo` is to fork the main repository on GitHub, clone, and develop on a branch. Steps: 1. Fork the `project repository `__ by clicking @@ -70,12 +70,12 @@ repository on GitHub, clone, and develop on a branch. Steps: fork a repository see `this guide `__. -2. Clone your fork of the ``ProgL`` repo from your GitHub account to your +2. Clone your fork of the ``hyppo`` repo from your GitHub account to your local disk: .. code:: bash - $ git clone git@github.com:YourLogin/progressive-learning.git + $ git clone git@github.com:YourLogin/hyppo.git $ cd progressive-learning 3. Create a ``feature`` branch to hold your development changes: @@ -150,7 +150,7 @@ before you submit a pull request: Coding Guidelines ----------------- -Uniformly formatted code makes it easier to share code ownership. ``ProgL`` +Uniformly formatted code makes it easier to share code ownership. ``hyppo`` package closely follows the official Python guidelines detailed in `PEP8 `__ that detail how code should be formatted and indented. Please read it and follow it. @@ -164,4 +164,4 @@ guidelines. Please read and follow the `numpydoc `__ guidelines. Refer to the `example.py `__ -provided by numpydoc. +provided by numpydoc. \ No newline at end of file diff --git a/experiments/parity_experiment/experiment.ipynb b/experiments/parity_experiment/experiment.ipynb deleted file mode 100644 index 275585c8b9..0000000000 --- a/experiments/parity_experiment/experiment.ipynb +++ /dev/null @@ -1,958 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import random\n", - "import matplotlib\n", - "import matplotlib.pyplot as plt\n", - "import tensorflow as tf\n", - "import tensorflow.keras as keras\n", - "import seaborn as sns\n", - "import numpy as np\n", - "import pickle\n", - "from joblib import Parallel, delayed\n", - "from math import log2, ceil\n", - "from proglearn.progressive_learner import ProgressiveLearner\n", - "from proglearn.deciders import SimpleArgmaxAverage\n", - "from proglearn.transformers import TreeClassificationTransformer, NeuralClassificationTransformer\n", - "from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter\n", - "from proglearn.sims import generate_gaussian_parity" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Simulation Data Generation\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAI4CAYAAAAxqel1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5gkVdXH8e/d2sQuGUHCECQUkkwgSYEliICiCKKChBqCiIqShCFIENAhCEhQAXEKUEAQ2FdBBCQJEk0IiBQSHdKSYfNu7X3/ONV27Ux1T89Mhwm/z/PUQ3fF0z3N9u26957jvPeIiIiIiIiIiIiIiIiIDBdjWh2AiIiIiIiIiIiIiIiISH+og0tERERERERERERERESGFXVwiYiIiIiIiIiIiIiIyLCiDi4REREREREREREREREZVtTBJSIiIiIiIiIiIiIiIsOKOrhERERERERERERERERkWFEHl4jUlXNuinPOZ8tJrY5HREREpBZqw4iIiMhooDaPiIwk6uCSUck5t6xz7iDn3FXOuSecc6855+Y5595xzj3rnPu9c+4U59xGrY5Vhg7n3A9zjcBf1XhM6JybmR3zjnNu5Sr7buacO8M597Bz7iXn3Bzn3BvOuX855y51zu3mnAtqvG6ci7XnMsc596pz7p7sNa1V63sgIiKtpTaMDJRz7q4e7YGjazhm+dz+d1XY/maufbFejbH8Infes6vst4Rz7kDn3PXOuf9kn/NZzrkXstdzjHNujRqvuVqVttGC7NxPOeeucc59xTk3vpbziohIY6jNIwNV0ObJL7Oy+y23O+eOd86tVMP5rsodf1qNMWyVtS+8c+5559xiVfbd3jl3vnPuH9m9mrnOuWnOuUeccxc45z7dqtcuMhw4732rYxBpGufcosDJwNeBSTUelgCnAld679NGxTZSOOemAHdmT0/23p/Uumjqyzk3AfgbsG626vPe+99W2X8McC+wWbbqQO/9zwv2C4EfAzvUEMa/gUO997f0EWsM7FvD+QDmA6d670+ucX8REWkytWEabyS3YcBueABb5Va9CazuvX+nyjHLAy9nT+/23k8p2Gdv4PLs6V+ATat93pxzOwK/z54+BXzYez+rxz4O+A7wPWDpyq8KsHbMxcAx3vt3q1x3NeDZPs6V9xjwRe/9k/04RkREBkltnsYbhW2eamZi91guqXK+ZYB/Acth7Y5Nvfd/rbL/ZOCfwOrZqu2997cV7LcxcB6wSQ1xPgQc4r1/qNpO9X7tIsOBOrhk1HDOrQlMBfIjS/8J3I79uH4DmIh9YW0ITAGWz+37Ue/9P5oSrAxZWQPkPiAAXgHW896/WWHfI4Ezs6e3eu97jbpxzm0F3AAsla2aAdwE3ANMA5YANgB2A1bM9lkAHO69/3GVOGPKHVznA3fkNo8HVgO+hH3WSw6tdk4REWkNtWGkHirc8DjNe398lWP67ODK9vsd8Nns6bHe+x9W2G8J4HFgJaw9s5X3/t4e+0wAuoA9cqsfw/4feBqYA7QB2wPbUM5K8k/gM9777grXXo1yB9drwNfym7G22CbAV4HJ2foXgA2qdZyJiEj9qM0j9dCjzfM9rB1RMhEIgT2BtbN1HtjVez+1yjl3A36TPX0U2Mh7P7fCvhcA38yeXuy9P6hgn92BK4AJ2aq3sM/+w9jnfBnsM/4FyoN9ZgP7eO+vrRLnXdT5tYsMdergklHBOfc+bETpqtmqx4Bvee/vrnLMGODzwFHApqihJBnn3OnY5wLgV977vQr2+SDwd6wB8S6wvvf+vz32WQdrvJRuotwEfM17/1LB+SZgjZPjcqv38d5fUSHGmHIHV7v3Pi7Yx2EdcEdkq94BVvLezyg6p4iINJ/aMFIvPW54zMRGxc/AZnFNq3BMrR1cK2IdV0tiHVAbeu8fL9gvptw+Odd7f1jBPl1AlD19DzjYe1+YGjpLS3UF8MFs1WPAxj1nhGX7rka5g+t57/1qFc65FjbQ6P3ZquO99zWlIxIRkYFTm0fqpUebZ2vv/V0F+4zD2hBfzlb9x3tftXyDc+7X2EBhqDBIyDm3NdYh67CBMut7798r2OePlAfpdGGDmN8uON8SwI+A/bNVKbBd0WvK9r+LBrx2kaFMNbhktLiMciPpz8Dm1RpJAN77Bd77G4DNgUOAXj+UZdQ6EUsVCPBV59zO+Y3O6mTFWOcWwBEFnVtjgWsod25dj6U87NW5BeC9n5M1ng7Prf6pc271ov1r4W2EwzGUb1wtAWw50POJiEhDqA0jjVCasT0ZqDiDq1ZZ++XQ7OkEoMv1qBvqnPsM5c6tp4Bje57HOfcVyp1bs4EdKnVuZdf9C3YT56ls1frYTaAB894/BZySW/W5wZxPRERqpjaPNI33fh7wDaA0C2vNbBByNd/EZoEDHO2c+1h+Y5Ze8xdY5xbAAQWdW0sBV1K+J3+e936/os6tLM53vPcHYKkMwbIJXemcW7KPWCsa4GsXGbLUwSUjnnNuc2Cn7Om7wB49v2Cq8eaCSvn3nXNjnXOfds79yDl3b1YIcq5z7j3nXOKci51zfXYaOOeey4o+PlePfZ1zKzrnvu+cu99Z8e95zrm3nBXPvsc5d7Zzbosqx09xzl3mnHvSOTc9e02vOOcec8791jl3ZFFByuy4UgHLkyqc2znntnDOneacu8NZkcs5zrkZzorFXt2z06jCeU7KXWtKtm5T59yvnBXxnJP9PW50ztVS36om3vvZQDuWWgfgoqyRUnIE5RzKtxbV3QK+gt2EAetg2r+WXOHe+3OAP2RPJwMd/Qy/5/nmAQ/kVoWDOZ+IiNSP2jBqw9S7DZPzM+D57PFBzrlVq+1cC+/9ZZRra30c+G5pm7ObMBdnTxcA+xXU3RqD1VwpOdF7f18N152GdYqV2mUH1uH13JN7rLaRiEiDqc2jNk8D2zwVZeUm8jPOq37ne+9fp5x6cCwQO+fG53Y5AysHAXBJUd2t7PhSWs1/AkfWGO6RWGpEgBWwDqoB6+9rFxnSvPdatIzoBZsl47Pl7Aac/87c+astMTC+ynmey/Z7roZrVt0X+AyW0qWvmN4uOHYMcEmNr+ncguOn5LafVCG+rhrPfzOweJX34aTcvlOw9H1plfOdXOe//Rm5c1+RrVsHG3HssYb5KhWOfSh37Hf7ed2Nc8fOBpYq2CfO7RP1cb6rcvse3cj/H7Vo0aJFS+2L2jBqw9SzDQPclTvf8lin0P/+xhWOWT63z101XGMlrIZEqY2ybrb+8mrvfbbPTrl93gAm9PP1/T53/OkF21fLba/6WcXqUpT2nVXv//e0aNGiRcvCC2rzqM3TuDbPlD72vT+375cH8Hk9JVu3LTbYxmOpCXu9J9nf7ZXcsbv383V9KXfsy2Slh5r52rVoGYrLWERGMOecw75kSn7ZgMssAkzHcuz+FWvEzMZGVKxHuVD1vsDblNO3NEQ2OudqYNFs1U3AbcBL2JfpcsCHgU9hKel6OgQ4IHv8Nvae/R2rzzQJuzmwCbD1IMJcBKvPcDfW0fM0VgNiWWzUyN5YEc0dsBsiu9Rwzq9hxchfxBqljwPjs3N8GZsifoJz7m7v/R2DiD3vBGBnrO7DXs6567CUf6UioUd471/oeVA2innD3KrCOlqVeO8fcs49id18mQBsAfy2/+H/T76Ab694RUSk+dSGAdSGaWQbBqz9cRQ2OGdv59wZ3vt/DeaE3vsXnXOHYTfFSqkKO7H3BeA/FKQmzHwq9/ga7/2cfl7+cmDH3LmO7ufxeWobiYg0ido8gNo8jW7zFHKWTnnt3Kpav/O/iXXWLQt0OOduAy5l4dSE7xYctwHlGp/vAVP7GfIN2XGLYYOQNsBmgfXbIF67yNDT6h42LVoauQDrUh6NMAMY24BrbAssUmX7MliaE4+NUvlAhf2eow4jgbBpy6XXfFSVczhgi4L1j2XHvg2EVY5fHPhIwfopueufVOHYLYAlq5x7MguPiNmqwn4n5fbxwK3A5IL9Dsvt8/s6//03ozz6aG4+lirH7Jjb75kBXjc/mqqzYHuc2x5VOc9nc/ulwBr1fH+0aNGiRcvAFrVh1IbJ9qtbG4YeM7iydbvm1l1fcEy/ZnDljrspd1ypfbSg6O+WO+bB3DH7DOD1rdqjTTO5x/bVctsrflaBccB9uX3jwbzvWrRo0aKl+qI2j9o82X6NavNMqbLft3L7vQss1o9r5GdT5e8FXVLlmINz+90xwNd2Z+4cX2/Fa9eiZagtqsElI92KuccveO/n1/sC3vvbfY8aAj22v0G5oPYYbGRQI62Ze3xJpZ28uadgU+n4u733SZXj3/Xe/2MgAXrv7/EVCmhm22cA+2ONWyiP+q3mDWxK9YyCbT+mPBplG+dc3Waveu/vB87Jno7L/vse5dFURdpyjwtzhNcgf1yvnNrVOOfGOedC59zxWIO05Frv/dMDjEdEROpLbZgK1IapH+/99cDD2dMvOOc2rtOpv4aNIody++i8Cn+3kkG1j7z3z2MjzcE+r8tX2X0hWZ2RpbLaH3dgA5jAbnKe1d9YRESkX9TmqUBtnvpzzk1wzm3gnDsLODe36Se+f3XfrgGuy56W2jr/xWqyV9Lqe0F1ee0iQ406uGSkWyb3uOIXc4lzbn6u+GXP5a6BBuG9fwbLsws2TbyRZuYer1dxr76PX8s5N67qng2UfbmWCmjW8p5d7r1/q8K5FmDT6sHS5awx+AgXclOP5xf4gtSEOUvnHvf5uawgf9wyFfcyXfnPMja66EngFCztAMC9wIEDjEVEROpPbZiBH682TP/kUwb+oB4n9N6/CORvqM3BUjtX08z20ao92kYLgDexOiKfzPaZB+zhvX9sgLGIiEht1OYZ+PFq8/Ttzh7f+bOxtH5HAEG2z2+A7w3g3D3vBZ3qi1MTljT7XlAjX7vIkKEOLpE6cM4t7pw72Dn3O+fcc8656T0bWpRHkbZVO1cd3JZ7fL1z7jDnXH+uWTp+HeCPzrmdnXOLVDtgILKRI3s7537jnHvKOfeuc25Bj/ds02z3WuJ/oI/tL+YeLzWgoAs45yYCP+2xut05V7drNNhsrMj8FI3YEREZfdSG6b+R0oYp8d7/EZu1BLCtc27bavvXwjnXDmyVWzUBq1cxXNyKpXy6ttWBiIhIfajN038jrc1T4E1gZ+/97t77ef050Dm3LHBGj9XfamWHYz8N+LWLDDUNme4pMoS8kXu8ZA3778rCHb/LARdVO8A5tzVwJbWnQVm8xv0GxHt/s3PuSmBPrODl2cDZzrmnsHoCfwJu9N5Pq3CKo7GRqysCW2bLHOfcX4A/YzdA7hjMF6BzbgNsKvdaNR5Sy3v2eh/b84XKJ9Z43VqcQrkw52vYe748Nt173wrHvJl7XMvnskj+uDcq7mXOp3zjagzlv+1u2HtxHDZS6rkBxiIiIvWnNozaMCWNasPkHUv5ptMPGMTIdefcStjfDmwgzTysGPqJzrkbvPf/rnDom5TTVDW6ffQalkaxZFEs3VOE1fLaDtgLOHWAcYiISO3U5lGbp6QRbZ7vYTXLwO6DtwE7AJ/GZlQd75y7z3v/ZoXjK/kJ8L7scele0AbA8cCJFY5p9r2gRr12kSFFHVwy0r2Ue7yKc25stXzO3vvf5p8751ardnLn3FrYlOTSSJknsdQmT2FfXLNzu1+MfeEFNN5eWIPmMMrT3dfKln2B1Dl3DXCE9/7l/IHe++eccx/Fvgj3wr48JwCfyJajgGnOuR9gtRR8fwJzzi0N/BFrhILlKL4R+DfWKJiNFbkEu6mwHrXNNl3QnzjqwTm3KXB49vQlYGOsIbo6sI9z7mrv/c0Fh3bnHocDvHz+uBcr7mX+5r2f2mPdBc65T2Ijv9YCbnHObei9nz7AeEREpL7UhlEbpmm89w8656YCuwAbO+e+4L2/YYCnu5jyzZcTscLlP8X+Fr9wzn0yS0PUUzflDq4QeLA/F3XOrZJdA6x21itVdp9Z0DbCOXca8GvgC8Apzrlp3vuL+xOHiIj0m9o8avM00r3e+7t6rDvXObc79p2/CTDVObe19z6t5YTOuS8BX8yePgJ8DkvNvBRwjHPuOu/9PwsObfa9oLq/dpGhSCkKZaR7gvIIiUnYaIp6OoZyI+k0YB3v/WHe+59476/23k8tLYCr43Wr/r+bFSK91Hu/Ppa3eF9sRNNT2S4BsAfwoHPu/QXHT/PeH4I1ZjYHjgSmYjcoyNafSx+jpCr4FuVG0mXA6t77b3jvz/PeX+W9vyH3nlUsAttqWWrCLsp/i4OyehMHUG7oXeScW6zg8AcoN+xWL/ob1GCz3OM/D+B4vPf3YiO/wBpJpw/kPCIi0hBqw6gN02zHU26fnOqc6/dvRedcBOyUPX0I+BH2Xt+ZrdsM+HaFw+/LPd6swj7V5I95pEIB+6qyke77YDfyAM5xzq06gFhERKR2avOozdN0WRric7OnW1AevFxVlprwguzpfKA9q8F+WLZuHDagp6iTNN/W2ai/6Qyz/TfMrRrovaABvXaRoUodXDKiZaNUbs+t+mqdL7Fd9t9pwAmVRsVknRxLF23LKU3FHl9tJ+ecq+Fc/+O9f8Z7f7n3/uve+xD7Mvx7tnll4LtVjp3nvb/fe/8j7/0XsJFM++ViPTCbtt4fpfdsPnBotZFZWIqYoer7wAezx7/03t8I4L2/k3IDcmXgzJ4Heiuq+tfcqr36c2Hn3Mdz154D3NOf43u4EEiyx19zzn2w2s4iItIcasOoDdNs3vvHgV9mT9cF9u7P8c65FYFzsqdzsBs+afbZOgCYmW07zTm3esEp8vVIvuScm1CwTzX7VDhXv2Sz2Y/Lnk7CboaKiEiDqM2jNk8LnQS8lT0+zjm3TA3HXIi9xwCd3vu/A3jvL8NmBoL9/Yr+Zo8Cr2aPF8dmfvXHLpRTQb5COf3gQJxE/1+7yJCkDi4ZDc7NPT4gqwtQL6VRNM/64lQrJdvR9/9vb2f/fV8fozjWBybXGF8v3vu/sfANi0/249i53vsurKZTySf6GULpPXvDe/92pZ2y6fbLVtreSs65TSiPcHkV+E6PXY4CXsgefy3L993TebnHhznnluhHCCflHl9e7X3sSzYNvXTjZizWcSciIkOD2jA5asM0xYnA3OzxSfRxA6+HiyinJvy+9/5fpQ3e+2ewEfRgnUY/z27+5f2B8qCbZYBDar1wljZ6h+zpfKwuxmBcCfwne7ync269ajuLiMigqc2TozZPc3jv36X82VuCcoabQs653YDds6ePYzXZ8w6iPIPuROfc2vmN2efvgtyq451zNZUPyvY7Lrfq/EqdtbXo72sXGcrUwSUjnvf+PuD32dMlgKucc4vW6fSlkairF/xIByCblnxsDecq3QQYh00RrqRSWpf+eC73eCC1+AZzfOk9W65C+r6SE/p53qbIRhN3Uc7JfbDvUZDTe/8ecGDpEOwmzqQep7oaaxABrARcUmEKe8/rf5ty6p8ZQGe/X0RvVwLPZ4+/qJs4IiJDg9owhZ7LPVYbps68989h9UcAVsNu1PTJObcP8Nns6V+BMwp2u4ByKp2te547u+mTL8r+/WxQUV/XXhaIKf+2vSRLFTRg2QCg0mtwVC4WLyIidaA2T6Hnco/V5mmcC4BSLfJvZO2KXpxz76M8gCYFIu/93Pw+3vv/Up65NRFLVdjz3vuFlOuEfoTaS0WcDnw4e/wygx/MAzW+dpGhTh1cMlrsS/kG/hbAfc65LWs4rq9RLg9n/10WOLTnxmxEzyXARjVc6w+5x6cUpWVxzh2ApXipyDl3gnPuU33UTfhG7vEjuWNXcM6d5Zz7QJXzT8Lez17H16j0njmsGGnP8zvn3CnY1Ouh6PvAOtnjq32FAuze+1uxjjCA1YEf9Ng+H/gS5Ybj7sD1zrkVis7nnJvgnDuZhUe2HZyNiB6ULJazSpdCN3FERIYStWEWpjZM452KDaKB3rPUe8naLqX2yTwsNWGvVEZZB9Z+WGF6gDOccyv32OdqrLMKrF7Krc65Papc+2PAXUBphPRjwBF9xVyjy4CXssdfdM6tX6fziohIMbV5FqY2TxNkA5ZLZSYmUzkd5IWU65Kd6b3/S4XzXQzckT3dnB6dnVnJij0p1z093Dl3SaWsPs65xZ1zF1HOIrQA2HMwmXxysdT62kWGtIGMABAZdrz3rzvntgP+D6spsAFwt3PuEeyLJ8GKmjosJcq6wKeBNXOnebHg1OcDn8oen+2cmwLcArwBrIXVAlgLK6y9FtBWJcypWCqUNbEvwYedc5diP6yXxxoO22D1ltYAVqxwnm2Ak4FXnHO3AP/ARoeMyY75HOWRRnOAs3PHTsBuChzhnHs4u9YT2DT8JbCbB3tiM47Itt9b5TUV+Ql2cyMAvu2c+whwfRbjytn5P4qNjJrFwgU0W8o5tzHlmyav0XfqnMOxz9GKwCHOuWuykWkAeO//5ZzbCfvbL4n9bbZ1zv0Oe19fw/IrbwDsRvl9XwAc4b2/oi4vzFyKjb5aluwmjvd+MPmcRUSkDtSGURum2bz3rzrnfoyNZK8lvdJFwFLZ41O9949WOXfinDsBmx21GDZbbMceu30dG/X8FawddKVz7hjsc/Y09rdfCdiehdNJPQrs5L2vS7F77/1c59zZ2CCg0gCg3asfJSIiA6U2j9o8LXQ2dn9nPPBN59yZ3vvXShudc7tiA5TB3uuT+jjfAVi7ZDJWe/S3+cHJ3vs7swE8l2N/zwOAXZ1zU7HOxTewGm4bArtin3ewz8I+3vu7Bv5Se6n62kWGBe+9Fi2jZgEWxf7xngH4GpfHgb0AV+GcP+jj+HuxToPnsufPVYlvQ6zBVulcD/R1LqxRVsvreg3Yvsexq/bjfbkDWKbg+lNy+5xU4XUejE3prnTuf2ENxrtK6yqc56TcMVP6+NvXvG+F4ydkn4XSOXav8bidc8c8AUws2GdtrIFdy/v+b2DHGq4b546Jaoz12Nwx17b6/1ctWrRo0VJeUBtGbZgBtmFy57krd57l+9h3yYK/510F++2d2/4PYFwNcQTAg7njooJ9HHAYdoOnr7/nPOCnwOJ9XHe13DEVP8sF/9+V3ocFwPqt/rdAixYtWkb6gto8avPUt81T03mwQTelY87MrV8Gq73us/dj0xrPd0iPv0OvzyawcfZ5qeVv+RCwSTNfuxYtw2VRikIZVbz30733h2M/cA8GrsVGAb2BFaR+B3gWuBkbTfNx7/163vtfeu99hXMei408vQl4HfuR/TL2BXYg9oVS0+gH7/1fsVFK52OjgmYDbwH3A98EtqjhXJ/DRnj8GGukvZLFNDd7fDtwJLCWtzR6+es/jzVQvonVZXo0e09SLJXeU8BVwM7e+22892/U8roKXudPsTQC1+bimwbch8162sh7/5/KZ2iJk7ARYgDXee+vreUg7/3vgF9lTz9IwUgf7/2T3vtPY+/JWVjtilex9+UtrFMrBr6I3Vi5eaAvog8XUi6IuptzboMGXUdERPpJbRi1YZrJW9qbqjUhnHPLY38rsM9gu/d+Xg3nTrFR4aW6FWf3TNHszTlYmuevY6P5nwHew0YvdwN/woqtf9B7f7C3Yul15b2fjn2mQWmcRUSaQm0etXla5AzsPQSrR1VKR3gB5dSE53jvH6jxfBdgs+egoPYogPf+Ie/9pthMxJ9gf8vXsPf69ez5T7FBzht77x/s30uqWaXXLjIsuAr/9ouIiIiIiIiIiIiIiIgMSZrBJSIiIiIiIiIiIiIiIsOKOrhERERERERERERERERkWFEHl4iIiIiIiIiIiIiIiAwr6uASERERERERERERERGRYUUdXCIiIiIiIiIiIiIiIjKsqINLREREREREREREREREhhV1cImIiIiIiIiIiIiIiMiwog4uERERERERERERERERGVbUwSUiIiIiIiIiIiIiIiLDijq4REREREREREREREREZFhRB5eIiIiIiIiIiIiIiIgMK+rgEhERERERERERERERkWFFHVwiIiIiIiIiIiIiIiIyrKiDS0RERERERERERERERIYVdXCJiIiIiIiIiIiIiIjIsKIOLhERERERERERERERERlW1MElIiIiIiIiIiIiIiIiw4o6uERERERERERERERERGRYUQeXiIiIiIiIiIiIiIiIDCvq4BIREREREREREREREZFhRR1cIiIiIiIiIiIiIiIiMqyog0tERERERERERERERESGFXVwiYiIiIiIiIiIiIiIyLCiDi4REREREREREREREREZVsa2OgARERn+kihoA74FbAe8AVwETA3jdEFLAxMRERGRQm1dHZ8ADgVWBx4Bzulu73y0tVGJiEgzJFGwIvYb/lPAW8DFwA1hnKYtDUxEpJ+c977VMYiIyDCWRMFGwB3AeGBCtno68EdgN3VyiYiIiAwtbV0dxwLHAYsADkiBOcCB3e2dV7YyNhERaawkCj4K3IX9fi/9hp8B3Ansok4uERlOlKJQREQGLIkCB1wDLEa5YQywKDYSbPdWxCUiIiIixdq6OtYGjgcmYZ1bAEH2/OdtXR1Ltio2ERFprOw3/NX0/g0/Gdga2KMVcYmIDJQ6uEREZDA+DCxbYdtk4JtNjEVERERE+rYvlcsVLAB2bWIsIiLSXOsCK1Ee4JA3GUtbKCIybKiDS0REBmNpLKVNJZU6v0RERESkNZYDxlXYNh5YpomxiIhIcy0NzK+yXd8BIjKsqINLREQG41FgYoVt84F7mhiLiIiIiPTtXqxeapE5wMNNjEVERJrrcRZOTZg3H/hzE2MRERk0dXCJiMiAhXH6Gpa/e1bB5rnAWc2NSERERET68GtgBpaOMG8e8Bxwd7MDEhGR5gjj9E3gCmBmwea5wBm1niuJgm2SKPi/JAr+kURBnETBh+oVp4hIrdTBJSIig3UQcB024vcd4D1gGrBzGKdJKwMTERERkYV1t3fOAj4J/Bvr6HoHG6z0ILBtd3unb2F4IiLSeN8CrgVmY98B7wKvA7uEcfqvWk6QRMEPgN8CO2O1ufcC7k+i4EsNiVhEpALnvdquIiIyeEkUrAhsCLwN3BfGabXaXCIiItIEbV0d44E24K3u9s63Wh2PDB1tXR0Ouym5MuPss4gAACAASURBVJB0t3c+2eKQRESkiZIoWB7YCOvg+nOtv+GzmVr3A5MKNs8C3h/G6Xt1C1REpAp1cImIiIiIiIwwbV0dY4ATgcOwzB1jsdRz+3e3d3a3MjYREREZvpIoOAc4BAgq7DIV+KIGvdZPEgUTgI0BBzwUxunsFockMmQoRaGIiIiIiMjIcx5wJLAYMBkrKL8N8HBbV8firQxMREREhrX3U7lzC2An4KImxTLiJVFwIPAacCOWFnJaEgUHtzYqkaFDHVwiIiIiIiIjSFtXx/uB/emdOmgssDgQNTsmERERGTHuAqZX2T4e+GoSBSs3J5yRK4mCXYFzsQFLiwNLZI/PSqJg91bGJjJUjG11ACIiIiIiIlJXWwBzgYkF2yYBu2IzvERERGQYS6IgAD4FrAW8APw+jNN5Db7slcCp2AxxV2Gf+cDWwOUNjmWk+wHFtc4mZduubW44IkOPZnCJiIiIiMhCkiiYmN0wkeFpTh/bZzYlChEREWmYJArWBp4DrgHOAK4AXk6iYKNGXjeM0+nAJ4H3quzmscE2MkBJFIwFwiq7rJ7V5hIZ1dTBJSIiIiIiACRR8OUkCp4GZgAzkyi4KomC5Vsdl/Tb7VSujTEd6GpiLCIiIlJnWefHncBKWMq6idl/lwH+mETBYo28fhinCbAXlQfNjAP+0MgYRoGU6oOW5gONnq0nMuSpg0tERERERMiKVf8CWB37nTAe+CLw1yQKlmplbNI/3e2dM4Fv0/um0yzgH8ANTQ9KRERE6umzwKIUpwgcC+zZhBh+DzxI7/bGTODYME7fbkIMI1YYpx64muJOrPnANWGcLmhuVCJDjzq4RERERERGuSQKJgKn0zvH/1hgKeCgpgclg9Ld3vkL4PPAvcC7WF2Ok4Dtuts757cwNBERERm8dSmuzQRWG+sjjQ4gjNMU2AFrX/wX69j6G7BHGKfnNPr6o8RRwMvYIKWSWcArwJEtiUhkiHHe+1bHICIiIiIiLZREwRbAjcDiFXZ5NIzTDzUxJBERERGpIImCfYELsFlcPc0GTgrj9PTmRiWNkETBEsDXgK9iM/auBC7SDDkRM7bVAYiIiIiISMv1NepNo+JERERk1EuiYDVgX6z21YPA1WGczmhBKNdhHVxFPHB5vS6URIEDxoZxqnpPLRDG6TvAmdkiIj0oRaGIiIiIiDxcZdss4FfNCkRERERkKMrqlT4BHAscCJwLvJBEwXrNjiWM0+nArsAMbMYWwFys3bZfGKcvD/YaSRQslkTB+cB7wJwkCv6bRMGBWYeXiMiQoBSFIiIiIiJCEgX7A+excD2HeVje/w9lo0dFRERERp0kCjYAHqB33SuP1Z9aLYzTpt9kTaJgeWA/4MNAAvw8jNPn63De8dgAqLWBCblNM4Afh3F63GCvISJSD+rgEhERERERAJIo2AU4DStcPhvL8d8RxulrLQ1MREREpIWSKPgZsD/F5V7eAz4bxumfmhtV4yRR8BXgEirX+Fo5jNPXmxuViEhvqsElIiIiIiIAhHE6FZiaRMEYwLdiJLKIiIjIEBRS/T7qKs0KpEn2oLhzC2yG//bYQCgRkZZSB5eIiIiIiCwkjNMFrY5BREREZAh5BPgEML5g2xgsPaCIiDTZmFYHICIiIiIiIiIiIjKEXQDML1ifAs9h9arqJomCSUkULFbPc/bT1cD0CtvGAbc1MRYRkYrUwSUiIiIiIiIiIiJSQRinTwN7ATOBGVhn13vA88BO9UrrnETBR5MouAd4B3gziYJHkyjYrh7n7qfrgGeBOT3WzwDOUX1WERkqnPdKqy8iIiIiMlIkUbAIsCuwFnbT5dowTiuNwBURERGRGiVRsATWzloOS1t4a71SOydRsB7wAL1rX80EvhDG6a31uE4/4lkM+AGwHzAReAk4BbhEdVpFZKhQB5eIiIiIyAiRRMGGWMqYcdjNkRnAAuBzYZze1cLQ+i2JAgd8HjgSK9z+JNAZxuntLQ1MREREpAGSKJgKfA5wBZufCON03SaHBPyvTTYujNO5rbi+iEg16uASERERERkBkiiYCLwILF2weTqwchinbzc3qoFLouAc4EBgcm71TOB7YZye3ZqoRERERBojiYKZwCIVNs8FVgzj9I0mhiQiMuSNbXUAIiIiIiJSF7tgM7eKjMHqRlzQvHAGLomCDYCD6H2TZxJwWhIFV4Zx+krzIxMRERFpmGqpDh2Q1nqibODTysAbYZy+OdjARqokCt4PfAPYGRtI9XPgSs1WExk+xrQ6ABERERERqYs1WXi2U94koCVpbQboq8D4CtsWYLUvREREREaSqVTuxHq0lpn4SRSMTaLgdOB14G/AS0kU3JxEwQp1jHNESKJgbeAJ4Cjgo8AnsMFgd2cdhCIyDKiDS0RERERkZHgOq7lVZCaQNC+UQVsCCCpsG0/v4usiIiIiw933gPdYuJPLY+24b9V4jp9n+07G2ksTgO2Ah5IoqDQQarS6DGtz5juzJgMfxmZ1icgwoA4uEREREZGR4Toqp7bxwBVNjGWw7sDqhhWZA9zbxFhEREREGi6M02eBDYHfALOBecBtwJZhnN7f1/FJFKwCfBmbuZ83FlgK2LOuAQ9jSRSsiHVkFd0bX4RR0MGVREGQRMGBSRQ8nkTBtCQKbkuiYMtWxyXSX6rBJSIiIiIyAoRxOiuJgp2Am7HZT5OxEb8Auw2zouRTgU5sRG3+N8sc4FGgz5s8IiIiIsNNGKfPAF8Z4OFbYZ1iRen1JmP1Wi8Z4LlHmiWp/F6BzewasZIoGANcD2xLOcX5tsDmSRR8K4zTrpYFJ9JPmsElIiIiIjJChHF6H9AGHA6cCxwNrBzG6S0tDayfwjidh9VB+BM2gvmd7L83AZ8O49S3MDwRERGRoWg2Nmu/kplVto02zwCuwjYPPNTEWFphe2AbFq7f67DZfxconaUMJ5rBJSIiLZFEgQM2A9YHXgH+EMbp3NZGJSIy/IVx+h5wcavjGKwwTl8Btk2iYCWs0+7ZME6ntTgskYZr6+pYFjgQ+BTwOjba/rbu9k517IqISDW3YDW3ikwH4uaFMrSFcTo7iYKzgSPpndJxFnBy86NqqnYq17SdD+yApT8XGfLUwSUiIk2X5bu+BVgNm008H0iTKPh8GKf3tDI2EREZWsI4fRF4sdVxiDRDW1fHBtjMxQlYDRAP7AhMbevq2FudXCIiUiSJgnHA1RRn65qNpXe+ualBDX0nY50838DSYDvs3sT+YZyO9Blci1XZNobenX4iQ5Y6uEREpKmymVu3AB+k9/fQ75MoWCsbtS8iIjlJFKyK3fD+Txin81sdj4jUV1tXhwOuxep+lNImOcp1U3ZFo6lFRKTYEVgNpXEF2yYAKwNrA0+UVmZ1mLYC1gKeA24P4zQdbCBJFIwHdsuWecCVwO97nju7/npY7djHsxTVTRPG6QLgiCQKTgU2xmZu3TdK2tm/A7Zk4RSFJWMBDTyWYcN5rwFgMjq1dXW8D9gTWAl4BLi+u71zdmujEhn5kijYDLiN4obULOCHYZye0tyoRESGruzfzUuxWa8pMBc4LozTn7UyLhGpr7aujvWBByhuIwHc3d3eOaV5EYmISF+y7CTHAptgaWUvBf6v2Z01SRS8Ary/yi4eeBNYI4zTd5IoWAu4FVgG62BKgfeAHcI4fXQQcSwF/BnrUCulwJsO/B34VBinc7L9dsZSai+axZYC3w3j9OcDvbbULomCxYAEWBb7+5fMxD6/e7YkMJEBKJq2KjLitXV1fBF4AegEjgJ+Bjzf1tWxTksDG4LaujrGtXV1bNXW1bFTW1fHMq2OR0aE9alczHUR4ONNjEVEZEhLomA9bFDAOti/kYsCSwM/SqLgoFbGJiJ1txyWGqmSajcuRUSkyZIoOB74L/BNYCOsbtHVwN+SKFiihuMnJlGwaxIFByZRsOEgw3lfH9sd1pbcN0tneDewCpaqblL23xWAu5IoGEx6unOBNVi4vtOi2PtzNEASBVsCvwaWz7YtBiwJ/DiJgj0GcW2pUVazdxPgXiw947vYgONfAFHrIhPpP6UolFGnravjA8Dl2Bd7yWLYl+otbV0dq3W3dy5oSXBDTFtXx+exL7ex2IiaCW1dHZcAh3W3dw562rqMWi9T+ebNfOD5JsYiIjLUncDCbZaSScBpSRRcOpg0KkkUbAScBGwOzMBGHZ8Vxun0gZ5TRAbscSyNVJH5wINNjEVEZFTK2kYnYm2j6dgso3PDOJ3RY7/PAN+j9+SBABuYdA6wX5Xr7IR1hpWOIYmCR4Gdwjh9cwChv0XfnVyTsDSG3dg9sJ6xO2A88GWgq78BJFEwAfhSdo6eFsE6Ar8P/IDK7dvTkyi4OoxTpRxrsDBOXwCmJFGwPDaT61n9BpDhSDO4ZDQ6iIWn35Y4bMTI1s0NZ2hq6+r4OJYneWlgcawWwERgf0Dp42QwbqFyB9c84KImxiIi0nRJFKyQRMEhSRQck0TBJ7PahJVsQ+U2+wRg9X5ee+kkCnZKomCb7MbM3cBOwFJAGzay9oEkCiqlSBORBulu73wVmAoUpU2fC5zV3IhEREaXJAp2wNpGn8HuhawCHAfcVzCr6RiKO3LA7jntkdWiKrrOmljNxcUoz6CaBHwUuH6A4f+0hn0WANOAzVh4hlVeabbVQCzex/alsv9Wy9qyEvDDLPWjNEEYp6+EcfqoOrdkuFIHl4xG61G9EbJGE2MZyr5H5RE1327r6hjMlHUZxbJc5J/HRsPNylbPzx4fH8bpY62KTUSk0ZIoOBJ4BjgdG8H6B+DBKmls5lQ53VjK/472dd0xSRT8CHgRG8ByA1ZcehILp42diBUaP7SW84pI3e2HDQaajdVCeRd4B/hyd3un2kgiIg2SRMEYIKZ322gRYE1ssG9e2Mcpx1C5w+fbwLiC9eOBjZMoWLuveAucCLzUxz5zgSnAYVQuGwCw6QCuD1bjq1rb9Jnsv0UDOUrGAN8BnkqiYMcBxiEio4hSFMpo9BiwPcWdXCnwdHPDGbI2pnKDZwHWETjgwqMyuoVxem82am1/7LP2PHBxGKePtzYyEZHGSaJgO+BkrBOpZCzwISwNzK4Fh8XAkRSnLftPGKf/rfHyx2Oz2Cf2uH6R8cApSRQsAxwZxqlSN49CbV0dH8HSDE3COlxuURrvxutu75wF7NLW1bE61kZ6B7i9u71zbmsjExEZ8T4GVJrBPgkbgHB+bt2LWFq3SmYBk7LBTUsDDwE3ZqmlN6a4gwssq8l6wJO1hw5hnPokCtbBZoZtQ+97vjOza65Zw+nWTaJgmTBO36jl2kkULIt1mn05WzWP3q9vBtYOBhtstX/BPiWltuq1SRSsGMbpu7XEISKjkzq4ZDS6CBsN0pPHchbf2dxwhqx3qFzIehz2XokMWBinr2K5t0VERosO7AZJTxOAHZMoWC6M02k9tv0I2BMr+l36sZ9iI197jiQulNVDOJLKN22KOOBrwGvAD/txnAxzbV0dDrgE2AP7bAbYTb2n27o6pnS3d77TyvhGi+72zmcoj3QXEZHGm4i1sSrp2YY7C6tdWjQIKQXuxTqpXLbPe8AbSRRsAbxA5UHFY7C61f2WdQR9OomCFbCB3Z/DZpq9iA1g2rLGU80FTs7SMj4OXBbG6etFOyZRsBLwV6zkR+m9KL2PM7B7bWOBM8I4vSpbfwLwWaxmWF8Dr76I1YYXESmkDq5Rqq2row2bEv1p7Ev2YuCq7vbOeS0NrAm62zufa+vq2Bu4AvuinYS9B7OAHTQy9X9+gnU+9GzELQAe7W7v7G5+SCIiIsNatXQzc4DVsLoI/xPG6VtJFGwIHA7si90EuA04NYzTJ2q87qpUT0NTyWTgqCQKzsrSy8rosC/wFRZuAy4GrIPV99izFUGJiIg02N+pPKNoLnBjj3VXYjXc9+lxnAduz7blO28Ww9IdTsVmO32G3vdbPJbm74H+h18WxunLwGXZAkASBdMorkdfZHFsINVEbObXyUkUfD6M09sL9j0TWIaF7zEHWCfXv7BZbzfnO8jCOH0tiYIPY/clD8VqvhdZBFAtLhGpynnvWx2DNFlbV8eHgT9hX1SlNH0zsBEXnxot6S/aujqWwUamroCl2ruhu72zWp2LUaWtq2M81ij7KOUR37OxjsDNu9s7/92q2ERERIajJAruBT5RYfNsYI0wTvuqnTCQ6y6HjRQuGmHcl5nAOmGcvlDfqGSoauvqeBxYt8Lm2cD7u9s7lSpIRERGnCQKTgCOYuFZ7x4bFL1eGKe9BvpmA5H2x747/43Nvv8+luZ3TMFlZgIfB/bCsguVZkvPxFL7bRXG6SN1ekn5OLuBlQZxiunACmGcTs+d02Ftg0p17ucBE6ulu06i4ADgHGDRgs3vAVEYp9cPOGoRGfE0g2t0+hU2ciQ/kncysBH2pfzTVgTVbN3tnW8AF7Q6jqGqu71zbltXxzZYo+xArLFxI/DT7vbOV1sanIiIyPB0JvAReqcKnAfc24jOLYAwTqclUfAXKneueSrP8BqLpS2W0aPaza/5WAprdXCJiMhIdArW0XQ81uk0DngE2K9n51YSBYsDn8RmKh0ZxunM3LYPUty5BdbuWz2M02OTKLgOOAAbeH0P0BXG6Zv1fUn/czmWEaDagKf52OsuahdOwAaJX5JbN4bKs97IzjUWmwHXSxIFmwB7U9y55bFOtd9VOb+IiDq4Rpu2ro41gdUp/rKaBBzMKOngkr5lKSt/lS0iIiIyOL/FaoEejM2kL7XHxgKzkyhYMozTtxt07euAzSluA87HUhD3vOGRAn8M41QdXKPLs1hHbJEAaEhHbL21dXWsgd14nAH8obu9c3ofh4iIyCgXxqkHzkqi4DwsdfR7Wbq//8lmLR0LHId1VnlgbBIF3w3jtHQ/7QngQxR3co0Dns6u91csm1IznIl1ULXR+37wAmy21N+w1IpFxmE1Xf/XwRXGaZpEwWPABhWOeTKM00qdW1tjg6iL6tNOx+q+b6802SLSl0qjCWTkWooKIycySzYrEBGRRkuiYPUkCn6cRMFfkii4KYmCnbIfJCIiTZfdNPku8Dx2I6HEYYXA72jgv1HbU3mW1iwshWG+A2AmVg/saw2KR4auH2KdQj3NBq7sbu8s2jZktHV1TGjr6rgWeAzL1vAL4NW2ro6opYGJiMiwEcbp3DBOk56dW5kDgGOw+lCLY/WjJmMdY7tk+zxA5UFFj/ejjmrdhHH6FrAhcBbwRhbLfKy9dwrW8XUV9n1fyapJFPTszDoaazf2NDPb1kvW3v0ZxZ1bKXAHsFoYpyqNISJ90gyu0ecJKufGTYE/NzEWEZGGSaJgCjYibBzlf/e2BK5NomD/7EaziEizbYvdQOhZ5Hs8sFa2/Y8NuG5f7f4TsMFv7dhMruuAWLO3RqVrsRqsh2I35wJgDvAQVgx+qDsP+Aw2SzLvwraujv90t3fe24KYRERkBMg6Zk6md7ppsM6aU5IomAF0UtzBNQ3YtXERVpelPzwmW3pJouBq4MI+TrMtVse+dM6bkyjYDzif8nfvHOA7YZxWSi+4ErBKhW0BsFm1ul0iInnq4Bpluts7p7d1dVwIfIPeIyXmYCM2RUSGtSQKxmI36Hr+8FgU2B0bmXZbs+MSEQGmUFxngGz9VjSmg+saYDOKb8iMx1IRvg5c2YBryzDS3d7pgWPaujouwm7CTQRuBx7Ktg1ZbV0diwP70LtzC2yk/XHAjk0NSkRERpLFgfdV2b4ucA72nVPkyZ61vOolm1m1KVYn88YwTvs94zqM0/eSKLgBq8VeJKVghlcYp79OouA3wPpYx96jYZymVS4VYKkdq20XEamJOrhGpw5sZO6BWKfWGCw1zT7d7Z3/bGVgIiJ1siWVZ6tOBr6OOrhEpDWmY/Uaigpyz6M4NVw9/AprA7ax8L+PM4ALs84tkf/pbu98Dji71XH00xpYOvaiDi4HfLi54YiIyAgzi4XTTPc0HVi7yvYt6hsOJFGwGPB/wCew9qXL1l8L7FWpBlYVU4EvUNxWHYPVlO0l69B6pMZrvIClSWwr2JYCN9V4HhER1eAajbrbO9Pu9s5vY1OCdwc+DazY3d55S2sjExGpm6WrbHPA8s0KRESkh99gP9yLpNjs07oL43QmsEl2/TlYJ8Br2IyWjkZcU6QFplF5gEtpu4iISL8lUTABG/hRabLAHOCyPk5TbVbTQF1BeYBnPi3i7sCdRfVdkyhwSRR8IomCKImCKUkUjMnWtwOXUvwaZwBnhHH60mADzsoFfJvetbt8tu771Y5PomCFJAo2TaJgxf5cN4mCMUkUrJhEwVL9ClhEhjTn/ZDOMiEiIg2SRMFqwM5Y4/UPrSh02yhJFKwOPE7xCO7ZwI/COD2+uVGJiJgkCs7A0kXn0wXOAM4P47SwJkKdrz8+u/Y7qm8gI01bV8e9WIqmnumNZgCHdLd3djU/KhERGe6SKLgJ2Jri9IMzsFlJm2EznLagdw2uFPhNGKdfqWNMKwHPUHlwRwpMCeP03twxHwD+AJQ6hzzwNrAv8HuKf0N7IArj9PI6hV6KZWfgR8Bq2Pt1L3BIGKePVdh/aaxDbxusQ3ECcA/w1TBOX+vjWnsBpwNLYW2Eh4GDwjh9vC4vRkRaRh1cIiKjTDaC61zga9kqh6VZuBHYM4zT+a2KrZ6SKPgt8Cl6N9DfAz5Yj5FnIiIDkf07vAtwNPAB7MbE6WGcTm1pYFUkUfBx4LvABsDzwDlhnGr2vww5bV0dqwEPYDXtJlMeDX4LsHt3e6c6dUVEpF+SKPgQcD+9a9mDdSJdDBwRxumsbN8/Z/uOye3zLrBhGKfP1jGu7bDOqmo1q84J4/TwbP+xWLtzJRbO6uWx9ItjKO7gmgkcHsbpRfWIOy9rFy8BzKtWNyybZfZ34IMs3KE3D0t3eApwSxinTxccux9wPgv//Tx2b+Aj9fybiEjzqQaXiMjos3+29Gy4fgY4Efhe0yNqjD2AXwI7UK43+A6wmzq3RCRLTXI0sA82Evcu4KQwTmutHTBgWVqWG5IoeAA4BNgJOCoblfrLAdRKaKgkCiLgQux7Ywx2Y+GTSRRcGMbp0a2LTKS37vbO59q6OtYC9sbaNu8AMXBbd3unRneKiIwgSRQsDuyJ1Vh8Brg8jNNXG3CpbanciRQA48M4nQUQxuk/s4FB3wd2xAaT3gCcGMbp83WO6+UqceXjK9kJWJLeJWscVnOrqO4WWFt5uYEE2JesXfx2DbtuA6xO79lq47ASBOcBY5IomJE9PjuM0zeyTr0z6N056bJ1x1Ae/Csiw5BmcImIjDJJFDyDzRgo8i6wdFYgdkRIomAV7AfP68ADWQNaGiiJgiWAjbF0kPePlFmBMnIkUbAk8DcsNcuEbPUCbOTqTmGc/qkJMawD3IfdMCjFMAN4FNg6jNPZjY6hFtl79RLF6XhmAZuEcfpoc6MSERGR0S6Jgk2AW7EOnMnYbw8P7B3G6XV1vtY3gDMpnsG1ALgwjNNvVzneYb+PPpPFODWM07/3M4YlsIFZm2DpEH8Rxul/kijo6/ftTmGc3pyd43jgZHp3cJXMp3gyRAq8BTyJpRSc2uzf1UkUnIgNyO1VU6xACrwCfAxYlvLM7iIvh3Har1peIjK0aAaXyAjX1tXhgFWxRt+zSssiwMpVtk3A0gO82aRYGi6M0xewHwDSYFnaiNOAQ7FZcw5Ikyg4IIzT61sanMjCDgNWoNyxBPZDfzJwaRIFYRN+tF+O/Xub/5E+GfgQVp/r7AZfv1ZfoHJB9PFYvYYjmxeOtFJbV8eKQBvwfHd7ZyNGyIuIiPQpiYIJwM3A4rnVpQwlVyRR8EAYpy/W8ZL/h3XsFJkFXFnpwKz26VRgS2zAkAeOzGp67VHL4NIkCj4G3IHdx52MpeU7NImCo4EECCscOgdLYVjyahbv5IJ9F1D5PnEAvC9bPgL8AqjYodcg04G5LNx+ryTAZpx9H2tTV+rQA5iXdUBuBXwae89+U6kOmIgMPdX+BxeRYa6tq2Nb4CngX8A/gf+2dXV8qbVRyRBQrfjqAiwPdU2SKFgyiYK2JAr6Sosgo8MxWLq1idiN+8WxIr5XJFGweSsDE+lhX4rrC4DVJFi9kRdPoqANWJ/iEaiTgK838vr9tCSV09WUbh7ICNfW1bFcW1fHX4H/YjMPX2zr6vhjW1fHki0OTURERqfPUrkzxgHt1Q5OomCVJAo+k0TBx7POjaqyzrIzsdn2eTOAm4AHqxx+IjAF61Qag7WfJmGzuQ7v69rZb+2bsN9XpY6pcVhnWSdWW2pmwaHzgO/0GLR1LZVnQNV6j3gysH9Wa6yZrsU6B2s1Ditb8BQwrcI+c4CrsZppv8PSlx8HPJREwc9r+WyISOupg0ukhdq6OhZp6+rYva2r45C2ro4ts9lW9Tr3psBvgTWwhs8kLBVTV1tXxy71uo4MS+dR3ACeDVwWxum8vk6QRMGaSRTciY0AS4BXkij4hhqAo1c2MvEoikcDLoL9sBMZKqqN/JxP5c6velkSu+lQbftQcT/2nhSZjo0mlhGsratjLJaS6GOUb8wFWD2Sh+vZfhUREanRqlRuz00E1i7akETBokkUTMW+136FtWOezWZIVRXG6QlABPwdS+2fAEdgs7AKO16yDBffojjV86Ts+L5sTfFvLLDZ9Oti2QmmZ3G9g/3ePwG4uMdreBurUTkLmw0FlWfqVzMhO0/dZJ2OOyZR8NGi+wpZZpZT6N3JWM3E7G9zAPae5P9Oc7GOrxWAj2IpDB3WcboI8BVgv4G8lpEiiYIlkig4IYmCZ5IoeDGJgq4kCtZqdVwiPamDS6RF2ro6tsc6By7FCl7eBDzW1tWxQp0u8UOK80NPAs7SzYihKYmCFZMoWLXBHUU/Au7EGoalBt50rO5Ln2mmkihYHhuhtiXWoF4ES1VwJvDdBsQrw8OqVG5XlHLOiwwVtftzJQAAIABJREFUt1D5x/x84JkkCj6ZRMGWSRQU3ZAYrP9QefSsx2bIDBUPAo9TvglSkmLfHb9uekTSbN+lcqfrmlhHl4iISDM9hc2+KTIL+21b5BosDV0p48Si2O+YO5MoeH9fFw3j9DdhnH4sjNMlwjhdO4zTi8I4rVYGYjLFnVsly9Xw27+Nyu3GscDqYZxejM2q3w34MvD+ME47izrestTx62Mzv27FOvv6K6BOA7KSKFg8iYIbsziuAu4BnkyiYP2e+4Zx+gNgV4oH7BZ5MDvudmwW3W3YfZA3gZ8CmwNfpHhw22RsAOeolNV8+wuWpeUD2ID5vYG/JVGwYStjE+lJHVwiLdDW1bEKcD2wWLZMxBpWIXBznTqfqqUDW5mhNTp81MtupD4OPA08AbyQRMFujbhWNkNrZ2An4ELgZ8DuwKZhnNYyGuo7lNMr5E0Cvtegm8Ey9L1D5TRmpe0iQ8Vp2M2PnmZis59fxgae/A6YlkTBd6qdLImCCUkUbJtEwU5JFCyVrVsuiYJ1kyjoNeI2jNPZWD2Aoh/ns4BT+/VqGii7MbLD/7N33uGxVOUf/yTn1uTeS5M+NNERBEF6UzpSfyhdBOGMgqCgUmVo0nEU6YgUZYYiKr13FGmKKCJSD0iRoSvt3pvcNsnvj/cs2WxmNptks9nkns/z7AM3MztzdnZ2znve8n2RDOdZ9GQFPwVs6CdZ3nV0jC326Wf7vg0ZhcPhcDgcPdyJJNrkVU51AXHlH23lyabkBzMmAAfUcXwlZpJvc5Z4Jy8IZbRa2mi1ltFqQeB5igNcs4EnAPwk6/ST7D4/ye72k2xGtUH5Sfayn2RH+Em2NdKja6BVXNOB+wb4niJuArakJ+jYjiTQPGS0WrhyZz/J7gFereG4ncAxZe973E+yrf0km+In2SJ+kh2C+DSqBSi9mj/F2ONIxHdY/ntRiO/y1yMyIoejABfgcjhGhu+Srxc9DpnI65ENUU36qJW+mdiOEcLKIdyNSAtMQjK8POAKo9VOw3FOP8m6/SR70E+y7/tJ9l0/ye7qJ/OsnK9RLAeRUZ/71zHK8JPsXSTDK+8+6gQubuyIHI5i/CR7EWkk/QQStJmJ9Cf8NRLwL/WQm4Ys4k43WuXKsBit9kLkTW5Ask7fNFq9CvwH+AvwntHqXKNVZQD4JOBCeoJG04H/Anv4Sfa3un3YOuAn2Qd+km2LJOLsDKxps5dfGeGhORrDhH62O1UAh8PhcDQUP8nmAVshNth0eirLZwBf9ZMsr+/02hTLLk9CpADrPc4u4AKKE6vOLP+Dlel7EKn2vx9JutofeI38sWdIwupQuJLiarg85gH/A24c4nmxVVrr0de/0ILYH0W91K6iOHDYDbwB7Oon2cP9DOE9qvvG/9PP+8cymmK/z+eMVks3cCwOR1WKGjI6HCOKF4drACGwDuLsOQ+4Og2iWh3wzc5aFE8U3UigY6jOrWuQ8uHK33k38HAaRAPRLXYML6dRrMl9ptHqpiJN7xGiWnDUBU/nbwLEod9GT6bXTKQq8ZyRGpTDkYefZE8Aa1nZ1TbEcfB3iuV9TzVaXVX+PDZabY70Nqh8z3L2v6W5fj9EynWvsvN3AUcarU5DHC4dwGN+kg2mD0LNGK2WQRpofxVxivwWONNPsv/2914/yV4HXh/O8TmakpuAw6psv7RRA3E4HA6Ho4SfZM9Yu2ZHpOfWG8B1VVRJ3ie/4gv793fqP0pAkppWR6rHJttzzQZuA84u7WSr/v+CSA0qetZTeyKyfeORflHjkTV3C7Cb7U01aPwke9JoFSMBjaJeXyVmIf1Z9/KTrB7r/nUp/k7agM2pCAJaLkQq7pakdyJOqWrr3Fp8KH6SdRqtrkCq0Ssr+2YCP+3vGGOYaso8Gf3fKw5Hw3ABLkfNeHG4EnAQotX7HHBBGkTPDsN5dkKyMSYhzvIVkIyUnb043HWMBLleQSYElbOtlG0yVI4DtkekCEsTfoZM0gfV4fiO+rEJxdnPSwGLIplpzUKMBOXynMCzEAexYz7ET7IXjVYrI8+YHZEFxq+Bq/wkG0hWoMPRMPwke7v0/0arL1TZdUmkoqtcbvNE8p+FlbQBOxutlveT7NWK839I/SReqmK08pFeBO30SIoeCuxrtFqz/Fo4HGX8BHmu5yVnvZQG0Z8aPB6Hw+FwOIBP5Pevr3H3P1AsxdeBJC3VHRsI2sFotQ6wgx3DLX6SPVmx6zeQFhaVfqLJwJeBNYClgdWQYNzNfpLV2ouqP76PXJ/rKPZNZMBKfpK9VqdzAnxA8XfSRYEfxE+yj4xWawMnIwlkbYgyw3F+kt07wDEcCqyEJJxNtuOZB1wBXD7AY40l/gjsRH6F22zg5cYOx+EoxgW4HDXhxeFeSHbmOMQh8iVAe3H4vTSIkjqeZyKQ0NdZ1I6Un2+L9MQY7VwI7E2+U2wm8MBQT5AG0ZteHK6OZGl/HTGSbgVOS4PITUTNxVyKs2OasSLqV0i21Ar0dnZ1AN8Z7uoDR3NjpQpPsC+HY7TRgUgS5jEOmbfLA1xrDODY84CNqa1nwHBxARKkK1+oTkSqy05BJHAcjl6kQfRfLw7XQ3p0LIrcP93A44h97nA4HA5H0+Mn2Vyj1R5IZfJ4epJ9ZgK/Qxz6dcFotTjSU3VPJHn7CeBoP8ly10hGq22RhJIiO7QL+LKfZL9CAlF1xVY73WC0uhbYhb5Bti7g9joHt0B6qRUF1DoR30MuVn3ge/Y1aGwV12bABohdMwe40U+y54dy3DHAyUgf3spKrQ7geCsT6nA0BS3d3c2keuVoRrw4XBTRnc1rxDkL+HQaRG/V6VzbIobFtIJdbkqDaFh6EjUaLw4PQwyeUtCwA3F+bZ4GkauAmY8wWl2KyAHkyUn+xU+yDRs+qH4wWi0AHI1I0rUjTq4f+0n20IgOzOFwOIaA0aokd5KXqdgFXOYn2f5l+6dIJm0tfAzs5yfZtUMe6CAwWrUBH9LjzKlkhp9kUxs4JMcI4cVhqbfcO4hT6ftI9vJiSDbuqcBv0yDqrnhfC7AmsDjwdBpE83NfCofD4XCMUoxWn0XmvfWBt5EEoDvr1RbAaLUw8BQyr5bbXR3AN/0ku6Fi/x8DP6K65Nt0JJn0d/UYYxFGq+WQdhkL0DP2uUhvs7X9JKt7srTRakdEMnsCPT6RmUDiJ9nB9T7fcGC0UmMx0ddotTFwGaJkkdnXj4ELmqyNhmM+xwW4HP3ixeHBwM/IrzCZBRybBtFZdTrX7kiGRpGD5YE0iOre+HOksLKP+wMeorWcpEH0wciOytFojFZLAf8AFqLHiMyQjKUv50gXOBwOh2MYMFr1Jwk7C2grLeisQ+Jo8pOAKukEFveTbPoAxjPRHvvjoS4ijVYLIU6cCQW7zPOTLDf4ZbRqAT6DOF6ec5KjoxMvDpcDLgY2Q+yMDuSeWIHeqgIzgfPSIDqm4YN0VMWLwy8i/UA2R4LudwJHpUH0wogOzOFwOByfYLQ6CQlY5dmH7wJLlYIhRqtlgRcK9i2nE1jCT7KP6znWPKx/4kfA7kgizA1AZHux9vfelYEQacPwMdJu5Nf92Y5Gq88j/T7XBt4EzgPubuYgitFKAYcDRyAV7u8D5wOnWenMMYFdB6yI+ISfH0ufzTF2cBKFjlpYjGL5tElIJL9ePEZxZnEncHcdzzXipEH0PDIhOuZj/CR702j1RaQZ6teRZ/OdwEl+kjmHhcPhcDSO6YjTOK+CC0TOr5WeXgE/R/rNrURP1m0X4gwol1vpAA6pNbhltPKQBfL29k9vG62O85Psiho/Rx4fIg6D5Qu2P1Ywlg0Q+WgPqTRvMVqdCpzRzE4HR2+8OFwEqbZemB7ZocnAIjm7twOHeXH4izSI6tEXtuF4cbgwsBzwRhpEzdTHdNB4cbg2ImPeRs/z5f+Azb04XMcFuRwOh6NpKMkS5jEZ+AJQSmLdjWKJPhBVl07gB40IboH4J4BD7KtmjFabAHfQuxLrDGBvo9Vm1YJcfpI9C+w3uBGPGFcAX6MnSWhhJDC4rtFq+7FiJ9vP8dJIj8PhqIYLcDlq4UnE4ZNXVTUd0RKuC2kQvebF4S3IYq08qNaNZE1fWq9zDSdeHI5DSt4PRTI5UiACLqmUe3E4APwkewuRCPr+SI9lfsSW3h8PfBH4HyJTcbHLTnI45i/8JJtltHoNqWjJ48Vy+RE/yTqMVhshjoxvIQGwmxGbZX+kt9XTwCl+ktXUL8FotQgiDfMpegIRywC/NFot6CfZeQP/ZLI4NVodiTTLruwB2oFUolWOZSXgXvpK5vwYsc3OGMxYmgVb1fZ/yOd7yE+yp0d4SMPJgYgsYWVPjSIy5NpcNGwjGga8OJwKXII4nOYAE7w4fADYJw2i90ZybP3hxeEywILAi2kQzcrZ5Vz6/hZb7d8ipBG8w+FwOEae/uba8u1TKK6uB3gN2NdPsgeHPKoKjFbbIdVWKyI9Yn/mJ9nNgzxWC3AlfW3MNkTe+CrbmuE+P8m6Bj3oJsFotSoy71YWA0xGeu6uD/y50eNyOOZXXIDLUQu3IqXF7fTOaO5CJExuyHvTENgH+AWwFzAbmexfBL6eBtH/6nyuumP7E1wPbEnP5L48cCawGnDQyIxs7GIlnDZB7tFH/SR7Z4SHNN9gDdnPI33znh6I9FazYLT6JuLAm4xkz30Kkf/Z0Wi17VjU0nY4RjP2ufNp5Ddr/CSb08/+iyEVsnsiVeL3ASfaTNE8jkXkkvOCQMdW7myzURP7Kmew8s0HIX0PKp0jbcCpRqtL/CTLc373i59k1xmtJtuxTUKeeR8ABxb0UDyG/AzkduA4o9V5o1Wu0Gh1AHA2EshRQLfR6iFgZz/JOkZ0cMPDLhQrMuTRSrGqQlNibfA7EHmjSfTcu1sAj3hxuEoaRE2XuOLF4apI4PnzSJ+TFi8OzwROToOoy+7TBqxbcIhWYLtGjNXhcDgcNXE98EPyA1fzgH+W/ftBxK82JWff6cD3hym4dQJSbVSyd5cCfmO0+oWfZEcN4pBfRFou5DERsUO2Bt6z1VyjvY/n9hT71NuQ4JcLcDkcDaJIfsXh+AS7ENwYKUmdgUyyM4BXgI3TIKqrYyMNotlpEO2HNG3fFlg9DaLV0yB6rp7nGUY2QBbSlY6xduBbXhyu2PghjV2MVrsiOtbXAjHwqtHqEqOVC+APM0ar9ZDg82OIpOI7RqufWS3q8v0mGK1+aLQyRqv3jFZ3WMmrRo51OaPV9kartaxzvPT3NuCX9Jb7wf57A2CHRo7T4XBUx2i1IfA88C/gUeBdo9Wh5b/riv0XRyrRv4tILi+ELLAfM1qtnfceP8l+iwR2ZgIfIUk+M4Aj/SS7rr6fKJfdKZa16QbWGcrB/SS7ElgCecatDSzrJ9ntBbtvSXEWcgsizTjqsBI6ZyEBnyn2v22IvXvxCA5tOKkaCM6hG7hnOAYyjKwHrEHf38945J7fseEj6gcvDpcGHqZn3FORe/II4PSyXavJV4Fb1zscDkczcTbiN6tMlOwAjvCTbF7Z3x4ADH3n6TnA68g6u64YrZZDKrfyfFbfN1r5Be9rN1rtaLTazWi1RMXmKfT9vOW0IHPccsDdRbb7KKI/WcnR/vkcjlGFM4QdNZEG0cuIE2MrxEm0NfDZNIheHMZzvp8G0Z+H8xyDxYvDNi8ON/HicEMrR1jOblTPkN3FZpg6hogNsFyOVA9NQzLeJyHVf9EIDq0hGK0WMFqdY7T6yGiVGa2eMVrt3KBzr4hUQayIGMILIPf9QUj1U2m/8Yi81enAZ5HqqG2A+4xWuzRgnFONVrciDvHfIAuIF41Wq9ldtqDYEJ+CSI45HI4mwDafvgfwkefNVOTZcwrwg4K3HYc8d8ozaFuR33dhIMNPsnORgNguSAbmYn6SXTjEj1Ar1ZwDU4GtKwL1yxmtjjJaRdbp0K8EnZ9kmZ9kT/tJ9nw//QGqVTIpJPA3GjmafFttMrCr0WrhBo+nEcRU/z7L6QBuH4U9nTZGssTzmIoEbJuNH9BTQV5OO/ADLw4XAEiDaCYS2M+jG7h/2EbocDgcjgFh2w+sg1QVz0Wqtl4BNHC50Wodo9VGRqs2a4dtYfedhSRXzULW2psMk5rIrhQHYMYhfcF7YbT6FvAOIkP4K+AVo9WFZXbnP6kutVhCIX1dG5rwOgyUvts8OoGbGjgWh2O+xwW4HDWTBlF3GkR/SYPoN2kQPTo/9pLy4rDFi8MjkYqhm5Fsmne9ONy9bLdxFBsLk4CfAB96cXiaF4e1GABNjReHvheH53lx+AcvDi/y4vALDTz98eQ7qNqA7xqtKvsUjBmsxNSfkZ4a05Dn+eeBK41WBzdgCEeQ70RqA75ntJpm/70rsBa9s8Na7L9/bbQa7t/AjUhgfhLiCJ+CSJv9yfa5yXMqlZMnFeFwOEaG4yiWyzvRBtQrKckS5rGKlS/MxU+yDj/J7veT7A9+knUOfLiD5kpkYZxHC9Lw+wQAo9VRSAD/ZOAoJJD/fE5W7WD5VZWxvO4n2b/rdJ5GsyrFz/7ZFPdgG81cAbyMOM3K6UDkkWYh3/V04HzgGw0dXX2YSbGzKUOqMZuN7Sh2CM5B+paUOIT8IGUHkonvcDgcjibBT7JX/CTbEUmwWARJDJ0NvIUkJdyBKBEcBXzkJ9lOwLJIMsbyfpJt7yfZf4dpeNX6fo1H/AufYGWdL0Vs7lJy8STEF3G/0WoRP8k+RvpYz6zh/C1IwtqoxU+yp4Db6TsvdyIqE482fFAOx3yMC3A5HANjf+BEeipWpiFyR7EXh5vbfW6l+qTeat93KHDLaK7m8uJwN0T66UBgM+DbwGNeHB7QoCGsTbGDah5iRI5V9kYM4MogUxvw0wYE97ag2Gk8B1jd/v9+9G2IXqIF+HKdx/UJttpjQ/peoxbEoN8PeIRi474D+T07HI7mYAuK5fIUUiVaSbUgehfF1R4jySXA28g8lkc7cJTRakfgx4iDofQ5pyB9P6+t01guQIIi5UGueYido+t0jpHgrSrbJiLXf0yRBlEnMieejSRqlRwwO6ZBtAmwMGI3LZIGUdiMvapq4AaqBy6vbuBYaqVaVV1r+fY0iB5E5NufQH6H8xA7ZtM0iJ4czkGOFF4cTvXicHkvDpvxWe1wOEYRRqsVjVaHWGnrzzXqvH6SzbbBnw2B3wKLIkGvaYhNdzzwPbvve36S/a28p7iVBVykzpJ+pb5feUwH/lB2/nWBC8n3H7cgvdCfNlothSRbnI/MXdWkkbuAdODDbjq+gSjVvI98po8RCewd+lFIcDgcdcb1qHHUjBeHCyKlyisAzwHXpEE0Fptw5+LFYSuSIV2pU4z926mI0XIfIiGS1wOgnMnAl4D1GYXNJ704XAiRByyvoBpnX+d4cXhHGkSvD/Mw3gcWL9g2wW4fq3yT4sDRPESmp+563WVUy4IeV7a9WqCtm/zfU71Yh2KprzZgMz/Jfmq0uhrYo2IsGWLcx8M4PofDMTCq2RzjCrbfj/TdyVuUv08TLq79JPvYaLUO8HekT0Eec5HgVl4V8zhgLaPVp/0ke3mIY5lhtFofaUL+Q8QhMw54leL5dzRwNhJIrJyj5gF/9ZPsjUYPyIvDVZGG5SDygE/X+xxpEE1H+ssdk7Otk+JqvVFBGkRveXF4ElLtWf7dzgSuSIPonyMzsqpcCqxCvr3UCfyt/A82yLWWF4ftQPdYXYt5cfgpREZ2e+R32e3F4YXAsWkQFQX/HQ6How9Gq1ak5/I3kYBMC3Ca0eoGYN9hkgDM42Ty7baSEsFFfpJlVvJvKrAkEizaGFk3v220OtJPsmvqMJaXgP8An6F3Mlip79fdZX87j/6LIz4F/NxPsm8ARxutTkOe3wl9fWLdiMT1bKPVT5DA0E1+kj0+uI8yctheaqcZrU5HEqRmu8CWwzEyuAouR014cbg14gQ6E3FynA+84cXhkBqdjzIWRaq2ilgTIA2iLqSs/DLE2VZtEdZGEza8rpHdEGMkjxakwmi4uYB8h2YX8E8/yZrOcVlHqj2/uymucqgXF1Oc9fVf4Cn7/7dS7DCbCPylzuMqp5RJlUcXoiEO8B1k0dOBBLVmIxnR6/tJ9tEwjs/hcAyMmL7yaiVe9pPs1Zy//7jgPaUm3025CPWT7H/AM/3stiTF1SpzqJ/M3jikWqtc0vUzwNVGK12nczSa3wLXI/NYaZ6YgcwLezVyIF4cKi8OfwP8FekndwrwVy8Or/bicLjn8jFHGkQRIo/8IFKJ9zjST/OgkRxXFa5Efuvl9myX/XeQBlGu4zUNopljOLg1EUn++z/EVmxHqlMPRqQ2HQ6HYyAchMztk5Fgy0T7/zsh8s6NYl2K7baFgS1tYOh9pNL6WWBzRDVlAqLeEhut9h3oiY1WrUarA4xW/zFadQGvIbL9rYi/6iNkDXwvsHEp6Ge0moK0G+iPccAuNpiIn2Qz/CT7PXAYYoeXqsJn2nO9hiTjHoVUfT1gtLrBaDUqizD8JOv2k2xWs64rHI75ARfgcvSLzaC7HllclCocpgALAnfPR5IRM6keNPjE2Z8GUUcaRAch1yiiOMjVbV+jkcXIz0ACMRqXasAYLkUWwOVN7juBD5AMrbHMNRRXM0xAHDvDyeWIPGX5GEqyVXuXGXcX230qA00dwK/8JHuv3gMzWrUYrTZBqguKfrOdyP2Dn2Tz/CQ7Aglir49onm9S4Cx3OBwjxznIgrg8YDUPmQO+nfcGP8n+hSSdPI0s3DuBN4H9/CT73bCOduj8jt7zWznjkWrxIhtiAiItWA++i2TmVsrStgHnNKCXYt2xc5QGtkb6jF0D/AD47AgkxxwBfA2xqcbb12Tgq0hSmWOApEF0VxpEm6RBtGQaROumQXRNM/YOtjLlX0QkRW8B/k1Pn98vp0F0xwgObyTZDViC/GfOTl4cjmUJcofDUX9C8qtk24DD6yz9V43+2ljchrSxmEbP869ybG3Az22VVx+MVhOMVpMq/wY8hMgMLkNPFdskJDA1G/H3Lecn2Q42yarEQK5NSc2ndN5JSBJ4C+ILyJCqsd8j7Qza7bZW+7m2Bg4fwPn6YLQab7SaX/yTDoejjFEZHXfUD7uwmgzMspVHeexLcTB0HLIAr0eZdF3w4nASsBriAPtXvRa0aRDN8OLwfmAr+jrNZ5MjZZYG0VwvDq9BMlfyfm+dwI31GN8I8CRipE3N2TaDCkmV4cBPsrlGq20Qx9B+diy3AZdUGGZjkRgxAJektwNgJhBZne9hw0+yOUarLRHH5z6IIf4A8FM/yUzZfv81Wm2ABMTWQLK3WhGpg+PrPS6j1UpINtgi9BjM3YhBXfoNzrTjeaTiM3UgmXIOh2OYMVqtgGTjrwW8AlzgJ9nfq73HSvetC3wfqciYjMgCn+Yn2QtV3vdn4AtGqyWRwM/rfpIV2TwjinWy7INIyC2H2Bvz6G1DzESeoXchfQwrpV7nAo/7SfZKnYb1DYoTWlqQfphN0UjbZv6ujFyDF6pl0tptj1AxF4wAh1Msf32YF4dRMwZnHEPDi8MFkN/wF5Df91zk935wGkSXjeTYmoAdkWTKPLqQvr//btxwHA7HaMXaVUtW2WUaMt9WCz4N5dz7IrK5yyM+o4ziBMxeAaIqTEJsnU+kjI1WqyCJYJsCLUarfyL2xd8QyWu/yvHagT2BQyo3+Ek23Wj1LOJf64+X/CQr77t1HVKBVh5w+iywEvmBszbEb/bTGs7Vi7LPvxny+Z8EDveT7AG7fTHgACTpbQLiI5iDzMMX+0n234Ge0+FwNBcuwDWfYvtJ/RA4GimHnuXF4a+BY9IgqpzcP0exY2My0pB6xLHBuiMRp3kXMml95MXht9IguqdOpzkQkTqZSo+WcAci33hK3hvSIPqXF4c3IUGYcgdGJ3BfGkSjTmvYcidSPt9GbyOtG/lsAwp6WqfUjsAOSHDyd8BD/ZV5W93j6+xrvsEam+sgfUR2Qe7394ATkWz0YcN+V8cjRvBE5Pd2JWJE9qk28JPsRWBD23h2IURKrO59Pmy21p+QSqxyo7kLMWCfQX6rFwB3OwkBh2NkMFpth1QsjEMWmV8CdjdaneQn2c+qvdcG70+zrwHhJ9lbgxhuo/k5sgAvzzSeR08/wbcRe+MSP8m6jVY/RnqAtiDP4+lIhdrudRxTf9m7jcp8rorR6jtI1fw4ZE78n9Fqfz/J6mUD1h0vDscj1XFFLIz8RmY3ZkSOBnIVkvhTcvyV/nu+F4fPpEH02MgMq3+8OFwGecZMRQLE91dJlBwMnch6Iu/ZUrLpHA6Ho1+srfQ+kvyYxyyGr//k6UhSVsmma6M+6j0tlCkEGa0+h6jaTKHnubkmcLt9fbqGY86x7/lTzrYfAndQ7BME8YmFZWNaBQluVb6nPx/0okarloGs06t9fqPVV5HK6AcRe6pyPGshVXwb+kn2fK3ndDgczYcLcM2/XIBkk5QCLu1IH5oNvTjcoKJ57/PIhJWXXdpJ82TQ/QA4gd7jnALc6MXhxmkQVc0Mr4U0iF7z4nAV4HuIfMYcpHHmZWkQFckIgWRjH4Zk0SyO9Cg6h0FkpzQLaRBlXhxughg7yyELzhbks21nm5XXhNFqIaRsfjnkO+tGrtm9RqtdG9j4dVThJ9m7wF62B8pkYHqDgjZXIsHI8t/aPsBaRqv1ir4vP8neRByvABitFkey2V4H1gNOQgLqHwGXAKfbqqpa2cWOqdIh0oo4h0/1k2y+CoQ6HM2G0aoNkSYpf34o++8TjVa3+kn23IgMboQxWi2H2BeVzbjHIZnF/wc8UP6c95PsTKPVNYizeQGkr+HddZ43fwccmzOuEsNesd0fRqt9kISP8vuqHbjRaLW5n2TNGiyYB3yIJH/kMR3nzC/Ei8PPAScD2yG2481In+AvIVLZfwduSIOoqQKEXhwujWSR58koTUIS9nZt6KBqxIvDEFlvtSB/HmGUAAAgAElEQVTOwpnAK14cbpYGUb3UE34D7Ex+Fdc4xGHrcDgctXI+0uupMrgxC6neqXtVv03sPJS+z/l6JAW9D5QrF5xKj9xfOW30JML2xzhgWaPVJUivrz8j1+ZtP8kesMlpZwOrlp1nFrLG7gYO85OsXJlo44F9pE94exD+jFMo/vznIeuMaTnbQe6Jici8U0uvMYfD0aS4AFcTYCuPVkeM+H+mQTR9mM+3HBDQ11ExCSkX3h5ZIJa4HFk85jG3Yt8RwYvDcfQNbpWYbLftWI9zpUH0HuKIP2kA78mAM4AzvDhsrXOW44hhA36rAusg5eavAY8MQkrnF/b9pT4eLYiR8hVEAu+C+ox4bOIn2Vx6GrcOK1YC8Kv0XSBMQoJT29CP48FotSDyXNkaMYxLBmmpEnBRJCD8FaPVRvbz1cIaFEvaTEWkFa6zYxiPGPx7I3PhtcDVw1FZ5nA4erEjxdmr45FeWkc0bjiNwQavDkXmtY+Bi4DfVDzfqtkpk4Gd/CT7Y+UGP8leB86s43AruRAJvC1K77VDB3Ckn2QjGjywDc0jim3AU5Dr3nSkQdTtxeEFyD1fOa92Auc7ecJ8rP35KGJDlJx330Dm9dn0VDSebRPdTO6BRobPImPMCxq3UpsUVMPx4nALpIK/fNxTEPvvKmDbOp3qPuBhxEFa/rueCZxcx0Caw+GYP/gJsKF9laqpZgL/YHgk8xUiNT0c/tZO4ICKINC2FAexaglulbgImTsVsAlwhNFqGz/JHrFSf2sYraYgQa159PTXeqJCmrA0zoEmW3UgSgYDZTuKP+dnED9JtcBiK7Cy0WqFOsp7OxyOBuMCXCOMF4cbI9UQCyMTwAQvDs8Hjh7GIMjWSLVNHlOQjMFPglZpEP3Pi8Od6OkV1Y70WJoHfKVJsiL3ABYs2NaCZHLWBRuQXBfRcn4mDaIXB/L+sRLcKmEdL3+1rwFjjaSd6AlulVPSYXYBrubhKxQbiFMQKc7CAJfVIr8fWAUxoIuawE5GtMV3QaoHauFNJGCW5zDqBN6xY2hD5BdWoicgthFwtNFqfafB7XAMK4vRu29gOeOApRs4loZgtFob+CPyvCt99lUBbbT6SplTYDzFz9dW8ufJonMuDWjEkf4UcPlge1P6Sfa+0Wot4CykqmIc0jftaD/Jrh3MMevMEhRXQLUgDq1m5lTErvwSPUGuDiR4kyt/7QBECaFcjgh6HFwl22Iqsm6504vDzwwmWOjF4VJIstUGSMX5L9MgGpTNW0ZK9d/za0M8/nDxI/IDyROATb04XCoNojdztg+INIi6vDj8P+AgRBprUcAgwa0RT6x0OByjC9s7ehukb+luyLxxI/CHequfGK0mIH2dNqS41xYUy7BWUlJW6gIeA47xk+zhnGMNhS7Etitfl5fW0zcZrZa0bSGoaEfwmNFqUeAoW+H1EdIq4UbgVuCXNZ6/G1nD34jM7TVjtJpE/0G8ef1sB6mW/xRi3zqaFOs71EhCE8BvgTivTYZj/sMFuEYQLw5XRvoYVS4UDkKCXccM06m7qT4J9gnApEF0r5XT+DoiI/cCcG0aRAORDxsWvDhcDbiU6gZCXZqG2nPdjEx+XcB4Lw4fA3ZJg+j9epxjPmQRqmf3LNaogThqoiRDkEc3/VeSbYw0uS0KbJUzBfgmtQe4rka0zov4vf3vcYhzuTIDeQJiVO9d4/nma4xWn0GqbZZFAtxX+En2wciOyjEK+AfFC82ZiCTKmMEG9a+mb3VpO7A2Ihd9qf3b3UiwI48ZiLOglnPuClyB2EWTkGDJSUarHfwky+ut0C+2f9metlpq/HBXbRmtfORZ/RWk0uVy4Cw/yT7M2b2T6s6NWfUfYf1Ig2iOF4fbIs6wr9HjeHu0v4CMF4dtSGP4ryGf80rgdqscMGbx4nACkl1ei3OwFQmQbIRUBQ3kPF9C1mrj6ek5ursXh2emQfTjAQ26jDSIXvLi8Gkk+73SAToTkYFqRvwq22YDK1AmRT0UrFz+ufblcDgcQ8IGsh60r+HkYER6v9padwaybp5asL0097+DJBedXQowgdiWFYG5WxE/3WDkD+chSVibF2yfgEjq3lW5wSq7PIok55TW1RsB+yOqUCGyNs9LjChnLrCun2RPD2TgRqu9EZWBan7tl5C5qT8m0Fv20dFkGK0WQXwOS9BzT60OHGq0WtclKTtcgGtkCcmf+NqBH3pxeFoaRHUJzFRwJ6JFm8cM4Jq8DWkQfQRcPAzjGSrHU92AmAX8eqgn8eJwIaTqYwF6Gw8bIn2o1h/qOeZT3u5ne7P0eHMIt1EsHTCTniBSEeUZ6rXwGaPVm0jvurftuc/L6y/jJ9k7Rqv9EGfxOMQhNQcJygVlRs93yK/ymgDsarT69khLbjU7RqvvIZJoCrnOXwNONlpt4SfZiPfjcTQ1DwOvIhWU5XZoKUB+efnORqtPIb2nJgN/8pPsmcYMs26shPQCyqMdkf67FMBPsmeMVnchUq/lz8nZSMXHCkarcxGJw6vzepUZrZZEglvl7y8tAm8xWi0xFClW26diuINbpYq3yfQ4/48E9jZarVUZSPeT7AOj1eOIPVbp3JmDSKc1NTaQ9Yh91YQXh4sjPdc+RU8AdRvgr14cbpsG0Vju3aUYmCOvBfg0AwhwWfnzm+gdnG5Ffk+He3F4axpEjw9gDJXshjgGp9lzZMhv62JkrdaM/BvpnZrHRJq38szhcDgaxfepHtCZjTxL5yKJTkXs6yfZlaV/GK3agRORdexUo9WrSMuMK5De1XsWHKcUCMubM+cCWyAJRUXVZq3IOvwTjFZTEd/XBYiKUvmxpyBBLu0n2blGq+fsuDcoOD7Ah4MIbm2KzJfVrnUHcKB9fY1iH0QHUgX08UDGUG+MVisi98SHSHVhQ1pQjCIiwKN3BXyb/VsE7DcSg3I0DwPRY3XUn00onkjmAZ8fjpOmQZQi+rqVwbNORMamT3ZGk7MJ1e/lN6lPbwqNPEwrjYMJwBe8OHRNKQeBDSRcjNx/lcwETmvsiBzV8JPsNURuIO/58TD9Z8XNoPZ+YfMQR8qSyG98KaS64fKiN/hJ9hvgi0hft3sQw3s1P8nKA28LVDlnqf/bsGK0ajFaLWG0WmK4z1VvjFafRwKNk+iRW2tDnHS3W915hyMXm3G6FfAksqCcbl9vAJv6SfZRaV+j1aGIJNh5yD33uNHqditHMlpYkOrSKJXyynsgn3c68lwt9Q3wkSbpP0AcEU8bra6yFWLlaIod/5PokfQYEEarKUarA4xWNxqtYqPVJjnnrhe/Qhwk5c+SScgccGTBew5Arln5/DIbSYwoqoob7VyMSHqWB2CmIE6nH47IiBpEGkSdwICcYUgW90DYkmI51YmIw2zQpEH0GtIb5GDEQXk+sFEaRIc3cd+1M8hXxZiL9OBNGzweh8PhaDYW6Wd7B6JoUvQ8BbHjLjZafQU+6R39ADJfTLPbV0DWuych/qjpVY6VN6fMA572k+whRD2hqNq9FfERltavJyCVZdcjtmmeLdiOBPrwk+weP8k2RBI68sYxG0gKzl2NE6ge3HoY2NJPsgcRxZG7kM9Y7nPqsH+7FumTOyIYrdqMVrcgds2lSMHBu0arrUdqTM2GXXPsTb6883hgr2FclzhGCa6Ca2QpmoRAvpvhzCA4DCnBPRaJeH+EOK1PrlXWxIvDdqRf1zL2WDePULZoNZnEecB2aRBVu9a1UtnouJK1gL/X4TzzI0cjRto2iJHUhTi2zvKTLLei0DGi/ALYB8mCakWM1VbgnBp0zK9DMmz6Yx5yD1TOU23ATkar1fwkeyrvjX6SGaobqS8i/b3y+BjJmho2jFZbIYG35ey/XwUO9pPsvuE8bx05kGKn32TEKXh344bjGG34SfY2sI7R6ovIb/EN4GFbHQSAXdSdQt9qy80QR/D+DRruUHma4l4784CXjValCqNrgdv8JAuNVscj1V1F0i6twF7AM0jz9BKfJr9CFTuOnxitfj8QrXqj1XJIpVCpn1E3Un1yk9Fqn/LvbagYrZZCqt7ymIhIOvaR8LbVb6sDRyEVf3MQub5zxqJ0qheH05Cm8nnP4jbECXZGQwfVeA5Dqsr7qwrvQgKdA5U/XZziBDqFrH+GhA3UXU6VxJ1mIg2iu704PBMJNCt6nKpvMsjgucPhcIwxnqZ6tdJEJIHzWsSmPYD8INFkJLlrNeCriG1Uad+1I8/jCfSVwi7RDfwTsbe77HFnAO8BO9p9LgYOz3nvXOAZP8n+Yf99sD1fLWosiwDYHl2HYde9dgylubUTmT9q8Q18gtFqQaqrJ81A1FteArDKBTsbrVYA1kECi932c/zZT7K6SOsOgcuR5L9J9P6ObzBareknmZNO7NsjrpIJ9Kj3OOZTXIBrZLkY+Cn5josUaaY7LNjMwIuAi7w4bE2DaEDOCS8ON0N6UbUg458J/MKLwy3SIPpX3QdcnV8jzo7KCb8beCYNonpNCG8j8iF51QkZMKjm7Q5p/IoYHZ9HyuTnALc22tiw1TSnIBrWExGN36NtZpMDsP1X7gUWosc4bUGu1/VGq89Y53UufpK9YTO/fkzvSqmSlGCLfb2EGPJ5v7cJiKGfG+CqgROQTLHKZ+9M4PR6OmsrMVptgkgelZ/7c8DNRquvI5IV/2nyRqkrUmw/tCIVBQ5Hv/hJ9iRSyZXHMeRXU05GpOoO85OsHskrw4qfZNONVr9EAsOVz5xWZIFe+vtXgWeNVpshGaVH57ynkmPpHeB6CnmWFVWiTgO+RbFUdR6/RXoYlZ7HpUrXryEVZ78dwLH6YzIS+CtaxBZW7/lJ9irwXfsa6yyEOJ6KgqcLN3AsI0IaRH/w4vBryL28PHJfvo30ZpiH/HZKFaLbDKIq6kmKA1yzGGP9AmslDaITvDi8ErGVF0Aq9+8Y633fHA7H6MNWdGgkKLM08ApiM11TQ1LmQM6zImJbLYcEk9ajeP6YB6zoJ9lTRqsnqC63+wWj1a3IfFYUwFLAIVWO04kkfj4L7E6P7P9tfpKlIH1WjVbbImvU8XbsrUgS1fb2Myr6rt+L6AIes0lLTyBqBRPLtnUhkra/An5Rrt7QH1a6/O9UD3aMB/okN/lJ9gpyDzQN9hrtQHH7hMMRWcr5Gj/J5hqtXkb8EHm8an2KjvkYF+AaWS5Fsm+/QM9EMRcp0927UfIUgwhuLYI0siyf3KYik+59Xhx6aRA1Ui/2bMTB8ml6sknmIovPoI7n+RVStZLnbGpB+nDVhBeHU+jJ0njISXoIfpI9ixhfDcdmFz2B9LIoZURvBNxltNrdT7LbR2JcI4WtnjgBWBUJ3l6AVE18GblGeUa7QqoqTql2bD/JfmYN+qOQ4M6rSKb5HYhTbjritO2TpW9pZQjzl59k19qKhJPpkf8ajwT9zxnscWvk5+Q/Q9qQpIEZwDij1WXAYU1qqD2BNCLOM8S7gecbOxzHGKWaTPNcYFlk4T0a+BHy3DoQsfFKgaIJ9H4eTEEydU9GnkXTajh2u9FqET/JSkk2V1I9E3YiYsvUFOAyWi0LrEF+skE74jSpZ4DrVcQZk+dA6UJ6c80XeHE4Galu/yANorcqNr+FXI8i5ovncBpE9wAreXG4GNCVBtF/vTj8FBJ8WQxxNN4ymHVJGkT/9OLwKWBN+gYS5yE2w3xJGkQvMXalPx0Ox9jhV4ifqGRTrI4kR6+JrEMHhdFqHNImYxFkLXs0PVWtHeRL8ZVQwCtGq2n0TlAqYgckCbSIIlUNEJvzdD/J/mQDVEsjUtddwJlGq6eBffwke85PsodtH9ctkSDYU36SPVF2rMWoXcZ/FqJA8FPkGpWv25X9PP8BrvKT7CPbX+wbwE72vVcCt+T13Eb8DEtSHNDLgEfK7OJmZ1Xke8pbV4+jejXg/MZxyO+30pfSARzf+OE4mo2W7u5mlfieP/DisCS3cgDiyLgH+HkaRE2VWVCOF4eHIouaPCftdGDfNIhubPCY2hEj5QfIdexCdH4PS4Pob3U8T4ToCU9GJtW59rVHGkS31XiM/YBzkcVxybH+W+A7aRBV69PhGEaMVj9BHHV52UApsGw9M72aGaPVAcBZ9P6NdwCPIXrbZ1AsTXC9n2S71mEMGyCVYnmG9ExgMz/JhtLcHaPVAogRPw5p5PreUI5Xw/nGI0Z7Lf0vO4Hb/STbbTjHNBiMVh4iS1s5B2RI5fEq88tvxTF8GK2eQhKA8pgNLDPcv9l6YyVV1kBspT9SnI07A8kCfoviCp0S3cBifpL9t+w8ByMBrKLF/7/8JFutxjGvi9imRb0LUz/JhizVVnHO7yDJS3kL2PX9JGu0UkBD8eJQIUHOHyDf73jgH8A+NrBQ2u9UxG7Ju04126WOYmyw7FYk8FzKOp8D7JQG0cMjOTaHw+FwFGNlsB8h32c1C1jZVn4P9LibIvKCExE7q8iWyyNDKojeQgIXw11wcF1pLWm0OgdJRC2/Ht1Iq5KVqymw2PdPBf5LsV3ajdi33UjV3M3IerZapVUnsqZcDPHhla7lDKRK6yuVyZ5Gq+lUv+bvAesO5rsdCYxWmyPS/kX3wn1+km3VwCE1NUarQ4DT6ElSHgcc5yfZ2SM6MEdT4Cq4Rpg0iGYDl9jXaGEViiVzJiHNJhvNNCQzuh150CngS8CfvDjcNg2iB+txkjSIQi8O70T0h5dFJt5z0iCqSU7Si8MtkOBW5fXbA5mMB51J5Bgye1JsgC2EZGeN+Yxoa7xWBrew/14HCRzPJT/ANYeBN3Ev4i/IouTLFefqBB4canALwMohXD/U4wyAknOslgDXZGAHK/lYr2taF/wkS41WOyHXrhtZ6MxF5C62dsEtR504C6kcrQxyzwUeGG3BLQA/yT4E/mi0mkD1LNh2xEnwd0TCsJp8zevlwS3LZRRLYM9CeiHWyksUz42lvg51xU+yS6wc7mnI80UBryNNwj80Wn0BeNFPsqKG6KOds5HPWv79rQf8xYvDldIgKn3fJyBZzN9Akqa6kbXd0WkQ3ebF4VREWmga8OcRkBAf9dhrvYEXh6sjQa53gftLCWleHI5DfqPtwONpEL0/YoNtcmxS596Ig7UduB04Lw2ike594nA4xia7U2y/tAA7I7ZmzdgeTrdRWyVTKamx245jOpKAsgQis1bNtiuisl3GXGTeLzrWttaeWhBJqK+sEmqxfzuIfipgrOT2HxAVosqq/tnIdbkIWafPsfKQ/SVpTUaq6irHPwXxOxwC/KxiW6FUNXJ91vGT7LV+ztsU2Mq1X1Psl5+BrIUcFj/JzjFaXYr4eluAh/wkmznCw3I0CS7A5RgMLyFO5jwH9yxEXmZIeHG4C1J+/Dnkwf5r4IQ0iIr6bRyLTNzl93SpP9gvkaBcredWwDZIiXQ34gi6tyTlmAbRn4A/DeTzlPFjiuXJDvLi8IQ0iMaqw6bZyZNfKlFyGs0PbIU4yvKYgpTRF0n9ZIj06pDxk6zbaLUj8hw4GDFmu5Cg1zfrcY5G4ydZZrS6B3m+1BLkyoBNqV/QsG74SXaP0WoxpDnxEsC/gD+64JajjlwBfAW5xyYjv5kZSPaoHrlhDR278H8bCU7k8ZbVmv8O8sybTL4EzVwkEFJ5/A6j1Un07ZWQAR8DFw5grO8bra4BdqOv3deJSNDUHT/JLjJa/QpJmipJFl6BNEmfC7QYrc4ETh7OvomNxlYM7U9fB04rYisegAT+sD2Pvu3F4QlIo/rZwN1pEH3kxeFeSPLcJ84wLw7/DHwtDaJm7vHYlKRB9E8qgrleHG6H3JPjsQ5MLw4vQdQjXD+qMrw4nAQ8gNiQpWfSZ4EDvTj8UhpET4/U2BwOx5iljeL1vaJ6oKSI71NdErCcLuBExCe1KNLbe0cksXkwwS3okfcDWa+P7+dYk5BK72colsGbBGxHbRJvBwCPI+1JSjZhB/AyEJT3xrVr+ScR5YJqFI2/DfEBVAa4/oEEv/JIEenD0cJeyL1RxB3ALQ0ay6jBBrTuHulxOJqP+cVh66gvCcUTYIaUIw8aLw6PQqRZShkf04DvAVt5cbhOQQBod4qNjU97cbhULRmCXhy2AfcjC7BS6fPXgSe8ONy6DsGnapJA3UhVWE3VYI66cwviVMq7j2YBzzV2OCNGSW6hiMmIXI/O2fYRUM9M3G7EgM3oqczcEPiX0WrdUmPcUcZhSMZRO9WDqiALo85hH9Eg8ZOsE/j9SI/DMTbxk6zLaLUX8pvfG7EF7gSu9ZNs9lCPbyVK90QCKC8Av/WT7OOhHncAnI70yqrMAp5pt+En2dNWYudHSNJNqUl3N+Ks+IGfZEU9qc4APkTsqQWQAMm9wEE5FV/9cSDSQ2Fze+4MWUMc5CfZowM8Vs34STYPeNZotTTi0JhGT7YxSNP4iUjvi7HC+hQ7oSYjzrHTyv9o+7heWfq3F4drI8GtyoSqjRAbfsgywo3Gi8ONgBCxo1Okyu165J74NvL7mA1cDvw+DaJh7V/pxeEaiERV5TX+NjJvh8N5/lHI95DvrjxIPhFZ6yXA2iMwJofDMba5C3km58nZzQbuA7CVRlsgc+R04Joqa8yN6L8qqUQX8KifZA+V/mC0upj+13/9oZCErzb6T5hUSGuRv1F9fV9rBcxExHb+MmKPzAFi4Eq7LqzkKOAmitWf+mPhnL8dW3DMDuCYUZZsuSvF1YAdwA2j7PM4HCOKC3A5BkwaRG97cfgN4GpkopyMTIoZsN1QgkBeHO5KfnP0iUij7T2RSbSSavdyqX9BLZwGfJHejoVSifTxyIQ6FP6HOKjyGG+3O0aGCJH5mUZvY7EDOKygyelY5HmKjdCZiIP0lILtU5GAcN5vdDAcjMgylTtE2pCFxWVIdceAsH2wNkO+57/6SdbQLC8/yV4wWq2JSEvtiDy7JpL/DBuHSPg4HPMldlH3iH3VDaPVZkhSQwuysJwJnGG02sFPsrpIGtfAL5AKhu/Qk42rkIbon1RY+Un2CvBd+8LKG7b2J89nr90ltgrqU8DMwUp4WKfFDkarlRHnzgykR2BRVX29ORGZXyqdM23AD41WP2lwcHI46WToTqijKM7S3t6LwyXSIKraa6OZ8OLwW8D59PS/XRYJfHcg1Xzj6bFb1ge+78XhJmkQFSaIeHG4GBK43QJ4HwkI3pUGUa2OpGPJv8bt9vwnp0HUUeOx+sWLw88gFd2zgNvTIPqgXsduEAeSr/zRAqzixeEyaRC93uAxORyOsU0nxYmrj/lJ9lej1cJIT9RPI8/v2cBpRquT/CTL80m9jfiW+qvAypCkz8pejf1VjdVybOhpy1ELkxDbrWh+m0k/CixGq7WQRJrlkMqxccA5wPHVquj9JLvXaPVNxOZdhNp9ciWeLThmgNjKE+j5XI8A5xqtLkf8GSf4SXbDAM9XiNFqElKNNhf4R518Q9WSceZRrJrjcDhycAEux6BIg+hmLw6XB/ZBDIJ/AVenQTRoB4MXh8sAV1XZpR2RJstznt+FVHHlZcT8jxpKlb04bAX2ozhr9nsMPcB1PpKZXRlAmAc8mAaRC3CNEH6SvW60Wg/ROd7U/jkFfuQn2UD6lYxajFYeUu6dZzBnSDXAO4gxVuTYqWeA6xDyHSLjgI2NVov4SVbzb8ZotT3yjCkFMCcYrW4F9mlkLxc/yf6NPDtLWYM3INKQ5RlcHci992GjxuVwzA/Yyq1b6J3RW/rt3Wa0WspPsiFJuBmtFFLlegjSOPsp4FQ/yT6RN7YBqB8arc5AZEsB7uqvMjWn2XYrkkm7DLKg/3t5tqd1PLw7lM9TdqznaHA1s9Hqs8C3KM5SngOshTioxgIPUd0J9asajvFFiq/XbKRqsekCXFbGbhck8PsaUiE1DrHL8myBvGScdkSF4UikejHvPKsBDyLJJSVbZivgFi8O9y5JkvfDhhRf43mIxPo/ajhOVbw4HI/YLf9HTx/P8V4cHp0G0TlDPX7FuT6LJBV9DNxTZ8n0Bapsm4sk/7kAl8PhqAtGq9WRJMG8HlyPAzvY/78KWImeqqzSnHC80epvfpLdV/HeC5HEiLyqm27EJpmD2F0/By42WnUCvwUeQ+aHor5gXYgE4pHA8lU+Hgxc4rCl4D0dwJPA74reaLRaHpGYrayEOwxY1Wh1jJ9kz1Q591vIdS0lpNRKB3BS3gY/ya4xWt2A2DsTgPOQBNbS97cqcKXRajk/yc4ewDlzMVodi/gBM+R7nmW0OsBPshuHeOgrgE3IrzIcj60ydDgcteECXI5BkwbRe8CZdTzkd+i/zLronj0RWfxVZrN0AIeUZ2R6cTgF0SLez+7/KDJ5Pkf+ArrEgl4ctta48C3iQjvO9eiZyGYii8lvDeG4jjrgJ5kBvmK0akOMzw/ns7Lw04CFyP8dfgisC2zQzzHq2QulqD8NyO98IWqsejRarQpcQ1+H2A7AxcC+gxngULH65Lsiv/9DER3uZxFn+L0jMSaHY4yzJ8WOgVYkWeaywR7cBq2vRSpMSw6QLYEtjVYG+LafZJ9k9NqAVi1Bi7xzrYo4cBayf2oFXjZabTdKJVzzOJXqjpxWxNYbE6RBNMeLw28jTo9SxRLIZ3wCubf6403gMwXb2oGdvTh82UobNgVeHK6FVIiPQ6r1ZgDnIolhA82SnoxUDPUJcHlxWPp9luQuS7QjVdU7I713++NDim2U8UC9Kqx+htgpleuT07w4fCENojuHegIrz/47enqwdgGtXhzumwZRvbLfH0Wub5592QK8WKfzOBwOB4hSRpFfZyVgjtFqKSQokic52IbIQ1cGGO5BVIy+YfdpQRJH5gA/Rfw6ryK2y1mIv6cLkUq8FUkuWbFgXHOBO/0ku9BodTwFSRp1ILPjfAvpVX+Rn2R9KoVsAlU3cDj5QblJyHN9K6PV34Gv+kn2fsUxpiGJ6NOqjGcmsp5fDLkGJfWlo/wkK1QysTLWfzNa7YkklVQm37Yh1Sm2hSwAACAASURBVHi/HmyVv9FqInIPfKli01TgKqPVtkNUfrgRWf+vTu/7tSS3OFbUCRyOhuACXE2EXXSthUhvvJAGUbVMiLHIF6ie1TEHyX7pQxpExovDLyHlz+sihsQbwOFpEN1U2s8u4h5FskNLk+AOSCbOzohMSVGjxzeHGNwiDaK5XhxuDWwPBMiC+mbgijSIGiX14+gHP8k6GEMOswGwG8XzwgKIQ+d+irXHZ1C9CrNmjFaLUF2jfDxSYVcrPyLfOJ8M7GG0OnwQfWnqgpU4uJR+5CEcDkddWJFivft2RA55KGxF7+BWOT5wj9Fqt2qL9lowWk0B/oQEt8od9SsDfzRafa6abMwoYgeqB7hmIdnYY4Y0iK734vBNRBp7HSRYciHwyzSIapGrORtZT+Tdg+OQ4M8BXhzunwZRrznbi8NNkSzlVRFH3NnAVdXsXxuc2hbbhzcNoj6SQtWwlVv30BOohZ4ksMMZXOJMkTNtVWBp8u+pdiR7vpYA14WIM7MyaaYbWcO9Wtswi/HicDKS/JdXqdaG3B9DDnAhAfat6OscvNKLw1fSIPqkEs2qXXQPQMqxxCnIczFPweJpYA0vDv8yiOM6HA5HHptSnDjdhkjtLU5xz0uQoAnwSaBjGuIrOgDpQXwgsARSEXyhn2Rv2H1/j/iaSuvlVmR+2QNRPZpVcM6XrCw1SPXXofSeF0uU5sS8z1eLxKECnveTbL28jUardZA+rl+2x5tFdR/dZMT/disihVjOnhSv57sRlaWTkf6ZSyDf22zgngEEd/YmvwIKJGC2JaKWMhguo+9nKtGGzG2bDPLY+Ek212i1OSItfSBSzVySV7x5sMd1OOZXXICrSfDi0EcmhaWQSWucF4dPA18dTTr5Q+QFJIhV5Dz/gLIm2pWkQfRP4EteHC5gj/HfnIXSfohzq9yoaEEmqMuQyfxE8ptWnl7Tp6jASjn+CAlqzUaaKV+QBtEtgzmewzGMVDNeW4DxfpJ9aLQ6GXGAlTvPZgP/pjbHUC1Mo/qiY+4AZQXXp9jAngV8HlmgOByOsc1b2AqFnG0zkOfYUNiX6s20JyO9sZbxk6zLZshuhmQUp4jDejIi97oiYIDf5/S7+gZi61Q6MsYhTpstkIqY0U5/jpqDxkggrxdpEP0Z2G6Qb78ZSTbZG7mXKu/1UrLHJV4cPlwKxnhxeCCizFC6f5dAAjlbW+m+Xja1F4cTkOzjTe0xu4DjvTj8PfDtASSFfY1i+6OL6skuRTxV8PdPIUGVIha3CYefRzK0n06DKE+y9BKk2nNNemyh2Yg9sfcgxpvHMlQP7q0M4MXhOMSBtxTwDPDXWgNFthfZTuTbWhOR9cueXhx+GakmWxfo8uLwNuCINIhqel6mQfSEF4e7IWugScg9ppDn1brIs+ouLw73SINoful563A4ho9qa0SF+Hb+Q7FcIMAiRqvlEIWTXZGATCfyLPyZn2T3V77BViztSL4/qwVJ6O605y/NtXOR+WOf0o5+knXaQNMT9O5BOhvxiY1HgiHl82Mn8AfEpqxmh0JBEojRan1EjrD8uhQlhZUzAfii0Wo1P8nK599V+3n/ZX6SlVQT3gB+U8O5KunPpz0on7fRamlENrmaHbrOYI5dju1ze6J9ORyOIeACXE2ArSp6GGm8WL4IXRP4gxeHqzRjRpsXh58H9kcWYI8Blw2xh9QlSOZkHrOB1QsWmb1Ig+ijKpu/TfGEPw2pTvkcsBc9PRBakAXZhflvK8aLwy8g3+1kehbvxwGBF4frpEHk+us4GoLRagnkvl4K6QtxXU6A6B0kszmPbkRKEz/JfmK0eg2R9lwRmI5kAJ/gJ9nsOg05pTjDDfo27e2Pd5FsujzGAyNSveVwOBrO1ynO6u2mNgm4alRKnxXt83mj1UxE+mRRxCYvVeeMRxzb7Yh0y1lWBuWRsmOsT3HG6iSkL8FYCHDdBXyV/O/sJT/Jhvp9jTnSIOr24vC7SEb0SYizK2/Np5DEr+O8OFwQkVOqlHQqZZ0/78XhT9IgKg8OnWKPXXqPQu7d3YG/I72zauEzFDvAJiP2wGIUJ8BV0gGcYJMHD0YcbM/b8TxDsUNzHvCSfS1u/z3Bi8OLkJ5g2yJ2UIz0K90CyU7fH3FA3gGcnwbRWzWOsz/eo3ri0bteHK6PJEhOoMfR+bIXh9ukQfRmDedYieJkIgWs7cXhlkjQtLR+akUcuJt6cbhGrdVqaRDd4cXhkkhQdJuy8ZaqG7ZB+h2fX8vxHA6HowqXIxVQec/7Z/0kexvAaPUwsDn5NsYEJMA0hd49uo5HFJe+l/OeRameRFGyD29GEinakfnk536SvVrayWj1OeQ5ey4y/22K2KhXI4pFU5Aq4p2R+f3vQIisj69A7KaiNfQcxLbqhdFqHJJkVS3oV41JwH1Gq3uAyE+yp5H5tDyYV85MZG4dKtchVVZ5dsQEBt+jdW1kfqx2PeZHxR+Ho2lxAa7m4OvkZ1iOQ4JHmyHZGLnYBsRLAx+lQVQvzfeqeHF4BFJOPN6Oc1tkgbxVGkR/Hcwx0yD6txeHFyNN2SuZh0zk7wxyyCWqZbN0AZPSINrPi8PTkYVWN3BHGkSDnXwvpXfWDch3vQxSinz0II/rcBRiG+tugEgK3oZk516M3IeTkIDUWUarTfwke67srdWcR/MQea0XAPwkuxq42mjVMhx9ymzJ/umIhnqlwdrBwLOcfoE4fCuP1Q38x0+yAUkqORyOxmKbXO+I2Bx399PQuugYqwKrVNnlXj/JZg5uhJ9wO2K3VctY7Uaet7ciTpKS/ZfXL6J0nDuMVkuVje8NiqveZyNB/bHAMUh1yhR621KdSGDBkYNNjPuzrbT5MvlrvgnAp+3/70BxryuFOPS29uJwyzSIZtmqoe+Sf8+2AUdSe4DrVcTRNTVnWwfSPH4tREa5cq001/6t9LtoBX6AJA3ejHzu8cg12BcJeN2A2EWVY5+LODor/34IYgOVgk3bIoHpXdMgugJxJhZiK91+CBwELIxUl52UBlHVAHQaRB94cXgfIu1XGejqQNYY99D3uq0M3O3F4Wo1JEi+k3Psct5G7KfK9VMr8pv8MQPrITwekUPMO2c7IknpAlwOh2Oo/AxJzliKngBFhtgO+5Xttz/wCvmMp68MNMjz8FtGq1P9JKtMJHiL/quO24DP+Un2xcoNtqr/EqRKXyHP2jnIs373sl5Z7wN72r6vLRWV7F83Wq2AJGdvRt8AzWxEfriSg5CqsMHSigT4vg7sZLTaGanIigr276Y+yi+/QXxqHr3nlg6kv9h7gzxufxKJXUggtWmwFej7IddjWSRR5lzgzBolrh2OUU1RBqujsWxIcRbuRGRR1wcvDlu9ODwaeXA9DbzlxeE9XhwuNzzD/OS8qyPBrcn0LJjbkIzkW704HIyUSOmBvFvB5lK2zFC5DTES8lDAkwBpEL2cBtGFaRD9crDBLS8OF0Uc6nmZ3BMBPZjjOhxFGK2mGa0eQPrMnYkYyO8i1VWT6cnkmorI9NxpDekS1QyfjJx7eTiCW2X8HDHKOoGPEEPzQ0D7SfbQAI/1eyQrrbwKdJY95u5DH6rD4RgOjFYtRquzgOeQRfLpwONGq+uMVtUcs3msRPXM2iUHOcxyrkKeK9WejfOQjNzKyv1qtNLbRoopDkiMY/D9BpoKP8meRzJz70c+bxfSc2sbP8keGMGhjRZeoHhu76RHyq+d6vfieERZ4jD772lUT4opqgbP43qqS/FdlgbR15Fg3DXIuOchldfHIFKK30ScmYsBtyCy4+XqCeOQtcqF9PSumoUk/JRsiz+RH3hpqfj7FCRIs0/Ovr2wgcB7kKSc5RD7ayPgJi8OawnQfhsJZpdsl277//fZz5QXuBwHLI+sL6uSBtELwMvkX/+ZSPBu2YK3j0PkJQfCwlR/Ni4xwOM5HA5HH/wk+wCZsyKkSuhtxD5b00+yf5Tt2kl1OcOiivxSb6fK83Yg9ll/iiZFSVDfpSf5fQI9c9fW5CR3+knWnSfTbHt57YAEsjqQea4TeBbY1E+y/+Sc+6B+xlzrml/ZMV9FcR/VWcCOtSSVGa3ajVb7G62uMVpdZGUUP8Fe83URW2IOcu3/hyRgHFHjmPN4iOq+kXeRSvZm4hzkO18B+R6WQK7DjdbX6nCMaVwFV3PwNvLwzFtUzUEe0HlEyERUnlW3OfBXLw5XqqzmKj3U6iB3+F2KF7WTEcmOewZx3OXJb6QJ8oDeYRDHrOQsJNNwPL0n25lAlAZRh71OmyAl3y1IBuj9g7hu7RQ7nyA/69XhGApXIrJVtUgLtCCOho0RrW0Qh+gB5D+LPgZeNFq1NqrfiQ2eHWu0+hmwHmIM/7kse20gx+oyWu2BZF5/B/ns9yKZXWOl0sHhGIto5DdbKbWyHZJs028ltA2E7YzYL0WV3F2Io3dI+Ek2w2i1HhJU3yBnlw6kr83K1C65BuJUL1Xb4CfZy0ar45DeoZWBiRbEHhwTDar9JPsXsJX9HluHKoXrxeGKyHewFRIsuBS4NA2igfR1HC3chwRv8gJYXUggCMSR05/zYzIiyXQ6YhPMo9jeqLl/cBpEnV4cbodIJpXk6kqyP7uU5M9twtkeXhy2Is+DzjLb/JO+tl4cBlR3xO2cBtEutkfuukgCzR8QGcNa18btSFVW3M9+X0USFSufO23AOV4cXp0GUaGDLw2id7w4XBkJ3u2I3K9XIgHf6yleS7QivV4eKdhezm7/z955x1lOlW/8O5Nts7NL7wSkhl6kdxAQ6VW6QgKCIMUf0qJ0UYwFEEQBC4miSO8gRaSJIChdShRRCB2k7M7u7Mxk5vfHc+7OnTtJ7r2zM7uzS57PZz6wN8nJSTvnPe/7vM9r9qvUxupD66JbUEbqxQXHNuswe5/iYOZ/mmyvRIkSJTLhROlH1K9t9B4iOuTJ+eWhj3zC1IlIeneHnO1dSNI2C6eQHfxqA46NXetMJ0obqlNo9vtm7FrfQQSvj50o/VfBIYvWabKP5sb88UhBJsvW7QOeq9eAyUR7FN2TSWj++HLsWlcCR1eItk6Uvo8y2iaY/T5s9D7lwYnSnti1voTm2kqwEdOHF4DNnSitl+U122Bsmqz1UhvybW6BbL0SJeZZlAGu0YFfI0ZkllO5FQ2qA2CH/kKoXlXtAGYhduARKDUbO/TXN/+/NdBnh/7dwCmJFwxVkms58lOvWxg6AzozQ6Rm+ywh8YLX7dDfHC1I10SGSQp8BzjfyIjcgYIEFePCBZ6yQ3+HJp0fr5OvOdxHY4vOEiUagimEugPN6Wa3IIbPA+bfAZJEmJ+B33gnWgDMAFpi13oQOMmJ0idnsdsNwYnSjxla0Ly2nV70fd8xy50qUaJEw4hdaxxy9K6G5sbrnSid0uDh3yJ/sX+MWeznBr1j15oEPIRq8OVly4PGuWGRxnKi9HVgs9i1NkfZtOuhBfF7gO9E6e9MwL2LxsfsqcArNb9NM23U2oLjgV/FrnX7rC7wRxOGQm6ohR36G6JgxgT610EBcKgd+lsmXjB9Vs8xp2GH/vzoe1sAiJEE0DH0B7gq17hH4gXvAiRe8IId+n9CJLUiR9+CZv8eO/R/iZwptUGWacAFdugvjLKc1kJ1OKKsulCGWLYqcjIugezyF4CDEy+Ia/dPvKCX4roXi5MfyJ6AJKswtaP+U9WPRsekChZrYB+X/HGnB2UAFAaizdrj19RIIdmh/5ppI2s930ODsu6JF7xkh/5KiAC4AyJW/op+efw3UL3VWqRUBRYbPFeXkaPPkrfsQMHTEiVKlJgtMATIc1A9q1pbcway3bKIBGNR7aysNjuBL8Su9Qs0B1YHePqQvZklEQjF2c8TUPZ0bkkSo8ziocylpRFx6zzgugZUV16gOPO3l+YUwIpUFtqAh2LX2q+O5Ph1SHWmumbjROBLiBRzc/XO5t4PG1nJidK7YtfaEAUeN0MkjUuAa0ahfb0b+eSedqRYUwa4SszTKANcowCJF/zTDv2zUa2ZCWjg7kFZXV7iBR9nHLYZ2U4N0ISxN/ADO/Q3QoUVqxd6OwNb2aG/ceIFL2YcXw9/Q4Uus5wyLWhyHApeR4WkV87Y1o1kSQbBDv0tUertZxFL9afATxMvyJQiTLzgeWBDO/SXQsHAfyde0G0W2Bcjnf7qa5uEikyei2oKNITEC1I79M9AMmu1BtN09LxnCXboTwT2QQvPfwPXJ15QFrucyxC71hLIUFsaeAoZoc062VYhv1B4EWYyuZwofSN2rQ2QQ3Y3NBb9G2lar0V/APpzyCjdanYFuUqUKDF3InatNZCjtA3Npx3AT2LX2suJ0sIaNAZ58ljQXx+hKAvzHBRYyxsbu5HNda4TpX9toD8Nw4nSR4BNTJCtDXi/ysFwK5KRbRQpWuhX4zDyr2scyk55tIlzfBrwGwYHHCaid+SrSN6lKdih34aYsRbwl8QL5hij1w79g1BGWi/6PsYz0Ck1A2UqbZNhL+6LJPzcglNUrxt8YB1kI7eb88xAJJKnUPCo4ozqRLV6v5x4QS1xzwdOY6CtvA5wrx36ayZeMMUEYE5G9sfHiBX+mxxb/2kULMuq6TUF+HvOtV2G7J+ier0V9KFrrId6ag3N2mzV+AUKMGat53vJzxAYBKP6cb75GwA79I9FZMvq+1LJ8vp2E/2t4Jtorbcd6nslo+vnKDutRIkSn0LErjUGSEdY/j4LP0O25LeQf62y3j0ekcbXY+BYPg34rhOleSpLFRwJvEa//2gsmn8PNUSoLLxLPlm8G81hRYiQH7Ayn66DMrXXRddXhHMZPNaD7M+rEaljexrP4sqT0a1gdeDR2LU2rqkJDkDsWiuafbKI9e3ACdQEuEYCpk63O9LnGQZUarZloVZquUSJeRJlDa5RgsQLfoAWbVcDf0UT0QaJF1yTc0g9eZaKc/wiBk9SLWhSyCv4WA+XkZ2S3YOc5X8bSqNGZuQoBrMye1DgahCrzyzk70KLpIVRoOc7aFFcGMBNvODNxAteNsGtDYB/IudGVuCuDThqCNq1l6NF+yfIIOlAgbw9Ey8Y0n2qwA79TRCr8mcoWPZT4E079Otq7pcYPYhd62AURDoXFTL/KfCacQo3g7doznDpQwVq/1z9oxOlrzpRujdyurShwrvjGWzMtpPPPhuA2LUmx671GZPFUaJEiU8JjLPij0j2ZDIaRyah8eMPsWs9FLuWH7vWwgXNFBWH7kPO7iIcQb4TuQeNY+s5Udq0TRS71vKxa+0du9bWsWvl1h91onSqE6XvVTttDIlhT2QXVGy2Su2ATvM7KHPrE2AnU2egGkXO815mzXk+Yohda+HYtfaKXWs3E/xr5JixsWttG7vW7oYU0jTs0F+Z/IDpRGQDNtvmEcghdT2SpXzbDv0z50StA1Mj9xfoWibRb89Wr/fGI4fRoNpJiRdMT7zAQ0G+LDu/gyqpJ5NZtC2qF3Izugc7IEfQzaYPlTVIxaa40g79mc/PDv3JqCZWLRFsLGJte8aufRoFdFdGAbUfI1s/y664DY0LtVJ4lcyvvKL2IfAMA9cheY7W6cB3c7ZVo8gZ2YayS4eExAv+AZxu+lJhklfGjr0TL5glKc+q89yFSE9PoXvYg9ZeGyVeUJtV2kh7XYkX7I4kXE9HAa/VEi/4xjDI6JcoUWKUIHYtq5FaqbFrHRi71r+QDdQRu9blsWvlla0Ydpg6Vt9B2b/7ogzoRZ0o/TUK6HwfzfPdiMjtOVFaN9vUtHsuCgxtBqziROlnnSh9tuCwH5OdodwJ/NKJ0tw6soakug+D59N24ITYtYoIYzhRehcajyv1KSv26Q1o/vWp74OsYBryMdQLyLUD38vZthR6J/JgN9iXTwvuJl8CeCqzIRhYosScRktfX2lHzo2wQ38Cmmiz2IkdSCP/erTAywv0dCVe0IycWfX5t0P1elpM+ykq4Pn5xAveGkqbVW1vgia6zZAhcT1weuIFSc1+RfdgKnB44gWZWV817SwLPJ/TTjVSYL6hZEiZBfiayGB4cVYXcHbot6Pg1vwZmz8Blk68YGrGtlGP2LUWQIblfMAj83KGUOxaK6EC77VOyj70fD/TTL2r2LWeBdZgMHmh0/xW7fDsQ0bqX4G9nSj9X0Z7rciwzHPcpkBbnmxU7FqLooD4Lsgh0ovS+s8sMtAz2mlBTi0LiOtJAph+Lwp0OFE6V34HJUrMC4hdazfgdxTPr9PRWLRFlkxJ7FonoiyBWrJOJ3ClE6VHFpy/lWJ54xSY3GzGbOxa7cDvUQ2nCtu30/z2CcoQuT1rnItdazUkWbMokgq5HzgYMYRfQQGKd5GUyAqIOHRtViHu2LXOQxLXWbbcdGDxJqQgRxxmLP8eql1UcVqMAU5xovSnBcftijKvLDR3jQeuAo5qRrbQDv310P2eL2eXJPGCZZpob1cU1Kp9N6cBJyVecGmjbQ0H7NC/EjiQ/Dm7Gv9F7+3iiGF+HpLAWwsFXSbVtJMCJyReMFPG09TC+iFac1Sep4WezQFkf/edwNmJF3zftLETIvflPZNHEZt9uYxtHcDXEy/4Ve0GO/SXB/6AMuMrNvd7wE5ZsodVx41Hjryvmj49gJyT29Fvx4wBvpp4wW/z2jFtWeaceY7a/yVeUBTcr9j7VlFWoB36ayOC4HLAE8DlWVKQwwGznulNvKBhG65EiRKfLhg75wJkI7Ug8vOJTpT+OWPfExA5uXoe7UJz1GezbJ95BYYYdSTKRFoMEU/fQPPWEvQTTDuAJ4Edi+zV2LV+iGzCrCSGTiSRfVED/VoQKT61Afc7UfpK1batkSpDXqJEN7IXrgBORSTeRSjO+prhROkgQpYhM/2HbBu3F7jFkHJLGNihfw2wKwO/p05U72wTI/FcosQ8i1KicC5F4gWdduh/DWUIVQ9g0xGz5GrqZ3MMmV2aeMF9dugvjia/xZGT/i/DwbxLvOAxlM1WD9uQz6ycBBxOjqxhDb5OYzUwplNcGDkXRkIlM1BjWL7Lou/x1QYnnv3Id2C0omLUgxb8ox2xax2OaqCkGNmS2LX+Duwympx0w4ijyH6OLSh4+TlUSLxR7INqu02kXy6oE8kVXMjAYq4tKNi1KWI7b57T5pDGCVPk9VH0bldkkkDf29LAoQ22szMKki2Mrmd67FonOFH6u4x9W9BC4RxMHbHYte5DRWj/M5TrGI2IXWtd5IR8Cy08RpsGeIkSFaxE/fm1DY1F1yOZuFpcBGyFHMxtaI6bCrwM/DB2rc2AV50oHUSuMbUV/kO2cxwUSOo0ToadkaxLD7Id7isgGFyFHDcT6CcNTEZyNiDG6v+MjOtrlYNi1zob6fiPQePi/uZaNneitJbB2sgcfjGaR8Yy0NnQAVww3POmCez1DkFCt4L/A45l4H0D+EHsWq87UTqono8Z77KCSAegQNJxTZz/RfKdMikKflXO2wpsiOpYPe1EaVY9o3Mz+oX57Sw79C+fzc6EdWksuAWamyvz+8qIfLIusBMK7NTO/Z1AbdDkVPT+1T5Pl/z7PIGB9Zzq3Z8J5Be+bzfnH/StJF7wqh36qwEbo3HoVRpYp5isp0vN30yYgNkW6Hu9u0Gy20IUZ1nmBv7t0P8ssoc3RvWTYxRgHCTrmnjBsyjIOOLIk38vUaJECYDYtVYGHqM/ax8kl3xP7Fq7OFFaPc9OYnBwCySxvBSS7798xDs9B2DWrNcBX6D/+udHtbErJNR/IBWEW4EHG5BurNjIWbBoMKvfidIPETkta9uDsWtdhZ5NLVKkmnCLE6UfAcSutRXKLCrKHsv0NThR+nbsWncg+7y2750MXY1qXsbBqHRLxb/Zi8hLJ5XBrRKfBpQBrrkYiRf81g79N5Azd12UrXUZcIFZgHTZof8MsH7G4X1owpyV83eiLK45hXqTdFZR+ixsz8Din3kYC7xuh/7WiRfk1hkzxb13Med/KPGClwv23RYZbkujCegTO/RPSLzgGsMi3RvVBHsPuDLxgkq9pJXJL1o9CXAauJ5Rhdi1NkXOulpnwEYoQLPPcJ3LSFKeg4I605EszQ8SL/houM7RIFYj/91rRUZuw3Ci9J9Gr/pLyBn8PhA6UfrX2LVOJTsgPA5YN3atdZ0ofbqmvd7Yte5HEkRZxuejBez5fVHwuzbQPhHYL3ats+oFnWLX2hI5vavfiUlAFLvWfsDpTpRWB+1OQnKd1d/+54EnYtda3YnSIqmzUQ+TEXc7ygatBLWmx661+3DXDipRYpjwX7RIrzfHtgDLxK61Rm0WlxOlPbFr7Ymyuvc3bT2ASCzPmvbHm7HqSxnZqOeiuaXWJpiGCATXo3m2HY1PfcBBqC7Azk6UDnDoxq61HJJhK7JBJpu2bkH1QYldaxtUh6F2PGsDbkJ1EpqCWfxvipiy69PPnP0e8INm28uDYexeiALrxK71GPD1ZjKsTcCots5SBRNRlt6gABeSy8m61xOBw2PXOt2J0noylYAk+OzQ/xF6DlnF5L9n+roFCqrNh+7n+Ni1rgGOrHkf1iw43QIoc6dejY7hxH9QFncjxJQs2eGj0PVmHd+Ogok3ABgZ8FPIDvCNJT9zsgNI7NDfBdkoD5O/Hp2G1ior5F6F7nMmTDDrMfM3S0i84FUUJMuEIf0dhtZj/0RBt7cofhaZ760d+mvQn0VXwRrALXbo75V4wd3N9b5EiRIlZhvORWNX7djXhoL21fPmlmTL4YLmnHk2wIWIWzuQPYdWSKgrAI85UfpAg23ehQikWT6ibmbR9wczs852zNncDXxSCW4BOFH6krGbXyLbP9WHAmB5OBTZhhuj+9KDbIajnSh9fAj9X5L+GmUPAo/PgZpvIwaTXX2mHfoVsu+UxAsaVjooUWJuRxngmsuReMH9VDFOM/B/aNLIkk/xR6pfswl/IZ8ZPo1sR0kWGg1qjEeOtbvs0F8uiwVhajFchCZfC2ixQ/9eYH8TEKzed2OUNO4efQAAIABJREFUOVP9bNqB0A79BVBNgvmQo6wbONkO/e8kXnAeSvfuINtR1GG2DyuMc/1MZGyOR/f/dCdKZ9lxYHAq2UzX8cDOsWst4UTp27N6Ejv0t0dOxzb6M6W+Aexrh/76s7k4/HPkB1h7kTRVUzCM/UHsY7SIyGMS9yHn6NOxa+2OHI2royyE21AQMGsM+UZBV/YkPwiboqDZFQXHg5yNWX0eA+wObB+71iVOlJ4au9ZEBge3QN/hJOAYqmqHzG0wTL+7kIO5Omg4Gbg3dq2VnCh9d450rkSJfNyO5q9G0IMkWgbJFJrF5yPAI2Zx/Q+08B9Lf/BjO+B+E6yvXqyGKIPrFPpl1MahMTZrnGpB4922aD4/umb7uqadeiQbC3Bi11rb1Fv4P7LHMwtYKXatNZ0ofb5Om4PgROnLwOaxay2GbIb/NiPbVw8muPUHBvZ9C+Ch2LU2q1NLohoLU0w8ysreA2UZ5zGSu4BVgGacHN9Gz/hk9G6OQYGWLyde8GLsWiug6619L/Yz/3WrfptCvvxcRVZoduLHKPO7UYJXLVoors+8eNX/L0lx4LoV2Ra1Ts7xqNB9J3r3/4eyx45loJ0xA9WsvcBsy0I3zWW5AzOVE7ZEZLH/An+q2PR26K+Axpb/Jl7wzwbb2xatOSoM+S5kHx2Jgtd7M/heTUekxCx8l2ynZxt6xnnfSr1+tiKH6pdN+zcD1yZeMNSMzBIlSpSoxa7kzyMrx661iBOl75t/t5CvxlPZPq/iS2SP89VoR/KF18au9RlE8poP+WDuzlDw+APyAa3CQB/ZdFT24e/1OmXISKuge/9ShpLB5uTP/ROQvO9N1T86UdoXu9ZhwD0MvOY+ZCd9M68/ptTAtrFrrYOIbp8AtzlR2rS/xpB9zzbnHYPm6icNmW2eKmmQeEGK7KsSJT5VKFrElJgHkHjBn9Fi5nHkVE4RW2FLI2kx1yLxgneRg7xWJiRFk+UvG2zqchp3QrQgtuggCUU79LdGC882+tnbbSiD5JKMts4j29nVhtjmS9AvXzLW/H6aHfpbImZxnkHYh+qADBti11oI1RQ5El1/G3L+3Re71g7DdJq1yDdkZyCJmVmCcWqE6NlUn2s8yqI7ZlbP0SQuI5vl3ItY3w8O47neyjkX5vf3Y9c6Gr0766B3biFkTL+B2MSVMeRhYBsnSp8oOF9nwbZeiovGVrBxne0TgWNi1/oCkpLKYwFOAL7YwPlGMzZAC44s6dkxKJulRIlRBZPtsiMiktRbPI5HEsv1sDOSrqn9FsYhx/R2NX3oc6L0TFSM+igUsHoezWN5QXjQHHGUqZVYjfdp3OnSQ78c2/IFx3Uzi8WynSh914nSfw1ncMsgK7MaNP7mFQbPwlSK1x15zoqiDKhxdbYPQuIFfYkXnI2CqTsCmwDLJ17wsNnlBLLJU23A/iaQWMEVZBdcT4Hba4lNI43EC+5D9uZ0+uf7yrw4Fd3jLvLtx0pd3Sz0MDATqqjGL+g7eQcFAbvNfys1rMYjctEkJFt0NJL3fNH0bSqqRbdJ4gVvIzs9SxKwC/hRQR8GwQ79FRF56A4UwL4R+J8d+k/bof+h6cP1wDN26D9mh37hd2mHfiVQ1E5/0Hscel9+jmz9hIHrjKmI4HReTrOfJ/9bWcEO/UUKLzK7n2PRNV+HMlT3RO/KP+zQX6zo2BIlSsx+2KHfYof+5nboh3bo32GH/gmGADva0Uw2zMPkB0s6yJHJm0dQIdrWw9Kxa30TZUCdizLhrwGS2LVejV1rWuxaL8audQiaX7dC81onmmumI4m63eudKHatvdCa/3FUo/tNo5hSjQUofsYLZf3oROkjiNT7qOlniggqm2XV3804/hknSi91ovR3Qwxu7YjI4xPQvR+L5u0N0VxdokSJeQBlgOtTgMQLHkm8YGOM/E7iBdskXvDUnO7XMOE4tEDtQIvnGYjVskniBY2yFm5DsiONOoXypOO+RX7A6mAjXViNzck3bMaRXUehDfhG4gVTgN2Q4VJZNE/DMHSA39mhf6wd+nlFu5vFN/rkDKo2Qiss91+Y7JJZRVKwbRyDaz8MBauTz7ZuYyAze8RhJPoORs+t4ryZgpxCOwxzyvzPyXbEgQzVh5CjqJZNNgE5kyPz/21OlG5VJ7gF8FvyHdpjgTuLDjbvVCNzVIXd1k3xQmFurxuxbsG2NsRqK1Fi1MGMFcugjIaryP4WO4Gbc+oc1WIr8mvXtKPsoqx+vO9E6VVojlydxmsV/cVkiM78N/WDdRVY9MuaPUc+yWAyQ6zxOZKIXWthJI2WhRbkrGgIpm7XrWTbWp3kOxguIZuE1Af8s7r4eTNIvKAj8YLHEi94vrouU0rLtuTXsJ3BwLH422QH2FqBGYZUM1uReIGPst4uQYSVo4FVkXzefkjuOY/U1Q3ci2ySWnQBP6w6zydI7iiLWDLdnH8ZlC10GnC62TfLmTkWWCbxgtUBK/GCyYkXHFclG30Sej+mo8BaB8q82qFKursujKzigyijcxIaLyajYNs6yHE3zvy7DWW2P2yCQ3nYq2BbK7AHInAdj7Kwb0WElC0KMqeKxoIW8seRIhyDxs7qoP4kFFgvnXslSowimLnjZ0iF5xBE7PkO8IqpLTiacTv5Y1Rclb1VUR05i8EEhi7gbeA3I9LD0YE7qB8M7EME1dPQGrwyf05CROjl0Fy1KnpfLnCi9GMnSg9Cfpt1gUWcKD3aidJCwk3sWp9Ha/clTPuTUNZ2GLvWLlW7PkG+gtIMCrKqnSh9FGX4XYSyizYGvh+71gZFfRsmfJPs7PYJwF6GzF2iRIm5HKVE4acIpnDyPAWTfvstO/S/jSb5DxMvaMRBBoAd+pugBaeFFti99DvJ8xwTvUCWQ2XtgmO6ELP8qZrf8gyEPLRg2OCJFzxgmKUHocyOjU0fdjD7fQ5p8G7WjAOgFnbor3XtuPaTF+nqyGNYLWzO/9JQz2FwAXIm1BofKfCsE6XDIbs4gWLHQEPFV4cTTpTeFLvW0sjxtATKLLh1uFn4TpQ+EbvWRcjJUslg60IOp/2QwZl3b9qBQ50oDZs45d2IpbU5A4NmHcA5GXVyarEG+tYaCXJ9hv4s1SxMQ+y1uRnvUJyBVxQgLlFijsJIf/wCESKuRoto0Dg0FsmWNJqF+DFyxGc5nbvIzwSqYCmzX55kay0WQc7hH8LM2oRfRGPcWPLn8RT4d1Vtw/ORMzyv3sINsWtt3oTk34gidq3d0HMqCgQ2S8I4FtXVrJYr7ABeJj+b5deopuPm9DvnO83fQU2evxB26LdcOmmxpVeZmm1G9oHVAh9W/dRCNmmmBbGlN0UB0dmKxAueQZKY1XgZZsrUvYiCLtU2z3TgT8ge+B2wE/rO+tBcfFBG/dkjkbNrfvrf6w4kIfpDUwviFnPe/cmX9pyAbNazq4ONVdeTAifYoX82snM/Bp7L2rcOdkHyTo0SPMegd3V3TO2xDCxNvu04HmUHTkPZfvVkmSu4BTiA7G/vucQLPsz4vR4qtl8txgI72qE/f+IFDdWyK1GixIhjZ0QOqF4TV5RhbmSIMqWzCWeg/k9moF9kGiImD4ATpT+MXettRBhZFs0TVwGnOFE6u2V+ZycasQ2mozm4npQhmDqasWv9xInSf5vg4ZQm+vP9nPNMRDVd7wBwovSt2LWuR2SZWjt6PLBh7FqTzfkHIHatBYC/ITu8YjvvCGwdu9YeTpTOco2wAhTVp+9CvoQhSfqZLLczkdpQRXb5R7U1fEuUKDHyKANcJeYJGBmYpgIsdui3o+BWdWZVI4vePOm4t1GAIgvjkIO6Gteiwpm132Gf+cvqSy8KgABgFqOX2qG/L/AVBtfzajPnWS+nX4WwQ/8zwJ/7aCmqs9BLPtu5GdyKsoQ8ZPRY9Evq7D8M7YMY9HnoxhhvsxtOlH7IEIvoxq61HmIIt6KsqMfyMr+cKP1W7Fp/QM7aZZH8wBOo6O9yFNfTaGq+ME7gXdBi5uvISRQD33ai9OYGmlgCLYbqZSH2As87UdoTu9ZR6B2qNrhnoODPr5rp/yjEXeSzumcw7xZhLjGPwYnS24zM2/Zo/n3cidJmSBhXIzZr1rzThyS4ivBPmiOXtKD5dWb2ihOlf4lda3U0lm6NxpzVzPnHI6fCRyjTunLMU0YG9goGO65b0Jz9YyT/OwixazkoC24TZE9cAtw+EsWxY9daC93nIqdKL8qAbxhOlL4Tu9YaiJG+H3Iq/Aa4zonSTBKWGdt3QcHBI1CWzR+ASxvM+GsGG167zIYTTnr5btp6B3NMOlvHzGjr7flb1U+7kU88aEPX2XCAyw79hVCgdzsk8fdL4MEhBHJykXhBr6kZdSHKIAddw+XAtxIv6AL2tkN/eRSM/AjVqBp0QxIveMMO/VWR3bYPmotC4HrTTjWKHEd9QN0aksbmfbjefgVYi+brk00GjrVD/x6jnlCLF1CwNWs8msZAYlujOAMF4ybTP1b0IWdnXj2yeiiSNexBslJlgKtEidGB48keq1qAZezQXyvxgqI17RyDE6X/il1rI6QKshPq81+Bk41MXdYxVwJXxq41HujOqPs0L2Ia8j0Urb1PQDXKG80GbwW+bQJQ9zhRmiXtOwimtm2RUsiqsWuNr7LTDjd9Ojhj3y2QzO8XMrZ9HdXvrLbBK4pAv4xda/mRsGkNXqfYT/fGUBqNXet0lB1WsZeXRBnrn49da/uMOmklSpQYQZQBrhJDhkmf3xqxKd8Bbp3LChXvS+MSRdXYp1KMGmbeh82QE2MVBrNZeoDHEy+oldg7E2XNLEi/cZMig+ctspkmrUhKrhZfJ9sQbgVWtUN/pSFmcZ0EtP1l4RXZ+a3nGJvtX+9CbOBZgjFojo1dK0SBv4WQ/M01RtpolpF4QZcd+mcipnhtkdNOxFCaK2CM0avQOzQeGYgnAI/ErrV7gbPwYYyDKHatjRFjux4zbBoKlDYFk4V2gflrFv+g2OivoJP+zIprY9d6H8l4rIeY5CHwHSdKpxrZww2QbMNzTpS+NoR+zRE4UdoVu9beyKE8Bj3zFDkUv1eVJVKixKiHGZ+GRCgwzpMfofGuet6bhr711+sc/17sWreirIxGs3YHza/mPH7l3yYT9wA0vjxOdibuleQH21sQi/UGFFiwUBbseYggcBMaEyu2++ao8PjhI+AQOJniIGAvIqCc1mzDJpvvZ+av0WNS5DC5vtnzNYktHlx0lZZt332J9T7878wgV1dLKz0tFt9fdedHf3/KjdX3ujoAUYtW8iWRB8EO/TXQ3Dwezcl9qE7SvXbotyF7uxvdgzMSLxiSMwYg8YKpwBF26B9n+vhBbUAq8YJX6ZfXLGrrEyQ3dFGdXR8gv05mL/CCHfpjswJpw4i3UZCo2SDX5sDzduhvaOr/VuMPKDDUzmBiWg/65ptC4gWv2qG/PvBd9A5YwP3ANxMveLLZ9gxeQrVGstDH8MiAlyhRYnhQVPuvBznqR2WAC8CJ0peB3WLXagVaGnXy561d50UYW/QFsgNLKfBrJ0p/bupiFdVwrcY45N/aG7Bi1zrVidIf1+4Uu9YYRI51kb1xM8XBtl6q5m+zJo3RGrzWjh4PbBm71irmPajGIRn7V7AIdRSBYtdaBNnZiwPPALc0oXhzPrK/a+f/buABJ0rrkmxy+nM6g+3lNuRv+AJ1SjKUKFFieFEGuEoMCXboL42CDzZ6j7qBX9qhv0/iBffM0c41jpUoLjCfh3WAJwHs0F8bZR4tTH8mU0XmsIX+DKQv1TaSeMGbduivi5g5B6D7eAcqIHpXwfmPBC6r+W3Jgv27kCEwlADXzsDYq5fdmO3efREr7Rqweu+lpbOVvlOdKM1zWjQNJ0r/Dvx9uNqrReIFF9mh34WkECYix8HTwFcSL/jPSJ13BHACCm7VZu1tid6hUxpoI6B+cKsbMa+j5rs4dBgJhDsQiznLGJ6GvrFjnSh9PHatcagO3nEoOPouCnxd6ERpGrvWZ5GsxyJo4TA+dq0/AgdlySiMRjhRen/sWquimiobA68BP3Oi9G/FR5YoMW/BidIzYtd6BAViVkTZoT9oQt7kcLSg35SBQaM8PNNAn95AC+h6KMoUb0WOiQr2QvItvQweq9tRFtRVyB4bTmxCMQHoOWA/J0rjYT7vnMbU3pbW7jPX2HPcVu+9zO5vPc183Z08Pf8y3LDMBunbE+avvd4/F7WFpDfrwhClrkfZadUy2e0owNFn/j0ByVbtaof+urXEKTv0LcQk/orZ9z7g24kX1DqZgJnqB2810sdZReIF3Uam8BZkK1dnPFkoO3F3O/S3NAG4kcB11A/EZWEssrMvoMaeT7wgNRlxf0TBwrHIbuoGdh6q7F/iBf8GDhzKsTn4NsrKrHXuTQN+Ni/K2JcoMRfjCeTsz5qHx6PM0VGPT0km1qzgKDRPt9FvG/agdfcZ5t8/QvUTG5EphIFBqgtj19oG2LvyLMx6+R5UFqLiB9sE2Zkp2e9cisjH1TK7W5MfrOox7dfaHvUUgXK3x651oDl/H7pfU4ApsWtt3aAKxLWmz4fSrxQ0BRFfDmng+CxUpJyzCGGTUIZbGeAqUWI2oqWvb6SyQEvMrbBDfxySBfvI6OfXbm9Bzp7VGOwU6gBWS7zgdbPflki6ZEFUr+K3ORIfsx126B+O5ICaDXJdmHjBN+zQnx+xW6sdEqBJfQpiq94JXGX09xvp0yTksDuzYLdeoK2abWuH/vXIEZblOOsElk284L1G+lDTn+cxBeY/0/E+J8T3sNqUt+htaWHKmAl9b05Y4LQvXvza95ptdzTAOIKWBToyGLmjHrFrvUl+YHMKsKAJ7NjIoOtCcgUfV7XRRbG8ZBcK4B7nROnbw9PzxhG7VjtySG2DjOteNOZcDTwC3ORE6YcmM+tO+qXCKpiG6maciGTJ5mPgtzoDeMiJ0h1G9kpKlCgxGhG71trA74HV6+z6TydKi/T7mznnA2isagaVAEfW79c7UbrfrParGrFrPYTstzw85UTpkKSPRzPs0F8M+C/5pIotEi94quaYe9C9qj4mRSSLlRqx/+zQXwtl6zWaWdQN/DLxgq9VtTEZ2aQL1+ybIhnIe4GbTFBrjsEO/ZXQvL4Og9/pGcDPEy84fgTPvwcKCo+hsSzxaswAJmdlmZnaZtsjp/TrwB0jnI3WMMx6bCIiyJ2H3p9W5OC7HvCy1nujAabvByLS1rLoHQ+QDGbpxCgxT8IO/TWRrF9tUKMLuDPxgr1mf69KVGCH/kQkUX0kMGnBGVOfPe6VP/11m/defgG4rZnaYcYO/TaSJu4BrkFy/m9W7fMt5BtqtnY7yAY41YnS801bJ9JP8q1GD/0k7TzJ3eOcKL3CtHMVImhn2aafAPs7UTqAsB271mXAYTntfwQslpWRZSS6n2awSlIv8G/AaVTJIHatdVH91vmQXXTLUInasWsdBlxMvu12gxOlXyw4fmHkv5sP2YC5ZSZKlCjRGMoAV4mZMIvjiiZ/C1rI/Rg4t3rhY4f+RkjWLGswn4EYjqchabAvogm0BQW/OoBNDTNxjsJc7xtIYqZRTEMSIRfboX8sWmRl3YepwE6JFxSxe2v7Mx8yZlekOOiQAhNqnsmGKKBWa6x0IofGkAqx26H/DST3NtOgaO+Zwbjebj4c257Q0rLsvLTAjF1r/V44D1o+19PSSjx58RceXXil43541v2zUvNhRBC7Vkp+JkAPksn6AWIbVwrFjwV8J0ovNm10kM8I60GG5lCKmQ8rTNbSxsj4vduJ0s6a7VugrMesbzFF3+Nksu/XdGA9J0qbquFXokSJeQOxa12KajsVZSxNB1YdDllTU5vifhpn49bDg06UblNzjhY09vuovuKbiAX8i0YY1aZg9jUFu/QCE5qQhplrYIf+8cD3kN1Tcdx0AL9OvOCYjP3bgZ+jzLsZKGjyNHBA4gUNvS926G+PAg3z19u3Ch8kXjCzrpId+vWCklPQvP75xAtGLEu+HkzA4hPyyWXTgEkjaVua+rJHIYn1BZGk8Qw0BhQFGbuBhUcLUa8eTNDtJEScWwBd42+QhGorqq32nznWwQZgh/5PEeO++rl0oKyzRpQKSpSYK2GH/p4oGD+B/rmoB6k3bDfav915FUYy+FFUSqINoLW3l7F9Kd99/sZp6330Wh9wiBOlNw7neWPX+h4ibA6l7vl7wOJOlPbFrvUqsguz0IVIPisXtLOkIdB+DsnmZ82ZmcGq2LWWR/bRZAYGxqYBJzlRemnWSWPX+jHwNbKvfSrwBSdKG653OlyIXeszSFIxixQ1FTjSidLf5xx7JMooT+nP/P4HupaPRqbHJUrM+yglCksAYIf+GFTbaTX62SHj0cJoRQZKcqyOnOVZGI8Wil80f9WTXjuaAK4hXwd+tiHxgil26O+KZAErUjAVxo1F9mTVgoxNkCZ/3kJ4DPBZiuVranEyMjjqGS7/qGVaJl7whB36RwC/QBNlq/l7AEnVDBWXIymnFTD3o2PM+N4OxncCh89jwa0t+pSy39ZKH+P6Ulb95K11lpn2v4c+d7F7wf3HRyfO6T7W4B3yM7gsJNd3EHpu1e/y92LX+rcTpbej7KYDyZ4LPkTOtqYDXIYdVamjdh9wbW1QqhmY4FNRAGovBrO6KrAodhr2IJ3sMsBVosSnE5ei8SpvDAHNq03V7Ylda0VgaSCuzoA1kqo7AD8B1kR2RWXObhbTEeGoFucjZnGlzyuZ37ZAEnf1cAP5WWOY3xdG0i7zFAyB6Tkk9bcaysY5H0ncZu3fARxsh/4iyF5+O/GC/zZ52hdovB5cBTPnbTv0F0Q2aREqZK577dBfeqRr5tqhvx2qTbEGslcuRFLHrRR/SxOAcUZKejwwY1ZtTTv0F0XfwxdQvaxfAqdV6unaob8AyqpMkbTxqjlNvYucVsMOkxFwsunn/MgJeFbiBffNQrO/QAz7SjB9DFLV+CyweXU94dEIO/RXR/2tHZvbgePs0L9sNBAmS5QYITyE1ijV8/AY4DPAfXborzzav+F5FEeiANDMcam3tZUZtPKDVXaa+Pu/Xk4LXBm71stOlP6jkQZj12pDtVdT4HEnSrsydluCoQW3QESOicjPVVQbtAtYtGD7ROQT+ifyMf0W+Qgrc3pFnne/LAKUE6Wvxq61OZqbPouudwpwmhOlefVpQbZy0bWvBMz2AJcTpf+tymSrJq11IRJ9pt0Yu9amyCaqtvvGoXpsVwK7jUiHS5T4FGAoi+kS8yZ2QZNDberzRGBvO/SrmRwJ+QGuFMlH/B/ZC1gLWMMO/RVmrbvDg8QLHkIOqBNR5tnJ5t97ITZJxQHQaf7/wMQL3je/vUV+wexu4P2cbXk4jMYcHD/J+jHxgqtQ1s5hwPHA+okX7NyoPGJOmx1IlzlATp7/AbcDW85FtdYaxaUt0FY9KI6hj/aeGezx5tPHGWfNaMJVBdt6UC2qrAyBicBZ5v9PQyyrrPd4YeDvsWst3WiHYtdqiV3rQiQfeBzStP4p8ErsWss22s4QUKl5NxT0ofe6RIkSn0I4UfosCmYUFUHvIaeOZexaa8SudUXsWs/GrnVn7FqHxq71OKpTdSvwauxaN8auNTNb3InSR4zE32LI/qo3T/ei7Itq9CFb4/Ka/qyI6vTV2mDtwN6xa61f51yYgvAPFuzSBzwVu1ZR/c+5FokX3J94wQ6JFyyTeMFmiRfcUC/IknjB+4kX/HUIwS1MLa07kK3ZCFLgD1X/Xq6J041hYJ23AbBDfyE79PezQ39/ExhqGnboH43e/W2Qs2xNJONzNer7GwWHTwNeRDZ3BzDFDv0LTabcUPqyGqrRdxrKcNsVOeVuNlLVJF7wUeIFtyRecLvZL+t7nAacORLELjv0xyNn9qnAUuhb3Ry41Q79RgLSWW2uiEhOtXbgBPQ8dhxyh2cf9iPfqdmKiJQlSsyrcMnOLLfQuDra1qWfFnyFnAz8T8ZO4NX2RUDBihMaaSx2rRMQeeIWZAe8E7tW1rj/Ev1+qWbRVXXsc3X2LTqHhbFTjJTe0cA+yDf0JMpmX8eJ0nvzGnCi9HknSjdF/rbVgKXqBLdANkGRYsCcJDociRRzPkb3rhPJMG/mRGlebctTyCbVjQO2j11rqZHoaIkSnwaUGVwlKtiT4lpUOyC2BkhaZxrZ0n5dwM/QwjYPXYiFkjsZmXoEB6BF3h+BPyReUOR8GjISL/iEGgcRcJdZHHqIffoScEVNQe9fIomTrO+oFRkqzaCRxfv7iAGbCROQur6Rk5kaYksBbyVekJsKbaRYzjF/8yRi11q8D5ysCMkY+tjy/Xjsj1bZ8RsoG2m04GXkdM16/8ZS7KxdDcCJ0tdj11oHOX9q22lF37iPglWNYFck9VVt+E9CRty1KFg6ErjZnLfZenogx/Efh7c7JUp8+mBk8SYDnTns05E67xYoaL8+WmBeBlzUTNaoE6UXxa71L+AmBjtUO4Czc+oC7An8Di1KxwBroaLTFVQWsDsjB8CA2ltOlH4Uu9a9KMOlnexAfScKDMxn2qlIqb0H7ONE6Ts1+++R0w7Iub0vIi+sg2w/CwVLZmr/x661iLmWPLQCiyApP7dgvxKN4xAG15wci+51NfmsDzlRqm2yt8z+jRAXJyNppQEw0oFnoGBvF6YOhx36F6Jsp4YCOyYb6nyys252Qt/AuYhUlmX3TgSWrznuKGBzO/Q3HcJa4GqUEVX9TUwCtkXM819X75x4wY126C8JfJ9+8s84JNcdNnnuRnEgyhqrvWcTgZ/aoX9t4gWDHGVG2vxwc3wvCtyFZi2wI/lkxEkoyHnn8HR/xNBGvnTsGIqzbkuUmNuxAflSxuOQok5uIKHEiCFXXrq1r4/O1rGg8akumSh2LRfNLbVtXha71ns1Nawiimu056ETuKJKnvoc5KOqPec0JJk3BhHVs+p9veJE6euVfxib8W7z1xScKP2ABKBbAAAgAElEQVQA+KDB3X+K5rpa+7wXBQcfafb8wwVDCDsndq3vInLwJ06U1gtEVtQbsjADJR28mbO9RIkSBSgDXCUq6KG4iPnMDI/EC1I79HdBsjhj0ATZbfb5ZuIFz9mh/zQqBpy12B5Pf7BsAMwCu6K3XnEYHQa8Zof+lokXzLZ6QIkXvI2cN3nbX7BD/1wkwTIBXWslNfvAIWROPYIW/3kT3sfAjrNaCNrUHrsMLW67kQPjFuCriRd8PCttj1bErrUQYu52Aw84UVr7bMYUaTG1qlbhSiPXwyHhA2SMzpexLaU4o6krdq0/ISdZkVE6FjGzGg1wnUB+5ubasWut4ETpSLCsHkb16zajcYfHzG91djrjS5SYFxG71qFokb440Be71i3A150ofWuEz7sfcjpX6iUtiIJde8WutVUz37YTpXfErrWtaW8pNI72AWej7JPac7chKZFGammNBzaIXWs9J0qfrDlvX+xau6IMjvaa9ioZWic5UdoTu5aNFsbvAU/mFKMeR75TuAWYELvWb1Gm+nhku3wDeDR2rd1MYPBY6pNuxqAMC7fOfnMEsWtZ6F50zg1Fu01QYmc79FdBZJAPkWzyF1DAaBmz69+AYxIveKnq2Lft0P8LsFWDp/ucHfpn1wStvoRYxbWyxsejDP7M2hgZ2IV8dYN2ZN8fhuQcj6/at0JQyVo3TEDEnF1pgjxmh/5KSEoqyx5qR7bNr2s3JF7wUzv0Q2Q3WsDDI1x3yyX/e+tDz3WAI9sO/cWBJ5BDrTJmrAV83dRKLnrn++psHy24D9VdySIvTSNbnnXUwA79zdAacT1EULwYkSVnaR1X4lODfyOywbiMbV2UDvA5hXvIDrbQ29LCCh3vgcbXwhqchhSWFdzC/PZdVF8aACdK34lda19EhKns00G//Zs1z01FhNhvVn7YduuTn9nkg3/dldK6xyJdU9Pd33y6e5Wp71jInj0L1Ws8ENnzlSBXL/IZfMXYVhuhefkJJ0pHRLa3Gk6UvhS71ldRhhjm3FPQPLDTaLDxnCjtQWS1RvBf8v1K45BaVokSJYaAMsBVooKrUcZU1iKiFaVMz0TiBX+3Q385xDjdGE0wE4Ev2qG/Dsoi2oHBk3YncGPiBe/l9OMA02b1cZPRAvVXFMiq1IPJWPoS0rd9FYhqMrJq918QMWVc05+ngNMTL5iZ7ZF4wffs0L8PLZKXQ+nZP0m8IFPKqA7OQszd2nvWg+phHGmyzYYME0C8B+kej6ffibEnsLId+hvMY3W1WoDzEBOp4ui0Ytc60YnS6qy9N3tpea+VvkFyfCktPL7g8qAaGaMJd1LM/nkCBXxqDfA+5Ej5nPn3NmSztIaCIhnCLiRHMOwBLuMg3gV9Q8egcSyPyd6DnHV3Axc6URrHrrU2chq/CTxUxXIrUaJEHcSu9Q2UkVE9d+0FbB671hojVSw5dq1xSMe/ds5sQ9/zAcBvmmnTidI/x67loIVnG/BSJUgWu1ZLzSJ6Z5pzEreiMfnJ2g1m8b6c6fMm9NfW+pMTpVNi15rfBBHXAv4DRAUL+j+iTJwsG78DLZ73YuB9q0iinYeCXQfQmGTy+Iz7MkcRu9ZiKCC0L7oHSexaZzhReuWc7VljSLzgZeSQquAWO/RvRYGM7gIi0v4o+LUk9TO51kOBpqjqt3PIDrK0A2eYekeNPOeJFAdYJ5t2TrVD/wIUwFsFBbuKsrAnoWfajDrCwsj2yCO+LJJ3oCGpNc1KHyKKvrU+sh3cFzC4JstEZIedh6TFz89ps4N+J+loxh+RNGx1fWiQjfs8zdU5nq2wQ/8gND9VnM+Lo2e2hx36u5W1k0o0gCvQfJyFXuC2ke6AIQmsjQK0fy7fW0BydAdTs76ekHax/+uPM6G3B/qzoYqwAMX1rtbJ+O1u5MfaCT2Xg9C6tnqO6EP1UV8x7a8MPBO71sV7b3rME4ybeNdjC680BrDo62u5e4k1mb97+sXPffUnJ5vjP4hdaz1EePkyGnvvQzbCiqbt8egdHBe71g+RysGI2oFOlF4Zu9Y95pqXRH65GysygEYye1tEDLtnpNYew4QLkK1fa3P1AM+MEBm4RIlPBVr6+kbNmrTEHIQJfNyFCpBXOz06gEsTLzg580Aduz8ywioZVylafFyHFqMp/QXUHwC+mJfdZIf+kyj4koUZwFKJFzRdL8cO/U2QUWChyaQTGQBe4gXXZOw/GTmhlmHgomoacFjWMcMBO/S/gAJ58yPDoQU5Dn80HIEnO/S3QsHKLCfCFGDv6gDe3A7jeP02gw2IaagA6h1V++7R1WLdOK4vnekY6gU6W8fytfW+PP219oW3T7xgthcwLYIJ6lyLjOyx6J2ehmRCz0dZTYvQf/0p2Y6nvAS2buByJ0obyuCKXetmYPectjqBFWZDRkcLchY9ipwi1UZ/D2JFOU6UdseutShaIK5Fv6TjFGB3J0r/PpL9LFFiXkDsWu1IHiSLgTodOMeJ0u+P0Lm3RZKCWVmsAA86UbrNLJ7DRpncX0Rjyd+AU50ofSB2ra8AP6YxeWEQk/YYJ0obDrrFrjUJySHvX/VzJWP+MCdKr8457h5kz1U79itO4aWQcyALHcjp8ixGyrYOHneidOMG9pstiF1rPlRfYkkGOp86gLOcKM1z+M+EHfpjEZnqEGT/3QBcmXhB0yxlO/RbUeBwEeDZxAteaeCYpRFRY2v0bV0G3NOIDWiH/jjT9/1RfbfNCnZ/IfGCNcxxLRRnfvcA8zeiTGCHvgM8TXZQaSpwfOIFYc0xe6FgW963XMFvEy9ouCaVkUt8i+wAUi8i3O3baHsjBTv0T0GZoln3rBOtfT6s2n8M/cHqLHQkXjDJDv1LkNR69fg8HdmG280NzmpDTrwcSa92o+/6euDooXyTswN26LehbzdrrTUVOCjxghEPTpSY+2GH/ldQ5t8Y9O5PR2PXrokXPDCC550PrS+3Qt9dC3p390684LGROu/cAjv01wN+3dLXt/KEtGsctLQc+PpfOfi1x9IW2VqXOFF6alEbsWtNQOo8eeP4J06Uzm/2bQVOQnUaJ6LnMQWROGrn7RlI2WQzqsb+Ppj25ALLjjll7f3G9bUMmuqnAZ9LvODxgv5uikgHWdKG5zhR+oO8Y0cS5t78BGXVVcjMY4EznCj90ZzoUz0YX8UPkK1XUV2Yit6HTatlIEuUKNEcygBXiZkwi/qTEItyYZQ++x3gN3kLa5Pl9Ab5i7L1EMNkMvBI4gUv1unDe+QzKj8BNk+84Pn6VwN26E9AhUCPRHW0shit04FVEi94vebYLEZ6BR8Ci42UxIRxiKyFFuTPJF7QWbN9NWBTdD/ubEYK0Q79s1FWWp4U5Q8SL/CH2PVRBZNC/w56l7PwpBOlA/Sx/3j0ogeN6+0JF+6aOg4gnrRE70Urb9/9r8mLn5h4wU9HuMtDgsk2+D9gQ5SZ9BMnSu832yYimYG9kfNqJ/Izd2uDXCkytNZ2orSoIHx1XzZDMjq1380M4G4nSvdooI3VUS2K14G/NcMIM85gF2UfWGjcWdGcfxwKWu/nROmbxrj8O8r0qM1y+wQF4xrVBi9R4lOJ2LW2QwGA+XN2GTTODuO5dwZ+T75T/AknSjcqOH4MsBuSYe1Dzpw7jZ4+sWstATwDLMTAcXM6kub7L/AYjUkUVo5b0onSmRk4sWstiIIRS6Lg0y1VGWNjkSM6j/QzHVjVidJBMjjGcfIj5NwG2T/XILumKMN8Bsq0PQZJ2hRllkwHdnWidNTIhMWu9X9I1ifrmUwDFnOitCPveOOY/hOaFyrO6Q7gf8BGRrq6IRhi1Q1oHqpk4TwI7JeXjW+H/sbIgTSWfnJVB3o3D2+G6GSY90+TH4D9OPGCBar2/4Ts2roge7690YCIHfo3ocys6rVBDwo2rZJ4wXRj6+6FJOiWRlmTeZlfMMTAgB36lyP1hiyn3BaJFzzVTHsjAbOWehGtf6rvQQdwSa1dbod+O/ARxfZcpZ2jgW+hwPZHSAb+O1k1vUYzTLBySeCNWVWzGGnYob8bqoeWNzfdknjBnrOxSyXmYpix/AhgBZS18qvECxqVQhvqOe9Bwa1ahY8pwKpFCjifJtihv/zKU95e4vxnrt1oUjpjC+R3uKJWijoPsWvdhOzQ2rmvC/h5hWAau9aF6B1olFCViemtYzl7jT14cfKSbPvuiyzR+TGvTVyYBxZbpbfTGvebxAu8vGNj17ob+DzZPqSPgUWzatWONGLXOg3Zq1lk5i87UXrj7O5To4hday1EploIuB+4rpKRVqJEiaGhlCgsMROJF3QjpnJu3akM7IuYRFloRazni1CK9ExjyCzm2oG3agpGv0J+gGsccnrXhXFSPIwYyEXOp1bE+Di75vdamcRqWCiY8GgjfWkWxoHwTO3vZkF7AzI4ezHZOHboH5Z4wbUNNj8dORkG6Uab9pqtGzaaUZ25lIU1an/Y/tL3rjrtrC1//8SCy+3xzoT5P/vB+EnvAdeN9EJiVuBEaYwcRFnbpqGMwF8Z+avnyR/3O4EYBaRTlNl0YqPBLXO+v8SudQL65ivvWQ/KBjik6NjYtRYHbjbn70Hf5lumJszLRcea4xcFHkes9cq324EC8McDLzpR+mrVIRsBDtnfwlhUI+SH9c47O2DuzYpAkuXMLlFiDqJevb+0YNus4jHyma/TyZAyMxlnJwNfRWNFtSN4T+DZ2LW2NwWiT0HZTLVjZhuqR7QskoLdtKAfmHNMR9lb1cGtPYCrzD8nIsfRT2LX2saJ0pdQxkJRFlXFfjmrdkOljpaRjvkuql20L6opVIRu5Ki4hP57VHv9M1DA5+jRFNwyOJB8260bZVPdU3D8yUgWqDow046e76UoIFMXdugvhcgetRkc2yB1gy9kHNOKbLzaY9rRs7seSRM3ircplip8tebfv0LBkFqH5gyUOdVMts8ByA44BN338cgmP9QEt1pQcHpn+q+3KHg3A8lEr26ykhZEmXrnJF5Q9DxBEuLtKJBdXZPvkNEQ3AJIvOBDUzfr50g+ugf19RKy7ZBpKFi4TMY2gJeqgqE/A35mh37r3JCxlYfECz5CAbq5Ae0Uz4v1MhVLlJgJU/agMBtoOGGycLcgW75+LHCsHfqnzUslDYaKxAteBV6F6FHqSxJm4ThkQ85PP6GoMr6fBTPXgEfRmGx0Idp6uznilQf4zLQPaAHG0Me0ljF87ZX7W89eY/c16xy+Efnj2hjgMxQTqGbCZNuvi4grTw1V3tAQ1U4i298zEd3DURvgcqL0OWR3lihRYphQT6O9RIl6WIT8CXccyqZ4F7FI37dD/7d26D+MFt4x8JYd+l+tOiZATuladAI3FNQeqMVR1A9ugYw3J+P3ouBvX9Z2O/QXtUP/cDv0j7NDf60G+9kMQiRZ04Ym8vnMf0OTKt8Irie/+Hc3YnjPK5hK8RiXyQD97jkP993zf1fe/MxRl5yVeMElozm4FbvWxrFr3Ra71tuxa70Qu9bRhvWfhTfJD0aDDMx10Xc73onSvWsCQg3BidKfIzb21wEf6WFvXu3YzbiOFsSaXx99s/Mhp9dKwMPGKV0P55vz1taVsYGdM65lXfIN9TaKpZ1mC2LXmi92rRtRzZ07gZdj13oodq1BteJKlJhDeJT872gaYrGPCJwo/R9y3tbaDL3m3NV1FitZTY8gR9ESaH6oZs1OQtlSZ5h/70d+4GpBVNdgdxTIyBtb+4A/ANs6URpV9WVZFNyaSP+YNRkFlO4xkiv7UezQGG/6kAnjFHnMtDO/Oc8KBe0B3OREaY+5t+ubPs4w1/E8csasD9hOlDZTC2l2oZ4Dv54T5SiyFQnGAjvZoV9UI6oaXyPbjhwPbGkciLXYhHzH9yRyiCx5MPJtVyH7uRYdDCaznQG8hGyn6v3+TYMOGDv0F7FD/wSUPfgUmsM3Bz6TeMHnq1j/uzIwuAUDx5GKjDjoW/4JslHPRIHlyWiOvskO/SOK+pR4QVfiBV9C38rh6HtYNPGCUfX+Jl7wWuIFO6Ix4Dxkq58IvGeH/t2m7nFl3z7gdLJJadOA0zLan2uDW3Mh/kw2eQr0fG6fjX0pUaJZrEe+r2ACypb5wA79s436T4khwonSBBFuz0OkjafR2P5ZY4eBSA/NZEb1UUAuW3Ha+4yljzFmip3Y18OkdAbfff6mNWPXKqrJPaVg2xhy/CrViF2r1RCv3gZuRVntr8eu9bniI3OxCMV1xFcZYrslSpSYS1FmcM0hGKbm9ojFOR24NvGCZ+dsr4aEJ5GxniVr0osWomPon3wOZqAUWhtwvh36ExMvuDDxgpvt0L8QsTFAC4RONOEf1US/vkpjskHTgWfs0J+IHN6Vc92HJsWsb8RCdThmwg79E5GcY6XGUa8d+g8habh2tKBeBEmi3VWTtVZpYzGU8bYAckrdX2FH2aG/OHKkZU3iExDT/IB6F5t4wSt26P8UsXSrgwYdSPKgbqbMSMF8E1siCZLnEi/4x6y050RpR+xadyJHSu1z7ERM2bkWsWvtA/yGgQWsfwTsE7vWjk6UDlicOFHaZSQOTiJHP9vsN8vSm8Yov6KJQ7ZBY0XtQqkFXd8BiF2eCSNHuV/G8aBv5lDg2Jrf3yN/AZCizK85BhP0uwstNMfT7+jeFHgkdq1VShmDEnMaTpTOMFmbFzNwXOlCQfVmxoGh4GQ0RhxOv13xGOA5Ufp+zb5fRk7uoqBRG/2SXlmBjgrGAq1OlH4C7GqkYq9A2d3TkR3wEbCPE6VZNQ2OJFuOrQXZANsWnLuCLjKyvavwTSR70qgDKkXPEQAnSt8GDo1dywVanCidGxzkv0NZwFn23xgU4CzCAgXbelEAaqod+hYqdH4ckkF+DEk8V57HFuS/Z91oXI9rfl+Y4gDdEsVdz8TxKKi5EZpHUmSDX4IyyWYi8YKpJotoH2SrtwBXoyz2rCDZANihvysiSVXm7Q5UY2J/YG879HdHTtNXkcxRXrBwKspaegj4S+IFXXbofxGtAWqf60Tgx3boX5V4Qa70pLm+BJG8Rju+xmC5pe2AJ+zQXz3xgvcAEi/4jR36i6I6s5UaOa3AKYkX3DSb+1yiCokXJHboX4e+pep3NkXfxUjPiyVKzArepz4ZZEFkf30WZZuPKsSutQPyy6yDvrkI1YlqlCg922Dk8M81f1lYjvz5MgudDCZwAfkFtwHG9vb0ICWDPLLzL9DcVGsb9wJ/d6L03Qb69l1kY7dVtTMJuD12rQ2dKH2hgTaq8THFZOYPC7ZlwpQ7OBWtKyYjn9+ZTpQ+3GxbJUqUmP0oA1xzAKZw559QAKUdTQwn2KH/e+CIuSzl+x6UodXGwPepF0z282DUzq3twDl26P8s8YIZiRecYYf+L9DCoA14AHi0yfuyUIP79aLJ61208GhFbOX2nL5PA85KvGB65Qc79HdEC8xaZ8bWiLm9sTlPG1q4v2+H/tbVdb/s0D8KuNDsNx45yF61Q3/bxAveRzWJOskOcLUiRnWjOAVJuZ0KLA+8BnyfOZi9ZYf++ojJU6lVMcYO/aeBPcz1DxVHI4fjggyUrXuZ5qQ4iV1reXTPdkLvyp8RO/reSs2W2QXDsLqCbGfPNoiJPUi2Cr2ni6K6LN30ZyN+3YnSejI/Q+3rQojB3Q08aKS/arEe+ZkSk8zxuQEu9F0UzWftsWu11Egg3En+Aq4LGfJzEhshR23tNz8GjW/70C9vVqLEHIMTpb+KXetd5ExYE82Tv0YFnqcWHjwLMEHgi1AA26K/SPPiZDNJXRojvsxvMqiKGLNjUWYLMFMqdovYtZZB3+37wONZsiuxa41D9ymPdWqhzJdr0XyT59hoAb4Su9ZhKFhxkROl71VtP5Bi6cRafICybgbAXMPcYpdGqCblMgy89mnAqUa2twgvovkoCzOAdw0Z50YUdKgEIT4D7GmH/v6JF9yO2MlFvqQsu+YZ8t+JLiTx1xQSL5hmh/52yA7aHtmRNyZe8J+c/buQdODvmzmPIWhdw+AMatBcO4N+G3njOs2lwLOJFzxQ9ZtL/nfQg65ttmRkmee/KSJj/aNebeGcNtpRQPPd6uCh+f10Bo9TFv1ZfOdUfky84Hw79C9D2Wx9qNZxlo1VYvbjcERy+AqaS8ah8fVLRm6xRImGYUovrIZsnH+OsK/oAQbKueZhIrC9HfobJF7wt7p7zybErvVl4DL6x9FxaOzcOXat9YvqcI42xK41Gamh5NkSXWjO7Eb+oE/QmHMQIlkPmEuKdFNbNUcXZflfgNaeK1e1OwP5rA6r6vN4c+4dTX9+i/xOExHpJssOH4+us7CcQS2cKJ0eu9YtSD66lsw1HUlLNwxTu/xRZINXbJZtgLti1zrEidIbmmmvRIkSsx9lgGvO4GcMdG5YaLA/ADnNoznTreaReEGvHfrbILmFlegPEvWRX6w6C30og+qvpt3XUMBnqKiXhdKJjIErkTOkmimZt4juA25KvOCCmt9PI3uybkNBrmpMNr/fhq63Uoj8fAYGyCahoNbVaOH+NsUs7IaLvRqj+Dpq2LtzCnboL4ICvrXSPBsDr9mh/yzwS+DKZotiO1H6duxaqyMH6H7IEIyAa5vJfolda230bU6g/zksj1jO/4tda/9ZqUVi6kcdgYyot1F22SMFmtRbFTRnAafFrtXuROlJ1RtMIO5rsWudY9roBP5Ua+wbTWvHbH91KNrYxvkcIGO2slBqjV3reCdKw5rdPzD7ZDlju9E9KcJ0pFdu52z/Z+01OFHaGbvWF4Gb6M8y7UXX/D0nSosyI4YVRlZyN/TOf4Cci1uQ/81PRhkeZYCrxKiAE6W3oXmtLmLX+jz9zNqpSH73XJMN1Qy+iIL11fPvJDQ2/wYFh6pRJGNSjdedKO01joU8dKGMmgE18ZwofR1TKzR2rVWNTOCLTpS+G7vW3siuWYb6dcteRfNijORrsvreh+wuUGbuEbFrbWD6AM3Z+H3A8bObrDHccKJ0auxaGyG5ny8jeysGTneitJHsnbMYHKgBEWN+mHhBjx36e6Dxt9purNjxvzEZ95eh7PEsed0u5EAcgMQLXrND/y7kFKolTHVTlV3XDIzN97j5GykcSv473UJztUMmoUBjNYqyKVto/NueJdihvy4iYy2Avpmxduj/Hdgz8YIPco7ZDrHeV0V2SicKOKZm+y9Q1lUXIrbkBdYnAIeY8/0t8YK3AUzm2r3Dc4UlhgumrvXxduifhpzG7ydeMEeVAUrMfTD1Cr+FnP+9aF5/ww79QxMvGKla4D0ma/YOtA4pIspMQOuXURHgMgSinzB4Dh+PbC8PZTBX9p+EMtAWRqpEM9feJjPfR36YDkR8vKwBosxwYn+KbbnXkS29Bgo2PWfs13vRfPM1zFxl/oqynbqBxWLXWiRDAaGijLMpCkJ9Bc3LtwA/MRn/xK61BMpoXxy9G73onl+H/J95/jmLwT6zRnEssAGS96348KYi0tAPanc2Pp3tkC12i5GJrMBF43WtzTIR+HnsWrcMh9JNiRIlRg5lDa7ZDKPfvw/Zi7F2lF0zV8HIfnwBOWU/RPVi/k79WgjVaKUxtlBd2KG/Nprk8tCLAkdLI4ZzI/V9QIvodTJ+X7WpDspQWckslEEp/lmL/7HAZnboL2ekA/9J9j3tYGiFTUcLDifbkW8h42lj4MfAQ3boN11g1ThNf4eCmRWDr9l37ZfIaKrtZyuSnrzNGMJNI3at9VBR1tORbM/BSJruYhMkykK9d9YCjo5da8OsjU6UvuNE6XVOlN6WEdz6CvAOCjY/j+o+FQXU8nAScAx6t+ejv67WJUY6oho3kT8f9fw/e+cdZzlZfvHvTGZmKx2poUPoSlUEEQSVpjQRFBETbKhIUUoUVBCQCEgREBQlAZSOoiJNRECqgqCg/AhF0CAC0nd2d3Ymc39/nDd772SS3HtnZhve8/nMB3bmptyU933e5znPOTQp+pvFyLco96M4rmS736JFwfdRwvFSYHsnSk+qOt5EwnR8PIG+49Goyy5GCbCyRFfKomO23kEHcxG71gHAddQl05ZBMm/3GeZkOygzlu4F3he7Vj4OuA4Vw6vQjyRUAF6p+FwXJe+gKWw9guKgXwL/jF3rSbTAX5Xq4lYN+Rzc6kTpIFrwn2/Oq4bYsE9Q7wjIkF3Lsxp+dxMVPgw5zKIF/4RFAU6UvuJE6cFOlE4DepwoXa/F4ham++po6tfjTZQ0uggRNkBklDIiVJakuQMVWbP7Boo7+oGPJl5QliA5AMUpsxuO/xLwIWNmv7BiQ6qLUO2gC7jaDv3GddIvKPbnBb3vd07QsUthh/7SKE6wEclkcfSd34m61Iq2ORwVxHZEa44tEHllEnX/vc9Rl07MpAbLsBpiwz9jh/7FduiPSjzbod9lh/52duifZYf+2Xbo72CS5B0sACRe8GbiBX/pFLc6GCOORQXy6WjMmYo6aH5b4uU4IUi84A40rp8DJJR3cS9s3d1bUT6GTkVkDABi19oTESjPR0o2NwIPx661XOxaW6EY7kBUGFsPEbPuHUOsOh5sQPWa/0onSvudKP2jE6V/yaSkjZfq0ShHsQmaf5p1rk1GOZl/xa51R+xaL8auNRy71rPG47vLidJZTpT+0InSLZ0o3ciJ0mOz4pbBbWieyvI13eb8P4qItVXFujHFoEa5YCO0lrgBxfoHovX83A7p2LUmxa71a9ShdQqSQn4idq2TG/ItedJcI3rRfN9BBx0sxOh0cM1/LE91d1FZB8JCCxNg3YcWetmE1q5ERsa0mAgcTfUCcQB1TL2N9uR7QEbteTyPAoh2kCLm9cMoeClL7s8xn3sGBQf3oOs8DQWVM1GxblHW29+G5omRacDGiKVzejs7N1IFP6Qu/zgbY2jqROkLLWy/ApKcqnqm+pAZ+OcbtutBDO53o0TpFU6UPpvbdxe6d43da1kw6KHk6K0Fx7uX5s/uZJSI+1Nsl/oAACAASURBVFOTzzWej4uKpY3B3TrAjbFrbeNE6cMF26yBEs07o+fxxygZeCzFQflUJLEzVxLRidLXzbEj9L16qHdTfdvIfzVDiArb36ReGOoBvu5EaWm3orknC5JYcB0a9zOt9Cyptzvl48IAKsZVInatlZFvyWZITu0CJ0rH5W3XQQdjhWHWnksxs3Y1lHhoR05k1Yq/DaAFfaMnwPmoo7SP0d4Eg2jMuYC6POkPkNxrfn4aAm4p6jiLXWsp5PO0FCPnjLWqvojBm2jO3znrpDISj0fErvUVVKwZjF1rJuWkkA/HrtVrimMnoHFkGtXzF2isXB8leAoRu9a6aDxxULx2gROl/yz7vNlmdZQU2tMc4/doTB4lhTgvMBbfsMQLzrND/2LE2u4F7ki8oPE5WqrJLhZPvKBmh/6XkJThF4GV0HNxTpk8oDl2P7C7HfproHH7FeDOIt/WhQGmcHIcIotNFLrRM/Yx4GI79JdEMVIvo2Uf+4FLsm6mVmCH/naIfLMKWruck3jB09VbAWJ29zL6XeoDNszLdBnZxlNo3r02BdjRDv2NEbGo6l5b1Nch+6Dx4rMNx+xDihrvph5/HQQ8aIf+zq14qXXQQQcLB4ws4TEUr6UySbeDCv42IUi84FngSDv0L0MkgqLzGGA+ycO2iB6qi269MDee+Rmj49H10bpsGUYTWaagNfEXUB5pfuBptLYuKrr00yCVXQRT4HkKIHatH6AYuCzn0kVdfamR2LoqKgZthObOQsSutQe6fkWYhgi8/0IWLXnMRPH3mGDsDyKqCbGnIbJJ/vsfBvwVde9Xzdc12s8bdtBBB/MZnQLX/Md/KDYWz7AwMzTLEKIFV2Mydgp1TeDGREzN/L6n4d+zkffYRBmYv5Pq7sRHEi941Cw+23kHUsTKzeN7wHmMDvwyH7KixJKFilagwGPdks/1YuSOEi94wg79tdAi+wNIyuwnwF2LmG9bHs+ha1v1XoCeqYNpo8AVu9Y7UMDUGMxMR0XDXyDfgmaYhhKaVRI4PcC2DcddCfllvA0Fi3OA42PX+qYTpac1bPcuyv3ipiI20qgClxOlL8SudSlKCJcFW920YUpvPGe+S7nc5gnkjIRj19oUvRON0o3fQQm9vORkI96e/4UTpVfHrvUokgx9Bwrav+9E6X2tnL/p4gpi1zoP3YsacOfCrLUeu9aGiBVY9OxPQnIZG6Drn40P/cCFzSQUY9d6P1qkZfKLQ8CnY9c6xonScybmG3TQQVvYnfLOl6moqN9OgSumfIybBIwgFDhR+rKRr/sR6rIZQjHKLcDNwI1OlDbK/Z6JSApvbzjvftS59XmKcRAaD9vtmHjYHO/qIp9CM74NGlJE1QK8C80Jg06UxrFrbYsKdVuYv1kl5zaAkTo2/gnbomt4jxOlr8au9WnE5O5BY/2OwGFGnvf6ohOJXWs1xIBegvoYtxPw3ti1dmx1bF8QSLxgBho/i3AzKj4V3Yc+jBSgictupZikMhd26C+FZIhWRtJ8PzfdWovCeuBQlICd6KTPJOCzdujfhq7nErljDKN38SwaPKmawQ7901Bycip6DzYHPmeH/l6JFzTzIX0v5czuLvRMNMp07UXrHZSTgPcnXvCIHfpfoNhjNY+pwAF26PsN8ojHoQ6xfMy7NVJBCIHLEi943Q79FVF8+g8jp9dBBx0sXNiAcjWcHkTCmOdIvODPdujfgubvxnFpJnBL4gV/nh/n0SLup1zefRZ1e4bDSj7XizqeymK4KYhUML8KXJehtXkRasirtVV8A605P0CdrNFqHmwacFDsWqc7UVoWmxzVZB8rA7shotMk6te/HxWYftziubSN2LWy7rSi4t40RMq9EhVrG/23GtHDQiLF2UEHHZSjU+Caz0i8oN8O/Z8hGZL84NlPXQJlkYDxGtic4oKShRJBL6Mk1BMogfN26i3A9wLfnGAd6f8ghk0RhtDilsQLXrRD/yFUZGglGTVE8f25FAULe6KJsxsxsV9HDKD8ZFpDHWuPm3+fgbyXiphRU4A/2qF/NvDtxAveQHJqY/JiWEhxIWolb6Xlv6poUoQjKC5M9QKbxK61nhOl/5f/Y+xay6Di0UZIPnCA5rKALzX8fyZFlY2xWWLm+Ni17neiNJPTWZ7yBEgXYn2X4Yvou5UZss6kwOejAqtQnnzuolgb+2JGe+1NRR44Ve/U60W/dKL0McoTx61iGnq3nl0EdLLXoFyGsBs9P7ugBOIGyO/nezTxOjKB/LWMfGZ7zM93Y9e6yYnSJ8Z36h100DqMpMsFVBMZ2k2Sn4Lij/zYPABc50TpKIlBJ0qfAT4Yu1bWFfLvsnHC+PRtjxLVLorZrgUucaL0zZJz+gCtzWV5/N2J0kuafciJ0lrsWn/BeHgW4FkapFpN1+3WprNsTUS8KFrg14DrYtfan3qRsQZMil3rYjTPNG6XzatXxK61Ysn1OIGRxS3QvDAVkYI2L/2igB3604DhxAvaVQQohSG97Ia+26+dKH10DLu5gHps0TjPzULFqaRwqwLYof8hlFQBXZc3gbPt0N8h8YJHxnBu8w126FsoYVYWG6XoXexibPKFq6Bi9LKMXq8OAmclXvDNVndm/G6/yMj3M/MlucoO/eWMD1YZnqecjDUE5D1LimSty2BhvmPiBVfaof8SkivejOKO0wwDKE7NyHeHUHyte5Hs8QbA6Xbo/xNY3Zx3aof+ycDpizhZroMO3mqYQXWubn4S+PZFa5EjUG7jZUQwWKjyVsYn6tuMnptSNL9eYAidu1A+Pjcj3ZatlSccTpS+Yvyir6E+l85EMcweFbFo0b4GgT2NB9XOaPw/nfYIWR+mPAe1epNt/+VE6QOxa22MVG8+iGQJfwRc7ETphFiVlGB5qjv71jD/PQflCfsYmdvsB041qgoddNDBQoxOgWvB4DDEDtgSJUyG0KD7QyQ3tyhhCbTQLOtu6U68IN+K/DMUJM0rnIMWhflFdw14Isc0+jR12b9mybVHEi8YJe+VeMGwHfqfRLrPB6CE/01IduzbBfvJWsCfskN/m8QLbrND/3Qkk5axoxs/uzgKBNZHMoVvKRhm2OlI5m4y5d13NXSv2sHGlAepc5AMzogCl0loZsa6vSiB0G3+W/ac96OEHbFrrQ1sSvH4OgXdy6zA9UjFPgcRE60QJin7qdi11kGJwsbnt2a+X1i2fQFmUR3QDzT+w0hPrV3y2WZJnV+1flqtIXatTRD7ayM0ps6OXeubwPmZYfBCiKcov1bDKOl9J+37i3yY8gVLDzIHnpdjcAcd5LEf1Z1HQ7THRMWJ0pti1zoZyZJmJtoDSD7vs022fY0WfOxMQuCqNs7tFUbLqDXDHOS71Cq+hgpt+UJaDRWxZsSudQnwNfM9caL0VeDB2LU+j2JNC80Zs1AyZ3dE9rmwYL8HVXyfGrA3IjvksTflc8pGsWstXVSEtEN/W5Q4e7v59/3AYYkXPFiyr6YwksFXoKRWNlceF7vWdcCBmSRkKzDkqG3N/jKSwiTkjXRIq/uxQ38lVNxqvN6LoeTZLXbor1Lh1bUwYAWqi7lDKBF6EpI1SqnH5TXzU6W28AawA8Wx1CQ0j7Vc4EJeV2Vj0OLABXbof7ZCDvJHlJOxuhjtw3Uno73yqvD37H8SL7gNeZlgh/49SHKwCD0o0Ywd+t00l8/Mrn/eO/gkYFc79M8FftXp6Oqgg4UCMeqsLlprzaQupzzPYeaik4GT7dDvWcjnplNRLPZt6nLRNwNfMp38P2HsliBDwO8m5CxbhBOlN5o194FI8efvwKVOlL5cuSFzrRAmAQPZWtiJ0r+ijinMOrnIfqMIXVTP2Qnq0irDGeb4zyCFmvmJl6nOcbwAcxVyslh4a3S/B4ATGelx20EHHSyk6BS4FgASL5hph/4OKJnwfiTR9/MWNeAXNjxDeft8jYIEvdHs3xQtKB9OvKBpkqlNXIsY1x9h5MJyNkqyzUXiBX+3Q38jxEjaDy3YyybA0vfFsB7vNT/Yof9FtPAuK15Mpc4Gf3viBccbjevjkO9APuk9FS0+Nywqss0LmPu0HUp81ZCk393zguGZeMG37NC/CSVBtgVWZPQ1mIUCjHbwJGK6FwVkPeQkrGLXmo7kqhqPnd3DQYp1sGeg5GRmEr46SlgWsWi7aOgudKL06di17kAdfPlnZZDWgqldUcfYe1AQZqFusj1NUrMlOFH6opEI3IzRycwBRicwp1PtJ1iGYVrwj2oHsWutiZJJ09G5T0KJnNPQvTx7Io83UXCi9LHYtf5GcUF0Nup4HQuK3p8MvVR7F3XQwbzAB6jugu2huEhSCSdKTzEdRnuj9/8O4L5Witqxazmo87oXuNmJ0gdyf18FxWiDSL6waTIBFdkz36tW8Qr1Lp78Oa6HpNH6geudKH3dFPY+g/zMelGc09hNNBUVpbaPXWuzRslDJ0ovjV3rD6g4sBaSRrzIidKXYte6neLkfRVhYTLlMpFViZAaBbGWHfrvRT5gjeexDXCHIQSN1av166i41bjfHnT/v4LmipaReMGjwEZ26K+LOoyeRsWYU+zQfw7JwDXzhfoMxdco63LbCZFt5gmMt5WHOtpeQ7J4N7UhF/4m1Qmj14zn05F26H8HrXm6UQJsebPt1ygvAG1IdaG41aRchpUofya7kD/IYpQQyRIveMgO/TPQ85LJBg+an/3y/laJF/zJDv0/I9n0KolrUCz115K/nYeKvUWkvX8DfzPHG7ZD/z+0IU3dgD4Uh24OvGGH/rZGJrODDjpYQDBejgeiNeYk6uuEWUgVZ8yeReM8r4W5uJVJOl9oClnLAP1OlM6EuTHVxynP6dSQd+tFaH4qUgg4ZV6cdxWcKH2JNmQRTZfaVxB5ehmgP3atHwLfML5cGS5ExJxmXpGg9fson1ZTRNsCKQRsTHEc+ZQTpZe1ev4TDSdKZ8Su9QtG5wZB8fUZDZ99Enhf7FpLo5jguUVAEaaDDjow6BS4FhBMkeA+87PIwA79dZB024rIMPsKpA18LKMntFnktPFN8uKniFGTApPs0P8R8JWxmmibc9ocJYl+n3jBoB36UyluRT4WFZDmwsjJfNUsXJ+keME+B7irxfOx0PduluDqBtayQ3/9xAseS7wgtkP/Vcrfyx5UzJjnBS479CchNuo70feoIem4O+3Q32NesDuNTOW9hoX6HeTtMAddp9mo8/E9duh/HDH0r2lBuugs5KGSfzaHgWcKfIyyhGERulCB7WEUIG2CGEE/BH7ZYGb/D8oTNjVyHWNI9uEXiKGbmnMbBj5mgqxKGIb+B2LXWgslhJ4HHhhj19JnqEtYZe/BAJL9zGuAj1Xi7nUqOtPGCJ+RPlUZpgInxK51/jyWPhgP9kLFucyvLVt4HJlPuLeBv6KkW9GCZSbGI6aDDuYjmhXbZ6PE93Pt7tj4Zp3b6ufNYvw8JDtomZ+vxa51F/IZHEKJowOoF/F7Ytc60YnS7zTZ/e+Bn6OCW7MYYBh4CPhI3nfLyIxehQpsmXfphbFrHe5E6Y+cKL08dq2rUfHn5oJ99yGJt4+jRM1cGPbscQXbbNrkfIswCyiT+fstKvYVFRX+yWhJNxAZoSg5MhVJIe3S7gma+314xX6PpM0CV4bECx43ZKCH0RyUjeEn2aH/+cQLqsgcG1KeVOpDBch5Ajv010Yd8dOoX5edgFvt0N+nlXg88YI37NC/AxX28nHzbOQRm332FXKJMRPrHYhIQUWFrGZdkC0XO809WrPJx/qAvezQ3y7xgiK/XRIv+IYhYx2CiCIPAN9PvOCpkn3uioree6J3uOgZHAbuT7zgXyX7uALFiTtSH1MGzM9+OdLZaShOHYtMKuj5nQbcYIf+Bh3Jwg46WLBIvOBeO/Q3R8WWHRGp8kLggsQLZlZu/D8IM99vjhRa/gXcla2HY9fqQ3FEVTFnAMUtWUetj8boHrS+/lSRtcFCiAtRviubCxZD89ZWsWtt15CzOAHFmWtTl14s85CfDPwkdq2jnSi9ByB2rfWRKssK5vOTGdmhPYDyc9tP8PcbC76IVF5WR9djGMWwv0G5nBEwCgOjVAY66KCDhRudAtdbCHboL44WcC8kXvD8PNj/kajdO5PR2xcFCtuiieIw6gWJQeDTiRfc17D9uqhokk/6fAZNMke0eT7TUQJoe+oyj6kd+sehyTrPmJwCfNQO/asSL/h5fn+JFzxnh/6vUUEk330zSOvdFCvT+uJyELFKHzP/TimXN8qSXPMDJ6CCS3YdutB92x4F2UXSixMCwx727dA/BdjcGk5nbvvfeOe7lnUu7aLWNdjd002tNoOurjPt0H9flU+FE6X3xq51AnA89ed2hvnZvWCTPSpOrQdY3YnSAElQlh3zqdi1HkRs5aIutO/lPv8GsGPsWhsgBtTLwG/bLcg4UfoUkrwbM5wofTh2rU1R8nNnFJheCnwv3w3mROlA7FrfMZ9ttVthJnB4ngll/GEc4MUK89oq7Ez5fNaNfCcebrYT09Hho/Fj7iIyn3yeSDhR+pw57q6ooPwKcIUTpeMZw+9AC7EpjL4uQ4yhU6aDDsaJi4GDKe+gGGb++UkcxGhPqWmoU+q76B3cn9FJkGNj13rCidKrKYHxyPoUWvAfihb9KXUpuxpKpF8GnFgx3p2HxqF8LPKD2LW+AfwJJbOXpFw+dxrqSrmo4G9FeJ32fS5fo3w+zGKxvF/FLDQPjEieG8+tjUr21WX2NRZMpvp7LRe7VndDwqdlmCLNjYigkMVt2XPzQzv0/5h4weOFGyvuK7t3g4gs0xQmoTcNmNWG1OJliNXd+D5OR52WnwSiFvdzv9kmjzdo4s1iOo4+iLxCF0dxczMJpAwzgW+1eI6geLbK0zSDhfy4Vior8iVecDci+DVF4gUzgI/Zob8MSqodg+b6zK93BuqE279iH6kd+nshMszngKVR8fjcxAv+nfv4WegdypQgxrLO70byXVvSIcN00MECh5lD3AV9Hgs7YteyUZ5pTepFmpdj19oNeTPfgmTnqiSXf+xEaUYkPjl2rTPQGnIGEC/EkvdzYawSimLYyYic+350LbLOpnch4u4BaM74Oeoa9hgZg3YhUtVvY9f6EIpD/4DmpPw1raHY6Ergqnm5jm4VTpS+ZnIcu6Fc3yzgcuD++XFfY9daAl3PF8cSb3bQQQetoatWW+jH6Q6awA79ych36gBUYOpDUnmfTLygbTZ0yTHeiZjJRZ4PT6Hk9OJoQTQbuC/fwm6H/k9QUqlowTULWDHxgtfbOKdfIoPK/AQ+iBapZYvkOUgWcFTSwQ79KSihvxt176VZwL5ljM6CfSyDZENa0d2fDayd3Sc79DM2dlHBYJY576ZdPWNF7Fpdb/RMnrbX1of8u9bVtVjJx15OvGDZeXUO+fN5etqyP//SpgfsOWDlakW1Wo2urv8AqzRjG5tg70BgOZSYuDrXop99bpDqhMAxTpSe2sJ5r4CKDCui4u8QeiZfRd01T6DEwZXtGMQubDCJteNQ0ialOok4DBziROn5DdtPQmPXJ9H71odYcx93orTlDrHYtZ6knO0+E9i8inEXu9ZqqGB/vDmH7BmYiTTwt8nkLRYVmIXezcBq5lfDaLzZzYnSPy2wE+vgfxaxa1V5yTwLrDGRi0wjObsdGnvvzPyoYtd6gnL/wJkohiiTP3vUidKNx3Auy6NCQA3JIRZ1L2WfXQJ1zVaxjGsoJgjR+Fk29v7eidIdWjzHr6PxvEhetwjDwJedKP1BxT43Q911W5hzfhqZv/ej6/wHJ0oHAEzn/euUz8FzEi9oJvVWdA5dqBBXdo1edqJ0TDGNHfrbAb9G83weg8D5iRccVrKtjeaX/PWuIZnhlaukoIwE0eGIlLGUOd7FwNFVcYUd+quh4lrZfX4o8YLNyrZv2M9KKP4vek6H0RqkqSSRHfqZOsGW6LtUxWBvoETaoYkXRM323XCMU1Cc0oo33hxg78QLJlwe0nSSbYOS1Uui4vBlE92JYYe+g7pIj6e5PGIR3gQ+n3jB5RN5Xh100EEH8wJmPozRmqdxDqkh0tKRaL2ZJ9w0YgYqfDyIxs8VkFf2Le34dC5oxK71ZUTWKprja8CPnCg9uIX9XIxIUkXKRrWG/5bl294AVnKidH6R1xYIYtfqRd2Vy6Jn7d2IQHQnKhaugTrE3o1io1eBrztRGjXbtx36a6BY4fFOx2YHHbSGTgfXWwNXosTJZOoLzW2B+0zX1BzUrfIJlLy9FriyBXm3RhxK8SK2CwUAWyZe8Efg1op9bEdF4gKxDltiRdqhvyrFxS3QRFy1iO1Bi76P5/9grsk+duivQl328O6qAood+puizh8LMYfuQ6yWKpYQKKF/S64IeQ8ylt6RkcXEfuCn86q4FbuWBRwFHLXY0OzFr7/rrJ4bV9iYC9fcjlGFJVjGDv3uRp8GO/RXNuecAjcnXlCavGsT+9663Aa7pV0Fl7Grq4s647i0owrm6im3Ykb+PJJ1KsNPKv7WeLz/mI6sPZHU1RLoWVgadcFtjwrS34tda5es1X9hhgngVgfecKI0M2OtASfGrvU9pLsdMdq8PMMc4Ge5312MxqbGsWtT4N7YtdZpw0MsRInZovHgRcTcG4XYtaYhJvsH0diYD9KnIkPfzzN2P6wFAidKk9i1NgK2AtZHRfdbOzriHSxAvB9J7K5K/V3LCq+fGktxyxhvfx4xbP8G/NCJ0mdj1zoU+SRkz3tf7Fqnorm/aozPPPzKsE7F30phxsyfNvtc7FpT0FxaJjGaIfNpOphyL8R+Ro+5VTgTxTIbUifZpJT7LA1QLAU9F06U/hnYOnatxVHs9VVEIhrASODErnWIE6WXGH/aP1FcBB3G+FEZwsoRqFDwAup2+3XZ82O66s412+QTPjNp8Gg0RTbaSCSsTnmc14vG3kIkXpDYob8/moMw5zYDzZU7teBzcg6SDM/uVQ9iXG8Vu9aWRWO9iW3PovrZeluT42Yo9Koy6AYiO/QHEy8o7XiEuX4uv7JD/27kF1KGAXPMO/N+Vy0g8+dsBX0oJpjwApeR/LuLFiXPx3GcGAiMhOSN6B2ejp6vqWh8qRrnulAxuoMOOuhgUcD7EYk1n2fKYrpjqC5uDaDC1jREMKqheXIW6gJ7n5F3HjeMVOK+KC/Xg3y0f7oQEil3pzz+68r9twiTUDdxS7mTRRGxa+2A7l8P+r6TqCsxHYBUe6abn2zdsyJwXuxaUxpJv42wQ//tKFZeB83XPXbonw18Y6yWLh108L+CToFrEYcd+uuhBH9+0d6DKv4HoM6Vd1Cf2LcHjrVD/91tFCLWolpaaBWaS1lUdWf1NPl7Hu9AwUjRIr2bemt6Ebpp4uNgtPDL9PCBuV5blyG2zySz3yNQkeqLiLkxhZGdXMPUk0IPIOZ143FrdujvjZhGh6NEQ4KYOIWT4AThQmA/YGoXMGV4iN2e/yvrv/k8X970Ewx3jbj1/8mKW0ae5/tIZjLz5eq1Q/+UxAtG+K+NEYclU5bqHeouGapqtV66utaYgONkOB3J6hSxnq52ovTlVnfkRGkau9bb0XtX5Os1xfzcELvWigtD+34RDPv9KODrKNDtjV3rIeAgJ0ofAzBB+f2xax2PAtl8B+Js4Bojx5jtdzWUTM2/w93ouhxE64a65yBG9CrUkzZZ4vzTFYnzy6mTA8owBckCLVIFLphbgLzX/HTQwQKFE6UzY9faEPkAfBaNjb8HTm6QhGkZsWvtA1yCxqU+5CF0eOxa55hj5DvOv4oSF8+jwkQZqhbs80SP33RcXoO6WKA1mTaoE3oGGTnPzEF+Zi2bejtROit2rW1RQuIgdP1eAt5H8Zw4TAvSr2bfb8Su9VUkZd1IaAA4P3atfztReqv5e6YWkN2HYZSY/1rsWjsi+cde6t93G+Da2LXcirH+BNRFto3Zd9YBdxsqBLwLFX62ALBD/yHgMOMNWoUqWeA5lPuTAZB4wXWm6OSi2Pxl4IeJF1ReV/O8HMTouWsS6k7cHTGHgbldUp9AxcDJVEs0/bnoD6b7aAvEUn4EdcRVKRX0IpnG61rxbU284GU79J9ABdY8hoHrEi+4pdl+Cs57Ekomtooa80Au1XgQfxtdwxlIOvSUxAvmWRe/8e9ZCRUG10CylzegwvgXUKItj2E0dnTkCTvooIOWYHxD90NjzRAi11znROmEe3aXYFPK13LTEcG0Cjehte7DjIwdFzP/viV2rXXHqzJgiJV/QIWLLC/3buCY2LXeVdXd3wZuAMrUZvpRrFl2ftOBfdB6uhUloipMQvPdW7LAZQh2v2J0ziOLrzJPyyI/s6nAKbFr/Tj/jhjS+B/M9l3U4++s2eArE/QVOujgLYlOgWvRx3spZ9BOR8mCNRiZnJiOGNTnUNDFVIK/oEmq6JnpoaRDIofzUQKhSH7vBcS+bhUvUs4qAbX/LlPx94lgPxyOiluNgdA04D2ocLURmoR2R0Wty9CicTKScJybwDD+aSeghMV0dD0PSbygNAiZKMSutRZ6DkYEhpNqKav1v8yWrzzD/cvM9eaeyUgz9iMRYzhjrWQ42g79J1qRp2mCFVfv/y/3L70mg9boR6+b2vAwXePyncrhXOSdtSf1JNAAWuh/agz7+zTVxRNQIvMj5Nj9poC6E9LBfgG4NvGCN0ZvPs/xLXSfG9/bdwH3xK61oROljR4QV6EE7ZfQ+9mDgulHgC/ErtWDvB3eRB2OZV0KU5FkUUsFLpM83QItTjLN8DuBE5wofahom9i11qB5cStDqx5jHXTQQQVMMfxUyhffLSF2rbeh4lZjbJPNQUdRnMCfhjp5T0ZEhqJC/NVoUb83oxf3s9AcMaGIXWtdJF071mRCN4ppXkCkmDmI+XlMu8QJ4/14ifkhdq2lUSdHkS/pk6hjvSlMl/ixFI+lU1Hi/9bEC/5kh/57EKlnB5RsvxE45rY7TnsKdfnnBuYkYgAAIABJREFUC5fT0Bx6GZJlLfxesWvtjBJJu6O4+Trgjztsd9QWqNDVuN8tgVvt0N+x0Uu2AHej6z6V0UXJIaBUvrEB26P4LzOy/6gd+g8DuyVe8FrJNjtREsfO6bKmv9k7+ROmsDRsVAZuRDFxs3XfLOA7+V/aob8ZUn9Y1hx3ElIqmEk1K95C8UKrHUuHoM6pxntRQwWhb7S4jzw+Quu+uNnxrhzjsQphiGuXNpzHNLQ+2MMO/XcmXjDPJJxMN2Led/NE4EQ79F3q5LnJKDabgZ69jodBBx100BQmTrgXeZBnc/yOwJGm82l+dCa9iNbrRYTSOUj+fjGKyTqzEenqcIpzSxYiA2zD+Ltvv4E6uxvXntPQ2vgsRExvGaajfTs0d9/gROlrxgv8EkRqaYy5BhGJZlrsWlZedjF2rQOBH5l/9jL+XNkAkBii7PuBL1MnxJ9ZZR2wiODLFD9vjagiq3Uj9Zs8qSgrZOXXMdOAL9ihf2LiBa0q3HTQwf8cFliBy3R+7IQWka8AVyVe8OKCOp9FBXbo9wIfRh1ML6DJp2wCqiGjzaIEbh+wlx36U1qUKjwbFW3yz8wQ8LfECypZqgYXo4l7C+oT7hzzs3+bi6k/ouemaGE9h2oG9iBKYo0XX6V40TwFsSP9xAu+QhOmhfFQuwexbrME3frAxXbor5x4wdmlG08MdqakSDp1eJD3vvT48P3LrDmEnrOrUQCWvcNHU3wNpqLCyHgLXA9+6D9/XfXqVbYcFSB01Yapqevvd+M8xlwY089PxK61CUpw9qJky91jZG21klSZhorQc2GH/uqIxb4Mep5mA+faof+xxAt+PYbzGBMMk+soRn+PjFF0GJJ9AOZ2DB0Zu9YFKKk0Bd2fu1DA9k30jPciH7Kq97St4M2J0teRTOFxLW6yGRorWilwdQLJDjqYD4hda2NEHKkB1ztRWhZb7F+xm6pxZRlEJtgadZBm3dfD5v/3Q74BmWdTNj6kwP+hLt+JxiWMnynbC9yOOvYHJ8rLzInSV4wES6PPlIUISR9u4zgrUD3WviP7H0P+2Sn/gfiO03akPJmQyTUWFrhg7vx0j/mpI/RPpzyO+R5KahXCdN3vjDw3FzM/M9Ez6DaTlbZDf2NU+Mgn3TYHrkDxWRGGycVtr/ZO5dy1duCut63DMN17As/boR+geXfJqvMwmAF8JvGC+3PnuAKKR/IeZluiOTST4ylCjTY8oBIvuN0O/Z3Qe7al2f4W4KuJF7Tsy5nDDlQX4fJ4OvGCv7T6YdPZ9i4kZ5wAv89JePcglYT8MzYJdZIehAiH8x2JF0R26N+ExtPlkUTXdYkXzFkQ59NBBx0skjgTjWWNccx0RNA8DimAjAl26GeEo/1RrHYVyhnmZWqvpZyAlKKczS3UY74MM4HIidKXzNq/bL7qQn7z4y1wfY7yvNw+sWsdZIhGlTAyhz9D8XKKIcjErnWk8UX9AvLaPAaN7VkX0Woo5ngpdq33OlH6nCGfXomucyNaVRIowzDK/Z2JlH6yzvyNgANi19rPidLrx3mMBYmtaRK7z+my6KsVp2mH6erpplbU4bhrxX4HUHxYZQkzCrFrbY9iwU1QTuNc4LxWnrUOOljUsEAKXHbor4gWgyui5O5s4DQ79A9NvODCBXFOiwLs0F8LXbfFGbmILutkmkn1wFsz+2la4Eq84DE79D3kdZMlggbQYm6PVs4/8YJBO/Q/gBglByNfot8B30u84B+t7KMB70bSOas2/K6GCm7dlLeiD6GiyEltHm8EjDZukbRHhj50bUewb+3QXxMl0JZAHSY3o6BtdUYHVVOB79ih/5PEC2a0cW6LIUkhC7gj8YJmkkqlCaoa1FaZ9coDqJ3914kXNLJtlqTYWD3DWi2echWC5Qbe3OXYx66fevL6ynkOWH1MGZpDF7XZM3sm7TgvtIidKH2YFqWXmuBuYDeqE679NMgcmWTJTYjllL3bWXLmCjv0N0y84JkJOLdWsDl16ck8JqFi+zH5PxjPs+9m/45d62tokdOY4Fmf8uB5BnCH6cr6yzySuHiZ1j05nNi1Fm+UWOyggw4mDmaBnS3Ws7jlG7Fr/RL4ZIHB98oUM3GbYRiY6UTp/rFrbY5IN1nCIfNqeBujfa26UQL7ACQtNm7ErvVBxOZ950TsD801H0PEkgnz2nOi9M+xa62CFANWBP7uRGnLBQCDN6nuum9Fpm2pir910bp31FwYos57Kj6ylR36vVUSe4kXPGlIKY3ksysTL2hF0vgrFMfpk4Dt7NBfvWS+v4mGNdys7l6+uOkB/HfSdNJuC/S8Loc6FVvBMLBm4gUvFfzt4JJzzJJ0/2JkLN6IPuD+kr8VIvGCu9B17wFqExDjvYLeh1bWvHNoXdki8zS7GZEJuzAG8nbo79qg0rAF1YVZl/lc4DJx5jvRWmEWcLWRZl8gMIoFG6Dr91hjgbCDDjpYeGEKLftRPkd8njEWuOzQn45yJY1yftsBvh36Wzd2OBsljwMQgSmTME5RruoYE8dsjQhF70BjfQ8ae481u3mC0XLPGYZpYl3RIvJEkUZ0obxoK0WHM1DMly+WnRa71hNOlP4WOCt2rbtQ7nAq9Tkw62S7DhFJTkDxSxmy3FqR1F4jMrLLoNnmENSZ9llGrv97zM9lsWst50Rpu56aCwsSqgk+/G659djhxf9jUkGR642eydaSQ7NGqFcZ0vsKFcfspk0JZdOZdz71e7AUyoPuEbvW+zve3B281bCgOrh+jjoWsuNnSYqz7ND/c+IFDy6Y01p40ZD0XpF6UjgbqAbRAqUx2dOPOk82QEyJIsxCSd6WkHjBVXbo34wYHssipt/v2+m8MkmCyPyMCYbd+XNGS5hknVtlC8nZiPlzXOIFyTiO34NYQFUYIJewsUP/eNTxlPmFfBFNji9TLoE2hIK5lsyu7dA/DDiFelGizw79M4FjK+7TbyiRguuC/o3e+PexiRfcavbfhZhAA6gIUbUIHXfXixOlD8Su5b3n5ScvuvK+C9LfLbf+pJf7pllLz+l/uKc2vOORp/x5YS84nIDYw1WdXEM0eGWg4u3KlMskfIGCotJYYGSj1kb381mUiDkIJQpvRyz9KgZXYXHcdH59HQW1i6OxPr+fbvScdpn/z/4+gN6Pk9F7ncau9RUnSqO2vlxz/MGcf1WRNsMAsJfxp9kEeAY424nSP0zwOXXQwVsWsWtthVicy6OOkNCJ0myeOJrRkr89iEBzFKMT9X9Fc1BVF3dRLNCNkro3O1H6YOxaR6AEQX58KjIqnwqcG7vWNeMtdseudTRiU7YifzpccH5FmI4k8Q6MXWuXiSQGmO7m28ex/Ruxa92GZGry13Y2dVmcKjxIOWlrNnqmxoKqGLbW5O/A3Nj254ycy1vBZpQX/gaA9dB8MwJOlD5vvOa+CEy7ZfkNea1valbcakSrnYFdKIlYVOB6H+Xdd3NQouS7iLjV+Jz2A6e3Q9BqROIFE5V0uQRJCVWteTNv3KMTL3iglZ2a4ujdiIzUiBWBO+3Qt42sdB/VsXLLHW4TATv0pyKPli3MsYeQD91piRd8c36eizmfT6JkbUYyeMMO/S8kXvDL+X0uHXTQQdvIPIbKsMQ49n0Co+X8piMC7WlojTkXTpT+InatdyCZ/E2QjPK5GSHHidIY2Cp2rZUREfqpnHziBYjwVBQ79iMp4/HicZSbK8LrtOBHb9bYB1FM8pqKCKW/Nf/OYtw8eoANjFd4M6m9GvA11Ml/H3VvqAwzUTHLQcXDx4ELnCh9PHatn5QcP9vvLsAvKo4NQOxa3cBe5jhvQ3Pv98w9LdtmNeoqRTc4UTrm3F8JzkPnXxjHDwPnr7U9m772L5aZM4PeWj0MmN3dw6nr7dJz3zJrdScj44NLqC6CzqINf8zYtaaY88znoaYiEvOeVHiyddDBooj5XuCyQ389NPgVHXsSGojb0p8tOEYXKgpshaRmrk284IXx7HMhwNaool+U5KgB16PJeiNkon4makHeG7UH5we2fuC0dpmRiRe8jrq4FgjMvf0hxZJpVezgGnBR4gVfmoDT2Lng+I0YBM7Prq3xLjgH3cNGLIaKC1VMDaj+Xlk32ddQ4mhp9Iw0Bj2HAs9TwhB1ovTZ2LV+jLyLGifpWchj4TZznH2RbMzbzDEeRIW+nSn2KrmgyfdqCU6UXhW71vWLD83eaa9/P7Q4cI8TpWOVqpnniF1rVcR43hiIUaB9Ero3jfdlBkos7JRjL61bsftJNEg5tXAuXchv5Ivovt0FnOVE6dOxax2EklKT0TM2YP6/1/x7Z5Q0LEuSzgR+XHDMySjwdGgu/9eLkncPoWTLbCSf0MfIZ+q82LXedKL02ib7a4rYtdZEfi97oO85hMaHquB+Ehp3Ml+xzYBdYtc6zYnS48d7Th108FaGGYfOQsWtrJi0A3Bc7FrvRYX0MsnfqajLJV/gugYlRfPJlRpKELyIigP5+bMX+HnsWpui+OjjtCfDMoRYs5e3uoEZE5cEXnaidDB2rZVQ4qYVedRam+c3DcW+B7AAY7USfA7FFItTnwv7URLqu2UbZXCi9B+xa90CfJDR126Q1vyuRsB4VN1q9plP0tVQF/y8ZLf+E8UKRQnCHhS7leEYFGMc9/vl1l1twGpmBVGJLuA2O/TvAPbIyT+9SDVL+RnEAv8RknPMWPMnYiStFyQSL3jUDv3/QwnPIgyh4uhM4LN26O+FnqXfI8nPd6L79JPECxqTabsyuriVYTGUgDwLxcplN2cAsejnJ36AJBWzdyhbj3/FDv2HEi9ommycKBhvsgsY7WV8mR36H0q8YKxF6w466GD+4HWUa1u25O+VMr1NkMWMefQBn7BD/+B8HssoiBxRtVMnSp9Dnuj53/9f7FqHAd9HcVcfilEGgV0LlATGgm9Rnpc7yZCJmmE1qrv0GwtoVWopg8CmNPeRmg38w4nSxwxR7SwUw3chGcSvOlFaRvxeruL4FuWKS3Nh1hCXo9g7y1Oti2QO93Ci9Nbc57vRPPcp6nLOZxv7hK9MlIQ36oy7EBVapzDye6bArP6eydMP3vxAPvnMPXzgxb/TNzzEY4uvyEWrv4e/LWGPOA879FdFnXRlxKRB4FNt5m4zL9siZIXSToGrg7cUFkQH19qI8VfEOrCADcezczv0l0ayd2ubY8wBvmeH/pGJF5w3nn0vYKxd8bc+YMnEC95f8LdrjLTh8dS7JXrR5No0obAQYm3Kg6geqpm2rcqRNcNaVLNi/4sxwy7pNmtEL3W5yaLP9KH2/EIY74drUQK+rBA2DfiGHfrnVch+HIoMWL+G2slfRYyPk50oHbZDf39GewhshQKyfyFGfsakn4HY9SeXnXe7MAyrcS26Y9daCnWOPu9EaVXSaDzH+DDyzbDQPcna9D8P/AX5v6yDrvETwDVOlOa7oJ6l/DkeMtu1ci5dSPJrd+oB4abAl2PXegCNtY3jcH5MnmZ+9xxaYEyh/g7NMucRFRz64+gdaSV5C/CaE6V7m3N+iOJ3aypKcI+5wGWSzF9Cz2Uv9UB0GF3Xf6PnuOg9msTI8SPr5jgudq2XEFNtwqUyO+jgLYIPAp9m5PwxFY0pv0DEnCqPoGVj1+pt7EhyonR27FrvQ/Jgi6P3NkWywB9E7/TfKX6fe5Ekzb607zFg0aKfT+xaSyL/0n3RmD5oum6ygkEreAaRE9rxEJqGOn0XqgKXE6X/il1rfZQM2Acl90PgsjYkaj6OGK67me0t1AW/zzjm9SOBexlZLK2h+KbSQ3UC8H3UIZVnAGdySH8t29AkaX4M/PivFx1zK7DjOM9lErAtKhx/seH3P6KcpTyElByGgB3t0F8KvY/PJV4wZIf+ZEOO2g1dz0uB29v03J0IVMlb9jDa62wr8/tBNFYNAl+2Q/+YxAsystgnmhzzo8BZiRf026F/Mupqb7yGw+iazDd5Qjv0F0dyYkXx2TS0BpgvBS5DWDyVcmLDKeg+dNBBBwspnCgdjl0rQMTBoqLNCWPZrxkfqhQ2etE41pZcWzM4UXqhIdJ8CknvPgD8zInSVmSUW9n/NYYIexINajso59LqXPAi1Xmoxk7sxxExtijW7QUeoXmBawj4FYATpY8BOxlpyp5cB1wRbqdcyaaL1rqRdmNkcQvqMoeXx661Qm4NnjVL5Oe5z2K6y1o4ZlOYGOyI2LWuQcTmFYE/ozxgdzfcV6Pr2Dd6p+x43jo7dp23zqgQ7c4cgeqdVHuDP5p4wU1tnmazXEwrKhKLHOzQXwmtMxZHvrttKY51sGhjQRS4nqF8IB1GbMTx4HLEXMgG/ixpe6od+n8x2u6LIv5BeUJkEJmfFyLxgu/aof8jZNrdA9yWeMG/yz5vgoq10MTz5EI2IDQrYpWhn4lbtD2NJqAiWZEB1L01x8iXFLF08phpzi/TjM6QybvM1Zg2i1MPDdpDqOul2f5BCbLD7dA/s+h+mkn6fOD82LW6Gtkt5nucUXCcLvR+3YfkTrJzugy4frys59i1piGG7JLAvU6UPjrG/UxF3Tf7oPvWF7vW3cjXZcIKXbFrLYGKW43XKbunPwLWcqL0rzSXUbodseGmM7oo2w5L/UOMLG41YosW99GN5BIfQ9dudSS9eSFwZkFxDuQn0WrANBOThDUFuarutDVi15raQjA9CrFrbYyu+xKMnve60T16Fj3PjYmwYXTNhyknZZwB7G0kwTpmrR10MBpfpnhM6EILwg3QuFImZfNakdyeE6V/M4mCHZEHzlPAbSbhshsaX4r22Us1q7EKXUjetBKxay2LOtPeRn0cn4IW3o/TPKGQorHxCNQ90i6qEvoLDEaS8lTzM5btZyIjdht1Pv0XeGA8jFzT4bMVIlHshO7XLYCfeMEjY91vi8f+rR36P0TJkYyo1I8Y03u1HH93dV2KigFF79kc9Dz10UQRAD2jriEFZnPtrUje+6PUC62DZr/7NcZ6iRe8ipGntkN/eRQfLmu2q6Fi78126O/byEK2Q39llJBaGXU8XZV4QaU/sFmrbILe8YcbY+UCNPUaziGb73sb/tsLfNcO/dsSL/gbzWPvxvjtFBTXHW+2s1Cn++fms8LIyujelSW9JsI7t1VMR50IZWg1Tu2ggw4WLM5AxM2DqRdteoHvOFHacrd7IxIvqNmh/w8U2xXhZRTjTTicKH0WFezmCZwoPcMo5+yI5oLfO1HasmWIE6Uvxa51JyLH5Ne0/UjFKcOZKBeQn69S4HHjTVbWeJDhc06UDuTOYQ6teYWFSDKxkSQLypf9yYnSVmKsgynPK/QhYs7tMDeXcEzJ56chosmEFLgyOFF6N5rPRyP0X0XqOXkC1UykXNGIZvKUY1kL3E15MXQm8JaTArZD/wjgO+affeh7Pm2H/g4teuN2sIhjvhe4zEIyRgvT/EJrNuOQs7BD30Ym2EUv8hTk47CoFrj+gCbzoqT3EE2S3mbReUWzg9ih/2Gzr6XRAPyaHfpfbkWywixQv44KCV1Iq/ekxAv+0WzbNhCjhWoRm3kQFQJtRk/kk2ieUGoVN6LBsuheDAM/Mf+/ecF5FKEPybr46Np1o6TNCTT4UtihvyKS91mqxf3mcSJ6Dyo7qwoSRWtQzqKygJ0SLzgAFbYmBLFrfRQFRZn3SFfsWvcCe42BRXUdCn4mU1/UbwfcG7vWuvmgbRzYh+qE6SdpoWvSSCbtioK1PhQUDZh9H5Z4wWMtnk9VQNgOulG3V6Y/vleTbqVW37PZiPCQvS+bUt1lmRWb2oLxGbsFjWll++9C3mf571VD7/suFYfoQ4nFL1PiZddBB//jsCv+NoRkes9Bi738Insm6nIphJFz+S3MlSX5QOxa70Lzc1WM+yYqPrWDWcDvnCgtJRSZ81gKFbeWK/jzVDSeZgbnecxEiZXTs3E2dq2bUOdSqxhiHH5ZVYhdqxeoLWhTauOlMGF+CqZgUWWyPs+QeMFX7dC/DHU5LofIGJca/6ZWcQXqNstLA89EseUNaI7KJJ+aSXqfaBiwMeoS+zRSIzgEva/3AmckXlDVUR6igkoWE3ShmGQnJItzIYAd+h5ad3ShWH0GcLod+tslXvD3oh3bob81ijmXQfP2JDv0LwS+UkKuugjF1FVJvFbQi2KrL6O4YveKz/45+x9TqDzXDv3zUVF/RpOC3LzCf6hm/k+0R0kV5lBNWJyo2LyDBQA79FdHxYlnEy94agGfTgfzEA2dLN9F5KEU+K0Tpa+Mc9cnoLkhv5adifJLCxMBuy0YH9eWiNfG6uIwJLv9d+Cs20QmvQ/lhDICST8ipFzUcJw/xq7lI1JRNse+iYgoe5iPvU753DgTeLiNrzYCTpS+YqTIf4FUUlJzDrcDH2txN8tX/K2HkYSuqVQTvOzYtbpblIIcNxIv+Isd+tug658pbd2G/D7z1/V2RuchMvRjYqZ24ETpf2LXipDccmPuMEXPwUVF2y2qsEN/O9QdmfftWw+pGuW79Tt4C6KrVpv/c4Md+quhQtMSKHE+ByUvj0u8YMwJQvNQ/5JyFvCTiResM9b9L2gY/7I70CS0GEoQ14CDEy+4ZAL2/350/fLFk5nA3okX3Fyx7aqIdbkE9cXsEBqQ35V4weNtnkvWHTQrH8DYoX8Ao324amig3gQlynYr2O1MYPvEC/7UzrmUnN870ATVhwbOmShw2C/xgl+bz7wXtXRXGazOQR11u5htetH3frPge/8CdeWMpzA9C1g+8YLSIpG59lPRtR829/b/KA9+/pN4wYrjOKcRMN4odzH6OZwN3ORE6V5t7OsdqDW5qCA4AzjYidKfjfVcc8c6DgXjZZJXP3CitGUPODv0p6Ok5hYo6XBx4gUts3di1/oj8sWYSPQDn3GitLRYHrvWESi4KLrmmSTPDDSWrYwKqM+g7q2yQmoK/CqTMmwHsWvtipJ/VVIXVfgvevabFQufdaJ09TEeo4MO3rIwTNVPUTx3zUYLj+dR/LEt9bFjJpLo3aOogyt3jBXQ4nAlNCfPpr7AyRe2+xHDs0weqwiDKKH+hZLO1cZzOQ0VG8rmglko0bwSIzvBB1En6fqNBaTYta5EnS+toh/YrMp8u13ErvVuVMB/F4q37gSOyMzbO1jwMDHDN5AMz+IobvtGI0HNyLifjGSTqwgl2fuTkWs+mXhByxLBdugvg+SNi5QOAB5LvGADO/TXR2uHfHxZQ2zlNfPS2nbob47iunyhZibyyTq04HymA/ejhHur8sll+E3iBR+yQ38xJBVVtr/XgfUSL/jPOI83obBD/1q0lshfv360nvzpfDyXG1DBMz9WDqEi70Hz61w6mBjYof824EpEGhtAz9nDwEcTLxjle9TB/IFRY/koIiksh0gKpxlyx0IJk4/4BpJObZTz+z5wzKJc4GoVduh/AfmfZx3emcflobfdcdrlqEj0IbSuvhipGIy6Lqbr/eOIcLYEKgL9GxFYDkSy1kUE1QRYtZ0ueSNF/Q7gBeBOJ0pT01m1GSLI/M2J0mfa2N89aDwpQg1YzYnSf5nPdqNu6bI1+6tOlDb1/Wo4djcioa8EPOpE6ZjfF/M8U/Xc2qG/C/LE6qO+ZupHJKX9UAyzL8pp/AG4ucJ+JPsOFiK5f9n8qhfFUJ7pVnzLwA793yBSclF8OxtYuzMPvfWxQApcAHbo9wF7oQHrJeBniRc8M859rgk8Snki/reJF3xwPMdY0LBDfzLwEdQd9By6bhOyeLJD/0E0+RThr4kXlMqH2aH/MzTw5lmhNeCWxAtGVczt0J8KvB0NOH81xZRJiL2cdZ+8jlrfg5ycyT7AaWjCySSDvoQkil6k2M+jBtyQeMGHyr5HO7BDfwrq2tkQeSVcnnjBKw1/XwxN7mXP4yCSKtq+WcusuVavM/6uyzdQYLgjMsf+G7q2t9uh34N8SQ5DE+csJFv4TeQD4RTsbw5wbuIF+TbrMSN2rcvQ5F3EMJ6NpP5KJTZz+zoUdU2VJSB+6kTpJ8d0oqOPtQfylygqpMwADnOidL4xZWLXOhXJW010p+4fnCh9b8Vxl0AMs+Vyx+4HznKi9LjYtY5HvietdpjNADZ0orTt9vzYtQ5BY8VYk1r9KNG2NtXdaW86Ubr4GI/RQQdvWcSutQHqPs4XkwZQR9Ru5nNZJ+W+qEh1FWIBNw1UY9e6CxVfisa7QfTu1tCcdSnwOdSd+V6quzoGkCzxe50o/W+z8zDn8gLF3VsZZqIC23YoMTGHut/mJ50ofTG3v8+iOKioc30IFSBmoTnzdWB/J0pLvTvbRexaW6MuuTypqB/YukWJmQ4WItih/xmkmNFOl/csREw5NvGCP1d90BSu7qecWPJK4gXL2KH/fZRYK3pv3wQ+nHjBHQ37tVFXWdk7OxtYsag7ysTkh6NutJVLjtkMs1FS+Jtmnx9F41TZZ09NvOBbZTuzQ38NJOH4eJsde2OG8Um7E8kDLkY9Yfoz4PPzM2lsPKL/hJ7DrOA2gLoLNku8YJ745XYwb2CKKI8gr+HGeHkIrZPXTbygbSWGDsYHk1i/Esn+Z2N+9t7vk3jBjQvq3FqBIWZ8AOV7fpd4wUtNNnlLwA79lRcbnPXkpOGhya/0TWO4awQPYDawejsSt7FrbYKIYL0onsuegR8D+6OiVz73Mgf4qhOl57aw/6VQp9Y7UdzdheLEvZwova/V8yzY73Mo31eEFFjXidKnGj5/Norx8+v+Wche4dgWj7spdaJ6DcUMf0Gku3n2DNqhvyFSHdsK5TTPRUWvbyOli8xaYQYixTXNI8JcL/JVUZHvLfkO2aH/FOWypq+jmLKpzHwHizYWhAcXAIkXzEGT7ZUTuM+n7dB/CA2sRZq0i7x8VOIFs9EiZEK6TjLYoW+h7qcybGSHfp+5b0XYm+KCRBcynp6UeMGAOVYXKqT4aGLqBl43MiVfQwN6tnhdGskebogmXwASL7jGsBCXBgYSL5hh9l2VhO56reN/AAAgAElEQVQCtq74jm3B+ANcmv+9KXzth7pn7kfPYz4xNAdJtFzRjHlhsCET875ORoWFbNJfGdjWDv2jge1R8Jud62KI7bEFChRuYKSG8iDwCi3I7rWJzSiXzxkA1kWso1bQjxZWRRimud5xO/gNddZQYxRaQ9eqrbHOBCIfBw5Fvgg1pKV8ghOl9zfZthsVZMbyzMykuqthmaqNnSh9PXatdyLD3F3QdZ6Burq+H7vW6ii5207B6edjKW4ZPEW150Qr8BCD7j0VnymUUuqgg/91OFH699i1Pg78FI1jFnVz6UbpvalortkPvbMHADfGrvWZKn+C2LXWQfNG2XiXzSddaDzaxBxrL9Tx/QlzvD5UzFoBFZMGESP2aCdKZ7TxlZvJoFnANU6Unmu8ulYDnnOitIysdBla2E5h5Nw4gFjYHzHf6Q0ki7Zk7FonoJipG7gWOKNi/81wFsUenNOQb1VRx3wHCzcuQsXdj6C5sRslzPoo7zycgrpt3muH/s5NkgT/pDr+yKSW16v4XBfy/byj4Xfn0rwg/XZUwBkBo1xwIpJf/ARSgmhXxnnYbJdhEL13ReSWySgpO6rAZRQ5LkPffxDotUM/BA6f1wWAxAtetUN/ExTvfxDFyVcUyCXNcyRe8JQd+hujdcneaH64DDjzfyWJ/RZDRp7Mr8N7UCH3w0jqtIP5i13ReqxxvLPQvP4zO/SXX5gLj4Y8PGH5wkUBsWut89PJS9z4toE3J6dd3cy2eolW24ZfrbQJdHWBxsr9qJDwzu2vCxVrFqeex8megc8gG4Xvo7xQI/qA78au9YgTpXdQjV8iolkf9Xl6MeCW2LWcccSgZTFJhnxM8HWU71uPOjFsBuokPbGVA8autTR17+5GbIHWJVs2I9/FrvV2lD9YDsUxl7WyljBdlW7j7+zQ3w0RdBpzGYsh8vnFiCxXCSdKZyOC0FsZT1Ne4JrE2HzMOljEsMAKXGOBaXtfAvhnRaFlX5QEXhq9+IMowX1WlcReBwxTLzZV/b0MzXx3eqjrqR+JiluNgdZ05NmVMnqimgrsaYf+Bo16/IZlmE96vUn1c92f/4Upiq0MPJF4QauFk0IY1uqdaAKajr6zhRIHGYv874Dbpnn5R8ZzXg3IS5JkcoTfQ/c4f+2noALdMEqGnGT+Owe4HPh24gUvMrF4DhWxitCLpJ1axS9RQqQIhQXKscKJ0qHYtbZHvgxvo55MnQHs7ETpqGcvdq3lUBCzEermu8iJ0ueN3Na9iGnT+E7uDGwXu9b+TpRWGYN+AiUu2sEwSkDfhTTPi96jYUYmmwrhROlzwJ6xa01D78F/G/xkPkrzYLURsxBjaqy4Bb33RZ55oO80TPm48RrwRydKt41d63wUrOZll2YiecoOOuigAE6U/ip2reXRGLY0eqfmzoFm8f0btDhu9EvcFbgzdq13VPg+rYXmpLLEd+N4MwWNtyc4UXok8Bkjq7oK8IITpS8bgsB0YOYYvabuRoWAovGmBnwvW+ibrrDKzjAnSvtNF9VV1P27JqPr5RpfytsAzDX+M7rG2TU8FDgodq0tGmVhzDXfCI1njxT5UcauNZXyzv4ulMDvYBGDIVYdaIf+2ShJNhWtrz7RZNMsZvwhsEHF/vvt0L8IEbmKfPVOMv//CCJXla0hnsz+x5DHqvwwod7F2AyXIxnRsme7hmLNxVBskCV/987J2/RRvf55Nf8LO/SXRfJAS6LrmV0fF62L3BbOf1wwihi/Nj8LFOZ6HmF+Oli08W6KO41B79K2dApcCwKfo/y+WGgM/u18O5sOKhG71orA/SvMfn3JbqC3Nszk4SE+//TtTB4e5KpV3gmaN5ZtY7fvRh1aRXHpFCQjXkZgnQIcTcX6P3atjZC6VJHHYy+SRR7rOvl6FEsU5Q66kZrSo9kvTMy8FVo/7IPm8yuBm3fY7qgaIlUsB/ytQgXLpXhu70WFsy0RSa8QsWudhGKMPvSO7QGcHLvWNmOUDz+GYkJOH2okWL6dbr63ME5Hz3r+Wg0Bf0y84C0lydhBMRaJApeRMAipt7zW7NA/FfhOvvsl8YLn7NB3gD2R/MsrSMav0hT8fx2JF9Ts0P8lYjTnu2dS4PpGicAC3E95d9STiRf0w1xpymMpH6TLPAEsNFFVdkkkXvCCHfoPo2clv6/ZqA0bcy6rAVejBM8cZFJ9C/IaaFsqxHSm3YAChOzYWSI8Y6M/lHjBv9rdN5pMx4shFAgUBQhdlBtPTwN2T7zgKJonFyYCZ6MkZ/4ZGQaecqL0sdGbFMOJ0v/GrnU0Ypk3MtD7gauadUI1wkjjfAZYHwVSP8kXRJ0ofTJ2rbXQ2LMOah3/XVbcaUTsWh9ArfzdKHicDRxrOh2+gBKu+XuVJZd+ErvWbyqSr0dQzUxOGfmeZ3JT33Ki9BljFFxk0tqN5Cpbginq5Qt702leEG9EDRizx6DR/v4AYmJlhefMM+9VZPheNhfOAr7UwNI6BL0n+1OXBusFjnGidKGW+OiggwUN411VZqq9JWJG5jst+9BYuBsiLBThWdobUyYDn4td6ygnSmumQDQ3tjDm0+ORC/smIoLku55qKAY5rmpjM4fsY87zNuAuJ0r/AWxp/rYi8IQTpUWL2ZMRwaLxekxCY9zZGFPx2LV2An6Ckuwp0BW71reQjOxb3tdivDAFx6OBjREj9Azg+kXt2iVe8CDywMrk9vagNb/KNezQtxMvSCo+81UkK7QzevYzIsmxiRfcZD7zA4q9P4aRL989Db+bZvZThf/SQoxiJNH/SXmBaxZwPPAEWiP8B62DZgEYSe8foQ7UMp+xfvOZPDLppPwaZSqwnx36Xx8v2a6DDhYQXkNrmSKyyRyUk+lg/qOZ51CVV3gHFTBqKzujYtNDTpQ+OAG7PRyY2p2bI6YMD3HgM/dw3UqbMsfqfRN4oI19rojm1SJ0oa6XAYrVTrpQ7qMKm1bsfzLysRorvoOkhYvQBRwau9YJTpTWjPf6LihWuN6J0k9lHzTdwtcgUvsQMNkO/V8h0vnM3H7fQ7maTRewmR36jyPS695ofLsYuPK2O07bBt3DxnFwmvn3L2PX2mAMsWJZVxLovq2KbFH+p5F4wc126J+Bmil6UGz5JpJ6/NiCPLcO5h8W+gKXYbrdj5Kt3dQXEl9DbbZH57cx3V1XUa6L3kExjgTeh65rttgcRB0ozTyWfOAmRk8GM3PbrkG5/FyV4TU0X9hmOAgtiqdQL9rMMfv/uh36nwcuQD5fy5nzySahnVCRqkqKrAzvQQHOiO/ROzzE5HSwt79n0i7/POjUX41hv6CCys6UL6TzyGQQU3QNHkELix1LPt+so2bcSRs79JdHQcWzTbSCf406qw6kLp3TjxIO+7R7XCdKz4ld6++oZX191CF2JmLwtnrueyJZ0G5zTrsDvh36H0284Ibc8WpI4/r2sv3FrrUYSvQ2FqGyoPJyNDaXvSeg9/NdqFOgCCtWbPsGYl9/xuynB3mxHWSKWxtQ/Zzti96fUWgwY7WBx5woLZK8uYt6R1URMnP7LNj8SKveN2VwovTR2LVWQUHohugZ+AtwM+XjzpvA3k6U3tqwnxT4tEkEb4+CypudKJ0v3hnzGsYY2Ecs29eQB1/kROlCK13SwaIHM8YchcawF5FM4NqUjzuLoU6hUQUuU6j5GnWPrWZxRIbpaIwdS4dWJZwo/VPsWnuiYtYy1Dvgj3Wi9AfZ54y0oovG63vQ2H8C8hPtRmPzkcAjsWt90InSGcZn4CnK8XGKi30WsEvsWn3I/PvnjI7XTkLj7/kN32Vm7FoPoHuVRw3FfWNG7FoOmotWRbF+5ETpq7nPbIzG7l5zvLsXZCHJeKKdRV2yeU1UoP0xSmosqsg63su6nRsxTDkpCgAjS763HfrrovlyFioSvdLwmafs0P8kivlq6JrOQF1YO+f8oF5BpJQVKs7pE214SL1ktimKf1PgtcQLfo/IMXmciDrfyqSP+1FHxK8BDPHyIuoS+mXXdw5iH1/b2leY/zCewJ+j3p33G+CMxAs60j8dXE25bH2K5Cc7mP+4lWICEWgcL+1E6aAcsWvtjDqDutA80hW71qPArlWy2i1gD0ri4eGuLpwZL6SPLmG/jMbeVvE3yolgQ8gLce2K7ZuN79l8WoQasFTsWu8Dbh9D/NaMGL4EMDV2rYtRcavPHPNbsWtdC7g7bHfUUsAfGCnRCJJNvQLldRrxb0aTgTMMPbjkaikixi1JPZbeCji03+p7flo6p6g41o0Ie+9Acont4ClGy0dm6EjvNSDxgm/aof9TREZeEilr/Srxgglf73WwcKKrVlu4yYZ26H8TJS+KJuXZwEqJF4ySgOhgbLBDf2XUBrsPmgCuRRPokagrJUUFoGMSL4hz234QJUZWRBPLK8ChiRf8ouEzKyF91LJEVlmCahawaeIFj7f4PWzUGvwhNJktxcjF+Bw0aRVNXP3IsLEdZgx26B+A2KiLASw5p59Dnvwd7/nvk3RRY7bVO7jY0MBXgXPLJnfDCt0RFcoeNjq82KG/CvB/VHsjNWIOsGpju7I5v/MpLizMYmQBuRH9wAcSL7i3xWOPgJEWvQQlOOag+/BL4LPGE2EUjHTSu9ECelkUnF+yIAoJpsj+T4oZiTPRGNSWl1fsWp9GCbKie1GWcGnE68A+jcWX3P5vpbyYORu9o/3I32KGE6Vzjbxj19oBJT/LGH2PO1G6nvnsJMRunoWSNr+m3vlloWf2Q7n9dwP/z955h0lSVW38N1OzeVHikoooFJIlI5IkCkgQ4SMpVIGAIEGUUKIigqFwFUQyiFUIKpgQEUQJsopkBBREC5FUoAIKy+6EnZ2a+f54b2339FRVd0/aXbbf59lHnO6+91a49557znve8zjKSqydk8+h4OMG5r9/UOvsHC2YrK6fUHydTztRutFY9L0owhw8foWeSUZ+6UIH3z1aQa4WRgOxa+2N5l31e9aJavJsRL6tlyJZv7Nq2jodZVnkZav2osN8kSM5caJ0tWbH3wzMPpatc3+tnkOxa30GBZQyhuFcKkWsa/eaHpRxfBR1ELtWmdR0H2Jy34QIM3n35g1gpeqs49i1tkGZZLW1RDuBbZwoHVb9wdi1TkHZ1dk96DJj3NWJ0kfNXhEiezSTeelEGUd7mYzArK13odpLb6G1e0wON6Yuwyvkv6ddwPZOlD4+Fn03Czv0d0HZhJsie/xS4LISiXfs0N8A2VvT0fMuItq8CqzWYA3ZRsa6DCLPzEAZWLflOSMMQe1b5MvPHJd4QdhEn9sCd5NvV3cCK2bqEzW/m4yceUUknbcRge4mkym2H/ALGgu+vw0cnHjBbxv47rBg1Ca2RXbgXxIveLaJ305H8tlrU7lvvWiN2r5J6fUW3oGwQ/9ktK5nBIABtDZ+PfGCry7MsS2OMGfQD6G1+O46WbNFbcxAtXdqnfsZ6eD/RmOsNX2ujrJzt0B+n8sTL2hYAWRRR+xaayPycO3+0Qs85ETpjiNo+88oO3wIuqwJnL3RR+M/L73abs0qAsWudT/yreTBQz6X9zM0AaITOMyJ0kJJ29i1shISRdmCfWifeAnYJU+BwJCZdkfk+luqa2/HrvUmClbk4U2kUHAm+UT7L+2y0xkTgC+S78vpATZKvGABecxkgt2f0x7AnN12/Ox9/W3tuzP0XnUf9PIjs0/8571FRJzZwBFOlBYGJ+3Qn4RUK1ZBQbTfocDdjxlq+/QCv028YN+i9lpoYUnD4hDgehRtjnmYDRyWeMESJQ1lh35bxlC0Q99CEepPIabw74GZoyXJaId+5tjIDFWo1BXaKifI1YYKprcDz+cxKe3QfwylMtce9rqR42BVBm9AXcBPEi9whzH+FYEXKGZZ5mEecGbiBQ0V7qzqaxuMY2By2sv3HglZft5cOgYTWjqB7zhRenbO73dEgYXMKdeBMrdOQmnoH0YM7wHqF8aeDyxfLbVoDuX/AFZk8Ibcg5jTL6FaX9WbeTdyAOzXBCu2+pqy7KC1GMwc6kF1QrYfTrvjCTv0TwW+Tr5R1Al8JvGCPBmaQpgMoC/ReLZBLXqBGU6U5gbWqoIVtYZZN3CjE6VHl4xtZXQYKXI034iK0Z6OjMUBKlmQbQy+pj4k8bNhtcMxdq1lUNBzd/QuTELrzJEjZL01jNi1VkXzoeg6b3Ci1B2PsSxsGEdyQn7mXyeSabxufEfVwjsNJnvoNfKDyl1oX8rLCukCPlCdEWrqFD5P/vztQ1mqr6NMsdr9shP4rBOlVzV7DaOB2LW2RLUMGiWsgNbJGU6Uzold693ALmjdnYWc1Z9A9zWrKZqHf5rP36Q4sN8FbGQkEavHvBUwE2V3DqDslDOcKH1qaBP1Yeo1PEz+vjobPdv1yZeu7kb1Kk+KXctCmvvHo32xA8m0HN6MBHET4z4aFWLPs8FS4BInShd6LSE79F3gMga/YxlhYfcyJqs5V+yJHF2fZaicXhdwTOIFN47ysOvCnDHOQrbH/KpxnZJ4QekeZYJoHpI7n40yqvaiUvsK9AznAUclXvDTgnbWRfZrUYBrduIFS5vvTkXzrTTbrfq3wIyyIORIYIf+ZijYtgyaxxOAB4GPNkIWtUP/i0gNoXbdHQAeS7xgq9EdcQuLI+zQ/wA6I6yP7OxvmWzIFpqAHfpfQGUdsrWuA5E+TmqWXGCH/ibIQW4jG2kSIhsdh4Ip6yJ/yQMjPZfbob8n8mdYpp8+tD9/PvGCb4+k7bGGHfrTkN/lWLQvzAK+knjBIFsndq2LkO8tLyuqG9iimZIKNW1nBKgh9lFfW9ubHQMD70P1MldD/qGb8up857R7OSJf5Pkenkf23R+RP3E6led2JXB6PeKQqUP+K/SeFhHZ5wOPOlG6XdXvJqJ3cTf0zvSbMV6C9vsrUPAt7153Idv0FPJLKwD8Z5edznga2c15mAN8MvGCQRmmxldzJhU1oV6g78Upy37c2/qYH1Gwr0+b39N96/2XZAo5tehBNnauEoPxBd5i+puAbJJ/o3tztBlPu+l7LnpuO1dnxrfQwpKORV6iEG0SRWir8/k7Cnbo744c7ZvZoT+PiqGyLZXD2ZrAoXbo75d4wd2j0O0lDHXCZAXYvwocXP2BMYpeqNOmh2TKJlPZrLqQ82VH4FTgZMQC+TfauBYYRIYVdDxi6/4duDLxggWFqGuwN81LEM2nsSLVtXgYOYnX3ePfT1vvnt9VG9wCmNYPn41da2Z1ZorJ0LqNoQfmrRCD5A10T1ZFsigro4y67Rk6jwdQIcXq4NZHEOt1eSrGQ+ZQvAU5x7pQyvTppv03ECPmghEYu/uatmqNksmIVbwtYoMuylidfCccaN4VORPL8DdkmDRS6yIPbcCaRnZvReBJJ0oXZBw6Ufo7k93wLWQctZvf/A4Z5INg2O/nIONpOnIAZwZUNeah+fhplDlRz0HbgQzw3Y1M5OtOlM4z7/6+sWutiO7vy06ULij0GrvWDPO7l5wofb3+7WgeTpS+ErvWb5Ajr9ZZMw85TZcUbEGxs24aWm9bAa4WRopdKA7qT0FZXGswOHjQCfwwR+70I5TXE+gBzkOMzxPQvg7ai64kvzZOUzAM3q8haRMLra9+gTRrNU6mcbnhDPOBVWLX+jCSR8uuZxqVWoCgtSsPXahW4EDsWt0UB7imArfHrvV5J0p/nv3RidJHgJ1NMHxgFDKkLqF4X3038L6S304BPOMEmonslylV7a0N3BW71ia1gbpRwLsoPjtZ1K91MuYwQZVLGbo/T0UyVfsh52MuTL3d24Hb7dD/GVIm2BK9Z68hIt3n7NA/GxFerhgrJQ0TlFoRSBIvmGts0cAO/UuRbGZGYivNDLBDfx1ka06lcl/2QASuQ9GctFHg6puJFzxZ0tx/Ka/5V03S+Wid72boR2uWN4bBreXQGlWbxfEBlH3fiDT7Jyiu0bKRHforJ17wr5zPW1iCkHjBHymWUG+hAdihfxiSDJ/M4Dn3SeAwO/QvBi5qVEEk8YI/26G/IVr/l0Y+h8koQLImlaDCa3bo7zNcorTZf37K4P2nw/z7mh36t9eSo0cCO/TbkTTzSaj+6IPAN4aTLWbGfj8K9mX2xEHAvnbo75V4we+rvr41xWv7fCSHP6wAF7JPj0PPpdpW7OoYGLgB+b7azGdzgZmxa+3sRGm9DNr9KbbBV0Tvg4MkoXdB5Iwbitq1Q38nRIJxgGfZ6Yxv3jNr5gbIz3CkabO2vwnA+2LXWr8qAPh1RHittQlPRPvVx8i/132IWH4RCgQXYcX2gf5Z/W3tRSpRAyj7fxCcKP2y8ROchM4mjwCXelsfMw/5VnLR1TGpjQrhqhq9wAMlwa0Z5PsC10KksvWACPlel0K22N2jlUnfQgvvFCwOAa7voWyfPLZkP0uIAWWH/oFIoz4zGKagBT9zXGfIjIgf2qG/ijmoDrfPpdC9z0M7yihqGsbI2hhJCO6DHC/XAteYIo/nAufaod9evWjbob8bciZtQSVrZE/gRDv0j0u84Iac7sq07otgUVzMvhCJFwzYob8XcO8ur/3NntLflyvt0m1NnPjD1be5aqbkWDIUsYCy8ayINrX/S7zgKlggw/g4MlSzuZwFrk7KfmyH/kEoW6bWcGhHrI9qlvOFwIXVWYIjxO4UB3EmoSDdoh7g+gsyIPMCAHNQ+niz+AVy8DVS6yIP7Sig2oOREIpd629I9/s1ACdKr4hd60Y0T6cDs/KkpGLXmoKewXuoGNJLI+NtPpVabhZwFLree2k8+2AKYnTNBwZi1/oucrTOMxIFC2QKYtdaDr3nCzK7Ytf6NaoPNsT4HAV8HMmwbo+uMZOH/PhwMxMWUyxFcbAAdMBooYWRYmmK17s2lHH1OfNvXaS7/03y63ZMozzQ8G4ThDktdq2ZyFYYAO6oDqYPFya49RiaO9levwewfexauzhRWlbTYh3KayzmYQIihJzH4GAONW1NQteZUiGA9aGMtSwjJQROoziz/b3A9bFrreZE6cXVHzhROuKDdOxaRyCm8EjQhpw/x1FcV+SzVNlCo4T7qbDfazEXBUwWNj5GccbQdEQyKwxwVSPxgieA7UygaRXg18j5lb1/6wCfskN/y9EMbBhZru8iaa5eoMMO/e8Dn068oMf0+x3k+OkFJtqhfzmST8879/wQBR+r5TunI1b0LxIv2LPRsSVe8D879GchB2DtGtSFbLsMa1LfxpuLAtOPI4fiWCGru1o7nomIOLlpncAelKtH9KH1sBXgaqGFkeMc8udbG7KlzgION2tvXfl+O/SPQGThSaaNr6H1cDkG2xDTgFl26K+ZeMFwSOQHUrz/dADHmLGPGCa49VNke1UTvT9ih/4hiRf8qskmj0d7S619NRW4zg79tat8Iy+iLOe89b0NEbSHBSdK5xppaB8RT6ehM/81yF9WbfNMRzbf7bFrrVHHRiuzOwcAy4nSXkRcKc3QtkP/dFQzNlNvcYBddtnpjC8nXnCWUZIpkunrNd9/xmRvHU8+4WkasleK3qcUZbJ1mX9FZ9U3+tvar0E+x6I9LLfkgxOlD6KgaQVSJ+opGDMDbW1/Rv6071EhoPUhcvPBeb8xOIb8Z2RhiO2JF9wLfKOkjRZaWOJRr87LooAfIodq9Sab6Tkfl3jBO74uiJELuYKhDmWLcjb0tiPsOtPOLvt8WEi84MXEC05NvGCdxAs2SbzgYhPcqv5OdXArQEGnrdB7m20AE9C1XmOHfp681l0Ub+i9DGY7Z8GhTyVeMCxneuIFLwDvWbXnzSFslwHgqXetyrVrbs+9y693oB36xxi5FYDtqM/onorYyllfCWI5X4vqK7yNUry3Mk6JTM4lK4ZejYz5c0rBdYyWbODbFGfQzUcH+0UdP6bClq/GADJwftFsg06UzkPOkddQkGw+5XOtFhYy+N6FjLVpKKNxkDHvROmbTpRe70TpFSV1Uo5kKEss66MXOUI9YAUnSn+G2PHNkCMsNE+nmnEeR849M1JTs9BBZRJi8U9GBundpp7NqMKJ0jlOlO6B2OmnoADeDCdKm36mizkep3j96UXMsRZaGCkeopjI0Q3c6UTpL50ofb8Tpcs7UbqZE6U/KMgW+j356zJoTV1Qw8aJ0ledKA2dKI1GI7hl8FUGB7dA++o0Bju48/A4xWPPwzy0Zp5FY8SCNtP+4cAH0ZpWXZvoAhQ8LHNeTQW+HrvWcLOMc2HW8a/TfICvFgMo+7coY20iBXUoY9faNXatO2LXei52rd+aeoyN4hHgyZx+U2Tv/LiJtkYdpobWtynPGqoncT0EJkPrdOSwqrYnp6C6Wd9qts0i2KE/AZEX90b70lKmnyOBnxly1++R/NkUZCtMQZmaF+W0twaq75d35p1GgR1cB0cj+612Hk9C70GG53K+U4uJyMm8K/ArO/SHXMMoYQeK148BZAfVw/0U26opkktqoYUWRo516nw+GSldfLpeQ3boH4CygpZH6+l0tJbPYOhe3IbWiTJHfFE/bUh+vyggMcGMebSwD4ODW1AJSF1v9pJm8AmK18gVUH3oDJdRbEPNRmvlsOFE6WwnSj/nROmKTpROd6J0F5S1nHf+bkP74AfrNPtLin0ybyM50bowSkrno3uVnc2z9+bL5vN/Ukyc7ECKR6D7Wna+L5P3nQ+saIJ6V6Dzai26kRrR3YjYUy3l2If8fkc0kzltJJ6DmrYydAFfcqL0JmClW1fe5IITN/vY4/tvd9Lfd9nx9Ht32emMMsLoFhQrG1gMfv9aaKGFAizyGVyJF8wzKbCnorTsd6N06i8nXnDfQh3c+GFDmqvVANpURsS6T7zgbTv0n0GO81pkNRjGHEY3+hSKF/0Ml5rMsJXQofKriRf81A79G1G2VPU97EUb+eeRNMnqSOLkGzUZTU0j8YI0njXz2320XdXBwCSAvrZ2vrjhATy59Gr0tE8AbVRXAx+zQ/9DaKMvSgYM/fIAACAASURBVJ2uxnp26E82DFYSL3gFzYtPFnx/dYolcyzkQAAWyJdMBV4ZxXTnH6D7W2SQNcQiXphIvKDLFGv/DXoHJ1AJzu2ReEGRg60UTpQ+FbuWjQz0D6LAT713vAwTgA1j19qsySL3R1G8vkxD8gzHOlGaGfKdjGzvmALsGLvW5k6U/qnq73ui97XWmJ2ImF47I3mdUYcJ/g0KAJpssuORpEOWZXoT0qpfEXjKidKmCvwuqnCi9E2TWXc0Q9+FeVRJxLbQwnDhROnzsWvdgbIyqhmoA2hPblg20InSh2PXehQd+Kvbmo+yQusGqU0R6X3RXnS7E6WPNdo/FVnCPGwWu9a7nCgtYlVfgkgDtc6XPpTBMd18ZqF95lm0xzdTn7AXZcT9qTZA6ETp7Ni1tkDyL1+kOOAxHxExms5oL0EmOTcSdFMh9pQFyoZIN8Wu9Tlk92WOmbWB7WLXusCJ0vPrdWwkHvdCWfF7ovVxIgp6HeJEaU+T1zLauIzymrOdlDxPO/RXQO/2ZODexAueNn9vQ1J+eQ7DDuAgO/R70fvSizKxZw7TPvoIyhar7WsKspXOp5KFUI2pwLF26J9bU49iBTOmIvtqRrMDTLzgFTv0f4DOptWwgEvs0H/e1Bz6OZJ4LJIEhYrNkwXIj7VD/+YaOazRwL+oZKnXIkWy5PXwZRSIq7UTulCdmnc86bSFFsYJb6K1qwyTUQ3B8+p8bybN+ZGmI0Lx95v4DWh9LpPt76I2G2ZkyOpk5aEdnRub8VWVkT+moaDZoYkXxE6U/jF2rW+jAOMktPZ3I7tp/9HIds/BehSTV9qRjF4Zvob8YbUytV3AaU2M+RCK/VXtyFa4GNnXte9dP/J5Zef//1GecDGfcoWjjLT2Jvn2YA+SHR6wQ/8o4Gbkl1oJZcXNzOycJjETzc+TqATWLODUxAvuANhlpzOOR4oU2fuxEXCCHfoHJ15we06bL1B8vX3Aq8MY56jB2IFHoMzCNdBznAmEo0iMH864JiFfeQ/wzMIcSwuLBhb5ABeASZEOzL8lEe00l90BWkybcdYU4VSkxV97MOxEhYaHDVPI8zPIQJmOZNLOTbzgkZqvlqUnZ5iMNtJsU3gfEJng2CcQq/AzVLIUfow2obcYRgZOA7hxzoTJX53W17vqxIGUH662DU8svTrzrEF7VjuqOfZVxDzZj/rM2n6aqylWXYQ7D3126G+EHItboEPuHDv0P594wXeb6CcXiRf8xQ7976FnWFtX5SuJFyzUzbpRJF7whGENfwhJ4jwH/KasUHsjcKK0D7gldq1fIQ3xkQS4QO/HxihDoFHU2wd2BR43AakXnShNjBzipuS/W5kDpSxgOwWx7qoDXDtTLGc5DclZjlqAK3atddHas7YZx7VGMpHYtd6DDmHTqDyTbZA8RIqRqIpd607gCCdK5zTZtwMcgNarO5p0rI8VPo2u63hkrE8AXgEOd6L0xYU5sBbeUTgcyXZ8BB1GOtB7dtAw6u3tg/auAzEyZUg+9SgnSgsdrSZb9IdIvjWzCfzYte4y42jESVt2IM8klHPhROnfY9c6EjmP+s24e9FhcVcUBDoYrT13AXc7Udofu9bbFBfRrkWmz2/FrvUgkoVdIOntROmc2LW+gSRR1i1pZ7TPCT0MP/s/U294CBXankclIFiLTuCq6j/ErrU6kn2qDQBNA86OXeuGRmp2mcDlAbFrrYykfV91ovSfTV7LqMPUD9me8vvbA/zZDv2JiRf0GunBdZCT6BBU2L4Pvb8Ddujfg0guvZSrDExAGVZZ3+cDZxn5rL83eSl7UVwTsh3ZDkVngnnIlq12aj5L8dgHGMZZyThUTigYx1SUxfC7xAt6jLz63eg9y9aFfmSf541rKgpoj3aA6xq0/hY5uu+o10DiBY8ZyfzvISdpP7qmgFHM4muhhRa4HO1z9c6FpZ/boT8dqXQ0g3kMT2r0AMoJFu00HzQrQz17qFmi928Q0a/I7tkUeMgO/Q0TL3jVidLPx671c3SWXBllHl/rRGkzZKRm8GdEIsnbdwbQXlcIJ0pfiF1rW0Sy2tn85iXg9CaVS5ameE+dCCztROkDsWudj2yuDmQjzEVBwP0y4pUTpd2xa92EgmK1bXYhCcqPMtQ/1gP8yInSzti1lkblTfLs7gmIzP1zE/i42fwbEUxbZxiFqe3Rfn5vpkZlh/76VCTFM0w0/26yQ3/FWuUqdJ45keIAV15QbDxxEfKpZs/ivUgqejvz93GFCbh9GhFvsnPXG3boH514wT3jPZ4WFh0sDhKFLcBT5KfdFqEL+GHiBa+NtGOj9boXcpj3owUkC7IcaYd+GSuxEOYg/gAKkq2GjJS9gHvt0N+75uvL05icTe2GMA04A1gx8YLzTDtrmL5cYHs79G+1Q/9BO/S/bod+GeuoKThROu/MTQ4+4herbjb/7Y7J/NzevDa4laEd1d/6Iwpy1W52tbi7maCKCSAVOWzmo2KWf0RylhOpyM1cbIf+CY32UwenoPv9EHKi3At8NPGCxSpgnXjB/MQLbk284DuJF9w20uBWNZwoTZFR3cXgYHZRYLvs781KcP2EcqkqC2UBPhm71gHmb0cjB2L1PehHxuudSGqwbM1qAzaNXeuE2LU2N3+bS7GUTz/gxq51dexaG5ZdTCOIXetYxLj/NDKcvwA8F7vWzuYrIbrmWimmyWhdyeQT90A1vBrtty12rSuBJ5Aj8Vzg97Fr/Tp2rXoSpWMKJ0pTJ0pPQ6y2vZBc0XpOlD66MMfVwjsLTpR2O1F6GHK4HIhqGLy3toi1mSs7xK51vZGT82PXWr6mrU4nSo9A2R47AWs6UbpXVoewBJ9Fwa2paH3LJG12RxlNjeAuitfhfzhRWlpLx8i9royYpJ9HjqENjJzi006UnutE6VlOlN5Zxaq9Bh3qG0Eb2tMt4APAb2PXqpXs+wbKmi1CFjAcNThR2oWc/XlM4T5kr9TuR/NRdslX0TPazYnSHuMg+RhD96JOpPRQW5f1/yhnHR/S+JWAE6X/cqL0vkUhuGUwgfpkuEmI1PW6Hfr3I0bwnUjR4ALz+TS0v01BzrSLTFb/3+q0XXtvpwMPGwdrM+ikWNookxQqQjs10teJF8xGTtU8O6cbsdqbRT2ZrfdV9f8o2lddFAg6BdlQRTZSG1obRhWJFzyMMvw6qbwnveh+HtJotl3iBb9B178DIn3NSLzgKy3WdAstVGCH/jp26O9ph/57h9lEgILvZVL+fdTPUOqleZL0AKr73izq9XPZcEtAFOBOim2iiShDpxl8o6Q90P4yFUn3A+BE6WNOlH7SidL9nSj9xhgGt0B+orwak/0oIFlX2cqJ0r85Ubo7Cv6tAKxbHdyKXWuiIYGV4QEkBZ6HORh5RidKA7QXfhOdq09Bdnpc85tTgGeovOv9aJ+6A+2V36WSHZd99igVeeE9KPYfTEf1tscEiRf8N/GCWxIvuL0mYFUWKB1ApPbatmJExs+uFfPfc4F9m5FRHG3Yob8uIsDWBhqnAYcZBa3xxqeQL2UpKiU71gButUN/s4UwnhYWEbQNDLTs0cUBdugfydA6XCla9P6HghJZ4evvAyeNplSEHfoHmXarHb7zUDrtlokXzK36roWi+inw97xDjx36JyPjLY9J+B9glUwmzw79TyDWQLOHZNDB7fTEC66o6rsNOT72p7JQz0NG4G7mEDhimH6eoFj7vxrTEy/otEPfR8zXok3xwsQLPtvkOHZARkJWCBT0rvzP/P0w8tkic4HlFuaGuqQhdq2tUdDj/Whu1MtcrMXrwMomYNZon0sjeb4VqM/W7wJOcaL02ti11gYuRQ4O0LvVj4yxC1G9jjJmYReVOn9PIEP1D3V+04fm6SedKB3O4SvLzvpLQT9vo/laxviuRTewhROlzzTQ97FoLas1ELuBK50o/UyDfbbQwjsWpk7T5ehQmknJdaO5v5MTpU+OsP3/UCxLNhtYpqDuV3Ubm6BDfN5c3t+J0hFJOMeutQuSNlkfZbh9B9lUF6C1Olu/etA+kdUCmIrsjbxAToyCiQOxa62AmLtFbOte4NtOlI5KMfhBg9De8TCy6bJ1tgftX9siYtJxVBiZv0Jrfq7jKHat9cxvdgbeAq4ErqvNxItd6zzKA5gXOFHqD++qxg526C+Lrq0fZQUNkV4032sD/k55Rt5w0I3my25IdroZqat+4MTEC64q+5Id+ksjh9CH0fu8BfnvZg961gH5igeZ7fMGktb9VuIF8+3QnwhchwLJWc3TdpTJuQ0ivt0PfC3xgiE1dHPGuxyal0V2wvOJF6xd8vv3oszxPDtkHpJU+kK9cQwHRvb/JBSkehi4OPGC58airxZaWNJgh/6KKOtkCypqCH8FDky8oClZc+NP2QedCzdhKNl3LvLBlGbJ2qF/K8piqfVFZOtlvxlndsYa5DdpYrw7A7eS76/pATY1TvxRgR36M5BdUyu51w3cknjBYcNocwuk8lO4fgPPJl7gNNt2M4hdqx3tcV3VZ/rHPjH1oCnp/B/0tbV3TOzva+9rs+Z1DPS/0c7AjiMh28SutS+yL9dD78UvgM/mSfGb9/KvSNGm2n80H/kF10+8oGE/hOnfQv6EfdG7chPwYGaLG9WVA5FdcDfwx6rPjkA+0iIVmNudKN2nqG9DwjkAEeEfB34/UsKGHfo/QllpeegBzkq84DsFv10HZQWuhQJ530u8oBEJ4TGDHfpnomBSnr8wRbbTOeM4ng5UBzUvi7MfuDXxggNyPmthCUArwLUYwQ79jyB2yZrocPZrJCH4ItIeXRZ4qkZ7fjT67UBBp7xaTt3A5xIvuNh89wh0qJyMjI23gBMSL7i1ps3HqWI41mAOsIthPWZShv9EG0+ecTaP4gP3PDO+BUWbTbHVG8g/HL8ErDkaTEQ79FdC2XfLUi4ZkwITjD7waejgXhTY+EHiBR8bxli2QOznHZEB8mMkofIg5UzUWcCuzRoqLYwMsWtdguRvilhUGdO2w3ynBx1M9nCi9IFh9LcqknMqNACrMJtKYeL/kG9QdqG51ChzsRe4B8kvfIr6Up09wGpOlDZt8MWu9VUUfMubY3OQA/R8ig3lWswFPuVEaV3Zjdi1nqP40NQJLOtEaSug3MISDVPj6CcMXQcGUIbPOvUCUCVtZ4H4IvQheZW84tG1bW2BpF62NH/6O6pjcNdwxlbV7qkoq6TWrumlos/fibJQb0BZpNuiNetqJB+Thx50716JXetgxIotkvBZEAwrGWc7OoD31jpBTABtGeBFJ0qHZIYYeb8sgzY113FplvkWu9ZklMXy39paZuYZ7owyriaimlK3GcnfQsSu9SFk++St7XOQHOuvytoYT5iA1Xlov8r2hQnAlxIvmFnwm32BG2m+bm8Z5gBbJ17wNzv0j0EElgzTqU/guqXW0WCK0J8AbI4Cm3uhc0M27j5kN1fbQJ3Ijv0mYu5vVfX9PEnkLpSB+OHMprdDfw0kp9OFzk9bU1lnMpWKW4AvJl4wqC6nHfobmv73oJKxnqcw0QWck3hBqWSfHfp3o+zK2iDZXGC9xUXCu4UWWhDs0G8HnkbStdWO4BRly75nOORjsxechKS4JqCz3z+AYxoh5RqH+WNU6khDReL3YLSXboz2/UsTL/hzs2OsGudv0bpWHbzvAm5KvODo4bRbp8+NUDBkTWQfTQZ+BHxyuDWyjc9kFsVn0acSLxiTjJXYtTpQjaPPoP21F2Xvn73LTmd0APdP6+tZe8fX46nL9nby/LTlex9c7j1v9be1b5V4wUvD7PNw00ctif5/wEZ5qgjGx3UT2oczifBHgf9LvKBZJZkRwdiT/ySfFDMXONmJ0ijvt3bo74eILplc+Hzkv9h1JNdhh/4pyI7Pe4fmAvuMQZ3NMYMd+l9EgfY8e28AkYnOGMfxrIPI0UVz9M3EC/L81i0sAVgsanC1ICRecDNwswn49NYYSU+NYddbUfyuTEGyGxebANzVDN4gpyGt2b2N3GH174rQX/25yWzaDmnmvgdtPlOQcfcFdKi9jnzGUIqkhKpR5kBfFjmrauuADQenI0dKvXoT91cF1J6jUrS8Fj3IcG4aiRc8RiXTZgFMUfAybI10dUvZty2MHmLXWhPVXyiTCOhButYbADYKVF6T1ZBqFsbhuS+Nsb/b0BxZpeQ7k5AjejXqB6tA7/vOSC6zp+o3RXW8+pHc1OUNtF2LtSgOIE+gOPuhCP3okNgI7JLPLOQQHtYzbKGFdwJi11qK/CxH0LycgZzipXVzYtdaDcmrzUd17v4HYLKXXqe4eHsX9aWCMzyJ1qATke0wCx2yhw0TGArIP6hn+v2gtXG+E6XXmv9/h/l92V7dQeVwWk9i97k6wa3DUc2dpVCdrxcR4/QVIEK2w3xgIHatC4HzqguYO1H6L+As828InCjtIUdeOXatCcAvkTxalt13MJKY3bE2GFaD3wIvoz2ulnX8KiKNLUr4JJJCmszg9+FcO/RfTrzgxtofJF5wq1F8uBjtJ22MvLbnVGBtO/T/nnjBtXboX4/OBUcg+7+s/QFq9kc79D+EgrIWshXy9vkO5DR7DV17DHw1I8vZob8Hyvg6EQWZMtJN7bh3QvUx/gCQeMGLwIt26B9urqF6ncnmxoHAXnbofznxggtMf+8zbUyrGmumitBddQ/mosysS0ruSYYDzX3Yjkq93C6U6dEKbrXQwuKH3ZGdX5vlYCHiyQGIvNMUjI/gEjv0r0R+kK5Ggxl26O+Paua1Uwniv41sl4sSL3idBqTtGh2nHfr7INnlk9Ee9G9Ezr54NPrI6fMpYEOTFbs88EziBSOVCXwCESry7NBuZOOMFbJM48yXNgHZAlu2D/Tf19/Wvk5nx+TJv155k+z7E4HlUAZTIyTVQTCZU99hKCnGQgSoz6CA2yCY4M9Oduivhc7VzydeULeG6VjAidJ/xa51LbJHqp9ZLzpT35T3OyO79yMGX/skwEGZiFuNYFjfp1Ibqtq+6UOJCX8YQdsLA3chez1vTmRykuOJTsrjGI2e41p4B6IV4FoMkXhBXWbxKKOerv9Ew9qZST5rdArwdSS7luE2ih3NE9ABcQGMfMYmhkG5KpI+fBEWZJi9iJwW1e11IzmXWrmRImkiUEBsuZLPB8FIEXgopftp4DpjLIIKc9eTmJuPakhkuB0tynkM48kokDGauB4ZLkUyRVMQy7UV4BoHGOfmQ9RfmycBNzZQa6ZhGMfvqcjh0ohDbDmKg3BZVtnlSE6oEbSjoF31wbAo0DQFHWSGg0eRPGneWtWH5AsvRHV6GgnOgRynjeDfFNe86UcZry20sETCBLcepjzInlKyh5vD+lVoX82kyCbErnWuE6UXmK9dhMgxtWtAN8oiqpsdZli2tyGmcrZOrA0cFbvWsDJpDQ4gv8ZCLSYBO8SutXaNLM0fyNH2N8hqjYEkXnILgyInfaEEbOxahzKU7bseOuD2IqdIO5XMlNNR3cLTGDlOQ5no1X1PR9nCF1JS6NqJ0v7YtXZCbN0dEJloEpKmO6wZad+xhrGpv0j+HjQVOU6GBLgAEi/4mR36P0eM9hTZpsOR+M7QjjLfbrdD/1AjW/1HE+iqZyt0o9obwIL6uz9h8PMr2ucnArMTLxhCpjFjuBK40jClLyDfHpmKyDC1zqTjKL8nU4Bz7NC/M/GCLGBV+/12jBQ7ymzvQtd6cyM1Wo3U5G526DvApiiT7Q8txYQWWlhssQ3F54alkL3QdIArgyE216uFuAB26G+D9rtaW6cDmF/lryhrYxLKWl0OeKwBCdfJKPPncSpr4i1Z2Ymadg8DjkRr/c+QFFuuBG89JF7Q8H1poK3UlMe4iYoiEchmeBmRuUcdsWutPwAHtg31yUwG3rfFmy9s/Miya+f5ayy0l0yvLhnSIDam2Fc1Ce2fhdLNiRc8H7vWy8CH41kzz0Xn6B8D1fVjxwOnAAlwJhXyyS+Ak5woLaozfjL5dnAHsIEd+psmXjAsSfTEC96yQ/+DSGI7U0poR/bCgqzy0YSxG9tq59oo4UHkP9mGwe/nPLQm3TMGfRYi8YJ/2aH/NLAZQ23IHhTUb2EJRT1ZiRZaAC1oRQ73HqQ1vRQq7FeEWhbEhejgW7vAdwIXFAXxEi94OvGC32bBLfO3PuSsuBkttJ3IqLoWyd/U4j6Ki1FOQjJpdWGH/ocRW/tLiDVyHvC8Hfq7N/J789vNq1lY5lquIj+gOIBYNqOJi1GtgjIUMd1bGH2cTb6ecDUGgOtHM7iVwYnSXyM2fJnM6QBaE/5EceC7CzmUZtCYsxZkYBc5XGsxFx2ehoPryB9Titji9yDn4TVofZuN2I69VKQhoVLs/vA8Ca4CfIt8VlEPqhkzLDmNFlpYnBC71raxa90eu9brsWvFsWudGrvWRBS8WJNy23QS5ZnMX0ROk0nIIb0UOoydE7vWgeY7M4HfoLnYT6Vo9Sw09xvBYQwOboHWr+nAj4yM3nAwjcbJZ/NQFm81yhi0/ShrBJPpdDZD16MedFj9WV4D5rrKyExZcKsa04BPxq7VMHmoBKcW9D0JOCJ2rdLaiU6UvuFE6R4oiPphwHGidNex2E9HiGmU217rGmdGLhIvGEi84HljX95Asc2bh9p9vc2MZ2/gmKq/15N/6UEB65Ps0P+5yZo6MKf9MjTyzlgUB8nayJ9PRdKc1ZgEnGiCctuW9P3exAt2Trxg78QLftJIcKsaiRfE5nf3toJbLbSwWONNtO7loZf65+3RxjnkkxCmAZ+xQ7+I3AqAHfp7ogyYG1CQ/yE79GeZmol5318NOfC/hjLoP4zOXHeaOojZ96Yhh/mlwAeRLfUV4K926Jepg4wbTLbwbuhMOBfdh4uAre+ZNXPpPxy/9D5bXv7JK+3Qf8MO/T479GOzxw2/zynLfKyvrT33mQzAtO3e+EcZKSOlcWn9mqaH/7khpj2CSFFHItL3T4E769ljowknSvudKA2Q3bQGqqV7aJ1SBptR7HdIabzMQi4SL3gCkVr3Q1l4OyZesEXiBf8aSbu1sEN/Azv0b0N23nwzR7cezT5MQG5vtBZ0ozNTDyJa7TIWAbsGcDSam9X2bTdKevjmQhhPC4sIWhlc7yCYw+6uSKd5JcRK/U7iBS+MpN3EC7rs0D8PBXJq9XnnApchw61scbPs0P9Q4gV3mDZfsUP/AyjCvilanFIq+voNwQ79tRFTezkU4DoRMYX/nXhBEWPjIuAohm5qPcAdjUiDmALTNzH4fmRG5M3GQPspYofkMWPeANYtYFkcQP5hvQ14jx366yRe8I96Y2wEhmHyfuQUK1oPxlL+ctwQu9ZGSNrhBSdKh8XIGQccTv0gz+/Qez4mcKL0NlPM9Wk0r6rH0wWc7kRpb+xaj6Iis5sy+B0fQOtBhCQ3y6QWh4MUHSIbzZoaBCdK/xu71p6IVZVp2afo8LJbFePstNi1voIyT7tRwG43NKdXQZl2FzpR2gxr8DLT3n5UWIGdKKh++nCup4UWFifErvVRJN2RMSyXR86Qj6JDaZnDZR5wlxOludI8Rr7uNPIDIFORDfNzU6vpQFNDa38zjl8BDzdR2+sEipnay6Eao4+bwN0B6GDYhQ6HD5T08wcaJwVMY6ikaSfF0q7tVN1fJ0q/baQFv4wysN5GBJuvldQCXI3iwEtbQb+gPeH96D6PBPUyd9+FMmFK4URpgti+iyp60HtQZJfNacKh8EX0/s2g8vyzWm7V70on2td2In/fnobkiq6paqMIA6iOxZZUMp92R2eGesoG1W00QmS5A50dipA3zt+g4HCZA85CShP1bJjWWXoEMGfXQ1DW/GpIjvLriRcsapKhLbRQDz9Gcnx56EfZVOOJrSnekwdQ1vlf8z40NW5+zlB7alt0nXvk/CxE9kH1mjkdZX2cQEWm8PMoeFBt701Fe8PlyGYadZh6XdugM+SvS/xEACRecD869wEQu9a7gR/0tbXt+uUN9p/wv4nTqq9zXeBqO/Tfk3jB+cMZ36wV1vvIQS/nV8gYAKb0z38d+ffyMPfSP93wZjxr5kbAXCdKX2iw26eQvZEXHJtHgbxfFb4JrE9lL21Dz/z9SNLuvAbHMSowmfiNEpaeQxLBeaS6NkbBRjR+vnvrfc+cjc5Btvh/UfD3W/XqchtpzgfRPc/m+o7A7+zQ3y3xglw1CTv0p6PsvDVQyZefNjAfuoBj7dA/FVgReG0hqIpVj+dJO/Q3RVl7e6P3OAQuS7xgzsIaVwZj2+yA3rE5wM/Guz7dkoq2gYGFEXBtYbRhJtFliD2R1SXICpJ/uKb+1XDbPx45QjKG7izg+Exz1w7924E9KWZfd6FC1YPY16ZQ5VLAC80UX7VD/0wznnZkFM1B2RYfqKdNbdKGs9RzCznb+lFWxt9RcdJCiSE79E9GdTLyHGmdqHj6rUjubFkGG3vdwFGJF+TKFNih/xI65OXhbWC3xAtGo0ZYdZ/fQdI+tUyvLmC/xAvuHs3+xhOxa62Kioavj+ZDBwro7edE6ULRiy5C7FpvoQBtEX4H7N6slFLsWisiY7MLmNVIppAp2joTZXRlBY0/50Tpz6u+kwWWt6RSQ+JNdG+fjF3rfzSWkdZMtkMWQJuPJIqyg9I6wAvA4w1KjE1Ahe1XBZ5B92VcNsTYtbZETPaJSObs3vHqu4UWFhZMsOc18te4TrQHlzFQ7wc+5ERp7sEldq1V0DpVJJvW40TpSOsRZX09QzG7czaa339GdQVXRtfVj/b/W4EjiuRbYtf6HXIilbKr0Vr4CSdKF0hxxK61s2k/j+k7F92/P9ZpN29MHajA9KkFbdfD28BHnSitrYna7DhiiiUs3waWMwHMxR526F+HMgVrSS/zgMsTL/hME20tjYgxH0P26M/QfDoB2ATJ534bZWc/SvEzfivxgmVMVtNsioM7fVTq5VYje+cbURDpAvZMvKBufRg7Uaoa4AAAIABJREFU9G9ETtG8gFUX4Fbb3IaE9gzldXLnIZLgmXbo/xlJOdViALgr8YI8Z+8iCyOv/lnk4GpDhLxvjjazvMGxXAF8nMGEgU5Uc+3r4z2eFloYCezQPwE5/SejdW4A7fvnJ14QjPNY/oGInXnoAd5TROq1Q/8S5PfJI132ABuZ8hHZ95dHAYEi0sBziResY777GsVEmV5gGeNMHxXYob8UkqvbFj2PFD2bI019+4YQu9YfgK1+v/y6k4L37k2PNZSrsdy8uT3XPfzdG6f2z98f3bt7gC86UVqqDmSH/pRVu96c/d3HwgmT+oce8bvbJ/DLVd73maves/NXqPU9DQx0nvvXW+7a8Y1ndzF/6UDBm6OcKP0TdRC71iGIcF7dbh8KtGzsROnr5ntroiDM/uY7vwQOpdhWfd2J0rKyIAsVduhvhYJPtb68jKCz1nhkJsWu5SMiUvU4uhHhaLcyn48d+jcj0myeTfVI4gVDMrns0N8JnROyYOQc9Lz3SLzg0eFeRwsVGJv7TiqB/MxHdnbiBRctzLEtCWixzt452BkFt6oPCFlB8p/Yob9ys7IZ1TAL/JV26F+NWKCdOdHxU1Cacm7quhnLGUjOr7rtf6PDdcMw2V9fYvCmuhTaHH6BitAXIvGC39mhvzLSFT4HLTqW+bcJcJcd+tuVaO+uRX5wC/QM7MQL/mOH/gEofTcLWHUC5xQFtwzuR/W78lijE2hCf7sJnI6MzQPQJjeA1ofPLObBLQsFYtdg8Hq3PnBf7Fpr1WPHjDPuQYZjnqHyP5oMbhmnZBb47q36+zFOlP607LdOlP4L+FjsWkcCHXn3yYnS/wI7xq61PmJD/4vB2Qm/pOJQGy20oQPUJOBTwLFUsrAs4IXYtQ5DGRTLIImkh2oDSE6UzjfjG3XErrUxkt3oAW5xonRQloUTpZkTsYUWliTsQLEzOctGmkb++jcH2NnM2yK8VfDbDGXSq83iXuQ4ynP+TEJFykNkK2TfaUfXty+Scbm2oO19UZbMAcjJXkR6aEN7d7XW/CxErNmMwfZRD5KVvb/4kkrxXUR2KLJ7QGtwP8VZyL8fZt/V+ApieNdmz3UBl7xTglsGn0HSTStRud5OKtLYDSPxgrdQpuTXaj4alFFnpKPK9uvY/O9UyjPMOgo+qxfYmoPsz3bghEaCWwYfQ+eIPOfqVJThtcDuTrzgVTv0d0AZFesXjCtF7xooM/SX5NftK6xPsijCyIg9itaV7H6dBBxph/6W1RLw4zCW91EhZlZjGqqBFi2MoFsLLQwXiRdcYYf+n1AAeX3gWeCixAtq6wCOB65AGTS186sfeLKOYs02FO/l81DA/7mqvy2HnLhFAa5qSdsyidiM6DRqAS6UOb8dQwMxN9ihv20DdcWIXWtz5FuadPeM9XODW8vOm8vVj0WTJvfP/ziVfXRfYNfYtXZDNuoh6Hncw+A6VZNemboMd87YgF1fe4Yp/RVTpqe9g6fftcrAIckj377qPTu/js71oL1y4hee+dWDO7zx7G4Mtos2AmbFrrVpTZ3WIXCi9KbYtd5GxO2N0XP8KXBmVXBrHeTjm05lb/8Y5b7kejLGCxWJFzxih/6XEXmrA73vnej9HpM6WbUwROFafyaIHLQlIuKWKR/sRbFdtZkd+u9CRN6lkVLGIeb/V5/FMmLhb+3QXyXxgiKZ1RYax/fRXMrWw2yefMUO/cdHmnjSQjlaAa5FGHboL4scHEsBD6BIfNFiezzFjoeJKAA2IuYsLEi1zQ1GJV7wDzv0j0WGRJ6B04EMjLowTKAvoc1zCkqhPjPxgqyI4Wnks7QtYD079DdAB/HlUJHqvMW6H2Ut5cmlTEGOlH0Lhvg0YkMXsaRjc4i8lcHOqWnA+XboP1F1LbX4muk373nOYQzmrSnYfZgd+msheZpulL7/9mj3NdawQ78DGDC1DD6EArK198xC8+oj1E+/H098Cck+5DnvTmk2cwv4OppDkxlsPF0Xu1biROmD9Rowxne9IOCrKK1+Bjq4ZEWCz0VrWFlWWko+07sRTMn53frAk8hIzQJff41da08nSt8cRh8NI3atyYgZ/0EqBegvjl3rfCdKax2LLbSwpKHeHP8P2lPz1r9z6gS3cKK0K3atW9CaU7uvdyPJjwWIXattBJmT30JZB7UOoC5Ui2AAZbTnOYimAZ+NXev7gA28bcgC2XXMBQ4zB98dkE1VJIc4qF6FE6UDsWvtjup1HobsnHbTxqeHc72GtXsI5RllvYjt+wqwIZVnnbHXjxslMsn1yHFzMpVrG0C21rmj0P4ig8QL/muH/iZIuvhQdL03ADclXjAm9RoTL+i0Qz9CRLS8jP6vmP/+LwoYr1zQVKOZ2Sl6d1Ika/wnTC3MenI5NWij3Jm2jh36E6pVIhIv+DOwkZHpvh4FEi0qTNuDM4n3xAvuNoS1i1Fguw1laJ6ceEFdhvwihm+gs1F1IHMiIgRdSH7t4rHCERQ7xLOagZcVfN5CC4skEi94CGVHjirs0F8fnVsnoOyAB+o44S9D83kTKjZED0ZJpk53CXKw563jFkPlkesFxqsJw08BWxR8r5NRrFVmh76NztV59sskFIh0G2hqG8y9SNvy4wkff/EBlpo/r6198Nqa1bD8JbJvJ6DPTwD+GbvWzk6UvoXOza9c5Oy55vPTVuDQlx9m+d65zO6Yws2rbs6Nq2/90PPHfHMgUVDux8ifNmH/Vx5/YpfX//ZP8m3ESUi+7ZP1Ls7U4P61IQb359iK32JojdV6/qhxI0sMF4kXfMMO/VtQPadVkOrCD8ZR4u5DyObIez+noz1yuNLebSgIPYWKulcZOtCeO95Squ8oGGWy3cm3baagOXnveI5pSUMrwLWIwg79Y1BBzxRthn3Ak3bo75V4wdsm+2g6FVm/lShfuOrVLRgtPIPGWnRgqauLa4f+MsBj6OCcOYe2AO42m/rhSKKm6HrnI0blfmYcbXbo/xQ4JfGCagb3DIoP523ISV2EmyiuFdaLdKsvQcZALRt2KnCFHfrvzTNMEy/4sx3630SZZbVYGrG1P1IytmHDyE0uUrJ9jcI4Kb6JkSCwQ/+u66Ys8+xq3W8WSe0sZb47ZgEuYyiug9hAL9ZzLjpR+hfD8roacND8fxs4w4nSHzTZ9zQkSZQXKJ2C0uH3aabNnD7agM8BX6BS52JC7FpfcaL0a06UvhC7ViYBUFQ4+AXEJhotZMZ39XPfFGnG7z6K/eThQrRu1DoGz45d6yknSsckY6yFFhYTPESxbdCNMixmIUf3SsiWAEkRX5z/syH4FGLZrkRlDZiLMha+BRC71kHA+cB6sWt1Iqbd542ToSE4UfqP2LU+BPwI7cupubbrUfBlbWQLFF3vmqhWVAdaM+8Hjqlm2pp6gXdSnvUyhJnrRGkncEzsWicjO+c1J0pHwob+IOV1weahjLMQEYtOMP+WRrbcl50obTQTpxRmDz0zdq3voAL2E4DfOlH699Fof1GDkWn6rvk3XjgNBV53Q7Zwlqn1NWBtO/SfQxn/r6NnX/uOd6Hgl91AX5l9PB05mI4BPpYX3DKSL0cip+uLwPcyiXS0VpTNt14q68kgJF7wgB3666JsuU3ROeVXtWNIvOBOYANDPuw3WXGLFYzc/IHkZ+lZwL526FuGIDYeWKpgLKC5XRTYb6GFJQZm3l6B1r8JyCY4A3jEDv29i8gAiRf02KG/MyK7fALNp1uRxG1tgKoWl5FPuASt74MIkqavS5CMce25s4vBtZjOYWDgJ7S11X4vkyYdzfVnA7RP5QUQLLSfYIf+ZJSlfhA6z/4AuLVK/egtzB6y0+sxf1p6DXo6BvOodn79b3QsUOEdglpJxqUQIfMaRKYYsEP/rIG2tvBme4upN9tbwMAAtLWB7t/Z2Q8NKfleAHPGLup0AnBk7FqvAlc7UVpXLSmPSBu7VjuqcdSItHCGTiqEmEUaiRf8HdULWxjI5nMRyuqEggLd+5DvE83qHDeK6Yis3MLIsDbFa04bWpNaGEMscTW47NB/Nzq0WYghOGoskdGCcdTfxVADYR6Sl3kXYsj2mX/nITbeZ8mfTN3A+xIviHM+KxrD5shp/X60qV8OXGU21bLftaEgl8PQxXYucGziBTfWaeNLyGmet6gPIEfXiohRnLcp5Gn/96LAzaYZ89UcUv9FccHr2YkXFMktZtq9d6DNaTJiRc0Ddk+84Ak79P9LMaO0B1gn8YJXctrdCbib4kNfD7C6ub6tUADk3mbql73TYIf+9qhoePWcGTgweWzeic/dQ3v+vJiHHG9jovEfu9bRwAVU6ry9BBzrRGlDMhWmBtZkFBgrtJhLfr8xcB/FUhD/caK0qFhto324KCsiL+PiBCdKv2++914kbTCNwetCF2KyfBoFAjNkcoOjiR5gg7Gqu2YCiq9TnKXysBOl24xF3y200AiMZOmByJGcOTquGevMxpoxXIrYstVrRj+yM9ZzovQNEzh30Fz6a7OZPyaT8mDEXJ6Hsl5ud6I0jV3rUyiDoXqvmIcc5ps1GwgyY90cZak+mWViNbAeZNlH1f//f8D6TpQOsktj17oaZYvV7mOdgOdEaZnkce14OwCakfKLXesI5Fwrqo/2KrJB+9DafSFw/nD2LdPfioi1uhrwOPATJ0qbyeZZ6LBD36FCILmtGft7lMexHQrmbovOAtcBX0m8oO6ct0N/QypSu7eiwPOODJ472dzsQXv7fESs6QCuYngBim5ggyx7yoxla+TI6TD9Z1lfpyDS1+cRaScvY3I+8MPEC9xhjOUdBTv0qzPU8tAPTB2rDMGc8RyI3qu8taUT2NVkw7TQwhILQ3q+mKHraQ8QJl5w4hj02Yb28mORHdOO1ub5wAfzMlfN+nIlsld6kc/GAk5KvCACiF1rE+CiX660yc5XrvPBdgZIe62Onv62dgu4CPj8aErD2aG/MVJBKtqLfosCgA8gImY1MepJVPe8J3atpZCC0dTeNotjtzyKf01+N33tlVyBW++7mGnNJ6rPA1bO7HA79I9GZN0OtE7PRXXhb8n7cexaGyLyWNle24Pss72GQzYydmMv5UT6HvS8M4nhS4CzWvWlyxG71urA38n3U81FvpQbin5v7LQHGepfaba+eYZ+NCdOXVh2ayMwiR4TgJfHQ0qyGRgFr5hi1Yt7Ey8oS6JoYYRYogJcduifgZjAWSBgIpJx8RelyWEKBu5P8cJUu2h1IsPnZIYeEuYBsxIv2LOJ/vdB2Q5ZgVSQI/pPwC71AilGUuX3KECVTe65KADxf0bmsOz3zzLY2V2LeVQ0aWuDgPOpGAW1mAscn3jBgtRbO/QfRkGiWvQho/G4gjEujZ7RMlQO1P9ArM/55jv/M5/noRtYL/GCl2vaXcm0U2aozEbBgu2pOBf6gSMSL7i95HfvWNih/ziquTQIS/d29t/04JVMGOjPC4T2IIfqS830ZYzcpVCAKJdlZupWXUE+i+0DTpQ+0Uyfw0HsWquioG6RhvpLTpSuMcI+XkD1zfLwghOla1V9d2O0Tu1g/vRXZAB/m/Fh6c4GDnWi9I7qP8autQJyTr9YTwKtDLFrrYfmZZET+E0nShdpPfIMsWu9H2WQboXu2xXApU6UtnS5F1PErjURHVq2oHKA70L2wzZjFfjNGYeFHO6nUKnX9Dgqhv3sGPc9FWVn5K03ncBnnSi9ahT7uwLJADUqv9oDfN2J0mqmM7FrTUHyNtuh+5XtOxc6Ufr5BseyBcpg29786Q/oehspQL4skh7MO6wNoOdYTUjoAkInSk9qZGw1fR2KAhZtpr+5yObb2YnSp5ptb7xhh347Gv//UbGf+5FNfcw4ZsZktvxPGPz+zUPPcvPEC2bn/jC/rb3QNeRlxPcgVYG3gEczxrshq/lUJJkaRS+qWeObdjoQGS2PidyNsiaPIH9edyO5qy0TL6irIGH6+wBinm9T1f55NQoQYwo79KegGmyfRPbJE8C5JdLmzbT9BMpUy8NfEy/YcKR9NDGWDiT5Xl2rEPROPQLstCidz1toYWHADv0YKdfkoQtYbqzq5hjS9XEoK/73wHcTL3i9zm9WQbZGD3CXyUTOzoH3Y5zx89o7ePLdNvPbO+Yt1de9/0EXv/SbMRh/GzpvrsdQ31AnIksfhkhRedLWFyRe8GUz/kNR7dRJczomWZev/UHuWXF9UtrT/vb2t777aPjqWp1vbNjWXKbT28gvsMC+MevixsjWe6rMb2ZIVs9TfBavRieyvX/hRGlT+1nsWo9SICs5AI/O6Zh82Lv6enY3Y77NidIhBO4W8hG71nfRO1hLHnoR2KTe2dv4XS9CJUbakL/2fQxfqa0flUTZrCpLPstyPJRK7bUbgesTL+gcZj9Nw5C2rkJ+4gEkl31a4gWldeXHG3bo/w6tgbXPoBM4NPGC4cpOttAAlpgAlx36h6BDZ1469NmJF3xnmO22oyynlYC/jEa02w79fyCN92YwF7FFf4QcrP0owHQPmkgNacmaTfXfiI1bi07gxMQLvt9AOyuig9keaPG5BrFY6zJ67dB/gfKNei5ioa+JApQD6Fp7zP+WHaRvTrzgwKq+tkCSSBk7CRQkexMt7EMKsNqh76HU/Uy2pR/J8OyTeMEcO/SnIxmBc5A8UF6w7Xn0jFc11/Fi4gUv26H/BcRELat1kdUsqv1OF7B14gVPl/z2HQdTQPMNCgI5e7/65PzTn/1tVvjWQs+rBzjbidJGZa+IXWsNxEzbBT2DrB7FxdUMJZPK/yrKMqxFP/ArJ0r3b7Tf4cIYvT0UZyg+70Tp2iNofwJylpUF4ifWZgqY7ArLidLO2LV+gaREh8MyahadwPudKP2LGYeD9oQt0XzqQzXLZg6zTs0yyAlXJCfwjBOlY5qWboIYZ6IDzPJIQz8Armj0mmLXOhA59KZQeS5dqN7ITqNUR6eFcULsWjugvXgrtNfUrpMpcL8TpTuO87imIBmHN50oLSt0Ppp97okkaYtqAt7vROkHGmjHQnKnm6A5f7MTpXPN2n8gIhutBDyMsq23pFKTbwLaB4r2+MedKN28oN8tgV3Ruv5zJ0pfzvtezu9ORGSCWqdLF7CLE6V1MyRi1zod1biqDiL0oj01z+bqAdZ0orSeDFJ1H2uj2hy1AcEBdJ9XH0YdynGFHfqnIyJdHrnl3MQLZo7TONrR+p8nw92Nsrgargtph/6PkGMjD3MQeexHOb9bHu1Jp1Jsi+RhHtqzZ6FzzNfIJ49k2Uh5jpwBpIZwUF4wzw79FVC22QGYTAiUdfkDhipAvIrOBGMuS2iH/kQUgN64ZhxdiMl//Qjb3xO4maHzrBtJZd02kvaHMZ4VUBbXrui5T0Qy78cnXjB3PMfSwjsHxp+xIaYObyP+h0UVduh3UUyU6UKE2cR8dwUk1XwAmk8RykQ6DgXJ/gJ8J/GCv47xsIcgdq3bUc2hvDPfI06Ubj0W/ZraZfchu2sqssG6kTz1aYicUWSTvZZ4wYLzfOxa7wNOBzYDXp7dMeWyw7c59r7ujkmz75k1c32UTVNUGiEPPSiDa9h7S+xaOwG3M5iYXoRudP9Pd6K04fqGsWvtbPoY9B7Ob2tPz9r44P4nllk9IyuctaiSrY2/6BhEiAHVmvruwq43b84UX0Cklkyy8BfAp6rr89aDHfoT0LO1UOB0JKWI+oDfAb9GgbZ7kT22FpVzQCeqxbfNeCii2aG/KQqQ59nXH0+84OdjPYZGYRIW/oikSZeioi52aeIFZy7MsS0JWJICXH+jWFf0dWClZo0fI+N3C3KWDKBF6QF0mBq25I8d+ncjJ3ozeBs5XB5FLN8VgCcTLxhSn6FO39ujDawoC+G+xAt2KPhsVGCHfpaNVuT0ngN8KPGC++3Qn4FYN+sgJ15ZYAjgxsQLDqvpbwPkkNgDLUA3ocN/XnBrW3RgzpOPvN2M4SF0/4uyUrqRFraLslmyGgZ/NP+9d8n4s3c0z4BJUWHMeoVj31GoF+ACeu6ZNfP9SAZvQ5Q2fLETpQ832odhsD/D0MLcncA3nSg9t+q7a5jvFh1GZjtRWih9OVowAZf/UHxf+pwoLfqskfbb0PUXXWc3MK0ssGLq3+TVCGsWfVSCzXlzox8FmDYy/a6EGH3vrvl+J8qKyKt/Vxexa92M5m+tI68T+LQTpWNWR8U8j9sRg6v6mXQC1ztRekIDbUxAGS5572cncGImO9nCoo/YtS5C8jL1igs3HYwY5nhmICfLzmhtugr4w3hJmMSutRciARUFuB5wonS7Om2siQ59yyF7IwvyH4xkefajsven5vMz0b7RjezN6yiWjm0oyNYojFTuNRQ7PVIkpXtOveBR7Fr7I+LOe9Ge20txtv3bwCealE+8AO3TeYGQOcBHnSi9s9H2Fgbs0H+NobU2MryeeMGMcRrHpsihV+RoixMvaLjWgh36v0CqBXnoBE5OvCAs+X1G3mpDzzcjpNVzxvWj/b0sKDyfYjvnycQLhmT326H/HiqyTlm7nWZMeU6hHnQu+Gqd8Y4Yduh/HGVN550h5qDMsqPRPHwKyce/0GQfH0VEvayPblSnuFRCfixhznOrIMLfuMnmtvDOgx36RyF5vczhWyrztrBhh/5SKOt3beA54MfVwd06yjbdwLKmBtZaiFgzncq61kuFWGNRqVf4iTxSwlgidq1sLHnoA96dyUSbzKv9UfmN1VHwJEi84PdN9PcBVKtswzcnTHnp/PX3jZ9YZg0bnXOuNX6kFVAJgcL9JfGChskZpibWFYigkAUbyva5e5wo3bXR9kv63QgFST5CY2SSLmBfJ0obzgo2JLHLgFUHgH9PfteEb6+7B48su1ZtBv8xC3MvyYN5zo8g+yzzO3RRyfAuzUocD5gz+PLITzTsurkm0PUrVJKn7N3L5mMZUbm36nvtDH23etF69fHhjrdR2KF/K8X1xl4C1lyUMr7Nc9gfSX2/iaSyx51YsCRiJJHdxQ1Fqd0gZ8e7EIOjIRhW4u8Y6qTYHknJjCQIdBE6wNQebsr0VC2g2wTpGtbXNQeKM1BqbDtKay1DkVNmNDETBYCKHN89wPN26B+ODLYbEbuz3vvchZiZg2AWm4PrDcoO/UnIuZPn0J+EZBOvRFlZeQZcPwp8nI6kgtalUr8LVNtgDuWH9TJYKJtwiULiBW/bof80ORKF6J7/2kgCuiPo5pPkF8OehgreX+hE6duxa20GXE25JNW41DZA86QMw6ppYhy8KwPPokwfl6EGzzzgugYc16PBxn8RBZ03Av6GDkmHmTFZ6GDbjYz+DCeh9aXW8JsGnB671kwnShvKeq3BsShQnem4ZyzBW1G22FhiR7T/1L570wDXXFM9wsMHKDaGp6F1uRXgWgxg2JbH0pj853xULzI3wBW7VttIg1Cxa22ObKYJ6B0dQIb/92PX+tQ4Bbnuo/jg34VsiUKYIPJvUW2obC/I9uqb0XpWbbdY5v9/FZjhRGmvOcAWkak6qVknzH07BxGX3kb7yyWN1KQykozfofyAa6Gg0tKI9V0IJ0pvQaSurP3bKJeTbjbbcwOKn4+FmKOLLMxhtqyg9/J26E+sV8t2lFD2nmWfN4NbkLMkbz2x0NwuROIFX7FD//vAQWhvvA8FelelPPieOVSKriWr81KEIifRNUhCvHpulK2Vk5Eyw5gHuACvZCwdSNI1CxTuDpxqh/4RiRfc3GgHiRf8zMjhr2/aemY85TMLxvQacjy30MKwYYf+wahuePVePB34oR36H068oHStGm/Yob8DcBtai6YhO+AiIwv7KAparFLw8x4kEZad965G61r1WTXbU7O/dZh/19qhf8doBJNNttwWpq/HMknCJlG7D1xMpV4syO7ayQ79MxIvuLxeYyZzfSZGjWKZ+d3rXPjnH2+DCK7V0s7/Q+e0ogBXU9LZTpQ+ErvWtsBdSDmhbK9NUYbdiGEkDg+NXescVMe+HuF7KiKdNBzgcqL0N7FrrQusevwWR571j2kzjqWtrVa1ZCpwiR36P1nYe0oNLkDzqPp5TEX+jJmMzEc0CHboL4v8issjv+pvGkmiMGUS/jWCfndD17IJsotSKsoRGQaoyNP/DCgjv7Yh/2aRMg1ozh9sh/7R9UrYjAI+SLG9OAMpZwz7/o02zP34qfnXwjiiGY3YxR1lWvMDaKI3g2PJ37QmApsbPdTh4jZ0+Oqi4gCei4IfRU7rNxGTr2GYAn1PIjmrVdEivyfF2VvQnI7+sGDS7Ldh6DPLFuU/AP9EwaSrkQzLQdQPcE0CLjOyhA3DDv2pduhfge5xUWo9yKm/D8XGzJzECzYy/71azvcmmDGWbYLtlM/bMWXgL8I4maGOjGxenz0K7R9IcdCqHXgmdq2/oQzOLUva6QUKi4WOJowD9G7y36f55AR7yxC71pqxaz2EgrS/Bl5GWQwvMHj97EQSnJ9roNmfoYDUcNEDeE6UHuNE6TZOlB7lROkxwLZIkutHKOV/LSdKn41da5PYta5FkhRFBlsvNXX5YtfaP3atB2LXei12rUdi1/o/4+weBCdK30CBtmPQoeVK5IA63InSsZZHOYhyB92+DbQxmXJn4Whk27UwPjiBxp9XO5rHgxC71vbx/7N33nGWU+Ub/85kZsvsLohIjxSRCIJU6R2liHREQCwJIoqASFEiRTpGEBSpipiggihFaSKCNCmKNGn+CCItUqW5O7NlNjO/P56TvXfuJLn3ztzZnYX7fD7zgb0lOTfJOectz/u8rnU3MDd2rVmxa11hKlSbgpkrv0MEmWwd7UDP6xdR9fSYwyStT2L4XtGPKqsKK1AMNkV2Up4d1E3x9e7AVOUbB/bAnDHMRI2m5+0PsWvtgOydnRHrdGUkE/iX2LWmxq61TexaO5vKuDxkcrr10APsb/oRFiJ2rY/HrvXr2LUeM/Kyf0O2aR66UICnGTxGcVIsRf1JxzPmoiRkETIC0/zAoyWW+iHzAAAgAElEQVTvzaEqUdkgrkBM59rx9wFXN1JBlHjBC4kXnJ14wcmml9T25pjZM1S293SQ/yz3U0zW6UW+1BCY4FMZmaMII654bxJlBKnJyHbJgtYTzWuX2aFf1PM3F4kXDCRe8ETiBY+Ps0BkG22MCKbq5/vk78U9iAw7bmAUSG5EcZfMfp+CbKWbUBXGUeT/nhmoPcLh5ljvQ0S3RuM0A8hvGBXs0N8dtba4BZH5XrND/2hzL2pxM8Xr/N+rqrfWRn5UtU/Tga7DWYZkXghjE53FcPWCKcDhsWutlr1g1r7vkx8H7EU2Y7P4HIoF1LPB+xEpspX4KY371U33W3SidNCJ0uRfU5faMSe5lWEiqmAbFzDP4r7k7+HdwD5G1rkV5/ocikueBZyMVKFiO/SXa8XxS877aVRgsTaybTL58EEUG3wROAMRYbdFhKVWtU3opPFew6NBmf3cyfwjkLcxzvFeSnBdTH5yKCutbNbp3JziyTxAQSPGRpB4wWDiBYejReg8VCVxCApu/JuhvyNL+uw/grLMUxC7oJoxWy9JtLLprzWmSLzgcdTD6GjEnnkFBcjOR07xJGQQTjP/34jkm4XK3O+yQ38P08S5FGZT/CNidlT3pMlDGcMBKlIxm1CcRJyCdG5H0iy2Fz0v8xV26K9qh/437ND/uh36H5zf5wdIvOButFnfi+Zfipj2Gyde8H8tOEUZ43oiYgV9hPJnYDYyMr6XvRC7lh271lGxa30/dq3PGHZ/K3EwqkytHv8sNJ8aluGLXWsKSt6th+bboua/n0ZG0+EoOPkaCtKeTjFzuhrfRYnskQRX5gKnO1E6jI3pROmjTpQe7kTp55wovdj0+/qS+Q1fotzp6KRq/sWudQpKBm6EgswfR1UWP8z7shOl/U6U/taJUs+J0oOdKL1vPlWnlDm1HTS2399P8TM8CzmvbSwcqFcZkaEP+HFtRVDsWp9Ea2gWCJ6IgiEPxa5lNzmWDVCFWB6mIPtmxIhda9nYtXaJXWur2LVKbRgnSr9vzpegNWQ28FtggwaqNvOalGcom18dVMkiGtm+T6Gql/+ZsXwP2NyJ0tnmN3WiJHltpelklER/FdlEvwJeiF3ropzfXo/BW405yDbJRexaX0b6+581598F2WdvMDzB0Acc7kRps8Sxn5AfmBlELOs7mjzefIWxwS8gP+EyEzh/fsmnmCqxYxm+Dw+Y185q8ngzEfHsZjRnZiCb8wJGyHw26gnLo2T8WSgBWIQ+xMydjp7V6eZvV3P+PoYGTmciSavLc461CM0Ta0aSFBwpfkfzFfaDwN5jMJY22liYsAhQZp+sX/LefIUd+uugNaXIH+lGCau8WEU/InZuXlUtlfV5aRSTKK84rgs79LdANsji5vyLIpvuu+RXhvho36jdB/swiTqDL1Dsi6QMVeTIw54Uk4W7gc/XvHYmsrdmMZRQflriBb+tc648HER99YRZwK0NKGs0BSdKX0H25ZsUE5AyjEm1y6R0zpRvPXXTLnlE0AUEi/pVSKNWNTMtT36G5uwUZLtPA1ZgDP1nE6s8n+FrRUaKvz7xguVRT+6jkO9xN1pfWoE3KLffmkJBchxEtCqK1z+SeMGbrRpDGws33ksShSejALhDJdHQixb3b47geC9T3u9l1M32Ei94GElRzIPpAXUEFQm/u4GTEi+oJy2Yh71p/hmYjTL+Y14plHjBbMQ2OAPmLXivkG80dFIu4ViNHuT09tuh7ydeUNZkc3PUSLReoChFAf7lUWIuD1miJXPQ86R45qAgzg8RE6NIrmcQGUfZZtaL2F51+13Yob88Sm7uge7/ncAxzT5DRpLgVyjQ1WHGdJYd+ucB357fOriJF9wHbGrGNdDihsIRKvluRO4rD4MoeHdy1jDUyCecRaUEfDrwTuxamzlR+vyoRww4Ufpvo8t9ODL456JkzblOlDYjS/E5tG7WJlEmoaDo8ijJNwWViV8AfCt2rU3LgsZOlL5oJLhOpn4FUi36UDPfujCVCRfRWMB3Dkr0ZHKMR+V8bwpwYOxaP3Gi9J+NDniMcS1yCvN6rgyg9aEUTpS+GbvWhcBXGep0Z0HRC1swzjbmD+5BwZyiPWQGWv8vBY6vfsM4pRcy3FmykLN2LOWyFrVYkvIk9rLmvEujitvMNvkDWjNzJWJi15qAnMm9qCTx+2PX2s+J0puLTuZEaRi7VoSe8Vn1ek9V4UWKgyYD5i/PpupG2v/VY7iL8l6r61Ec+Mpz1L+A7IAjq167i8Z6MWTIDarHrvUBRJ6pXgczNvWSyLHeG0kjPQ6cWHb9i+BE6fOxa+2H9qhBtM5OR79r+/lQBdsKnITIEOsztBH3A4yMCT5iJF5wnh36fYhwkvWb/Cta3wft0N8WeNkQyho53qvAzqZS4P3AS1XSWCMd4yxkR/7KsPI/Tz5ZYw4i+W2NWOcvA783iTfs0N8GBVU3QqSZi4BzjR8x7LTmeI1WuI4oKTgKXIzmcSaznKFMvjyTWmqjjfcy6jH4O+3QPxq4IPGClgVkm4Ud+qcDh1FOnC0j4XYAy9b42S+hPbzRdW0mNTGmEeDkgvP1ACfaof+T6upQJ0qfiF1rE5RQ+iT6HXcD36rpi10rs1iNbsqVhkD7XZHt00UN4crECw4x9+UTyFe+eRQB87Jq2kG0lv+R4Ym2lsCJ0ruNPb0dutYOw69nL+pTN1JcieKnw+zRCenczu1eeeLbiHx+RCMHi13ro+az6yFb+8dOlDarApCLxAvm2qH/L4rb1fy7nnS0Ifevj2zSexIvyEsmH0b+Ht0FOHbor5V4wT+aGHqjWB7Z4nnoAnazQ/9rKN73ETQ36pHyG0UvcGK2FtmhPwUlsr+C5uk/gBMSLyjtn2v6EJ6MKjen2qH/rPleterRySi5/X4q1zmzz5rxSdt4l+M9k+BKvKDXDv2NUZD38+i3/wb4deYgNYmfAvuQv7EPIpZjy2EMspNojaPcTOAjQxeS8lkQmEa50dCBFtpGguSZpuwZdui/XsLQ2b6B4/UiFvZngR1RQq72OwPAzXboW4jpUGS4DQAx+p2zyL9HA0jS4AFUZvwmcoj/UC+pY4e+jfSAF6Uy/7cDNrdDf9vEC+4t+34NTkTSSbVG+EEoyHVpE8dqGQqMjqYQu9bKKKH1XxQozqooV6E5VnyGfoYmt9ZDRmf1saah9eR6c+5Gx7oGqtb4pxOlL9S+70Tpy8C3zd9IsR3FzeonM9xonIoM6u8DXy87sBOlL8Su9R00H/emsSQ1KED1pHGWXnSi9MWSz+5NufwR5v2ZwAFOlGbP0J4l4+lGe8AJDY53rHELkqVal6HPVR9wnROljVYyHoXWsyPQb+9Ga4brRGm7P8bCg/NRBWftHpIimdHvAvcU3FObYhZ0N0pGN+NMPEaxM9UP3Be71rIo2LIYFcdlX2BXk/TPk1y7wIxlEkOf+Wti19rAidInigZkqiqbrTD6s/lOXnBltvkt0xi6ZswEbh4BS7eHcrnivM8fFLvWNajSZiaqBPkZ6mPRSNDrzoLXP1Myli5gphOlyzcx1kI4Ufp7UyG4N9LTfxy41kg7jnskXjDbDv1PAFshEhHANcAdC6L5deIFP7dDP0LXMpM9/yWybWcDXXbovwDsmXhBQ2SNxAvepomexU3gNJSszntWXwOmJl5wM8a/skPfMVLr/5d4wd9QRXldmGDX6Wjvrmffp0gm9GtGPn3MkXjBW3bob4Ds+i1QsHUuqqjdgfz1ZzpaZ9to4z2LxAtm2aF/K1rf8gjIHWjef9kO/fUTLyhrXzEmsEN/S9QaohH5ui4a9IkSL0jt0D8VOJX669pcRBj+UyPHLkFZRdxUtO/8p/pFJ0ofA3YwVeoUEFduRXZH3lo3CHzdDv0jEXHotMQL/l7zmftQDCXPb51OQTV44gUvof1xtLgN+BD5yY5+YD3TM2vMYGymG2PXehhdj/cztDf072iyVUENzgY8BgcXp6NjXkxrYtrPwc/chsXgFGSTnlOPtBu71m5mLFkl1VrANoZEemTZd5vAsVRUEarRZ97LhemteiGwH7KZOhBB/guJF9QSRz9GcWw9RXGRsUhwNYLtgRUZWew3Qz9aOzJ7fAIi/vwUwA79SShhvSoVn2xj4Pd26B+UeEFuD2879Cea71UrIX0I+Ikd+iskXnAaQOIFLxv50mNR/KUbJYpPatR+beO9gfdMggvmSXb82vyN9lh/s0P/fBS8zTR++83fZ+dTE+nR4q8Ul6fmVUMNIlZFbtDIDv0V0aKzC1rIrwSCxAtaVQKdOedFDMa3UaXK11DAf6mSz2bIGsAXJbj6zTmL5soAWowTFOi/0Jz3OIYa151mXHtRzEyaiQyyS81xJ5NfJTgLOC7xgkcRm6EZnMjQ5BZUmNgXIO3eujBVUoeSb6BPQc/BAklwjQaxa01Dz8JWKIHSgYzhPVClUsZKWQQ9W41qnT+ZJbcMcllP5ngrx661lhOlpUZQ7FoOMlBXQAbHxNi17gD2daK01cGntyiuWC3CRMCNXeuQMuZ97FofQb1cFi34yAxz3klUNJb7kRTiv8y/J8audR/qdfVKzjEWpzwxORsFd090ovS+qtd7KF5Duhh5RV/L4UTpQOxa2yK2/gHI8JwB/AitcQ0fBzgxdq3vASsBbxdc0zbGMUzi+BQkSVGNTuTo3lWzJtV+piwY35S8tROlz8Wu9WfEjK2dh/2omfjJZlzVe5OFHPLzUTX1PMSutThyOPPm9SSUwBuVZFfsWnsiMtFHUFXIxSgBfIEZ2xS0Twwg5uZ9qJmwjVmT0Rp9wAhO/xDNO6ITUGCo05z/bDP+M1BFSCeVxFm2d2WJ/a9l8og5WKxkLN1IurVlMNXFF7XymGWIXWtVJOmTAjeMVjLIJLJuN38LHIb49BKAHfp/RrZMdVJ4VeBuO/RXNsmrBYUXKK5A+AhwhwlurIz8i1XQ+jHJDv3rAC/xgkaT1j9ANsfRFNv3M4CDi4IyY4nEC54HtjN9tRZFQWIL+WBTGeqfZcn6+SWh2EYb4w6GQJr5pvejeZK3b01GFQ8+jfUKbjWKfOdazDF/eX7GHPIlz85B/qlPxYfN9vgsudGF/KedW6B0MoPi32JRQiKqU5F9NZJtnszQ9XkA2Rwrm3/vDGxrkg3XVH3uLuQffpShz8Bc5M/+ruTcrcBZqKq+1n/sA6KxTm5Vw4nSl4yfnZGw/4fiM/eORj4/8YLX7ND/+Gr/e/nP8bSlVhno6OCDfW9y4LN3sckbz1R/dBfUEzsXsWv1oORW9XOU9ej9WuxaVzhRWpvAHMl4r7RDfwlEvE3NOSykYPSbkq/+EJHtaol0V9mhv1HiBdXEkhhJsufFhnJ7HbcIL6CE9UoF7/ej57Gs8jFbL2Yje9E2/55sXhtABSK3oBiZhYhb1TbjfuQTwXuA8+zQ/01BVf1eKKFVGxfrAY6zQ//87DyJF7yC1tBDS35LG+9xvKcSXK1G4gXftkP/RlTZYaMg7Y8TL2ipnu4Y4hjE3sljMzyIKgGy5N1MtMDtlcdCtUM/C1JPofJcfQ3Y1w79dVvBfDSsy8vQIl1rtM4Cfpp4QQREhnHxKuUVXxlWtkO/u6AP29XIUCyaK5m+7cdRcOujKFB+JMON0h6KK/5eRhvP+xjquGayRzPQZvI64Jrk1kiwJ8W/ZTU79JdIvKCRCr33Ux58W6HpkY0PXI2SvhOpbNDTUNDQcaL0OOC42LUmoUq8ek5K5ljUVjF9hOLk2FxkpPzDSEMdgjb/ASTlc5H5/3vQfagONm+Nqvs2rTOuZnEpkilsNqEzASWfetB683l0be8ETnCi9BHgEuSQFWEqFdmC5VCftZ3QnKu+T5sDd8eutVoO2/9BNIeKmM8HOlF6Rc57d6D1sIgF+OeScc93mAbN34xdK1t/ZoxU1ssEu1vRv66NBQDDjv1GzlsdKOF7OCJi5OEFtNfkVeWkSD63WeyLKlk2RWvcIFrH9nai9OnYtfYif2/qADaMXWsRJ0r/V/X66sgmyUtwdQJ7xK61eEkSrxSxax2OmNDZGr84sgUGkL0xCzEO70MBi4yhumrsWqsjuZAnRlr16ETp9Ni1fojIEI1KDmVNpaGyPx+P9o8PICnIPuSEHozso4dQdfFfSo77N4pZ5HNQMGmhg+lZ9gtgNypJ3e/HrvVz4JD51DtxvsEO/TUQm7Z2znSY176EAqQLCntSLsu1Cgpo/ozhts/OyH7boZETGT/mODv0r0LPd5Fawkj6r7QMiRe8hQKyINb4VqiCbRE011Ok4rD9CHpJt9HGQg879D+EgtA7ojXhn8j22ZTiSvOJgEdVgssO/bWQKooFXJ54QZkqxGiwIuVVWbNQQHpHRBbdkqHrYh9wQ01gHZi3rp1sh/7ZqJJ7DiIzz0XVVisAcQtl0n6ObJTaPWUA+MtICROmEnoT1E5iA2TrTWaojQMV0k5oh/4NGbncidLB2LU+Yb6/pfn+BOAR4LNOlI4pCd2J0mdi19rBnP/9aJ2eiHzpw8by3AXjmYVsnZaSNW6788x3gKkDQNrRSffgMHezk/pE8zIbdyJSIBh1ggsg8YIL7NC/Bt2HrdBzeoohkpxaLacJYIf+okgyL8/PmIh8gv2qXvsx+VXoGcnogRb8jGFIvGDQDv2DEcEu71oug+yrlPzY02yUMJ+BCE9dQIiSocujxN0liRdk1ZhF/cRciuNEg8Bm5MdNsjYYeZiD5EyvKnh/xLBD/8OIBLizGd91SBZxYYnjt1GAdoJrlEi84E6KZV3GNRIvuMcO/T1Qb6AlqOiYHo6q3LZD1SqLo4z9xSXJjx+j4HG1wzkBBVBOQ45zK3AUYp9+kMpiOAOxkeZVMyVe0G+H/t7A79HmWrbBzqG4MetLNFalkwUIDkPGTKMBqey7S1BhT1SjE/2+o5DR/i9G1/+s7LcU9Q/JwzuUM/xH3YNufsNURG1GfmVVF0pSHV/177Iqhpnm/duBY5wordU5fxIlkPPuRxfwTOxaH0RG3aJUjKsTkMN2HjL2a8cwEVg7dq31nCh9sGR8zeJeJOm6N80luV5D43wISVVkQaSdgE/GrrUPSlTVk+DY3onSHQBi19oCOa+196kLBZV3QYGuatyEAvZ5bMDpKPCeh7tRxeraNeebg5hYz8SudS5yHJ8DznOi9O46v2XMYXoK/a/uB9t4N2M1iqsiJyKHIjfBZYIDhyI7oHovyyoFTml2MKYX37amWubjiCBwa1UyuowwkVVKV+MNyvcrCznOx5d8Jhexay2C7Ja8YHsWUOlBZIgTa+VXjDRioTxiEzgOBbu+Zf7djdaxDxSMLQ89aA/6AxX26A/NXzMok2q9p8ljjRccA+zK8GvpIrm3+VZFNp+wIcVSkz2ownJBJrjK+s6B7KCDyLd9JgFb2KG/WjNSNYkXPGKH/jcR474LPc+zUCBot9H2GKuGHfrLojVpVxRQihAxb0YT433C9NHdBhGhnkEs6oWhP10bbbQURnb/ASo9BkHkl5+iWEYfxWtKjznGZOAGlAjJfLLADv27UWB10Pz3/cCDLZDCegBJsOXZL3ORfXVu4gXT7dDfFSW5DkUE2DdQZfYZZScwa0ptIPl+89dKfA8RRJancp1nIzvxq6M5sAmmb2mH/gcRufE0yvuWboliVYB6CiMpxA+iiq8XnSh9pujLrYYTpfeYPs5ro+fzUTOmdxMuBT7QCXQOT26B9tHCli2xa1koSVQEi+K+9k3DDv0JaF58mIrPMQm1cFgRJb2rsRrFRDoLxSPnIfGCh+zQ99H87DTnmI7WoZ0alak2a9KXzXgmo8TLOWWKWIkX3GSH/k6oun3xnI90Uxy3G0S/cQcqsdU1McklIwHdCOqpThS9X08VpNHWFQ3DDv1VqRRmZOv+vqjP7AaJF8StPmcb8w/tBNd7HIkX3GyH/kpo8+8Cnq5iMMzTui+D0VzdmvwFqguxGXITXHbodyCW1eYokXO10UAuGu/bduivY465N9o8Lwd+l8NefBZVjOyAmAuL5YyxH/hNyabzObTANzJXJqLA/UM0vxhnckdFxz0FGbcAL9ihf6jpRdAs/oQaNObdq5dRiXMp7ND/HCrxLtqo+pAs2sKGdSlOdE5iqETW3iWf7UN9nMqkUM9BcgG1gbUUeMqJ0sdML5UPMDQJNhkxcb5G8fPSgQJZLUtwmYD3AUjr+JuISb0Y5fOiF8nlHcXQ5BZUgsTnUJHyKkN189RNKZYbnIbWoiEJLidK09i1tkRGokOFxfQcsEsRm8/87m2Rs7w7Rg4R+ANK+D1MJYG+AbBz7FpnOVH63Tq/p402xhoW5T2cSokbTpReZyT6foAqTkGO4TdHI+FmesHlVQb+hUrT8Vq8xHDSxJMo2VO2Du7HCBJcZhz91E8iTUJBl0+M4Bx1YSqITold6wzkkL+DCC43o/Um++0ZO7nI7nBGOZR9S449E2n7X5y9YPpCHo6CeM8C5yyIxL8JfnpI+uQR4BemIiarcCxiDvcgZv+7LcH1DuVrQrM96VqNl5E9UGRXDKIKhKI5P4Aq1JoKQCdecKEd+rcDB6Jn5UFE6GuZNK9RubgPjT2zhU4FvmJkjhruBWSSWbe2amxttLEQw0cB2VqftgdJ8hcluAaBl+zQ3wbFCbZm+B63Gdo3ljbH70A9C+8F9ki8YB6JzMQy1kQ+2+OJF5QRUX+ElGhq17k5wL2JF5yevWAqkk6wQ/9EoHsctr/oQsTLbdDa240Ig+fWuQYNw1TSvWhiTWXIrQAx/ZnHqhqvFMaGqyW4visQu9YyKL5WRCBPgT+W9cJFVVRl8bK5tLaIYHeUjK2NX/UA+9ihf1LiBc9Vvf4m5QT5YQnLxAvOtUP/ejTHl0JJlCsbJcvYoT8VkYpXprJ2fQg40A79TRIvKFRWSbzgdqNgVYQB5C9Ur4m9iAT8KYbaVhPM35WmD1YjyblrUB+yPN9pAvpdebgCrbd5tt0E1NOuLkzF3arAfxMvqJfMPpvhPZMt89oPEFl63MJUHe6BYnH3o4rZd5XqxGjQTnC1kZW0/2sUh6hXfpybCLFDfxGUcFkdBYr6gTPs0P9u4gVnFh3M6Lf+yvzlHfdjKOm1MjIYJ6CmoTugSqls4Z2JAmTfyjlMhpVorhqrD+ng70ZxuW0eZlNhj9aim6EMllWAa+zQ3znxgoYW/Socj4JRtWObCRxWb3G0Q98FzmdwsIeOYTZJxu6/k+bZ4eMBb1DObqkOdqxB8f3toRIQzoUTpQ/HrnUYqnwEPf/TzRh2jV1rAkqW5gWhJyADrajUPNMYbxlMMHAScJUTpVfGrvU+FIwq2kP6UWXozaiSoWiNWBrN0XqorhCYTqX5ci3mol58w+BEaQKsG7vWmihY/BzwcD0ZKlN5sm/sWoshKdqX0Dx/jeGa4T3AkbFrXWPkF9toY0HhSSqNgGvRj6qbS+FE6R+BP8auNQWYW9KjqRU4BiWv8ySTj6ydpyb5fDRKNBeh0R6JI/1eBwrqtBSxa2XEn3XRnnBtdZAgdq3tUAP2A5AzdgeqHi8iCvyn4PVGMZHiIEQHVet77Fr7ItnZbrRGrwvsGLtW4ERp05V/I4Uh4vwMBSYnItvkZDv0d0i84D503cpsNHvsRznf8QfKmbKb2aFv1cr0tAImONlf59iXoaRPkV2RyaXn9QgG2UQNJ4qqYYJGR5igwd7AV+3QfxRJgbVC+u9ihlaZgHyRlVhwvYDaaGNhxx4U+xeLILWLvJ7HHWjuXUv5PrBqzmuboer2TwOYvoBXIvLhXGCiHfq/A76ceMHM2i8nXvB/Zn+6jEo/zEHkK+2ZNwjjm4+b5JZJ6J2Orm02Lgs4MvGCn4zRaf8ArENx8PyvzR7Q9BOfAkxvV8E2jVUorm4C+er1+uAuTbkaELS2n/vuFM/3FClX/TR7IfGC2A7951AlV63N0YvWl2EwSbKR2rtHohhF9XM+Ea1zl1C/BUW9hOHhiMyzAqoAD5BkeRFxaDGkUtNI9WdWOZvZ/xl6UQVakX12BbKDVmJozDj7XqnUvKnM+xEitM0Guu3Qfxr4XOIFT+Z83kL3Ou9adQI72qHfOV7XBDv0v4BibFlPwjnAM3bofzLxgoVOQWss0FSj8DbayEPiBdMRS7cIRUZHiEq3p6KFcDLaKE+wQ3/bkYzFDv1lEBN8dXO8Rc1/P48Yj8ehCquHzP+vmXhBWY+MJ2mc1dqHNp9rUQ+TWmO0SAqxFzi/4L0i9CBJlaZgpBW2QEzSfjOmf6HeakWaugDs9/3duvd54W/nXXnfBT233fUDfnfPeXzhuXuxBlKQgfIkMvh3Trygmd8yXnA7xQ5EH0PZ3M+a1/LQSwNsMSdKL6YS3DgFsX1WMWyzSZQbKRbaxIveK72XjSJ2rWmxa52HDNX/Aa/ErvVN8++ieTEXVQycip6zsgR4iq5r2RybxVAj8mqKr00/choL4UTpo06UXuNE6UMo4XVl7FrPxa71QOxaXzSSCXnfe8uJ0sdMT59PU2yUT0SB5zbaWGBwonQucpRq16kBNN9+0MSxesc4uYUTpQ8gJnC1QzGI5n9RQ+5rKEhoo7V8pI3E76C+1EaGll6X2LWWRKzxm1Cl9IVo3d0t+4wTpXOdKL3CidJPOlG6oROlR6PqurxAfFP3ugDXoQr7PHRgqkli11oU2UDVUrBZ4v87sWutNspxNAQj4fYzM44ssDkFBTxvtEN/Ivo9ZQHDEfVuG89IvKCPkmbvyF7+VCvPaYf+Z+zQ/xe63jPt0P+tHfrLFYzvZeoHhaZRbHtZaN6MdKx7omTwWWgtuhR41g79let8bx079I+xQ/9oI3tT+/77UVV9ns+d9QJqo402mkdZcHwiCrYOFnx2As0RUauPu40d+ivZob8UshdWRntMJim/GwUkXIDEC65FyhQHIJWLrRMv2DDxgoVFwu5wJBU/Ce2ri6Dff7Yd+p8eo3P+BGbRJx0AACAASURBVBEcaoPOfahnWqF8Wy3s0J9ih/65iBDxOvBfO/SPNYHvNhrDfyi3kx/O6Yddi0cpJpQNAqETpSPq41aAMptvkHwbel8U/6iuwJqBWhj8snVDm4cDKJZHX88O/SXqfP8PFFfqP4+q0z+eeMESiRdslHjB7xH5vwgpkmetC6OQsAHyCeag+foW8F3U8/QDduhvZGz0arwfOBP1880kol9Ca2NRr+hq/AwphU1Ca3APqqi9p+B6ZRW5Reio8/4Cg1Exuwg9I5kiwFTgo4ho0QbtCq42WoejUAY+j309TF/XLDg7ks84ngL8wg79Y5B8YJEzm4dDyE8O9CC5weVRAGZtFJiqd+wraCw4NAs1YbzU9P/aFAXl90QbTYqSWB2IaT3X/L+FNsij0SZwWgPnyvAx0yDxRVPV1hASL3gY2MRU0HUDbzZS1nrov/58ZU86Z8qkAeWuFp07k31f/BurTX+ZY9bYo4OOjvcnXrBQNpsHBQ1j19oLabF3o01jED0jlzK0TP4ypD2eh0EabEzuROkr5Pe8mI4291ojIMM/kFN1IBXWTYqe6f2BT8eu9S3z/WeA7zlRel0jY8oQu1Y3MjZWozJPl0SJq60pNmxnITnHpakv8TUL6cv3IgbzRCpBoLnI2NzfidKnsi84Ufpy7FrHoZ57k6nM9V7gAidKG5Inil1rDzT3JplzrgBcAOwRu9YeTpSWMXc+QPH+aSEmZxttLFA4URrFrjUT6cEvjebKHcDBJpE+bmDkTk5iaBC4A0nz3hK71odq56RZs49Ae2217dF0Es+sd6sih+wZc8yvU17BPSyhbpI4p6NKaZCzeWz1Glb12XWRHOIcVKX1LKqsW40KMSBjx14Wu9Y6TpQW6cK7qNJ1aZQEGEDr66PA4bFrHYMSVT92orThQJDBtcgxXoWh634fcEPVmHZH+1Aeus0Yj27y3CPBARQHTbqAnZwovTp2rUvQHlrLQJ5Jpbr63YYyW28aqki8oRUnskP/AGTfZHPIQs/IFnbor1HANL0dBY+KAs8dDO8Hmj3r+zfpL1SPdWVkD1TbLNPMOW61Q//LqGr7CbRGrWLGEqA5nNmLJ9ihfwVwQBX7dyqyZ4pspmb6mrbRRhsVXIX68uUR6SyG2umtDFjORlJc65Jf4TwZVQGsWCN5Ng9mrSr0FU1ifG1E4nl4QchPmQTeksBzhsycVT8cS7G878nAja0eS+IF/7VDfxOUOFwd2V/dqDr2qEaPY8Z/GwqAZ3v/YkhFwKHBnvGxa9moT9KqqGfnz41P/56AE6XPxK71OPn9xHtpQMnHtGN4BPXlrd0f+9Cz1Er8muIqri5yntvECx61Q381VOW0PZqPPwWuGYtqd2R3FGEuSia/XvKZB8ivnOsDvlG7jtihPwX1HyvCJBRzagiJF7wAfMoO/WlmrK+YY1xGpdXDBDv0H0Fx2e8AX0TzeRDZc4cBFzSy5hnC1GfJr9KdiFp6DCFOmTjtU8jXysObY3RvW4EjyY+ddwMb2aG/cgPyjO96tBNcbbQEiRdcb4f+F1FQYFG0sLwKHJR4QV7vhRUpL21e2hzrNDv0N028oKxCrBrbUyzTkyLndImqf/fZof9DxDjYBG0AIfD9xAveSbxghh3626HeQ1mVWcYgegwZWdPRZvejTI4g8YK3gc/boX8gMpxez7Sz7dD/Edp8HFTy+9vECwbs0L8NGQWNOrsW2nQG7dD/GXB0k4mu/9X/lBC71mrvg+2HdfUemMtab7/IR//3Ek8uulwrZFwWKJwovcP0DzkUlYG/hJIef66WyHKi9I3YtT6LnJNMvq8Pbc67A0vFrhWgRM/rKLn5+zpJk+pxDMaudSxirOUljX9uznkpMq6XRDrfZ6HgnkflOVoCuNz0hjqhicuxKyqTr51PU1ByuqgCeCqaT6vnjL0acwDfidIU9ZnJ5uG65hyvAr/Na8rrROlZsWs9hBrDroYq6s5yorShwFzsWhPRPK8d3xTUT2dHyoN8D1LMkOpDVaRttLHA4UTpb2LX+i1iyM1yonRB99kpwlfIX1M60di3IafvjBOlYexavSiJtwyyPW5HSbyk3kmNHOAhyJG2zN9LiCjwMnK+FqESwM4CWbNRX7CTqo61Bqpa7an6LbsD28WutSFaG7K9ZUWUvLOQLfK92LWuQH2riqSKv2HGOgxOlL4eu9bqaN3eHgX8dzDHy9a5lYGvxa61UV7CrQhOlPbHrrUZ+aSd6n6D76c4iN9FTrNwk1i0nChtqD9Bg6huIF6LCVTkB7+DpFc+RmW/7EWJwu+3cDzjCW9Tke6uxWxaJG9sJGN+wPA9tgv5CMfboT8HsU4fBy4ydv6jFNsW/cAtKPF8IwqCLIv24zMSL3hoFEM+qGNwYMJgx7BTd6K5ei2a+/9DNtEE898uhga3u5F9/xCVyvP/UN4LqNEG7mMO079jcCFVYWjjvYfvoyDpYgwPso8lA78T+SifoDiOMQftL881c2Ajm/djKnJbFvCWHfr7Jl5wT+mXWwQ79JdF/uXmVCS/LkWShO+j3LdbvQXnXw8FvRdFa/5ViRfMTrzgKWB9O/RXABZHfeOnN3n4HdC+U3vfeoC97NA/NfGCp8sOYAiSv0LPWFaxd2zsWnsaae9xCWNv7YoSSq8Dl4+A8FSNvZDNm0k+Z0Tbn9M4UWYX89k1kW2Z2Zd7NGLDN4mbUdxtI4Y+w33AmUWKTqY68DgaqyYaLf4GbEv++tWPFKJyYYf+hlT5JFUYBP6WeMHNOe9lcdsiPNNMdWQGMy+zpPjv0Foyicq82wDFUTtrXgf5c0/RWK/RDan0R6/FZDTf85QBymzdRezQ/8A4lfv7GMUEvtmIfNVOcC3oAbTx7kHiBVebRWxltDk9W5J9TyhORGWYihanq4D1GhxGWdJmCkOTR1kzwe9SCVwtgkrv97RD/+OJF0xPvOB+I324K5KU+xdwfSPNXg1Dax6j1DCHTkQMoTlIOvF8O/QPRw5xs3qv2QZ9IEqY7djk9xvFTh0FC+rEgX62fD1On1x0ubEo1Z7vcKL0OcSQqPe5G2PX+hC6l6ui5OmlqD/XIygAkgUqNwRujF1r30aTXIjtsi4KaA5SMRxfRE5dl3mtAyV3jjMB1i8zvHJqCvDt2LUucaK00DiqwV6Ua1UPUBwke5XyHiaDqNrqkuwFJ0pnIFZdQ33lnCi9HQWyR4JPlLw3FV3DMuP8ASTJuRZDr0Gmkx+NcFxttNFymOT8eJdcq2bT1qIL9TXMdXacKP1t7FpXoiDXLCdK61ZxxK7VYa7LQagat9o2+DAitWyEdN0XQ8mbI5Az3o+CGz80kqUZfmiOU+2YdqI15RLzG7Pq4Gpk+8Q+FAflutF+UAgjB3MVcFXsWiegNbj6mmY6/j+nvo5/7bHfBj4fu9Y80o4TpbU20AMUJ09mUJX4j13rI+h6bQt0xK71JHCUE6V/amZcBXgEBZzyKojnIMcZJ0r7TOJuW/P5uej63VWvN+NCjCvID4CA9q8ryr5sh/66iESzNKrwvtTI0tRiHYqf5Uko0duPnpVPAofaof/FxAuuskP/ApTMrX2OZqMg1CCSJ72mbKzNYKlZ72z36qRFy+SpMluoEQJaD6pUPA8g8YLUDv0TUdCmNjA8k6FJ4gUCO/Q3RwSp9RBp7s/AEYkXPFH+zTbaWHBIvOAlkww5A/Xj6kJqKjajr4zM/Jw8wslbKFBeLwA6Enm1H1OR28r276nAzXborzXW7Hw79Cej1hLLoOuZxWq+hNbqqRTbalAeh6l37g5EKv2iOa+F7uvpduhvnHjBSwCJFzyPqsobPW43sgemU96HCRQQL0xwGRnpXzHUvsiux1Wxay3rROmIr8FYIXatFZENtiiKfc0CTo1d6zAnSn9a9t0iOFH6fOxaKyPb9ZPIz7jUidIHmzjGG8DGsWutjSoWXwNuaUDecB7s0J9KpZL6zsQLXs37nCGTfwrFeA5FSdJngFMSL/h1o+cbY5yA+vzV2gq9wKl1eoIeTf7c7AA2tkN/icQL5lV/mbm+X53x1FPiKYUd+h9Dv6d2XBblvexPoLEEV70Ed9EaXBajmon8wPGY4HoOJbny7OtuFF9/z6Od4GqjpTCSHKXMF/O5l+3Q/wuwFeU9eixgVTv0ncQLiqR5gHkb3Ej0tGHoQjEJ+CAKfJ1hxjubBmXn6iDrtVTLVvgp6qExm/Ly5CJMBra0Q38dI0HYanSUUeG6B+f20UA5+rsNTpS+inlGAEz/pt8w3LHKqp52QjJRQxC71hLmMy86UZqa41yJmmBmDOE+5GzVNh8F+GbsWv+gmP2fYU8av09libh+ihPUg0jq52EqzlAtZrAAmqqbHjFfRInlMgftfWXHMRV2n0IBtvXR9ehExv0uLdYMb6ON9wKepjg5Mpc6wQyTkKjbv8L0sjoNWC12rT6GBnCq0YOC/WsYB/wNZBMclHPMDkSA+QT5TkcHkn6rh7I1aYDyXqe1OKDgeJ3AerFrLeFEaZnMSS5M8rAogfgXNMZVGboPDSCH8QqA2LVWQizVaVSqdT4G/D52rc82WolbghA4Puf1AeTs3pK9YAgnN5u/hmCCcEsCM5uphB8PSLzgBTv0ayV+B9H9OT7xgkLn2A7901HVVBZ43B5J8m2ReMFjNR+vrnbMQweVuZ799xd26L+Cqidr8Rrq7/rvst83EsSu1bH+KtuueNPSHyPtbFkLluXs0O+oIvldgGy849Fz2IGu+QGJF9zbqpOOBHbob40IPdUBtW2B++zQX99UTbTRxriEkcTax6zLHUjVodmqyFdQ/77PoH3zBTRXN0XSuj1U5mw/sHviBYN26P8UzZW8ZFqKJKEbhpEl9MjfuycgKb5hNkiLsQ8isdTGCCcj/7MMs1A8Y6TYE8VIqteiaebclwFb26Fvo0D+Hmif+Q0iPgyTBzTtMH6I7mvmoz1N+f5UT5qsXkLgs6gn0LiBsVGvR0nLbJPLnrEfxa51vxOlj4zk2E6UzkQ2VziaMZrzNz0GO/QPQtXiWeuPbjv0L0FyfAN26Ge97jZA9ulPEy/4HjltJuzQ/wB6/pdGCknXNkJmbyUSL/irHfr7IFLcJCpJ9jOAs+t8fW2KK+BnIyJ8td2/BPWJ9c0S72ux2Qi/97EGP3cnxWOcQfFc/A/FbUAmoD1hPOKHyNes3XMGULVdUc/q9xSKJkEb4wSmQfOTdujPtUP/LTv0zzSJnHcDPo8y0fWy7/2UZ9oz/B4xpFuByUgyqSHYod9hh/4SZffGDv2MtVpU2r8Nang6oh4CaAPcboTfrYebBmU8DMPszm6mzZ11aOIFTVUI2KHfba7JuwmbUsx2mYq0gOchdq01Y9f6G6rKegJ4OXatr1DReq6uBuhBVQR5x5+C9MOnUExc6KZcVqIWv0HGQR66UKBrJpXnIkXP7lFOlD6PnMVbEesow4D5zP4tlqSqC9Mb5xlk1G5AsYTVTFS9UQonSt9wonRLVFXhobm3khOlj7ZmxG208Z7CTykOLMyigTlZD7FrfRUFST6K1tUplFeSr0adYIYJHFxMRa5mrDALOLeJz9fT8R8JkaYUJsn4SRRcnInsmV7EqN+sSh7zeHTta32QycC55pqOGIahuhNikk9HNuR0JDn5idFo69uh/wXEkHweNaa/ww79VUcz3vmNxAvOQvbFtcA/ke28XeIFhcETO/S3QFVVPVQCZD2IDX6tCS5X42EKbMYSDCIC0GIM35+nomdqLNDzmeTByV2Do43jDMPm2f8kXjCYeMEZKDH6KdTHdJnEC65v9UlHgHMZbhtm6+Op8384bbTRPMwcG0DqCi8VfGyO+cuqIHrRPvXpxAv2T7xgkcQLJiRe8GFT0XEomq+XI3/mdGCVKjnUP6I1q9pXmov8nM/VqbYYAjv0F0fkm6IsezciBY81Ps3IyMK9aD8p6k/dCI4gP1nYhXo3no1kzb6K5GmXQyonj5rE1zyYeMz9VPrzdKPExfoU25od1JfWW4FiP7/HjGm8YR2kQJT3bE1Ae/tCB1ONlUkhL4Ls2kkoKX2sHfqbIb//OERCOwR40A79Yb/XDv29UWL7DNRj7hLgOTv0Vxn7XzIUxi5YBiXPdwWWTLzg5AZ6UhWte5CftKlHchukps/wCDCd+knjPNQlLAKYBOSXqJDAM/Si5FdR//kfMTQ+lSEFHq3tnZhj4y4QJF5wB3rmq+Nv0xEJbLcFNKxxh3YF1ziGHfpHoIqfzPF4HzK2trVDf4P5zSpoNRIveM0O/Y8iyZ8zgA+RHyCahAIkhbBDfw3EkM4LVmULXrMJ3aLMfu2590ONppcAOu3QvxP4eo6G8wqUN/juQAbbSciIzhvvQMHr2Xtj8kw4UfrYTQcvHS838621Jg1UYhazO7t4atrSg6evutM+B0mery5Ms84foYRehx36jwNHJl7w57EY+3zG+yi/xx/I/sew2O9GjkR1EutHaONqJhkFmj/HI3m9vODlTJpjE96AHMVa6bDZiKl/N5Kz+Yb5zFPAuU6UPgxixseu9RmUyP4Gmh8PAN9zovTvTYxj1DAB02tQgrDMSMmY7MMYP7Fr9aCk3oHIkL4XOMmJ0geA/2v1mNto470EJ0qfNcn9bO5NQs7HXOBTTpSOqidM7FqTye8JVIYOJJPxq5LPbIkYn/XkkFKKA1f1vjcHOM2J0r8WfSh2rU7ElFwe2Uv1dPxfHMFY6sKJ0teAzY0EoYOSQY/USP7tQrH/sRSqoG9USjcXiRfcaYf+0sjhWw4F3v44yuTWV9D+XP0MbQ781Q79jyVeMCbXdCxgeuPm9cctQpbcqkUH2ts3oKpqwjTxPgy4qOZ7ZTZsD8N7WmWYgHpvjUX1wuzlZ745cNjTt/CjVbZlkA76rS4YHKyjXVCKDlS1f1f1i6ZP7wKt2KqGqRgpCuB1Mnay5220MSYwlVX7IgnzrFceyJ64F8VRvoT2mb8jmdV3io6F/J3cvrrmXJ9HsneHogT2fcAPEi/4Z6NjtkN/I+BPKAlTpsIxP9QhplO/ArcagyiQHAK/aaYXeA4+WPJeJ9qHau2oCci3C5C/meGLaG+qvZ5FxNpe4BJTEViGx1BCs0idpOH7Ph+xEsVJBguRuVqO2LUWATrHUNXkJPLtkimo2vFwht6nLvMX2KF/SzZH7dD/MJLurk5cTjPHudkO/ZUbSC61FMZWbbYS9RxUxZVX3fNErbxp4gUz7dCPUNwoj/T7DpJMHQ2up7iqM3sma+d0H5UepnWReMF1JpnpI2n5/yLizq9KbP4rEXlhL3TfO9H8nYF8uqwf4rdR78EPGIWBM4FzDJligSDxghPt0P8NWuOWQuvvb4192QbtBNe4hR36iyDmXC1LZCLqcfVZyoMuCwVMI+Nr7NB/EQXf8zaqbiCyQ3/PIiMUJbeKNp/OkvfK0FlPGrEg4LENcL8JeFTLvbxJuQQR6H6vgRbYRfLGRLHhOYiYuGOCr637hUU+98Lf+Mx/HmDy3DnMsbq5bpm1CFfarGOwo2NrO/QXK+jFMA/GiPgrMhyy37AWcL0d+nskXjBum7M2iIcorgyazdD+Uj4ViaBq9NB8cgvETp9WcP7ZyChvOLDiROnc2LW2Rj3jvoqex2webYbu473AblXM/NpjpCjx2VDyE+YlozZD69zzaM3bw7x9FXBrE33MMqyJHKd6DtsAsFVNX50sOH4P6gOUrcmfBraJXWsvJ0r/0OR42mijjRo4UXpZ7Fp3oODTCmg9vdyJ0mabiOdhE0YmtfGhOu9/hfrr9Uy0d48kwfUksI8TpU8WfSB2rdWBG1GQB3OuV1HVV60N2Quc2kx/g5HAidKnML2uclCP6NOSQIJx9lrSV8H08Pg+w+91p3ntWyykLOgGsTzF++cAYhsPQeIFv7RD/y1E2FoD2SH3I2JMXkK4rKq7i/ryWCOCsXWu2eHVJ/Zc/63num9Z8qO8NnEaf1hmTeZYZbHmUmSJ6YUd79ZedG28i5F4wYN26K+OSGnbosTQT1AQcC5SvGjVuQaAq81f0zB7yw3Ur6ruBS4cyTmaxC9Q0LfRHmZzgd1K4jMNwQST/0u5Yk+RDWUB+9mhf03iBVlvxr1p/De8hGR75wXiTcXGTihxuSzyec+6TVLLP8g5RkaQHLM4TC3s0O9E6iG7oPtwJXB3TjLm3xRfuxTZmS1D7FobogTD2ubfTwGHOVHaUI/tJrB6yXsTqVRq1qIbkVUPN//+OvmJ5U6UJN2MgiR3q2CH/vtQpd104KERJlCuQkmbz1JJ2vSav70LvnMkkhXfmKExyv8Dtm5GnckO/R5z7jVR/ObyxAtet0P/EPQ8VMe8elHyawukBDCl6vVngX/boT+50aSNac9S9BvzPj9oh/7+qFLPRcoBNwOXJV7Qa+b/VWj/yOz+ZVBsfh2UXFpgMMnZ+d7qY2FBO8E1frENWpjzyqCnIo3ihT7BlSHxgr/boX8wMt5qk0AZMznrSZSHtykvgR0JDbMPlbPnJriMUZrXNDoLeBxJZfPELPJPI3mkIgyiza0sEJa9X2249SJd4WZ6dDSFtNNa/JcrbsIvV9iYSQP9zO7sZrDCbu1Hm0NpggslS6pl9zJMBs6zQ3+V+c2SaSWcKE1i17oWGZu1c7efoYyUHSleg8tYznnoRc/r5QXHugb4ag2Lvi5Mv5Vvx671e9S3pIehVZKbAVfErvUL5JjcZZJaI4JpVnszYqR0oLWgk0rQc1/g4di1tmtS4nBZGpNLmkl+UMpF1QjV97QDXY8wdq1lRpB0a6ONNmrgROl/UEC81Rhp4qRe0GYJyu2L5xGr+GSUZCuTRKxFCvypTnJrCmLv1VanroDkR2YwVMf/TOrr+I81fofW1LyAwn8Yn02SV6dc/ndX3t0JrgdQsCrvni1CgbR24gU3ADfYod9p+mFk/W2ynjYZBs0xiubHHNQTY6xwOLDZ4nN6F98n+ftkgPXefn72KavtPGFOZ1dKR0f1vW+kumE2Iwx458EEWzak4huGiReMugF64gVv2qH/FPn9LgaoL9fVRhvjEqai9qgFPY4GsD3lVVsgH+8+8n28VuMOVE22K435oS8gOeARww79pRCJcNnRHAf4lR36uyVe8Ccal0WbC9ySeMFPqsaTSU9XV+d/BNh3my2/tddtd575CSRPOQndu35ka23rROl8ITbYoT8F9W5fHcUFB5Bc/h126O9uErkAOFH6cOxa/0bxp9r40mxGX6UzD7FrrYvIvNWxsTWA62PX2smJ0ttbdS5EHC8imFkUk9q6gBWr/v1RyufghxmjBJcd+hZKmH4N3QsL+J8d+l9IvKCphKBJ2nwZVaPtj+Jyf0LxmzfM+bZGPexWRf7Jmain024oOTUdODvxgqaUaezQXxvd924qktLfM7/j58bO+A6yNV5CvaSuNJ/9IqqCXQUlkZZHxOhOO/QPSrxgTOLdJt5YpGawAZJcr32+eoDP2KEfJF7Q0sRwG61DO8E1flGP6duyTsjjBYkXRHbor4cW+dpncyKwuUmA1Er/AfyB1l+TCZRLI65Rcs4JaLE+vOb1g5FsQhFS1Iz6U+Qzj/pQSfYslEBbBm1QpzP2Cc8ngI3p6GCWlVuk9J8GjrETxddsOZRQfHlkwxs3cBEjZE90nyxkhO3lRGl14K7MCO5Hz0LtxtpHJQg0DRlvMxEresuCY3UA14+yCuI75CfbJ6F7mp17ZuxaezpR2oz0EQCxa3WhQO0y5DtVHcgQ+jhKlPpNHH4VxBCqhy7yewIeQLERPdmM6f4mxtNGG23MX9xHsQObUkmkV2MWklgrw+0o0Z+3Ps4Ctnei9KnYtXZHbMBN0freYf57N6oGzdsXZ1Nf/34ftB/Ujj0jweyDHNtJwINOlBb1VZyfOAXtj4sy9Hf3AV9vlogxn9BPebBvVBKaCwF+hGRs8jCI7umfir6csZETL5hlh/6WiMjyPnRNB5CNtANKCn2E4fOhG83hMYETpa/ErrUG2uv3BQY2feOZX35w5pv3PTN1qUNQculV1Jt0bURiyog4efhT4gUtSciZ3jy3o0Bm9gyeYYf+74G9qgOZDR5vMrKl3jD35RDUM7XaxhlEAdvjRzn8Ntp4V8P0eloSeDXxglw1izpYjvLg+nQUO/h1s3M9D6alw7bIB722RmkmC5K/QsUuKkMfcFQLiKmXo6D2iEtmDSajSus/oZjIBtSv4upCsmbV2Jrh0tOZvN3l22z5rSVvu/PM5VCsZiXgaeDm0RA8R4AzJ6Rz11rvrecmTR7o54lFlu18ddKiUxEJ4ghEwK7GzkgydzEUP8hIooc5UdpK8sj3ybeHexC5ap0WnutC1F+r9nxzkbzfWgXfm4nkSTP8E123vOdvEFXAjRW+h6rJJlEh+E9F0og3ARFwXaNzvzppY4e+i+KDZ6Nk0YsoiTwJ2S4roIr6l1Hl5Bzz+q526O+VeMFdw88wHKb68mb0bGXI7skv7dC/P/GCe1C8qBbTgfPt0F8RVZHVyrT+xA795xMvGNMKuhzsRnGvvS5kA7YTXOMU7QTX+MUdFEud9SIn692I9Sh+LlPgJDv0H0NG2byFxZST7o80oCdSnuwaRMGKousL2vhvTLygtiFjNeZSzuIcVhqdeMEddujfhhrF5hmOv0684HE79L+EHM7q3zIT+BdwUeIFfSgR1jCMEb6lGfNdiRc0y7g6CVUC5SVdzm1Qd3u+SBMtSJjKov1i1zoKlWm/gQKLtb/tUpQ4ypOtfBkFNo+kUs01iAyIfRHjb0d07X+NGDhFjkiHOc9opJrWpPxZn1b135ti1/qoE6Xz+pGY5NXOVMrHfwtcV9NXZ2fEBK/nUE0GDopd6zuNBEKNVEIjTY8HgcedKM1r0lpk5IDuT9n7bbTRxgKGE6W9sWudhgK21WtuP2rOOwMFmjK9/hnIeTmlzqEvRmzIzGHMMAu400j14UTpO8C2sWs5aD19DbjbI/0NBwAAIABJREFU9Cqs7bcKsvN+kfU0LMGGFDeEnwys6URpUOcYLUXsWhZy/lwzhuuASzOShROlL8au9XHUM2N3ZOP8DTjaidL57cQ2iieRUkCRtN4v5+9whsMwgbdHQbeZSI7rgVYcO/GC2A79/5LPsO8A1rRDf7nEC+oSnRIv+KcJZmyFJECfAe40FV47oGBT7XXuQFLl949VrzMzR88yf4AYN+g5HgI79O9Akmd5smIpCni2CteRX2G1G7ITG5LlMVUS56G5OQDMsEP/VMTe/yQKiG6CbKGbgG8VEArbaOM9Dzv0pyHZrb1RPMCyQ/9y4BvGR28UT1Ke2JmdeMGo9xc79CegiolPUqlu+YEd+j8Ejs2SVEadxisZU1Ztm0mMrWhaMjyWc84OdH18FEx/ASVAfl11PhutO6NNbmVYy0j3XY5IxqtQv3L+1Zp/l0lPd6BKrRvR2lwXZm/exRx3UUTK/slIq3Dt0O/e6tV/fvmop2+eMGhCJ12DA9y7+IcJVt2xp7+z65vUJLicKH3eqKTsjEiZrwNXOFFaFucaCbaiOF6wRuxaU1tItDobxULWomIH9yI1ob1QhdsqDI8rpgzttX0BasVQ+wwOohhOQ4meZmHicoeQH0PI4iZbA8/Yob9FM3E7O/QPYnjf4ZVzPjqFivxz5htNA2408/q5Bk63A8VxkE5EHDqhZKw9SCYyb85NRknM7U1f3W0x8bDEC15vYGy151oF9XJdAxUxXFBQiWVR/Bx30JzKUhvzGe0E1zhF4gVvGKPjGwx19Oagjbgeq3dhxX8olv+Ygspn9wKOt0P/t8D+VczQ3xoJQN98pmxhKkpuZRrK95Lj1NbgCcQ8yAsuzaK4omo3lKD8JJW+HP2IZXESQOIFd9mhvwFwLNrcZqBA2vlNGs4A2KF/BNKNzZJu3Xbon5J4QSOBf8yYbrZD/0jk/GfJvW6UOKnL8rRDfzXgORTcy9sYnq2TUFyo4ETpy5RXo/0YPWPLUjG+s+fvACdK/xy71oXIKJ4A3FIlVXUdVYZ17FpL1RnOB5r+AUORIHZdI+hGbEMf5klo3YHK4bO58mngqdi1tqzq31VtoNbDNLR/NdJHpqj6rBpz0JwtYqjfgAzDvHWjG3iwgXG00cZ7BrFrrYIciFeAvy7IqhzTQ+9cYD+G270vIOnj/6Cqos8i5/cyhifhh8GJ0v/GrrUFqjxZ2nx3IgoQD9Nod6I0pqYy3InSs2PXehStVR9B6+1ZqOKrHhK0fhX1XnytgWO0DLFrTUDSPetTWc83AY6JXWuDrIrZidJngb1Nz0XGadXWPBhW+1fQPal2wuega3zOAhmYgR36i6J99sNU5IoOtkP/GtTTbiKSynTRs3IVkrWuJytdjbIAZCZT3Uglf1bRdRtD+5JCea+6bhQMOrqRc4wxlqT4eliU95FpGHboO2guFWFPO/SXSrygNkBbe5ypqMp8GSrjngScBiydeMF3kEpGJzC4MEuFt9HGWMMkbm5Ffkt18mQ/YBU79LdqYg7dTTkpd1E79BdvphdOAQIUHK71h76BejRnJMgNKe8XPoD6dO2PCJcWMGDIu3vWkF3PRkmdLI71PtTnakPUHw3UH3l2nXM2g360hs2yQ39TpPixP8UqHr3IPqxGmfR0B0MrVUphqluuR5X+mU20DnCkHfqbNCsFB3DuQ7/acuXe1ydMGhhqnm78xjMc+vStnP2RHZbI+56xZ39n/sYK9eT6m6pyM8nBndA9nIquZZh4wTvmHm+F4moumovXAL9MvGCGHfrboWq+DyLbYq45/66JF8yzjRMveNrYdxeblyaj+F4fsMMY7oerIxuyLEYxFRFcbrBDf4eiGKB5zpZDcqGfQGSW0SRhJqC14YgGPrsSxfbQRBT/qff9oueiA1jHDv2zUBIse+i77dD/AXB8I/fHDv01ERFtzaqXtwH2t0P/sMQLLq75yvXmfHmktjkoSd3GOEU7wTW+cSwKkB+HjIJB5JR+cyRJjoUEF1IszwcVI7AL+AwKLM8zTLImg3boz0asodqgzyy04BcluDpQY/vfAzvboX9L4gX/tUN/ImJ3HISMpLuRY3ggSlbVBjxep0DTOPGC6cCOduh/CBnHrwP31jaUTLzgCeBzBeNsGHbo74PY4ZMZuokeZ4f+y4kXRI0eK/GCi+zQvwwZyZMQ67Y0oGEcgXORcdJN/obbh5Ii7wnErjUJPSfroUTQl9C9+QtwghOlD8K8fjSNNBW+nXID4q+jGrDkidammNFWjYnIkM9wCgp0VzsvU5FhdyoVGc9XUHKvkXO85kRpI8ktkCNR5KikaI29BjjLidIXCj53Dprr3TXH6jXfGw+yX220scARu9ZiKNmzEVrjLODN2LV2daL0kQU0rKsQUSQvgGKjitINnCi9nBH0uHCi9FFTmbUWki17okaOtpFj3IoCZs0iqwTOQ9YkORemsnYttCc/0sSaWoaDUfCqeh2fgvaFS1CF0TyM98RWNRIvuMkO/W2R7bcRlcqtk5tMFI0FzgdWoxJszXrB7o6q4w5E1VKZbb06cLgd+us3URH1N0ROydtPO1Al1mixLlo38ubqRIqlmOc3HqFYljLrl9MKfJT6QaqNkc9SBhdYnOFBqCnAN+3QPzPxgjdH2Ni+jTbea9gGzc3ayqBJaA3bGBFl68KQJ8p8ny5grulfuBcK9s9Ae8+dDQZ3sxhGXiB9CnAMlQRXvV6SHSgWUottEDHnEHNOp+CcU4Cv2KF/QeIFTwHP0lxv0pdRsj6v5UEKXJ1dE1PxcgRwhB36H0M+9gQzpqwS7fcM75d4GyLmFFXWNCNJ/yVgc4bGtSajZ+Vy9Lw0hdWmv3xI3uuTBuay7WtPcvGHtmyIaDJGuAElnPL2rfucKJ3Z6IFM0uZGdC+y5OBGgG+H/oaJFzxvpPuuIsfWTbwgsUN/dSQNvjp6dv6YeMGwFhGJF1xmh/4tKO62DOr5eXWD6kQjxds0VrnYiZ6hf9qhv1HiBfPI0ybGdjiKFU9Ez3cno68wmmDO2Qg+RHGCehYqCCjDG5Srag2gtaT2HIcj+ciflx3cyLLew3AStYXm4jl26P+xxha+G9m8GzN0HehDEtQLyp9towG0E1zjGGaDPtcO/fNQUqUvb1F+l+F2Ks0Ra5tQ12IK8G2GM29AzKD1UfCqWnLoH9Q3JjZDm+EMYIId+lkDxrWoGKB7Ikd/d1SaexrSes4qt06sF/BIvODfjK2ub4Za6aMMPUjy8dJm2CkmQXdNE+ffl4pUUR7uAY42+rzvasSu9TGU+MyMhseBI5woHS0j+QzEkstb01NKSsMbxFWowvDD9T6InIaXAQw7/yvkGz6TgANi1zrCBDl/g9h+9dCHJC4axSsUV5/NAbYw1QSFcKL0P7FrbYIkUNdEga0BJH3YzFjaaOPdjuvR3psFEUB79R2xa63sROloWchNwfTV2Zri/Wci4CDSxs0jPY9Zw+a7w2NkZ45AUiQT0B4wB61Rn3eiNFfSJHatvVFSZAJaswdi1/qWE6U/y/t8EziEfHujC9gydq3F5/cz0EokXnAvep7GDUx1zp7kBwmnIGWAHobuw5PRvb+Q/L4IeTgZBTFr728v8MPECxoOXJXgzTrvz7eKRDv0l0fBriVQQPN3VT7YXcCLDJc/yiTQf9GiYdQLVA4gm6gePkMxcXAOsAX1k2RttNGGsB3F86kH2RMNJbgMbkVqHXkYREHWC5Eax1Tz2t7AH+3Q3zvxgnpVMUvWef9DMK8SePs6ny0KnE8GPDv0v21I2J+hOM7YjZJ1pyZe8Iod+o8j2bxGsDtSMtoMqXlkgfHZwDsoLjQMiRc8ZuTJDqQi0zgVrX13mVjP9SYecrE5Tp709O2JF5T1Z6/FoeQ/Kx3Aqnbor5R4QakPWovOkjhWf4fFVq8/NdY92cvgo+s7hUoCchDZCYcVfakAX0X3udrm6EG2zi9ogPBS3ZOqgc++hgi92KG/GHCQHfqbAC8Bl+TJcI4SMbIjPtLg55dF0oqfrnrtRNTOol6vuZGgrqqSqYz6aslHBhC5rRBmDfg7Wudqk9Z9aG3J+309SEGqNMGFqlfLrk8nUtw4rWpMg3bo74hiqF9Da0EfiuHVk65vYwGjneBaCGAW57cX9DjmB8yCchhi03wVlRXnLXgZ8voBkHjBW3borw3sgYysOYgp8wdUtptVzBShg4q2/rfMf6uDBxk79hfAsokXbFH+yxYMjNxInuZuhuXQot2KwEQRjqZ4Y5kF7DiCfmALHWLXWhWxQaqfu7WAG0x1wy0jPbYTpc/FrvUpxJyqfk77gc85UToqo8yJ0sHYtRqVOeyjUnXWRblR0YMcnTlOlL4Vu9YX0JzqQk5L1n+sn4os5q9oTg7qHCSJUTuOAdRz61mYJ6U4AXg7r6rAyENuGLvWMqhX2LNOlL7bCQdttNEwYtdaG1VM1jLxMjnbLzO88fVYo5G9eRrSuh9xgmtBwonSC2PXuhtVTzmIyHMe8KypLAP1BJqI1tFPIoewNlFxTuxa7zhReuUohrN4yXv9wPsRW7ON1mEJymV/FiOfLGYB29qhPzXxgrpVyIkX/N0O/X0R0aMLBa0momDgic0OugB3I7twkZz3eoGLWnSeUtihfwjqbdqBfuN04Gw79DdLvOBZ46t8ArHLHSqyTP8Ddkq84J0WDeUB4L+oMjQPc5jXKqwU9aozG2pg30Yb7xYY6bPdUH+YRZG07kWJF7xmEj1fR0HPbiQJf1aVYskstObmxdHmmvebweMUJ7hAZJTlqFR7dCCfZgfUL6seMeUNyis6XrVDf3G03uT1FWwUA0iq+d8otlAUZ8wqJ7IKlNxYTg56gQmJFzxnKrKOQjGeeSTJMrlW07PnNDv056A9K7OBPohs14vs0D8XxZ8eQj76JLR+TkQxpGHS03VQZhPNMe83leBCyj8fzHtj4sDc9JB/3VaaUBhLOFH6dOxa66Fkwc7oufsTcOwIYhGHkk+YsoAN7dBfeixaW9ihvw4i3Heb888FDrRD/9TEC05v4PsTEDnmADRPbwTOqx2rsSP2M+fKqq/K0AV8wg799yde8KYd+ougGOVY9AGfhXqT1cM3KK9CO6aR3qxoXv0VJZ2r73ltkrkWK9qh31mn+nzbOseYiNbXITDVe9+2Q99H97G3XeW+cKCd4Gpj3MEk9O4E7jTlyW9R3JunzJCZjUruf139uh36hyO9161orCy+7DM9iHXUTLn6/MQgMqCKfsNcxHoaS+QaYQb9qBT8XZ3gil0rM/DyjJDJiBGyWs13etCG+5ppfl4KJ0pvNUmaPVEFxWOogWyrkjCNVPnNAa5AxhpOlPbHrvUyxc7LK9Xjc6L06ti1HqHSAPT/UEVIdm1urFdtlYMrENtpVypVob3mb5/YtVZDweAt0G98MXato5wozdUob6C3WhttvFexHsXrRA+qXJ3fCa5e6mv+DzD2++CYwgQOvpb9O3at3VCVyaLI1rdQoGEAXZOiqu7vxa511SikAx+lXNakrhyeWZOzZN2jwAVOlM6PaveFFa8wcjmaFAU0G5LZTbzgOjv0l0KSQT3A/YkX1Ku6ahiJF6R26O+FAondVAI+vUg54KZWnasIduivhyqzqyvepqHfex3qh4GRCVrXfH5VVG11VysDICYAth2SY6/12ftRH+JG1q5fIGmnPF+qC2OztdHGewEFfZHWRrKtn0I9OJelsgYcjKqTNjTVO1ehwHJeHG0AeNMO/WNQjOKqBhLeM5A/nne8DmAF8om+U5AEX2mCK/GCPjv0r0bJoNp4QC9Sz/gu+s1lgeB66EYJeZDM3+Hkrzm9wJ/N/6+I2nA0gnnXyKy/R5q/hmGH/rKoGrlWWWTK/7N33nGSk/Uff+9md+9u7w6VXoICSkCkNxEVUKoFRECQnqAgxQIiEOAHCggEEJAiKggJSlVAqsKB9KaIBRUwiBSDCAJSbvfaZvf3x+fJzexskpnZdrd383m95sWxM0metOf51s8HJVQOoyJlMRfdz/OBHzcYqK/F79B1zVuju6jRZG0Q56Hkw6DCzQHo7xzo/9Mw/ORRhROl/0AdhiNFI8nBUU1wmcLwm1GRTfYudJjP8Xbo35V4QWHMz1CJ3o3YXrL7sybSRP1IreZa4gWPm2TtEaircXnK7bl56LzfQMxR9TS8ajHL7D8rJCp632eiDtEOFEP5rNnmGiSrkvkIH6Q4n/A26n6ri8QLnrNDfw3UOXkUmu/aqG/bvj0KNtdM4LGSsfWjIqcWJggmfILLDv22lhju2MAO/fchp+6ZMeagLUTiBX126F+MAt61E3gv4ntudp+zgR3s0P8KakUeibBpP8XJt4UBK1H+nv98HKoRXqBYkLWTxSNZ8AXKE32rxa61jBOl/zX6XOcgWscU6Ixd61bgICdKhwSSYtd6FwpczAMedKL050hTZrSRidWXPU8DwO6oHT3ToPguos/KozU6teZvOFH6LKrKq8Zvan/XKJwo7Y9dax9EK+WhZ/F2FPBZElUMTadi5K0GXBG71pedKL06Z5cttNBCPl6nOJnUzyg7og3iVup3fcxibObMBYLYtbZHHet5Tm87xWLroEDaVBpMeOTgZOAmhs73vcAFTpSWVrbHrvVlFEzqxNAaAofErrVPUdHBogA79DtRgBXgT4kXNKyHlnjBLDv0I4qpoAcoDmL00CTtn9G8uL+ZbZrc//0m4PN1lCx9FQXzbhsnf+9w8v0CC1jVDv31q/UXEi94HCWgxgSJFzxhkoo/Qh0bHeZ4Ryde0KjW18/Rea3F4HPrBY5KvKBnFIfcQgsLFQzd2AGoe/l1lIwu0kXKgtvViaCM/vfHwCcM3d0VqEujeh+zkC92NloDZwHn26G/d+IFgyhAjS7MWmYsdyANnTz/KmNYKdLoKururMVhKDm/Gopb9Jt9345YN16jfgdJGeYCNyde8LYJ8m9IcYfbC1SS6imNJ9W6gOl26K/chHZkLXaluBCr9vyz//8WzTGHVOM0NG/n2USXDZPB5kpE1bgNlRhUb5vu557DHOfCiD8hiZCiDvSxSOR9DNnIececjDo7y4raD2WwpEm2XUaruGntBokXvIC0MI9Az8sxBcfH/D3T+J1b8rs8PI7oVbtQAu5WiruvlkLz4AOoKSCbMzwGU6M+Zc4p7123aEKKJfGCN412XzuNnddsxCBQDzMo1o8FFThe29AgW5gQmLAJLlNhcxqwrh36s9Fkf7xpP25hBDCtuZcjvZ0+87cAOH0BJROPR47/psiQHECL+K8wXLnDxOWIgmQkCa4u4HFT4dC/ELaueuge5lV+ZZ1yY40zUHVZLUXcHFTZtkh3bxk0ItqbPTvXM1QzZkfg4di1LkXJshQJDK+MOK3nGzmxax3mROlY8G+fjCg/l6CYMnSS+dwau9byTpTOQ0GZDyDnap4ZZweiDfxhwX5GFaYb4W7zmY/YtTIntNbo6QbOiV3rWidKF7Z3uoUWFlbcXvJdo47IqMKJ0tdj1zoKrUN5AaJe1BWysHZhDwdnMnzKkgFG0M1mOom/gYJBGa1sF+qkP6Fs29i1VkbJreqxd5nPFbFrrdhIN/NIYIf+B1FBVUb1+MPEC54f6X5j11oRVan/szbJZ4f+vuh6Zetqaof+EYkXXN7EIb6J6Kg/RiUYm6GoArYHOLkB/ZZxh9EkOWIBHX4Niq9ZHwr2jKvenumS230E28+xQ38L4DikQbMECkydmHjBzaMzyhZaWPhgh/5aiPp0ErIBBswn7x1vQ5SveWgHNrdD/92JF7yJaOweRh0HNkraLIX0rrK5PEs+XGWH/odMl8KyqAgk0/NtQ0w1j6E4R/X6NxutQ+tTjKdKvpuPxAveMt2mn2ZwN8YjplN0JDRn76Du7IMNPds96Pzy4ittaA691w79Hc12L1Ff43kAXdefApPs0L8T2NvogjeDat2uZrAnYvtoGHbob4bW5ldRwfFc5L9PAn5hvmsaTpSmsWvtCnwKJW7fjezYS50oLdV/n2A4mUq3eDV6kW3WiP5ksyijy2xHz24ZDiHf12gD1rFDf6WiTkATYz3WDv0ngIihz2kvolHNkt6PUJ+hAjTPvAF8Juu4t0P/Lcq7o9rMGBwqyf52FMv7FDrPC5HNvhdDcwopmhP/UP1H0yG3GooHvZgTV85oLethJvB3GtOYPwaxdk1laLznFWDrMXqWWlhAmJAJLsNXejGVCaQbVS5ub4f+esbwaGEYsEN/FZT0mMbgSeA4lOU/abzHlHjBbDv0twE+ioyyPiT2PKKKSbPfb6AJuqgyCmQEtqPzr74mPYhX927E3ZzaoX8LcGSzgqFjiPdTTk/YKC3ASHAtosw7FBmnHeja/dX8bdwQu1YbWqwt4O9OlI5XYKdehd2LJhC7LlqEax2NLjTu71IxeDak8kxW//7HsWu97ETpsLue8uBE6YuGV/sMRPdXzQVfi05UsXaLSS4daZJJmXjxHU6Uzm9bj13r0yj4+UFkbJwLXDIO9+ezFK+D05HDNRz6iBZaWOzgROns2LW+iOh7Os1nADllFzlRukCSSE6UXhi71tOoWGYDFHRpR9QZZ5uxLRJMALFrdWAo1IaBFNk0S8Wu9S0qlc5XAd93ovS1so0zOFH6k9i1rka895OBB5wobZSDv8ixHUDFHfW0RoYNO/S/BFxApXvsE8BX7dDfc7hJgNi11ui1Oq94Yfry60xJ5/W9r/f1AbMWnuxEab8d+juhIpBaG/QiO/Tfqq36L4JhJtjeBDCPRmt0ke3Xg67z92gyYLeY4G/Ivsor5OkE/jG+wxkdmC6t482nhRYWF1yHfN3MV2lj+DR8KZqr3zSB2ch8sEN/c9SJlTdvWMChdugfjboJ1mJw58Q05HNcjLRKO1DRY4Tour5HfoduL/ILG4Lpvr3ZfGrxexRnaQSZztjNVAqObzasOx6yQYriKpb57sPATxMv2NkO/UMY2vmddR7PpXKtsoIXkH3xS9TF1AweMGNuhn1nCjkaPWUw8aXTqNib/ei+XoMKCxqibiuCKb68zXwWSSRe8IAd+gejYtis068TdST7Y3TYJyku4p2H3pMylDEkzENzUak9nHjB1UYT70wqSfAO9LwfW/W7eYaNKmLwuzOXim7cXHS9jq/WpzOd//8DivTV56Gup7wOr25UgHSh6TD/OrKdQc/7O1T0SOf7VnbofxHFd6ajd+IVO/RvQEn8W03yrSy5laK5Zh4qmrupQbaDuSgW+RlUgADSJT4XuGQhbE5oYYRoGxiYWD69ofF4hXzKs1moGjEY31EtOrBD/0JU3Zc3ofUAyy5qWW479D+NDMR10MTaR8WAmokC3Iciw3N1NLFayKjYkcEGZwq8BayXeEHCAoYd+ocjGrg8Q/MdYK/EC24dp7GsjjqAulFS8P7x7AiMXWsHdA+XRIbzbOCIMep2qj32HagtvAifdaL0tti1jgBOpzFtuDI85ETpx0a4j1LErnUDokjIQy9wpBOldQXhY9f6JqrSqu7w6wHuBHYZy8Bz7FovUVyt1QusaygTW2ihhQYRu9YHUGfppqg690InSu9doINaTGD0HufQWAFbNXXdHOSQ7oyCVtVVznNQhfmGRoNwTBC71kWoKjQP/cCJTpQOobUdDdihvzKqBs2rYu8FVmi029xUqH543TdffP/ab710yQ32RpPbBwbob2tjybk9HPP0r2ev8/ZLFzlReqQd+n9Dwc48PJ14wQcLvis7/oWoYzoPA6j7+2uLSfd807BDfz3UmVFrN/cBf0m8YMPxH1ULLbTQLAwN4KMMZRApQz/FQdb/ACvlBUTt0HdRkLcocTIDFQnfUfCbHhS8/iGKcb2ZBW/t0J+EArSZH5miNf7YxAuGxWRjh/5URIt4IOrofBF1otXzP/sRZf0ReXEOO/QfBj7S4DBmAx9IvOAlO/SPQQmh7Nr3oXjKNYiNJi+OMQvYJPGCvzV4POzQb0Md++sw+FxTiqnRZgJfSbzgqgaPYaMAel4H2/xzbnTMizvs0O9GicwpwENjHV+zQ/9V8js5B4B1yp43U+heRIc3E1jGFNivjpJ022LoKoEfVNMF26H/LtQtNRm4r6h43nRnnwRsjGJ7FwNn1aMetkP/NtTRmYceNMcUzQe9iRfMn1ft0F8edTkui6gQByWf7NDfFXVfFjFptKNmik9TTEv558QLyrpZh8AkSM8x59JpjpUCOyRe8HAz+2ph4mAidnBtRHFmfQqwD9BKcA0fO1DMx5qilvNHAUyb/fuBZARcyINgDI9NzHH+A8xIvGDuaOy7CIkX/ApVBGRG5K7AF9H5XgXcaCbp9ezQXxVVX/wdVXnUBkMsFBg6jnHuTirAT1HyoBYDaBEcc8HuDIkXPIO6f8YdsWt9FFH/VS+s01C302wnSq8bw2NPodzYv9OJ0qwCazaNtZvXwwajsI96+AOaL/ICgv3o/ShF7FpLoQRsntjvdiiBdsPIhlmKa4Cvkk9X8Qp1uKNj1+pE1VpvOlHaN/rDa6GFiQcjMP21BT2ODGYO3gMVWMxBlNa3jGMHb13ErjUNVWh/kUoS4gonSpsqKDKag7cAO1FsK4MqGn+LnNF2VOF5PnKM312z7SRU5RkgHcaxwu9RAKAo+PfnMTz2/hQHNfuB3VAAohSmiv8XwPT2gYEp19sbdcyxKsvLv6d0ccy6u03+0eM/PeyZr65wOhvtX5bAWsMO/c6aIMGHgC3Q9bgl8YI8OqKX0HOeF5joRQGiVnKrAIkX/NkO/a8i3a8BZOO8A/wXvVcttNDCxMByGKmFBtGLElDbk0+LdnxJtf8LFGs79SHfbl+KY29TgY8mXnABmmvmw+ig72yH/ppIl3IWlY6HpmFiHQ8Ca1Lxv96P1o13UByoSL7hLWBP0w1Wvc9O1DnsNDGUOYBjikJOZPAa3IEKUr9McZC9E9jPDn2/0YJZQ8e4Lep62QH53ZNQUcMJEpEeAAAgAElEQVR65pjVwfVMFuP6Bs8JZMeVaSh9kWFoyC+uMIX140Kla4f+SiiOl4c5KJ5TllA9Gfgk+brj55rk1qZIW3wylfngO+hZ3izxgpkgWlEUpyhF4gX3I8aBvPPZwoxpQ/RuX0Il+XUhmk/yCgAG0LxV9O4NKv5NvOA/qCMqbwxt5GuxZ8j+/l2U9CuipWyKttroeZ3D4DhVtt9b7dBffqxjzC0sGEzEBFc9Xs5GeDtbKEZZMKUd6LVDfwlkGHwK40Tbof87ZPAMu+XaiCjfjrqkQMZgaof+zmbyHnMYI/Iq88n7/jkz1lUp5unuREmyBZ7gSrzgDdOhdgsKWE2iYsB+cmHUXhgjnEb+wtoNnBm71vVj2Cm0C8WGbkYJleEmCgyEJtEsJ/lwcAn5FAEpov56oIF9ZJSjeegGfh671o2A50Rpw+cUu9ZUVMH+JbOfGUDgROkzNT89E9gb8eZXr4e9wMFFz0TsWpNRp92B6L1KY9e6GDjWidJh69e00EILo4vYtZZGPPXLU0mc7AD8KXatbRaG9zV2rWVQRfGyVNapDYBvxq61mROlzdJufxM5rdPJL1jqA94EdnOi9NWqcXSi6sm8xFgH0gAaywTXNWhOruXJT5F+wFgW5JRVrk+mPs0wdui/l6rq/CeXWJG51tDLP7fN4sr3fqTt6L//ekPECFCkBzIPU/Bi9FGuRxTGmL//2A79IxMvuKhmu5+hYGEe2lECroUSJF4Qmurm3VFy9/fAr8faZjY08buiZ+5u4NEFpH3cQguLAp6keF7vp0K1B5qHf4Hs+ozxYxqaMyeZ3x5otGtuyHkv70PJn1qJB9D6+XE0fxcljvqQ71SIxAuetkP/v2Z/I9Fa2gPFWmrHMgmtLdshXcg1qNgkWaLHy0luLQ88hGyYZqj/OtE5Z75ULdqo0Pvlxfc6kMb1ynbo79Mo1ZiRMtnZxJ1WQYXaLxm9thlUtKZT1Nm+nYkPNYolKX7uJiGfs4WFE1tSHJeYDOxih/41iDJ7FdSpd32mi5V4wWN26O8JhOj5HED3/GKUxALFUGvfkylIm+prKL4wYtihv7sZR/YOT0d6VDsbfbg7EFvOtlSSXNl7fiBK9H+RofNED4qrNYqlgRUa+F030vP6JOqGzbq1ngYOT7zgnqINTRJtF0TRvSoqUP4PxbkOC8Wxb2pgXC1MMEzEBFeZ7tJsVIXawvDxEzSx5iUD/gf8BRkxG6IJO5v0NgcetkPfGU423ExMvwY+xNCAzK/s0F898YIxo8YZBobL3z0i2KG/Pupw+x/wq0boIhMveNAO/RVQ5amNus9uX4ySWwCblXy3EqKDGFYlXANYjWJ6DIsqYV0nSv8du9apyABphlKjGrORITWmcKL0ldi1PgvciN6HLmQU/gfYtsGEYcZNXgQLJcFuoRLYK4XphHgUXfesamc/YPfYtbau1gEy57AhcApy+DrNtsc5UfpQwf7bUFLyIwyuCjoYWDt2re0XFT2fFlpYBHAh8F4GJxGmITaAo2hCv2IMcTZah6ptn6nIef4u6jJtGE6UPm/0HI9BnUddKEC0NOrcug44pjq5ZdBJ+XzcFbtW21jNb06U9sautSXqqH8PFTvrJWCHMe64ewwVO+QF52Yh27cevk7Vc9ZeUMzf327xx/e8t9NiYBYKqO7BUH+sDwVNsoDdD8jX5zzLDv2nEy+4O/tD4gWJHfpfQx15mZ7YXLPP/Qu6vlqoQeIFrzJOGmXGBzoVVShnehvHAn+wQ/9T9aiGWmhhcYQd+haSCvDQ3H0rEGZa7IkXvGwS1Z9haJB2NvAxlGyYjpLJWZzhFtPJcT4qlLNQ0mMz4HKz3aBugsQL+u3Q/xRwL4qPTEMJkixxUy/xMw+41JzXZBSsXQsV3F2NiiwuQnGSAeAlO/QPT7zgljr7zcN+FPuYfYiZYjPgK6hY9z3IN/pu4gV5GkRXITur2bhiD5KBWIvyROQAxYUgk1F8Yy+gKckBo0lUrUv0pClU2Rp1tD0L/GYYGj2/RYWmeZ1A72CYkFpYcLBDf0lUsLUp6r78SeIF/0C2Utn9noaSsm3m3zOB8+3Q3zbxgscBEi+42SRPt0bvxMOZ3WWH/mrIts/DFKT7euZIY3Smo/LHDI3nTkZxp30TL7jEDv3dEPvZ16nQCz5KRSsr01LuQ3NUJyr4mWWHfkdtsrsAc2i8AWXNxAt+C2xqGiras/m8Ds5EFOfZvLaMGXPRnNRJsURFXdihvzSS9PkseqcvRYUPY8bmY6g6N0fP58NGe7eFHEw4DS6Yz6d5NoNf2hR4DVg78YKGhLBbGApTJfoIajHPHOl+ZAjuiAytu8g3jGYCByZeULedNue4GyOjMG+/s4Eg8YKTmt1vA8fdClUhbGKOcxVwgnFsy7ZrA55HBl0t5gGXJl5QpCUxnHG+CwX5NzJ/yrii92lUhHxxRuxab1Pccj4PeI8TpWMSQIhda28kIp/n3PSiQOOFNdvsjITAP4SMkaKE6gCDK8B7kAD6R0frfIymy8EoWLoS8CoyfM51orQvdq1JaIFfEbXt39NoADR2LQf4E/k0h9XoBT7mROkfG9jnscAJBft8yonSIr2ThmDoLu8gf67qAbZ2ovS3IzlGCy20MHLErtWNCheKAicvO1E6bAdnNBC7VgeynYrGONOJ0qK1q9ljtQMDZfNz7FoxlS76WvzBidKNCr4bNZhxfhwFAWLg0bEuGjB6JC8yOLEGsrVeAlarF3CwQ/8xpIEAgNXfT9qe79Ov3Pt6evljl03+5JZHLYMCCu+hEoCdjTrsNjZV5e9ChSNFlf+/Sbxgm5zxrIWSo2sATyB9h3+UncOiBDv0O1DgcyvUWXFV4gVPLdBBFcAEmSKG2hWzgWsTL3DHe0wttLAww7zftwEfpfLe9KL1dLMqxpVpqKhjCzSfZ91A+5b5z3V0lAq1n8xasgcqgtufYtmHDFmM5dTEC04z8ZAZ5py6an5Xu6DMAnZvVkvbDv17UadKHt5GhRANxRbqXKd66EW+5arA4eQHwd8BMgq2IoozgMcTL9i45Ptxg3k2Y2BlBgfY+5Cd4SxmRcYLFQxF4J3o3nSjOEofcCSKA75Mfgxhptkm71n/H7CioSDcBTgL3f821I391cQLnrFDfx3UKFBk1w9g6JBNomdYMNSEt6DEfB7ixAvWyNnuU2i+zNMgHUAJwMno3X0H2MpIkFTvI2Oy8tB1vBF1vH2Y+g0CMerg2hXFzR4EHijrZDdUhI3EkqoxE9gx8YJ7m9im+niPmONlx5yJmDh2qKYVHy3YoZ/p1feha9gGfCvxgjEvaJ+ImJB0fokX/Ag4AHiOSkb5JuQMtpJbI8O6wB9RNcPraJK9DviIqRD9KMXG2jQkAokd+tPt0D/SDv0n7NB/yg79U001Q9lxizAZTYqjCjv0P0elE6MDjd8DHjeVHYUwE+1hDKV07EeTXDOtu43gGlRl0m0+05Hxe6UJYrRQjmvQPFGLfuD+sUpuGdxAcbv7ANKDGQQnSm90onQTlEQtMwZOBb6NAmQPA98ANhvl8/kJ4jB+L6pEXAEtsn+PXeta5MDd4UTpBU6U3t1MINKJ0hi9g7Pq/LQbuDJ2rZUa2O2XKTZyVolda9VGx1eAHSh2sqZQLNjaQgstjC/eRXklZuk6P06YRLlW1lTTNTpiOFHa38D8fDzFOiJ/Go1x1IMZ531OlF7uROkj49ERazpktkLJrHeQHTcTVXBv1WAwapBuStqWf9smpfNYfvZbkROlfaZjYB2kb/Z38zkDCZlnIvSroqBCET5UcE5PJl5waOIFWydecMRiltxaDngKJY2+hoKoj9uhf+aCHFcJfPKLZiYDe9ihPypJ7hZaWIRwIOqkqn5vulFH1k+zPyReMDPxgh0Q88xXUffSMg0kcHYt+a4TUXcNQeIFPYkXXAZ8nwr9YRnagL8CM0zn1gxU8FDbsZQXs5sCnGuKbpvBL1BBXh66UEKpUayMOjSGg26kWb49xTHJHqTtdRzlemrLD3MMow7TxfFxpFU9CxVYzDL/v0UrubXgYJKPt6LET+bLd6J36WxUrHs0Q+N7vajQqMin6EDUf3sjmujVqHTQb4vsj5VRAqcMbaiT6k479Jdt/MyGYBLFtjzABwyFYS3OIj/G0YHOZyryWaajd+5Oo6EHzNf3uwfJWGyH3oNTUOFcL+U68z2oUPofyA4+xeyr3w79Xjv0LzeMVLXIY0EoQ4qSmPc1sU01foa0iqtjTdNQ1+uXh7nPQtihvz+6FlORX7sEuv7nmlj2QgE79Dvt0N/dDv1b7NC/ww79g0zBx7hjIlIUApB4wbV26P8c3ew5Y5EtXdxgHL/DqNCGzUJJgTMSL3jC/GwmxZoBKfCmHfrvRllsm8rLfyTwFTv0N0284J85275M8aSXooTbqMFMxnmtu52IxufrVLhyc5F4wa1mYjkLCZNmekrfTLzgX6M41lVQ4CWvwrsL6W2M+oQ6XjDVyd+mQjHxV9RF11RFWh2cgLqMqnmx56HF9rBRPM4QOFE6K3atTyF9OQudY+ZYfM6J0jK6oHeXfPc2cIPpagpGZbA1iF1rW3RfajEZGW+roYTOKbFrfdSJ0sIAmunWOg4ZPLMRL/R5iBYqm3vK1qQ1gMdi11qjjh5XWYVfH83xw+chqwDNC0r3k59IbaGFFsYf/0WBl6KEdz1HczyQOc12wffPNJLgMZ1gn0GaQaAA1q1OlDZLlzEZXbO8CtW9Ytf6phOlbzW5zwmBxAv+Yof++5C99T70fDzchAbSD1GXgBy6tjbIWDJMsquzvy9tHxh45rElV/ta1XFfB04ynzz8h+IOP5D93MJgXIXuYVaQ12k+h9qhf/8o25ejgdVKvpuHuuefHqextNDCRMDXybf3LWATO/RXqJY2SLzgaZp7h6ZSXNDbgQKNZXidYlq9arShAtb7UHKrXsdXLd6LknrNFHhfjoL4XTXH6wHOT7ygGcr+f1K+PtXDshR3mQwAFyZekNqh/1Pk6+b5iQPAn0cwhoZggve7UUluXg1clyfNYQpUPmyH/poYTaDEC/4+1mNsoS62o/h57QAOSrzgCDv0n0OxqbUQE8QlKA6xd8G2U1ES52sMnZfaUELicWBNRD1+IuVSFB2IHnW4ely/pXz+aUcJkusMverWiG3oAyXb5O1jSdRxdZf52zcQk0H1Ne42//8o6vbcEcW3UjPGATT3PIHuT57/MQXRkG5nh/66iRdUF5RNpTh+lHWdzUVzXR+iJd02z7Y37+uXkE/2KHB5NUWi6Vhdl/yEfDe6/z8sGEvTMMULp5C/1nWjQvcFriNmGODuQQV3WZzto8Cxduh/uB4z2mhjwia4YH4XzcwFPY5FAXbob4l4lqtfoKz18kY79N9nrvcNqCopD3NQVvsEZHBVT26T0PP2Q1SpU4s7KQ4Mz0XJqBHBVHTuhCbOlyheWCajBew79faZeMFdwAamHTcdBk9zI1iL4oBTB1WUOBMNhk/2EeTcZ8/L+sC1duh/PfGCS0fjOEZraV2UaN0LXbcbgTOcKH2x+rexa01FFX57Uemw+pkTpXX1zkqO/6jpPtodGTf/BK52ovTtOps+DHye/IXUQtXeYwLTNdAIn/k0NG9cR0UQtHZfm6AW/clU1p3jUDXlP5GRcx6VBHse2pETtD/luhj3oOucl4AaYORB7RuRdk+esTHPfN9CCy0sYBgK1bORlk3t+9pDzRpv5ry90DqxIgqGne5E6R15+ze/XwaYM9ykjxOlA7FrfRtpfdTaJL3A/9Xbh1mz7ka2QuZY7AQ8HbvWVk129O5F8Rw8F3XpX9/E/iYUjA13d90f5uNW4GbkvOs+tLVldu0bwGvz2jsumdfOxZkgeYNj+o8d+g+jStg8v21pO/Q3TLzgD8Mc9yIFE4DYnPxA8VT0fi9sCa4EdW3koRMlOVtooYUKlir5bq75fiTJ//tRoW9eUdw7wG/KNjbz9mOIJaasSztDNypSaTY210Z5Z9N8GE2b7dEa/3nU2boz8o3eRoH3C5o8/huUd4rUQ0pxUq8NaWGReMH/7NC/GiWXaouWZtFgIsB0yW2O7skjiRc0FEc01+4hRJ2cPRNbAcfYof+xxAtyCy+HkVhtYWxhU67LtBpA4gW3AbeZjqGLqW+L91BeUAfyF66h0rH4bYrt7SnoOR0WEi942w791ykungMlmVa1Q38T1O0+nER1B+DYof8IejeOK9iPheKVn0u8wDPv4ReQvdyD4sfHUz/p9x5U2H9s1d/vRvGjvLm6B3XjTkcMRE8C9xQkt76J5sCsW20n4CQ79D+ReEEmkbEkFZrGPIw2M8g0yrtT17JDv62JQryxwjEo8Vf9/Gc0uz9A93rcMKETXC2MKr5KcefDu5GB9nDiBf+1Q/9oVEUzhQp9Wg/SnfqzHfouxZPbVnboT681BBIv6LNDfyekbWOZfWf0kycnXjAiahw79H20kFQLvpY9/41UXc3HaHYQmmz9iihh9h9koJdVJiSjdewFgH1RlW3t89KNKkuuHC0RRSdKX0ML4rFFv4ldaynUfbgclUV2Q+CbsWttVqfbqt7xe1DXUimMplUXSt6fCnyKoe9mL3BBddItdq1lEF3HXKSDNeyEnMFGlHeQVaMdWD12rTWdKM0z5C9jqOEx2XyyFvz10djbKDaypiLh5bIE13eRUVJrJPUApzpROlwqDQCcKP1T7Fq/RE5h9TF6geucKP3rSPbfQgstDB8m6fRFJAC/IqoIvBNRi85Da2YncLITpTfUbHcpSo5n7/VywCaxa53oROnZNcf5AvA985u22LUeAw5xovQvwxh2iObBE6kU+nQAxzlR+osGtj8FORbVDtc0YG00Hx7RxFjqBeJGhS4RwA79tVH3uY0CR1EmxD0RkXjBgKGn2REVjC2DgqTnJV7w/Ah3vy8qBlqWoevjysB9duivn3jBsyM8zqKAjDKrKABR1i21oHAmqp6utVvmADc3KLLeQguLE/6IqL/y1qQOJGMxEjyEgqHrMXjOnQf8GzG25MIUDR+DAr79KJ7RSPB4OHG5PzYyP9ihfyiyWeaha9YJXIsCslOAN2qLdO3Q70L0gJsg/eWrEi/4d9X3X0DFic1o31RjDrrOHyY/7tJnjpvhUMSysw0VJo0Ocx5140R26B+EaOiy8+ywQ/+kxAsaoa49HXXoVN/Haair51TUUbhYwjDxrAL8J/GCVxbwcOrhSYppBmcjGklgvp7eb1FipN672Y+Yek6s87uPA+9LvCCwQ/8ZlFjKS8ykNBHfs0N/PZT4WR/JW9xI/WSLhZIP2zJ82aI+lLD7HroGZQmqeSiu9LqJ7f3MfACwQ//yBo43CdiTwbG8uxCt4VoMnkfmoELwO+slgOzQXx/5S9VzWRZ7u9UO/ZXN/Pgs5THZxxo4h2Ywm/ICgp6FILkFcDD560AnsKMd+t2JF4w0LtkwJqQGVwtjgkwIMQ8DVGWPEy+4AFUZ3YGoAx8E9kECoVBOEdZf9H3iBQ+j1tjTkOF4MdL+GhH9mh36n0WVF5PRxJsF1ssWq+XMZDeusEP/02iS/gfwvB36T6KulZfIn+B6UeX3RMX+FD8vAyhhUxexa60Qu9amsWuV6bw1grPRu1C9QE9Fhtto66oNQuxaq8audQuqDHwDPQPvR3QI/zV/fwstdvOriWLXao9d6zzgX8hQugp4NXatLzV5/PVi17opdq23Y9d6DelsNZO4nYcCyrX7XZnGWt6zd/NpyjmaSxdIJ0qfRMHsZ1FS62107U5BdKKjgf2QcfUiFdHgY8incxwTxK61RuxaO8eutcloafS00MJEhnkPIkQlsgmi9doBOW8noODIQcCKTpTWBjQ2QTzutc5ZN/BdU0CQHWcvc5ysU70LVVo+FLvW+wvG1hG71lGxa70au9a82LVei13rxNi1LCdKB5woDVCybE+UoFvWidLzGjznA8kP5k8GDmxyfriGYmaELobf3TQIdugfi4pJDkPVld8FnrNDf8PR2P+CQuIFA4kX3Jx4wQ6JF2xktK+eH4X9voS0uooc2cloDWpBge2iYPIAC2c1/ZWoY75ao2ImGutXFtSgWmhhIcYp5Ov39gI/NrqKw4YJGm4L3IL8rrdRwPQ3wMeNztIQ2KF/OPArZHvYKMDXhvyReoHIZtbqfrPPujT7duhvj/yfKVT0W7IOihMTL3gtJ7m1KmLYuBSxVnwXeNYkibBD/2vIDsrTxMnDAEN9yg5kUxTFI+cxWE9tduIFOyEKsepi5S8A/7ZD/+NFBzdF1OeiZMISVDSYvm2HfqnvZgqPXfLXlUnAAcPQQZvwsEO/2w79CHUY3w+8YIf+DDv0Fxo9tBw8hBJHeXGGFPkPGfZBSaKyeGEPijF8GvgLUK9Iqx843sT7bqO4+3IusJId+q/aof+6HfpXGvq8IbBDfy9UALU3KnbbETFm1StY60KUgCPJB3ShhPMUypNboOtYlrR7vsFjDnrXzNz1CdSZn83VsxGjwtYNJoAOpbi5YTqwpTlWD7q2ebGoWWieHDWYBopfkv+czKUqQbiAUVYQP0AxDe2YoNXB1UKGR4ENyH+5O9GkPR+JF9wL3Fuwr8cR72Ye3qRGiLtmv68wgsnB6H8dgib5dlTVsyP1J91adAHX2aG/+nhlxu3Q3w7pZlQnfD6IDOUvoSqLyeb7fjR5X4Kq0ycqyuagAeoszrFrLY0m962Q4zEpdq27gP2dKH0jdq0pKBm7DKr2+22RnknsWu0osJhHldCFkhqHlJ7NMBG71grA7xGne3bOqyGe9EORA/FhZJg/VtNJdhyqgp/EYOP7/Ni1/uVE6YwGjv8xlLCu7srclsZoNTJMIp/+byoN0meg67wGupd5ic+ZNNAF50Tpg7FrrQ44Zj9POVE6Kp2AZv/9iMajWSqPEcM88zegVv95aJ57JXatnUxyr4UWFldsjpIl1et9G5oDTgJWKKES3Ifijo8UdWxeYtaJc8jn2O9GFBsHVH8Ru5aFgjjVwZelzJi+ELvWBk6U9hltwV+VnuFQdFBu30w142o02Hc1lcrzanuwB/i+E6W52hyxay2JOsZeB54s0w2zQ39jVKAxpFKybaD/lie9zi91DPTvhs7tl8Btw9ASWxTxfoqpUTpQQHWxh6EGu5N8rY1ZSLx8xDAB4D2R4/4Q8KvEC8qKcwph/IyD7dD/AZVE+wzgjjGiPm+hhQmNxAsetEP/K6jzMaXSlfQLpC81Gsd4G/iCHfpLIbaRl8o6VExg/3SGztFdyG9/Dfl5RYHUeaiQcemC7weoBFbvRHrV81kjzNq6rznGDOD6xAvmoK6SIg2Xw+zQ/3Y1W4pJ1tyKfM8s+J3Npd+3Q/8Jc55lBc21aGOoT2khH/Za1D2facBn53lO4gWD/Bo79Kehe17bsQ6ilFupgC7w1ILxdgOn2KEflcR7uii2D7N9WDTu6y4q+CXSHc0Kx0GJhkfs0F/TPHsLFUyn/XbIJl8e2U4Zu8Mu1R2KiMazyL6ebfZxE3B19szZoX+w+VtR/KQbJUv3QMXMh6Gi5U70nKVmPJNQ/DLDXsAuduhvl3jBA9kfTfdcyOA5pYwJpxqNJmX7URPDGWabySge02+O0+g8cF+dZ+J7KBZd5tPMJYcm3XSx7mqH/pKosCBpUkvw/ZTHvFaq+reP7L59zXgyHJB4wW+bOGajOBwV/GfdtqD58WUaoLEfJzyNup3zMIuS2P9YoJXgaiHDBagKuNbomos4ip9pYl//h6oS8mjVThgrZ80O/WVRkmAZKgutT/kk309+5UIbqqZeHyVGxgN5QTPM3w5Gk+/+yHh4FfhJ4gW/G6exjRV+joJieW2tXUiDCpifgFoNLf7Po/t2H+oOqjY+twPujl3rWGQ0g+a6fiCOXWt7J0rzJtpasd1adMeu1W6SG6ONbyEDvXZx7UbPxZVOlD5cu1HsWp0U60F1I42ZugkuZFzV7qMDGXxF70g15gB3OVGaV5nzLM0Z/ZPQ835uzZh6EXVAQ2KaJsC6SAn6mk6MGeid6aTy3kwFHohdaxUTJG+hhcURLsVUOX3ASbFr/RUVCdQKki9B8TzXQWUuej/5dCKg+fuzOX//DMVFP2ujDo0fFHxfCidK58Wu9TI53bMGAyjh1lAy3onSWbFrbYYczUyv8r+oo3eIFmrsWhm/+j5oHegAXopdaw8nSosog3K1Fjv7+zjziV8s1zYwcAOV+7grWre3dKJ0sdTcNTRR09H1LXPAG9b1WgywH+q0cNCzlNEffzvxghF3IdqhfwIKzLYj2/Ed4GU79LcYCUVT4gV/oaagsIUWWshH4gVX2KF/PbA1WqMfMt2uDcEEh/dGQdXnEU3ukO0TL3gdFW/Uw64U059NRp0FtyHq+byESSfFya1+xOyxZm0ixiSkLkZr9iS0TuwCnGqH/keAD5WMeQDYxOjwTEWdOO+ghF6eTdSFfMtmY4h95K9f3chu2hJRrK2DunDPTbzgnpzf714wLszf9wB+kvPdWiVjWwGxt7yY92XiBXPs0H+ZwUHuavyrqKNvUYUd+uuioHvtc9yBnuHdUGfyQofEC/5lh76D4mlro0TBLTmSGGWFsfNQjGF5lFi5LvGCmYkX3GaH/lHIhi7zKaaj9+1Us5910TuSJerztp0MXGmH/vuq5oDTaFJWBb3zc2ksCdaPrs0FZq7NpEX+aMZ6doP7mUf9BoabUfI666aqnS/6UWLte0U7MEmtN+zQ77JDf0/U3TmA2Cl+WfKe/h49z3nXsh14quoYfcBBxg7cDMWn7ku8YG7OtqUwc/cGKCn3VF683RRtrY3i9Hug6/AzIGxUQ3Ac8B30vufF/s8YbvHXcNFKcLUAQOIFz9qh/3mUcMiqbNrQBLZbk/u61w79/VAwpAtNLO2oDT7P6BgtnIYWmuokRVnFDZRXL6QoWTbmMBVJa5T85GOmOuE881lU8CccxUwAACAASURBVBOkD9LJ4PmoBzg9q4iJXWtXRMWYtcC+gipWVmboYtSFkl43MPT+r40SJHnCnXNQ6/R7C8b6jzFKboEckSIDpRONOy9YuCLlAa916h04di0bWLXg6za0kL6DgrqzzHgG0PXqNN//EQU4h8AEYE9E1X6NdFI+70TpxbFrPYd089ZBLf8XAect5pX8myEO+NpEbFattQ9qnW+hhcUR76bYoZyOEkkp0sx6HNixqqPrdjQPT8/ZNkXFFFDpmixC3vx0WJ1tvsUwE1wGF1JModuGNFYb7jY1HcJfil3rILSG9pZ0ZP0EBfWqK3hXB+4zmowv52yzCjnXY88Xf8ua77xsWQxUJymnocDUWYxRB/XCCsNIcC7qLG9DjuJc8tfRWYhKqgVUzWu6GbZAyeV3UDfDv8u3rA879LdFXY7V9mVG+XU18MmRHqOFcphgz9YoAHmT0StuYTFE4gWzULdRU7BDf1PUBWWhOXU2og77BnD5cIKVaB4oCzYvi4owr0C+TUY7W1ZgOQfZFc8BnyroMtoddZNWBxeno+T+FSg5966C/U+hUgjZhdaZVyimirdQvKKRoHaGTP+8KObSjTTA9sr+YIf+uwzd405mTCHy38uKjKYi+yMPPeTbdyB75CY79Dcs6eI6BQXza9ffXlQAtLhhS4rt2mlIl2mhSXDZod+NiqRfT7zgZXOf76acdvtytM7kPW/TEXvONPRsnW+H/k6JF9ybeMG5dugvgzpvauNb1WhHyaL30jhN4LIoJvQXkxzZq87vUzTHdJh/z0VJ7EbtlDZgezv0j0m84AyqOuDt0N+d+rSrIL/pGWC60Qp7Iu89M3/7lh36l6H5bAPzWdYc5w7gG/XsODv0l0DyOatSuXfbAUfbob9VAX3tRchXqp2/+4BnEi94PGe8r9Bg0XXBONdEWmm2OU6XHfq/A3Y1RRXVx3oT+UGjJbUxqki84EY79I9Hvmim89iFfMRxH3MrwdXCfCReMMMO/eXQorQU8IfEC2qrnBvd1/V26N8EbIQm99/nVEaMNvaivAOnFplQ7ErkvwuTgL/m/H0sUC9ov0gG9U0QYhMUfMsq399AlQAXA8SutSPi4K423FdFlAtFc9hU8qvoOoH1Ytda24nSQffWidKB2LW+jYKFeQbsCQ2e1nBQljhrK/n+Tcrn8UaEyTPqjCK8haqhN0L0Gr9D92oDVO12uROlv69zjAuR8XaS+e8kKrz01ejBXGcnSu9kYtNvjgU2pvyZ34JWgquFxRe/RjRtRcGP6oD0pqigZ3vz/zegSsrJDLYjZgMPV3UjvYA0MfN0BeciDcRaFAWWMoyUm/xmtGYWBdbeM5ydOlGaUkJtaKh1d2dooCtLuB9GPn3G46jIZNB4P//SH5nUnxtTmwzsF7vW1xalAgfTkfsJ1EEwBd3HG5wonWu6th5EwbrsOk1Cz2MfWkezgMhs1H1w0bgNfiGACe5sgTq+VwAeAH6YBT9MsOQ+Ksnp0cK3yE8ydgIfsUP/vYkX5HYCtDAy2KE/CVHQbY2e/xRRpp2WeMEpC3RwLUwYmPn1VwxeezP74GLgAjv0rwKOSLygiNY4Dw+h+bjIBgHNHXsj3c9JyBYp09J+B3WBP1aSfDmS/DmpA70rN6MC4Dy2D4vBhZLTyO+eyNBHuU5yLVLEvvE+FKjOg0WVpo0d+u9Fvub0qjFvheIDbyJbq8jesQv+fjkqciqKE30ArcdFCY+L0TkcQUVLrBOxrFxWsM2ijB6Kn4OsMHbYMBTAHipk/h1wpaEMbXY/HajA9lA03i479B8H9ku84Nk6m9+Mnt2NyX93soRp9r7fYof++9DzcSbyBw4w51GkUdRGc9p77VXHXbZgXNXI3uN+lCQ6A7gLdSs1EjPNKAlPtEP/hcQLrqn67nbq65NZqABrNVQA1AH8yw79zydekKuHamhJ58fcTBPA3CaKDs5A3fvVvsk0lBj8DmI+qj3mC3bo74rsi6zoYB7St/90g8dtGHboT0c261IMvv8fAWbYob/xeEnkjBYSL/i+SU5ug56te0fCaDAStBJcLQyC4Ua9uZlt7NBfAVUzZm3jNwOnJl7wAjAWXKR5Y8gm4CJkfM5T0BjfQaKYGY1J7bswG7h1NKo9G0HiBbPt0L8fGVe1C12KeI4XSZhrvKsd+pm+2P9qJvXvkb+AZxR6eYZBGa1eiirChyQvnSiNYtdaHiXPMkqbDuD/nCi9pvb3o4irUdAkryKuJ2+sAE6UvhW71j3k62XNorFkx/Pofci7xinwaydKbwNui13rNHQ/OsynB9gidq2tanTBasc5AJwXu9YPUeXfLOBzqOotC1h2At9xorSw4it2rQ5EtZEinZfFTZvidWRw5c11fWhOa6GFxRXXoCrbydS3byehuWtVJ0qfc6J0buxam6Niii1R1XQXSoLN7xwyhRAHoYrxas3CeSj4cmbOsW5AGopFeLTeidXBP83x8wI+AyihNBbYGNlKRcLr25Gf4LoQXdNB453eV8qwl2mNNRNsXGhh1rIbkM03FT1HOyIazc3Z8qhtUDCt9p5ORs/mDBQg7UXBtXMXIqqSMYex+c9HgaNudP02Aw63Q3/bxAtG+k6VIS+5nWEOum+lCS479LMg1cyRUrcYmrXdUbHek8CNw+w+mQg4m4qgfTWOsUP/r4kXLLK+Ugujik9T3mk1CRXNbmyH/kaJF8wr+W01HkR0Y2tT3uHUCeyReMGJdui/ip7romDz1AbkCIqSOhm2RYHaFSlPvmXI2HeyzqtqzEW2zvsb2A/APxIv2NQO/dNRcqj2ugwAf6vpwrwM0dxVH3uq+axc53g726H/ucQLajsrTkD3dMmC7aYi2y83wWXiEsfZoX8Oup4DwJ21nRaLEW6mmHlgNqJQGxaMjtU56P53IZq50+zQ/0TiBUXU10W4CCWUq2McmwGPmk7gnVHiczq692clXvAPgMQLUqPXdTgq2HoP8rNXIp8OvQPZ2xmV5T/QO9TIO9coLOAJ8+85NJ4cy4qijkGJt6cQLWL1PJhpGebFz7qBswzt30rIb7kIUft9vOa3vebv5yAmnrXQe5/FLtYAHrRDf7VGkpbN2LZ26FtIziVv/p0MHEROgssc53bT6LEjSh7+GXhgjBJNezHYh8yQadFvBjwyBscdU5j7ecOCHkcrwdXCiGCHvo2qG6pFUz0kyvrhxAvicRjDdqgFsijZAWrt3xdReGXtxJuiSf4R8+9s+07UObL/mA58KL5uxpKJlYKC1u8Ax47zWMYdpsNvUJdf7FrTKabPg+L7XU87Ko82CQAnSoPYtX6AKoMHgPvHQfvjXFTlszSDnZxZwCF1EjkHouqmd1Ex4GaipNg59Q7sRGl/7FrfQpSitUmuWShgTOxan0PPaC191JqIOmLnBo41l4q+xNmxa/0YXWeoc51j19rPnE8Xuu/vxK51iBOlw24Pn4C4GdPZmIN5LJ5VhC20AIATpb1GP+pKFPyfgyq0i9aJOShh/pzZ/hVg+9i1lkXVzi86UTqkC9aJ0nti19oK8cl/HAV8rgZOcqL01Zzj/Bg5eUVFBCc2eo55MLpZP0D0GoVz+Bjgbcqd61yB58QLnrdDfxcqlZKdQPpG17SupefOLAo69jDCiuCFDIdS0Y3JMA3RN/4IXZeioEgfotv7zFgOcCHHJ5CvUd21MMl8brBD3x4rvV8UwF6V/Gd/EioayoWpJj8OBcymAXPt0L8UODbxgt6i7Ur292kq79FU9I6cb4f+J00V9CIDQzF1APmBxakomd5KcLXQCN5L/e6FSeg93wm4vvZLk2T/KCqUnY46wn6BErA/Q93kRXG2Dirz+6uU03wVdpnYob8SCoa+gLpYizAFBaUvQMWUjcT/skD3PHStMv/8q6izeF0aoylc3VyrM1EifkUqge4+ZKN8qeqclkbdJWX0+2XoRjbPIN/QMMZcCBxfsO95lHSsV+3nNWTvLdZIvOA1O/SPRcwH1XZMD3pfhlXgbof+WsjXr57np6J35Fd26K/caFGIHfrLo9hfbVFouxnzb5EUSTb+9wF72aG/XeIFj8D8wv/51HzmnIsoKScjGy7DBxsZZ5Nowzyn5pl+jHzZjSJ0oCTPdshX+gSVgr4ngfUojp3ZaB5pQ+//weR38c1GOoNrkU9n2obu77fs0D95lPXralk4ajHdDv32IvvQ2GHXjuJ4irAlxbIdFvJhJ1yCa2FBo3yfLbRQhNNRNUx1UKIDBZXGXCvKDv0PI4dmZYqf517guMQLHkYB+mzB2xAZr1uhySRAVRxrJ16w03CczZEg8YK/IRq4a1GV8v9QS/36iRc8P55jWYiQ8bgWoY+hBmkP0qLIo8QcQPQGD5Ud1InSd5wovc2J0l+Nh7C9E6Wvo+fxZ+h5TYHHgB0/ueVRt9ihv5Md+qfYoX+E6Zis3jZBRtRxiIpnBkp6beFEaUO0oE6UXmG2eQk5G3PN8bdyovTv5mfHkL8Yd6GgcNN6dU6UzjTXuPQ6x661G+pGWwo5ktOQM3dV7FqfaPa4ExXmGu2LnpHMIMy6U890orQlTt/CYg0nSv/lROkWKACzDeJsLwoeWeR0PTpR+qoTpU/kJbeqfvOYE6XbO1Ha7UTpu50oPcSJ0twOSqPztW7OseYAuztROhodVseh9WMOSjxlnwOcKH14FPafh4eoUPXUYibFyXgSL7gDWA4Ftr4FbLfU3JmHkR9g6gXOGsuO3di1Vo9da1NTVDMeOJz8hGcXsGNHf6m/n1XWL844lGJqnmkoQDpW+B6yk2oxD3gw8YJ/lWz7U2RLvQcFYaaiYNNdpqurLuzQn2SH/h526AeoUrabim02HVUe32kqmRclrED5c99oR0kLLcQUr13VmIa0OQfBvKtXIoquLyOdxIuAp4EpiRfsiPTLi+II72Ao2E235UXkzyk9KIFQe/wljAzEP9AcsAHlVPMgn2EFmituz/zv/wA+sEriBaEZb6NB6bmJFwwkXvA/5OeejoqK/o1iHBvUdOUsSWP3pgxFiYUrkX+bh36UoBw27NDf1A790A79GXbof6fWX1/UkHjB91Fx671It+1PKOnhjqDr5RDyExRt6H1sxuffnOL73Y1ih9V2RKc5xhUmKZuH58l/V4eDeeTHqspQuwYeTGM6WBk6gfcnXvC/xAs+jXylzyE9wM2o/15n16WTSoddLbKuu00ojuF1o+L9V+zQP6iJ8ddDL2K7KcILY1j81AxeofhaZ4wgLQwTrQ6uhQR26C+FsuntwF0LirNyGNiN/EqYdmAbO/QnmeqHscIp5FfzgSb8d4CjEy/IsvFfQAtedaDeQhPt4cCKI6ULGQkSL3gGtVK3ADhROttQ8G3D0EWyD3Xg/Rw4GvH7PoMC/bfHrvUSMsgzLvFetGh8bmGktjPB0S8xuJLNRo7Y0ihwMRu16R+eeMGPq7Z9CyWUh51UdqL0qti1rkHVdbOdKH2t5idlnXRzUWXPf4d7/CIYnZIzyA9mdaPEdBn91yIFJ0p/GbvWRmi+2hAZ2+c7UfrgAh1YCy1UwVCw7Ygcp7mIPvAeQ1c65jCJ/yR2rXNQl1Vtcn4AORhjRd9XO55ngRVi11oHVe49B8xwonSkgZxs/ylwsNGR/AhywO91onTM7C8nSvti19obBdi6qPgUvSi5FsaudSkqQvqOE6WDaNsSL5gFXJf9f3zfWY+iwNShKNiUaRNcSz7144gRu9Z6yI5YBdkUnaaz+Kgx1vsqKwjpW33mq7c/tcSKnyK/i6sD6c0tzsiqiPMwQPn1HRESL7jbDv1TkJZDJ5XiunbgXjv02/KCe3bofxAFA2t9lskouLQtSsgXwg79DVFgPAvE5V2DNmQvbosC8IsK/kt5ZfZE8ZtbWPC4ExU7TqV+sXfeGr0f6uyqtiumoXf5cqPlch+iuNqAwR0kc5DdXv2uH498rM9Q0V1uR+weed0EN6NgdDXtVz3baglkj2UdWY0im2ueyWJTiRckduh/Bq39HWi+KZqPH87mRKNndjLFHTAgeteRJudzu70TL4hNF9ehDL53PcD3Ey94brgHtEP/VOSXTUb37uPAkXbob28KrBdJJF4w2nrZH6A4Pt1OfYrKatRLRBW9+8shW3RQF7Qd+h9Ctu1oxpA60ZyQdTkNmE/e2AaAO6rti8QL/mKH/rmogL+RuP5slIjMtk+ABOZr341GYcw0RAP7S8oTZh0ooX2uHfpp4gWXjvTAiRcMmHfxdIb6fT1IC74QduhPRZqGB6Lz+C3wnTGgvb4MNVXk3TOLmg7UFppDK8G1gGEqBE5Egfj5opVmAT56AgjM1TOSsol7rLA5xUbVXGC9mu6nr1DcEjoFGYyl3T0tjDu+hhaYqVTmrLmoy+14E8i8rXYjJ0pPjl3rRpQwWgnd16hMK2ohxE3ImMvOO3NkzrFD//eJF4xqcNYk/pKCr/+Juh/z0IX43ccC0xGdSBE2GqPjLrRwovRpVLXVQgsLHWLXehcSz10VOQgDiG/8gdi1dhqtpE6DuAt1Eh1ERYOzF60hO49Xwi2D6bIcs05LQ7N441jtP+d4d8SutQkqMvkociDXQAGCzFHeF/hc7FobOVH6fMm+BoAjY9c6FznHFnCHE6X/HIuxx661EnA/Q4NzB6Fgw6FjcVyDZ1DgMxd7v/jo1f+39i4u0jmrToj0AGcnXpBHhbk44UFU4FFUPfzn4ezUFNRshZ7ld4BfOFGap8X7E9R5+J6qv1moIrmD/CDKDhQH1Kai5Fdhgsvo1N5JsYZMNTop1wqbcEi84G079G9FhRO1972HBii5W2gB5mvrbAPcgxI/RXSwM8mno/sm+bGEDkQ9+waye/4J/A3NVW1Vv7mNqoSU0fj6gh36a6LE9FzgljwdcDv010edEXm0X2VoA95d5zdFyALWv6oa832GAm53IKI4pvgx4D479HeoZcYxCfs90Bp3Owrez7ZD/26U7BsOZgOXlHx/DKL+OhrZqM8CZyRe0JT+fDXs0N+MoV3Zmb9+ox36K4xV8XTsWp2ICm4e8NR427RjgD+iLq08+ssBRBHcKO6hvBCm6Ls+NC8AYIe+g5K5q5jvppj/zkHzwCyKi+3LkMVQUyT3sjTS10pQvLJ6fANonTsmZz/HoTlmM/I1uquRUvx+XMro5AayBoNbaYwtrhsVb0ej9J5ciO7Voeg+ZVTo56Ku0VzYoT8FeBhwqFzH7YAt7NDfI/GCW0ZhbMD8xORZyI7MtLj60Ny/X+IFixIl+7ijleBa8NgXid1NZvCkdCiqYrmgbGMz6R4NfBJNJj8CLhvjrqlq/A5VC+fh2XEQvZ5NccKqjaGC5O8q2Vc/CnS0sBDBidK/x661PlrAP4fu07XAGU6UFmppmW2fAL4x9qMcOWLXmoze+4OBJf6yxEp/bVt/z7UG2try5ulJyJjedxyHeAaqdK993+YAt+d0fI0W5lJemTgndq0DkGHwaydKR72LrIUWWmgK5yEHIXNQ29C8sQWat84ar4EYZ/+bpjv1QJR4uYeJV+zQFEygfkMUmPqT6fIdEzhR+iTgmuPei+57tWPegWyv04E9G9hfQgm94SjiawwdK8jZ9mLXOsHQB48FTgGuYGhnci/wI/fseNb/hf62qPgtEzf/J3By4gVXjtGYJhIuRFRGtYmOOcD9mUh8M4hda0ngNygx1I1sjyB2rf9zovTsmp8fYn5TG7yZChxjh/45OQGKlHJbpl5gZ1ca77yYR4kW2ATGQahYbSXkr/Wj4OJtlAe1W2hhEEw3z/uQVswRqGC2Oqg+C8U48rpTior9QHNCNi+skfO9hdae2dQkwhMveNoO/X8B2wOfsEP/wcQLXqjZfrOSYzeDrEssRXPdP81483zOfnKKlRMvmGeHfvYOFsVPulBC7nuYohFD8XgZYtXJOp484Fk79Lc0v92O5jrNQAmAZ5E+ai5M4fgvGV29vkMoTixMRgmbu0bxeADErvUVxGJioWv4v9i1DnSitOHOXaN5tqMZ572JFzw12uNsEj8iP26TosRPw7pEJll6EErcZEkEkJ31JqLzzXveu5COOXboT0cFNUsxeL2fg/Tcf42euV1Q115e0qwsmZZhRuIFx9qhfziiJa39fS+wpZEzqT3POXbob43msh+ST0XaY8bx+cQLhsTO7NA/ErEljQZ6gZ8lXjDTDn0XJZWqWR7yMA14vx36S5pxPj5cbS7zjh9pEkjbUul8qxcfcpH9V/0uZ3phl452ojrxgm/boX8Xet5XQcndcxc1/dQFgVaCa8Hj2+QnaLqB4+3Qv7Coi8sO/c2R3s4kKvfye8C+duh/ojrJZajODkWVia+gBWTGKHSIHYMqDmsrF3pRVnqs8VPk/Nc6uQPA7wznczVmoEqXvKrPyYwTXVELzcFUfR9kPoscYteahCrJP4QJeL3dOXmZKenc9t6OXA1fCz3H4wYnSm+OXes8VLnYjt6hmciwO2AMjzs7dq07ya9+7kfz3/none+IXeu7TpSeGrvWGij5vxVKdP8QuNyJ0iI+7hZaaGGEMIn6PcivvuxGhvy4JbgyOFH6OxSsWuQRu9ZWKHnyLhQUmBS71o+Abxkqw5Hs+wPACai6ug9VtwdOlL4Su9YU1PmS58hbqENlYcIO5D+noODFxtShjBsuDNXsqeha9lEJit6KuoAycfOTqEOpsiggdq0VkR/xfCPPaOIFLxiKrOup2PMdKPnxhWEO42cM9g+yIMfJsWv9wYnSe6p++3mKK7bnoiB0bWD8VoxQfQ56qK//sjqNF+HNYtGiJwQg8YI37NBfF9HDfRZdtyuBRycA40kLCxlMAPUW0xm4D5qPV0UaLhcCZxbotTyJqIaHi6nAUXbon1Xd1WSCwT+gsiZ02KH/S2B/0+UF8mdGI8iaIpvoaVSU9D/z77zY4CzyqRKhfhEiaC7d3w79I8y65iKJi+oCj2nAmshX2xslM95HYx0gIH/wRuDLiRc0q2s0UpTpwIMSKaOK2LX2R12r1ddwKnB97FpbO1Fal1LNJDW+i56FdvO3GcAe41goPwiJF7xoh/5uaD3sR8/ObERRu30j87zpcjwESVc8joqBD0JFX2+gd/tu9PznJYJ+UFWgvw/5xSyTkKRDhPyajRlq+w6YsT+FdHiL4u5d6P1YDhWBFSVLN0SdXkNg5qnb7NBfBSUsv4K6vZ9DXW9/B26q7aIEsEPfQ0VXo4EeVHByvxnXdXboP41o//almAKxC2m/Z0jt0P964gVXDHcgiRf8B9l1jeJLFGu7TkaJ+lGlKky84AHEeNLCKKKV4FqAMPSEZbo2S6HFakgXlNn2CoYmx7qB9VAlzI/MbzNHqxNNyAMoo/1zO/S/NBKnIPGCB+zQ38Ucaxmz77eAbyRecOtw99sETkWO5vJUFoR5yBj7Ss7vL6AiYFm9EPUCVzSQ3W+hhbHAfiiwMn9hXWH2W+1pW6G93I8ckXGFE6XHx66VVd1NRRzzvxkHSoSvI0N0GpXgUx+VqrXqefBYo/9zFIOT/+cC+8Sutc04U6S10MLihHdTHuxYerwGsjgidq0PIuey1kk7EM2ZRzW4n3cBa6Mq1yedKB0w+mEPmX1nTuphwJ6xa21Age5FFRY2n6Osq62d+uczIjhRelrsWpegQP0ktJY+M5bHXNgQu9bGiO5vTfR8zjKdcz+qt20VRdZWaF75Y+IFzdAXVY9jRcSEkVf8NgUVy1QnuMoKZdryvk+84J926IfI3qu2WWah9+r+OsN8AfmDRXRqmO/noUDgWGrILTCYQP/15tNCCyOGiYP8jMaDoaeiYGdRMLQRpMjv+z2AHfpboORW7T4/B5yN/CBQonw0dHIGEi8YxMBjh/4F5OtT3Zx4QVGB0Awa67RqR3GtfyM7JK+4exKK6UxDBSj3Iaq4Rq5zu9n2ZqTNPZ54lKEdgBkmAx8zFLM/Hw1mo9i12lFHfN51mYKSFduW7cMO/U+j4pnaZMp26Hn76kjHOVwkXvBrk+zJ4ntPAHcVJJsHwQ79I1DSbhJ6Tz6O3rVdEy+4vea326MCiaXMb7rQO3hs1c8+STlT1MGouzrvXvQAH0+84E9Gl+/ykn2tAOxPOY3xvsheKoS5RjfRoIaT6aY8jfoUi9m1LxrfAEqmnQpENTphf7VD/0uIzrToXbaoooU0+LEd+m8kXvCrvA3GAGXXIEu2tjAB0GhVRAtjAPPylznQWaImDx+iuCKkG6PPYiau65CxUEsXtDtqZx0RzIKxKhJJ3gBYOfGC68q3Gh0kXvC6OebpqL3+X4jaZt28Fk8jprglEKOF5y1UXXEpCtS0YGCH/vJ26K9qh/5oGNItlOPL1Bg9q/W8hj3rDdr7cwv1ZqOEzbjDidJnnSgNnCg9wYnSu8aD79uJ0mfR/PIDFOR5DhmjeZ0CU5Fgc7VmW/b3jVA1VgstLPaIXWta7FoHxK51cuxa+8euNZJgTYbXKRcVHraIdwsNwSc/SD8VOCx2rdIOkNi1OmLX+j6iXrkN6V/GRmfrImRLVtsEnSg4cJITpTORbVWEegH88cYlyA7Mw2x07mMKJ0r/60Rp6ETpjxbD5JaDkkbrIf9kKkpUnR271iGN7CPxgr7EC+5KvOCa4Sa3DFalWC+4DSXgqlFWYGRRTKN0GAru/gsFTP6Lgks7NlBs+AuKiwfmos6HrwN24gV/KvhdCy0sENihv4Ed+l+xQ/8LduiPhq2xwJB4wZ1orZ2NkspFsZoydDC4gPkE8gOs3cCX7dCfZo79DvIZe6kEnYeDx3L+dgzqdPmb2f+zaL4q9JvMeL6FrkUZOpB9COp8KUIfsGziBTHq4CqzKWrRjZiMxhsXUdxV14kKq88D/m2H/lajcLzlGaz/WI02lGyrhxPIT7ZMAQ6wQ78oETMuSLygJ/GCKxIv+F7iBTMaTG6tgRIs1UVYk8z//8JoLFUf4yG09m+OWAmWS7zgmJpj/Zfie9uHNOaKnnUZKAAAIABJREFUrlU7Fbvil8BrlL+z9eLy9WgOh4MVKJdvyXAjcA3F458DbJR4wWUF92rtkm0h/9y6UXx3vHAzxXZgJ6YYoYWFHwtbNeViA0MZuBLqwjqAoVnhOcCVJVyf0ykPImVBjM0YmhHPMBVV6ow4M24cszERAm/g2G8CJ5tPI7//I7CmEXNdEvhb4gVjpk8x0WCH/gaoQuRDaFHvsUP/uMQLSqtGJgqM0fZl9N5NQgva9/PEfMcRuRW5p/z1Rr6+/l4Db3RNndXf3t6N5oUB4OjECxarhdYIvX8T6eksR7m+RFE14VSU/A9Hd3QttDCxELvWFqgSuA3NPzOB82LX2qERapMiOFE6L3atCxFlR20Qq4cSbYQWRgVbUGzbz0UV42WJm3MQTccUKsG2DyA6l8nkO6EdiJbyIDRH/5J82upjWbhwDbIDPkzlWU3ROrvvSOkcFwXYob8qSsDshIIvvwGOTbzgL6Ow++MpDuieGrvWJU6UjlcX0osU01VClX9jCge3K9tX4gW5HV7GV/qh+TQFo2exE3ALuhfd6L0aAHarrU5voYWFAXbovxsVS6xv/pQC7Xbo75N4wY0LbmQjQ+IFF9ihfyWiA+tGBcOfpvHuqpcRbViG9SgOYM9Dgfi/mGNfbYf+31HyaX3gJfPf99B48fo6duhvmHjBfMozMz9dZT4NI/GCi+zQXxl1uhYd/9Uq2rvn0PnmwULXhsQL5pp4WTNY2Q79DwxHh3G4SLwgsUP/AaSdVoTMz7/FDv335khoNINeRt6kkKcPl6EPsBn8fE4EfJli+3cA2TGDqDbNM19mz1yGOqvykvIW5d2L81AzwlOJF/Tb0lW9F8Vop9LcPexFlOCjBsMGlqfXVYuvJF5wsR366yCq8Tzt2MtNPLYI7dSnMs3Dunbot40TBfH5iP3r/9k77zBJqnIPvzO1OzsbyFEokWSBIEpQkkoUEUFBRBEUrAIBCSpBsFQkeAFLUUCCBJGqS0YlXBEQkaCAoEgQBLFQYhGVuLuzYaZm7h+/U0xPT1V3T0/3hN16n6cflunuqtPdVed85wu/bypDf5u5wI9aUX2ZYYoHDkV7psyndQpSEyvllkdJGeAaY+zQXwUZDpuhTXQ3mhj6GFz85qDNVq0eVn8nP0sXc6xbzb+Xp/aEslJDA6+BmSBXAhaMcsEeUxIvGHOJt4mOHfproyzryoDLDOAnduhPSbygrmzMRMY0C70XNXPMFuivAQfYob/FOF4TNyAn4pB7euUFb3H5Xy6Yv9dmBx306rRZG6DsnytMJeLiTL2AdK2Gro1kKhVipLv2RVlbLwA/d6L076M5ZknJWBK71pIouFVZzZPN+b+NXWsVJ0qH6bSPgOOQM2Y3dC8OoI3gmYzQcdJq7NBfC9gebTxvSLzglVYdO3at9yKd+U2QDXemE6W/q/MeC2WOZn2DfgHcOIrgSq25cSnAoSDAFbvWskjKME+Go4va2aNdAE6U3hy71h7ot17VvOdfwCGmD9qEwYnSvti1dkSS3ocg5+BdqKdYKwI4kxo79LP+FUsw6LT9BLCNHfrbtCDJZkeKncFTAccO/ZeQc2kD4AkkfTOsQfpocaL0udi17kHrerXDai5DqwJWoDh7HmRftoXEC+6wQ3811KNmfVTdcLFRsygpmYj8Aq2J1QHky+zQ/2Ce2kq7sEN/GuoTORW4J/GCt0ZzvMQLXkOyY9ihfyOaP5ZkcF7L7J+FDK6rfcj/s2+VI/M/aG7Jo8s8X3nuB1C/Hsz510QJy9m6W68CZ0ngFjv0V2m235Id+kshGbllkYO2h/yEzQEkZZjxfaScUz3GhcCVVX2CXmPk0tZfB746wveMlkaqpkCO8y+gPlBN4UTpG7FrJajHVB5TY9ea6URpUYU6wEsUr2PDrrfRYmzdLyCn/vKoyvkHLba1bIoDTlNpohda4gV/tUP/fJTAlV2vWSKUh/Y5a5Bvy0yjoto78YIn7NB/F5Kl/jSy++tJA4L2Ky/TgISqHfqrovtrD/Q7/gUlJf2h6nVboWTflSkOtPUC5yZecIEZ/yNGavFS9H0OmM94JbrnavF3ahdmFDEwVgGfxAtetEN/CxTU3ASNtxcFnlpWGWr85lehpIjMF5n1H9wQ7SNLRkEpUTiGGMPqT8i46kbOhqx09nmkl3o9qjDYuFZVkSkJ/wkyJqqZD/zQ/PshigNhC9Fmvmns0N8LOXKeAl6yQ/9u0wC4ZHJSK6P2FDv0J3tQ/BhkEFZmn0xDhn5hhVrsWp2xa7WjNDzjJ+i+rV7Ee6YM9J/5t6+cfakpmz+1ncGt2LWWjl3r+7FrvRS71huxa91gemRMKJwonY/6L+RlSc+jWE6gF/h9s+c1PWieQsbj55BG+Z9j1zq22WOWlIwDe1Fs/1loY9Q0TpT2OVG6F2qqfDRwBLCmE6Xfbrekaexay8SutX3sWpubDTUAduhPsUP/UrTJOh0FYJ6xQ/+7LTrv7ihwtA9yxu8MXBO71o9rvGcmsgkvQxJAX0QBwLtGIRd5Lvl2YcZPY9dateC5DSmW5+iiWF5kgIomyU6U3gi8G621qzlR+l4nSieaPCGgikMnSi9wonRDJ0rf5UTpF8rg1tuczNDgFgw6Ts9swfFrSVpZpzo7boAkiU9CjqTjgH/bof/pFpw7j73M+TLp+Ewm/gwnSm+qeN08aldp1JPqGhWJF7yeeMHZiRccnHjB6WVwq2SiYipAP0J+dWQXyl4fq7HsA7yCKox/gXwWJxpn46hJvOAZYGPk7O1Ba+nNyOfzLeAfSJr0EuTj+VPVIYp8Oinwl8QLXqpz/ieB9wAfRT6lRpiKHO0jxg79PVGl1VloT/Qjc7w8O2EeQ2X1f4ECPPOrXm8Bnzf9ejLOobZNk8fnTTLTWNKoT3UGqqQfLbWCV/OoH3A7veAYvcAtJnjbEkzPsGuRlOOmyDb8PHBv7FqfaNV5kA1edK30oV5ezXAU2hfdhOQ7rwS2TLzgF8APyLeb5wHXJV7wcuUfjazydcDxFCeN9aPfJguGXwFsWq+CyPQtywLf09H9tAVwox36O1e87n3ms2T+sDx7Zj6aR06sGv9vUVBsV7TfWSPxgv1Nb8xCTE/QIxj5vZz5z8eExAv+mXjBh4DV0J5oReN7a2rvaof+qnbov69K8nNz1GOwep83EzjEBEFLRsFkd1ZPNnZHWS7V3/s0lHWwb40mnnl8BzkWDkeO3ikowv/FrDQ78YJn7dC/GWVKVmfl9jKKTaoxFs9j6A26BXCXKXsfs/LwktFjh/4yKJugVkbtOmhxn6zkyYGCDNMP2KG/fOIF/83+GLvWlsCpaDHqj13rRuAbre6V4UTp87FrfRhlAq6L7s1O1Oi1IenN0WKqOv6K5qLMmNgJ2CZ2rd2cKL2lXec2pdqbIWfaA4kXNJI59jWUYWMztPr1r8iI/TLDjYcF6DsdMSbAeT2wNING6RTz+FbsWr8fjbRbSckYsg7F2b2zgJY4Bsw8OSZ9hUww60coQWgBmj97Ytfa11RRnYgcOdXz/zft0H888YJfjuLcM4GLyd+sfCV2rSucKM2rdjkJBQErxzQLbapORMHBkRIiiY2NCp6fgvpB5AXlZ1Pbcf8k2vRVJ8HMQ/bo25hAZssrbVqFuV52Aj6A+oJc5URpy6r5FhF2pfh6+KAd+kuYZLtmuRhd48Nssn54/qaVN7iAodUA2esutUN/rXoO35HiROnLsWu9B2VXbwO8AVzuROmQHjCJF7xlh35W7VXt1FxIA1nWJSWLCesxqFZTzRQUEGo7Rhqs2l8Bcly/hoJLoybxgqfJ71d1L3BGnbdfhOQOt2Fw3puL1uV9653bVG4cieyc1RsZL7JR3t3gayvP9V5ka1TaAl1o75qicS/BoKz+kYkXVAYXpqF58r1I7jWbRy1zzDPt0I8TL7gT/W6fBj5I/aq0jOWAh+3Q3yvxgl9XjLsD2BZV46yI5OLOa1El/+/R71cv0DWPkfUVK6JeoKCeQ/4i5BvMHO0daA/9CpKpbiW7Atsx9PezzHkviV1rpRbJEf8vcELO3/uAhCb6wJprZing9jwZ4MQL/mb8oRH6zjvRZ7uNGt9j4gVP26H/B3S/Vwdw5qNA4DPA/Brtaqo5Bvkoqv3MM4Bz7dB/lwnUHE/+nAwKrj2Fvsuz8mQHTbDqjgbHVPm+/7VDfx4K2I2kyOYRo7I04mQeMy8ehgL/rwLnA/9Xr6ebmROanhdMgP0StBdbCEw1lYBHowTpWpV7u9KaJLLFlrKCa2zZnqGSQJVMRVlODZN4QX/iBd9Gi/TH0WS4duIF1c2Nv4BKw+cDbyFj6T/AzokXNNXw3Tikf8xwY7ED3bTfbua4zRC71raxa90Zu9ac2LVeiF3rBONwail26E9tVabXRMIO/U3t0L8PBUdrSVZ20ubM1DEgt9eVIa18PnatbYBbUBZUJzIYdgHui12rSBagaZwofcSJ0o1RgOsjZ6+13WrbbX30tdttffRI9ceb5TAkbVFpaHWge/zn7apgs0N/e5Ql9FtUsv2cHfrn26FfS9caJ0pfQxruBwLXIIPp88iIORJtiuYhya65qFny9k6UNjXnoeD9suRnXHUz9nIYJSXN8gTFm+M5aHMz2TiZQXm9pZCttRJw7T0HLrkxuj/zqqJmombbo2EXiqubppGzyTXz6ZfJ32R2Awc1M+c6UboQbYyK1upulLCRx/3IRsxjLpLp8FDgqodBR80uTpTmNayfkMSuZaN74HK00f8B8EzsWt64DmziUWuPmMmOjobT0LVUmf3cD/RcuMZWV9LRUXT9d9CAw7cZTPXpdU6UHu5E6QnVwS0AO/SPQoHR6vHNR7LFY5KUVFIyCXiR2j1xnhujcXyPGuu/8WmMK8ZpvCtyfv4S7Yl8wDHVYYXYoe+g6vTDkFxao7ZDD3KiVx7rHXbof9IO/Y/U+F4OJ18KbioKcp2IAnonAO9OvOB8c2zLVM3/BwX9di44ztt+JNPPcAdke/yZxvwQ2d71Cjv0Z5lzdwA/Q323P4cCXT7whOk9Plq+Q2PVKQO0Jgnishrn6wTurvVmEzT5LJIdvhDtob8CrNdK6W5DpbxfNVMYof+zCNMmZTskvzgb7WfmosTs7UdahWOHvofmqFeAt+zQ/5VpNVN93muQL3YfJHe9YeIFu1RJbebxeeA+9Dv2VIx578QLHku8YG5lcMsOfccO/R1MZWwee1Ks2rUcaoUBsDXF9l0P6lWWAL+zQ/+fduif28KKyH8xMqnCDuBdqJJzRNihvwmqnD0C2Ww7onvvatNLtS3Yob8smt82Q3uuJdGcdiAKsE2j+PvvpPg3LGmQsoJrbHkTOdHzDIZeBmUxRoQpWS2sHEi8YC6wq5kQN0YR7HuRjv7nUen7k0XvL2At8o1F0HW1c8FzLSV2rb2RwZKNZSbwTWDX2LW2MFJmTWMmwMPNMVcAZtuh/1PgxMQLWhrsMYvm5mhxu6OoSXWLz/l+lGVSNyDYMTDw4kBHx0ivk4nGn1EAJM/4X4AW9IxzGH6Nd6Ig2InIkGk522199PPIQPoqMgK67NB/DNinzVr1LsUZPcsi6YuWnt8O/fXQZqP6e/4iynipGTQyztwryG+8elTsWieiDME3gcdGKY+2KsUZcZ20se9GSUmLuQJVpubRj5wrkwaT0FIUwJo21+o6jtr27to1nmuEZSh29lvk6/53UWxDgdYZi+Y0619ANmXefN5PgVPRidL+2LW+gHpCdjH4nc1Fm/ArnCjtjV3rl8iJ1gs8127ZyTbwa+CdDH6+LJPy7Ni1HnCi9G/jM6wJx+3IIZBnL8V1GorXxfQR2QRltH4JXa+3Aydeudpmu1Cc4TqdFlWZjhQ79A8g31k+gAKmR432eykpWYR4EK1HazN8Hulh7LLU31/juRkoGeaFMRpLIaaq4CbzGIYd+qujQM9qqLfOZaaP2PnIiTpSp+0A8CuTUPhJFPB5P0pe6QTmmSqo26retyHFNlUv8ETiBT82Y+62Q/8UtK9dito9kjM6kI9qauIFvYkX9BmZsg3Il7ssYgaq5NrXnPvzDPV3TEfrzjV26K85ml4/iRc8aof+1uia3sz8uZPB/mtZsGP3FsnKhqjv0TsZ6hDvAb7pROm8BsY8gKqa2i0hvXSd55ds1YkSL3jADn0bVUativwW9zcR3DoaBWgr1/pdgS3t0F/fBNMqzzsf2ZYjGesbwEfs0N8QFSm8hnoDD/nt7NB/J2rL8F50PXXZoX8vsGeV4k2jSUm1ro0pKOD5PgbvlTWAfezQ/1iOtOow7NDvQvfb6yZwX81IAzhdwG526M80Pu1a556BCjs+h+Rhq+3ImShg/jkkNdkOMgWh6t8jG9sByIeYl3Tfx9B+hSVNUAa4xpZLUHZEnlPDQvq0bcNUaz1lh/4nUHZDh3lMNTKGezeQbZCRSagV0YpS45rErjUN9Zuo/j67Ucn93qgEezT8DBlE2TmWRAbFFnbob9vIghm71jJIEurlvOoRY1hm51lQ8Xc38YK2XhNIIql2r4+BAToY4JRHrunY7PWnZjE6SZrx5ngkK1O94M0FvpctxLFrrUCxA8VCRk67OB1JKVb+LhsBf7JDf91Wy/JUUGvT0E+Fs9Rc07ui++GeUWTvf7PgvDOAL9uh/91KZ5G55/udKK2p9ZzhROlbqMdNK3iM2hu6B1p0npKStmIcy59Cm7Es03Uuus93rtOYeiKyLsU2h7XCgjkfpLa98t8azzXCn2s8N5d8KY+FKIu5qGr6xVFIttyGspzzFAPmoz4IuThReocJOhyDsjzfMK+/OJt3nSjtRxWxI8JUpG2GghnLIEmfK8byeotd633IHsuby6ch+26/sRrPBOdbKLO6OgGqB2XEjhonSl9HmfpDVR9C/93ICZN3Dc+l+V4aTWMS3ooqQTpQ5nsZ3CopMSReMGCH/m6oR2M3undStNc9N/GCW8doKLMpDphbNJlg3Ah26G+Bqp+3QJ/7cuCE6t48DRznQFQVZSGH72dRb+xPMag00iiZvbcLChrdiBzSmQM8c0AvAfzatJ2orGZ9EiVM5wWqpmCSRc2ceTOSF8y+/0ary7qQlPLxpn/N+dTzV+SzhhnDI+Qn83YAyyPJ+zwp6YZJvOAB4MOmasxCQYWfoaTvmahCfis79O9IvKCo32lDOFE6J3atTVH/sy+i7zcGvuNE6dWjOXYbuAUFRfOSrqahBKqWYaqemp5bzPV2AsOvtykoWHcA8MNmj19N4gUPAQ8VjKULVeOtwqCEJ8iXdZsd+u+r8EX+H1KMyKuKnMOgNGZIgTw02pdUBrcwx5uKWtCcB/gmsF491plI3WtfdF/12qF/Duqf2ocCOm/RWJC7mhTNUYX7BTv0l0f7sZWonbg/EziU9gW4dqZ4rlpgHjGwPkN9YPOA31fJuZY0QSlROIaYCSxk6M05gDaLxzTYd2ZUmIqJX6JJYklkvHSjLM2fj+BQT1PcxHQhcGnzo2yYD9V4bmZfR+cBdujva4f+V02Z6oiwQ39t1KixepKajgyh7Wq9P3at7ti1LkJZYb8FHo1d677YtaqzxU9Hhuo09Jtkj0ubGfcI2Z56i0xHB11pypSB1Kaqz8Zkw8h37onKzWczKF93CkM12MdFitIO/eWQ4VS9MHeg6+OwNp7+NyhQk0c/kr8gdq390L1/FjLwbo9d60+xay3VxDk/THHlwwK0+BO71laxa2Vl/PNi1/p97FobNHG+pnGi9FHgb+R/R6PqZ1hSMtY4UXobym48Cm1IjgBWdaL0rnEdWHO8Qf6GDoDp/b2vowSivKroUWeRO1H6IMpUr3ZYDJi//W/OewaQYyIvqagHrUnNjqcP2A1taLNK89Qc99R6CQlOlD7uROl+TpSu5UTpJk6U/rzRpIIiTHDrfBTUOhCtw6cDT8SuNZYNldeiRjAUs+aUvL1n2RZVCvSi++cxYLfEC9rWk9NwPbpe85LI+hmbPUY1y1M7E70VMlclJYsURnliTRQwvxY5/LdOvKCZHpPNciH50nYpcOsoewkWYof+x9Catw2De/z9gQeMM7bR47wHBbemMxh8monmo19R35/XAzyLpNvPRQks70SJAr9DKh1Fe7GZqLKrkp+QXwWSVYg/aP7/oygQVqvfTBGdwNdMkOzjFK/bAzWey5iBnPa5zOybP+v7j/zq3ti1bopdq1a1X0MkXjAn8YI3kW29C4N7+iWRrX1TK1peOFH6mhOlBzlROhOY4kTpuhMwuAVKksr6sVXSA/zSidJxr56sYnOK/SHTUUL6WLE7+SoRU5FyzLYVf/s+g8HrSnqAwyv6Tv0Y3aeVc2If2jPMpjg41IHmr7tNReXbmPv0NpTAllVGLoH6pf8JSaG+iuQim6EPBd9qcQaa1xppUzOS+deyQ/9dxkfXCPXWkzloTbgczaM95m/nIn9wySgpA1xjz1dRWeLdyNj4HeqFddYYnf9o8ktDu1H558qNHMRkCxzI8A1oL8qG/tEox9kIXdRoovnkzBU2RTJzPwT+YIf+XXboj8QJvzPFgY6ZwB513n85WgSzniDTkaH3djDADv0lGV6tk9FN+3uZNdS4coE1hT+ssE4XrW88OuYkXnA9yoTZHhmeKyZecEplNZ5pNl/UhyZFwaB28EGGO0kzupFWdrs4FS201ffUXOA4J0oXxq61GQpsTUeZONPQvbAxzWmKv17juanA67FrbYsCxB9gsHnrdug+ek8T5xwNuyEH3xz0Xc1G389eTpQ+McZjKSkZFU6UvulE6XlOlH7DidKfOVE6KatznSj9N6ooyrMHetDm+lCUdTzH/H3A/PsuWtNgfmckrzafwcSJfwIfMpWkeZyJkp7mm3HONf++kBpVVo3gROmfkCzU99H8eRGwlROlJ4zmuKNgd1RVP5PBvccsJN/YrizKPJ6m2JGXAo+P3VAmPokX3Jd4wWbIGbBy4gXrj0Fwi8QLepGN9jJaZzMZ9zeAjxvn4Vgzl9p9xxpVwCgpWaxIvODNxAvOTLxg98QLDk68YFSVMk3wfZQxX5lgPA/5Kw5qxwkrej5V7++non44R43gcAdTnMQzndpJmf1o/nwHkjecAVxp5tB9axy3kp0q/yfxgrvRdzqPwUDAHOTA3rViP/0ZGnM2FzHLjHcWxT7LDmTP1VPUmUZBIGxh5xTWmPtfCyV73x271sbVr7FDfx079HexQ78wUFb1+rVQZVVekvQHGRqYGDWmsn5C4kTpS8BWyL7qQTbyfNRHbCL6lVJq31N9oKCOHfo72aF/iR36V9qhv6epuGolW1HcP346FT11Ey94Fkkd/g7dl72o3+zeiRdcWfG6N5FP5SS0d3oeuBgl6dSbD7pQYK3aB7oDsB7Dq8JmmHO90xy7me+nBzjD2IW5mO99Dxqbz/rQ3q8mduh32KF/GLJDHwNesEP/Tjv016nz1osY3GtW0wHclnjB7MQL9kNrgQMsl3jBUWPRnmZxoJQoHGPMon8tbZYjrMHmFP/uWcVEQxJoiRfcbvSGT0IyJgvRYvW9sahGA+6hQFZtfucU/rj8u7N+SRkfQE74T7V7YLFrrYUMwuqJvhMZex7KNHDQ95aX3dSJFqp2cg3Sg63dYLejg7SjE/LlYiYdpny9Xkn8YQzvDzWANkjHt2loc6ltVM2GtzdOm6Ay7L/Xa0DcCE6UPh271ofRhmxDZOBlwa3zzMuOoVhiYIfYtVYZYSbWOShgVr0BGkASF/8ArmL4/ZHJqp2ENlBjghOlr8SutRGSA9kIbY6vn4SSbiUlixpfRH0EuhncQPWgTOILEy9YaHpOfto8ss31rRVZjU3jROmbwE6xa62OJBNfBB6u1Z/KPHdY7Fo/QBnKADc5UZoUvWeEY3oZSapNBI4g39FlARvGrrW6E6VPj8E4HkJBrnUZbvcsoKzEzSVPjmYMzvmoHfqroeCxg5ICr2t1/9sRjGeuHfq3ICdo3rUTjv2oSkpK6pF4wRw79DdH+10P2QhXAxckXvBam077buS8zGMasLcd+ueitXEHtL87H/XVqnbkrk2x76YTJQsWVSR0oiTbjL1QH6H3I9nERqqrhr0m8YKT7NC/GvVvXgnJUN4CrGuH/rKo8jdrhdEsPeZxN8V+irkoSWkf5EQvoh/5W4Z8j11pLx94/WlWXDAbM9aZqLp8awCT+H0N2hcvBKbYof8UCuTV6kteqxd9liRd3dts0mP8E1uiKv1uJH/5myRKHwbWi11rXXRfPGYkiici91B83fYAF5sKpptQsDLzNe4MfNcO/Q+3UK74vyhQlRe46QVm2KHfURFUfgopda2EKr/+TL6k+FwUhOkGVgY+hlRqbkeynrViBLNQwtplFX/7JMWBuGqyoHS9IGKvec1V1N/LzKhzvGrm2aFvJ15Qa791NJJXrNy7bAnca/qwFfm7/g9dQ1tWvHcAJQQcUGnDmn5rRYpoJU1SBrgWP15CG/s8plC//HMIJgvr43Vf2AacKH0zdq3TUM+EtyeflI6B+dbUjutX2bD6LdOAHezQXzXxgkYmkxtQhlIec5FxXMSWFDd5n4G+szNQtlOtbIZWNCKtxXdRFVOl9vYwpvct5CP/jWEc+h6MF06U3hq71idQNeLGaHG6BTiyjdU691AstTAXuNA0I70GWAEFoabZoX8rsNdoZTacKH0E2Nz0IJsJPOdEaWWV3/sozqJbgDZhIwlwXYLZbDF4Dy9Am4i9bvvDqUsjx1YenVRlFTaDHfo7okzKtVB22amJF9xR9HrjlL7bPEpKSiYATpT+LXat9dGa9gW0zk5BSTtHxa4VJFG6EG2UrmrjOJ5GAZSRvOc5lFiwKLNqjecWoOzyp9s9CCdKB2LX+iTK3lzCPDLpnGOcKL2/3WMoaRzj6L1uvMdRwSEoOSqTdwc5vBLgf8ZrUCUlJYPYob8Muh/3QXuLR4DvJF5wIaqQHgumUruqaDqSfp9JSLMoAAAgAElEQVTGoB9gA2A/O/Q/WpXJ/yBSrshL6h1AFQOH01h1RBdabw+gcVWQXJ9J4gX/AL5ph/4U4GzzWID2Z3ORn2MO9R3fec7uecDZJgHpX3bo/xb5TiqDbVki5g+Q7fdHtJ/Mc3T/BTnJr2RgoHN6unDJtKOTDd94ju/844bq134odq2u7bY+ug85/NdCv2d27vVQP6I1avTSqudsH5dWCO3EDn0L2dfZ79SJlIyetkN/q8QL3nCidMJXySdesMAO/a+j67kyyXkBuhdC4BuoaKDyepyF/CBnoMBvK7jUnCsvwNWNAuSfs0PfR4Hu41DQLfOpvBPY3Q79Tyde8LuK916MVGmyz2cjn+ct6HPWixFUz219KIjcqDpcB/JJr2D+Xfm+AQYVe24FDjSJ6bV4C1UGrlDwfDa2AfTZDkS93verrG7LsEN/OppTqhPzOtF39nXUR34YiRekdujvjBS6voYCuvcDJ5lWKSVtppQoXPw4i+IGff3A6maBmiwci6ppXkebzIWPLrnqvIM33ofZU3OTkhagrKq6JF7wL+AKhsuOzEMTVa0GlrMpMGwHYGCu1bXAnOMp5FTPyyCfi36vtmHKmTdCgYbZQMrAwJCxdKV9rNbzKh987eke2le5NCFxovQPTpRmzXG7nSjdyYnSf7TrfIkX9CH94nkMvSZ6gAeQ4XEHKg+fhQKT3Ujn/JpWjcOJ0v84Ufp0VXALlEFdRBcjC25ln/cTaKP1B5RdfyZq1v4A9TN86klS1MQO/RNRoHoH1CNgJ+AGO/RHIh1SUlIyMehBG7ZuNG90oR4VxwHBOI6rRA7Govm6G/jXWA3EidKnUIbqAcBpqJm440TpOWM1hpLJiamWXw85VP+OHM/fATZpYcZ2SUlJk9ihvwQKQh+Aeh5ZqPrml3bo7zuGQ3mc/L5fMFiRsQRDg1IzkTqHV/X688hvKZCifVdev8Ja+6NZyGmel4RbTT/1ZZxPR8HErCXDEqgq5DgkDVmv6jZF/pl+BpVS/gicWPGavVDrh0wGej76nTdPvOAtEwj7MgqoVX72rNf94YkX3GzG9eThT9zChfdHBH+/mun9ucpnnSioaDM8uJApBNVqVXEjxb9BvSTpycpXUHCrUop6CZSoOirZ7bEm8YIQ+BzyS6QogHI+sGniBXORyk+eo3EasGd1j6pRjCNG91+R0sQM5Ne8GrXP2IahQRnLvOayzL9rEqUrg1uVx9oBqRfVmj/mAnPs0D/fDv2vmHYrvyS/L18tEuC9wM9RgUU2x2UBry5USXlk3QPp/j+JfB93D4NSqplPaRr6/S6yQz8vAW8jir/zLvT91RpPb+IF5xtZ75UTL9i5DG6NHR0DA6PyD5ZMMkzpcBa1n8lw5/EcVKXzUVM2OSmIXWsK6qv01nZbH/0rpN2fxzxgQ7Ng1MU0TTwCSbOtgIJAPwVOrCWTErvWDKTZOixraV7nVI5ff9eFf112jdtQie9KqAFjN4OL5Rxk3O1qggBjgh36FgMDfld/37H9HZ3d1kA/O7z86MKD/33Hgun9vYc7UXrRWI1lccYO/U2Q02QLFLw9FxlWR6GMkjyjah5ysrQtABe71i6oX0p1RksKPGiCga0+54Noc1pNP/ArJ0r3bOa4dui/G811eRu8+cDaDVZ6lpSUTABi1/KRQyVvfhwA3m+qVCctdujPQlX4r9WRx5lQxK61JUrQqN5Qzwd+3ew8XlLSLGY/tA3Ksl0auBm4eDzkGMcL8x1sCrwHZabf1kCmdEnJhMUO/cOBk8nvbf0m6rs8Jn1OTEDtXIZL3c9BVQRF8oAPJ17w/qpj7YScyAPIOTsfqbz0oiBM5bEGUIBtNYp7YPXRWJXGE8BGiRfk9hi0Q39pJMmct5fqB15DwYF3Ubsdwnzz/E2okuTPlb2xq863NvCKSdKtfn5dlICwE3KS3w4ck3jBg+b5TwKX/+hvV83a+I3CnM2/OFG6mR3630JVX0Xf03mJFxxcdBA79LMgSeXvPw/4K7BNK+SxJxJ26P8LVbvlsQD1GVokJP3t0F9Icb+n+cBqrWrXYof+PSjw3Uh/qSJmA59IvOAuO/RPQAUCefdjiubJZWscawD9nt0ooNSHEq2PRQGyvLm3mh7g24kX/MT4Wt+guA3Ky4kXrFzvgMae+T6qrsrm+Kko+LdrwfEXoMqqk6qO9QEkIVo0pkcSL2ioH1/J2FNKFC5mJF4wYAyuHZDRtQZDg1yzUNT6WORgnxQ4UdpHVl0S+qejsuE8J/zjjQa34O2MgB8DPzYNDHvzDK6c8fTErvVl4KIB6O4wmSzzOqdy73Jr8tdlVu9CDUZ/a8bqoHLZT6CF5ULg12O90TTnO9kO/e9/8Zl73rH3s/du2N3ftwC4y4nScel7sDiSeMH9wO7Vf7dDfxuKN0QpKksvDHDFrjUd6WJvg3Sd/3eEDt8bkJTWgWiDZaGN2mzgsyM4zkg4DDVMrTSY+s15jx3Fcfem9mZrD+pnLZaUlEwcPk3x/NgB3Bi71mq1+mJNVIwE0A9RhuxCoMsO/SeALyRe8PdxHVwDOFH6p9i1DkN9F1M09w4gWd6J2GS8ZIIQu1YHsBmSin4V9b3MdbY2inGoXIKcHlnvhm1R/4wtJlPwuFns0LeRM3kNdC8OAHPt0N/F2KAlJZORfSh2sGZzyZ1jMZDECy62Q38+cCpKZu1E8rjnARdQbK8snXOsm0w/qE+bYz2Ckv+OzzlOh/lb0R5nDgU9zCsYQL1kTqG4kgEkA505u6vpRL3Blie/Aq2S7P0fRQ7nXDvNVMr+teggiRc8juZ1qnoTZewDzDp/zW0446HLmd4/NIc4pWOhxUBWMfIaOX27DAuBV2p+Itk2j6FePsuhYMB5wHGLWnDLUCsI0cfgd7Ao8CSwTsFz89G1M2pMwvP7GF1wC3QPZ8Eai2IVtw5y5p+c12T3a+ZrvQnJIV5Gjv+qij4UFP95xTFqVZOuWHAvD8E879uhfyqy51KktnUQ8n3lMQ0p+FTzIApG5wW45iFZ2JZjh/7yqHVMN3B74gX/bMd5FnXKANdiiAly3Yo0mPPkv6YDBzOJAlxV3Ei+E34OtcvJazLSjC8nSq+KXevJ56cvc15Xf99Gr02d2XG1vQm3rfge6OjAjG19YLPEC+5FRuQpzY6vlRjD63nKxodNY0qev4Kybv6NMr0eHeVh/0OxbF+WKZdL7Fqro0rBJVAguw84OHats5wo9Rs5uXEMHxG71sVISnE5ZDxc5URpWyo+nSi9O3at7ZBz98Poc94IHLPd1ke/Reh/GHihCYfU0hQbjNOQtElJScnkoV4SxnLAh5CDabJxJppzpzPozNoA9YFYN/GCl8ZtZA3iRGkYu9Y1wKfQOnSXo8bjJSW5mH6gN6MkMAtVK3TGrrWXE6XXj+LQeyInaGUiXOZkuQI5wScksWuthGzL7ZFNeAHwu5EE7k2m863IsVPpC1gCuNUO/dVLycWSSUo939aYtmFIvOAXduj/EtkfCxIvmG1kFIv6ZaVIwSXvWHNQYB4AO/TPpDhItiJKKDmYoQG/+UgS+C1gqxpD70BqPzsAA+Zcx+Uk3r5BY/7ERr/3bsAHPmO+p41Rtcf9Iw0KFTjEuwGeWGIljnz/5zn037fxnrdeZKADnpy5Qv9tK77nh6cdd1vWY/lXqJ9SHilSRKp1/n7gVDv0f4R+74WNJElPYp5EdmkeHdQPCE4m/gcp61Qn0/cAp7UwQX2TFh2nm8HA8I1InSqvujPrUzVSpgEfQy006nEpcJSZz0BBz3kU+2ReGsl9k3jBq+jeBcAO/UwuNu/4PUjNp/oYqR36+wO/YFD2HnOcp2lD32TTHuMk5J/L5CR/C+xVo9dfSQ5lgGvxJWvAXsTSjUTLJyJmzEfYoX8JavK4PNrIXVFUYt8unCi9b7vQfxQZaHlMQRVc947dqErajR36H0WN0S20MPYB+9uhf0ziBWeP4tAXMCgvWs0AqnQq4mq04ck2GVPM47DYtW5zorTWe4fgROmDKLtlTHCi9M/A1rFrdQID22199EwgQlku81E1w9+BPU1fu0b4I8quy8vOmYuCgSUlJZOHEAWwihwpA0iKa1IFuExGn8fwDMcOtKk8jNFVs44ZTpS+SYWDblHABAs+hfoEvBN4FAgSL7i75hvHEDv0V0SVOskkk969DvVoyBwT2T1wZexaGzpR+kTRG+3Q3xw5d220np+beEHWJ/Rw8u0oC9jABHiebsH4W0rsWhuifqVdDH4XOwLXxq617wiCXNsgWfe8feAUYF8UVC8pmWz8AlVW5FUodQF/HtvhvO2X+G/F/8+2Q/8c4BCGV5stoPGeoUXBLdC+8zLUM/xEJB03GynEBKh6uhGyefJwlBh4aNXzj6FqjLUbPF49OoGN7NA/xZxzoflbjx36XzJ9tEbDdai6Y9Y/l3wHX9voC3SlvXQAC6ypC4HzTzMvTLzgVTv0D0aBwm4Gnf+9aI3/dyMnNL//4uCgPhlV5VSvrfOAn9Vq7TEJuRzNM0ejxNsutHZOAz5kh/656J57FiU4D6k6NP2wVgfmVdglebxK/erHevQAl1VIJt4HPGfGX5kw3Yeu8aLqrkx9IY+pSBK11pwEcFHiBUNUGxIv6LdD/2wUdKt+fw9S0hoNN6G5bxbDE8RT4H/z3pR4wW/s0N8ezZ+bI9/Qz4Eftlpq0w79nc15qvd5Hwd+BHy1ledb1CkDXIsvc1DWzQoFzz8zGYNblSRe8ADwwHiPg8HFKW9R6EWShCWLCHboTweuYaiBlwWTfmiH/s2JFxQ6ZepwJ3IO7lNx/D60AdirqMowdq11UN+WvGtwJnLMNRzgGi+cKFX2Xuj/GvUnm8bgJnZj4E926K/doOFxPcomm87QtXAh8BTSXi4pKZk8XIEcNysVPN/H5KxK3pRiCaBu1GtiUgS4FlHOQMkS2Zq8OrCdHfpHJF5wwbiNCrBDfykU+N0JXUPT7ND/E5K2HJeqP9N8/WjkKF0OVbh/L/GCKypfF7vWekiCKy/rdirwNQo2/cY5+nUGnZJbAofbob9T4gV3IQWLIhaiOeTpxj9V+zFSjb9CSTmVTpqZSLZsV+S8bYRakkczmcAVbCUldTgPOQrzsJCMWqOJcE1jHNgfQ3uvZ4HfVGXh++gePAjNzZ3IN7PPCNQ+focqu/P8eVkF1r5oHrwcODnxgsft0P8qCnCPhBnAfnbon5h4wduVOEYVaC/U62oq9aUPe9HnHdajvAILzd+VFetLANfYof/hrJ9Wk1yB7KVpZrwstKaCHOlXJl6QVL0+23NvhX6jDhTQOMQO/UtGkFS5OPALtLYciQKBnei7+j3wzXEcV8sxPtLjTIXN7xkMClko6SQjBfayQz9IvOB/AOzQPxAFA6cDlqkw+nKBNPCNoxjmmyjwdhH6TTJ55utQMKo62DMXWKrG8R5Hgey8e7wXiFEri7XIr1BdiO7rPE4E3o+Cz9PQ9bMQyaQWVVHmYvpn7Yj2fNclXvBPO/S3Y7Cn1jQ0B/Wjfn0/tkN/AZob7qz0fydecA+ax9vNseQnXU1HCfL+otK/biwoitCWLOKYmzdAC3o1c1HpbUlriBhsdliNBVw7dkMpaRexa3XErrX1OQ9c8otD/nXbtPXfTGBgWIx4CqPoN2Lu20OQ1OYNqIrq58DGiRfcVDGWpWPX2jd2rUNNxq+NjI8i3lXv3LFrWbFrfSp2rQti1zozdq0PGYdLQ9ihP9UO/Z3t0N/fGB9NYYf+hsj5Uu3stdCGaa9GjpN4QR+SPLwbVYG9af57B7BtIwF+853sHbvWnbFrPRa71rmxaxU12C0pKWkjTpQuQNlufQUvWcAkCOTnMId8WdqMt8ZqICVDsUN/I+DLDN2YdiBn4E/s0K/VqLutmMqy36Lert3IcdGNHHV326E/2p4OzYyp04zp28jRPBU5gH9mGp9Xsh7F9/JUCqR7TOXW19FvkO1zu5F9cK3pZ/cAxTI804Bmk5DayYYo8JY3F8xElZyN8jLF+5JelN1dUjIZ2YBiueIBJO/ZVuzQXwcFyK8Cvo+SDF60Q3/L7DWJF6SJFxyOAk27I8lRO/GCW0dwqoD8zzoX2TvHoISLldHe6D479DdF+9CiPmW1WIiq5IdgqlPWR5VO/6C4Z1cv8FNkp/274HVzkdpI3vimA9fboX+4HfrLjHj0Gus8VI1xA/qO5qLqjtNQa4tq9kF7zsogYjdSB7qsmTEsqiReMJB4wXdQEOQbKIi7aeIFn1qEJdZ8ZDMU+dQtdC37duhvZCoCT0fXTyaLvCFwhx36TvWbzfW6F/LXNlLJ1WdeewBKbHpH4gVfTbwg8wF9DNia/PsrT9Em4y3gL+QHt/pR0cSdqFpqPsPtq7mo6nEOOSResDDxgl3M2L6HAl5bJF6wd6Nyj3boT7ND/0ZU5X6COc6Dduifj4Jv70L917+FEqQSZIt6KNHgRmQjjqmMrWHdGs/1AauO1UAWBcoKrsWbM1CUfT80aQ6ga+JsZIyVtIDEC/5mSm8PYdAJ0o8WgENKnfvJT+xa09DCuOm6s1+auc7slzp2fvFhHl7K5tj3fpq08+21MivhbhoTePmteeSNZX/gLAarBgeAhyjOqutHzYoLiV1rKSTptwYygPrRvHFz7Fqfc6K0pvFhh/5WKJA7hUFd4X8CO1VmAjbIlhQ7e2chvfgLGzmQyWDfxg79d6Hf5amc7L1cYteyUGbRNgze12sD+8SutZMTpWPSxLqkpGQQJ0ofil3ra0jSYgqac3vQBmEXJ0qLHOYTmT9RnKAwB0nXlhhi19oYZYHOA651ovTFNp7uSxSvrX0og74tzagbYAvk7K0e3xSk3rAb8MsxHtPHgQ8wXIZmJvBNO/R/WmETvECx06if4gqrgyluWD4NXRsBshWqnTzzgF8mXtCSBvEtZnlqO7hWHsGxfk1xD4k+Bpu/l5RMNmolmXUhydO2YYf+mqjXTWWFUjYH32SH/rsq9/2JF7xO84oR3UglpjKY34faHnyIofNglgR4EcXVm42Q22858YJngaOAo0zPsV0YPg8vBH6SeMFTdujviGQSZ6D5fwDZareiOTpvDu9Ajt6TgRPs0N+2mWous8Z82vT4Wgb1+CkK+H+dYjnbjezQtxvdNy4uGBnkn473ONqNSSLaicYKRqah4PpnKQ7efgfZlENIvOAGk9wbILst73wDKMh0PZLQK6oC3Zfi6smskjTPpu0EPl/wvn5UFfaKGUcXupenonu+HwX6f1Dw/rcxwfK/1ntdAScjn0y1ffkF4IHEC84HfgNgh/6lwLsZrDTrQPf5DkhdYKwlml9GErB5dKF+qyUNUlZwLcYkXtCfeMGh6Ab/Oopmr5F4gT/Z5QknGokXHAN8BjXLfhw5FbZOvCBX97Vk0vE95Eya1QEdncD0/l7e/+Zz7P3sELn3Htqo/x671pZoUZ6ODJjpyJDaGBk+eQb8fODUOoc+B2k1Z9k9ncgQ+DhyJhVih/4qKFNuWWBJ876ZyPF2Q73PlMNbFDt5+tFmb0QkXvBM4gV3jnCT8lmGBrdAxtxM1B+kXF9LSsYBJ0rPRTIpP0ayPMcCazhR+pdxHViTmGrTfdH6UZnx3IMyKsc6SDEhiV1rRuxat6As0lPQuvZk7FrfaeNpl6F2T4Il23juenyY4uDbEsB2YziWjL0pdq70oWqzjHvQep63H5mPEnnysCne33YAKyZecC/K2O1B2ftZk/PfMwYVHk3yd2oHUxvuG2r6Ee+BPn+WWZ+i78AfhYx2Scl48xTFFUQLUYVRWzD9Wh6jeI7L+tu14lzroPX/XQyd7/oYHtyqZE20RhYFdGrRgVQu6vEllPSZqWPMRg7cT2SSfqZ/1dpIuu564GJUWXYW9RPwZ6C19XpTFdwUiRfMTrzg2RrBLSiWvAZYsO5bL6weu9Y6JhG0ZPGj0evPQlU6RcHlTNI0F7Mm7wE8Sf78Ng/YKPGCL9WROK0lDZoCzzBU3SsLPNdKlB5AFWOzGJQAnIHu/08AKyReELTTt2wUCQ4ivwfYTCokMu3Qn4l8snkyijNQL7Cx5nRkh1bTC9xiEiFKGqSs4CrBOHXLbL02YxqjjrY5askEw8j0HUzOotrd38fuz9/PJau/rUrRh4z4dvGtvHGgjc4ywKOAw2BWjQUc6kTpfUUHjF1rBjKq8gybGUjX+ewaYzqI/LVmKrCeHfqbFOhOF3E9xRUL8yloFtoGvkJ+Vh9o4/UBtPksKSkZY5wo/ReaDxcJEi+40Q79D6HPtCXwOqba3gTAmsJUon4QbUzvd6J0Mm+izkZBncyxl21evxW71sNOlF7fhnPeiuSl8pwGfUgCd7yYgzbHeetvH+PT/7VW5UAHFWN1onQgdq1PIbmZLmRvpMh2+aETpfcUHOce5ODNs1ksYC079O9DQfAu1JfvWuCsxAvikX2cscOJ0hdj1/o/1GsrrzJiRI3YEy+42Q799yBbZmMUGPhp4gU1K/pLSiY4d6CEvlkMV3tIgXPbcVI79LtQj7xaPahmoD4zoz3XVsAt5DtoiwJbGSmS1vssmo87qp7rM3/rYHC+HkAO9IMTLyiSf3wbE0D/jB36q6G55TXg7mqpscQL3gLOMfNxCHzOnD/rwVNLmrkD7bU+jBRGGsJUba0IvGjGWY8HUXXskLF0pws5PL5l1g6vPPZ7NP9OjV3r18BBTpSWyjyLAab/3F1I9rke84D7kb1dRE0ZR3O+j6E5bhk0n8zDVFclXvBMA+P4NaqQzLNZpwCfBHZGqlNLo2qq/wF+QnEwbyrDbbsOdB/vAvTaoX8o8E7kFzmnwbGOhGWoHdewK/69LMVJEKD5Yay5EAU4d0S/awey4V9hFK1NFlfKAFfJIkfsWhsgA/Jl4LZ68mklJaMkq5LKZcm++XQMDMwe6OiYB+zS5iyMDSjeEMxHZdegarM3kHxTvfEsR21ZnFrZbZDfLyujH4254QBX4gVv2qF/CKoqm87g550LXJp4Qdsq5Kqo1VslpbjUvKSkpGTEJF7wELBnq44Xu9bHUMLFDDQXT4td6zzgG5PNbopda0nUpyBvrZmJdPbbEeD6BaoW62bonmoB8FDiBYXJI2PANRQHPXoZn/4h16KM3jznioWctm/jROnDsWutjioCPoxkCy9yovThGuc4F6lSVDuae5ET5gSG2kmrIsnlR1GfhonMfqgqdUcGKzBSYC8nSv850oMZWbFvt254JSXtwahBHIEcsPNRQOTCxAuGZL0nXtBvh/7HkRM4U7OYh+75L5vKoXawI/WrOeajQHLT2KE/Dcmj5wW3MvrMWPLG0wvchebTiMFeh5UyYl3IwX0ochw/BJyYeEHDgSR4e355ttZr7NB/N0oUKUoSqeerXKWRsdihvxRaGz6dHdcO/T+jPmk3mLHmcTKqdh60LQYG+MHDv+pfd/aLdGidydaaXYF1Ytfa2InSWg70SYlJ6P0cktJbE/nZTgPOm2w2Yws5Grid+j3tUnRv7YKUs6ppKEHXyHuuiRR0NkDSdS8D0+3QXzPxgifrHOJy4HiG26w9wP+ZJJ8YVRS9jR36jwEbUaxYkMc0wEX9QbvRfLQFcIgd+rslXvD7ERyrHm9QO2hVKVX+Sp3XtmuNKCTxgtQO/T1QsHQftG+5AUlmL6r969pGGeAqWWSIXWs5lJmwIYM9xRbErrWbE6UNS3eUlMSuZaMeFf9yonR2nZfPQ7J5uQ1vF3ROeXOgo2NP4NbRZNo3SILkKvLoAl5wovQZlOFcF1O99RlqZwTW26w9y2A/sGr6gZcaGUsliRdEdug/jhoovx997jOQBvRYcTvFcgPdKOuvpKSkZMIRu9b7ULChelN+IArO+GM+qNFhI8dd0VqV51AYNYkXzLdDfwvkJNsQBR2moUbbbjvO2SiJF7xkh/53UPZt5e88F/jZOFXqXAN8F0lTVTpoe4Ar87J6nSh9E0kvN9QTIfGC5+3Q3wld313IsW2Zfxfte2cAP7RDP2qkQmG8cKK0B9gtdq01UCb468AdTpQW9egrKZn02KG/Ltq3zGTQ5j4FOMAO/S0SLxiyT0u84DFTPbQH2iM8D1yReMHLbRzm8tR3/g4w+h7nOzdwnvlorqteD3uA4xMv6LVD/wm0b9oRSQieXSFttgA5uE+n/XybfOUR0B7xNbS/zkvetJAkZE3s0LdQJfC6DE182BoF+k6zQ/8i4KuJF1Q7vodVkq331gusPeeVzqkDw3zk01Dg5+NIonFR4ySG9iRbE/ghsI3px73YtTdJvOAvpqrqLAb7+2VVkH3o+ulH310/qsb5LYMBH9D99iIN3m+mEvIGO/TnoSSrLnOeLjv0f4+qufLk7ki8oMcO/c3QPLQ1g2o+FwDH2KG/NKq0eiHxgsqWD2egBLvquSc1n7UouL981XNd5nG1Hfortip4k3jBQjv0I5QElDfv/bjitQvs0D8PBfCr5565KKg95hgJxz+YR8koKANcJROC2LV2RFmV70NR+POAHzlRmtvMtIDfoFL46qymm2PXercTpSN2pJcsXsSutSbKas4cVVNj17oQOKrIgWBkdE5HDsFqZ2FPd3/f94w85VhwOhp7tXReCjxkgltvE7vW+qgkug/4deXzsWvNRBvKtSg2XBoxBM5DDT7zspsWop4XI8b00Ni9mfe2iNORIVUd4OoBrnCitGwIWlJSMlH5NsWys1+NXet/nCjN3SBPUF6idkb7C+06ceIFzwFb2qG/OqoG+nfiBRPC3ky84DQ79B9C9sm6qL/Cj1Ay2HiMZ6GR2vwJygQHOWNPQw7rVp3nLjv034Ey71cE3oECa0vUeNsAyi6+vVXjaBdOlD7FKCtBSkomEZcwXBVhBtqffANVJAzBBKovNY8RY4d+B/BR5ARdGVU9nVVDWushakvq9QL7J17wfDPjqWAVaku9ghzpOwLno6THPrQPPA4421SA3IXmw/er7OkAACAASURBVFlmbF+yQ//kxAvG2rn7UYoDdvNRNcMvGb6H7AUeTbygVjVvxo7oWimSrbVQQkoW9KskrH7fRm88S1d/Yb7qEsAOLGIBLpP4eyTDgwczgJ3Q2rlYJpMnXnA3sLEJDpF4wRt26G+EKs/3Q/PCd1GyUYgklI9DAaascuvUxAsalra0Q38tZMdV+3s+iua8T1e9fipqnWAB9ydesKMd+ssjlZ7nkJ8nREnNC1Gw7GY0Z72KKu/z5rde5AtaLue5LPiVxxLIBryk9icdEd9AfuTMD5ZJq/4Gqf5U8m1gDQY/Vz/6bk5PvOCqFo6pZBzoGBhY7ILtJROM2LW+jDa7lcbLPOBh4CONZCbGrrUh6nWQ50SfDwROlJ7YguGWLKLErrU0KstejqEBnR7gGidK96nx3imo7HsXlDgwgBb2XwLeWEkVGPmAc9GGIMsOmoMqzLZwovRZ87qpwBVoYe9EC3v23qNM0O5YJEOQlxHfjwyg04Hv1MvaskP/2+ZY05ABMQ99PzsmXjBpDeLYtTYHrmRQxnEaMiwPdaK0mQbOJSUlJW0ndq3nGKpJX8lbwHZOlI6kN+K4Y/oTfZzhga65wCFOlLaz/2XJCDFSW0sCr7e7ut0O/e8CJ1LbAf0msHviBbe1cywlJSWNY6QJawWFnk+8oGgta/acHcBP0V4q64ey0Dx2SbwgN8PeDv17kYxX9Rq0ENjMyAyPdmzbIsd2nqRfdq49Ei+43rx+DfMZ4sQLes3fHgbWZ3jy4lzg44kX3DXacTaKHfoxxRXWPej7XAtVqgygPXYKPAl8rJGqPDv0z0IyafV4BVjZVFJk392jVFV5fPa5+9j/qTvpGshV5UuRz+nYBs43aYhd6xDgVPL9bP3AT50o/erYjmriYof+B5FM6rDEZ1Qt+c1RHv9M1D8zL9g9H1gnk920Q//zaD7LAsmdwLGJF/zEPN+B+th9gKE+n4VIrm9rpMaT5w+ag4LC32G4fVWvj95diRd8pMbzI8Z8lq1RpWsvcHWtPu+mD+lH0We9PvGCtiXDlYwdZQVXybhiJNCqg1sgY+K9SF7gigYO9X6K9VS7UWZJSUkt9kcZH9UG/wxgj9i1vu1E6XN5b3SitA/4XOxa70WL6gBwvROl/2jngHPGMQB8JXati1A22jLA74Arq6ohv4cyrqpLsw9EgeUI+DK1e2d9yInSBxoZV+IFp9ihfyNwELAaqgz7WZvlQnIxsiWr7fzC39446onfZRWftztROmLNZSdK7zVSQRuh7/pvTpT+t7UjLikpWdSxQ383lIW+LpIdOxv4cRu119+kOMA1FVXSTzb2R1npq6Ds0H600f8Vrc0SLWkB5toeq0rnZ5DztsgpDNoT3zs2wykpKWmQz9R5vh39brdlsA9KRiat9Ss79Fc2MmHV7Iyk0jdmsHfxXOBTrQhuGe5AFctrMLzyqRfYtjJxMPGCIZWedui/F0nL5SlzzACOQuto5Xu2Rv3P1kSBpQXA5ugzXo6qHl6lOX6ObJ88mcLngScSL4jt0F8RJZGugKrl7skCUQ3Qg+yBej3SlkP73my/PB1Vvw3hjys47Pf0ndrpD2cBCsaNGcap3w0syJFYbBVdFFfadVK7lUHLiF2rE93zcyZ4Iumx5F/TM4DD7ND/HrouP2Qes1EwplG/yIcoruRcgCqZnrVDfwd0j1X7WU+xQ/+txAtCdC9vxPDfsAvJFfoUS4DPAvY2z1cH9msFtwA+aId+xwju47qYY91hHo28/h/AmPrqStpPGeAqGW+2Jcd4MMxETvpGAly1Ggb2U5X9FbuWhYyk2ZNMhqekfexMcZPQXmRMXFnrAE6U/h34e4vHNWKcKP0L8Je850y12aHkf9aZKAsnorYjaD7K2mkYs7k7OO85o4/+CWBTpLd+ZeIFL+a9tlns0F8JzSVbTE37+N1K63e/1L1Ueuw/fjN/qb55Vuxa1wDuSHtZmKBiQ4G+kpKSkmrs0D+SoX2S3oE2xzvZob9tq6tb7NBfe/93bnb71v+N17TnvV69AR8A/t1MwH+8caL0v7FrbQB8CkkSzUFysfeN78hKJgBXo6BxET0oo7lnjMZTUlLSGO+p83w7Mu4Ppng/2IUqBIZVepogz0fs0F8f2AAFov7YyqBD4gUDduhvj+Td34GCDr0o2LRLkSqGHfqzkFz8YRR/tg7go3boW1kAz1S/+shZ32E+VyXHAAfZob9+4gWvNPGRzgH2RQG7zB5J0T7Ty5zfiRfMQ6oozXAVtT93xnwUHMh4gsFA5du83L0U16y6ycBnkvvTroG00pc6F7jMidJGZBNHjR36nagnlo+Cc/NNL7FvFfVgGgW3kvNdGOYA17f4fEMwga1jgKORf6I/dq0rgSOcKJ2ICVmbURzg6UMBpdPR/DYNVRCdZof+MYkXNNJvtJYMdieQJdueTP51PwP4H9O3amvy5TtB3/UG1A5WrVHn+SK6zFiLrquSkqaol8lQUtJuavVMgMYzQn5PcaBsPuoDROxaHbFrfQMFxJ4CXotd67rYtVZp8Dwliy5v1XhugBEGdCYwy1Jbv3018997KMpP09/fGbvWO0c7GDv0V0XSkJchp+4pwJN26OcGw5o8xxTgTtRMuLvXmtLda03hb0vb1lHv/9zMAc0zuyEnc0lJScmYYDT7TyK/in1z4DJTddqKc73DDv0/AQ//fI2P7LP/B9xph224d/+rXW8nqS9EWaRfbMX5xgMnSnudKL3aidIDnSg9sgxuLX7Yod9ph/5Mk9UOgHH27YKu7+og1kvAAYkXVPdeKSkpGX/+Q20H6HVtOOfK1HbYLl/rzYkXPJp4wZWJF9zRjooaIz22DprTjkLVZivVCG6tjaTGfoLUcWp9tm7gDDv0j7BDf3fgWwzKNOYxFX0fT5i+QCP9LHNQMOAkVB32MgpIbWp6G42axAseQJXc9YI+/aiKPntfL0r6HPa+n62x1dzHl1j5KJTg+DrwCAqMfqUVY26Qs9D3tiIKdM4EDgDuMPveluFE6SPI1zav6qkFyJ/W7p5j56A+Vssi32E3qhy6O3ater7E8eD1Gs/NAE5AVVYzUcHJDBRk+r4d+ls1cPxzKL6e3wD+bP69YY1jrIDUZ+ZR7ENNgX9S229Uaz6pVZ31eEElbEnJqCgruErGm7soDnL1oKzLujhR2hu71qeBG9B13c2gPM1pFU6OAFWvVMoO7AzcF7vWe5worRXkaBuxa00D9gI8NPZrgQucKH1tPMazmHIRsD35lUudyLBbFHizzvOZZNCJqEF7teO1H12jVwPTYte6C9hrFNJ816KgWrYeZUHtH9mh/9fEC1rhoNwZbViHGGh9nVN4sXtpHlx6NTZ+49kZwKGxax3vRGm7ZMFKSkpKKvkYxRvLKUim+ZN26H858YLLmz2JqZK9EzWcn0JHx/Tejik8tuQq6SEbfXH+5X++4F8WAzcBZzpRmjR7npKS8cL09DoBOATZLXNMn4qTEi/oTbzgjyZYvDdy8v4LuCrxglr9fUpKSsaXS1HVRp7c10LUF6jV3MnwfjQZ3cCWRjLvqsQLxkpmdQimsukP5lGPq1EQqpHE9ikoSJOa1zfqK1wSuN0O/TWacFr3ArcjSf0H2+T09lCfoaOBtcmX25sF/MEO/dVMxRiJF/zUDn1QIGkq+j7+RUfH/nuc+exfgEaqbVqOHfrvBPZj+DXajYJ0OwP/1+LTfhb4AQqigb7Dq1Hf6bb10Yxdy0aKTnkSeqsBu1NDYcf0J98K2ASpxFzrRGk9X8hoOQd9V3nVU53ANuRfg9OBb6JrtRavoMTsSn/mAjQnfqZC9q8HWKrGceYB1yD/aB4LGAzCNUOfeVTP3z3At5s8ZklJTToGBlome1lS0hSxa52OFsvKSboPOdrXHUnQKXatVVEGzRbAc8C5TpT+2Ty3HJCQb7D2AN9yonREhood+sugDfWX0CL2EPCdxAtuGcGYZyAD9T0MfgfzUKbpZk6UPj2SMZU0hyl/vx6Vame/wwD6Lb7sRGkjUpmTgti1foay9KvvhR7geCdKf2RetxMQomt7APU1GWDoJqkXVWC9z4nSEWUqmuaef6W4ae1ViRfsPZJjFpznNKQfP5yBAdxn7mbfZ+4BZUOt50Tps6M9Z0lJyeTEDv0ZaOP8Ziu14QvO9QVUYV5LEhaUrPPuxAuaCj7Zof8p5ChcIufp2cDeiRf8ppljlyz6xK61LnKmrQzcDVzuROns8R3VIKZa62ZUpV3pSOkBbk68YPdxGVhJScmosUP/WFRJlMnkZQmsRyZecH4bzrcq8DjD1+UBBns5zTP/PTTxgouq3t+B+nAtBzzSasn1kVBnn9VqZqMEgj8AR6K+mDNQMvOJiRc8mDO+ryIZtQH02w4g5/1SqDLoB8C1rbTFTGXapeQHTeeg3/TiqvdMAdYCehIvyO3HPZbYoX8AcAbFv+tliRe0pRo/dq1uVDX26li0+Yhdy0USwzMLXnK1E6V7FLx3RSSvuDqy6xei+9ZzorRtvdLs0O8CHgTWa+LtTydesEaNY28D3MRwH85CYIfEC/5Y8dozUf/z6mKCFLgp8YJPmtcdj4K/1d/xq+g+aXb+eA19/x9naDXXkYkX/LzJY5aU1KSs4CqZCByFgllHowl4CnALcNBIK6qcKH0eyZzl8WE0+ecFuGagTOmGA1x26C8B3IcatWfatR8ErjPZ1o0GRI4C1meooTUdfRc/A3ZodEwlzeNEaX/sWruiLK+voWy3B4CTnSjNlX2YxByB9J/XwWhZI0fQ7chgBsCJ0puMfOdGqNLgWwx3kE5FVQHbo/t2JKyJAmR5dFJfe79R3jDnGVZi39Xfx4y+t/vUTqG2rEBJSckiih3666Ksy4+YPz1rh/43Ei9ohwRSxh3Ulv7I6EBrU7MyqpuTH9zC/H0LoAxwlQwjdi0fOA6tj1NRtvTJsWttg2zew5Gz6yFkL901DsPc0jyqHZYzgB3t0N/Q9AEtqcAO/ZnAZ4BVUaP1G4wsV0nJhCHxgpPs0L8TBU3WBh4FfpR4QW6v4Rac73k79HdAlQ3ZHmkJtA5nVReZw/csO/QfzII3duhvguTwlkdO5G479K9D/aSq5d1yMUk2R6CqkxeA440sYTOsSvE+q9XMQPvFH6D9XeZv+SSwgx36uyZe8LYaih36LqocqXaeL2n+uwJwMbLLvtnoIOzQn4r8MnMLAmPvpbgFxiwUnBwS4DK9UP/Z6BjGgAFqy7+1LTnLidL5wFgmgqbU/jxbxq61WkFy6rXI15HZ2VmgJ4xd61EnSh9t4TjfJvGChXbo/4PmAlxP5f3R9Fz7PvAN8qsxpyCfYmX11wmox/kqDNpH81Ew+rCK8Z5oh/5ySOWq8tjLNTH+SpbFKGWZsfQB9yVeUCrllLSNsgdXybjjRGm/E6WnoA3yusAKTpTuYoJVraSegbewzvPVHIAWjOrGjDOAc4yB1QgHkp9FZAEfiV1rmRGOq6RJnCjtc6L0Z06UbuBE6TucKN15EQxu4URppnm+J3A+8FNgJ2DXapkBc3/ejzZrRQ7SmchBOiK2f/mxnq60b8mCp/tp3WbiCgplwDrY+j//BN3/10+krPSSkpKxwQ791ZFm/bZoIzwVZeteZof+nu06r5FHCxneF6iaaaiRc7O8ztDm6ZUsQFmWJSVDiF1rM9T3YjqDDqKZyGlxL+oB8j5U2bUjcHPsWl8ah6HuQnGGcRdy8JRUYIf+9qj/2DkocH4x8IwJ9JeUTCgSL/hD4gW7Jl6wfuIFn2tXcKvifPeiBNadUYB/Ifm9ZqYB37BDf2c79PdDSSuro0DJUub5T6E+w3WxQ39LJCV/EkosdNF92awU4+MM91O0i3nIob8GQwNInWh+vijrjWj+ezL1K0NmAl9rpL+X6TN6JarCeh142g79vCqmlxneSypjAQoqTnRuorhQYQ7QtuqkceBmaieCrYRajSxb+UdTeb5RwXu7gK+3bIT5jNSvCFKS+XHBcwEKShX57ztRpdTbJF7wGvoOjgX+n73zjo+krP/4O5nkSu7o0mSkMyDSkd6kCSgIAgIi4AxFQEAUC4NYEBTnB4JgQ0SYQVSaFOkggkgHBZE+SBEGEAEpd8ndJZns74/Ps5fNZmZLssld7ub9euV1l+zuzLO7M8/zfb7l8/0n8BQKQH8k8YJ/l59nfJYH1zj2aOhC8pBLJV5wTxHcKhhrigqugvkGJ0r7kKzgWPEX8q/5buDiJo93CNmBKVBw6qPA/Q0cp5Y2br95PLeqJHatxYADkDPuWeByE8AoKMjFidIUNYVttDHsO+RUQaENQVPVlrFrtZ8MvzpyoyV5ftrSDLRXSVGXSnNoa/txM8fMI/GC58zm8KuUy+9LJSYP9PH5l+5j6d6ZM5Gj5+hWnK+goGDCcTLZjdS7gB/boX/lWDSLNxyDHCo++c6eHlQhM1IuA07NeayEmroXFMzFNG7/Mdl2bhvDpWza0PX7i9i1/jAe0kUVlLPZ85qdF3r8FZj+QX9k6He4CHLK326H/kpF8/eChR2z5t9th/6SaJ+TVfVjoT347iiQlBVMmgrsZu6rf2c8Dsx1Mt9Btq/ia3bo3554wa1NvofEDv3bkRpMXqCrPD/Wmj9nI4d9F/nBhi7UpymrtxDAEqh66nGUNNlodYiFVHb+L+8JdugvjqQYl2Hw81sRON8O/aUSLzi34ulXoLUtixKSL6w89pJI2eVzZixXA2fNS+lJU2V4HsNbfMxGn++wvb3pRXUE6n30ISQ/91Pg/5woHUkwZlxwovS/sWv9H6pcyutptQiS4vthxd/XQtdslg3TAWzQ4qFWUy9xLYvrEi+4sfqPRjXqWPL9jmWG3cOJF8wAzjY/eaxD/n1bi7Jka3mOmJRznOlIsvSqEZyjoKApigqugoUGJ0p7kLxB9YIzGwWGms12qRUgLtV5vJJhmtQV9AO5lWyxa+2A+oqdhSQezwFejV1rywbPXTBC7NBf3w79Y+3Qd00vtnk1jsXMGL5qh/625ey4MaBGFRQAVzZ5vJ2AZU978tq2pXtnMrVfCT2daT+dA/1s++az1yZe8OAIxzqMxAu+i6R4bqdUenHJ3u6HvxbfdtsBycN/QA2V13Gi9K1Wna+goGBCsQf5a/aiKIFkTEi8YCDxgtNQVczraMNYTT9VkjlNnuMVFMTrYdCZVTK/f3Okvb0KFkxMj42/okrvZm2KfqqyiMeBP5Kfkd8HXDeOY5kIHEq2D6ANzXe7jO9wCgrma16i9p6+Hd03tSqlelHiay0OrHOMH4GkyuzQ38QO/e2M47seByGJsG4zjrINkKK5c1PUSzwrKaEfydd/FFWQzDY/1c8BfQ61nOQDDDroyz3MGqGD+pVeR6EAWvX31AV83w79uYGBxAveQdUqPQxW2fSZMR2deMHcCi6TDPBPJJG4OqpOOw543A79VRsc/1hxAgr6lO2394FzgR1zEhTORUGOldBnvzRqPXCjCX7Nz5yCgnF5iWZT0R6/klfIv28HgBdaMrIM7NBfBQVEm2VPO/SzFHHWo35FWAm4vc5z8khp3tYDXUf9SLLyLLLnkDJ5PdRyMXPdlnbo72buxYKCuhQVXAULFU6Unh+71isok/kjSAbgV0DgRGmzJbN/QE6vvIyuhxs8zimo90W18daNsmoypRVj11ocbdorF4xyQ9ybY9f64Dhn0C4UmJ4Ff0SSfOWF/Tw79L88Fs2O64zlAOAiZJiUm6e+aIf+TokX/LeV53Ki9HmTQfV1BisdSmhD8O0RSIpuCExdZs4MfvvgBdy31Oo8tejyLNY3ix3efIZl5sxoeRWiyXxsKvuxoKBgoaBWdVY7mmPHlMQL5pjm0bcDizM4p/cDn0y84N1RHv9sO/QfRJWsayLporMTL7h3pMc0G86jUHb4/5A9dfMYVrsVjA/HIYfKSBIh2xm0RceLh1Aj850Yakv3ANckXjAmfTYmMOuRnwk+CXBovLq/oGBB510k+5ZV5d0M9Xr81guArWSH/i5IcaYL2S2T7ND/MfDtvHU38YL3gG1Mf7DN0fu5E3gLzQOrIp/FtcCnkV+jHfXpeRsFyCwkc1btpC7ReOVHOwoWkXjBTDv070C2Q711phu4q85z9id/ThtA7/vO8h8SL7jKDv1HgS8C66JE518kXvBM1Wt/gKrCKqvWJqFg2k+RhOU8wfQX+yXwSzv022vZXbFrrYyqt6p9VlPRZ7M9qh6cL3GitBS71q1IaSWvtUF1AOgRFPxbg+HX2GzgJy0d5FCakvtrK5XY+J2XWKX7ra45VsfFsWttYBLzy8yg/n3WjZQgyhVfm6L3+aDpIVeLJ8zrR2K7daBqzOfID9D30GSikR36OyBp12noHp5sh/7vgaOKXqEFtSgCXAUTElOKfiQyaAaA3wMXmDLcmjhR2owsWy1+hgyjToYuOj3AdxIvqM5wyhvPnbFrfQH1QQIZi5PN70GNlx5IvqHdjjJZRpzxXZDLBcBWDDcSz7ZD/+nEC/6a8ZqWY4f+OsCFDDXoJ6GS/KuAbVp9TidKvxe71r0oY6wsiXmmE6X1Nh5ZvIkkPzosSmzz9nNs8/Zz5cd6mRga6AUFBQsGl6P1fFLGY/8hp+lzq0m8IDaZnzujINQrwA2JF7REPsYEs0Yc0KrEDv11gbvRZ1Zeh3YAbrFDf/8iyDWhOYraUjjl7zav0fndLR9RDRIvKNmhvw/wDeDLSP7qDZRRXFPqOHat3czr1kD3+RlOlF4/tiOe58TI/spyRvUCuTJqBQULE3boH4Mqp9oZuufuJdteyKMPVcXW4ok6j89A8njVCbHHo/s5T4YYgMQL/g78HcAO/Smo/97ByIfRgeb1HmQjPA/cBlyVeEGvHfqnk+03bDTg14P6inXYoX8UqhKdgQKHedKOmPcVUxGcyqFeEtIwmdrEC15A+9lafJZsScZ2YGc79Kc06u8ZSxqwtz5JvlTvNCQtOW4BLnP9fRxJCz6QeMHzDbysVk/0HiCq/IMJiu2J7JGpKHjTh5LGfjDGPdaXpsH5YdnZ73H2Y5ezWF8PHQMp/e3WGiV4I3atvZ0o/ZN52uMo2JwXgHoWSaU+bof+qei6LvcN7LdD//DEC67JG0PiBQN26B+J/Kn1qiWzmI5kRC9GAfHKY6QoeHZR1gvt0G9HKhpHoUDZHchPe33GWA5A39+RIxhjwUJCW6lUyJIXTCzs0F8O6SwvyeAGvAdtZjdNvGDcZMbs0F8RGYi7IMPhLeBbiReEzR4rdq3JKCgxGbjPidKamV6xa51D7QaZ33Oi9JRmx1GQjx36H0DZQFmGeAm4JfGCcWlmbof+hagPXNaGYxawYeIFz47HWEaC6R33GtmG1CwkGThm8gEFBQUFZezQXxZlFi/J0Dm1B/h04gW3teg8SwEfBF6pV5FlxnQw6iPxGHBZ4gXzRVW2kcJ9CgXhqh1c3cDhiRdcNu4DK2gJsWu9Re3+KM+jLOolGZrgNQu40YnSz4zh8Opih36byW6vSexa30IZz5VVCd3AT50oPWmsxjevsUP/Q8ghlhXE/B+wfKuC6gUFExU79DcE7mH4PqWEnM0DqLqnFv3I0bxn4gU15cPs0O9Ac2heAvojqG9QVmLBTGDpRoMtduhfg6Rks1RouoFzEy84ueL5t6HEm2bpN2M7FbgGeAA5w6cxqALyAgoGDJjnr8FgAP464AhThVb9HiykprI4sBGSEczaU85An02zSj3Yod9H/vfRZ447bGzzG7FrfQn1MMv6vgF+7UTpEeMxFjv090bBqBK6ljtQMPWAxAvypIYBiF3rYFS1Vvk9zwaee2vStM322+KLc6qDfbFrTUOByq1RwlrkRGl1pV75etoNVbS9A1x+x11nvgl8CiX1vgD8sRHFJzv0PwechwJ41Qz2My+V+M1Dv2b52e9hDY8/9gBrOFH6mjnmVkiFZjKD12QP2h9sb1QgTgS+zfBKyx5g58QLagb1jIrED4BNzDmaqVi9F9gOOB31Fh4w7/Nh4POJFwxLFDTBrcvRXFQO3s1B10We5OlsYIXEC/7XxNgKFiKKCq6CichZDC8X7wJs1FxyXBZogMQLXgb2MNrOXcD/GtlUZ2EWzGa0c59FRmiWpu1M5IAoaC2rooU1K8DVhmQOxov1yZ/De5HjseEAlx36y6N76pWRXsPN4ETpe7FrHQJcgt5HJ8rymQOcND8Ft0zFqIuyzd5BWUh3jMfnVFBQMPYkXvCGcWZ9H9gPOVvuB06qtyFsBNOk/EK0ietFskJXI6mNYZXndujvhxwAbcghMRP4kR36OyReUKtv53ixNmpSnrX5nYaaYRcBronLQ+hazfp+e5DE93JIPmZjBp2Rv6F24tW40GBwa0XUl67a4TcNOD52rYucKH1u+CvnDUaWfC3g7dGOK/GCV+zQ94CQwTmmG9lguxXBrYICQFKtefu9Kaja4WBqS+N1A7s00lM48YJ+O/T3QpUL1XPvrUhyLE/2rISc8HXlWO3QX4P84BZoDvyKHfpnVARvXkLzQ6NyhKDg1anAWYkX9Nmh/wCqri0fow35TlYBDku84HIzviWBFYDE9MvKeg87oN7QU9HnPAUFDqor63qAr4wkuGV4BH3uWbyK+l7NU2LXWh0FFNZDMnE/d6L08aqn3UK+KtBMFHwcc4ydfQnDA5E7I4nrg2u93onSS2LX+g+6rtYHZrzUtdRlR258yAf62jveQbb148h2v8m8phv4tfnJG9fySAZzORSUmtNWKp1+mb1J/wHJwym6zmYB58WutasTpfXakPwBOBPdS5X3bD+6l/4N7Ljee0nbkn3dWcEtzOu+gFqZkHjBvXbob4QqzrdH1975QGiCW52op1qWX3CqOc7Haw068YK/IJUi7NDvJbt6MYtZwG2m99uJduifgu7rtxMveKPG6/ZGQcXKMdfqQwiyN9cD/pL1oEnA2wTYC32GNwD3Fj6b//GPBAAAIABJREFUhYciwFUwoTDZFfuSPeF2ooaO4xbgKmMyTmpmnYwBvwfOyHksRTJ1BS3AGNsHogBWrdLtpMZjreYFlLGW5YDqQNJWdbFDf0tkIK2ONkj/s0P/hMQLrhjpwOzQXxRlEB2KMnIeR5WNt1Q+z4nSq2LXehxtItdHhvnPnCidHxy4wNyN4H3oe+9Cn9GewB/t0D+4kOEqKFgwMI3FDzU/LcPYLX9FWcmTGHQq7QOsYof+VpUbLzv0V0LBrUqnWTmz8RY79Fco6+mb4PvqwBuJFzQ057eIDzDYWD6Lohn0xOZ7KBM3qzfsmSYh69/A1rFrrYC+7+edKJ3nzr4m+Az52ckdKOO7puTXeBC7VidwLuAhx05n7FovAAdmODEbJvGCy+3Q/ytSAlgV+Afwu8QLJtJ3WFAwlqxJfkBnAK3rG6CEjyzpsHY0h34T7RvqknjBjaa35RnAlkgZ5jTgvxh5wRymA/vboX9mA+0atqG+pF8fqmQp9y0+DyX6NRPgmoMqwfrs0F8ZOaWzXj8NOd8vBzCVGbnVGXbor0m2fNkA2ht/yDz2JHBy4gVN9f6p4iTkIK8OYvYAJ85rp3nsWnujgFGn+dkWOCR2ra86UXpe+XlOlMaxa12NeqxVVz89hQJgrRhPWW7uC6iy7hbgl06UvmmeciLZgdWpwL7G//BmxuNzMbJ9f4K5qgiPI0nAsl97PeBKI8t3aYNDvxIFZMrHmFxqa+PilbeatM77r7LO+6/BYDXWbbFr2bX63JuA09aoZ/sqyF7uRDKkn0afzQMr9rw9vb1UyrNDpqD5pfK4MXB4zvNXJN+330ZFoNZUi34SBYH6UUJadeLuMzSWuF1CgeVfVvztgygh50079N+s4Ss5huyAXC06yJkfzPu6EgXypqD3fSzwgB36nxxFoLtgAlEEuAomGpOobVxNqddoc0HBVMDswWCm1zSUhZMCu1Y1pywYIXbofxIoB3u6yN8UdFOn10OL+QkyTrIM/FeQs6Imduivj4zEymOsAIR26A8kXvCHZgdlh34XqnxYlUEjdmPgKjv0j0m8IKp8vhOlMQpwjRg79JdpK5W+0jmQHtxGqd0qDVze0zH5h4kX/Hc0xzVcgWSYyhlY5XttT+Qgu7wF5ygoKFhw2Q1tPKv1+CejjfiWDO2LdQT5ds5UYBc79P+M5JEPxFTP2KH/D+DALBmQMeBJ8rMsUyRDVDBBcaL0wdi1PoeqDjsY2hv2tKrnvooy2Sca08nvkdFJfiP78eYCZGtMYdCm+ghwd+xaazpRWis7uiaJF7yOZKsKCgqG8zhyCmf5yywUGNgaJd5eQLajthOt2Us2KqllWi3MTbSxQ38S8Ci15cLaUN+dA+zQ37SOBHI3g30UazG3kjPxgkft0L8V2L2B14HWjJ9XSM4tZ46XV+22ph36q5q+WPX4Gtlz91RgZRTgersVwafEC+6okJsryyr2A18fTSJoKzBS/9XVUB3m5+zYtW5yorSyn6KLxr4/ui570RrvO1E6ar9Z7FoWqgTbnsGA70bACbFrbeVE6VOosiavCnEOCirXDHBVcRywBMPv0S7gp3boX1lOCMvDDv3VzTiH3ee97RZX2JuwzlN/rPxzB1qTo1rHNdfyunbobwCsBDyXeMFT5uHX7NDfvLe946K0rX2znEP00Zwa0/tZ76GCGQB26C+CgvOro++phHpb3WeHvg8cxqA0+mrkJ3b3mZ9/A/snXvBfc+wrgI8x2ANsph36+yRecH/GMZZu4v2VeQPNzVl8DQW3Ksc8De2zTkUB1oIFnCLAVTDRmI2c9yvnPP7MwhDcKuNE6V9i1/ogklRaFVXAXFkrq6SgcUy/tysYulCWHY8ltHAPoOvyMpQ1Mi4kXnCPafp7MoMSfzNRVtmeDRr2p5G92egCzrJD/6oRbBAOQYZcdYZWF/ATO/QvbWUGjR36dsdA+jil0uK9lpa0jrT/y139c45c5/zj1nriyJ++PIpjr46M7SxjfBrwJYoAV0FBQW12JFuHHzRPfoyhAa41yXe8d6Bs0EtR789Kp/cmwP2m6nRZlLW4Ecpo/lniBX8b+VsYSuIFb9mhfwXa5FevIXPIry4vmCA4UXpt7Fo3oB4nU4GHnCit2TdugnE3cvRmVV7MAO4cj0HErrUkknX8HLq/rwF+5ETpq7FrLY8cT9XB5Dbzty8C3x2PcRYUTHSMrN330brYA1wMnJong4cSCbN6HfcD/6qQC77UDv2fk1+J0IscuU33jDEtEO5CVWL1mIoc098GvlrjeTfTmA/w3qrfj0dScvUkxED74t9X/P4c+ZKIoD31ccBXGjj2NuSPfw6wbuIFLZu/Ey+4xg79P6JqFgt4PPGCvlYdfxTsC9nadmiNOASTkGLWmTuRr2gyCky0Af9roc/oIGAHht4HU8z5LkMJXa+bMWTRiSoVm+Gz5F9Xk5A6TK3KR8x4MoOvpbZ2XulasvrP04EPNzrAxAv+QUbSceIFT8WutTXqR54V6OlHCjuNnudNO/QfRsGcar/FLCQBCUrG/jCD93Ebek/bAw8y2Ptqlvn/HPRZVgfYB4D7Ei+o7M33B1T9P5nB72UR4DY79NdKvKA6GepuwKExKcQ56Hvav4Zv6itkB+SmAkfboX/SwuQnXljJi6AXFIwbdugvbof+p83P4rWeaya0k5FhWk2PeWyhwonSGU6UXuhE6clOlEZFcKuleNTWO38fGQN7JV5w+HhLFSRe8AO0UTsLZRIdD6xiStgbYQfyMwKXAZYfwbA+T/4mr4TRdm4Vi/X2/HqgrW3xfmtwr9NvdTDb6py6/Oz3bq3x0kZYlooMxgyWG+XxCwoKFny6yZfz62O4PfMEcg5l0W+OtyvDN+MW2qSegTIvj0aOoIOAu+zQ/0bTI6/NkUi6ZzZaC98H3gX2S7zgiRafq2Ae4ERpvxOldztReltWcCt2LctIEo0ZsWtNj11r89i1PhK7VjMNz+txJ3K6Vifc9CK56ZZINtUidq2l0b36DZQpvRIKWj0eu9YaKGidlxA0BQW5CwoK6mCH/meQ4skWyPm6BPBl4G079P9mh/5u1a8x1RaHIUdvueppBvAykmGrpFbP4w5GXuV6ArBOE8+fjPZhuRgZ0mPJ9qVg/n50dS8+U5HyU/RZ1KIHuLqiWoXEC95G++U82tF81whv1XjMYgSBxHokXjCQeMFjiRc8Mp8Et0B71LzgzmQkE1cmQpJx09G+vyyX/dXYtT7ZovEcR/b+vw1YzaxpedfPAPB8E/6LymPnUarzeJkXyUkqaysNYPcMu5x6UB+tUeNEaT/wCWQ/l+/HXjTnfMmo3DTDoeZY1UGcTpQANwkl02QFqcsyl+VE7qnmef1k+0ImA9vYob8azG3psE2NYx+d8fez0T6oHm+ga+cjecl6pvdWrYqwqTQvh1gwASkCXAXzDDv02+zQPxllLkTm53U79E82k1QmiRf8HmkizwTeQxP5DNREdFyaZI4lsWvtGrvW7bFrvRi71i2xa+0wr8e0ELMW+cZjO5KwWR/4nR36q4zbqCpIvOCZxAtOSrzAS7zgosQLmpGmrGVUlLN2Gsb0mqnVe6VECyuH7dBvn9E5ZeeBtuFL2UBbO89NX3athw+fnpWd3SjPkp+pOICaDxcUFBTU4jJqz7XV/TIvIFs+qIRsHsgPmE1DEoddDG7YLfP7KXbor9XIgBsh8YLZiRfshyrODkPZxMskXnBjq85RMH8Su9bWsWvdj5wevbFrXR+7ltPic7THrhWgjO5bkHP0+di1tmjF8Z0oLaEkn1uQrfMeCtb+GdjWidJ6PWpawakMd1JOAhZDEqQz67x+QaqoKygYE0xfll+SndnfhmTU/2CH/herHzQ9fGxUEfUdVFHpZPS8/AHZAaNZwCWJF9S7l/M4inxZvzzqOnETL7gIySffjuaZPjQP3g3sbnwtWXwDrfePIf/L08C1DAaV/ov6aWUF2U4lX+Z/AAUOG+EX5AfZ3gD+2eBx5mKH/hp26J9jh/4dduifZ4d+M0HFecU/yA9SzgQeBohda1lUeZcVxJkGfL1F41mqxmN9qHfrlcB1ZnzlpOAeTHLUCM55Bfm+ipQG2jUkXvCced4wu3rSQD/7J5nxlEZ7e9XFidK/ocpLH/gNkg1e24nSXzd7LPNenmZ4ZV+5OnzNEQxxMvm+kMnAxXbodwIbkr83mYz6w2WNd3dqB81LwG8SL/h6rV7DJsn8PzWO013nPAULCIVEYcEwjH5qR42S/VZxCApUTWWo8XYSynSK8l6YeMFP7NC/ADVALQH3LwiNA2PXOg2V15aN05WAbWLXOsWJ0jPn3cgWWp5Cm5Nam4suzAJPxuI9n3MZ2qhklYY/ZjLuGsJsIG9CG8E8JqH+XK3CKpER3TKkbe20UVp3pOc0MlxXAXsz/BqYTdG7oqCgoA6JFzxhh37I8OrWbuDsxAternr+a3bo78ug5G0XcgZ0IyfFuuTL0pRqPNaBsjtbWsllxj9iKdiCiYVJurqeoc7iTwDbxq61kROlzfSMqMXpqMqgco+wCmrwvpETpc+N9gSmKm2v2LWWQfb2K06U1nKQtJoDyba/2pF06WfIdxjNBJp2gBUULIR8lPoSWF3AmXbo/6Y6GGV6Z9WUCku84AY79E9DkqEpSiwpoUrR40c6cBTsbpaG5IgTL/grsikaxjiRLydDnt0OfSvxglqJAXciibqsfeJs4GcNDuNy1EdqRwZtqrJ82QHNqqmY6r6IwQqWbYDP26F/fOIFFzRzrHHmVlTN1sXQvq0l9HlcZn5f0fyel7C7eovG86A5V9a+fDLwdOIFA6an2U7I/7Akeh9hoz3qqjgXJXUtxdDPoAclvtfsv1XBvqgv1TJIUq+3rTTAIS/dzzrvv9qPPuNZKBC7T6vlmp0ofQ9VKI0KO/TXBjYgu49vJ5J0rHUt5FGrGu6jSEnojzmPl1+faVslXnCnkY+9K2dc3UgtohF+hGQ5q5MZZgE/KeQJFw6KAFfBXOzQ3wgZFx81v78IfDnxgpvH6JSnkJ1lNM08FtV6sWlc2rTGsh36S6AJ3kYBjD8kXpAnBzRumNLtrzLUkd6GJulTY9f6vWnmXTB+hEjLvB4WsIkd+ssmXjDiht/zgO8Bn0YGZnnzN4CRp2jyWC7Sfc7rHdMDBIkXzGh+mNkkXtC36S+OnPPa1CUyM4s+1PP2wKL9sxsO0uVwBKrU2xk5mgbQ931oK3vaFBQULNAcizKjv4YcAC8AP0y8IHNDmHjBzXbofxA5uD+IbJXrEi/os0M/IXvzCoN9FbLoZKhkTUFBLqaB/SFI0ut14ELTJP5nDHcetCPb/XtIEnO0514E9bjMSi6agjLOvzDa85RxovS/NN/7oxXU60nTgb6DK9BnUb63+1EF+YRXrSgoGCl26G8CnIgqB14DzkHSeFnVC40EPfqRrT+i+yrxgsAO/YuAPdG9fWcL5HofA7Zu4vk9NLZvbTl1gluY4MankO+mE60jKXK4n5V4wX0NnqoL2UTboz3ZLOQA/1riBUkzYzY+oYsZutZ0mJ9z7dC/udljloldaxUkPfuSE6X/GskxauFEaRq71sdQT7WVGKz8/x/wCSdKy9VdL1O7b9oLLRpSgKQ7q+2DHuCSclDI3J9/Mj+jwvSd+iiSutsT2SLPAyclXnB1E8d5zSgcfBLZPG+X2tov+2zy0Cy0Bn8YVUb9xonSWhKZI8IO/XYkObwnmoeuBP46gtYXG1C7impzFBT8GtkVrVn0o71FXrL3ZOBwNO/MIbvncA9wXt4JEi94yA79O1FiT+V5ZiNb5+4Gx3ouWg/2YdCv1YuutdMaPEbBBKetVBrXljEF8yl26H8EeIDhzZZnAZ+plpyJXWsaUCovnub3acBbTpTWjY6bUtY55DtiBoCp1frPo8UO/d0ZzDrqQtKGvcAOiRc0XdLeSmLX+g7wLbKzzGYDJzlRes74jqrADv1dGJSQqiX7MAPYLPGCp8d+VK3DDv3lgG+ioG8nkuv5XrPvww79R5Fhlcd3gdNa3afspFO2/fkV9iZfnGMNvW0mp334z9z0yhE/enrFVpzHaEtvgSQ5bjUB9oKCgoJxxw79Q9BmsdLp3Q08hPpYZEmzdgMnJl7w83EZZMGEJXat9YG/IJtgGoMOjrNQcCnPWTbDidJFW3D+LZDTLq964QUnSlcb7XnmNbFr3UN+X9JXkNNyKeBxlFlezowvO3W3d6L04bEeZ0HB/IYd+gciOd8pDN4X3ahq5YjKvYYd+lNRALueZPkM89ph1UnzCjv0d0SSbtXO6G5U8bAtmg/akD/jyMQLqmWPx2psS6Gq2tcSL3itidctiXpcb4MUe36deMGjDb52KpLeW42hCQI9wBcSL/hdo+MwxzsSrWtZ+/s5aD/8w2aOaXorXgFshr6TSShQue9YJCqb3pSbAA7wb+AeI8Fb+ZwbUdVUdRJqN3CAE6WNVsjUG8seSGavfE9OQsGaw50obdinF7vWhigBtxPZAndXv6dqTJuEzvkhab0Z7NCfBtwBrI3mqBL6Xu4G9mym55sd+jsBV5MdZBpA0oouKiLYh0HVh3aUOFftg+xD9sezSJ41z2/7PrqflwBuNMeZZI7dg66JY2r5gOzQn4yCUEeb16eoSt1v1udi/NqfMu/rpkbnl4IFgyLAVQCAHfpXM5j5UM2/kN50KXatbVGG1LrmsX+iiWtTNIm9j6qvzqu1EJkeWzPJzx6YBUxrpTPcZEM/l3HOEjJ87SZKmVtO7FpnI3nCLErAKU6Unlr5Rzv0V0DNIpdHkgRXTbSFfSJgh/5iSA7hRGTMZy3wM1H/kYUy8GGH/r9RZUIW7wEfT7zgoVafN3atSdd+cMN/RCtv9eG+NhU1dJb6+eK/7pj18f8+vZUTpYVRU7DAYjKYTwI2QvIP5wKXFzIMCz526G+JkhM2QH0nzgF+h+yyNRmq0lBCPQ5WNg3mCwoyiV2rHTVQtxlu68xCwa08aeAeJ0pH3cQ7dq11UNJd3rEec6K0VkLNhMDsqW4mO+P9CCdKfx+71o+A48iujl8gPoeCgmawQ386WvOyfAjdwK6JF9xT9ZoTUA+oWvPTbGCVxAsalik1zunpwFv1KphGiklo+TmDFTqTzO/fQPPxxsgR/Q5wJPLRPAv8YiySLs3n/ysk3z7bjOEB4HPNBLpGeO6jkAxZ1vf4HtqHNxxIsUP/28hvlbem/SzxguMaPZ5ZPx8H1mBosKAfSADHidKGAxatInatpVDSykoYCT50PZ3lROm3WnyuTlSJswjwYDNBPfP5XQLsxaCt0Q38HdjNidJ56mOxQ38KCgythb7PyxMvGJVcoR36v0AB3+qK7h6UGBw0cawOVM26dMbDPcgXc6957hrAx1Hy7g6oH2g7mkv60L7hOWBX4E0UPM1rQzEbWDXxgtft0F8J9RPbHQXNHgROTrzgqSbew+LAe00G99YGDkZJQXchha4J376moHmKAFcBAHbozyTf6JsDrHjHXWeuiao76pW0dgOBE6Xfr3PO89CEXp0J2ou0eI+qO/AmMEbMN8mWBJmBDLPrW3nOZohda0+0qGdlXcwE9nSi9I7yH+zQPxzp9bahz7Dco2PbxAvisR/xwocd+lsjregsZ8S5iRd8c/xHNX9gh/5lSE4ra5MwC1iu1Y5Vk+2z8ioz3+w+75FLdooXWfbL7aXStDVmvnF9Z2ngx06U5jYjLSiY6NihfwBwIcMzmP8IHNTqasmC5rBDf2Xgy6hPxLuo4uqKsU6kMVW51wEfQU6VNuT42j3xgsfH8twFE5/YtbZBGbhZtmi5t0werzhROuqqaZOR/jxKKKqmB/iqE6W/HO155gdMxvv56PMuoXv2G+UG87FrvYGqt7KYA6ziROnr4zHWgoL5ATv090OZ/XlVClHiBYdlvO4w4PvAchmv6wYuTrzgmAbHsDxa03cz55wJ/ADtBVtuexnH+rbI3ru3ukeyHfr7oCqJch+pctXtFxMviFo8ljuQU7zSn9KPqrHWHEunsh36D6DKqCzeRxUvf2nieHugxKCsa2kGcGziBb9p9Hixa+2MKmiyqgVnAJ4TpeNSYVeNCR59HAWf3gcub2HPzJYQu9ZxSOowq4fSr50o/dL4j0rYob8+qrSahL7fbmRf75N4wS0jPGYnCszmyf/9J/GC5U1hwCaoqs1Ckpx3Z801xld1M5oHJqP5aTbw88QLvlH13NORHHSlD7gPBbT2R3NNyTw3r9oxBe5PvGAb87wd0B7EQnNEeS76RuIFjfbZawo79L8PnIDecwe6194Htqzuc1yw4FP04CooUyvrqM08/mMa02udBpwUu9Y5TpTOBDC6tseg8tunUObRSWiR/RCDk2U3kuXwm38LdfkwxhhbtK+HT772T9Z/7xX+N2kaNy6//uQnF1th1TE4ZzPciDLwpzA066cX6SPP7Tdmh/46wE8YalxOR9/PTXbor1E4N1tP4gX3mMDi+QzquU9C+t3zRPO81dihvy66J+PEC5rRDP8h+drbF7YyuGW0qk9GUkltL05funPXbU94BNg/8YJnW3WegoL5FTv0u5CDp/p+m4aqsbdHG7GCeYAd+psBt6PNZXk93xA4xA793ccyyGWyzze1Q389ZPe8SsUmtaCgDiuQ36/Gon6Qa9Q4UVqKXesg4DZ0D5X3qz1I6ikcy/PXI3atDlRV9RWU9fwycDoQ1ZNRqsaJ0uuNfNTa6H0+WZXhn9fXFPRdNNssvqBgorMo+XNQO8rgH0biBRfaoR+idfEMJNnWb37OQsGvutihvyhSTVmGwblpinn90mh/0lISL5hth/6fUWXL74yyyM3AL5Hz+BKy+0idZ4f+nxIvaIk0nh36G6IAU/W804E+931RwGg057CBzyNVkEeA31f0b641H5bIbvNQi5tQz6ouhl5TJRQUuLLJ421BfsL4IkjGbZ4EuEwLkVvMz/xKXm+oqcBhsWt9rRmpw1ZhAlF/Qj3Ly5S/56vs0HdGeI8tQm17amlT0XQl6g9YliU/GnjIDv1PVis3GV/VmsAXUW/0V4Hzqnvc2aG/NAoKVRcadKI5dqWqStgLkZ9nOwYDuD0ouH+wOeYU1MOw8h4oz0Vn2KF/W6uT8O3Q/zhKJqyc/xZB19EfkMpYwUJEEeAqKHMNkrrLuiaeuuOuM3uo3V+nmj40qd5mh/5BKCBQziraBjgMldFviDRdP4cm7N8Bl42RzNszwOzVZ7wx5ezHLqejlDJloJ8B4GNvPjvplalLbo8XnDsG520IJ0r7Tebs79FnNwctOncCB1Vtmo8l24hrR5vtzYH7x3bECyeJF1xqJD23R4vpvYkXzIvm5C3FDv3VgGtRxnQ/MMkO/YeBfRMveLPe6xMveMxkVf6GwYbOk9H1/NUWD/eHKGBeaUBtBtxvh/6HEy94o8XnKyiY39iV/MSULrTGFgGuccIO/UnIaTYbiJHOfXUG7zTULP6zyBk1ppi+ovO0t+h4Y4d+WxHIGzVPk78/7KO2M+alVg3CidL7TB+ObyD5nBloL3GRE6XzTHbGVJddiTLhy4641ZGiwnrkS43nYhyPT+Q8fAdyamdVx89AskEFBQsT95HfC6YbBcYzMfLNTwKfNIGqxYHXm5HCAg41r6ueJ6cBJ9ihf+ZoZcuqMU7u65ENUbYt1kfzzbnkJyUAHAT8X4uGsi35a8B0YBdGEeAyPqMLGFSn6QYCO/R3TLzgEeSwnpuwXEUnTfo+Ei9I7dDfDgULP8Tg5/g2sFuj/qjYtSajPuonkH9t9prjjimxa01H/SvfcKJ0nrXeGCHL13isHd1388Ln8knyk0m6gH8b39CXm5TpfA9Vp+UFbl9BPpRKewN0r22BelZ9vfpFZgz1pCd3RNdkVk/V6cg/O/deTryg3w79T6Gq1UNREOkGVPn6nnna7uRf/x3A4cimayVfITuobAHrmKT/51p8zoL5mCLAVVDmOygqvxiDhksJTbpfpLbhlEUb0GeH/jIMNoEtUw50/Qq41ZTORyMdeBP8mlLpxNOevIbpFXvjdmDKQD+rd/93p9i1dnSi9M/jMJZMnCh9A9gxdq0PocylF50ozVoo1yL//i2hIEUR4BojjPzC/JwB1RSmae89DG1iDjKebrdDf4N6TkPj4O0AvofmkH8BD7U62GSH/uKonL7a0GxHAcdj0HxWULAgswj5PQPaUKPfCYuR41gU6J2f+xqacX4J9fZoQ3PfOwzN8qxkGrKpWh7gMlV9ywD/Tbygp9XHHwl26H8IJTB9AHgIuLaZ/hgNnmMxlDnvAtPs0I+BbyVe8IdWnmdhwYnSx2LXego5T6sTqepVb/20xWN5DjiilcdsAVugTOqs6tmjYtc614nSl1p4vlNQQkP1+fqRZPYiyElWULBQkHjBU3bo/xVVElTuBQZQQKSh9dUoS4xEXeIz5Cva9KJE3la3PPi8OW6lI3cqev9Hki9xNgX4YAvHMRMlOmQ5xVMkxzwi7NBfFfmGKr/T8vu92fQd/yVwPFqbKteibuD/Ei+Y2eC52oH9kD32AbQHvs2c+yWaqHo30n83o+TivO8B9PmMqrqtzjiWY6hs5pzYtc4CTjdJFBOB11CfsCz6kX09L1iN7Gu+jIXkA7e2Q3+dxAv+18hBTYD1HBSkqp5TulFl+GkZj4GutaPs0PdH2P+v3vU97HGTIHCj+cliefKrKDvJ/25HQ5aUdZleFLguAlwLEUWAqwCAxAtetkN/IzSJ7o2ujTuBbyZe8CheQOxa96PMoUa5D6jXR+uzKPNozEm84LUTT9nuu4v0zT4z6/E2LR7HAC0LcMWuZaM+GP8B/tmodInpHVSrf9ATqMorr4qrGWm5goL9UbZOtcO8E1gVbar+mvdiO/Q3R8ZOB4Pa72+j7KBWswmqbszKpJqCAvVFgKtgQec+8h3N3cjxOSGxQ//TwJkoyaPN9Hs4bj7tLXn2Se45AAAgAElEQVQ02oBWbj7rSTnnBb9GhGlyfw4KJA0A7XboXwp8KfGC7laeq8lxHYdkoMqZ2DOAs+3Q3zrxgpdadI4u1Nx+VQYzYNcELrZDf/nEC1oacFmI2APJ8ayM1vU+ZB/cT/663ofW5jEhdq210Z5hUVTVdONYZacbh+VOyKk8HfWTuNSJ0h7k3K7lxNyTFu5rnCh9PHatnZAk7eoMXucdqNn9p2PX2sWJ0iKprWBhYh90T+yF5p1JqPp0vwo5u3KLhCORg/pR4PwmKyyyqFXtVarz+Eg5luwqhTZkU3ST3fdpJvD3Fo7jj0BeH505jC555wvk27VTgV0SL7jRDv1NUKBrRxQ0momSK3/RyElMcOsqlKhQ/kzXQDbUp6pk2RphB7Q3zVsXygnjpztR+kKTxx6CCWJ9C1XXdKB1+hQUlHuQoQGGqagdyHLo+hnpOScDn0CB0ieAvzYrxdsE/4fs/+prfRbwqyr53jHF9Nk7AtgY2T991JbI7EAVZkcipZlG+T6yW/cyx2hDtvxv0Bx3fo3XTkb3/UiSXP5M/vuZiZQomuVx9Dll+Wh60DXaap5E929W0udkCp/oQkde9m/BQkjiBf9OvOCQxAumJ14wJfGC3RIveLTiKccjA6reotYDHGckRJYlv6R3CtmNXseMw166519TBvrysrXaALsV54lda3rsWteijIHLgXuBZ2LXWqcVx0fGZdbGPkWBsYdbdJ6ChYNtyN4YgYyDXP1iO/SXQM70JZHjaSrKKF4RuMMO/Vb36phNfvk7aP4pKFigMXILf0KbvkoG0D0QjfeYWoEd+p8FfoucUeVmwTshrfkV5+XYqjGSQXmZlXn0AX9p4RjaUObwQWjunWb+PRD4k3l83DEOqADZeeWs10WQzffHFp7qIJSdWb1J70KyRnm9MApq4ETpf5Dc3ieQnMwX0Of8UfLX3znk9L4pE7tWW+xaG8SutZNx1NXFvOZs1PPGRxWTlwBPxK61dCPHaAbTX+ta5AD9LPApFEB+JnatD6JrLW//3E7zPWDqYoJXO6H5vZJp6L66KXatohdXwUJD4gXdiRd8FlUE7A6sl3jBxokXPF9+jh36R6MeTsegoP03gOfs0N9plKePkD8kCwu4a5THz+IDNR6bjey+6vmhHFhpto9ULokXvIWqTXoY6g/qBn6beMFo/A9rkO9w78BUfyRe8HLiBZ9A681qwHKJF/y8CXniPRka3Cofvwu4dAT71n3I77tVQg743Z0o/UGTxx2CWTP/gdbjpZDq0t4oaHCy+Vv1+tOFeleNyN8Wu9a2KEn7YhR4ugF42igNjYjYtdpj11ojdq1VjeRvJecDl6Hrtg/5tbpRku03R3rOZrFDf3vkwzsJ2QC7kP8dVzIVBR8bxvTkfcj8WlaC6EPJx2sDr9d4eQ9KHmsacy+fwfC5bA7wPCPrFXcXqsLL8lH2MzZ70zPRHFhNL3B34gUvj8E5C+ZjigqugoZxovSR2LW2RE6LndCifRvwBso6mI76PXzbidJy9vg/0MS7SMYhZ6BsqvHk8fb8zWcfgwvMaLkaBQ2mMBjgWwP4a+xaqztR2lDpch6JFzxjh/7hKLOjhAyYGUga4BNFD4oFEzv0P4p0j5dBRsTFRmJjpMezUMbabjWe1osa8OZxCNlrSTsKeu1Ma+Uc7yfbcAIZaRe28FwFBfMzB6As1v0YzGB+CjigQg99wmCyas9heMCo3fzNR3Iy8wurUFuyJIte4EctHMPWqJdptXN7CrAu6pcxFs62enyZ7OQmC1jdDv31TI+w0XIw+U6HfvT+b27BeeYZJuCyL+pdsAhwE3CeE6Vj2ofCZGjfbX6IXeskajt42qlRKRC71gaof8py6LuZHLvWDYDrRGmtSsNPI4dedQPxVVGGcy37ZSQcjioDqvtdTAFCNEcdQnZSUD9jJ1/t1XjMQk64K8bo3AUF8yWmB/KwudD0FT6LofNGeU262g79ZUchf3wpWuPWZOg61wN8dYxklR9AwYys4Hq5v/mVDMoRltDereE+Uo2SeMHP7NB/Ejn/1wYS4GxGH0j7J0qqyLId+oFnq8YxE1WaNIQd+suh/rR51XCYc2+JWfcapFYi0RzgAidK72zieHl8B+2rK/1Y7ei9VPelrqQP+BgKHDVM7FrLInWW6rVudeC22LXWrq7kMvbKp9HnvAiS6rzAidK3zeN7IynjxdDn9mbsWkc7UXozzO1HebiRVixXNN3iROm4JW7boT8FJblUfp6Vn/ls8pP3Ib8/ct75NkJVXJXH7EJz140oCPUDsqvafmZkA0fKd1H133dQYnLZj/JtILVD/yMocP5MI77FxAtKJoHgVnO8NvR5zAH2aFS6sRkSL3jADv0TkG02gPbCs1GAsqlgY8GCQRHgKmgKJ0rLxkc1h+e85Fo04UxjqFE2gIySa1s6wDo4Ufp87Fr3IKdHtWOqjxbIisSu9WHkdKpe/MoyPYehbINRkXjB7+3QvxVleCyNgok3mkyQggUMO/R/hOSwJiNnxq7AKXbob5V4wTMjOF47CsTuSH2n1dU1Ht+Y/AqGyWjz0zKHj2lyehjSMZ/K4MZiFnLuj5m+eS1MD7JFgXdGqIVdUNAUxmnxeWPYO8AbiReMSv5kHrMm+XNJJ9rszk8Brm5q9yPqRnb2bPO894HPtrjZ8U7kz9/TUGPqeRHgcsivculDwcFWBLjqVahNaKWK2LU6kaNgEwadTOsBx8eutaUTpU2v/aPgaGpXJ71v9gjDMI6yu5DDq/I72xfYO3atC4GvO1GaFZj/GtnXeCfwsdi1ljX9a1vFl8mehzpQz5+DgGeAdRhq588CbnWi9IkWjqWSNaitiDEWvS0KCiYqh1J7ff4UUlhpmsQL5tihvzWqKDkCzWtPAt9JvCCvN81o+SHyv1TPTT3ARYkX/NPIMW6B5ooXUfXCmCS8Jl5wJ2pl0Up+jarsqhlAsvcjPp8d+jsD16BrolZwYgDJzDXDtShZNCvpoYSSUhomdq0NUVLHB5EC0IUmQLQ/+WtwngpLeQwj6X16BNn3kIUUj7amIhBo7JVbkOpLeTwbAl+LXWtzZONfwtBreCXgqti1dnWidG4rBCdKn0aSo8BctQLGKYF7d/Jty7IKww5kVxv2IBWKZjiW7GS5NlSV93eUHLQfgxKGvUjF43tNnmsuJpD3ZdROZnFko3038YK/2qH/OeDHDPpZ3rVD/+jEC+r2Fky8ILFDfx00F60NvAr8aSz9k4kXnG+H/lWomnIxlAx9T5Hwv3BSBLgKxpTEC3rt0C9n0C6HFtk2VPW1a6ubjTfIfsgY2QQZMgNmXAeYhtajZVPysze60KLYUIDLDv2PoayOjdHm+WLg1MQL3gFIvOBtGtScLpi4GMP8KIYahdPM79fYob/2CBbxT6FrMc85Ws64OSrxglpNg99GmXVZ68kcVKreUhIvuNYO/R1R5tGmSHv6fOAniRe0pAeIqZY7Fslf/AP4aVYPIDv0F0WZi59Dc9ssO/TPBk4vAl0F44FZBxaE/isptQMW89X9lHjBa3boPw1swPBxz0HJPeeYx98D/j7KTMss5qDPJWv+Lc/h84JagZBWauJfjhwoWQGJTprLwp4fORzYjKHvryz7+FskGTheLFHv8di1lnCiNKsJ/FHIGZR1f7ejXldbxK61sROl1fuCWoGbXuRoa2WAq5bsYS9yOG2P1v2D0HvqR7b4t1o4jmoeR86zrGt9NjA/9igsKJhXrES+3N0k1KtoxJjqoW8yhrJppnrCB7YC3kEBoEMYTNyYjNbAE8yYSqg/631jNaaxJPGCV+3Q3wc580torZuFkoN2Hqn9ZIf+dJSo2YjE3BQkh9sMt6GEnY0YXtF3pROl/4pda0nkd+oGHsjrHxm71vdQUkc5mXUn4OTYtbantl3Vj4Iveckgf2rqHYmPkt9XrB0FLyptrCOBzRm6Rk1F7+VOFAjOWr+mot5bW1Q/YIf+eshntqP5/c/A11ukAJBHZR+zajqRWtKRwM8Z+n56kS3y6ybPtzr5wfgSsELiBa4d+mcgqVULuLmqjUxTmKTcO4H1GfyOPwbcbIf+eSihqdrndJkd+rub4HZN5sVcZCQXa/UrK1hIKAJcBS3HNGf+OHI8v3MHXLHDdl930MK1KvACcP94RNVNj4xSpaPZidJ3Udbnuihw9DZwm+kZ1greZbgOdpkSGVIKWdihvzdDM12moAVnDzv0NxqNNF3BhONLZBuFbagvxvooCNMMXyA/42sANXH/RuIFmcc12VQ/RQ64vLWkRGv7rcwl8YIHaL00EQB26H8VOJXBDcZmwKF26B+UeME1Fc8rO1DXZDD7ajLakK4GuGMxvoKCBZTnkKRO1gZ9DiNreDzWHIZ6A0xhcB6cjXphnmmkIm8fw/NfjZzqWXNwH3IUjSt26E9GGeR59CZe8GSLThci594KDHVI9AA/WADspGPJX/vXjl1rRSdKx6u/wGPI0ZrHbFTVlBVU3JHaWfOTgJWRtFF1VUXMoOxW1uv+XeO4I+FJJPeVhQW87ERpD/CF2LWOQ5nP/3OitK/F46jmYrKztUvoeh+rypGCgonI31DVd5Y90QeMVaVlS7BD/+Oo4qi8D1kF7TXuQzLHXcCDiRfU6s8zrtihX+4J9QG0J/1zs0GpxAtuMVKC+6BAw1PATaOs/tinwefNAq5u9jN1onQgdq2dUEJyWU73XRSYOTt2rXNQQGQOCgz1xq71eSdKh8zZsWttgYJblWt++f/XoX35HmRXprcBb5rHKoNSPcCJTpSOpE/Ti+heyQr29DM8gfUYsu2Vdur3uN80dq22SslDO/TXB+5B93A5OWZn4F479LfJ80+0gCfIb4XQA/wt8YLIDv23kHTgOgxWbn2rGbvTDv1FkPpLHhZGmjPxgqfQ/dAK9kcy5tUBzC7gK2RfY13A6WQEIgsK5ieKAFdBSzFNLO9EzobpaMN7xh13nfkVJ0p/yThF8u3Q3xxpb28OlOzQvwM4IfGCuQatE6WP26H/Lsqc+FDSuoziW8nPQu+hgR5BpjfS+Qw3FCajjf6RtEDmsGDCUNYxzqIfbQKaNfRqSTDMRM6Uj9mhH6DqgwtRiXnZ+DwGBXCyyur7UCbTXmOkRd8QJgC1OXKsPdRIXyI79NcATmOo0ddpfn5rh/5yiReUNwqfQkH76s+gC9jfDv1TJ7hkXEHBuGG0249EjY0r778+lL3cyt5VLSHxgkft0N8A9aLYBTkwLkK6+GMeXDH9OCOU1V3pyOsGfmc2xOPNytSutmtZFVviBTPt0N8U2Xv7IWfAG0gq6qJWnWceUqtqqg/14xivANcpyL7Nk33sIL9f59sNHH86cHrsWuehNfUeFLz9P5T5Xu2ongPc5ETpWw0cuxlOQyoPWVJgvzLBLQBMYlwrq8dycaL07di19kCOzjY0R/Ygp+xOeRUBBQULKXkB4RTds3eM73Aax/gAfsvwOWgaci4vkXjBiOQVxwpTefUbtL5PQf6f1+zQ3yHxglebOZapjru4zvna0d63u1plxA79ZdB68rIJjK1AfiUSaL9aQj0Mj2xmrGWcKJ0FfDV2ra+j9Wu2E6Wl2LVOR4mglT3ZAa6IXWsbJ0ofqfjbseQngiyK1qU8WepOYFnkE/gPkml7GjjFidK5snImAekraA+/lHnO9xIvuC7jmOejzyMvwFXdfmDJnLE3Ql91Py9k11UGtzD/n2Ye23EU55tL7FofRNVlL5oK8r8Ar6P9fXVlVQpEAIkX3ADcYId+20iS9k0V1T3AWjlP6QeeHaNA3qHkVzTWkvbeZAzGUlDQUooAV0GruRJVLpQXw7JBcVbsWo84UfrQWA/ADv2tULl4pWG4E3C/HfqbJV7wlB36S6Jmm9ugTfIkO/QfB/ZNvOCV0ZzfidLZsWt9zhx/EoP3WTcyWDMlc+zQXxkZGzFDK0KqmYqcWUWAa+Hh70gKIGvOnoz6QTTLrUjaKcuYngz8xDzWhQz/TwC32KG/v8nI+yb5xtEcYPXEC8bF8ZOFqYD8NTJOS+gePxf4Zh1D1KN2Rdqn0SYO8/9aVXA7U5TLFxQ0TOIFN9uhvwvqN7EZmksuB75tmsmPC8ZGOAz4JArwXwRcn5WNnHjB8+T3IR0PjgEeBE5EyRCvoKbU0Twaz7vkS0MBtNmhfyhwhXFkjYrEC94EDjHHnIIcXguK7v5D5Gdsd6Kqx3HBidLbY9e6iPxr/XXys4vPR3Z4rT4hoOBo+b3ujHp87IGyhr9t/t7JYM/NQxsZezM4Ufqn2LW+hhxo/WY8FgosZfWHGTecKP1L7FrLoyoJG+0XrhuH6rGCgnmGUYzYFMn9vokqembXek3iBe/Yob8TqmycjOz6AdQP5uNjIBfcSrYkP9AxHTjSDv0nUcXQzsjpfi2yk1pd0VoXO/QdtC+q9LtMRwGC65F0XyvPdwR674sAnXbo/w/ZaQkK8qyG5u5eO/RPRWtFj3n+UEqlWdPSOeHmb79wxsX+daP+7JwoHUDrE7FrdSEFlqy98hSUwLF3xd9WJD+4UK7U3Qn4Jaoaqg6+TEWJLzc5UXpA9QFM4PRWdC+V/XMbAZfaoX9y4gXnVL2XZ8xa+CN0/5TX3n5gj4x1529IWaVeb9RqUqrUBkwA82M5x2oDtrND3xpNK4DYtdZDKgAfQZ9bGrvWD+6AH+2w3dd3RLKOK6DvpCwBubuRhZ/LKOzNvdE9kmcvv4T6gY0Fef2O6zEvWssUFDRFW6m0oOwBC+YFsWtZaAFaBmVoXkt2lswA0iEetuC2aBxtyICds8N2X38YSQ9WU0KG1l7AIyhgULmo9KMN+hqt6OMTu9bawFeRIfEaChjcVJ2hYprC/h5lcPSaMV0P7Ep+2XKceMGaox1jwcTANOt8kOEGyRzgrsQLdhnBMZdFZe+LMtSALGcEL8FwQ7sb9dK43Jw7z4gdAKbOox572KG/JTJMqz+vbiRb9cMar41QP5A83gUOS7zgajv0Q/JlCLuBLyde0KwWd0FBwTzEDv3VUU+zLgbnkJmoAfNeWVI5pk/ASQz2yvgFqqz5CtrAPoskC/8y1uOfH7BD/15UPZvnrOlGTo3dEi+YkP1CxoPYtT6KrrusaqLznCj92jiPpwM5jLdl0AHbi+yB7Z0o/XvO69pQgtdeNO9YeQEl42yL7Ok5SBb0noyM78pzfhw4GTmv3kAN0y8yDsi6xK61GHLWTQXucqK0qMYuKBhn7NBfGlWKrMlgvzuAzyRecFsDr+9AQSAbVavcO9oECBMoWBP5FZ5tdbDMDv1PIL/AYjlPeQbJ03cxuA9LUa+qjRIveKniWEsAXwTK/pffA+fV6a3c7Hh/Sn6lTzewdauqUOzQ/xJKgGp0HekGAvQZLEfVvrWrf87AFQ/8Mu1Ke9tQNc0xTpS2pPI9dq310VqV58v5jxOly1c8/yxUxZUV8JgFbOJE6ZPmuT3kV6X1AtOqq3rt0N8TrcNZiSazgOWrlU5i11oBOBjYDt17d6N1dFjltJFYvJ3m1vg+tK/e2InSuQnm5h7rJd+GHAAmjTTAFbvWiqiv5SIMvSa6gR86UfoDE1j/DHA8siN6UPJ60IqEOzv0r0E2URY9wJGJF/x2tOfJOfdJKGkoz2cLwz/7fqQM4Y7FmAoKWkWtEsSCAgBi11o8dq3jY9f6Q+xaPzMLNrFrbYUCQlej7MzryG/K2I4Wh1aPzYpd60TU16q7BO9/4fm/bNg5kKnU0YaCRtsgWcJqA6IDOfX3pgU4UfqUE6WHOVG6rhOluzhRemNGcGtpJNu4AVpkFjP/7k7GorP07PdZ591XelfufuvWVoyxYGJgpDUPRobXDGSI9qDKrv1HeMw3UHZ0ObPtPSQpcR0yTrPWh2koG60fOXzz6EFG67ziu2QbbdOAE40sQB73Uvu9LQ5cYirELqvxXIuiJ0ZBwUTkd0hqpTob+WNkBLRNxdn9aCP8IWA9lNByA3KsrYYc5Tea/n4LAy5yWuRl2U9DTp+b7dBvpPH7QokTpX8DPoc+y/fROj0H9Wf158F4+lE1t4vkyB8FzgXWrhHc+hTwgHnd/1AyXLWDuZbDeUUUoPot6k+yH+p5lfma2LUmxa51PkoU2xYpI6wNnANcboJtdXGi9D0nSi9zojQsglsFBfOM61CvmGloTV7U/FxjlE9qknhBf+IFNydecEHiBfe0ILh1AEpafRB4GHjFDv1PjeaYGfyNfBWXOchXUC3dZqHP5bSKsS6H+gl9C1X8rAN8B3jcJDm2ivXJ9/+kKBg4aoy83vdpLoAyDa2Vu6IKrxnAbGsgnbVoXw9nPXZ5e1fa24l8QNsB98eutWorxouSnWrtN6uDjD8ju/dTL/BIRXCrjdo9LdvJvn4OIb+Kug/JbGPO0R671k9R+46Tkb9gJ+Qny5QcdqL0fmQbvG9+aiW5lsxxzgPWrwxuAZjA1T01Xn/PaKq3UAL6VIYn6k4DTjLVdx9BSjCboXtueaSY8E879Jdn9NSai9I6j4+WXyH/RfVn2I3UH95jqB+nF3gLqfcUFMzXFBKFCwlmsd4cLex/cqK0Zml/xevWRdmjk5FBkQKHms3j4dSXGylTQlIareYiYF8zNtpg+qdfe5S1ZrzOCesfAG2Z+9gtqF36vx3j18z+aLIX2C6gn1JpFm1tU5foncm3n7qBD894jf42a1JX2nt07IarAQc5UfrOOI21YITYob8xcCDKFLoVuC7xgqYCQKZi6FYU/FwC9ZR6pM7L6h3zCWAdO/TXZFCLe00Gs5azWNb0yjmfbL3w2cCvRrqJtEN/CrAnyrZ8BrhlBEbspuRXl1nASuRLO12KsgOrN4+VdAFno8qMh9CcUvl5dQM/mZ+aPxcULKyYLMwNUHD6scQL8voEYYf+iihAlRfgPw5teMvPt1CwodrhUu3UaDPP+b4d+pc125NiJBiJlyOBE1DvzpfQ3Pa7sZbwS7zgOVOdfjSSkfsQ2Z9pO7LhavbbWNCJXasTrXuboIStS50ofQ3AidJrY9e6ESVnTQMedKJ03OQ6q3GiNEVV3HV7wMSudTKqbCwHMRdH6+MDKJt+ZeRI6SB/P9Fhfsq2xrrAPbFrreVE6RAZZJN4dwPZPUanISfndqjHRkFBwXyMHfrrovU4K3jSgfYg41bFagJZFzJ0vZ+GJN72SLygJX29Ei/4rx36v0X7xspzlZAtkedct5B0epkfIYWdSn/fFCTjdwa11Sqa4Xkkq1gtmQda40fV+qGC9RmZ0z9F+++VgZ3aSgNrfevpG7671dv/mtpRGiy+m93e0XaFvcn0q+yN/zkj9PtRAPOUxAvuHclgnSh9OXatp1AFcvV+sgcFdyqf/2LsWnujXmAw+Hk+RUWlj+nt9TRK3MjiVXP8avKCppjxVdqtxyPJ/uo9/nEo6JXZT96J0itj17oOrbMrocSSavs4RaoG69SqwkZBqLwK9tHe95+gdlB2fdT/czpDv7tJyF9yCiPs11bBZSgJLsv26UTtVsaExAvetkN/M+RH3QIFs0poXjgdJQp/A80nA8g3cvZ4SsUXFIyUIsC1gBO71hRUjr4bygoZANpi13KdKL26zmvbUObU4gxO7hZy5B5Dc0bGLCQP0jJi11oTZUwPccRPHujHmfEGG777Mo8usVLlQwPAzWgz3Uv29d9PY82wW8Vu5AfberZ4+1+vPDd92bXPeeyytmVmv08HJSYr2aIsufDn2LU2rmMgFMwjjGP1AuCz6HtuRzIRr9uhv7XpHdIwiRd004BTqVkSL3i2/H879J8l3wgeQPKeIONna5QRWDbOZgJPMtgroyns0N8aOafK2WdzgBmmSfGzNV88lPfJdnCBjMb3ch4j8YKZduhva8axSo1zLGt+dkNG4LHI6H0JZVBe0sR4CwoKxgA79DdHG7MPoE3rZDv0LwaOy0kyWArZB3nr8geqft+M2k6DLPZFVS9jzSUoaFIOLqyN+g0cbYf+gWPdq8Osb6faob84kmrMotynY6Eldq1VkOzPosgJNxv4fuxaxztR+isA0+uiJc7T8SJ2reVQ5UD1vTQNOa13BB4yzroLUXZ5I/vScvb60cjJVD7fB5CNP7zPytBzf54xDHAZGcet0N7kwZEkoZm9217IIfsccL0TpUXvi4KFjXUYXmFQZhLw0fEaiLElLiM7+a8LyeBt2sJTfhGtBYejvVCn+Tcv+bBMB8xNcPkM2XNqJ7C/Hfpui5Jdfooqa6sDESXUM+3+FpwDakvW1aIdmG2kJG+LXet5lOwzeOA2iy9tcCAvdy3Z3mt1lm2mHYEt7dA/OPGCmj6zGhyMlEGmMmgrdqPq52E9mp0ovTV2rWVQAOYDwKOmkruabyL/Xlbw5zIgMuvIdcAfnCidgxSXtiM/oHInzPX/VSamVDINreuZAS7zHuZggjOxa72G/BYldM/2oorsXev5rhIv+Jsd+tujhNItzDEeAE5IvODhWq9tgFqJ/u3PTV+mHRUGZCW6diBfzmgDXNegz3kthtpJ5STZpnxEzZJ4wYvA9nbofwD5TF6uaC2RIMWeL43lGAoKxoIiwLXgcz7KWKzeYF4Su9aLTpQ+WuO1m6HFNW9yz6tuKKGFYypayAaA7zlRWqvUeCR8ghxDZ8pAH9u8GVcGuMrNOb+JjK28YFsfkkEZL97Pe6CtNND+6VcfXWOjd//d1kbmh90JrIEkWO4aqwEWjIoDkRFUaYAugu7HkLFrHjpiTGPmS9G4qzdSszGbgsQLekxAale0sWlDWWc3j0Q2wA79JYGbGOqcmoQM8T/bob9SE8f9Jdna0gPAw/UykBIveMoO/dVQwC5PCqMD6DXG4PfNT0FBwXyCHfqroF581Zv5g9F8lbU5/Rf5WZ0lBgP8ZabTXLLPZPL7MbQMO/Q3IbvfUQfKtH7WDv3jEy8Y5mAZA2K0Yc9ylsxEPZYWSowj6XpUzVTO1i7b6z+OXetBJxoZ6WQAACAASURBVEofmyeDGz17MdjLoZqpwOecKH3Q/H46/8/eecfHUpVv/JtMbnIrHQScHyDIICBNmvQiKCLFBgiCzNCbCtJGRBEQGRWsCCjgDEVAadIsNEEUUZqAII5SxKEKItyb3LRJfn88Z282m5nZTbLJzb3M8/nsB252d+bs7Ow573mf531eJWNr1dJ5mI5ij69W/e0g6u9rW2jceYLYtRxkU/QycH+9hFzsWh9FimgLzQsdsWtdAJwwit5fW6BYqCIonA90x6618yJ8L5QoMRa8WPDcANA0kYYhhD4CHIzW6F8CP0m84L+G3LqTYnJpYzv0W5pVHW0EOJ+1Q/9UNAeliJgvsqYbZEgI0UZ+LAPaX7WSTyCOZqwP26H/JbQ/bDXHnocIud2aWDH+mDluw3O4QYVQqiClZp257R3rksxcml5r2CWrVN5fbIf+TVn9V+vBidInY9daG4kgP2LGfxGq0s50cjEE0Q11jntj7FrHAudixOsMVcsdzZALya7AabFrbcF2J16N9sYdDL83ulBlf8VZYBZyisnDqrFrtTQirnai9FYjdvkoEoU+BtzZ6HqYeMGfga2NPSWJF/Q08r4GcAlwFtl7/DeP3WDfv1Mc2xdZTzaExAv67NDfBoliD0HXPTH/nrT+3YkXvIbsB0uUWCxQ9uBajGHUjHuTHZBNB06uc4h3kr85LdqAzgO+hRTKZyJv/m/WOddYkLvwtMDgrLTnRTT+FClJtki84EmjiDgOLejVx+hE5bd/m4Cx5uFicnr4zEx7Z2/45r/TVgov9gxURdM0xK61Quxa28SutWYzj/s2xQlkJ/WmATsZ1cxUxFFICd2N7s+30O/jYBNsAvLITrzgVqTmuhfZZqw8xnMeSLa9RQvabO4yimN9F1k6dFb9rRv5nR/UyAHMhmxuwUtS1E+kRIkSUxPHkV1dNRP4TNb8m3jBXJSgzrJ3mc9IIvuhnHPkoZPmqZmLsBfFibAO4Dt26DfUG9UO/XfboX+JHfov2aH/nB36Z5rm9Y3gKvKTAQPANQ0eZ3HERqhKJ2vt60A2QYsqppP9uUD7zwWxkROlT6Oqp/uQMK6bYoU1jKzE3pT61Q19qDq7ELFrLR271l3AX1A/ituA52LX2rDgPZuj/n1Lo5hlSXQNDkcV73URu9YSwK+RmnoOSlLPQWLDO2LXGm21aIkSizLuJV8I2g38sBknMVbDv0AVMXsCOwCnA7Ed+msiUWy9vk+9E2H9m3jBm4kX3Ifmy3rJ/fmYHjlGfPfPgtf+fZw9jIYh8YLvooq7byDy4Dhg1cQLnmziOQaAQ9HnbAQVcfPB5r0V/Isa8vRXK65Ht5XLWViogmhMcKL0ZSdKT3WidCMnSrdxovSyPHJrlMe9CFgekUcfRTm3VRkuFJlt/nZ+4gVdSLx+C7qXutDv61uoIrqC+RT30X4zi9wyfbtGrFFOlM5zovQKJ0rPdaL09kbJrWokXtDTRHIL1IPqaYbfSwPomnjz29pfJ59gH6S4P1hd2KE/2w79o1Gv7g1QrDcn8YJVTL/A0pmpRIkxoqzgWrzxHrSAZSU5WtFmsAhPkK/+6UcTfNbz3cCZphn1qGGH/jtn9fd8auvX4t0//PJf37fem8nMFimAT3OitDoRcis1JeYVtEDnzq/+bf+z197td8BgTWBD4gUX2qH/KHAiUkY9C5ybeMHtYxnzOHA9g4OHdgz079RjTWsBaBkcoH0gxX/qV7QNDtTbrPdSnIRvGLFrzUKJvT3QfdMeu9ZTwN5OlBYFySUM7NCfA2yMAqYHEUmchx6k2p5yqpnEC7qBT9ihvzpS+88Fbku8YNimwlgwfh8pjyq/sVY79C8GPjfKAG0D8jeQHWg+u7XB8c+3Q38rYH+kxpyBbBp+OEr/6GULnrNQAqu2SXCJEiWmBnYkP4bpQX257sh47jj02/4kQ02yW4BDEi/4k1GSHgIcgRLZ/wJWoX5yvRfFGneO4jOMFR3UF7FNQ0rfo4peZIf+hijROJ2hfcMJwP526G9c1NPMYD8kCMj6Ln5qki5vV6xOvoLeAtaexLE0G3eR/9nmIhHNAjhR+jiwdexaS6N77SHye82AiKBqPIuSckVVC23oXq6HW5D9WTtDv+tZwN2xa63hRGmWlflXyLcv+0LsWmc30P94P/KFPh0oidl0m+oSJaYiEi8YsEN/TzSXtDHUC7wH+Ea14G6cOBDFC9WCxJloHroSCRGK0M/ECzXeIl8wABLP7JR4wV+q/vZF4DKybey+2NzhQeIFT6N5cMKQeMEtdujvDJyBLOSmofmxC90jb5p/z0Bioq8mXvCn6mMYW9zD0b5wJkCvVZgSHaRYMLTQYKq97gaIXSsiex/dDuwZu9bsRP07P26H/mwkpHil1q7bidI0dq1LUQ+uWsKqG7mkLIBZs7+B3BHajS3h6cAlU7WFhhOlXbFrbYmIpUPRb/8PyHHqkQSwQ/8Esn8/84EvjfXcdugvj/p3r1B17M2A4+zQ39II7RYp2KG/BLpfKvumS4GfNZmULFGiIZQE1+KNVykuoX2l4DmcKH0qdq0Hkdqj9ji9yON3HzQ5t6CAsw/4xDjIrVMYHPxKb4vVfscK67Tcs9xarN75H775+DVrz0z7oti1VnGi9Fwzvn/ErnWlGUN1UNqDLG9eKFInJV7wR+DjYxnneGD8+QecKB1IvCB9+OCZX79zhfdsc9PKG06fO20G73nrJfZ//n6ceQu+nkpT2Sy00Lyg+jrkzTydoUBuA+C+2LXe7URprp3i2x2G6DkT+AJDHuHzkR3m8jlva6d5jXcnBIkXPEOxfdQxqCKqNvA/CJHSPxjF6Z5Gv90shXIPKttvGCaouoQCn3A79NdCQfmH0Xd2F3By1Qaxh/x1cpD6asoSJUosPBT1vrHI6cVnNvsH2KH/RUTwzwPuSryg2w79djRPbMjQxjRFBH8PQ70ynjfvWwetCR3A74D9JkmZ+Ws0DxdZ+bQBTtYTxq5pM5T0OyHjONMR+XAy9d0ATiE/ObS3HfpHv43Vqk+Tn7TsR0KzhQ479NuAtdCY4ka+LydKH4td6x5ge4YTP71IGX1jzvveAIhdq0hBniILsWpcjGKSIoJrPqrOeCZ2reXRvV0hlW5EfXSWQb/v2n1Pizn2QUjxXovNKLZuXx1VlhdhXbKr/kG/wbXqvL9EicUKiRc8ZMR2B6EqmheBixIvaKZd52fJ/t21oqqkevgvE0AY1eBhFLNkremdwNGJF9xf/cfEC66zQ39ZNF+1m0cLEuUssuK8xAv+gPpjAWDujzVRD6GGXHicKL0zdq2dkFB6y/e//vTgczOXtdJWK2s9bgf+lPH3qYYiV5gUVRfPA/WbJsdByOAk9Htbg+F9tv+KyEUAYteqEInvYmjNtJGLk81wG+EpBSdK5yGbwrNqn7NDfwvgeIZi1wEUuyTA4eMk17+HBNDVscosdA9/1Zx3kYEd+isjwm5phvZFmwOfs0N/27e5iK3EQkBJcC3GcKI0jl3rHyg4q1XydqLKi3r4GEqUrI2Coopv8b5OlN5i1CJHIluy+4DznSgdVSK6Ajv0PwycQktLR59R0qStFv+Y/Q7OcT7EV/52y0zgzNi1LqoiWw5Fi+1JyNu3QgatBvwldq0/I8ItS205qYhda0cUZG4EpLFr3QocPxvsPV96tG/Plx7NSwBVyMLaTXsX8GUnSl9qwtjWRb28asfQihar/YHzx3ueRQWxa80GfKTSn4O8u7/iRGlek/cvItX/DIYSORVbmSz0AT9PvCAzwboI4Ytkq8VmmudGQ3CF5G8QB8hJhmXBqKPmoM1OJtluyK0/o8C9Mj/uDGxlh/72iRc8iJTSWY3vB1DCu1GbjBIlSkw+LkTrbVbi6k1UZZuLxAsS1FewGgcynNwCJcct4AUUM72ReME/AezQXxXZwzxjjjcqmD5i+6Kk+31A3T4QJtnzARQPpeQTKL3Igq32/Vuhz70CxfuEDsClgOAy4g+74BhLomvZaV7fjlTFb9SqihdHOFH6SOxazyAitPZ76qWxOH1CYYf+QcA30ffdArxuh/6hiRfc1sDbP44sgz+DYtl2VLl1SAMWTVeSbzOaIBHNApg9z/Eo7si75wcBTE+QR9DvqpKUOxj91s4h3wJ9JrAN2QTXm+THfNNoLKH8DCLhsirBOmliz6ESJRYVJF7wOtm/uWYhT4gImof/jgSfWXgGtUAYjTvEqGGq2fZD82c7Q2tzJ9rLXJnz1otQ76edGdrrrA3caof+sYkXXDRxo54cNCDGzIQTpX9EAgx+GvorIAHC0gzPmXUC30u8oGGRrx3604H+sfTsGidiFJ9mIaWOsL0aTpTOjV1rU2TZuRfa914N3OJEabV4fF8U49UKQmYCJ8eu9b2KaGVRgSG37mB4nN+K4oK9aqokR3vsdhQXZQlxOlAc0jSCy4jqVwfmO1HaNFG1yaF8GN0Xu6McbPV+YRYS7PhMcFVniRK1KAmuxR/7oJLb6WiirvgR38LIxM0IOFH6euxamyE7w42RndotTpTON8/fS2N2H43AJyMR1We1cd+ya/Jm23SW7O/uQ4mbG8z5B1Aj7hAFN0sxpFICqU9+hZSVCw2xa+0KXMvQprUNLQjbogRRnpVQL7INjFHp9zvRd/gI8E0nSn/bpCFuQf6GfhbwQd4mBJdRI/0BKdsrhN9WwM2xax3qROmwTYSxq/LJJnryvleLiVf7TShMkLZiwUtWtEN/WqNJysQLEpNI+wm6bh1orhoAdje2ifXGtDaq2HofSqb12qF/Btqc1N7fAcPJLVDybhZSV22FLAg+jJJglSRbH1KxHdPI5ypRosRCw8+QOGMbhmKLPrSu7jvGqqHDybdSXRJIK+QWQOIF/yInKW2I+H1QUvwh4JfVVed26J+M1JyVpu2HAa/Zob9NVTPw6uO1oIbjxzJUSVL0GfupWdft0F8NiZoabeK+tB36SyVekJm8T7xg0A79N8hvWN4DzLdDfwaqpj0Y0/jeDv2LAP9tYHGyO6ruWxoJM+aj7+8YJ0ofW5gDMwnVHzD8np8F3GCH/gdqKwZqYSz5johd6wQkhPvPKJJd5yJibHmGJ4O6gMOyrI+cKL0gdi0QqZblYGGhPcHXzHGribBp6Pp/knxrxRR4Oee581Elf+38MAA86kRpXj+PalzOyD5/FQyifUSJEiWai4fQ/JRVgdmO1tRbGf7bHkTkx54TTW5VkHjB7+zQfx9qr7A9qlK/ALi8YK/1QVSJXUuazwS+Z4f+1YuiJVqzkXjBq4bYuATljPrN42wk8KgLO/T3MK9dExiwQ/8W4FgTB04GzkRrSJYl5XlOlPaOfEs2YteyUGuAGNivhtSqxqfIrzruRffedY2eN2McrcBuKP5dCrgduMCR1eJEIa/n3nQUp35oHMeeQbF9+JxxHHsYYtc6EsUT7UCbKXo4xInSMVefmX6FlyKSrjJf5gn0p6PvrSS4SkwqSoJrMYexGVwTJQ0+iIKhi4HbG/XFNa/7s3lMJDKtcgDaBlNenb4ES87rhmxl5oEMqUur0Q6sE7vWpk6UPtC0kY4CsWu1oEa4tcFlK1rIdkMJsLUY+dn6gXNND6zvTOAw3yJ/Qz8ALPQKuEnE/qgkv3bBngmcH7vWtTVB4upjOEcXImovH9sQpwT60OYuLxHayVD1YUNIvOBqO/R/j6xIVgceBS5toMcLdui/E9kkLMFQv4pZKLibwch+fbuSH2RuZof+zMQLXrZDfwOkIq/YGN0AfHMs1RglSpSYPCRe0G+H/u5oA34UIqp/i/pt1u0raWzZBmp6eBZtPlMaJIbs0D8QVZgNovlpLqqM2Tbxgn/bob8t2hRWr0NzzGuvJbvh+QWIgKtGNdHVaY7Xjea+/YzyGTv0HVSJtRf5yYosWMB9duhvaJraZ+GHSJFaGwN1I3X5IENCpOrXHA6sa4f+hxZnC0MnSv8Vu9YaKBasCMmudqK0YbX1RMAQpt8kO9EzA62tOzVyLGMFFNd94fD3vBa71kaI5N0Pren3AV9yorSIWLsICcfWZ/jvpws1ll8ZxRhZyexWVE2XJ6jpMcfPwvmIHFufod9QNyIsDywY7wKYz/wppJSv9JGpCH32cKK0s5HjlChRYlT4OprLsoiBSxMvuNusyd9ExNIgSrSfmHjBXydzoIkX/B25izSKA8lf0/uRiK+u4HmqIHatbZGl3KZobr0UOMOJ0rr7xHpIvOAfwLZ26C+HBEvPNyrSNGKQixi6h1qReGVrO/TXS7wgTxjRNDhRen3sWmuh2LEfrSGVfWtdkiF2rdUQmbsnWicHzHG6Y9f6fK3A16BebDbm2M2QbNei6sPKPfw+4LjYtbYxfTubClN9t0nO0y3AB+zQbxlHTPoWyqnlCYSfGuNxh8GQW+cwfE5bD7gzdq1NnCj9+xgPfQpyqqjXc7iCJcd4nhIlxoyS4HobwCz632Jiy/ubgefJmfD7WyyW7ZkHIqyyqpa2JV9V3YqSBk0luIyq5P0oafZwgTpzVVS6m4U2tFBsgpqELosW8flo3Acacmui8UvyLV3mA9EkjGGq4CDyNwMtqCfL3VV/e5Ping9ZsGhcIT8lYZT5P0aJ41oysBv40VgCQEMcnVH3hSNRsYisTVrNAr5kh/73anygixRUVI6TeMF/UEB3yhjGVKJEiYUIYxFzhXk0BDv0P4gSWeujSqIbgeONCvc21Gsga85vJ8PyL+P46yEyqpa8mgncjCxmsgghUMywgR36a5pkTOWYDmrwnId+VLn/KLKpeRxYyg79VZC9zG1mPEVN7LPQCvwfimN+lvOar6GK2E3RfNzCUC+HL6EKu40Z+XlnoPV2UyZeYLVQYfrW/sI8pgpWIN9yrxILTSiMSvso82j0Pf2xa+2A4ojDUKz1EroPr0SCsrxeWaCE3MEo7p1mHhX3ix/mieWcKO2OXWt7RKgfgu71W8x7GlabO1F6c+xa70KJaQf1YbusGQncEiVKjETiBX+yQ99D1TsDaH5oR/PxseY1D6Hkdqv590DO4aYaZlPcxzsvdzLlELvWR4GfMjTmDtQmY4/YtTZyorQptv+JF7yGhCYNwVS1fI+R19JCosvjUdVdJmLXWg7FOy8YZ6JRIXatZZCI3ULrVsWWsh2404nSuvaNsWtthar3pzMyPzwbuCh2rXlOlN5U89xVKL7LyptUetaOFZ9iOLkFuk7TUby5Tt4bY9eahgQnFQH89UDkRGm9asUJI+xgQe7kDJSTrb1mXTSh2sl89rPIFyd9CVXHjwpm7jsu57h5mFQBQIkSUBJcJaYWzkF9eIZN+G0DKRu8+TzL9HV1At/P6af1Evm9JvppcgVS7FpbI8XTbBQMd8SudSPgGkuWUcEoeN8N7IKSW68C1wCrx651DFJ33+hE6YQ0hXWidF7sWoeioGg6Q8n/ThRE/H4izjtFkWVrU8Fg7fOJF7xoh/7jiKQsSprUolnWngsTX0aB7boMb0L7BJNfkr47+d9dinrx/KHqb3eiDUHWd/Z44gWlUrpEiSkEYwe7Mfo9PzQR/Q3s0K9NoFREKNvbob8+sk1zGUlwdQLnN9in4fMZ7wfFL++2Q39DZHGTt570oj6j/6j62ycoJqemIeHBNUgR66Aq3A4Uw4wnyTXbnD+T4Eq8oMcO/Z2QVc0+6HNdB/zG9BX5MPmikhkoLlqsCa4pikqlXx6mrHWkE6VdwAmxa50IWIZAxMTT9fa+r6HfyCPot7op8G9k8XRPnfP2ApeZRyFi11oJOBpVjvwPVZf9wonSAUOITXVRYokSiw0SL/i5Hfo3IXeN2cB9iReM6FmzCBFbFdyK1t6sNbYN2eNOeZhqnh8xMlap2OUfiaznFwbWJd+mrX357re+YNx8zqwm4WLXWh/N+xuhuPbN2LW+6ERp1OiJY9c6Be3FB1A8Z5n/vxk4sUFyqxXFb0XC25lI+FVLcF0NnAC8m+H9MruAr48zb3UM2fdtC7Bq7FrvcaJ0RMWTaTXxW4bnJjZFPcE2K7ILNvHq/Si3UYtB4LZGxLuGDNoWVcL9NfGCarvpC5Hw/WQUz4N+i6ckXjBmO8cqrEl+nGOh3MdYMJvRibObQtiVKDFalARXiamEa9FicDCDg9NoaWmb0d/DMr2dg/5Tv3oNeQufl/PeS5B6Oa8P0q3NGqRRVv6akYvuHoig27fm7/9CiunVMg7Xz1A/sdSM89bYteaY/98Yjb8fuCB2rWOcKP1Jcz7JcDhRemXsWp3oGttoIX8O+FGjdpaLCa5DDXiz1PPtyAavFi6yzpnOUIDXhZKKLQyfa7uBeyfL1sIoyw5HqpsVgX8CZyVeMK5eDnbor4g2Td9Fn3FX89TPqeklU/O+FqQK72oyiVRELLdkPH8ysDXZCqpjmziuEiVKVMH07zsebV6XRQ3czyja2NmhfxRKXgyi33O/HfpHJ15wVRPH1Yrs9GrjiFZks3EbWs9DZOuzMlqb29C62WiV57rkx98pShT8DfU/yOsJ8qod+tOrehNmWTRXow/1GfkD6j1Ur4J1tCjs7WCSgneYR9bYBsgm6CoWOSUmGYkXvGkSPVsz8t7qQ0TwlIaJXavvn02ob8G5LEr27etE6WcnYlyxa22AEssdDMWMHwCej11rHydKH5yI85YoUSIfZj1tWr5giuAKlGTuYHjcMR+4uWJTvAhgffKFODNQRcrCIrgKcyTW4EArind3M/Zw82LXWh2Jh6sr7GYAP4xdq92J0h/XO6mxs/0SI8m1VpST2j52rfc1QHJtSmNWck7sWk+iNg6vo/6c30d5gK+gPvGtKE7+shOlDbdhiF2rDZGUx6Lq8dgcLw995FeYn4jul+o8ziz0G7gAWTAW4Vjk1DOTkTbfJ9V5L6ZP3k2oeg/AskP/r6if+KuGIPuqHfrfRXnPFLgn8YJ59Y7dILopzvGPWohv0Ili/SLXoorIzwKOS7zgV2M8V4kSY0bL4ODbKW+9eCN2rXeictzZKIlxz6JITBj7nv2AJWb099797Uevvmutea/8t95niV3r68DnGFqQ+jHN5DNKqseM2LW+i+xSsib4bmCNWnVI7Fq7IgKverEdQAvBBk6UPl/z+usRYVCthgHTu6lO/4ExwRB3D6MFuTr51QXs4kTp4lBxVBexay2LkovLMDzh1gmc40TpV7PeZ4f+ykjtuxu6ZhejKqGfoOCxBwWh1wKH1djlTQgMmXQdUutUJ3U6gXMSL/jqGI/5beAIFGCCfgtfS7zgrDrvPQjZBC2D7rE7gKMSL3hutOOoOe404B6y+9KACOaVa5WXduhvjGwl3o+C18dQQLZIKBpLlFjUYAj3O4DNGb4ediGS6xsZ79mfbOVuF/CxxAtua9LY1kIkUL0EeBea+w4EXkTrxXIo/tgGzTcXoSqpI1Bj7D8DpydecL8d+hHq9ZhF6HQC26G1/3ZGfubUnLsNzVl3osTJSqiPVZ66ci7gowbZzbbHnYdERq+gqpfbRqNyNxVrfyA7eTUf2Djxgr+Zef6jKHHTg6xx7lqc+3MtbNihvw4S9cxgKObtQVVOGxkL30UGsWudgcQtRZX6oN/hCU6UXjgBY2hBc4ZDNindi+aPzy6Ke7gSJUpMLdihb6NeVVsylKC+BFkvF4pTpgpi19oMxURL5Lzkn06UrjmJQ1oAI456CREzwzAt7eeTLzzIoc/eC4odT3Gi9Huxa12MYsgsIuK/wDsqlcd5iF3rKdS/PQ8pcJUTpQfUOc4uqBJrtP2SBhiKSSvxWxdq3bCpE6UvNHIQsyb+gpF98PpRriBLkNUN2FmuTrFrvYhi4iz0AsvVsyq0Q38jVLG2g/nTb4CTEi94os77lgGeYeS17EPuNu+b6Ji1KsbIuje6gcCJ0tPHcmw79L+HrJ9rSdX5iOj8E/qsd09GnqtEiSyUBNdiAmPDUelbMw1NNDEiQybE1m4qwjQf/SywCiJrvjuORop553gYlZNn4U1gPydKf5nxvh2R5UilFP0WtIF+uuZ1KwLPkl3uPoisCj82yjGvY877GvJjHhE0xa51Oao+y0q6PeZE6QajOeeijNi1VkUJ1R3Qd9WFiJnvjSXhYDYXKwLPJF4w7j4KJph2kS3ASsiq6qzEC240z89BTZMPId82oRt412gb39qhfzyaa2qTkZ3AoXkVFXboH4eqMKuTxykK5Ncda6LM2Jbdj6w9szAA7JF4Qa4q0w79GUBraUtYokRzYIf+EsjiI0UVq/PN33dHfXCySJZu4J3Vc6Qh1P+F+jxl4aHEC/IaQo92zI0SXKC1+HnUj2sbpPpuZyhxPmBeY1W9fj4itp5Dyt3aOXQANZh+r/Hp/xwipECEVw8jK7UGUNyxHiJ8NmXknN9r/n4S8OkGPlv1Z3wDVSffjb6DSm+h6mO3mc82Ha2VrwI7ZNk75cEO/SsQeVV97C7gqsQLDrFDf2lEgv0funcqatp7gI9OhF3leGCH/t7INujdKO46D/h2ow3rpxLs0F8NkUJ7oMTFFcB3Ei9oqvX3ZCB2rdVQ4icvLqrGP5wodcz71kO/807gJidK3xjHGNZBhHfRPNMJ7O9E6YiebCY+/RqyTrWQFdMpTpTW7f9XokSJty/s0H8HquB+ronVIpOC2LU6UGyRRXD1oP35yZM7qiHYof8J4HKqhFvWQMoS/d1c8mDIUn3zK3/+ixOlG8Wu9QJyAchCF7C5E6WFTi+xa/VTv2/qXCdK80jBynFWRHFprah6rOgHfu1E6e6NvNjkx26kcfHVfETcHZxzvC6yXXgq712zUfLN7EFolJSyQ/8LKNeRJdjqBHZOvCDLCaipiF1rS0QIV7cd6QZeADYea786O/RnIpHiegzFMJ1on7D7okKYl1i8UVoULgaIXWsn4DSGb9hmIxucy9CmNOt9q6Ey3B1RguRC4Gf1FCNTDbFrzQJOBQ5Fgc9TwGlOlN4wQacsSsS3ooT9dP/VuAAAIABJREFUCDhRehewsSnDHihoJLomQ9U+tWhBZdcNIXatpZAqZjMUcAwCfbFrfdKJ0rtrXr4n+YHSe2LXWs6J0oabrmaMZRpSsv/PidIpneRxovRfwC6xay2B7qmXjIXkmJB4QQIkzRibCbYuY3gycFPgSjv0A5QQvRfZWxUFqyn6zn80inO3oiqArMBtFpqHRhBchkA6g5EJHQuYgyoQTmt0HDU4GgVaeehjeK+aEUi8YL4d+tPt0G+baonSEiUWJZj56VTgi+i3N4jsOY5PvODHiODJ28T2Ieu/auuzJZA4IA95xPZY8A8UCzVCcLUgK7P3o75WtZ+pVnFaaeZ+CRIl/BxZ6rSYR6c59+6VjXTiBd+3Q/9aYG9gaVQhnGVFMwuJHT6MKlL3M89ZqMJrn8QL5tqh/xr5vUqz0AVskXhBXPmDsaz7CrKo+Z8ZV2UMoPl8JnCrHfobjEKp+hlUGX8iuj4voLWsYtPzQ3POCoHYgq75DkjU9J0GzzPhsEP/VLROVq6Jja7ZB+zQ32VR6+FiKqyPNI9FGk6UPhe71meRrVIbxVY7K8auNRM1p9/W/C0FLoxd6wtOlF4wxmEsS33bzVnAF1D8vgCG3HoYqcMrv+NdgO1i19rRidI/jXFMJUqUWMyReMErqNJ6kYMTpT2xa30JxQXVe9ABFKt8d6EMzCDxguvs0J87s7/nvPlW+5ptgynb/ifm8Gfuria3YCiGKcqDzES5uXqtDP6H1pNxwYnSl2PXuhb4OPnE0GjQBnwwdq059SqlDPYjP+7uZrhVdTtaF48qON5fUV4kCz2M4jcwhmqrrci30mxBe5YJJ7icKL3PVD1+Bd1L3UAEnDtWcgsg8YIuO/S3RtV2H0ffy7XIYnHEtTL5n32Qk9D/gMsSL2i6C1WJEtUoCa7FAyeRvTB0ADvHrrWiE6XDqjTMpHcnwxXHGwEHxq6166JCchlFz+9RMr+S+FkPuMI06vz+BJz2QrSAZV3zt6jTDL2Ba/sCxfYpoyFKrkcJuFqi45bYtdapsUYs6skxWOf5XJjv6GxU0mwBqSnN950oHasP8KTAidK3GPITnirYjJFKd1BAdQpSuK1BfSWW1cBrarEk+fYQILV6FjZBiaEsTEfWqmMluI6iOGHbY8YVZz1ph/5uyIZgLWDADv1fAscmXvDsGMdTosTbGYejao8ZDN8of8cO/ZcpXttaGJlwrrdGNM0CI/GCATv0j0EVKnkb1GoMIIJlNAkBC7gL2IChNXUAxeOH1PbDSLzgReC7xrr5uJxjtgOfSLzgOOAQO/Q/jxpYv1JTlRohIVDWZ+szj4oi+GXgM9XklhnP1cjKBjv0f4C+76zPuDrwPlQRVxeG9DmPjD6rRjH6cbLvnZlIqDUlCC479JcnuyfGTGShuxPq5VZiIcGJ0otj1/odEsccQ35s+zSK97dj5Pd5Tuxaf8sQijWCJ2gs9sqqWj2D4eQWDJHnP0SxVokSJUo0DUbseRhwAJp7rgXOG4/odSxwovQ80yu8YnVvoSruI50ofalZ54lda2tzjs1Qxc9lwJlOlBY6sCRecFvsWhsOwKstMCvDf7YbXTtQnHkS+SKLM2LXutCJ0qKKmAuRECIvBk2BEY5COTgYxaF7U9zPtVG0A7+JXevLTpTeWee1swrOOYCu099R/uHPTpTWy4Odhq5zltPMNyc4x5kw1Ju3FinFIvmmwonSJxC51FSYeP026sSyxr3ofhSzzEbf5Wfs0L8aOf7kEWKfQ3uLJc37z0i8oBTvlGgYzW4yXWLhoMh/twdZ6CyA8Wa9Gk021QmDWcifeTQWNk1H7FpLxq71ndi1/he7Vl/sWo/ErnVA7FoHxq61f+xa1U0l90YVT1nJhCB2rWb3mgCVUd+KFsoKelEfin0KKrMagmkG+leym5b2ov5HdRG71nvIJrdAC+/RNX/7FVp8svCcE6WvNnLemjG0oEabR6D7a7r572HAL83zJUaH/cgPZqehZF8j9/0gKjMfDXooFkbkqYL6KA6YxxNsLlXn+XZkvTACxkbqZ8DaaD1sQz3UHrRDv6i57UKDHfor2aF/gh3637FD/wA79BuxWipRYsJhqrdOI1v8MRPZdlyP1sostCHhzQIkXtCD1qYsgrwXJQmahsQLbkBkymNojhwgf11sRxZ+o1F4tiHip/oataJ1+lLToywLKcUx+4IxJl7QmXjBM7WWq4kX/AU4n+GxS0X9fDCyLtoJJcnXTLzgvjqfZX3ykzMDqMdQM7AM+QIJyG80PmrYof8OO/SPsUP/VDv0dzZVy6PBR8hfz2axkOPrEoITpTEQkP/bBhFGe5HtpjADEZljOfd/UdxRNG8Mkq3er9gSZmG92LWWGcuYSpQoUSILZk75CyLX10fuQCcDT8SulWcdPWFwojREVdGrAss6UbqzE6X/bNbxY9faHfVb2g7N88sgIeWDsWvV7VHlRGlXK5zeMlJ8laLY94fm3+dSvP60AFvXOd1ZwKOIhKvFIBrDV+qNGVQhh8iZnkZe3yC2AG6KXeuwOq+7kfx9QQtwmxOldzhRen0D5BZOlP4KEX9dSKT8FiIXL2LI9ntciF2rJXat98Sutb5xKKrgYoqr825pxvkXEVyJxHaVnFTF7eFTKLYaBtNy4ndoH/ku9Nv7MHCXHfqZbmQlSmShJLgWDxRVGnSgPhHVWI+MRpgGs1iINiTGbvBPZgxLomTQhkg9cyFKzvw7dq2vGnLkAPLLmvsYag6Zda4WszDtGLtW3vUYAUNg7YsSFb9BdiHnAe91ovQPjR6nDvKqwCp2Ro1gffIX2Q5EZlbjyyjxVbvpno/UFGPBZqjarZaQmWGeqx1DifqYRf7cbdFYUnE+cHviBU+O8tynkx+Qp0C7Hfo9dug/ZYf+/hXvauBB8pN+81FlwVjxEMWJoqeyPqdJXH6fkQqvVmSzdeI4xjQhsEP/M0hVfiYiMs8HnrdDf+2FOrASJYSl0YYkD+sgO7+XEDlVjS7gipy+TZ9D1r/V1VzzzXEa2ryPBokX/Cbxgg0QgbU2WVVkg4O9DA7eh8i3oqq0Wkwnv//PdPLXxKfIFxD0oI1kXSRecCLwCRS7/A1ZJW6beMHliRd0JV7wQOIFTzVoy/IP8omnSu+0ZuBVihNBTxc81zDs0D8ciSG+gda664HH7dBvOD5EhF9ejNZCY72fSkwOXPLjkh5EnOYl+1rQfDZW/JNi0nY+2Ym4omr1wTrPlyhRosRocSbwTobv46cja7wfLIwBOVE66ETpqw3a3zWM2LVakS1y7b6wHVll1wqD83AOIlheRfFjLxJvbVYRC5s+jkV78EHqxAtOlM5HvSEPQK0J3jTvS1H/pfcbMUddmJza4XXOORYx6kzge7FrzSl4zfXAi2TvC25xorSwzUAWnCj9Ecp17g8cBKziROlx4xWhA8Su9UEUKz6IXKRejV3rCIDECx5H1X9dDMWtvebfeyVeMKnORXboL2WHvm+H/mN26D9uh/4ppqftRJ/XRjaRWaLoigVzLQ5Ae67quaZSof6TAgFgiRLDUFoULh44Fylua4mePuAPGY0Ul6J4kRqXAtAskpsBu6KF9kYnSh9p8O0usArZVUfViaET0Aax3j2c+XzsWhuiRNtK6Fp0GP/hk1AAsz8KaG4FzjZVVQtgFsgbzaOpiF2rHTiQ7CTJNJTQG9F4OgOv5hwD9L0MU8E4UfpU7FpboR4elX4DTwBfaKC8PA8fIr/aaCZSZjSLFHy74FeocjEvWGwhvzweFGRdhO71hmGH/jRUiZd3XIshlc5aqLfXe4BTEy/ot0P/SCBk+MahF1lyXjyasZjx2MhuqwN93qxKgreQnWMW1iK/0m0ask08drTjMmPbCBHzryIicdxNV+3QXwuR/NW/p9lo3v+VHfrvGoNXeIkSzUQ9u8B5iRd026G/BVKxfhRtAPtQHHNW1psSL/iXHfrrol5Le6Hf+xXAhYkXjNlLvh5MP77YDv1PAlczOGC1DQzMaGWw9d3zXm07+6/XbTinv2f3Hbc94TZaWj5IffKioibN6yk2gIQ9WWMZMHPo1QyfA/pRFVlDld3mWL9BBNcwmDn+A6iS65HEC+r1f/gBEvvUJoMGkQ1LU/oMJF7Qa4f++chOLsty5mvjPYcd+puha1jby9YBbrdDf+fECxqpYr+DfJJhHjBRvWEnBCYeXQp4Y6r3Th0DstwfKpiGhHZF1fAvjuPcLsX7l687Ufr7jL/fDuxOtsjpeWBSLcNKlCix2OMAskU8FrBr7FrTp3q7gVFgPfLn/BmoV+jX6x3EidJB4Eexa12ESJbOHDLuBrRPzsqTdCB7tnrn6geuM49KW4iBovXa5Ol2BLZHcem1SJBU1H92EMXpJ5GdWxrM+Ttonf0JNVU7dui3AXuw3Ym7v6P7zft+8MiVLy3bO+/9LYprW9Ce1y8YUyGcKO0Ebh7r+7NgWrzcwMhY9NzYtbqdKI0SL/i6Hfq3o3ziqkiIe57pZzppsEP/HYiEW5ahe+xU4Cg79DdJvODl3DePHysjgVBejJXlknMI+fdgO7A5UM9ZokSJkuBaHOBE6c2xa52HVM7T0Pc6FzVRzLJDeZx8//d+5Gc8JpjN8A0MlXYPAifGrnULslZbFfVj2oMh7+RrEMv/f2jBLWr6XMEsVML6bUSmZU2I7ajUtXaMK5nzzmH4YvwJZE1U3ZvIBfaJXWsrJ0ofb2BczcCKFFdXNmr7cy9K/mQRIfOBEQ2yzWfcMXat6UCrE6Xj7W+SoqRd1uepbhpaonHchH7bRQRXCwosqn/nXagS8guJF2TZGdTDsoxOHTwTON4O/fMSL3g58YKf26H/OkpGvs+MJ0LeyqNS4dmhvztK9FZ+qxWVVDf67BZKBH28QC1VjwwaNVlkh/6yiBRfjyFrswE79D+eeMFvR3u8GhxJ9prdgkQJ2zKOubtEifHCkFc3IeKq9l7tQRtcEi94HfiU6a20JPBa4gWFyfPEC/6DxB1Nr9hqAP+0BtKkBdaxGCRtaWHZ3nmtbQMDywBnX/fH87/5iS2PHgB2QZ+zFc1vr6L1ukJwn4s2e8eRL+LJ7VmVeMFNdujvimKoTc25fgacknjBuBLbduhvjxIkbWb8rXboPwzskXjBGznjedQO/ZOQWrkVxVzz0Dz8kSYT7qei+HFPhqwjLeCcxAt+3oTjn0D2RrwNVcM/b4f+tahPWm4yL/GCZ+3Q/zkSSNSKORKkVJ7yMPbe56LkZgvQF7vW+cCXpxrRZZThJyOV9izkgHCaabJuAasB3Rliv8fR7zSrJ10rEtvl3cOdjK/vW1EicS6K87JwKrIRrX3/fOBYk1gtUaJEiWahqB9ppcpocSG4plFcLd5IfmoBjBh6AYkQu5aDhJObIELpMrQGdTA8T9IJ/Lhez6+ccy6oOo5d690oVvwfcKcTpb3GZvFOhkSefcjB53yUW8gTYL3sRKkfu9aVSNy9HMa5Ba25c9DePg+7x671MSdKbwAwVUT3orhu9ivTlxzce4sju5bo67r90j9f8vkl+7tfrBCnduhvgGLpfwEPLGQx55lkE5Izga/HrnWZE6UDiRc8gHKICxPfRBaB1fftDES6noPE/BOFp8nPNedZMBf1Mx6o83yJEgtQElyLCcyiEyESaUngbuBmJ0r7Y9faFCVHVwMeQItYiKqEagOXHuBb4xjKaYxsuj4T9bX5GqoAmcNQonwn8yhSfuThXcDlaMOXtVn8hROlr1f/wZSf+2jSrT1f1sTZhgKAHzF5dnpvUEwkvF7w3AI4UZrGrvUx1ARyGgpCB9BG+EdOlI4g/6re26xg9UbUpyBrrumhsUq0tzXs0F8GEa/LICXOb1EC+THyidC3UOB8CPr9vYCCsovGERj+j9H/RlPUk+QSgMQL7qSmx85oYYf+Uojcqp67KtdhOiLNTmwg4RsjO4esuaMPJY5Hi5uAjRipdrzZDv21c+zXGsU65G+uWtB8WBJcJRY2Pod895dm6DfaiaoLTq9+YeIFXdSv+lqosEN/CeAPaUvLcrS00m+W5vuXWZ0vv/ejnPPYNbOW7us66a57vrXCjtuduByq3Hwd+KOpuloRVcA8m3hBj+ntdzQjN37zgWsTLyhslJ54wd3o+jbzM66C+gLUzoUVper2BeP5oR36tyJl80oo0fEz8902DYYA/ZQd+msCOyPC6ObEC15p0inWoVhY1IHW4Q4yegfU4GB0v3+eIcLweuDoZlTzTjRMnHwXEmpUSL/pqILSQddhSsDYmt8PrM7QWD8AbGnU8/ui+9qKXesfwKFOlFaalV+K+soUoTbmqcTQ1wFXjWPod6P7KCvWHwT+nvUmJ0r/GrvWdsgWfWPz2ucQufWrcYxnAWLX2gTwUALzTuBKJ0rz+qOUKFFi8caj5BMXr5Jvnbwo4rGC53oZh2tP7Fq7oX3lNPPYBLnYXIlirbXNOQYR+ZBZmV5VfbU1EkNc40Tpv2teMwvtk3dC+9lBYDB2rX0R6fJehmLQyniOQJbVezMyFuxEwiqcKH0sdq3V0fqzMvCkE6X/jF3rcCSKyRNvdACnMFTF/kNURV3ZL7cAs96aNnPHj2312Y8kXvADEy/fjMi4fhRLvWiH/m6JF4zatrBJ2Ir8XMhSKA6uFdM0HSYX8mlgA0QmXVa9fzAtIvYhO28wDdjLDv3PJF4wbsvGLCRe8Lod+tejeLFWPDYfcz/V4Bb0XWcRY+0oB1aiRF20DA6WYq/FGbFrfQktKNPRwtCDFolPombFByLljYUWyn2dKB1TktRsit8Alsh5STeaoJrV++11tJC8hKpLatEJrOZE6WtmfAcgNcMKYxhDL9pA74YWlEHgp8AVTahyGoHYta5DNiS1C1MXUtA2bEdkKtYORz7NLwIXOFE6aSW+hnj9JMODnk5EQE6kemSRhx36ByBydQAt+N1IwbQjUj5lVfP1A1HiBYeaAKetXnXEKMZzCbr/81Q5tegCjk+84ELz/jkokO8F7h/LuOzQPwxVbhb13tsk8YKijUrlWHuiTUCWcv/IyrgbHNd6KNGWpXbsAb6TeMEXGz1exvHPRQnGrGB1HvDhxAuyLI1KlJhU2KG/JKqm2BuR3Jeh/loTTmYZy5P3YhSCiRcU9blp5HjHAAEZ801H2sf5D1/Bu7peexPYo0g0UnPM96FEwooYi2QUTxy1MAgQO/QDVFWWZUM0H9g48YK/Te6oJhd26P8COQvUE3F0A+9JvKBufzFj+bg88L/JuPcbRexaM4CjUFw4B8USX3Oi9DHz/IfR/Zll1dQFbO5EaT37yklB7FrHImvToiqDanSiPihPmvdvx5CFUVF/0z5k2X0/Etb9cTzVUrFrrYvI4CzLzdOdKK0rNIxdawmgbSwq/5zjtSCL8oPRnGSh2KIL2NKJ0qb0uitRosSig9i1PoQEGrVzVRdwpBOll03+qCYOsWsdg/ofVn/eASQcfW9GJXD1e1vQutldXekcu9ZMVB2VZ384D8UenYDnROkvc46/DBKfrIHWqwohdoYTpWdXve4alK+q3dt2oTgvr8DhQbQuHYQ+c6Wv40+AY4rWPFP1/TTKseXhf06ULm2H/iyUw8vLJTwLvBsJUVetGe8AssB+1xjdaMaF2LVeIzvnCPo+VmrWmpwHO/S3RO0q2tB92o2+q88kXnCteU2bGU9eTDsAzEy8IK/PaDPGOQuRwlug2KrSPuO4rPyKEQQ+iQo1aisafzCeHEqJtxfKCq7FGLFrrY+qZ6orkzrM42doEfoSUhy/BTw4zuaLsyguH21mc+1u5M27G/kN3lsQgXdu7FouUos0ugmuRYoaSS7PUKJrY+CE2LU2N81Cm4kjkCrjHQwFRPNQT4tRNXV1ovQl4KvNHNwocRAKmE5CnrsvInXSD8dzUJM82hzNY38eSwLJ2DKdiIiifwDfaoKVXPXxV0VqlDnmv33AjYkX1G36akrys3ouOWizcSRKzNQG4XNRtRamWquZdkLHovvSQZ9pAAVQbWSvJ62of0kLshY7maGAa8AO/SMSLxhtpdRKFNv7WMAxdugfjWxP5xp7syzciuaSrLnp23bo/3oUntnrkd80vgPdq+PB+WheqCW4KhYYZS+7ElMCpi/WdxifhdeoYYf+p1GCthIT9Nih/9nEC64ex2E/QMF888QSK/OurtdaGdkcOxeJFzxsKpHeizbKjxvbxjHB9I/6BlL0pqiS1E+84JnCNw5hS/LjqD5k0dcQwWWH/myGem/+frJ7DowD30aVYfVixF6G7IUKYQQc4+nT1HQY++l7UcVaJbb4BPCR2LX2dKL0DhRX5yXi2tD3OyUILqRGH01cPwM5TewD4ETpPbFrrYhUxh4SD2VhGrJ4OmHsQx2CE6VPxK61C6o4rxDdLYisO6fBY7zVjLFUYVcUr1dfz9nm39ei6vQSJUq8jeBE6W9i1zoM5R4qFaetwJcWN3ILwInS82LX6kRz8dLos/4BOCKP3DLElocqglcABmLXuh5V1r7KUE/6PFTW21nANaYtxl8yXnc5qvSqxGsVguhLsWs96ETp7bFrrUw2uQVa/4pEPKs5Ubpp7FrfQNVlAL9yovT5gvcA4ETpvNi1dkDWv3lCkcr1W5b8/TIo9/VBdC1rcwut6DrthcRzk43LkUCoNmYeBB6YBHKrA+UuqosJKt/1ZXbo/zHxghdM7/MY5Z6y8Bywuh36/0q8oMvkq1YBnkm8oCkVaIkXdAI7mXzWNhj75QLb85cNeReieKOyr/oG2RVfJUpkoiS4Fm8cSjH5s6vxwr2jSefrRGrfUXkUjwHz0Ob6LFTRkEeczQTeazz4v8XYyS3QwrUyw6/nLKQsCZAStmlwovQ/sWu9F1U+fRQl4a8AbhsnCTnpMOM93zyaApPIPA8FOoNAmx36ZyCCqiFVrR36JyLirxLwrQFsZ4f+1xIvGNdCarylf4YW9Grypw84ww79S1GFUNFY8/q0TEN2EQlKyAWoZL4fWT76iRfUDUbHgsQL5ppk6odQhWEvSnxcgKwGant+XZd4wdN26H8eEYkzGE7Y/cQO/VeM7VajeALNM3lkeitKSr+K6Uloh/4DwMEZxOIu5NuBtiKLx1MbHFeRVdYAMB57Qsx1PBAF9INoPpuLxAm7LGRP8hIlFirs0N8D+DHD1/k5wCV26L+ZeMFY7bteJ6ePZOvgALPV7qAH2T83DPN7LezraYf+e4HjUdXrC8D3gVurf+t26G8D/Jqhz92GkvU726G/UYMEU0K+TXQLmkvrwg59D63LFSuZNlMZdeB4K9OMSGJdtMb8tdmq08QLfmeH/tdQL4rafhi1WJQtmTyUIKteP1vR/XNp7Fr/h+KURaV36miFc63ATrFrbYzi9v9DTct/jPYWm5Lf33Tv2LW+4URpnmBmVHCi9F7TI8VB1/9vTbQHHwuOJZvMbwWc2LXWcqI00zqxRIkSiy+cKP1p7Fo/R/OjhRL5U77vlnEWmgPMc6K04Wp+J0rD2LUuRQRLlxOlb8WuZcWu1ZJTxXQyI9tlfBLYyuRyRtPDero51idrPstKSICRldebhUTEtyPhVA/Za2O9CvXnAAyh9aMGx7sATpQ+GbvWDSg/UDvOTobEG68wODhIS+5w/onyHHl5u9nA+1k4BNfXkAPWOxi6xn0oL9HUXGAO9iD/XqoQrRV7yy+i3GHtdUxR7PMnFKe/jiyJe4AOO/TvAg5IvKApZF3iBY8iq9NGXvsUsIUd+iuhSq5nJ7LKrMTiiZLgWrxhkz8JWhSXEY8aTpQOxK51HkrMT0QjwEFUtnw8cIvpL/YcxQv2koi4qDeelPxrlTLkUVyLduCA2LWOaHZzZxM8XmEeJQzs0N+ZkYlMUIXQG8BFDRxjFaS0qg4AW8wxv2KH/lVjVZ6bRNxtSPVeG+BV7qP9gYfqjHV98u/JXmCtxAtuBra1Q79lLASHHfq7oqB4DRRQfiPxgl8Xvcf4Nf/KPCrH2Rr4LvAplAypPHayQ/9s4DCyEycz0few7SiGfRMiz4p+06sxPDm3JXC/HfrrJF7wctXfa60PqtEBvGcU47obBbhZybFuRAKOC4kXXGsCz31QcP0ocEuzLChLlJgqMPYa26PEwEOJF/yzzltqLWUqmIlEAGMluEI0r42YvwZaWtj89We6gMNHkzxpBMY+9UqGrMLWQfPYFXboV4sjsirTLTQPnY6q2OvhfGDPjOOA5tq61ot26G+LyK3aY+yJ+jJ8toFx5B17Z2SRszSKx1rs0P8K8L1mEvuJF5xth/7P0XXbm+yYL2WCex0aOyPLidK5Gc+tgXp7bYUqd3+IFNaNXodDyU8aLYEcHa5B4o68ysUx9yEZK4xC/iNIOb08+g6+b8byeRq3TQbFZb9j6Le1HYqDdkG9RmeSHXutiAQ9243pQ2TAfG9ThTRapeC5PiTymypjLVGixCTCWO5NWnuD8SB2rWlIwHoM2uf3xq51AWrx0FCy3OS0XgEOil3rK2h+nBe71k+AUyvrc+xac1D+oXZPOg2RBh66bo2u0a1IHFuLVcknrmCoZcGrjC2/Ox+18RgvDkPr6yoMOb10o76VlwIkXtDz6W989F9/XHaNdXqt4WFWR9rL5v999obfLb/Wa+Z9WXFIL4p/gAWV6e9HeZz7nSidMOtCJ0pfj11rI9Rv+ED0Pd8CfMOJ0ucm6rxVWIX8eGc6snYEIPGCG4zA+Nyq18xB16k6r2lXvR/Uu+0OO/Q3XljiWdNPrLAncYkSeWhWL6QSUxP3kd/AfZAG2fRR4nTgt0ipMYCSAc2aHOcDuztR+gsnSisK0t9RvJCvjwKConu9HyhSKQzUOcd0GlfmlBg/8votzELVUY3Ma3uTT4y2Yuxrxoj3I2Ikr3oSNFa/znGeJv+300aVRdIYya0zUJ+N7VBwsz1wrR36p432WIkXvJl4gYeqDfvR72E6shM8DiUm87C5HfrLjOJcvciUM5upAAAgAElEQVSKq4jUqb0HKgr1z9X8PSZfjd5NccPh2nGlKJk7F81VoPmvC/h24gX3N3qsOuf5b+IFFyRe8NXEC24oya0Sixvs0N8BbWyuQyKAx+zQ/7Xp4Zf1+nay+xFWsJ4d+mNdo+9D/bE6K39oGRigI+3jiKfvfnLGQN8uTpReP8ZjZ8IO/enIBqU20T4LEQ8HmdctR779iIVUpnVhevedh+aqSoV4N6po+WiDfcy+TLboYAZwsB36s2PXWjp2reNi17o5dq1LYtfaot5B7dDfBFUm2+jzL4E26Gchy9amIvGCp4EDUCP0zqqn+tH12W+i5tzYtdaLXeseVCH239i1njQ2dpXnd0Rx+xFI3bwrWsMvMgRQI8izHgStVzPRPX8HI/cPnUghflbsWj+LXWuf2LWK4pzKuDti19o4dq33jmKc1e9vQb+HnyHbpE0QYfoEso4aTSVBH0oOVf+2ZqDrcj2Kg+blvHcasKmpuloc8QhDv/9adKB4qUSJEiWmOq5FFalLoL34bER23TrKNeh0ZHtdIf9noyqde6vWvq3Jt6ieiXrbP4ichxqtZB8hbkEuIEVCjkqPxEdR/DzavMAt6LqNC8aib0PgM6jNwneB7ZwoPbAixIlda+lTnrp19c3/+wwdaR/taR8daS/TBvrZ+98PDH71yZu2REKbvHxOpbcvsWsdjki9G1Gs+GrsWrV7/abCidI3nCg93YnS1Z0o/T8nSo+cJHIL1E4jj6TtosYZIvGCi5Eo6CPAxeY19fJk7ciVZzTi4xIlpgxKgmvxxk/ITt72oQnyT80+oROlvU6UfgTYAZXInknjm6IeM7a3UBDQb/42F03InzHlz8vFrvWF2LUuRsnzIqXGMsDz5pF3znMp/i10U6wieLaKcBs1Ytdqi11rm9i1PhS7VhERUELYoOC5pclv/lmNJcgPFNspJmTq4f00ZtNp13n+u2Tf2wPAc4kXNEy+jDhx6K+BLANrlVGzAN8O/dXGcMwWFMzOZDh52EFxleU0ILFDf69Gz2VK2Dce5RA7UGl/Ne5EVX9ZG4EBFAw2DENirYm8on+N+mtsl3jBl0c51hIl3pawQ/9dqLfgcgyRGTNQ4vmqnLelFPv5VyzXRg0jHjgC+DSq0vzHYGvrz3qsaRufePbD6zpReu9YjlsHu5CfnLCAC+3Qfx9DFr15GDHv2qE/3Q79fe3QP8MO/cPt0F8KIPGCk5G16+WIxAiANSvEvB36y9ihH9ih/4Id+q/ZoX+VHfprVx16g6zzGfQd+sw9O6EEzNdQfwgXuD12rfPqJJxOJ5s4m4kELU0XF5nvfF+kvP4d8BS6LpvWq3AeK2LXWguRNdW2xmsD18eutVvsWm2IzJrF8PhiFqow/ECDp/ol+eKQacBfTBLqk0iVnqB4/GnUT2wHYD8kEroYeCh2rSVzPlNL7FrHoYbwdwH3A8/HrrVzg2Ot4ExzzmphUyVpeQGKuRohuXrMZ8m7Z2YAq1PcX62XYjJ9Uca3yL6OPcDtef1nSpQoUWKqwNjP7sRIIewMtFZs2eBxliN7n9yBXE8+Yf5dL7asxKa7IvFII9VFI/rGmvn3XrLX7wX2f1Xr91tV5xpEObW8sfYARzfLiciJ0n4jRj/SidLjDcFXjdWnDQ70nP7kTVz48GUc9sw9HPX03Vz5px/j/eu+FmBd06fpYPMZKjm2imjUT7zgudi1Po76p85B+4UlUFxwduxa+zbjs0xB/BKJcPLyFpfW/jHxgl4jZFuX4h7m1ZiBnAJKlFjkUFoULsYwZbQfQMmiyoRmIdXjbs221Ks59wOYnhSxaz2DNqF5k2oP6i9xDvBbJ0qfMgmPLZBS87/AjU6Uzo1dayek0KjYyRX14gF4yonSwdi1DkUJ5+oGm71o4/0t1MwyjxhpRzZq52Z8hi6UBBgTYtfaHSXB29Bi1RG71oXA8Ytar61JRBfFveU6c56rxh9RgJClZp4L/H5sQwNEmFRUwkV4uejJxAv+YIf+WUgZb6Hk0zzz2LP6tXbovwN5dn/KvO52ZM/wAkp8taLrcgxDBGHe/N8C7G2H/jmIRJoBPJx4QZ6quYK1GJvtaYs5R2SH/iMNWJFVMIgC+CXqvbAKwzYWiRcMGPuru9G9MAvdXy3AJxMveHEUx64c8xWUkJuysEN/BZSgXBr4M3C7sZ4sUWJh43Nkz+8dwAfs0H9X4gXPVj+ReEFqh/6NqGKpNnk9iOa61+zQ/wlwZuIFb41mQIbwuJHJs2ZbimLRTRuKlz6AxDtrZrxmAMU8C2CH/nqIaOhACYFO4Nt26O+VeMEvDZk1otLUDv1lgYeRLWplXdsL2M0O/R0TL3gAxVLLZ452cLBjr38/cK75XJX4q9Io3EUNs/MsJLcinzibiZTVz+Y8P2aY+fAa85gMnI6uR+1nnYEU5IeTL5yZiUjYBf10TQy9CSLJXgDuNjaa30YVgG015+oCvuNE6TxQggrFvOea453OUB/NCmaje+9c4JDYtZZF3+emqJfHfGT9V51onAX8InatbZ0ofajgelQ+xw6o2j3vHpiDhGyfQbF0Vq+JLhQ3XY4SnEWq5HcgMm+9nHNOo5gAWyiIXetd6LPHxkps1HCi9CGjhv8xSihW9iUPo6rGEiVKlJjq+DD5+++ZqD/UHxo4zk5oL59lCTgb7bevQqRT3n66E607lcqmHWLXcoAHye/1OEh+/6tPm/OtbN7fh+bq7zpR+svKi5wofTR2rTWRJfFOKD77Ndk20vOBa7N6S5o4YmvzWTtQldct4xF1G7xkjseqXf9l1a4RJkovAiRecJUd+o+ifcH6SDD//cQLHjavy3P0mWmeyxPFLerYCQl0Z6GYrJLb2CPxgtcK3lcvj1ONXpRjKVFikUNJcC3mcKL0wdi13olsyFYCnnCidCKsCYvwU0QgfQxNxJXEzSCaQG8CDnGidMFEasi3+6jye45dawlEblWTTEXkVhda4CrNnLdCSYTtEal2BfB1QwR+E6lRawmsHrSY/yh2raWA01BAMYgW56uBJwoaj+Yidq1NzPtrF+dDUVB06miO9zZCiPow1AawKeprtZYd+n+pY9v3G6RMXoPhSaM+RDyNtV8L6B49v85ruhhqtpqLxAu+bof+tSh5swIi3q5JvGABUWOH/orIWmYZhhLDH0fVSoPoHm6n8WbsHYgEexHdmwNAux363wK+WnBdOyiuoqg0p88jJ9uAo1FVZiN4qeBYWegCLqn9Y+IFsR36q6KqgnXQ57428YIsi4hFHnboH4YSpgPonugEXrRDfztDzpUosTCxJfmJ/B60yc0iNL6A4pza6twW81gG2Zp9xA79TRIvyLNvngr4M/Vtj7dDsdRnkZ1edSw0iOa7BZWjpqfZbUjIU0ncV+Kda+zQf7fxvM+Cz3ByCzO+2chCckNUcfwdRsZQg+0D/QOnrfvRVfdOHmjZ4M2k9tizzGfIW3Pno16qWbBoTNCyKODD5JOaK6NYJQ8tVIlLYtdaGV3PNdC9MIh6h+zmROnDsWtti1S+a6I1uQUJvYqEGUeRHW93AJ+OXSs057RQ3NBH/u94BhLg7F5wvgoCin8LA4hY7UXCpa0YskafDxzlROkC26XYtc4CNic7AWohe59/Ax8imyz7hxOlTzQw7kmBsfkMEdHbD6Sxa50G/GAsIkYnSq+IXesm9N0sifqZPFznbSVKTCnYob8b2v+/F80DlwOnJl7w+kIdWInJQFFrjEolUyOoZ2XYCuBEaVfsWiehNbR6zehFa8nl1W9yojQ2fbyOZOQedhB40InSf2ed0InS/8SutS6KF7ZHdsZXOVE6QhhqCKuvmwcAsWu9gHq7VtbmdiTc+lzsWpuieOpvRhhuIYHPBxnK3e0DPBe71jZOlP6v4NoUwonSF2PXuh+RZ7W56E4kxAEg8YIngSNi16rkJvrje75ViZXyLLoBVolda8ZE9uOaLJjWG8egWHwlRDxdiIjSNVA+6/oG9jURcohopIqrhSZYVjYTxiloTG05Sry90DI4WN4jJYZgGnMeiDazSyGlSOBE6d/GedwWlLg6ECWg7kUVXv80qpZGjnEo2QkUUEAzwJAVURtqAnpuxmvzxvcDpGydZt4/FyXStnei9A3zujnIx9ZHC2uPeW0CnAA8mheYZJzzRrSJzAqiOoHlF4eFudkwlkp/QhZ/lWAyRcmJueh6vg58qqjvkaliuQrdlxUS6M/APuNN9NuhfwAKPqYzPGlVSbrcDHy6wd4m9c51Hmrq2ogtYiPoRPd0bQKoC/ha4gVnZ4yhHVUE/SRnHP0oqJ6FiO68RN5diRc0arWEqdrYhWyia5Ch31YPQz1l3kQVpT82/bzeNrBDf1NUrVabuOsH/pR4wdaTPqgSJapgftO1VqIVzAV2Sbwgs9G5qWQ9Fs1Fq5E9z3QBJyZeUE+EgB36HWi+2gR4Bbgq8YIRDM1EwA7924B6Vm5tpnptJ5QQqFgG/h74fLWNrUn4XUm2argbze1n5YzlZURwZaEb2bq9ioi2HciojG4ZHKB9IGW/5+/ngOdHLMuPO1G6fs65v47Iy9r1aBD4c+IF788Z1yKF2LXeQDF3FnpQ1dHdZJNM3cC3nCj9iolln0SNxmsTR28Cq1USU7FrrYbi8diJ0kKLv9i1Kr01s9CL1taGe2kCbzpRmvd5Gz0v6No8D6yI7u0U7QNuAvYzVWvVx7OR5WTtPqIPeMiJ0i3M604FTkHXcBqae+YBWzlR2vSKwbEgdq11UMya5SzhO1H6g8kfVYkSCxd26B+IRIa1ZMOLwAajreAusWjBEEAPkL1WdgGNVg8vj9aWLHHoPOAIJ0p/WvX6jyEL5rXRPjoCvpxFBJljP4LEGZX9a4ryA9s6UfpIvfGNFcbueBskYHgQWTGfzFAe5T9IVLsRstuv3S/2oIqv/ccxhhVQvu3LGcfvAtZzovQZ89oWJHz9Kor7WlEsczAjxV3V6AVm1sYAiyLs0D8ffSfVa303us+3b9SBxRBlv0Tff1blGwzlqU5JvOB7Yx50E2GH/vrANxmy4r4T7eMez39XibczSoKrxAIYcus3wGYMTaL9aJHYzYnS307w+XdFdn/r/D97Zx4mR1W18d9MJZNlCIuACBQgioUgEkRARQRBBFxANmUVqxAUFxZFtAA3VLTYBWUVqFIQQVbFj0UE2UEU3ECgUNlKlH1JMplkpma+P95b6Z6equrumU4ySep9nnkg3dX33truPfec97wHBSjOAH6cyW3ErvVdyrOaLkSbvX6UdVXI1DLFQT+BFoweVFw6QkGTvdHEfzNwY71UoFlo/4BYJHnMm3lo8/wpJ0pLayTFrvUsxZJus9BGupq8c2CHfi8yjj6FHJnLMzqwMhvYuFHOKqetdYB1UV2rJzo4xk1R0HNjM5angH8CVyZe0NS4bqOfF2nPsVSG+ej9mUF+4PU1YNX6wJAd+ishh+ra5Es+DiNjfyawFmJ55xmkgyjo9IVWB2uH/iooWL4mNefWPCTVNBUxtQeQIW9Rc3j3Idmd7RIvGJOcz5IIO/R/gea9PMf/XGCTxAuqQvIVFhvs0N8Brcd5RJb/AGs328zZob81IhEUyZf+MfGCLZq0sQHKIM9qHs1H5JkjEi8oko/pGOzQn4HWjKIgwBDwdsNuzX6zHJDWZ/jWfXc4cALF0j2/SLxg34KxvERxXco+M45/m83zDkgub2dy5pmedIAL/hSxZv8Cn88gcJETpQcW9L0C2sTb1NaNATRfvTfxggcLxrVEwdSU/RT5yhoPOVG6Uexav0Eb/EaH2yxgfSdK/xu71vvRs5+3Fs8BjnGi9IyCMcxENsum6Nk7HdnAw7FrPYaCZnmYhdb5duSCn3GidM2cMWyOZA5fh2zwMyhXavgvykpstMf7UTb9fcCVTpQuqMNrrtFVyCawkK3zIPARJ0pfqDvOoZY9fwdwebNA4KJE7FqXoPU8LwD4MrDaWOUKK1RYEmHIds+Rn/U7F2VxnZrzXYWlCLFr/RTVoap34vcB1ztRumcb7XwfyePV26PzUB37zZwonZfzm5YUfepqfO2PbMwbgO+ZDK/NkLzvO5Dd+0NUqqOjTtvYtY4FjiYn8x6tIUW+hXnAyk6Utp1BH7vWEShwBvnBwyEkRbihsT0+z+jsOND9vAnVNmv0/wwCl40nCDdRYGqiP0xxoHXPxAtubKO9SUjy+jBkO/0dPXvbI7Law8CJiRfcPr6RdwZ26M9EPqZ6Ce/Mr7RV4gWLWpWswhKASqJwgiN2rW40ER2J0lKfQOnGlyyEGlr7MDK4BbVi1z+PXcteWHWhYtf6InK+ZAvYDMSE+UjsWjsaBsajaCOdx0CeDdzlROmFLfQ1HbgNeCs1J0BmTGzuRGlZTa0tUAAuL2OkCy1AM4E7YtfaqEk216sUB7gmI+OiQg4SL5gD/MgO/UtQ9lxe1tAUxPo5rElbT7IQaioYjeh9AezQXxUZqq8g1lYhTPBuGvBii2nY483cGkLv1RQUGNqSYmmGbmQAPVL32WnI8ZX3Tgyi8z0YzV+XUyyVOACc2c7AEy94wdSV2QVlO8xGjtoHAOzQt5ADrPEaTUf3Yx/gZ+30uYRjQ4qz5+YjqYMqwFVhceImJB+8P3pPu5CzegDYvUWm4mSKJWqgibSpIT38jZE2cvab0+zQv3c8myojs7EDkuZbC7FoT028YIH0WeIFs+zQvxzNnXkYAnZF2TrZb8r09R9H73hegKufkXN6I25Gsrd5c8dsZJdmdatusEP/TWg+HsUQTbu6uWm1DXGfXJCENx9T5ykPiRe8aof+ZkhVwDPj/z+0AZ9wtZDGgeNQtmBGxoA6mT3z773Ru7EjcjB1I5tiDydKM3nJmRTv7XpRDapRAa7YtT6BpO6mmP43RCzfnyA76jvk19LtQ3bDji2fqcYeNvSfqShk99hCssFQqwfViGcZKc1cj6noen0cFZw/MbPtnSi9NXat1dA7+HqkvDBKhs+J0piJLRX+AYqz2yYju2xc6hsVKixh2ILi/cs0FLCuAlxLPzy09zwK7T2fRfe93Xt/LPIPfBNlCc9DZGg/L7gFC0psELvW25Gk3zRk1/623odmyBRfM38LELvWvmjdzRRg1kP78kdj1zoS+F0nfHGxa001feeRyTJZ7yL0IBWjtuRrTU3N4ykvmdCN7OLNY9e6H9keedlG01CA5kVEBMvanGs+O7KdsU1gfJji/cxyyMZpOcCVeMEg8rU0+ltOGNPoFj5OYXR92i7z2ck0V7qosAyiCnBNfFwEfIzaArQhKj75DsS07CQ+S7Eu6wwUBLqvw30Su9YKKPW0kaU5HWVgfAgVtrySnI25wSBwWYtdfg14W0N/vWhTfUnsWg+hmge3Az/N5AkNNqe8+DvUAl1fprye0FnkF8gcBh50onSRSCEtaTDSgttg6g0ggzPPWJoMbLcIhzYKduhPRk6h/ag5pF6zQ3/vxAvubDj2zeiZ2BY5L1+wQ/+YxAuaBWBuRgGeZs9lHuYg4/E24MnEC/5nh/6/KTZsJ1FXdNRIeO1FscP4lcQLtrBDf01U1DdvfhlCTs5D67MRWoUx1q4yf414F8WGdC9yHi9LAa5/Am8n3wEwmYUQ6K2w7MLIShyB1ttHUHHo0uzVxAuG7dD/HFrPP4ek8W4HziqpEdWIeykO/M8FrjREgr4CEsF1FNvHPYg08ekWxzICJsvpamTXZGPcENjbDv39Ei+4xg796Sj4Xia/103zOl31uJ5adm4jhoH5dujfh+yiXwE/qpPqPc6MNy+48bWcoOOKFGSKpd0WL/X0ZhlY3cAnm9U0MpJSgflbKuFE6dOxa70T2YS7oefvDuBoJ0rvM8fMBnaNXWttlBn+AvCHBrLbsygYnLfuDaCaICMQu9ZyKODUaIv2Ap+JXevnKLDmoH1HVrdrEtqj/ILWnQxzzRhOavh8F5S5VT+G5ajJj8+j9kwNosDqgabvoqxEqGVpHRW71v1OlP4KwGQ2/V+LY56oKJMwt9D7WaHCsoRm+6Cx7JMqLGEwAaAfmr/xtDOMfG7nmhpQ85uRyw1Z4xxE0pqCnrmDgX/GrrWtE6Wv1h27NqqttBWq/x2i4FbjWjwZ1ZO7Bvh77FofMPbAeLA+5USwMnQBp8audSaqezkDkdDvA24ruUY+5RnZGYaoSV8XHd+Frtur1EpUPIFskvPqr/PiQOxa6yOi/k7oOv8K+OYYJY7L7lOzWnFLLAxJ+f3kn2MXsK0d+lYnyn1UWLpQBbgmMIxUx67kbzq/ELvWj50ofaKDXZbJi6TkO0Y6gR0pLvq5HGJc/caJ0rmxa22PCqX3oEVvrvntjm2kSn+W/AVzEppI34cWyx2Bb8WutU2d3ODLJWOtRw9iXZQFuM5GzItNGemMmGfGWKEOhvV+CmIzz0cLfpljAxZ/FtxZyFE5ldo9noFY7jMTL/gXgB36qyPDcEVqG7A1gbPt0O9NvODskj6+iZxLrRQNrUeKDMKzGpj/55k2G9+RYeDBxAueqfusSMowQyav9TmKnbEpqqtzWyuDNs/B9sjBvBJiLoWJF7xcd8w7UdD8/ZRvaNuRVFoacBoythvXlBR4ZCwBxgoV8mCHvosYglk2xjuBPe3Q/2riBaWZmibo9Hvz1zYSL5hjh/73EPu2fl5M0Xz1dTTH/c8O/W8kXhDVjfstFEuxYc7lrWMZl5EQvI9arawMWab8RXbovweRFqaTLzOXYS6SFWkJiRcM2KG/o2l7smk7c5A/y8haCG8BPmeH/rsTL3gs8YIH7dD/IHA+cjqk1IJbUU5395m282pxzZk0PHQxsuOur+qM1mDs+f1aOO4pJCGYh18jB1keBoELAGLXWgnV9UqBVcx/8zAFONCJ0j8B34hd68doDZmEGOlPG4feMygDuCzoOgT8EjjUidJZDd8dQb4NYyF776coyNqNyCwnoWewmQ2YYSqSYvpVi8dPWMSutTyyK/+DyHh5wfzHnSitCCsVljXcR7HN30/rRNgKFUagKGMrBwegdbx+nzUDEZnOxii7xK61FbLhsprXw8hvVLZnnYYI7hfFrrX7OJWcZjM+BZitEem7/jznAf+NXWsnJ0ofzfnNBrQWkOkG/o1IuM2IXPVypD3AqYu77pbJ3stIvdn93Af4aOxamzlR+q82mruBYpWD2cAVYx7okoGy52WpDe5VGB8qJsvExl4UZx90oeDXmBG71pqxa/04dq1nYtd6hlpx5jxMoYm02jgwlfJJasHiaWRE1kDO7W9gpM+cKP1jG/01c2pni+l0tHBeazbwIOdBq6zp0oCbMZZCRr+Hw8D5hi1UoYYjUeBvCjIWlzf/X5Q9NBuxqBYLTH2oTGarET2MTJ//MnIGNj4L04EfGF35XJgim9ujlPxWMYiMx+1zZK3OQEysevbvfBQM8xqOfZlylnBmxL2X4rmsH73TTWGyHy5FGRCfQBJD3wUes0PfMcdsjjI+tqV8jZuHshqWGZiswePQNc/qqM1CMo67La5xVVi6YCRZz0bzV7ZeWubfJ9uhv1ab7a1jh/6hduh/2Q79jVr8WYCyTZ6j9rzPN+PoQU4FGzjTDv2v1ndH7d0owljrPv0QZcEUYTKak1aheXDrzsQL2rF7SLzgz+j8DkWO/lfQGvpGRq5TUxA54YK6396TeMHbzPjfAayeeMEImbk63IICMI32ZDrc1f3KNWtuepgTpVdVwa3Ow4nSPkSc6kNrHGi970MB38di1zoOBaR+BvwcMdSL1meLOiltJ0qfdaL0p06UXpBJcBsn2wepyWAWoRt4MSe4BZIkKsJ8JMv+RidK13ai9AgnSv9j1BWuQu93K1i/xeMmLGLX2gYFtk5BslWNRNUU7T3GlGFaocKSjMQL+tE817gvGUTrXRlZsEKFTuAo8skaU4DdYtdaPnYtC6kSZepBID/YFJoHnSYj/98/Td3MMcEEWcZDguhitH9jCrAOcJupdd+IImJOPYZQ6Yk/OlH6PPI9tlquYQ1EhFncOJ3RPh0L+a3aUiJIvODfyFZr9Cn2Iyn1luUJlzSYzKy7Sg65s8reqpCHKoNrYiNLbc5DN7ClqSf1N+QUGUIO9WOAdZFj5zTgR06Ujsg6il1rXVT3YQa1xXQV8p+JPuBCJ0pfGtfZFOP3Bf2CghTX1H/gROl8VMtnrPgHYpO3gkyH+N3APU6Uzopdy0Vs0skUj7uPYhYtALFrTUP3p9EImIacSPsgredlHiZN+Wjyg0Vd6NlPqT3Lc4C7WbxsvZmUyye+v+7fu1EcqOsCNqFcHjShvQyubqRLfp8d+p9KvGABAyjxgj479LdEckEHoWt+HXBa4gUjZDMTL0jt0D8FzTmN92Yekj8EBVCGyQ9kDwPPtzjuvYGPMPJcp6NrfCnKhjw9Zyx5GKBY8nRMsEN/RXTdPoDO6fzEC+4u/dEiRuIFJ5raPvsBqyLj8ZrEC5o59StUaBV7Ubwh7ULPXtNNnsnWPJlaDaIu4Ht26N8A7JV4QREhJ8sCO8cO/fPQc34A8G3y6/F9yw79M01tx8cot41TVCuoLRg5130pJ8hMQfNykd03hGyLcxhjbSAzvy9PQY2sOnQDW9ihv0riBS/U/b6srmh2zJAd+tsiO21zFKCYjGQqd6/mmoULJ0pviF1rA/TevBORWc5yovSvpmD7kYzMKi/DHJT116zPp2LXcoAfI+JZnpNuAMkJ5eGvaN+S9+xPRfK6efgssDaykZrZQK3aGRMSJnPrWkYGv+uLrj+Par18z4nSspp6FSostUi84Aw79F9C8mBronXz18ARiRcsLD9GhRZhh/4bEQmjF7gVuK3FetNLCuyS7wZRLa81aE2qrwzrokDSeqaeVy5i17LRvtkCbmzIHjoASSEXEapT2pPChlrga3e0L6/HKZSv1bPM34frstMOQv6caTQP/s1AsoW/aXPMHYMhp29Nvr+jG8kxt4vPIeLx1x083cAAACAASURBVJCvtg8Rk77RYl3iJRlHonmicb/SR+dL9VRYSlAFuCY2rkPO0jwm72RUgHl39JK/hCRf9qW2cKyFDLxtYtfarSGV+RRGFrPO2kwRO7gLLcQ9SLLsqI6cUQ6MxMmlKCOjfgIbQBkil3S4y28hmZRWnOAg43j17B9OlF4eu9bDKOtma8R+7qK2MZ+LHDlF7OYMmTxMHnrRvY9aHOPSjlUov1+DwIUoa+dlJA34C1OfaZHBZBh9EDmVplM+x9ZnXJWNs5vizMoMH2zSRl6b2bzyUzv0H0q8oL4YeYre/eWRDOBG6DlfEOAyMoBHoXMtMuS2Re/v2aiWYN49nEfrUmSHkW8YdwNvtUN/Q+RQbYZhtKl6pumRLcL0fQdyxk1H88Yn7ND/GfCFibSBS7zgcbQ2VKiwMLAyxc7zKaiuVis4ADmwG9vaCT2/Xxv1iwaYzd+zdujvTvEaMog2xTcmXpDYof97VL8xb9N/fOIFY8ngWqnF48qcCQ8Bm45lXTN1vT6A7L6A1pwrg2gNKHSeFCHxgueAbUxtybegGo8PN/nZQkHdurwrOqcrgNsn0pzcKmLXWhU4BL0DryIi1a8bJXmMjKHf8NsuJM1Z5FxqJKEMIXv24lbG5kTpcOxaP0C1sfIcUYOoZlYeTiRfPrcfuMGJ0tz6e4Z09j5EQjsV1d0sUoT4fvkZTHjsTXHwuw841onS8xfheCpUmJBIvOBiO/R/jvY5/WVkmAqLBnbor4AIy9tQm6O/Ajxih/4HEi9YrDWTOojHURAnDxbKnt6Y8qykIVqr996DAkCjCGNmvT8R1fgaMsefErvWL5HscIrqfu2N6lY1+hr7kP/vM7TuL8swA51jY4DrFtNuow0yHwVs7gCuMTUyAXCi9CEj+XcksDOySVcu6HcAZWouTjS7b1bsWl3tyEuafcypduhnpPj5S6L9OhYkXvBHO/S3o2bfAfwB+FK7KhYVlh1UAa6JjRuBGBVoz3O0ZA6KGWixOIjRG7vpSL7svcCdALFrdaNFIs+RYiFn0kwkUfOgE6WvjessWsPBKMvjUGrFq28CDjaSK4WIXev16Bo82ZiplgcnSv8vdq0jUZAvO76XkUGqekxGWV/1bTyINvHErrUJkkvcCjFPzgN+7ERpM9mUZkyUQlm6ZRCvUS5j+WriBZ9bVIPJgx36ayKWyWroveun2Cicg5HKsEP/Cyh4VIQ+lKVZhvGkaPcAhyOnGXboT0LB8npt7Q8CW9mhf1DiBb+wQ38vFFCcSrExNxnYzw79UxIvuMMO/XOpGcpdKLA1gBj9rY6/zDE+nzoppSboQsZ3R2AyTa5ETuzsOe1G88oBqJj9kl7QvsJSCFMXak3g2cQLOrUxfABlX+fV7ZwF3NtiO8eQ74yfhmpEfb0Nx1XZZnC44fv9kP21IbXaCABHJV5weov9NeJF5GQYK1Lg/jEGtw5EWWeDyLZqlTk8ADTN2CqDqTPZTr2BjsIE9n4HvB05cIYReeguO/R3XpIcn7FrbYgybuuzr96HWNwfa6HuxAo0D7T2o7V5MnLU7V4gKZgLJ0qT2LW+jQJp9fbPHOCHTpQ+VvC7P5jssrPRsz4JvS9/QmtoWZ/DwD2xa+2LbKU8UuD9SHlhzDCSS19ADsOVUdbZd5wobZrh1iG8meLgZC+qj1ehQgUWZHG3PHdVWHgw6hb/oI4sbNCL1uYLgD0X9bgWEgJ0Po1zdT9wqROls2PX+jPFPp55wBNovm/mp52GyFh5igguyvxpJIjtCfTFrvVeRD4aNH9/QIG5HqRkcKwTpVfErvUk8AO0Hk9C63OZwlSG1wHErjXVjPMVVJc3r0zIAPBXJ0pz1ZkMYedw4PDYtX6LfBJ56GYx19lzonRu7FoPUexjuHOstdPMnNZqLbilBokX/AF4r1HCIPGCZe4aVGgPy3yAK3atSSiQ85qRvpswcKJ0KHat9yPHxF5ocZmMJvDG4FSzopR7YwJcBb+vhwXErQSLOgXT1zGmNsAawMtOlJY628xm/wJUD2IQmB+71neA05stHk6UnhO71kUow2Qyyky5ldEBifnAn8rkPpwo/QuwR1l/BbiL4rTwPuQwX2SIXWstxJbfGAVWz3GitEgWZpEi8YK5duhfi7KAGgODcxHzZ6HADv1pKFvvEGSYPQB8K/GC2xsO/TUKVGXzar1xO0Bt3LOB24DL7NA/ADGsyp6Dz7YQALqBsReLnYQC2hn2oJaBliGTHDjXyINdQGuMrkwrPEi84Mt26F+NDO41kOTAWY2yh01wP5IjKpIx+jvwF2CzFtrqJFvw7ShjNi8I24sC91WAq8KEgXH8n46COYNAjx36vwEOTrzg5XE2fx3K+pnGSDtzCDmcrm6xnXVKvpsErGLk9oaBx5owGi9C81zevGUh5igAiRe8bIf+u4D3oMyQV4GrxyNvlHjBgB3656D5r9ncmQWi6jEPMRhbgh36XYkXDNuh/0FkQ7bLwJ2DstWWmABQAX6AbMTMydOFAiBbowzAJSmT9RcoSFW/ziyH5I4/SfOM/z7KA72vorXTA9ZDsoBt12p2ovSE2LXuB76K5Lb/DZzkRGlpzUsnSn8au9Y1iIC3AnC3E6Ut1/51ovRxs2f6mRk/6Fr9BDh0rE4lAFMz5QbEIM7epa2BX8eu9UUnSpspNnQCj6H3Mi/INZtiGccKFSoswbBDfx0k+b4bsld+B3zd1GBeEuAjab489AAfsUN/5cQL2qklPVHxS7SHrids96P966Gg+lexaxUpBQygAM4Ast3y/B4ZhlE5kjx8nfy1YjqG0NqAjdB9+nG9/8+J0h/GrnUJevZmoBrXJyH7uMzvcEDsWm9B5G/QnmDVgt/0IkWYC3K+WwBDMnl/ySFDTpQ+XtbGIsKXkU8oT1avqfJEhXxUga0KraJreHiZyHAchdi1JgPHITZeD3K8XAR8xYnS2YtzbHkwtbZWQRu1HcbQxPlOlB5c195fGOnUrsdfnSgtSq+eEDCawg+igEP9Zr8P+K4TpW0VcTRtfhQ5EIapsUcfBj5Upm88Hhg5l8MYuQimSEt/g2ZBvg6O48OoXoaFjK35ZhyHOFH6sxZ+/zbkSMqezduBbzpR2ipTvyns0H89YhitSs1om43u0TaJF3S8YL1hi9yJsijrWe99wIGJF1xmjtsYBWzyjMlBJFkJYvGfg651Vkh1jYLuZwE7J15wW4tj/S7wpYIxlGEYOW4+kXjBbDv0b6R4jnkN1dg4lPzsjDx8M/GC79aNcxskNeCgQOrJOcHCXBhZxNsZbTTOBX6ZeIFrh/57UQZamUO3D2VjnNXiOTQb146INbZCwSEPJl7w9k70VaFCJ2CH/u9QZnc9u3M+cqLOHG/hXjv01wJ+hd7zTMf/CWAXUzS5lTZeo3ieSdHGPmODvgx8PvGCawva6kXFqtdhJHO2o3NBGezQ70H1UrdrcujfUDZGD7onFvDpxAuK5N2y9ldAARsXrQOPIvto/TaGma2jJwLHLckyKKZ256sUr4nPJ17QatbvYkXsWuuh56Io++5+J0qbEjuMo2pPRjuZ5qEA2YdQltcM5GAbBE5xovQbYxv5iL6nmb43QbbPJU6UPttmG5NR/RYX2apXAWGj0kTsWm9Cc8OjTpSO2zaMXWt3JNWYd/0HgJWcKG0sAt9RxK41A123PAb8a8CaE3H/WqFChbHDBLceYGRZiWFku2yTeMH9i2tsrcIO/f9RrsAxC9g68YK/tNu2WRM8RB5aEZGVAidK/1H6w4UMU+t+d7Rm3AzcW0+yMPP5pcgenI9stT5gDydK76o77q3Ids2T/Z6D6lWN2kPHrjVI+/WzXgVe34zwH7vWGsi+zMuWrkdR7e08zHKiNG9tq+93OWTrFyVoDAGTxkNm6QRi11oT+cR2Q/c/RdfrC06U3lH22woVKowfy3IG1yXAhxnpBP0U8I7Ytd7jROmEKtpnZPqeil3rEWpZR61iNnI01eMo81njZq0PsS4nBGLX2hRJLM5DurxPmq++jMaeJ8l4bOxap7e7qXWi9DdG7vAjKJj4APDHhbxQHoNYLcci48VC0oyHZMEtwxzdGdUo60b1I67pVIadMbIaa5JlDsBzY9e6xYnSwiyb2LU2RtlomcwjiH30QcPi3adIlqYdJF7wnB36G6GMg48jg/ABxNT9tR36NwPnJ17QyWDkvsAGjH5PsmymqxMvmI/S/IscwpOA2YkXvKf+Qzv0V6FYRxpgSqvBLYNvonelsQZFSrH8Jua79wPP2aF/PuUBsl7k/GrHaF5Q2N0O/a8A36YmU+gA29mh/+3EC05u1lDiBffboe8iecRMU3wyCtAdYo65y2QtnIbY6N2MNLLnoCyvUqZYm/gHxVl4g4i5V6HChIAd+psh9mXjhrkHZUh+lNE2Q1tIvOBpYFMT/F8PBbf+3GrAxAQnit4p0BxUL3fTi7JiP5p4wS0545ljsrK+hyTPehHx4OuJF1zVypjGi8QL5tuhvyuaE4vOLavf8F5ENBgELki84D9lbZuMvHupBcYA3trG8AaQLXIQcEfiBUuDtNNylEs9l62/Ew0rI5unKMC1SovtHI7e/Xqi0ByUZbUJItxke8PJ5u9LsWvd4UTpb00tjJ3RunqdE6UPtNKpIUHdip77GSiQenzsWgc6UXppw7GrIfLhzua4C1Bwqdu08ba6sW8GfDV2rS2cKF3wjjhR2lIQvcWxdwGfp/jaZ4TJwoLnxgm7v2lnRZTFf6ITpXGr4zD1xj6MMmSzOqqzkS30oSq4VaHCUonvMbpmeheaA3+M5vOOwA79GSjgYqE6xZ3KqCqqyZqhh7oaz63CzKs3oXWgvv78HrFr7exE6ShbcFHBZBKdUvL9LOAjhoyxCbK/7mz0PzpR+kjsWnsgYmwPtfV5DloXiwImL9K6bH+GbmQ3NiuLsBetZXe3GtwC2b7NMAd4Esk35uHPEyC4lUcYHwK+XwW3KlRYNFgmM7jMRuuP5G9WZgGfcKL0hkU7qtZgmBwPMHrsmS7rECMDFfNQhstmjfr8sWt9DBlHrzO/fwWxC8bl2OoEjGbvNai+wGRqwYPTgaMRE+ItBT9/FTFa7l7Y4+wUTBBrNcRgmVX3+XTE/NmIGlMmkyJ5X6sbWlOYfFXgicaaZrFrecAZ5DNx5qGMuONL2r4ZBV3zDJnsudrQidL/tTLWVmBqHl2IAl1ZsGSuGe/WnZJtsEP/Dmrp9Y14Ddgt8YJb7NDfHPg9xcGhmxIvWJAVZca/AQq0FAWrX8FoWLfiFLZDfwM0N+RtJLIMimboQ+/WO0qO+QFwBK3VcRkE9k284HI79Nc2beeNrx9wjFO8KYxs5A7IUXaPqfOSd9wU5LD/PLAjtRp5F5nAZMdgh/6vzZgaHdd9wLsSL3iwk/1VqDBW2KF/FHA8xXPPOQuzpqEd+uuhGn+vADfnvYumZsOztF+L8o+JF2zRwhi6Fld2kiES7MvoObQfrWmPAD9HcsHz0X26EBVVzpUMtEP/M0jCsN0M3uzaXw0clnhBkdzNEgc79LuR06io7tTTiResvRD7nwJsgeyT+xIvaFaXtRCxa62I6tTmrZ9DwBVOlO7VYlvLoWDLPmiN/hnKjs/bW2S4CWVM7obeyayO5u+APeuLwuf0ZyGn1BqMthP7gLdnAanYtRwUqJ1G7VznIBLJDSiI1DjGQeAGJ0p3bnLeKyB78dlWSYyxa+2NshntnLHXYzawfJ5zzUjh34jIR9n7OYiuXy77vsmYehHh7X0oWH66E6XPtNNGhQoVlgzYoT+b4nV9AFg18YJxS67boX842t9lc3kPxucyXlvJlBj4CMVz6LWJF+zSbruxax0AnEX+9fkvYE80wvpYYfx/X0Y2xX+RfOH1RQGd2LW+gfxlrdZcBa3Hm+SRkk3/GwHPILWjTtpOc4CDGskueTDBvp+RL/+3qxOlN3VwXG0hdq3l0fXJex7nAm/qpC+sQoUK+VhWM7h2pJh5sBywC9pITTgYJscXUWCqGzlTZyMnxfao1tbnkTO7C6U/H55XfNqJ0l/FrvVralr1/1zczIc6nIL07bOFOXPEfREFBcocBVaT7ycczP3J26B+GzF76p0ay6HgSICuRyFMXa0QBWnmA1bsWucBX61zSKxOsQE0BW3si9qfDGxDsdGa1W46DGWrdQq7IEdgvRGROUSusEP/rR1yXpaxzobrvv8Teg+LNiGb2KHfnXjBkB36OyCZwtUonocGkPNjEBg0tau+mnjBUyXj+XLJeFvNuJqODNgyWYFtkGzj+0r6yzCApBWgnPHVheauk1oc51rIwbMT0GWH/m1oE/aIyfx4P7q+f0284CEk3biwsR8Kyr8bXb8Une8BVXCrwgRDP5pb8gJcQ2iz2XEYmcBLgQ+Y/oeBITv09028oLE+zywzznYDXO9sJXi1sINbhsSwHQpSPQtck3hBRi45FM1hW6G5OZsrvoukbh9F5IZuanOsh1jcnyzo8pO0F9waRMGJ/YA5S6O2vVlvf4hqHjQ6Q+YgZ95CgR36B6IsYtBz3m2H/tGJF5w5lvacKH0ldq0IZR82nks/bZyLIUadY/4AMLWryjLEMiWF+jV/OsrW/xaq91GE7RgtJ55hEsq+zpQjIvSc19sKvcguWb9gfJOAHWLXWr5RqhAWOObOQZkOQ8DLsWsd7UTpT0vGTOxa+6P6rq3Ur5uK3uk8G21fRga3sjFPAn4eu9babe69tkL3ezo6n8Ni1zoLOGppceZWqFBhAcr2b1lJhXHBDv3dgO+j+bV+jv0iCqac3ko7Jtt1M7T/etCJ0ifMV99C60DeXPofJDk7FhxCsd2znBnLfWNse6Eidq2N0HmvhqT3LymTuTW14D/TRhcnoP16tva0kk31DA21HGPXWhkRoDZDe/pu2idSFSHz1Z0JXGZI3bsiv9Tfgd/lZLRdaUg6p6I9TCbt+PnFGdwy+HjJd13ITm/Vz1GhQoUxou3iwUsJUooLLQ9TY7ROSDhReiHa6H0XbdqOANZ2ovTPTpR+DTlG3oQ04b28DV9dW8NOlD5m/iZEcMvo9Lvkb2R7UaDkQmq1IhoxCwXBlgZ8lvwgwhTAi12r8B02BsC9yMDJZGGmIwPpwrpD/46MgzzMRqzeInTR3GiagoqkdhKHkm9gdQFrAp2qd3QNxc/ZFOSMzJylL5W0Mw2YaYf+VshQXBfdi7yNyzy0YckCYD2obsX9dujn1usyTPH9S/pv590eoDxAPB3piv/GHFc0v8wDbk28IDOWV6LYWT0FyfY0hR36myDJv73RXLcSMogfNllUz6BrfA5wnx36d9ih/7pW2h4PEi+YlXjBB9Bm4nDkkH594gVXL+y+K1RoE1dTPG/3IwnnhYEIOcqnofVoefTeX2EyUBfA1AD7McXzbxEGFnfdKDv0bRSkugY5os8BnrVD/0MAiRfMTbxgRyRD6CNywrqJF3wf+DSaYxvX9unAnqbtPJTZ8ykj5/Q+lPlxcOIFLy3JwS079FexQ9+1Q/8QO/TzJBm/j4p9Zxne/ebvZ9QFeDo8pl0Qu3p587cCet5PtEN/n3E0fThwJbV19zWUBbmPE6XjtXn/RbkkaBf5tug04ItltijwRoqdtD2IsEXsWm8ANiX/Wc7mjCKk5NTANCSvexFhrgedw+rAWbFrFWapmvM5hdaCW6Drc1HsWo/ErnVJ7Fr1WfBlTtgV0Tm3hNi1ZqK6Y6uh67ECOqfPoj1hhQoVli7cQvEe7vEOyQgeR/5c1wsca7KhS2Hmpn+h8V4MPBy71nWxay2feMEDiJj6JLI/5pm/s4G1Ey8o2z+Xoaxm0xAla0bsWivFrrVGk7VroSB2reNQ4O1wtHc/FXjcZDB3BKaO1g5ov/4rapl5RegDDszxBV6P9rXT0PVejuZ+n3kUl23IMID8CBsY3+X2iAx2DrLbrgAei11rncYfGnLKaojMuhWwugl8dcWu9ZnYtf4du9Zg7Fr/jV3LN2TsRYE1KLYZMhJMhQoVFjKW1QyuX6PslzzMRZPqhIYTpU8jiaG87waAhZoCa4JQawAvOFE67tT4BryBcof8usBPgINRIC/bdA+j+/fpZizG2LXWRlInH6Km8f+TRvm+xQljdJUZb1PM31xz/FRqWtz3IqbvCox+z6cDe8audawTpU8h4yUrxF5v6A0jlndhYXsnSufHrvUnlDJfhk5n1K1e8t0g7etOF+EcZID2MNJBMwc4M/GCV+o+K5tPU3TdM9ZtHgaAx9B71ehostC9/Kod+jcgtvSGyBj8oflvWU22YfPXiiGf5vSfoR9JScwGPm6H/htQsP0NiK2+HNpUTEGbnL3rfns3Cj7nbThmme9bQSZHkWdg50kUbYHm/CKpyY7CZGtVGVsVJiwSL0js0D8ROJKRjtc5wOXGGdFRmOD8R8l3kveYsRzU8Pm3kfN7R3PMEJqfXkBEhsb5LEUBgMUGk7l1PbJTsjUhm0+vsEN/gywT1xRUbwxMNNaGrccAsCWqmdmIS1G2d95v56PM/k+Y768CosQLRpETTIaxj+owPAWcDFy5uIOGebBD/8vIDl5QTN0O/RuBvbOgXeIFg8A+JoC6E3pGfpN4QcdqNOXg++Tfh+nA8XboXzqW62kcVgfEruWjTOFZwK1l8oCNMI6eVYFX6u1dJ0qfjl3rNpRd2e7ecDpa+4vILv+i2Nk1j9p6uQJ6xovsj7RkbFPJ3zd8lZqMdT2mA9+PXev8guv3ZtpjqXehIBpIPv1jsWsd7ETpJeQE3uqQG5grwdfJn0N7gcNj1zp+Iu1jKlSoMG4ci4iqjfPRXDqnTlFWr3N5RCQsDKTFrrUKqivYmKm7HSL6bJd4wc126K+L9oxTgX8UScUbO+rdSGHoceCugjXzt2i+zSNPTiGHoGvqSJ4LvBPZlC/FrvU1J0ovLjq/TiJ2rW2QvVtP4l4OrUnXxK71tk4Rzo0v7KbYtZ5DAaSiQM9sYEsnSkeUd4hdazPka2hVSWEI1fM8FgXt1iw5tgt4wInSJ2LXWhMR7+qf8R50TX4bu9ZbG6+JqUPfeH9PBw6sa+cNwDeA98Wu9dFFQOT/B7qWeX6O2cBfF3L/FSpUYBkNcDlR+riRafs0IyfTPlRH567FMrBxIHatHuTcXR8xZK7u5CbHGATfQGyJKWhhngdMjl3rOuBgJ0o7VYz0ecpT8p9xonRO7FrvRkGqA5FxcDdwnBOlpenosWttjIpyTqO22H8fODB2rS3LUsQXJZwoHYpd6ymKdY5fxASODBP1RGRcgBx/T1G8QR9Em/GLnSgdNPI0v0WOj0wyaQ6tFa7+EqrPUOSU62NkxlgncB/gkD+HTUFGxriReMGLdui/CzgfBUgG0LU7gdFB8usRUznPgJyMDJuyYsBdqCbGPQXfT0ZZQQdTu9YrocBSs/OdT3M5wQy96H6+j5H3dAhtqBZILCVe8D9MMN0O/ctRRsIqSBqw0YF4vTl2GiPvWxaQbyoLa+rybEZ7hWt7gHfYob9x4gXNCudWqLBMIPGCb9mh/xeUEb0ekok5GSiV7RoHNmK0xFmGSYgh2jjGAWB3O/RnosBPioLVA6iO6nLU5tv5iKjhd3zkObBDfyq1c3qwzvmyBSODW/WYBHwO1UUoQmHGPXLgj1qP7dB/B7IFZqHrUb8G9QHHJ14Q2aH/DFq3TgNOsEP/l4CfeMF/TTtfYSSTe3WUdbcNypqeMLBD/8MoY6XxedoROVa+UP9h4gUPo3q0C3tcXcghVIS10fUds51p6i1d1c5vTB2sbyHH2iTz2TWo7u4L5rB9gYeQU6gd9JPzXNbhVpThnsf8HqKWSfdEk37K1v1h9Ox+uuHznSl26lnAXrFr/RXJadU7vwZoXdoZRgbbu9E9/knsWtciss96FDth/5zzeRHeSzFRKUV7wJbai11rQ2Ad4DEnSv/Z7PgKFSoseiRe8Bc79D+AMtpnornuSeCIHGnnseI1YOWC77povl59mlptxnpMAd5tgjYPGTvpkbKG7NB/M3AdIntmeM4O/Q8lXhA3HP5DRIxqnFv7gAucKH25/sPYtd6EfHz1a9EawLmxa01yojQqG1uHcDj5/pJuZB/MpPMqRA+ia5JXa70fOKUxuGWwKa3vt/uBa4H9nCgdiF3rs5QHuOYhMjbIr5FnM1vo/myF/HaFiF1rXdNOo004HdmwTdvoAH6NbKE8W2cQEdEqVKiwkLFMBrgMjgD+hpw7a6Ggyg+B0yaKVF+rMMGnm9GkPh05oc8ybIVxT+axa22NnNNTGbmxyjaNHwHuil3r7e0wSYvgROns2LWuRLJsjUzOOUg2BCdKZ6EN+7fa7CJC7Ir6xWc6YgEdhqllYBglawD/7mDwrl0cj5xRefUjvu9E6XDsWh9HjsnGY9YvaTcLVgDgROm/YtdaDxkBDjKef5dXu60RTpTeHbvWTqjW15sbvu5HbJ6wWTtt4mTERm+cw/qB/0u8oJMFt9+IjOcBZLicC5yewyY7FQWgJjHy2ZoDnJJ4wWw79MtqXECtLk0R8jL6piHmflEG1xAKrr2NfOO2Ed3IEHyRGuu6BzGlvMQLns37UeIFQ5QYj4kXpHbobw1chpzA89D7fR+wl5Eka4Ysi6NdDKFrVAW4KlQwMPKZi0pC8znKbc7CrPPEC/5KA/PRDv2NUW2lPdCceRlwogm6LzSYAMaRwDdNvxbwsh36XuIFv0NM6KI5vIfmcmQXItZz3lzdhZzl2VhWQxIvG1Kbq9O6Y59F9tGFdujvAVxEbf2ZiggVHzTXchL5AaNe4EA79H8ywQgCXyffSTQN8OzQ/2riBQudrGSH/mQU/DsUkTv+gYKtZVlIuZKQRhlhdxQMeQK4ooOEq+uQXFE99gTeGbvWRk6U9jtR+pIpTP8jWifEzAXOblRNMMGTdyPH6fUo8Hgrep5mIGdbF3KGPWlqb1zcpN+ygFM3qvPZGOAq25PMQBJZIBa/3QyBFQAAIABJREFU50Rp9n7l7T8yZBnxQ+gdW538oFOKslZPQbLreU7YsNEJ2wSvUqxgMBlJVpbCOAKvQrb+ANATu9YfgT2dKH2+jbFUqFBhESDxgj8Am9uhvxJaq1/ocFb1T5BfrHH+HQCuTrygmQrL+yne26aImPhQs0GY9fR2RLKon1OnA7fbob9OvaSyE6VPxa61LZLVts14e9A+/aicLo4248zL6D0pdq2LWvF7jBPr5vSfYRAFhUoDXLFrfQj5L99CLdP+8iL/pROlqSFCX8RIu2kA7fXPaGj7OETgmk9rvuJ+M4ZTTXCrC5Fky/A/ZBOA7OKi9bYb2CB2rX8Cs0pI13kKLhmmI5/RQg1wmXPfFpGEV0TXbhDZSTtNFAJ9hQpLO5bZAJdZBC4wf0ssTObWzWhjnS2YmWPkOlO8uJ3NU2P7XSggVKZD34MCQbuRL50zFnwBLa5vpiZ71o9S3c8fa6Oxa22K6jPlGRfTgINj1/op8HO0OZ8HTI1d62qUpdYsm6nT+AlydhxGbaM+CTnBMoPkePLvj4U24UWFvW+MXWs74B3IwLnKidJbqRkcLcMEUteLXWt7lJq+KQoGnQ+c1GnJlMQLHrJDf2/kEAEZQBbKwPxUp/qxQ38/4Dxq17cXGc0ftUN/y3pDO/GCJ+3Qfx+q7fEWagGnE1CGIEj+dB9Gz71DyHH5CHJQ5GXepeg88+6nRU0GstFI7Ebv0hRGPw+ZMdzYZiYB+HXknHqlE45j08Y2RqbijcATiRc83kYTzyOjeJQmdxMMmd9WqFBh8eCvqFj5mxk938xB7OSWkXhBQi2wsChxKKPrVfQCvzLzf0I5SeGDduj/GwUwHgB+knjBo3XfX4scPPWSRMNofj8oczSZQNsNiLjQmKHyGrAx8FTiBcN26FtI2rXRATUZ1TE8AtUuLCIPTAH2Y2IRBMoklQaRs+vRkmPGDXNdr0eZ2dnzsIXpP2V0QGYQOQtHkVGMFNBv0T3pRe/Ej2LX+sh4iWqxa+3I6OAW1BjjbuxajyLb45eI7JeHLDg3lVph93tQsDfrqxcFT95HTVLUQkoL66B6rBuhdfzSuv3JxUgyfDz70jwH2UXIqVkUOFuu7r/Xxq71HkQkOo58W2sYjX2mE6XPx651BQqy52ESsKKRYNoeOWFXQ8/BFLT//HLTsxqJs8mXuh4GYidKS+0pI2V+pxlH/fP5HuCW2LU2XtJInhUqLCtIvGDM/pwm+B5aI9anZnfMQfumw1r4/bNovs8L9A8BrY57F0Q8aGyn24xrdxrKJjhRen/sWm81Y18R+EdJ7fk8YmyGqaaNjijAlOAvyA+VR9jooYndErvWyUhyOrPnVkM+oW1oyFyvhxOlV8Wu9SpaPzZFNuWlwLFOlL5k2v408i1l60sZIbceU5Gi0lGxa90BxJSv5cPA3nVrzT+Rjysv29pCJJEfAlbsWjcCh5hM9sbjigKHXU3G0zE4Ufpo7FpvRHLPb0G2/m+NpGKFChUWAbqGhys7dklG7Fp7oOyYPL3XPuBoJ0rPyPmu1fbfCvyJ1rToL3ai9JNj7SunbwuxPj+MFuLLnCj94zja2wSxN8qyWJ5HTIs1GLkY9gP3OlG67Vj7Hw9M8e0PoUX6RidK/2M+n4QYNmUp5H2M3Az3IbnJg1D24hTktOgGDnCi9ErTdjcKnM6ZqKwTO/SnAB9ERu19OfIF4237OfKzpuYAX0y8ICr47Trmd4/VM9/s0LeRU3NFaobcILon70q84BE79HdDzp5GeUAor6GVAjeiOiN5x/VTu8/dyMB8ATHlipw/jyResEFJn4scduhnG5xWNcFB8khvMJJnzdpfDW3oPoauVwhcmHjBElnXwjjC3wVsjjaZv0q8YNbiHVWFZRFGavA29O5OQ3NQHwr8exOxzlM97NCfhNaElXK+HkbZVLsBT1NeJzLDINrUH5V4wQLpV9OPSy0r6AHge4bFnR3zLkRuyrPN5gLHJV5wgjl2JnJqF9k+/0aM5+9RLOd2buIFh9ihvwI1Asv9JnN3kcMO/YcpDnKlKLBxC6op13YN0Ni1lkeZegeitfgOJIG9QP7NDv2dUdAi77pmQcnMQTQXzb+bZZKQdX1NRQHGvOdqFrDWeGrdxq51LzkSoHUYMv1Y6L7ORoHorG5nv/n/vVGQ+mPm2GuBe+oDIrFrXU5+rb0+YKv661f3m7WRU6/VrLEi3OVE6Yham7FrrYgciqvT3GYYQsE5C9iVfLt6ENjGidK7TfuHIOZ63ns44pwNYXAjZP/93YnSptlWjYhdK6tvOrOuz/noHr3PidLSIHTsWvujYHfennEu8B3grBIHcYUKFZZC2KHfA3wc1e+ejLLiL24lEzp2ra3Q/jOPbDsPWNWo7jQbw3eQf6IIpyRe8JVm7RSMcXdkaxb5S/oQcWGhyrUa1aV7GX2t5gN3F/mZTFb0FagubR76UB2t0jpPJlt6b6QU8CLwUydKHzAZ5M9T7O8rCmDmoYhcvWCsTpQu6Cd2rUxaNy+g1tjWILLDN6hfp2LX2gC4v6CN2cDHnSgtLIVgyDlTgZcWJskjdq2NkD3ysBOlycLqp0KFZRlVgGsJhyk2/V2KmQk/caL0M+No/x0ooyfPyV+PYeA8J0oPGWtf44EJxqwO9OfJCZqN5aMoG6po0R1CjqS3ku+w6EMbyFFFS1sYXy8qaDoP+FOnUuDNefVR7BgYRmzuHmQU3I82sCegzK3G56YPOa+2Bb6Nil93I2bx550ofboT414SYDTPr6L42b8j8YKtC74ra3d1VCfmE+ja/hrVSHmi7pgPIxbVuui5fAjJyZSxqeYjGb6/UOzIeRo5Tt+IGFazqRUGzsPzwJWoOO0sVCsjKioMvKhgh/4+KLO0/jwHqMkG9aBrOw899x9JvOC2Ftp9C9p49FJjg/chB/CWS1pgyA7916Esjw2R0y6rK+IlXtCpbNsKyxjs0F8ZOWmfbncusEP/9Ugnf3s0v5wH3DzRg1sAduivhzbhRYGilxMveJ2pifV7tL62Qg6aC7zT1IlqdSyfIV++OMO96Nr+Bc2Lt5Pv1AYVcd8X+F3BeGch6bd3I+ZwRpSYDeyfeMEtOb9ZqDDnfyr5480cMbPQGN/bTqZw7FozUI23dajZVpmKwM6ZjJ2pYfbxgmZeQ4oDM5HN+QsUJBzFZI9da18UYMx7ruYARzlRenbOd62ez3OovupYcSfwCSdK/1t2kCFiPUF+JtUQ8EsnSvfJ+d3HUO2/FcYxxj4kATQq2y12rZWR0/ST6H2ZTLHc4fMoG2Gjgu9fBfZyovRG0/YM4F+ofk29828ecJ8TpW3biM1glDv2R/PoDCQ/eXpGfGvy23OAz5YcMg/dq+8BP6iyuSpUqNAMxhfxIzQnNe4/56H1dNtmWSx26H8R1RPP2+v2A19PvOCUMY7x7xTP66B93nqLYs6LXWsvlHU1hNajQeSj2qHAh/V68/0KFPuwMtLqdUgqcBTZwcjT3o1sjeWoZWWfi/w8l1HsDxhGe8hJtB7oKsIVTpSOsJ1i1zoYOB2tzT2MJmfXow84xonS0xvauAwRbOp/14/UB97TKKVsfvNmRPrYFp3jsyg54OdjOK9CmCDeVciuzLK4bwL2rwglFSp0FsusROFShKeQcyTPcdEPPDbO9v9BawUm+5Cs3yJH7FqfRAGbFVH68gPAZxsW941QVlbZufQjdupmBd9bSHal5QCXMfqOMX8DGKd77FoHOVH6q1bbKYKpwfULtNnNY153UXMazEEs5BeQrFHe+z8ZBQ42ZqSB8CHgT7FrbbgY65GNCyYjaw9ga3QNLk68oKzYbQ/lUlNjYhsb9vbh5i9vnBsAJ6GA7SzTzxo0lwoYMn+ZBnkeVqx3RtqhP51iR88QYpQfRO1ZOQ34lB3629XLMy5qJF7wCzv0r0RyPbtTqxH2BeTw/DySqLoHOMvImbWC89E80qj9vh6Spvxm3o8mMC5HDtbsecie2dAO/X8kXvDgeBqvyw57P5o/r0q84KnxtFlh4sJIi16I5KwGgSE79E9CAfqWMnkSL3gOyeoev9AG2gLM3PcJtN4nwEWJFzRzEM+mOMMJTCH2xAv+bLJ4P4nmzGa29iTkGGpHruw5avW28rApIkl0ITuuyLE0D80Tf0DBsHcycm0bQBv+zYFDzHfZ9zOAa+3Q3yLxgqb1NTqMC5Ck0k5ojq637bL5e4b57mpE/mgVX0DSffXXodu0dWHsWusaJ1iZdHc3Cty2Ipm8HsWB0F6KGdutImF8Aa6tzO9LA1yIHNZPfoCrGz1beXiRcodZGRt8DsrQPqQ+uGUUIDZDa9/9TpQeARxhssX+VdLXHCQVvWHBmHrqf+9E6azYtbZERKD10PsyBTkLO6ZoUQ8nSuejefjCMfz8eYqloKB2745F7/0SLeNfoUKFhQ/jizga7RcbMQWtvx9D82QZLkUBriKMx89UVpcc4CuLKqDvROllsWvdjTLA343WmnWBQ2LX+oETpUOGmPEl5N9ZiVrpgCJ0oXV6f+DjpqZkI5HxCnNMtu+3kB3zGWr2Uln7/0ZkqU+i+9rVZExF+EnjB06U/iR2rd+hWubrINt0L/IDbtORP2dBgMtk3V+LrtPWaK1OEXnmqILg1hqoDnj9vn8t4LzYtXqdKD1vDOc2CrFrrQDche5jvV2xA/ArFFyrUKFChzDeCHyFxY+rKa6bMIzqAY0ZTpTOQxliZSnqfSg1/a7YtXaKXeui2LUui11rXyOnsdBg9ILPQcGAaWhBexdwZ+xam8Su9R7DmliZYgdPhsfQQl3kNBpEDq52cDjS/5+OAk0zkOTQJUbrvxP4GpK3mdvkuF6kkbw1xddiMqoh0WjkWMjIWCwZeuOFHfqZUyNjr34VeMAO/eNKfnYPxUVP5yImTkdhCgjfiRxa2TMzBT2/ZRhAG4PHKXd6/r3+H0Z271fkB/Iyzep65+x0tFHxmoxnocIO/W7EiP8EMkynI+fZbcCsxAs+mXjBtokXHJMFt+zQ38kO/Tvs0H/ODv2/2KF/gGkna3MjFMDOWxenkr9xm7CwQ//NwJbkBzt7kPzWeNrvRVkqv0NrxA+AR+3Q/+542q0wMWGytv6A3pEpaD2Zgdafkxfj0NqGHfpvA55EjOMvoGzlf9qhXzqvmRqCfyd/vuxHgeN17dA/E0k7H0j5fJxhMnJutIPrKbb9QO/4cug+bYKCAI0yqykiUZxmMug+hDKK+1GmSj96x3dA1ynP+TEF2TiLFIkXpCh76iPICV9U+8wC3mLm91bhUUwoWQXYwAT3y5QNJqFr1wqeoNjG7mP8RLXTUYb3eFDmdMzwX8oDwI01MzLcTbFt3UdNIrER88xv3+hE6XXZh7Fr7YrqZP0WObyei13LN4Sz1ygm9YBqBZ5CraZpPQaBBxolrJwo/acTpTNRQG13lAXwsQnKyr6I5nsh0Lt+nLlmFSpUqNAMH0Rzch6WQ9KHpUi84AW015pLre74oPn3IeOsBV02Hw8gm2qRwGTh3oD8LZPQurkSIkOfE7vWqohw9BUU7Fme8nWrHlnQKoxda6XYtfaIXeu42LW+iXwLee30Inu1GRlrfeQHWg4FucZSl74fWDPvCydKH3ei9JtOlH4KZcCXYYFNE7vWp9Can2ViTUK2wRpOlH6+pMzGkehcGvf904ETYtcqs2fawQHIj9DYzxRgi9i1Nu5QPxUqVKAKcC3xcKJ0LkrHnUVtgzzX/O3jROmzHejmZCTv8YrpZ75pfzbaeB+J5G1uQEzg/ZHj+Vzgr7Frva6s8di1umLX2ix2rb1i19q81Q2VqT91AqOdLl1owfoTMlgeQA6QZvInM1FRyCIGj0XzBbdxfN8kn5k7DRWxHjecKH0eZVwdiyQIn6HYqWYhA6fo3R+iePM7lWI5nomOq1CtqSzTcTK6B0faob9d3g8SL3gFFTVtNIwyp2BHmD0NOJBaAfd6NJur/wEcZuTCTmW0IxPz2Yhnzkhp5dWaGKb4GZrO4g907o3q89VLOk1D7/gvQUEwO/Q3sEN/Qzv0v4KYaxkTfSYyhEM79LtMdt+NlDPRymr3TUS8leLN5iTay2jIw5mITNBr2ssyO75k6shVWLrwGfQONG6Oe4HPGTnMCQ8T1L4OkQayd3oKenbPtEO/qK5Thk8j26e+nt9cFKS4GUmhHIyyOTIZ4Gas4BToNfX/WoLJoN0DrU/Ze17Uz2REAvo6stlSM/7fAJtnTqPEC2YlXrAXyn79ALBu4gU7oqBOUf1CC5FmFjkSLxhOvOC2xAsORllARfP3AMrIahVl2dkpWmtclCWXh0Hg0sQLWpV0vpLyYOV41REuRsGetmuR1eFNzQ5wovRRVCw+71yGgf/FrjVqHTXM6o+j96p+zZqD1u13kb+WTUEkjgV2qakF83P0zC6PbIJetIf5PLAN5YS9lZ0ovRdlbPejd3vY/KYP2DR2rYHYtW6JXWuLhvN42InSW1qRClxccKI0RmSUOTSfl1ajNYnVChUqVOihfA/VkupJ4gWXoP3JOaje4LlIwvmn4xzfeeSvgQPAVU6Ujmd9bBe7I5ukkYA4HQWOTkLz73hI4sMo4ypEvqijKVeCacUnPNeJ0mGzZv+GsSmBDVBgi8SutWrsWqfGrvUsym4rWn/moMwsDFn8LHRuWRbaNKQ00UzaeVeKFW8s4O1Nft8qPkD5WvruDvVToUIFKonCpQJOlN5pZDf2R1J8/wJ+1qHgFiZl+7TYtX4MvAWY7UTpCBmq2LW+imSq6tkOy6FC1WcCo3T3ze/eCPwfYqikaEF5OnatjzpRWiYjghlL0eLfZdrKglpNN+cG06ixhTJDYNj8+2ttyvOtRfHCmUl7dQSGKXoauk/fRzWe8tCDCp0/R366+wA6/6JxL9baS2OBHfrrU6tB1IjpSBaqqIbIMYj5fgy6JhZKzz848YKXWux/C2RYvhMxjE4HflEg6fVBiiUChqkVfc8wiLI49068YCh2rddf1z3p8o+/5/OrzZk05UBqTqFJwOGJF/y2oc1vk2/wZu9PEZrV5FvY+CL5xmIXsI4d+oeiaz7DfJZ3bC8KxG+KWGll6+Ew0pCfkDByazuh870n8YIY+A/F5zSMMljG2t/ySDoib8Pai6791WNtv8KExK4Ub47nIUfzbxbdcFqHHfqrouyKWWgeX4l8R8wk5AQ/rKitxAv+Zof+xsgB/mFM5hbaSP+R0YHwbB4tk1mzUPD9X3bo75p4we9aOC0SL7jZSNp+DjGBN0BytnlIgecTL3DMfDGQeEFu0CrxghdRwCjDK5Rn5rzaynjHCzv0JwG7oPptrwI/r5NZfRDZv3nrVg/tZUFdj8gmRbLPD6KgUaHD4qz7f3ZFfNtJN6J78hTKCromTwLJidI5sWt9BAVeu027GUllNydKW7I1iuBEaWrqXH0MBV+3orgeWxEK68OZ4u42quv5cSTFsxwj14cu0//bYtd6lxOlI0g4TpTeFbvW29C7tzWSxzsb3YuNKSbc9KLswsvMv79Lvg01Hdk7B1EeTJxixnNW7FpXoXVuHRTY7qX2fG0L/D52rQ87Udq0vudEghOl341d63bgCPQ+FTk2U8YXFK1QocKyg9so9h3MoQ3VE7OHKbTDxojvoWz09anZaXOQP+TQDvfVDLtTTJrMstPHmz2UrYOZ3Tmmsgp1mE8d2caJ0tdi1/oKCsaVSRs2YgawbuxaXfX2UF3W2irUnqO8tbofyQhna75P/t5kKrBb7FqrGiL4CMSutQny0xWhi9aynVvB89RqwzYiRX65ChUqdAhVgGspgROlrwA/Xsh9DKBMkTwcTf5iPAnYPXat6Y0bWpPhdDtyyNQ7JRzgdlPnoCygMp+Fk4XYTW2DbgMPAYETpbe22c5rlL9juandJui3PVpYr3Oi9Lk2+70NBQDyHBizkcNlRfPvbMHNAlvHUSw31Mc4JS8XE9ZCz0pRIGdE8LOurtCHGR4ePuDJe57a6+k/HH7z6zd85Zw3v//2+ODTXmm1Yzv090Va09NMX2shNtrOdujvY2Sh6lEWVJqDnHRvQ/dqHmLinnzLbSetFd92UgRsOXVocP61d51hvTZp6vl7v/uzt/VbPf2oFkheVtf7KHa6Fn0+SHFAcFHh9SXfDSODuxXm21TKiw5nGAC+1cJxANihvyZijO+J3q/rgOMSLxiv1FReX3uhDNXU9GXZoX8zCt49jebTxnmyjzrt8jFgTXRNijZMbx5H2xUmJvLmjwxdLGZHqB36GyLHxdPA/YkXDJuAyFmIETsPza8WxXPbZJrXaSDxgieQU72+f4fmm+UyZOvT1XbovyHxgrIsk/qxPI0IGNihHyIplCK76Fnzm7J7mdfHY3boP4myQhvPow9d44UKk912J2I1z0Dr0OF26J+LSCqnIqdR4zo/APypzbn3BKRKMImR59sHfNuJ0nmEvl30Y2soHZoxOO/yurGshRjpF1BQe9MQ1WzT7wZorb9kvMGtuvaHEOng6ti12pUVGkbZfyMQu9abUPaZQ6321B0o2DqqwD1aL96Egoej9iuGOPeVnH6aSYzX1xfbvOS46cCjlDsOZ5qg1XVOlP4POD12rfPQvWy0z6ajINyGJe1NSJig3G2xa/0IZec2OqYHgMudKO2Ug69ChQpLMZwo/W/sWhcCn2JkwGMQEUUXS532DE6U9pl6iXsgm3AyUvy4pETCbmGhbF4dZvzBLRhbbawizEX24zENn/8e+DPKlupGfoqUmpJS0RiOQSSlM+s+O5qRwS2o2bJZCY7XkA/lhDr/4MySfuYhNYURAa7Ytd6AfGVlPro5iMzUCVyAbLsime8/dKifChUqUAW4KuTABFg8tCm/D/i5E6WzSo6fTC1gkodJ5vtGp8rO5vPGTWM3cmDsipEbK8C/0WLXDnOkFXQjB+5xwNVNgmyFcKL0xdi17gPey2iHUz9wfv0Hpij2eWgRTJGRc3bsWicip0qrxU9vQnJJ6zPSUJiPFtKd6z7PjIJuxJQ9BWV+nMvI6zoPsZDDFscwkfBPioMdQyiACYAd+j1IhnJrhoendTHcfdlam/Ov3lXSbz386/6P/u9vT8R3nfHhxgzGPBiW/HmMfj57Ud2QD6D6RdnxMxGzugjDKEtiCspMfCbxgsFPBbusP8fquX9qOjDdYrgrO9flB/u96+48fZoTpZ8uabMPZTO0g3mYehzmHIcSL1jUzu17gDdSnJXXScN+GBmnf7BDfx8kTTUFPSdh4gUjshfs0F8LyaKuSG2N3RvYxQ79LesyDsYNO/Q3Q4XmG5+x7VFgdVfkcJyGNhspmgfOSLyg1fowefgvxUxNUD2cCksXLkTO46KslTsW4VgWwAQ+rkFZHoNoTviPHfq7oCDUftTkM5thPg11CtvA8rTO9izL5gIFai6CBWvSx9Am/n9I+u6Fgt+djQLbeTZRPw3EBCNR+w6UrXWDkT0swv7ArWjuy979OYhxe2HRj4wk5AdQ0PsJ4CZTP6tdXIwyaTLHT1Yf8mDg9sQLrrZD//PoGqRmnP0oU3XPdjpyovTx2LW2RvP+hui+DqAMoB+Zw56ggBxhDQ/1rDx/VAypFzgodq0LnSj9a0G/ryFZpoUGc17t7v1ud6J0xHsRu9Z0RAR7PSPt222QKkORvTqdggBXCf5OsQ03iAKfGWZTPEdZ6Bm6BWU8F2X7/TR2rTc4UZo9p3tQ7HB8U+xaqztR+t+S8U9kfAPZC2tRu259yCE4rjqdFSpUWObwRRQI+TJaZywk//5ZJ0rHUq+pozD+nF+Yv0WO2LU2RP61NdBeOm9dmwTcSzkBtRmyINN4SeDDKMPtBOCC+rqSsWu9HdW5ml7XzzS0Bh+J9sCHkk/86gW+E7vWuXUkiv0o3ld2A+sWrLP/Qet6HnrQfrURX6BcUrMfPbNl2d4tw4nSe2PXCpH/IM8++VvsWls7UZpHDKpQoUKbqGpwVRiB2LU+g7K0fLQInww8GbvWzJKf2ZRLfnTTwJ4w2JRimZQZSNKtECbgU5RRNl5sgBzETxuDZKw4CLFU6h1HfUhG8qSGY49FjvCpaAHMJF6OpEDiMQ9mQd4G1USbR61Y/FPIWMkzICy04f+eE6UXI8f4fcjh9xJyRrx7MbCcxg3Dtr+bfHnFfvSMZ/gWktrspaure7irm3nWZP70unWty+3Ne4fFYL/VBCObYSfKZXUObPjs65QHDT6deEF/4gWvJl7wVOIFg3bob7Ti/L4/dw8P9ZrgVj2mA/vGrpVbzNUgpPXMi7nIWbgjsKYd+n9GAebZdujfamS7RsAO/VXs0P+BHfpP2KGf2KF/ph367dRCKcKJ5NfkmEtng1uYfo5HbK/zkMTFNuazh+3RTP7jUdCw3olooff5R3QWPvmO+6nIqfsiyujIHOJdKGv23PF0aurT/Yb8d2oOo+e2Cks+LkNsxrkNn/eh4t9lwZGFApNtewuyFaajIFMvYmzeiYIf7RBgBhl7NtI/aD1w0KxOxRqwICvsSRRoORbNe0/ZoZ9bCzPxgvvQetZHbe3pRw6HXYHt7dC/xw79WXboz0Os0TNQZvazdujvUDSoxAseQAGds5Bc3X1IQmi7ontv6pk9ibJ8TkWEpaft0G+rroEd+msg8kdekKEXk/WTeEGE7NEvI8f9LsDbEy9oNwseJ0r/4kTpO1FgblPg9U6UnlFHNArIqeXUPTQ0sN1zjwxOHcqNdU5BgcLFgti1DkVEpnbreqyb89le5Bdn70Hkk7JnvKwOyCgYeaHLGD33gNagehvuQvJtmkzi+Spkm5Xtf6fw/+ydd5zlVNnHvzOZ7bsgSCeAtIjSuygdpCNVXgVLAoJUF1QgvijSjQICItJNxBdEQUURBOlNBBVBUSHSCb3JsjuzOzOZ+/7xO9m5cyfJvXdmtgD5fT73AztJTk7aOc95nt/ze4bWxCjbt0Z55v1CDaP+sSH6Zu5FtrIPrD2VjO0WAAAgAElEQVQC9YgKFSq8j+FE6YATpSejTJyPoHlzD5MN+75G7FrfQLXhj0ZryDx7cRYKJh1H/nyXkZ+b4d+U15psBQNojb+hE6Xn1Ae3DM5B9lf9/NiJ7ILdnCg9k3Ip5AkMDUyVZa2lFJPU8mqlZ8f83YnSZ3K2bV/SXgqc7kTpb0r6MxIchfra6Bcaj9Yu18auNdb+iwoV3peoMrgqzIXR0T+XoYvPKchB9PvYtVaoYzTWYwbF2rIAM4y8YSNeZ2itq3rMRqyRZpiXtR+moYn6D7FrrVRw7aVwojSuqyuwB7quHwM/rpdsNAGTr5LvjMsKZF/VxnnfAvaIXWspxJ55DjGtywIok4EjY9c6yYnSW1Am2LsaxjG2I2L4L4OKuk5kUK7qmMQLHjD7diL22bD3cY41jmvsjfjs8w9aA7Bkp9q8scnp85w/GToYnjm1Rcn+s8ivgXHFx958ctKkfGcaiHW+BXB1wfYzEeN/BZo7nQbQgmUz4HqGvqtbAvfZob9p4gX/grmSYXej7yh77w4GDjD7Pd7kfIVIvOAfdujvh1j92T0bD/wGZT+UveetIqu9dyyS3FiPofdosjnPxSgjL8M+5Du8OoAt7NCf0qr8WAvYgOJ3ZjaS4TiNwWfViQz7v9qhv27iBS+M4twHo+e7EnrGKfqurmIBS5FUGHskXtBrh/7WaHF+GMoifQg4KfGCuxdQt7ZCY3rjwrgTvfOtOAIGGAyMfy7xgqdG0pHEC7rt0D8XSdCVFZNuhh4UOO9AzOf6DJls/Ins0H8o8YJhdUoTL/i2Hfq/BQ5FwZ770Ri1B3JINNoY9ffu13bor5V4wdN5HUu84DngmFYuwmSe3Wn6X79onwrcaYe+nXhBngMnD8ujsaXIITHXSWLqh13SYrtN4UTpiwWbrkIZjV9Gz6cL6FlqzoxXvvLErUVSlfV1YecrYtdaGgVIR1KHI8/pshXFNUQsiteXc9A83S6+jN7VvRkkVvQC+ztRWm9LBCiYuxJD3/UOWr/2AYZ+wzeigF7evP4yYpC/a2HWIpcwht9NhQoV3r8wPp+mSifvF8SutSkisdavIS0GiRcDiPh8ihOlV5lj9kJj8hJmnznIf3Q45TbmO4i08ATlMoHN8GfAc6J02PxmlJu2Lmi7E9jFBGu6KVZ46mJoqY7b0Pyet6adQXHd6GsRaeV/0P3tNO3ORKTxPJRJP89CRI8xhROlNSORWeQfWA5Ym3x55woVKrSBKsBVoR6HU1xUeyoqqjys+LmR4rsXObkbJ6YUyd7NhZn0PojS2MuYj60EdH4JfJLihXaGbuTst1rYtx4diFmxPXI2tQ2TUv0NimtbASxOOat2RDVtDAPzVZhrkDRDDTmThjnO3k0wzsGzUBp6Fv3pQoGZv6KCnr9skHqaTEmQ57/jJmfe0iko2NEswPVHit/vWYhJXY+ZqL5IHixk4M2FyYT6SI9VGsvJgjS5SLxghpG5OwI5rhudkfWYgIJhxzHcSdph/naaHfqfQQ7VzzP8+sehYMiFdujvDcxIvGBEEgCJF9xgh/5SyMheBHgw8YLn7dC/GmUvNZ47W0TMMtfSlbMPZp+30fP7buIF99ih/zz570YXsJ0d+ovWSRWWfWcWuodjJfX5MvnselDwLS9obqH79b801BFqB4kXvGWH/nrAziirbRaST8uV36rw7oeRIg3Mb57CDv0dgVNQ1tB/kXTbWQ1BkY0oDmZPprlk4ByU6XwDcI3JTBwNvoVsoOnI+T6e9rJVMsbsjcieWoL8xX4XCjIOq1cEkHjBX1EAGgA79KeQH9zKa/dIxkaabE/y5WI70H35NK3X9HyGcvvosXY7N1qY+plH26H/Q2AvFDy59Yo/X17rqg3cSv488A5y4iwI7EO50kIf+X3uRQ6kRrxOsdRmH/AHYBeGPrfMHmm7/qMTpXOAA0xG+oZojr63kXhmCt/vjDKXj0ZEonYdfBMQ0z7DySgbMG/tcHUb8uEVKlSoUOH9h6PIJ1h0oLXTDk6U3l+/wYnSP8SutTKqcTkOeMyJ0v7YtQbQ3JZnE9VQWZHe2LV2QsojE9HcVSSJmIdZiDxSRPjqpHxezbaHyJ5svPYa8IgTpa/U/e0ktJ5sDN51A8cWyQWawNGXkNKBh+b8mymvrXYJsrHz5vR+RN6cF1imZFs/Q+uJVqhQYYSoAlwV6rEaxe9EJ+UF1A9CcjeZrB5oUvo3Rj7EBLYOBb7DIIs1W5xmGWD9aEE9vUVN+2uRU2llhjq6ehCr0kJMjQtQTYtNaF5YshFdjDDA1AZmUG4svDEG57gZSR2WBRXHUc5sebfgy+Y3gaEG3S7AXYkX5Em0daN3LzdAsVhfNx3AnM6u2sSB/qbZhYkXPGGH/s0o26veyTlgzvWThkMuRRKJjQ7RGvC4Yc/XY1Gg76Zl1pq4wVvPMnkgL0kSiyaZeIkXvAMEdug/hJjVRSznLpSJuFrB9k7EorqM/ABT/X7boAD3TDv0vwecOZJAV+IFfQy/vmOBbdH9ycaEXuRc3Abdz1eQROSJDHX6puj9/2hD8LOsxmC/2Z4FuO415ynCeXbo/yzxgtkma3BH5DxLgWtQPZlWHWbnodpDjQuCAVSjsCj4NQ49oxEHuABMLZ3fmV+FCmMCO/QPRtnk2bc5GRFEdrFDf0vz3YPmxSyQ1Ig+NK9+sORUvSgoW5Th2hbMGPYNO/TPQDWz+lGdomYSZ33I+fAWsL2Rn12FYptgPLBm4x9N1tSOaBGdojHwHTTftFIfbDxDpdlGgzUplqeZiu5PS0i84DU79G9EmbKNDppuJOmzQJB4wRPUSbLGd53ZgRi4GzC0r/0oKPTrdtq3Q38RxPw+EN23R4BvJV7whza7Wp9JnYe7UI3PxvnwHYZKAGZ4ieL3czLwdMH2N1DAGoDYtVZD5Lp1UKDyAidK87LVATBs8tyMqdi1NkTkmrXRHDihpI9F6AYudaK03g7+D/AisHpOe18xddX+0+Z5KlSoUKHCAkbsWh9GxJ61UdbTA2gNtzgiaoRGFafV9qagANTBaG32R5RRXGQHDiBi8TAY8sTjDX/zY9f6GVr7NgZEOoDPxa51mhOl/4pda0W01lsfzZvH5xyTh060Ts6FE6VzYtd6xLSbh3udKB0wNeT3Qdef+Tb6kI9uSH1wJ0r/GbvWtij4tAayP95Gwa1SVRBzn/5I65lX16P7V0+Qz/yP+9fVBRtrPIDsiDwf5ETmXdmVChXeV6gCXBXq8TByDOctgodNsvVwovQpI3F4KGKz9qBU6p8B68auNRUxMw5nqAM9c4IPAM8jY+L8xoLWJeedY1J+f4Am8RqS5vo+cEaOrOAfY9f6NzJkWkU/WqwTu9aiyJn9kilWOmrErjUBZaIVfY89KEA3WpyGWNVFGWz9wO3tGHLzEsbBdwIKSvUjObqzjARRM3yT/BT+yShzJa/A+W4UOIAmpL18+vk/A9BZq4ECEa3gs6jo/WcYZK4PoCDIUgyV2Dzf7Ocw6GTqQ+/zF3PafgLo+NMHV+VfiyzHmjNeoF6qsLfDSsfX0iPrpTCb4DZzrjIZn3Vo7qzdj9ZYYuPRAiILUB9atKMd+ouibIYXTBZJ3j4fQs7dmvnvAaYvHeh5nZl4wUt1+38POdpORo7gTnQPDmsIboGK3G9W0L1+5PzK4FOevVcDtrVD/y5zvjXRN1lDz/leO/Q/VefEL8MvgN0Zmi3RbX5fQUZ8ESqt7woLHUy2UX1wK8MkNG/vy2CB8F+RP5aDvsszULZZUValxTwIzhrSwL0AduiXOQFA/TwNLXxvrQv0P02xxGIfDZK1duhvgQgKWZZ6J4MZM+MorgdZjxpjJyv0IhqH8rLG5iB7rx14yD5cE81RfWgM+3biBQuNnLJhE++E7N9dGWRN3w8c0I7daIf+ZFRsfhUG59RNkJTkoYkX/LSNrt2H5vc8++8dRLD5AQrWrYbslN8DRxfINObWgTPoQNnDeX9fBtUhuzR2rX0R0acL2QNbAQfGrnWkE6U/buWiMsSutQaSxGxHoSFDDd0DC9lh32zYvgFyQObNmeOQc3T6CM5boUKFChUWEGLX+jSDc9A4lNVzEIPZyVsA/xu71sedKI1baG8ymutXYzCgsxuaT1Py14VdwGOGBP4JRCZ/3InShxra/gjyDzyL5quiua4L+dpOcKK0B5G7f2pqcLYS3JqNMpObSemX+Yruh7kZ1Zug9f2ByHa7ATjTidJhkoNOlD4IrBe71jJm3/FAV+xaXWMcdFoN3cNMWn8WUqiKsr7PI2RlIRr9fT3Ab1sk9o8aduhviOyWVZHv9/zECyqSToX3DDpqtUpZoYJgmB7/ZrhDIkUMxo+2I8URu9YOSIImq4WxSJND/osKkrbi2M0730RzjjfLJsLYtb6CHGitOHizbI9NEDN0O+SQShGr9bSitOk2+n0ucAjFtcj+BOw4FgG12LU2QOyYDRh6/bOQsbJpSc2J+QZThP4+dE8yQ2AOYkB/DzmOBpCM5S/qi9zbod+FWDhFz3cAmNxwjIUcckvN3atWo5Ma4wZSNnvjSY577Ebo6OD3y6x97vFn/KWlOiSm7SUR63oJBh2t/cig2TLxgofr9p2EjMCM+XUj8P3EC3K1p+3Q/w5wnDWQdu7+4sPs9eLfWLSvhyenLkkyafEjv/adh9oKjNqhvzlwT5Pdiurtpcipux7t1xmZDTiJFwxxehoJwktQZlifOe+FwDeyAJDJgroISSJm32L2t682y4Yyxy8JzCyqjWWH/g6Ied84NnYD30m84LSG/R+mOENhBvAl5Mw7iOEBxR7g1MQLvlPW77pzdSC24YEoYHgTWrDNQM5qO+ewfiBMvOCQVs5RocL8gh36u6EabkX2ws2JF+xUt38m+TkezRUDaDx5FtXnyjT565Htc0jiBfO0Xpwd+rugsaMoe+Y/yJb4ZT15w4xLT6FryJvLfgd82mSCLmPaGYlzvx7dwI6JF9w7ynawQ38xNKcWESb2SbzgV2222YGyjLZAkr6/rCctLGyIXWtJRN540YnSpN3j7dA/DL0beUHCt4GlEi9oyS40zrMHUZC4MbMsAZzM9jZOur4yWzx2rRdQzYiR4B5UE+4Fiu3e1fJqf5T05yrkOCpTKMjDLJQdei9yKg4jBMWu9Vlk/xdlJN7lROnWLfZzEcTgfsOJ0mfa7GuFChUqVBgDxK61GMVzUD0GgH84UbpeC21+BakU5c3ZeZK+faiW7UEo8LM48hOMRz6Pi5D03mWIYNqH7Ny3ENm6yOa7z4nSzRv69gr1Po58zET+ih3LAlyxa00DXqOYzPqME6VFCiJNEbvWduial0L3fw7K5Bq1vH/sWhsBdyDbNPMvpQzW7hqHyHOHOVE6I7eR0Z1/F+S76jC/cYi89dk2CMkjhh36XwVORc/OQu9UH3BA4gXXzevzV6gwP1BlcM1jmEXlFKAnJ5tooYITpc8ZNssv0EQ8AS00XwN2ajO4tQ75DuEyjAeWZeQM4g2RYbFp7FpzgJ8D33Ki9OWG/S5HWr8foDzINQtNqnujINNSDDJNQbWIlkTaypmxtDO6b3c6UZpbqL0eJnvrYIoNrFeB7UYbRMtgGEEbGXbMzig7ajJifl/ZAmNnfuFihhdHnYAcKmcxGCjaHDjWDv1PGNY8yFCZRbHh18NgkfIM69L4DDo6mNbbzW4vPsIG/32OG5ddp++GZdd95OmpSx53fHvX8k0kk1WfRdBl+ncRQyWhNkJZX2shg2NxyutmjAcG0k6r8zp7Q66zN8z+3gus0m4hlcQL7rVD/yhUr6Vsfuhv2J7JLr5DefHbIqSojtPl2R/s0J+ImFQroHuXGdKHoaBNVjz2a8D+DHekHowkj/LkKOfCZEwUSjGYff5g7ssPGMyEGI8M8DNyDrkSObHyxr/xKFsjyukz6D2cjsaypjABvNvNbwjs0D8SGdL1/RhARvzprbRfocK8gAngHI7qSC2DMnoCylmh0PDNJF7wCzv0H0WSMOugoFAPGkcb59UB0/6dQJB4wV9oE3bor4EyUD6IZN1+1STI8HvgatOfxkyyGvAhlHF+nh36X0m84FJzXQN26O+EiB6L57S7HQr+fwERZFqx54sYxBmL9byxCG7B3Bp9D6GAVB5ORU6Edtqsoftx3yi7N1/gROlryH4eKVyKbegOlFV8V4t9qcWu9UnE5t6ewcyyP6Ms6mNj1+pCUtYPtmDvP8bIA1xZLcqyc3w+dq2H0PfxBLKpy2yhHWkvuJU5za4Aftjkep+jeK2Qmv6VwtTA/T5yZPYB44yaxAFOlD5m9vkoIr8sj7LAf+JE6WjrAlaoUKFCheHYl/L1dYZOwIlda/UWpGgPonjOnoPmvH5kC2bqQJ9FNR8b60VOQnbtdNPProZtRXNSDdVnngtDtsmzI+txD1LNubeF+X8J0/+iANdKsWs5wIeRr+1Prcr4xq61MfBbht7HqcDlsWt9HwWDTmtV6SkHlzHcP5TZDhmJZR/gw7FrbTzWNTadKL0xdq2lkGLWYsADJbXOxhR26DtIMaJ+bTTO/K60Q3+ZOl9ahQrvWlQZXPMIJrA1HcmhLYYWND9FDIQxZwSMJYyc4N7A0kia6w/tBlhi17oaSZiUyZk1ohdlcL3ddM/h59sJyfzVT4h9KONnXeNoqN9/beR4ytU9RhP3jciJ/iPkRMq7ltlIW3h/5JDOskws0x+3STbZCshRUGQQ9ThR2k6QEAA79JdFC+UNkMPv4sQLmqbXLwywQ39xVN+hrF5EPeYAFyVecHRdG2czXA4T9Lwurt/X7L8pMpqKsgb6UG2ni+ozv1qBHfqvU1wHphdYLvGCN+zQ3xE5/PJqQq3byFQ3bPYZFAfyZmKuJ8tiMsdsjljlTwH35WU42aF/LgrcFn2/15vzbmn6+DByLlsUy4GVYSZwVOIFUV0fPo++vbzrm42Y6E+iIPASBe0+n3jBiiPoTy6MZNQ2yKi/J/GCXOelyV6I0YKi/h52I7nEY9ACpOgdTxMvGBMCinmvzgI+ghY+NwPHVHIEFRYk7NC/CmVx1I93sxDB5rPkB3+7UfbmD0ra7UBBrKIs0tcSLyhksdqh/wHk+FgajWs3mVpz2KF/CgrIZXI276DM8080Zp/m9GkXFIx30CJ6MsODUt3AtokXPGCOWwaNcUU2QIoyvC417TfDf9F41GV+T6PsnaeBSxIv+HMLbbQMO/RnUkx4mDv3jeU530swAcIiecu3gX0TL7i13XZj11oOyR4miICzP3qfO1Fw+D7gU06UFto6Jlh2He2R2EDv+PFobjyJYifdLOTUsxi0g3YokomKXetl9M0WoWbaGUBy678Fft6Kk8ys554mP5uyG/iEE6UPDztwaBshCuo1kk3+i5yAB6EarOPQtzkL2Z3bFLUdu9aqyJ6bBdzkROnMZtdSoUKFChUgdq0TkER9K8SIt4FdnSgtJdfErhUjcmMeZjDoW1sS+Cuaa7+EyA/tZuDnZYSB5oO9nCidK91sAirPUV4+YE0nSluqAWUUk96kPPutH82PHWhOux3Yr1mWUuxaNyHCa5kKz2xgNydK72ilv3VtL48IKWWlGDLMBPZ0ovS2ds6xMMPUB/46+X6amcDhbUpfV6iwUKLK4Jp3OBctWLLFfReqr7JZ7FobjVX9pjyY1OEN0ATwl3Yzx8wi6YpRdmNz2gtupcAdIwxudSAmc+NCexxaRH8VSZDMhROl/4hd6yAUhMpzwHShxewFSPqs6Fp6GWTYTGTopLkXkug5rqT7b5S0DQr0tAU79LdFi3eLwVoVh9mhf3TiBZe0294CwERaY1VlmIC+tfqg1YlIxugjDBqNM5Fj44ScNh6h2JiaA/wg8YLz2uhTY/+KkAITjQP0Ioa/wxZiPx3P0OsDvd9l2VJTkYHZb4f+L037EUM1uF+2Q3/nxAsaGcg/plg2cyZwReIF15p+Lwk8Q7nB2I0ktFYl34jvQgHneuxRsC/ovm2DgkRlrLQV7NDvaCZT2CoSL+hGMhLN9nvLDv2Pobpx66FxYhxyRB+L3u8eigNcCYAd+hsBG6OFxO+KJBSb9OVm4GaTEZe2WNurQoV5BvNeNwa3QOPZZ1DGU6MzuB85g6MmzU+ifFxc0g79zrpaV/X92hsRkWpoPOsG3rBDf2vktPgqQ8fEaebf1wKbFp3QjD83ADfYob8imoeKikx/ncH6RkXydBksZKM8Q3F2Vj0eRazRZYG3Ey9o294aY1QMu3Jci2yYvLl1HFIWaBtGhvrF2LUORd9b/Ts9BdlO3yG/jlbWxi2xa52Isi5bXUv2o2d+BoN14fKOrTFYUzLDNODfsWtdD5zqROlfAWLXWg/ZRxMpdvg9ixQdeoBrnCj9Z4v9BeZmv+0C3I3sualoTk8Bv4Xg1rLoPjc+x050709G2XqNz6EGXB+71kr1JEOj/PB/qLZLdk+t2LWOcKI0aufaKlSoUOF9ioeRjVckPVuPiZTUoa/DjUhlJG9t1wXc3xjgiV3rY4xMXroDjf8DdeebheznIcQXJ0pfjV3raWCNgrYebyO4tSoitzQjs3YxlDS8HfItfCZ/97nYnHJ1pU5kH0Sxa32ozQyrybRWjxb0TLZHtbLfK1iO4uc2ntZqtFWosNCjnQBEhRZh2JGHMNzJMgFlTuzVQhsdsWutE7vWxoYp0cp5O2LXOhnJbf0GuAUtYlth9o412pHVGECZVgeP8FwOxU7uCYidmoduyie6TlrT9N+HfCfUZOCwsudnDJ0byHf0zEasnpZhnNi/Ru9edt5xaOF8rh36q7TT3gLCS8ih3w6mGMkrAEwg4OMoOHk1cm58EfhYXpAg8YLZSKankVmUSe+dC2CH/gQ79DeyQ38tE9xpBXdT7Mh7C13vyhSzj8cB/5PT514aZAhy0ImMlv2Q5vRKyGjLfqsAd9uhP8TgSbzg72b/nob2epFm+W/MfjWUbVGEGspAOAgFah7OaXMWqjPWKBM4i+L7VkPfR5YxWYQ+wLZDf+U2nteYIPGCJxMv2Aw5xrdE9VKOTrygz2SEnMfw9w103efYoX8/klI7CwXGXjEO+JH2Z3YV3FpwsEO/ww79j9ihv74d+q1mp75XsTfFAXEL1QI9HdkR3WjcuQnYOPGCZhnwPSgIX4TXCoJbq6Hg1mQ0f1rI8bECclp8lfx5vgtY2xzfClZHpIk8dCJ52qwu5KcL9qvHzkiGtFlm8SzgbDP+PDefglvXU2xjPZZ4Qbvz/PsNFyHWd+M9nAWcnnjBaDN2jiM/GDwJOMTI6hXCidKz0fvazfC5ugfN9y+gebiXwcDxNIbWv6hH1k7efN0JfAq4O3atT8WutQdiwH8aZWw2HlMzfTvAidLjnSg9qd3gVgbj/FsJEY0uRQHANZ0oPb+FwzdjuCx2hkkoYzSPCNWBrmvzhr+fh+rQTkR2XJYRekHsWo37VqhQoUKF4bgJ+Z6aBTwyYsTrLbT5fbQ2bZwPZwHfLcheegnNke2iD9kIP0JSw9ejueTgxqCPqauZ5+MAXd/uzU4Wu1ZX7FpnILLqWrSfJDER2NOUyChDqyo5HwTWbLMPT6Pn0wqyWuktIXatqbFrfT52rWNi19rGkO8XNtyP3sU89CKbrUKFdz2qDK55g0+igTEPU9Fi7OdFBxvpjx+jzI0BoDN2rVOAs5owFXwkgTOJQSbgNODa2LW2cqJ0TOVnmuBC4HvkO4SyIpkpkhc7H7hoFFrzFuVM4KL3/H6Kn9MsZPis1eTcXYgNXYblkBzcMMSu1QlsUnBcJ2JptoNPUcx8sVCgIS+DaaFB4gU1O/SPIz8rrwhPNzotEy/oRyyjlopmJl5wnh36s5A+8SLoft0LHAq8ZIf+15CETM1se9MO/YMSL7ilqE0AayD91pozXtx2vf8+N7Gvs4t7llidZPLiIEPzOFNrpZPyd7goiHMG8F2a36eiIG0nGpP2skP/NTRePJh4wcsocPt9xCxOUaDtRuDghkDJchTLFHQAP0+84GoAO/Q/iWRbD0PSrc+gWix5GaP/hxzhRRlfNyKHUx/FjKQuJBU4ALxlshivLdh3COzQ70Lf5jjgLyPJngJIvCDBZGQ14FQkTfQp9Byy5x8iZvYGDGcB/tQO/ccSL2iJaVdh4YDJqv0xktIcAGp26J8EnDtW2YXvMkygeJ7qBLoSLzjDDv0zUX2ut1sIbAFz54/zUSZU47jUTTFp5AjybQULZXNPKelzr9nnCQA79KchWeO90GI6Aq4zc9JzFI9XNbQAh0GpsmbInCnfBk7JOS6TcwkxxIT5iG8h6cSpDJdqPWo+9+Vdh8QL3lzlsq9vtNmbT/58m1f/venivbP41yLL9dyzhHP6PxddPhiDUxRJdIPe+8VpUp/SidLHTc2MXyCiTh9yZD2J6tZORtJEkyhWdkiRI6lmfkVS0aBvcDL6pizybZ+aae9W4EQnSh8pu4ZWYWrUXk5drdAW0SwQ2UU5kW7uc4pdaxFE1iqq33kCCnpXqFChQoUCOFGaxq61NSIZr4xspazec0aw7EJk8UNabPM5QzIIUfClH81vZwBnFhwWId9du/L+/cB5TpQW1oA0hPsfoTkhqzv5PJpTamiOPKbF+lhXo0DYaAI3s1FWehk590rgyzQvU5HSpkSyE6X9sWt9Cz2LZvXC+1BJgaaIXetTiGg2gN6fXuD52LW2c6K0bSWmeYir0LvYmCHfj/wUbUk+VqiwsKIKcM0bNHNYFcqvxa61Ifm69t9GA2auTFrsWuNRgCtvwJ6IJNuaMjTGEJeizI7NGL6gTYGdnCi9PftD7FpLxa51MFqg3dXmgvRxNGnmOcL7KAhwmInORZN2fcHObuDvKMBVlh2SyRP6FKe4j6MgGyl2rXVRttUKBcf2oVTui2PX6iqr5VWH5Sg2Csajgt0LPRIvuNJkFZ2J3t9OZHBmzN96dKPvYyzOe5kd+j9G2VSzMqeqHSL92oQAACAASURBVPpHIhmZ+u9rCnCdHfpbJF7wUF57sWtNuQXOTemggxppRydfePY+/rD0Wj3nrr794c8f+L0rza5PoWyFPGOtn2LH5AUog/Fg9F1lkjftYBoysPvQ2DXB1Mc5NPGCw+3QPxa9V68lXpAXhH4Y1aLJ+wbeQd8SMDdT7kTza4ZbkWMo77t+DWW/TWAw+JaHDgbfl8nAT+zQ70u8oNTRa4f+vsDFpt0a0GWH/mlAMIZyh/3AZ+zQXwPYCV3H70yfHyX/Ox6PMkm+1KT/SyHn5DPmnldYQLBDf33ErGz8tk9F39wP53unFjxuRA6DvG+7F9WJwwTSC2tbleBUJA26LRoPa2hhfyPKiMzDOhTPnTU05uTV4AGNQ1lwazngQURQyuaLrYCv2KH/ycQL/mOH/r9QbaVGp/bcAFziBbPt0H8GZdmWYQrwgcQLzrJD/2Z0X1dG17s8IhI8Sgmpal4h8YIn7NDfBJGddkHz0x8RseP++d2fVmGH/gqICT0FFV6/e0EEomPX6rhJ8trr1KCjAzrWnPFi137JX/4XuAsv+OMoT/ESIonkYQDNsU1hspvWil3rI6a984DVGJx7y+ppZPgKCoptjEhGzZQrJlC81uoAfu9E6b7Nez9fcGfJtpmISLUT+eOPBdQTWlZFY2Te/elA416FChUqVCiAya7ZCLAR6Xwqyq5/FvgbmrMWQZKChQGkPJi6jhuZ4NI04OmysiROlD4Ru5aPyKplJQ0yZASOU5oEtxZFmV1LMejvzTKnA+DbLfqVsrr1u9B6bfQijEPE9jKcishhS1J+Pyxk27YFJ0ovNM//NHQvJpm26m2UWUDkROm/m7UXu9ZqwM8YusYbj96n3wEbttvHeYXEC96xQ39LFNT9ILLzupBqxu7vU8JlhfcgOmq16l0ea5hijs+SvwCZCXzBidJfFxx7PZKeyFsMvgUslTchxa61BnKqFAVa3nCidIkWuj9miF3rMOAc8ieoF4AVjLb919BEk+nxp0h2ZA8nSltKD45d63PIId1YwPkdYB0nSp8rOXZj5HDfFBUSvRAxXv4HOR/znHADwOFOlF4cu9Z0BhkR9ehDhZ8/lXPOFdDEPI3yhf/fUFBqMeRgOxP4flFdNTv0twd+Rf570A18M/GCc0rOt1DByDQ5aEH/FAoyHcug3Mt44NTEC86Yh33oQgbZYjmba6g20rBnDBC71mXAATSMBTWY1QGHOlE6N0PPDv19UCZT3ju8buIFz5b00UYMraWRQ6zdwu+N6AbCxAuObLajHfoT0Hi3FEPf5QGMU9jIKbYFO/TXQTVGiuqA7Zt4wc126P8FZTu1yip7Eli9yJAz9XZuYPg9nIUcsz9q8TyYzLzPIXbessiIPMPUxSo6ZjeUvbZowS5/S7xgg4JjV0HByk3QN9IB/AA40cgiVpjPsEP/OkQuySNLvAksbYKd7xsYudD7UJCnfmzsQcGEnVo4fm1M8CbxgjcK9tsYZUPWgN8kXvC3kjYvRIHjPOLXO0jO7WyGjwu9ps+fNO3cgJwjje30IDboyigIsBQaIycjEkMfkhD8Vl2fPoOyRZqN5z3AdxMvONkctzwaOz+A7Jes5t+vgS/mSTS2Ajv0N0Tz73oo8HgucKPJmlsDBSnWQ8G+8xMv+HPdsR1Ax0jPPb9gh/43GcxyH4/mwsdQLQbHbNsE1U89H/jxvPp+Y9faDpFb8ohrLwPL19dmGkH7RyJHV2P7PcDlTpS2nWUXu9ZXkT3fDtFmAJjsROkcI1/0VAvHZ8Xri/a7w4nSbdvowzxF7Fp7oXk9I2yBbIp7gCMREShvDfGIE6Ub17WzPPq+igKAjzhRmhvkil3LQk7K/dC9uwa4oVUnZ4UKFSq822GIGL9Ba7IUzfMPAXs5UfraCNvsQnb+x5Bt8DMnStsiZ8WutT4iA21DcUbvALLtvu5EaSlJqMlc3AMsm1f33gR/Po7IVU8hUtLXkWx4u1lm9agBjzlR+tFmO8au9UFE5nTRc2pc32eSj6eOtDNGgtlB92ITVMvzQ0hl4XvAVa3U94pd6zykSpN3b7qBTzSr0zm/Yezxj6MA72OJF4xJlnuFCgsLqgDXPILRqZ3O0AXLbLSI+UTRgiJ2rTfJd6SDBvT18hgbpojxUxQvep5xonTlFrufi9i1dgBOQkznt1FA6cyiIFTsWn+hmLkwE7Gal0KFtBsX2LORgXBgG/3bF01Ky6PJ8G7gCCdKSwuDmgXjdGBHVO/gEpTVlcmbLcNQZ9Vs4B4nSncwx48DfovkV7Jg2EyUAfYxJ0qHSbzErvV9JIlUxoYZYJBdkaEbOamORs/6xXoHh3Gox2iSbjSQZgArv9vrXtihvzhi5teA2wqyisbyfKsCj1Cczv5W4gXDasAZzevXKXbA/NOJ0iESmHbo74oyDLJ6LrcC0xMviFvsaydKM28mm9kKeoBlW6nVYpybN6GsoU703r4B7JR4QSuFefPazAzqom/kgsQLjrRDf23EgJ5Ma1nJvcByJU7xu4EtCo59Dd2TpsEiY0BegZho9e9ODwo45WaSmIyfu8kPrNeA3yZesGfOcYsjR+ziDP32u4Eo8YIjmvW5wtjDDv2mc3riBW0xRN9tsEN/UZQRswwaS3+P5q+zkZQfaMy4DDg+8YJCDX4TZPm5aavftPNT4IhWAulGPnAflJX6KArQ9NuhvxYiCTWO1zW04F0Zyaacw2BR79koYL5d4gVvmOt8lfJMsI66/+8FHkAOhCsSLxjGFrVD/wgUhCiqWZShG9g58YK77dC/A9kjjfvPAr5sMqQ7kANjIvB4syCNHfoHINuo0UF/GXLSX4Guu4tBWcRvF41zCyPs0N8ZOf0b5/o5iGy0DkOz/WehZ7fzvCAQxK71SzR/5JE33gF2d6L0rlG03wn8BEkBT2AwU/6vwM6tEswa2nyU9utiPORE6dy1Quxa+yOJp3EUE1fmMFjTqxHd6Jv5I3Jg3u9Eaat1PeYZYtfaCEk01wdII6MmsQsa12rouvuRhPMnnSh9uaGde5EjtdHGnwUc5URpmHPuycBtSHa9fp3yGLC1kV+sUKFChfcsYteaisbVxRk6t/ShTNn1WwlqNLS5PLKBlkDk4mxu+oYTpeeOoI/jkT9vGYaO8SkitqxSlhFW1879aJ7IwwxgfydKb2g4ZnVkn9fXBH8F2UXH0FqGWT0ym7cb3Zct2q2DGbvWBshOWZXBsiJnoADXAndix65V5jN4BzjEidKr52OXKlR436OSKJx3OAEVYjwRsXWzgNApTdhy3RQ7w7oo0HJ3ovSl2LX+juQ9GheEPcgxMWLEruWhbKYsYDcFSfPtFrvW5gWTbVE2GWiinooWe0Wyip+NXeuYPIZJAX6JjIJ1kdPpnvrJzxg20xFLewpwF1pQXm7Olzml1gcORAGvzZAe8CZocp5gzjNXj9mJ0r7YtXZFrO3Pm7Z/A1ztRGmPKYT9bWANFPD4Ia2lencynPU/GUk/fhrdw7di1zrOidIrAUw9p+1QYCQzjvqRI223d3twC1SXAgVF5xdm0dyxmIelKZEj7e2wVrdD/yP1Ts3EC24AbrBDfyrQV+borYcd+pnjZGP0nvYy9P3KGPyWuZYu9F40puXXow+9sw80O3/iBY+Z7KEtkdP0FfQd/cZk4f0KOMfU9moV/RRLENWADuOk3Qd9l1lAuIPBbNA8dFBc8B0kW1GEqei7eqFknwybMTy4BXKQnmmHfi3xgrPrN9ihPx4F0V5CQc7GZ9ONMrKy/TsAD2WXrEy+Q3AycKAd+iclXjAidmKFUaHZnP6edizaob8H0n3PnNHdKBt968QLDrVDfzpyNrzRLEBlMlXvYLhtsT+6l16T47MARg19h93A23bob5N4waN26B+DAlidaEyZiQI1u5iMz4vs0P8lCtYtiup41svXLYbGraK5vaPh/yegMftTRUSCxAsusEP/cuATaN7/Evns3knAdDv0n0BOjbzxbwpwjB36zyG7xzb97bdD/4TECy7M64Md+ouQXxNzCpLH/TJDAw2dZt9T7ND/TeIFrdR3WBhQJPM9gXxH0RQGx/l5YZPkMZcz1JBDbcQw5KjPx651NgpyjUfZy/eOwnHUTFqwEd0owxmA2LUmoneqLLjVjQJgy6LM9fqgdOZQ85EN02Hane5EadRm38YUTpT+Bd3nvG03xq61NMoCWBJJP99X8BwOQCz+aegdrKF55A/IEZiHk1F2Zf3zmYoCXqch52WFChUqvJeRKao0zi3jUADlE4gw2RJMWZFrkHx1ZpdlQaDTY9d6oFmmVSOcKO2NXWtT5Ef6CIN1659EykatKqL0tbPdBNbuQr6Let/TZOQTG4lN0IsIm7cClzlR2rYPyonSh4C1Y9f6EJrz4nlJWIldaxKSDF4MeKCFgNyTKBsqzy7vIL8Gd4UKFeYhqgDXPIJZlIRAGLtWRxuLxcuRs7JxkVgD/tHI5GuAhxiLExmcYLtRRk9u7a5WYAb78xnu3JiEJt/9kPRGI25m0OnaiPFoAbdGyamzwu3/aKGPKyKt21UYrEX0Yuxauxp94yloQbgqg/d2b+Qch6HGzhTkdHKdKL0E2Cp2LRs5tp/Km6CNo+Am86vv19dQ4ffs3q2Agl3N2L7ZNeQt8DsZdKBNAi6JXctyovQKgMQLnrVD30HBhjWQM/5mU8+kQgswjobNgFm3w13bbnXsP1A2YuPzmI0k4fLwKiWFw1+auOh44K926J+ZeMGQGmKJFzQrSj4XdujvjTIY6pn1s5FzNqs/cxMKgP0IOepShmcHNmISYhm3BCM9dacd+o8iBvhSDH5r04GD7NDfOPGCp02Nk0ORtOATwIWJF/yrocnfAt8pOF0W2JmDnKt5rLKU4fe/BtyfeME7JZeS3bc8WDQvGJ/hcyXtAJxhh/7bpu5bF3JAHcVgELIXOZ+noGuZg7LWbq9r4zIkpdqsWG4vWrjl1iOsME8RIQdu3pz+z8QLFqYCxGMKO/Q/hLTp67+DzCl7sx36HzZB/FbvwVHkf+uTUT07P/GCYRnTpi/LoyBEvR2T9eUWO/RXTbzgYjv0f4+yypZD9Qt+nnjBXBKDCRLnBoKAF2k+tzciBQ4zmaP/zAt0mTp6t9mhPxHV5cyTL80yspahuEYPiAB0d87fz7JDP028II8MtTvF1zWxZFsXkpg5oWD7wobVmu8yDFOBg5g3Aa570RyZ986PQzZ0WzABpP3QvDGAvs9rRyOhYySNtkbPugPNW0W2xeuotgnIMXSUE6V3mnbGoTXM+iWnm41IYv+L7sEl5nrmmHO+hQLmjeuVC2LXetWJ0hsb+r0WkvJ81InSlmqOzSs4UdpNC7XynCh9NnYtBxHqdkUEygi4pWSteQj5Y8JE4ODYtb66MLDhK1SoUGEeYnOK10sTEMGxaYArdq0lEBlkbYrXeZOBn8autaUTpS+200knSl9AdbzWRHbJ006U/r3JYY14jOLMok6UdVaPPZE900iszmp734f8Io1lFMrszTnA6aPJNM/gROkzo22jGWLX2hP5UzoxPpXYtXqQ3+5cJ0rz/Gg/RDZIo81RQzL09827HleoUCEPVYBrPqDNRcPZaKBcicFJsw8t6g5qcp5/xa71UeRM3h0Fty4FrhiJ1EgdtqLYgTEVLWrzAlxnm22NAa5u4IdOlM6IXetFxFbMwwSUjl0Koyt/N2Ij1zu0VwPuMayPQxmU48mQVxMlwxQkIXgJgBOlCW2yMGLXWoz8YtmT0aSfZYQ1ohv4BfDFFk81GTgzdq0rs9pchlF+l/lVaBFGR/tHyHEwlyV1TPyHk89xdvgwepbZ+9zDoFbzMDhROit2rZ8jR9KQd6CncxxXr7gp6Bv/mh36dyRecGe7/TX1r0KGG1YTUSDms8B1iRf02aH/K2S8Z+N+YfDNoKOZdJrJONoSfS9/Ms7lU5CTtT6LYYI57wV26P8AZUFa5u/9wJdMLS1QnarzEy/4hx36l6CMhbwaNJOQVGdeEDir5dfH4PNK0bfVTKrvcvKlGFLgrlYkGw3yFgr1GI+CXCF6hnsz9Dp7ESv7ZjQOXp54wUPZRjv010XO7lbrrY1mDqgwcpyJMm9WZHAc6EfPo3ROfw/gcPLHmU6UffFx2lv8fZLi7Kg5iIQw14FtskePQlr+y5H/PXaiYstbAXckXvAcmreHwQSid0PZ2t3AVfXfZOIFvXbofx/VK2gWdM4wBQW3e4AJduhfBhxTIBn4OMXXnyL5x6dK9oFiu38ycLod+pfnyO19oOS4sjFuHGMjlwvMleBdA435/54H9byeRe9Ju1ik+S7twdi1F6DaDo1z0RzgLidKn2yzzQ+gANIKDMrUbQ0cZ5QYWibW1LXZiVQOdkfvULNamFPRe7prTr2T/SiXN0yB850oPd4Epw5FaggDyB64H/gw+Q7Hyei7vtH0eyMkRZ5JnU6IXSsEphc4sRYqOFH6DrJVm9YENe9S2Ts6CY0ZC1zGsUKFChXmIWaXbBtH6+uk6xARo1lNqlWAh2PXWt8ErVqCqUW5Lxq376MFonfD8eOR76EIv87xC65HsfLSNOAvqETGychmHkByj72Uk9WHlXAwfZyIMq0PQzbm48BJTpT+qqSteYbYtdZCtkwemf87wPaxa+3cWPfUidK/xq51InAqspPHobV7L7JzKuJIhQrzGVWAayGDCfpsjAZ8DznEbkS1rp5t4fgXUaHE48ewW82k9CbGrrUoSv3+KMrI+KlhGW6Ngl8fYjDN+lwgK6R+NmJDNzqD+lCR6FJJLZNZ9TWUUt3oSOs07e6DHIntFL0GWCl2rcOAXzhR2nImSx12QteRx2yZgJgdKYOTaVa3Yk/z333Jr8OThynIkBq1FFBdrbW1gP8iJ8u5C0MNg/mA7zEoYTD3ue3+0iOnAvuf4+ywA2LM9qCgxIVNsoGOBNYYgLU7YHJKB/2dFrcttQY3Lz3XjzMZBVTuHEF/tynZNhX4fOIF19ihvxyS8mlHPqjUeWiH/l7oHmQOrfF26F+Bgmp5Y4YFbI8YZfUGZCaZuLn598eAz9mhfyQKYE1B8gh5jrMyZ5qFMjA2Mvs9BHwp8YJHy64LGbJ7IJJB1s85KGB4aJNj63ETkq4q+4anICf/vgx/NuPN+a9JvCBPv/vTtKeHfmcb+1YYIyRe8LYd+hujwGo2p/8e+G7iBU8t0M7Ne6xNuf3g0F6AqyzDohNlMtTjKhSQahYEtpBj/I6iHezQ/yAi0qyAFvtZ5tXVaFzJFrGnoOxVD83/mTRjjfzvtQPdo+w+HYjGw8Mad0y84Ak79B9EY0ajY2UOkoH9rx36P0fBgnZtnknIVmsMnNxPsTxND4OSjo2YaY4dNUym8gUMjqez7NA/MvGCscycOhOxd/PsUYv8YF4PYnKPCWLX2sr0Y0M0Bz+AlBLGoWeQyQjtV9JGB1IhWBV4Gsns1JB9swpDn9VU5Jw6lZHJ1B2AgluN96y+3lw9JqLrWR9J6tXDpXy8sOq2n4Rs//rzfoJy4s7aMFfx4XaGO/O+aI7/ckkb7zo4UZoaMmFR8PY1ymWbK1SoUOG9gNJao7TgFzVZVa0Et0Bz4GLILswltJlAz97A6ohks6TZP5vve4AnYtfarg2Jv4832b56zt9eNufKsxt7kNLCpgyuVTuRPdFHcdb2eFS/dAgMmfh2FFTLzrc2ynhb2YnSsxuPmQ/4OsX2h4Xsi53JsfecKD07dq3rkd2/PCISXWmIKBUqVJjPqAJcCyEMi/JM81sYcB/FjtRu5Dh+nsGAUjfSHv60kQP5aOxaqyEmymNGhiPD/yGn9z5okutETpFX0WI3F4Y1+kM0mdRL9jViGlrot+voAckAnQWcHbvWl5wovarN48dT7oD/I5rgv4zuzb0olfsR46C4Hzn9W+l7J2OwQI1d62AUgMwcgtNQavausWtt26R+3LsaRsbyUHLudw0mbf3aY0ef4+ywS+IFzTKA5sKJ0pmxa212rb3RccDJ3db4CXcv6fDMlCFJix3IqTgSNAuAfsD8d03kAG0nwPWSHfpWDpsf47C/kuH36nNNztFBcx3vLOB1AQruv0BzVngRNmRwnlsTuMYO/U0TL/hv0QGJF8ww13cggw63XyF5wFfbOPcvEWO87BlZaHwqy5DdCzHNGzGB8uyJDLOBQ1ut51Zh7JF4wQwUOC2S3Hyv4j/AduQ7AmpoMd8OLkL1MPO+qW4kQwzMHaNaCW6Bvr9mfbkMZYVntoZl2v4fFDz+KcyVaj3cDv1TUHbrHGRD/R0Fvpplzk4GXDv0v5V4wev1G+zQXwplv2yG7l9GiukEDkm84BGz62HmXFvX9bUZUSnbb1hNycQLHrJD/yE0VtXbggOoiPZbKJhSv6aomb61azcNgx36OyJbsX6+mQpcYYd+d+IFN+Yf2TauQ+/Y4eid7ULX9wKyc/dkuDzPqGvcZjDkousYvM5O9KxnIIm5FHjYidJCIlPsWisjB8yKDNakfDF2rd3Q/Jxny09AzreRBLgyEkojyubsKcCesWv9EwX+t0FBlmbZc7OBWwyh7liG2x/Nvq2s3uF0iqVOvxC71glOlL6es/3djNNRgLPxWXUDQcUyr1ChwvsAZXNEP62RitemeaCsHl2IkDIswBW71gbALcjemIrmuMZ5bSoij1+JAiytICPEFCFv/rsa+G7B/h3Inj+d4XNIUaBvNnBzgbTgnuTLO04GTo1d6zInSltVSxkCo570CRR4u8uJ0rKsvXrUK9zkYQoiweQSmpwojYFvtNHVChUqzCNUAa4KTeFE6Ruxa/0QOU3qF/f9aPH/RYYyIbN9roldayXEqn42T/bDidJa7FoucmZ/3rRzE/CrokKahvlxAqqT0cxhPwd4Bcl8HUhrjJt6ZNdyWexaf3Oi9N9tHHsHxd/YTOAaUzfrnMaN5r7sBpyIsoCmoWvJnC6NeB7J5Y0YJsBTH9zKMAmxlfZk3tSZWFiwGjKIhgW4OqCjr8PaCnjNSOx9Ky/wkwcnSmsXhf61iHGchxRollVUhD9R7LjsYVCu62XaH++XAv5lh/4WOYGdE8j/9iZTnvk1k9Yl9QD2R9kEM8lfePQjw7to0VL/vU9GWVnfpokjL/GCWaju4Plt9LWxjTl26G+GAtUr5+xSQ7ITb1K8EMmcxHm4GQVkyxZkKcoU+llLna5QYWzxIyQx2jjv1pBdcGeb7f0K2RtbM7jI7kfkjv0bxuS9aT2g3wVcZod+DckDfy/xgpcBTN2rb6L5Lw9TgGPt0H8EZaZvhZzGP0YZVe+Ydj6O6uusbfq7CMVBgDmo9tLcDBdTQ+yviLRQP+bXgE0TL5grYZN4QQ+wix36a6GM2V2RlFszosBjJTXhdkUOlu0ZtEVilH06C9VMXBM9j05kd+1uxtLR4nvkE30mmW1jEuAyWXhft0P/cpSJvAhwm2m/AxGeDmFQ+vZRlCU96mCIITVdwPDr7ET23w5OlB7YpI0ulGW4LMPluu+mPMg5LXatzkb5nRawTJv7Z1gC1QgZx6CzbQ75tTMzPInWB9tTYKuVYA7KOAf4FMX3okbDtzcaxK61IYNSwjcDN2RS4vMZFyLW/qEMEmosdE9GXKO5QoUKFd5FuA/N7XnrptlIhq8ZXqJ90uUw31PsWhNQcKtewq9oThsPbBO71qVo/vogWjteBHwnR27wAcp9A8N8OU6Uvhq71rcQEa/T/LLsrEMQYayofz1ojrWQD2ACmqs/V7D/5yheu04Evh671ontEC+MDXUGIt3MQc+oI3ato5wo/UkLTbxAuUQytC49XqFChQWIKsBVoVUcB7xh/jsevTu3oQns9IJjOpED/kNoknkA+KoTpX+q38lMYA+aX5aufbiRB1wUZTqdhhie56DJvdVAVQ0xf8chKZUuhhomsxAjegPK2TvjgK+QIxtUBCdKn4td62eI4V3v1O9DGWq/aHJ8L/BNY3BMMH17GKWvZ4ZLDRkWB7dqCJiaZFka9QPAz0zW4HYUs5KyWmvv5QDXm5Q4gGaMm9SBjJvpyPF1ZKsNJ17wpB369yNWUeM55iCpzraReEFih/41yMlYb3hmgZFLzb8fRUHQDzPcMO8zf2ucDyahwMzVwLYN2zbNaSdDDzJyG53L3cgYP4LWsgkmIunRiyh2wPSgcWFpWjM8J6D3eCRM9baReMErduhviCQalmHQkZfVYDoYGdUXFTQxCzmV83A7qle2AcUOwVlUBW4rLCAkXvCYkRq9AI0XE1CwuhfYpd0aSokXpHbo74EcxkcgJ/ndwFmJFzzWsPs4mjshutE4N47B7JEjkETqhsiRcQtidpbhQyiQPZHBrMpvAJ+1Q3/jxAtmJl7wDLCpHfqroADEWUiONQ+diDxUjwA5NerHacv0/1RyAnBGjvVRO/SfYGhQMA89KBiZC5OFuLsd+iujYNkrqL5jZjNsYof+2miOeR54MJNttEN/GRSYe7rdTFJTR23tkl0+Yof++MQLxkxiLfGCfyNyUSOOtkP/Wyhg9Iap1zZWWA7Vkc2DhZ5vaYALSQUuSrFc9wwkl5SHp0cQ3IKR1W3qRtmNjfb2BGS75AW5YmBzI7fXl7O9HplTLrOJulEN3ZONPGEe4STDJJQ1PaoAl3G2/Rgx97Nx4QvAs7FrbeFE6Vtmn0nA7BHe+/rzrYjWOEuhddev60mCZn1wTOxaZyP59A7gJidKnx/NeStUqFDhXYRfoCylyQxVwOhHdsvtLbRxD7LPiupVNaKG7NRG7El7pOsJDLXRlkTlSD4Zu9aW6Hr2RNLfzyJ/2XSG2n2p6fvFjY3HruUzaPd0mn1TYB8nSn8fu9aOFKuGdJhjH0J26sNOlJbZR2Xy+h3Ifl7MBKdaDXJ9DdXcHVJiAvhR7FovOlF6S5Pjf4BUk4pIuDOB37TYlwoVKixAdNRqlSpBhdYRu1ZWNPxtJ0rfNsGXk2hNKgu00NzeidLcugymMOZdaT0F9wAAIABJREFUwDoMr03ViwyKZjIkGXqArzlReqFpe33EVnSQMTOAHEPfR4v+rzHcGKjHPU6UbtniubPrsdD9mW76bQG/Aw5rVl+soL0lgf9F2W7ZvTrRidJhGscFxx+GgimZZFHmbNwa1UW4lOJi1Lc7Ubpdu31+NyF2rQeRrN2Q97mns4uLVtma65dfP/vTbGDFxAtafoZ26C+BnKWZzFUveg6HJl5wRbt9tUO/E9gR1WL6AkO/ixrwOrBuxsi3Q39NZJhPQN9WDX2PVyGnZNG7PRtwEi+Y6wixQ/+fSDKhaP/p6NuaZM5TQ8VkL0GOqg/R/Dt+BzjI1BDbFAXTu5BTbKZpczfEuNsfOb0/TnNWd3/iBbmLCjv0P4qC6Tug8eE64ETjnB4x7ND/AGKVfRHd/98DZyRe8KTZfgIy6OvHnm4kW7pzUSDADv1pwDXoPcjDG8AydU7oChXmO+zQt9GctQL6Xn8+Rpk9ZefcBmUV5ZFW+tBCdXUUPGm0X1KUbfUrICpoox5zyF+w9wAnJV7wvZz+HYCcDHn2xivActl3b4d+h2mryCnQD0wq+s7NXPE0kq3LQw24OvGC/Qu2Z+0ciRiyWX2lXuCwxAuuKdjfAX6CMsCzemRnA6e2Gtw0155ljOWhD5jYbrB0YUPsWsuj+rVFWYf/daK0KDiVtXEy+YG5DLeiOTLPgfMmsEFRrV9T9N5FNTceRZKcM9A8XTTn9qNnV/+O9yBS2VoUf1dvIFs/s9PPQ3bugOnLBDQ/Fq077kABqv1MGz8FfuxE6SwT4Dm65FhM20sb4teIELvWF1Fgv/H77kXj0h9RNvkipo9XAdNHIssUu9ZXkNM2IxG8g57N5gXyUAs9YteyFlCmW4UKFd7DMCUzfovsoX60Hn8E2MuJ0pdbbGNDFAwbh+a/AYrnlG5gKydKh2SHxa71TeDkkuNaxUzkZ/oGupasVEgN+bwOQHO+hebGLzfO87FrbWqup9E2qAFPIVv5s8hmLZII/5gTpf/I2TYMsWsdiGS/y0hos4A9nCi9rYX2uhBxvMhGut+J0tK6ZIZwkqlONBJ++5ESzhpOlM7TtUuFChVGjyrAVWFUiF3rM8hp3SqTBeBPTpRuVtDegYhFMdo04BTY1onSYayZ2LWyIvFP1DMcY9f6GApAFEmhRU6UHjySzpjA4NLISTHiRfNoELvWWihLrtEZUUNZJJsgQybPwTILON6J0gvmaScXMGLXcoD7B2DSXxf70KR/L7Is49N+lp79Nmd8ZDfSzrkxmbeBLyRe8Nt22jfOus1RBtSbwK/K6kGVtLMYkvdahWInUR9wZeIFXt1xi6Psve1R5tNlKOj1hGkrD28DuyVecG9dO4ehDIRGY3gAeCjxgo0N835dZFQ/kjHs7dD/CMocLBszashYXbHuuMkomLcactb+IvGCId+SHfp9NM9M/kviBRs3/tEO/fXQvahn9qXIUbRh4gVPN2l3VLBDf18kcbY6Ck6eD5ybeMEwadeG4zqAyxmaKdqLxqxPJV7QdHFQocJ7Dea7uBtlX9XPaT1okb8nWpQXjRe9KBC9R5NT9aBFelFgIk684MM5/esy7W/GcLnFId+tCVBlcqx5SIFpRpowF3boH4ukZ4qIBZcnXlCYwWWH/heQzFnjmN8N7JF4wa0N+y+FJOgWZagDZxZwYeIFxxadK+fcP0d1Whv7nqIssn1bbWthhXGuxGh+a0QK/NSJUi9nW30bR6FAR17AaTaS2lwHEWLyzvEPJ0rXb9wQu9ZeKJM4e8+7zf77oUBxUUb2AGJU+0gx4A1k3z+MlBUWLTjuEUS6+gDwQqO8eexaNrJVi4KerzhRmiudGLvW31Bh+zK8DXy6BcZ3IWLXepRiuaMiGcbnAMeJ0paz4mLX2hjZgo3fZQr804nSdVtta0HDOCmPRxn2H0Q26veBM6tgV4UKFcYKZr5dDwW54jbLT2RtLIHqah2N1AQabckB4HHg0AJf1OeQTdVK3a9m6CV/Hp6JCKUTgHecKG1UBsj6ciUiieYF22Yin8HDSDXEZujc2wPc7UTpTq12NnatScgWLAtw1YDrnCjdu4X2bHSvi7KvetBcsg3yLVwE/KExO8y8F1sAP0Qk3szuvg04yInSIgnvChUqLESoJAorjBa/RizFdrBx7FoTCwo/fomx0bjtQ070YSiR5HgASRKtyvBJvhdNeEMQu9ZHkczYSub4y/OKU5sFetJq5+cRjiDfIdCBHA0fRmyfLzK81trbQNtZRu82OFEaTz91+81vXeqjd822xk2a09lFBzVqdEDHEDssY9S3BSPZdI/5jQaXoedVluY/Djmg5jrFEi94EzHoh0gi2qEfI9mePGNzAgooNZ5/HySxlX2vPeb3OXOuFMkV1J9nPHKItWLQT0KGeWza60bZAGV4nfKaIN0oiJSHH+b0y0IM69MQC65lmIDcCsBr5r6XIvGCaxmBBGjiBTU79A9C0htHoAzb+1Fw7Ml226tQ4b0A813siGo0eWhO70cM1P9luFxxI7ooH19BdsZPkWOgKMCVm92SeEG/Hfo7o2DDEciZfw+q//Wvhn0H7NB/GGVC5eGJsuCWwW8RWzivP+9QIr1igoWnk+88mIzGx1vt0N8NOBaN2/1obmi0paYAR9qhf3ob5I6vI8fEogw6cXoR+eBrJf22kPTyqiggcmurtTPnN0zd1SORTV3/jAaQg+mUFpq5Gr3vRfgZCvjmsc0twIlda+16FrbJ3LqyoU/Ze3A1CpwVBbhedKL0R4gVPRexay1H8bfVB9znROl/gaL3YzyDddDyUCb71Ird1kGxXHerWL5kW1GQeUUkQ3lhG+c5mvyxxwJWjV1rHSdK/95GewsS16Ds+ez9WhLZa+sjAk+FChUqjBomsPE38xtpG6/HrnULyprO86fORkGRXMUipBAwzK80QhRlgXUCBzhR+oMmx69S0sYAYDtR+kDsWpuhdfjWKDt7PLIrWi7ZAOBEaU/sWs8iW7EIHQxKhzfDDMp92hORHZnZHZ8Efhm7llsf5DL/fzewjimXYgNvOlHadA1foUKFhQdVgKvCqOBE6ZzYtbZH0ifjGEyNHikjZayYLNe0w4KEuQ6GXRnM4piGJvAaqh32SP3+sWsdg5w+49C3tBNwQuxaOzTWGVtIsBrF33wHcsYfhdgtX0XGThdKWz+4iPnzXsMv7Y0uRs5GAAW38pGnqT3PYbK3dqW585UW9wE4E0kUNjowe4G7Ey94of6PiRf02aG/E7A3YrAtAtwAXFwk22icjXejDKVm6EBjwYXIQdkqfoBY6nmO2H4kp3VTTt+moqy6PFioJkdLMEG8M1GwPgXG26F/G5JbbEn+ol2YwOlN5rdQww79RdH9XAz4M3BfVqunQgUTGN4YObAfHI28pgmKH2mH/jFoTH+rvj079B+nWGr1IeSA2JzirO5NgX8h6ZY89FPyTZq+/Nj8muF4FIRqDFB1m22lSLzgcTv0f4vqNNWPj3NQBu+NeceZ4NY2lBMHNrBDP0BOjlYISnPQvbu5hX1JvOB5O/TXQQ6K/cyfrwXOzCR4c/r9USRTtwiyY/qBd+zQ39HUJlvo4ETpzbFr7YLmjw2QY+kmZH82zSB2ovS12LUORqoKmV3aj76lI50ofdFkqRc5svqQw6leZuiLFAeCO5HtvyPD59xZKJssr58vxq51PXoXG4Mzvah2SBmeQQ6tvHk+pXweDFHWZBkmIQnB0eBJJHfdLo6ivQDXhyl+nv2IuLTQB7hi19oEOR0bn+lkYLfYtdZtXINVqFChwgLGzhSvsyehOS43wOVEabeZ73+P1pmZ/2wCGtOb1ZDN0E/xHDCZ4kxiAGLXWoU6n0cOulA2Pk6UvgLsFLvWUkiV6LmRyOoaBCirqijrqpcW52EnSmfErnUbmkMa/VyZpHb9c5qC/BfXAtcXtDkb2cYVKlR4l2G0uq8VKmDqPy0HHIJ0gA9Hjosip+UDBdlbICfLSIpWZ5iJFr/TR3KwE6X/QdlYhyHd/5OA1Z0oHVKQM3atdVBwaxKDk+kkFBS73khtLGx4BBkMeehAafopSt3+EmKVr+RE6S5OlL5QcNx7Cnbor4oYzmUM4G7g4MQLRvOejgbLUvwcG/HnVnZKvOB2xBCfbX41xOqPUX2rIbBDfyXE4oqQ87Mb+EOTmmS70lwaqB6dwBZ26BfVhMvD2cB9aBxoRB+wpXHYNsKieLzKtreK/0PfTxYkn4CM7vvt0G9WH+w9DTv090dZsuejxc1NwEOmPl2F9zHs0O8wMnqvokDO74FX7dDfr/zI5ki8oC/xgtdygmXHobGrEd1IVu1KJJPVKBM6C7gk8YK/mXnglIJ2ZlPg5G8XiRfcgrJjX0Hj20yUsXpI4gWtFr7+HAoezDB960Hj1VZ5mU126G+AMp9+Qzkhbg7wFVrPvp9Ee2MqiRe8nHjB1xMvWNH8vloS3JrQNZDeseVrjy931H9uneY+fc+kFbrfnIbmzjvs0C/KtlvgcKL0TidKN8YUSneidHdjl7Z6/P+hwMqliFByObCJE6VZEPXfKAiUh3EoMFOP1SjPTvwLGse70XfSi96rq2nI3GrAF5G9P5vBWl6vA7s7UTrEqRS71rTYtTaMXWtlc40DKHMvbx3RB7wYu9ZRpq5ZIy5HigRlGEB24GhwBhon2kW7Chb/pPx5tvzuLGDsTnEtt/Fme4UKFSosTMhqTLe7DQAnSv+IyCx/QvNFikgjRT6yPLxF8VzTQ8kcYEpXPEwx8bQfeNSJ0n829PtVJ0r/MYrgFoiIcyWab/PQh0irxK7VFbvWp2LX8mPX+nzsWnnz5CHIhqi3xXsofgZTkZ9roUDsWrvFrvXH2LVej13r77FrfcFIJlaoUKFNLIxO+ArvQphsqauzf8eu9RCasKcwlIXSjSQ1sv2mIQd5lt3xA+BQtKCpP24WmgQnMjT40I0myRXR+3wtyt5qxzjIu5Yrza8IX6ZYlmU80isek2yK2LU6gW1RSvhMdH0jkR67AAXuGvudAs8Cf41d62IkmZQFUDpj1/qyE6VXFfRteeQI3Mf86dfAd5wobVmOMXatqUiK5GUnStuW/RtjrIqcdUUL7ZnAjokXjJbdOxq8QHkALsMAKjrbEhIv+K4d+lcihvwiKFB0W+IFQ4xPO/RXQNkNizLopNwWOQ53TrygKLPt87SeUZZhAD2LGS1eQ6+RJbsd6WjXO1EnISmxu2mQ20y84G079P9DfjZHDdW4aAo79FcHdmP4+zMOabT/DwoKvu9gMjAuZei9GY/Yhdei8a3C+xcZQaaRzRnaof+6CcKPKZL/Z++8wywny/f/mcn2pYPSIt2ANBFQEZSiNBGUzo+iJIACNiyoQUUBRSJ8FRFQipqAIlWaIF2aooAgKAJGQdGAUqTtzs5syczvj/sN58yZJKfMmbJL7uuaa3cmOcl7cnLyPu/z3M99e8H1dugfiuKOrJD+MvDxzAPLDv2tUKJ+dzRXLkD+g6fUHeo7ZlsmVWMhcsBh3ZQJTbzgSjv0r0bPqV7gL+1I7pkC31ft0D8BdVC+WkTUsEN/FeRV1oxgsAAVTYrkE/MwDTjdDv27Gn0Uu4FNX/73Yf7jv3rDMosGemalC1hILwckf+Bye4uen6y97QxgX1TYG1eYZIXlRGnTrsRG36l2YPxEPl6w+XTUQdv4PVuEPJsebfj7IyjOzmNZ9wOPOVH6LUP62g19D651ovSvTcbYD+wTu9YaqJj0InB3vdeS8a79PyQDvgCYFrvW40gu+I/kJ65moDXGQuDU2LW+jWLfF50oTZ0oHYxdawe0PimK4aeiAtxvy96DGeMMIG38vJwovTJ2rc2QZOcUWl9vt6sMcDq6n1v9PCcryhJ5PU22V6hQocJE4DqkGpL3fO8Hri57cexaq6J5Znlq89H70PzVb/7Nuo960Zq4ft66A62ti7rSh4ALY9daDhVzPoLmyOsQSftcVOjJe74uRMWxZj60HcHIAX4sdq3zgJ+jbuP5KIZYiHww/2m6zm9HhNGZqPj3g9i19nKitN779WkkR/4Z4C3Af5Ei00cpjmNX7vob6wCxax3HcPWZFdG6YwfqbCYqVKjQGnqGhiploApjA8MMOQ11L/QAdwJfcKL0AbP9GJQkyhaG09Bi7ecoAb2B2WaZv5+FWJEHogn6z8BxTpTmSuuMJWLX+hVqTc9DH/DpOsbsaM6zHJrY10NByEI0+Z/uROmXOzjeB5Fe8iAKmAYQY/69KPj5JPkm8rs4UfqbhmOtCTyAAoes4LIQFYG2dKL0yRbe2w9Qm3hm5BkCx46mQDka2KHvoMRJXjJnCLg28YI9x3dUI2GH/s9QUbGMid6PuqYeQQHeNsgH7tzECx4seV2zc/8IJX/yAvq/JF6wccHrrkcJsHbwDGBnEnZ26K+AuqN2Qay1HwM31RfhTMfXsxRfm9wx2qG/M1qM5EmAvaeVa2aH/hGo87NIcuEXiRfs2+w4SyLs0I9QB0le50Y/sGniBZUcxOsQduj3os6+Nxbsck/iBduM8fkd9IyP8yQz7dCfjYr6zxXJJtqhPxWRJPoSLyjy+pz0sEN/feAbKLFRVAQAxQ99qMvr7W2eZgAV+0/stnTr7Uet+K+VB15505SG+kd/71RO2OhD3L/C2qcmXtBU1rFbMHI+pyKCw3Rkhn6cE6Wlya8xHM9HUVF3CM2Tc1EcuK0Tpc807Ls88G/yO4teBFbptBhnjn0MStBNRVJB33ai9F9m+49QvF8/nw6hIvTDwHa0VvhYgDrETgG+a+TIvwp8neLC02VOlBb6PsWutRMqvm1kxnQb8BknSh9v2G9d1GXVCrkn8zppy8g+dq3D0fooIwQVfp7twhTw3gS84ETpS6M5VpPzbIU6F/Lus3nANk6UPjRW569QocLiA0MW6THdvBM9louBDzJ8npoH3OJEaWm+wMxxeevpzAvqDPRM/A3qPD4Y5cYSIHKi9L/mONsg1YNes3/WuXQAInP8AflC1p8nK54VzYFzgGXrPapagSGmtE3SiV1rfdTN9gJwuxOli2LXspAH+OqMVB3rA9Z1ovRZ09F1g3n9TJRTSlG+6yDy8wELgfOdKB3WxWVI5fsjVYKVkRLOt41aVddhipxPFoyxD9jBidKW1HgqVKggVB1cFcYMTpQ+ArzfTBbUByKxa+2NilUzGZ5Q/jTq5NncMDuXA/5W19lzOHB47Fo99ZOuCXb2Rl4Ua6MJ8dvAle1Ozi3ifsSsKEyid+k8P0Fs7SzJNNX8fDp2rXudKB0mTRS71spoMfovJ0qfazyYE6XXGtPwvdHE/TBwC3ofecUt0OdzPCoq1OP/0OdTn7Ceigpe3zWsnL1QkHUFcGt2D5ig5S7kHzCN2uL/MGR22m4hpCtIvCC2Q/8RFCQ1Ph/7EVN/MuAo5JXxdooTkDMQi3sX9F5mooDvEDv0T0284MQOz703xXPHenbor5x4wbM5265CCalWJXgGge/WFbfWR3rcM6jdp7sAN9uhv19dkWsVyg3i7bw/Jl5wsx36e6MFxZoo8P8L8Mk2CoIDFMstDNGZZNGSgrdSLEu2AD0LqgLX6xNvpLxTqBMvm5Zhnh2PN9mnjybf38QLFjY7zmSGHfrLId+xrdC8UvR9HUQEg2XQ87iTz2cGIl54duhfhTwK82Qe20LsWmutQs8qVk5zz8zBhRzw7/sG719h7ZY7zLswnuUQEWhlakSgDYCLY9c6xonS88ZrLBmcKD0/dq1rURJnReA+4Kb67qk6vIpin7x5ewZiVbdtwB671krouryRWhz9UeBgY2T/EiJENBaGelAssy2td/VMQ+/zZGDb2LUOQfHIl8mPZeaiZFnR2HdDMW392mVn4N7Ytd7WQO6ahua3ZgWuhcDe7Ra3AJwo/bHxNMs+z/sp/jxbgklSnoJizSFgqvE4OTxLqnYZ9yIS5A4Mv67zgJur4laFChXMvBFgihaxaz2GyCLXTuCwDkG+5cei+ewF4Hu0Jk99APlzUA+wNbC7E6X1Xe5n5R3EidLfxq5lowLYRkhq+KdOlL4Qu9ZZKC/UWCBqpgRjtZM/i11rc0RG38b8/jvkH9pSccZ0fTd2fu+I8kx5ljoWyhmdggg7mbQz1PIiByAy/CaMzNctpMHv0+QSf44UG7KYZy1gj9i1DnGi9KpW3kub2JPivMFM9JlWBa4KFdpAVeCqMOYoYNicSH4xZTbw1di1zjIszn8VHLNx0v02SuZnE9JKyCNoKyQR0m2cizwAGrEIBRb3jfYEJpB7P/kFjNnIP+Qas+8K6P3uhJLsM2LXugU41InSYckHJ0rnmH3rz7UWxTr+PajgU79/D2J35yXALMRmeh/qOhtCLNw/xK61q5GA3A0VIhvf20xgu9i1NpvABe0+iC21AkreLEDBxzcSL7h7gsY0DIkXzLVD/z0oiP44xc/y3Rj+PbPM71+0Q/+GxAs6uU/LvBuHKE6K/hwVSqcxPLAeRIzs5RmesOoBfDv0f5J4wUtIArUx0F0KFbkOoiY59UzJGEBMqVwkXnCjHfoboOdHmnhBYeLODv11kKzeAPCrxAteBq6n+LOYR4M04kTBDv3pSBLuaHRNfwt8M/GCsTRx/wcqcuUlJacgRmKF1yf6KH+udF3GrkIurgHeSfNk/Dz07M0IN0VYgJ7FRc/jbNueKPmwV6sDtUO/J6/TDnhTL0P9ReNaZeCVHsTqHS8chYoOjeOZAZwTu9YcJ0rHczzAa2bxZ7aw666U3w8fQXFIS4hdaxqKNY9HZJT6GHAq6pL8PSLAzS849wyaeJsUYDqKTZ9Fycg7GElUW4TikUsLxt+DkoyNnd49KC7/GuDW/f1lyr8jL6E1ymUmNu8IhtCWm/zsECEjpSyzIt5bnCgddTG6Hqarbi90X3wKPV/mIMLRN7t5rgoVKix+iF1rWdSJtBq1Z+qGiCzyqW6o5nQCQyQ4DTgtdq3eNrvKyjrkh5psbxzHq8APczZ9mPL4uujcv2m6l4Epbt3FcCLMu4E7YtfafhQdSOtTPH/OAN5qurcyZadGzEZz2I0olsnsNxYABzT6faIc2gcY/j56zTEuiF3rhjFQGJpJcd4g68irUKFCG2j3gVehQrewQcm2ZVHStSXErvVm1H3UOAnMBj5htncVRvZjd7R4nYMSPnMR++T9Xeoas6lNxnlYF15rp74DLT6no+s33fx+R9ZBF7vWyrFr7RW71s4myVCPFykPpBoT/b2UF8h70AK1/v/vRBrDoMLLUjmvwxx3x5JjjykSL0iQ4ephKHFzErBh4gXBRI2pAMugRF1Rt1JZEJZ1d3WCGylmGz2DpMZGwLDz3wnchO7rPvTdORsFj42Fjx7z98ONdGTmO9OI2ajzMzvPXHRd8t5/H8O9c/LGOZR4wfNFxS079KfaoX8J6u76PnAO8Iwd+p8whTif4Sa3mN9vQ95gEwo79KeZcQRIp3xV1JV3j/EvGyucgToBGjEIPDXGxbUKkxiJF8xBUrx5JIv5KNk66WCHfo8d+mvaob/aRI9ltLBDfyPEgG1FSm0qzQuSA6g7vJVkwAxgVzv0124yxl479D9th/7TQGqH/vN26H/FSENmeLKnIJYZBKyhwQcTL3ihhTF1CwdR7OnZA/wkdq33jeN42sVbKL4nZgGbtXKQ2LV2jV3rz2gOGCDfDzbDMogEVxZjjqboPRMlJM9BhawB1Kk2gJJ6W5X4wa6O5sw8ZOSu12A6sh4iP2bqR561Px5NcavbiF1rbUT0aiQhTkHErwPH4rxOlC5wovR4RHZaGljBidITWvGsq1ChwhKPj6EOqcaCxyzg9Jy8xrijA8nEMj/vRcARsWutOIohQbFkfoaiuemrALFrbRq71k9i17o3dq0LY9fK69j/P/ILMbMYnfLNv6jZmDRiPvIIW5ligjbAGk6U7oVimcMRcWNVJ0rz1uNHUFxQGmJsclN3UJzHmYNyLhUqVGgDVYGrwkShbDHXrpTXvhQvhKeY7V2HE6V3IAbqoaiba1dgk9Fq3tchobzolHWi7IRaqBv3nYa6pHY2coH/RInCy4HnY9faJ9vRSI7cT36QMI8GZqhhLLXbYTUT+XxBuZRbSmtJsTFD4gULEy+4IvGCzyZecHLiBf+YyPHUww79TezQ/w3wPLXAaH7Dbv2oY6Yo6OsF1uhwCF9H90RjEXcBYte5xq8mS0juaof+D+zQvxmxsn+GkkQbA29ACaWiQu4slGi5i/Lvwhsafv8UYoH3oeszYH7ORNJCo8GpwB4oKTubmvHtqXbo75x4wRlmzPcgdvZf0fNh74KOg/HGIaiTqn7RkzHULrRDv6z7rWMkXnAnWgT1Uwvm5yI5jwn3tasw4TgKESnqn/3z0Lw16Rj8dujvg7yJHgOesEP/UTv0t53gYY0Gn6O4EJNhEfpMHqWYVduHEhprJ16wO7X5ohkWIgJEGX6ECAqroeLQSkhm7io79HsAnCh9Gs2LeXNK/8rz53yuhbGMJ2YwCe/vOvybkfFFhvmUdERnMJLkV6I5PyNHNZNHmk6xBPhcJC1UVIRqBbMA34lSF91POyA/jx3MmD8Tu9ZNsWvdErvW4bFrZd+NZnN43nYX+afUX8c+4E+01kU33tiO4oTbUjQU8boNJ0qHnCjtHyN5+QoVKiyeOJjyGKVZ/DAZcRzF8dEsFD89EbvW20ZxjmZz9BDKxwyYsTwJfNCJ0vtj1zoUraU/ArwDEXbuil3rU9mLDYl6u5Ljb5P5cnWAX1Fc4BpEMeFzlJNhEgAnSv/pROkVTpT+uoQ0sQLF0sc9lEupt4XYtd4fu9bd6D0uYuT7XIAIwxMpv1mhwmKJqsBVYaJwHvlFjIXAVU6Uzo9dy4lda1tj0F2G2RQvlqeSw8aIXasndq13x6716di1DjItzm3DidL5TpRe5UTpOU6U/rabCzInSl9AzI285EIfSrSDvAiWLjjMUsCCCpKvAAAgAElEQVQJKDCcgbq7ljE/F8auVR8QHooSjPVJg7lIG/+cnGN/kfYTDMsZiZdLSl7bg5FerDAcduivh+Tktkb39nT0GfeiBMoQYiKfjgLSomLFfPS5to3EC/6KNLbvombkOmh+9kddTc/Yob8z8EfgasTW3gnwkEzfw0Bv4gXzaV7M3oiRBax6DCIvj/oxzgPei2Qyv46SoBskXnDcaIpMdujPQizCPEbcLCSvQ+IFNyZesE3iBSskXrBB4gXnJF7QsR9Gl/FRihlqM1EXx5gg8YKvA1ui+/NC4DPAOokX/G2szllh8UDiBf9E3/Vvo+7IP6LF/5aJF7wygUMbATv0Pwtchgr1M9Hc+hbgBjv0t5zIsXUCI8t6SJPdXkLJhLehhEdRgmAQ+HXiBZlPz3dR8ew5ylm2U9EcVjbG/8fIZ+8sJBX7rrq/HYyKcHPNOfuBgV55ddxVMoaxwCU0L4ps3mT7ROIaislIg8gnthAm+XUmzYunRcfvbzh/H/A71Fm/N/JtHEAxzQJaK6Zm2AjAidKXnCh9EFgxdq37UVHvdKSCsCPqPn7YSIE/Y7bnYREq5A2D8RZ5C3q2/RHFcJ8Eth0DuaNuYIDye/b17CVaoUKFiUEzz8VWPRknDZwo/T2ye3iS/FzPLJS3uTZT4+kAzUg9FsohDCG53PWcKL0tdq03oNzPTGq5hMzm4NTYtepJsmNCRnCidAGy6niV2rwzgOKCI5wofcp4lF1Gca6sFS+0DDdTHENMRbHvqBG71nGIbPtu1IG2DLp/U9QAMIDyf9s4UVpU4KtQoUIBeoaGKoJUhfFH7FpLAXcjKbgs2dqHulIORB5X66GC13S0yD7cidIRCysj73I1+ZJ3c4E9nSi9rW7/lZF0ztqI9bEQTe4HTbBR6QjErrU8YiOvjYpYC9Ei+vvAdaiF/N3kS7yBFvw95BcAh4DrnSjdo+F8R6AOlbkoeXF1Edsldq09gB8g1ssQkmxchuKCW+JE6ZtMkesixAStT7b3Ad93ovTLBa9/3cIO/ZWAXyIWVV6g+wywDrAgK+LYof87YAtGfv59wFsSLyhK1LQ6ppVRginvu7cIJabyOq8GUWfTRuj7/Rz598w8FFyXLVzmAdsmXvBAyT5dgUmy3kfx/f1S4gUrjPU4RgM79P+MmPR5eAXYN/GCW8dxSBUqLDawQ39j1HmR90waAu4ErkIyy/egYk+7sjXjCjv0T0cJ9yIW7HzgfYkX/NbsvxHq+G4sWgwhSZm1G4kEduj3IsPv8ykusF8L7JlHQrBD/1jgZPLnkyHg9MQLXvNFNTHGtoiM8SpwhelUH1fErrUh8Ajlc9jLTpQuP05Dahuxa22L/CWzTt/5aA7/qBOlFzV5rQM8SGc+EvORFPjRiJ3/P6QmEGYxqfmcV0H3wAtm/29iildN8E8nStc2x1kLfa+L5vYFwM+dKPXMmuNahhdbU3SfbWb8gxdbxK61HIon84qSc4H9nCitZJMqVKgwbjBFgePJfy4NAraRhF3sYOaxa9D8lRcrzAF2c6K0ZV+shuOfh8iNzfAUsLbxRPwEIlLnETrnAyc6UXqKOf4tiFCaN/Y7nSjdvsVxLotIJb3A7Ybonf39YCSJ/BSKAZ6pe93SwK3IymA2mo8XAj8FjmqVfG5ILH9jpCd4P3CjE6V7t3KcJudYDXiC/A71fvQ+73Ki9H+jPVeFCq9XlLV0VqgwZnCidG7sWluhjo8Po3vxUrRo/BMqmNQn8T+ECie75Rzu10BMLVmeYb75e6PO7rXIAyxL+meTzMWxa701x3RywuBE6UumNX1HxFLOmCpbIS+jZsn/IbQwzytw9dDQreFE6UsYs9QWx/fL2LWuQ8VIULHji8houzEomofxPzLB0yGomHYs8jR4EiWwLm/l3K8n2KHvIvPYIskeUELVTrzgibq/fRAlpjY0v2fdVvuMtrhlsCfF91/Z/JJJJG6eeMEDduh/DPgxw+/nPlQwLdMPT4GPjEdxy+B5yqUSnxuncYwGNwAO+e9jOpKZrFChQj6+Q7mEyfZofp6OYpCX7dD/AnBJ4gWT1UtmPcqf13dmxS2AxAv+Yof+MYho04Pea+a7tVtegSrxgkHjXbgXsF/Bed6LpG7uyNnWS3msM4z0YRIad5qficSL6D4om7svHKexdAQnSu8yvkyHogTTE8BPWizkjIZF+U8nSm9FiauisQ0x3PfzahMzO5TLIM5juDzglyjvMpsGHBi71hGG3b4LYoZvheKQa4AvLu7FLQAnSl+OXeuL6P3Vx1/zkKT0zRMysAoVKryecQ5S48jDIHpefWT8htM9mJzIShTHOEOIyNHp8T8Wu9YVKAdT1jG+CvI5exZYkeI5cTrqPMpwLJobZlN7D0NozmhJFjp2rS8hxZWF5hhTY9f6PpISfgWRqXPhROkck1PcAdgFFYoud6L0L62cu+44L8autQ3Ks61LjWR/OXBkO8cqwd4Ux0XTkAfoVV06V4UKr0tUBa4K4w7TZj3VidL5iF3x07ptn0YLqsYOlRnA9rFrvcWJ0sfqN5jA4L2IGbwHKuhMQx1OR9QzN2LX2gR1L+QtfKcg755jRvcOR8JIIK4LvOREaVuFBWNaerP5IXatWSjQa2Yc2oeuyVEl+7zYzlgKxjeEGC+Y8Z0GrE/NiHoIBSshKtJkrxtEUpXnjXYMSzLs0H8bcDblCTLQNR7Wyp54wfPAO+zQ3wIlpp4Dbkq8INfzyg79TRD7+X3oc3sQfT6XFiRnHTpjZoOSQmsDDyRecIkd+v9CHYlvQ0ztM4GvNDnGFYkX/KLD87eNxAv+Z4f+3SgR2/iM6gO+N15jGQW+jwL1qQxfTPUB5yZe8PKEjKpChcUD27ewz4y6f1cBIuD/7NDfKfGCP4/RuEaDP6OkQF5c1A98o/GPiRecb4f+jUja0EYdXZcmXlAoW5x4wZAd+jdQ8zBsxGxzvDtytt2A5JbzxtjHJJU1dqL0v7FrPUmNZNKIOcCJ4zikjuBE6Quxa4WIhPR54Guxaz0CfMWJ0l+WvPTvSN6y3TihH8XjneCnSGqpzCfuXoZ7y+5O8zWxhRJ+cw2TfhvDvMdZwvyinCg9K3atvyOy2oaI3PN94Icmdq9QoUKFcYMh/Bb5NU8B9jcEhKJ9JjvuRYoreeTDqagTvGM4UXozcHPsWi8j2cM89FKT+nsQEZeKupo/ErvWQ06URk6UPmwKQ6eh/AHA7Yj08cdmY4td6wA018xkeFHtE8DTaO5pfM0ayN9yLUTM/JkTpb9mJKm9LThR+jiwqek+fyPweNZJ1iWU2apYdNHnq0KF1yuqAtfrGLFrrYpaYVdHE9nlY6kHb/R8T0M+ClNj13oKLY4vrtttZ4oLN4OILflY4wbD7tjfSOzZSArvpZxjvIVi74hpdNkLIXYtCzFmPmHOO80kBQ4xuvydYEfKvSwGULLp206UXh+71tbI96YxId/IYO0KzOL3sNi1TgZ2pSaF+FQ3jm8SCu9GSbJBJAd135KWYKjD5xjemViEf1PgDWE6nEq7nOzQfwcKDOvlLrcF3gOcaYf+gcCbkERigpK2f0PJok6KXFMQEzwb4z00dGjaoT8isdqASzs4b8cwHmibM5Jltwhdux+N53g6QeIFiR3670FdAw4qilrIZ+T4iRxbhQqLATqZZyy0UP61Hfq28R6cFLBDf3tUSMhbcKdIcrBemvBrKIExgJ4hpyVekBdrFWEGxZ5OPRTMJYkX/NkO/euADzA8RuxHyY07zRhXRHHt2ighdGniBXPbGN9Y4GhUoGuMbfuAdzhROmqi0VjDSADdj+LrLAG3CXBJ7FqfcqI014urTuroYpqTsjIMAh9wovT2TsbqROnfY9f6BiLMZF3hQ+a4D6OC4vVOlNbH0a0kRZ+nwX9qCY47MTKElRRhhQoVJguKCjNQix8W1wLXmcjjubHAtQC43xReuoHLUGEoL+Z7wInSjOR4AyLFziQ/X7w8cHbsWjOdKP2hE6V/AnbJvMLaJEKcSH58MBv4SuxaZzaQ1V3U0dWL8iP7A9+KXWtHJ0q7okLiRGmMVKC6jTtQETHvms5BFioVKlQYBaoC1+sURh7uPBQQzEAP1e/ErrVdY4dUl86XLY5Xozaprg38KHatNzpReob52/+odfw0ItO4L4QpapUlW54m378ItPh9suz4HeBMJOtSP3FvDvwudq31nSh9voNjFvltZfitE6U71v1+CDLlnkWNGTMXsYXGJCFviqd7ohb2BxguITOa405HnXlbocBnCHmH3Ba71r5LqBnnRtQMXvMwhJJ8R+ZJQ7WBs8lPLvagQPZGasWs+cBxgE9xwneh2VYk6dePvu9luA8VvfLu9/koAO8Iduj3ILbcSsCfEi94pmTfXtTZeSr58+YiIJrEEmTDkHjBn4DN7NBfG0lb/jXxgiJj3QoVKtRwA5J+bdfwO5Py2wu4pNuD6gR1vo55HopDyOtgZ9N5tRWSiptJ7b1/DjjQDv3N2yhy3UZx/DIXSUgX4SDU1XuMGfMA8ms93oxxd2qkh1nmeN8xnXP3tzi+rsNI/O2AyE7vQfPFlcCXFyNJuyNQN2LjfD4L+F7sWhcZVYYRcKL02ti1PoTmz83Q+y+TD+wBdjWdb99C3zeAXwFfa4Uc5kTpKbFr/Qb4DPL6fQT4jhOlRUSfC1BMU9Qp3wecNFkLWrFrvRl9H7dC65yzkWfIpBxvM8SuNRPYB/nKPgFc6URpYXdohQoVXhf4O1KIycMc5CO8WMKJ0idj19obFaBA6/4eZNuxVxdP9XU0p65AbR5O0Zr843XjSWPX2g7FZJuSv/adBZwSu9aPs865Djt831yybXnU1fQKQOxa66HiVn2nV5a7+FXsWqsV+cZPEtyHmgrezvB4YyHKlZXFwBUqVGgBVYFrCYbpdNkCJTAfzooppu32PIZPDkujhMENsWutMwYSFIcDb2DkonYWcHLsWuc7UToP+Ala1OQl2i1GkdA2uAfJ8tXrBGcYQIvCthC71hRgX2TguQzyxjoLBQweIxfMvejaHw2c1O75kM5xUXJgHioAvQYnSv8Wu9b6iBm0OwoCfwRcPRZBQOxah1G7jlnx9PTYtbbtgr/ZScg0Prt3M8bWjsj76+RRHr8pTGFkG5SoeRa4rkyWqQt4wpyrKCn4e+CY0STw7NBfAQWwzZB9L7OOslNQQHwmtc+iD+PzheQONyU/abQM8Cc79LdOvODRgvOdhDS18/zcvpN4QUcdp3bobwlcgTTGU2C6Hfq/BA4t+CzPQoy3ojlzBkq6XtnJeCYKiRf8Y6LHUKHCYgYfdTAtxfBncpZILiOfLEVxcmYicCjFhbp+4LOJF2QFmB8zMi6bjvwzj6W5nCwAiRfEduhfj4gL9c/1BWhxXyg5awgEJ5rO3tlAX+IFgwB26K+Milv1x8wKdzfZob/qRHbOOVF6HzXpnsURB1PcgTWECiuFfmfGS2tzw+4+EXmpFN17Pair8PMMJ/fsB+wWu9a7nCgtlWuKXWsqInvdXbZfHc5A34fVGdkxvwDJD5/b4rHGFbFr7Yxij2lobbAZklL9aexaH1/cilzGS+UG9NkvhQrVZ8WutasTpfdO6OAqVKgwkTgBxSJ5a8JgcZdPdaL0pti13gi8H5EvH3Si9MEun+M/sWtthmK2/4fWtTcCJzZ2iTlR+jSwRexaCZob89CDurlH44X9KspV5mEQfb4ZjqR8Lb4L8h6flDBd7buhPOzeiKw7HZG/3ElenKtQYbFAVeBaQmFk6S5BzIcUmBG71s9QMvpo8j/7HsTo2JZ8D4ROx7IfYmEWmVUuQgWDW4C7kJnjftSSKYOo+HSYKYJ1DDOx7I4W4tPMORYh5sQ3TRKiZZhF9A3AO6klUzZGXUVfodhcfAaS2mm7wOVEaRK71uWogFAf5KVoIRjmvOZ/qBhxSrvnawexa22MigH173lpdJ2vj11rg04X2yYxcjT599EsVGAY0wKXHfqroPt0LbT4XmT+vm/iBYXG23bor4+KoDORlN3tbXRbnc7IZCDo83408YKt23kPOWPrQd+3MkZ1EaYiFtLqKFBeF8kWXpp4wRw79G9Fz5NTGSmTORUVuc5FrPYRSLzgPjv0D0KF7ykokTYdBYYndDBe7NBfDX0GjbriewAXoYCzfv81yS9UN2K1TsZToUKFxQeJF/zVDv13omfaruiZdieKW06jXK51HpJ3nSzYhOKixUwk6XytHfproE6KPExHxu4tFbgMDkaG8B9D8d1UlJA4ssgfsh6mqDWn4c8exQWTKYixfHkbY6wwHGVd5BYtdjQ6UToYu9ZaLeyfF+f1oDj7LAq88GLX2gl9DzcF0ti1rgM+70RpqTqDE6WvxK61JSpgZ6oLMWLT/9jE0JMOsWtNQ4XdxufObODDaB1YWHicbIhdaymUbK2XIstitZti11rdidK+ka+sUKHCkg4nSi+JXWsdJKeeKbZMRaTd70zYwLoI0wl99Rif47+IRNKqz2VZ7q2X0ctCngd8mpHr7AXAZQ3qPOtR7mFl520wc+V2aG7/nROlz41qxKOAE6VzgYNi11oBWAN4ZiLHU6HCkoaqwLUEInattVEXUaPszIHmX5viyaEHSQfe0aWx+NR08JvCFKAOQ11IxyB28APAqd1isThR+mezwP4IsDXwDFrAdiLN6AHvYniSaAZK+nyOcjZ3qS+EkXVcCfhPjjfa4agT7WMoyJuGJCA/YvzIJgqfJP/e6kUFgHcgacROUC+xmIeVYtfqGWO26q+ADRj57LzSDv0N69juwGvFo+9SYxxNRff1X+3Qf2/iBaWSmyBvKjv0T0IFnV70Wc9B98+HWh24HfrLAgegRGUMXGa8SX6AEiFl92oRpgBvNu/jvJyxDwF32qG/DvkJrR7gHXboL18kcZV4wTWGnZ99z+5r0/OlER8nXzZxBvB+O/TXTLyg3i9uF4o9YzIMAg+NYkwVKlRYTJB4wWPAHub5nj3nsEP/DShBXjZPTaYiS9mCugdJ0oGejWW+n82K/8NgiliftUP/yyjG+1/iBaONW5ySccxAcW2FznEp6j7Mu7dnA+fHrvXeFiUXH0REklY9uRrxnti1ZjTGxbFrfRAVdLIxZoXN7WLXeqsTpbkepRmMxPmXzM/igvdRXCychWLPxabAhbxUioqpFiJjReM2mgoVKkwqOFH6rdi1zkGe7RZwmynYjDlMkeTt5tf7M1m+iYBRD9oL5YOWQSShc50ofWEMTvdT1HWdF2O9CvxllMc/CdgJSRVmucs+1NX/2YZ9H0LksryxpOT4ZsWutQ8iymaYFrvWBcAnGrw4xxXGf3XSe7BWqLC4oSpwLZn4HCMlNkCLnYPRQ34hxUWutmXkTDHGBv5rFokYZsLXaZ78sDAm5vCaafMvKJGqaTKWZZCc2IfQBBkC19ZPYk6UvopYoGd1co46fIL8RXoPStwUeULNBc7P2xC71orAOaijZJH527mAn7FYzL+fiV3rqyhx84ITpV3xuRolNqT4uTKEiiudFrjmoetW1Mb+7FgWt+zQ3wIl0fLe31RUOPEb/r4/kq6sTwothbr8zqVWdC5F4gXftkP/ClSIeiP6vlzRquSSHfo7IF3nTEZwLnC6HfqfQmzllgrQOViA9MGboez4KfoOFRatjDRVq1JDzfBe8p+PoPezJfCUHfpvpMaKbnZfDaCOhAoVFiuYjsZVgCcTL3i52f4Vamjswk284CQ79C9Ci/X9UeF7GpL760XJ9+3s0L+hG359duhvjIoO/wL+0IEHY7Ok0Brm3yfRMy6vOy1F3lxtw8jBdsv39C/oOufNNQN0ENdWGIZzEdt7Kvkx0FrALS126V9Ahx3YBj00FEGMJPvZjPz8e1EHkI/i9SUNK1BMTupBPriLE9Yn3xMQ83dnHMdSoUKFFmCev28CFo5HLsIUBsbVyzR2rcMRYbX+b593orTQy9zkxvZAakq/L/GAbHcsmXpQ5kcOkqb9XOxaW7fiU9kmvo8I3asznCA6D/joaKUhnSjtM9K0+6I85RREqrk4x3vxfGRJ0YhB4HkaCPrmuBcyMlf3YVScyztWhQoVFmNUBa4lEztQXLyajwoMbs4+mRTgVrFrzXGitGlHQuxas1CR6EBMJ1HsWjciRsnOlLN+QZPjcaOVHqwbz5uQgWMmiwe6HvcZ/fYRBSdjzrws8FgH0hfLl2xbgCTzTkCL7mwROg/4A/IAahzLNOQTthYKIrJE/FEo2bSf2a8HdZ8dgpg7N8audXlOp9d44y+o0ybv2dLLKJJMRtrmDOAL5Otv/1/2ix362yHD8E2Q4fbpwCUdJADrsSHFnTzTUGGkEV8kPyk4HdjTDv3lWk0qJ17wBB0khezQXw4Vt+qTBtn/z6O42JNhkNq925hISVEHWDPcg3zS8hIxryCW1njh+Sbbl7FD//dosZCiZ2Jex1eG+cARiRf8oUvjq1BhzGGHvo0kOd+B5qppduhfChw9xp6CSzTMc/pgO/SPBQ5DkijbovjoI6jwNccO/R0SLxjBNG0FduivClwDbIRIMBbwtB36e7R5zP+h51sRCWkARDCwQ/845EPUOPcO0JmXaLdxAfJ2ysMA8Et4LWY9GMWsg8DFwEUTGTsZ+eXtUYzxNHD9RDLD8+BE6UtGwu9mRNBphIW69N+DpMbLjvVi7FqZT8ZSlM+veXg5J1ZfBxV78jAFSXq3XOCKXctCZKI5Rk5osuIPFK/l+4Hbx3Es3cCTiJiYFzf3AZVvaIUKkwixa+2PCj8rAD2xa/0dONKJ0nsmdmTdQ+xae6EiT2P8c0bsWi86UTrCfzl2rQMQoTzFSOzHrvUQ8AEnSkdLJjuckepBM9F6/qcoru8a6iR8j0eFoVnI//ur3fqcTczzc/NTtt8z5vP4BSKfzkAx3kvATjkEm+Mptrb4ROxaJ3QrB1mhQoXJgarAtWSirN01W7QNMHxiXITuh6UxRZnYte4A9jZ6wEW4FhVaZlBLkrwfdVtcRLkfRR/y1bqsZJ92EQJvYDi7cynEcvk4MpIGIHatzYGfAWti3r8poHy1jI1i2sLfj4pQ/0SMljyJkGnAb1CAsz1iyb+AWKbnFRhJ7o2SBI0L/lnAB2LXclCR6EJgTzRp9yIZlm8Y8+2J7OQ6E3UENT5bUgzLfJTH/yZKrrwfXaMh9Nn9AhWxsEP/KKTFnRUVV0OMn53t0D9sFEWup0u2peQvvNcqec1CM7ax7po4iHJvkjI8gbrFrkbXdCV0XQfMMQ9KvKAVBv7xyGcvrzD5ZeOpUgo79GchOYbVgceAlrog7NC3Ei+oL7Sfi2R98p5Ni1ASd2lqxbhZ5u8LGP69XIA+87cnXtDoB1OhwqSF+S79HrH7p1Cbu/dH8+cHJmhoHcP4Yh2H/DAtJL83FX3P/wycknhBaeK9g3PujYoqa5nznQD8LPGCocQL/mOH/vlmTNOpEQmyMd1qh/7aDc+mVs7Zi5LW6zL8+b0ecLcd+mu1UaC8oWTbXFT8ASDxgvPt0Iean6qFYpHDjWRj12EkIHtamR8SL3jBDv09qXlXzEZSvguAnRIvWGhUBX6H5pDs+b8V8HkTO427vLORFL8FxeVT0FyzKHatPZwo/W3pi8cZxpz+b+QXuEAxwYY0KXCZY/0+dq1VkNLCd5HiQatr0jHzWjXksc9Tk2OyYte6GTjKidKyGHBC4ETpX2PXugsV0usL1UMoxhwhHT3JcQl1ZLUGDCFWf4UKFSYBjPRbyPC13caom3drJ0ofnpiRdR2nkK/WM8tsG1bgil1rM5T7aXzNliiuev8ox/PJgvH0ApvErvWmTJI3dq3lUVFqQ+SRfaETpSOInmbumwkM5OXATNfcZxkpGTjucKL0ZhM/7InyKI8ANxfIDW5BcZfzIhRL/3lMBlqhQoUJQVXgWjLxQ2Bz8hO4Aygh0zgxZvdCfRJmByCgYDKLXWsLxCBpZEZMQ3KF/69kjCnw8W4Wt2LXWgl4N/n67bOQvMoZZt81URvz0g37fdq8PleDP3attyED5BnofabkT5zzkPzPrehaDqLF2cXA2SUSLntQLM8BSsxvhSb1+s93KTOmC1Dn3ITAidJHY9c6Ei2qh9C9MQd16XxgtBKCpii4b+xam6Ik7BCSn3wUwA795VGhq5GRPht1v52Puok6wZ0o6dd4z4C6ePI6mf5JMat4KuVFs0IYT6tN0T12b5OinUOx10WZcTzAyYkXhOac16J7663As8AvWvEQA0i84F6TDP4R6npM0Xfiy9nxy2CH/nupJS4ztlZhF4Qd+jNQUe3jwHJ26P8HLULOQkndq1CxLPsOLUSJ0LuB3Rj5nZ5izpmgZ9srSEb0xPpksknIbomkOv6aeMFodckrVBgLHIC6lhtjwJnADsZP8NF2D2qH/jQ07x9mjnUNcG7iBf8b5Xibnffr1ApJGd5Q9//VgG3t0P9M4gW50sAdnPM0FBtlz9Cl0Py7D5qfQdchj1zQi6R2d0LxRDt4L3o/jZ9dL3rOH0CLHjWJFzxnh/63GdkV3Y98km5o2P98O/R/grpl+hMvSNoce0uwQ39dlOTeHei1Q/8B4AuJF5R6CSVecKvpbtsfPYNj4MrEC7LurFOpdcdnmI3ez8koaTRuMJ1btyKSVeNcfEPsWms7UTqm350O8A+KJc4X0UZMYxQVrohd65dofs7i7yIMoeLZd3O2PYk6EvNinYXkKCYU4BR0H9TH17sC98eu9ZYJ9rgtwr6IULgzikUtRKbbe3EzrjedAnuiuaMHfZ7z0Gf/ISMvX6FChQmGKYh8l/xn7kzgG4h8u1jDkJrLpFHXi11rWkPX9bHkq6NMA7aPXWuNFv0qi7BiybYFZvu/Y9faHnWvZ/FhP3BS7Fr7OVH6K3itW/lLiNixLDDPeJx9bRKoAhXCdHFf1MKuL1Es1TuNygOrQoUlDj1DQ2NmWVNhgmAmq2tQ11B9Asrz0h0AACAASURBVHc+Soiv18bh+oAV87q4Ytc6FiUFiuRFhihmTQAs40Rp1zofYtdaH3UIFRWIXnKidAWz7/dQ8jtvkd4PrNq4kI1dazbwb0bKEmZfornm/9OBx1FA1Fj86wM+7UTpT8hB7Fo/QkmxvOvWhxIAn0ZFhjwMAGs5UfpswfZxQexab0SJtjcgQ9Bf5slDdht26B+Kihh598AgcF7iBUeP4vhbALeh+ybr7FkIfD3xgtNy9vdQUacxyTkIXJ54QVkROO/8ywKXIRmgBSiR8SKwV+IFDxa85miULMxbhAzmjC1DCrwn8YLftTPGMpgC0IbomfFI4gVN7wnjhfUkIwv2gyiZNqwLwnQ4/BpJNNR//+YBFyRe8HEzjg8iyaKVUdHzO+izXYN8vIqSy3/M6yiwQ38D1NG6GjVJikeADyVeMC4GyBUqtAI79C9HSdE8zAM+n3jBOW0ecwYijWxM7bvaj+bFdyZe0FVpKfMsPgrJ9L2d1ghb/cCqiReMKklth/6a6JlU9OzcMfGC2+zQv5hios8A8KXEC77f5rm/hDqZi97v+YkXfCzndTNQbPExTAcZcFriBU/aoX8g8DXEZH0RdZmfmnjBfNPttwLwXOIFHcnm2aG/NupQ+mszSV5zbR9C0sv117cfzXM3dTIGU0zqo1iOsQ9Yeix9PHPGtCNifueRZuYBJzhROiKumEiYOPuP5Ev+vAis0kmsZ9Ytj6ECZH1cPoTm08eB04CfFSksxK61B+oAqo91UkRIeasTpaUFWdPh9zT598g8pO5weivvp5swfis7oO/hA06U/q1gvzWQLPdzwB/G817uNkzXwcHIk+tx4OeZv3OFChUmHrFrrYrioMI51YnSMsLuYgFTyCuTql+A1Hd2Nf+/FHVvbVSw/yKkXvTTUYzpGkSIzssV9aN4C+AZiuOLNZwo/V/sWj9DhM/6eXMA2ZnsMJnnEWNLchjyon8IuKBxnohd65PII7sxBzII3O9E6VbjMdYKFSqMH6oOrkmE2LWWRQ/qvdDkEgGXt7tYdKI0jV3rQ4jFejRictyOupfaNZ7sRbJkeazMfoo9tup9e4q2l0kfdoKnmpyzvlV+V4p9yhYg/5074TVfrA+iRFVekaAHdSl9BxXY/oiuc14CYDZimucWuJD28AHkF2gs4DrEMC3CApSwf9aM/R1INuldZoznA9/twGusLRjW6JljeY4CzKaYAZyx5jtG4gUPmGSdi65pggpYs00yc0PEGj898YJ7UFKiKDjsxAT2KiQJOp3a/bUUcLsd+uslXpDnL3UxYq7nIXu25DHN5iEWf9eQeMGQHfr9qLj8Pjv0X0YdpxeVyA16tNcFsROSJGj8/s0CPDv0T0284J+IBHBN/Q526Jex1SxgoKC4NQsxy1dsGOvbgNvs0N94lP5vEwI79JdGCcdnEy9YrJjgFUrxMsUElBQVpdrFZ1BXaf33biZKCvwEPQu7Ajv0v0qtY6tZF2o9FgEftUN/LsaXqcPusqMoLm6BuuRvQ3Iw88l/vk4Hvma+Y99tQ1bwf+aYefH7AszcXw9T3LobzU9ZDLMmcIjpgr2YOjlC85rl7ND/MSqEpsCgHfpnA8fnERMMsWAWMC97Rtqh75jjvsWMbbod+hcCnyoplh2P5rTG6zsTONsO/Td3+CydRnHMB4odemnuG9tNbEjxmGYhJYauwRSR3o8Sb88AV7XrL2Uk8T6P4t0paPzz0HXbo1Mik1m3vAclB99J7XtzD/JLm4U87M6OXete4LJG3wwnSn9p1j6nUvPQvBY4tllxy2AbdJ/mJWxnoe/CuBW4YtdaBhV5voXuzR5gqpGP36/xszMdAaPpCpg0MEnKsyZ6HBUqVCjEAsrjoEnlI9kpnCgdil3rUjQPNcZdC1G8fAmKWwaBIxEhsghTgNNj17puFEX7k5GvdZ7s/3lOlM6NXculPCd2cOxat6DiXON6eQZaR++ACKOTDrFrHUSNQDwdqfScFLvWrg2+YOeh9/h2arm1fnStPjx+I65QocJ4oSpwTRLErmUD9yPWajZhbQ18KnatHVppE45daz3Ezl0PMRnOd6L04rrt2eK93c+9qH33Koq10gdQ98LbyZ9gf98tE+3Ytd6O9PK3QEWcqYxk2sxjuBF6WeeYhUnwxa61MZrcZ6CJsShYWBrAidLrY9fKfE2KUNQhAipE/pqRgcs84GQnSp+LXesxauycRkxDhT5i1/oA6vbJvKiWQ9dp39i1tnKitNWE2uKEu0u2zQU6Yn/XI/GCl1CSo9HzawYKtDYGdrND/0QUcOUlYHvRd/XrZeeyQ39FVEgbAJ5H8pR5ydKpwEdRIqRxvC/bob8HkinoQYm8uehZcCDyc5vSMM7MG+u1IrRJYO5CrfPjF8CNrfij1B3jXcikfjq1xN7GwIft0N+1oMi1GfnFYswxHIYXuPah2PtvCElbnl2wPaLYkPZFoEi27UBqfniN41sDddMuNmbvJiH+feAQtICbbof+XcChiRdMpMdfhe7gQnTP5n1PpqBnRbs4mvzvjQW8yw79lRIveKGD4w6DHfqbo+JWkexqGWahZ+RClIj4oR36X068oN2k9dpNtq9jh/56SLLw2IJ9elBB/CvAB+3Qf0990ccO/TcjssrjDdftCvTdzENKvjzhkQwvboGeTVPRvbBh/c526E9F/qFvZngs9Skk57d/3b5TzHs4BsVB/Xbon4Pmx3tQx3svtXvjELPfQQXvYU+K46fVzU8n0ojzgf8gidk8PFng3zCWeAbdi3kFlQVI4rgriF1rXdRhuSw1H80fxq61txOlN7dzLCdKfxi71q3AEYgA8QfgJ6OVUzTKA9sbCfG1gH84Ufqv2LU+gdYaveh+PAQ4NXatbZ0ofbzhGLcCmxtZqcEyP90cNCvOdZuUlwvTsfU9RHjMuzd2AK4zPm2V/2eFChXGHab752GU52nEQpYsv7wvIgWPFajFMv1oTTmb2rq8lxrRttG3uR6z0PzZUYe2E6X3xa71YUQey/JS0xBJ+gvm9zUpXgvPoubjWlSknI0I92Na4DIdcnsDn0PS0o8AgROlhV6eplv5Rwxfc2Tx7fWxa62SKU85Ubogdq2dzTkOR/HndcC5k1ACukKFCl1AGfOiwvjifNQpVZ+AmI2k6D7X7MWxax0G/AmxqPdCCaC/GQkUAMxC7xpaZ6jOBy4pKoQ4UfoMShY1dgP1ocLKUShR3oh5tPCeWkHsWvuhRfsH0cS4CprsBxGD5lUznk84UXq7ec2ylHfyvAL80Swyb0Ofy9KUM2H6ULICauz4IhTKlZlW8H2QHvITqBDxIHCIE6VZ8eJk8q9rP5LxeMUwdTOD0/pxz0AFUK9kfIstEi/4MypyNRaEF6HPpasBtx36q6BE3ixqz9OMyX4i5fdMkTcXduj32qF/OkrkXYSKSb8rOd5MZDKei8QL7kDSeZ+l5nWxeuIFN6DFyY3UfKieBj6eeMFr7Fk79GeijsbLUNLlMHQt7zbbit7HDnbo32GH/st26D8FXI8KxfWs9dmocHdIwWH+RjETcCGSDa1HD+XXvWzb2ej91yeyhtD37fCSzoFtKJZGnYaK74sTLkOfx0xEupiOkmq/N8WvCos3foMIKvVzd3aff7ZDCb9lS7YtZJTds3U4kvwifyuwqMnLZr6V37RDv13D79822b4yIhn9AUnQDTByTsowE3XUHADqerJD/yHUcX4d8G879H+aPWeNxN/haL7PCAGD6LM7PvGCJ3LOcSTFBcE1TTGuHh9EyZHG5MwsYHc79Nev+9vPUfJneZQsWRp5GN1NftF/FvD/7NB/1Q79X9uhv23D9rLnczPZ60KY2Orr5MdOfUiiccwRu1ZP7Fpbx651DHq2FhVgUpTA6cY5M6+v1dDnMwXd/7OBq2LXWq3dYzpR+jcnSr/kROkBTpSe1s1EkROlTzlReqcpbr0VdWRlvreYsa+EElm594MTpYvaLG6BYpyijtA+VLAeD/wYqQQUzbXTUbz3XOxa58au1enzsEKFChVGg6NRnqL+WbsQEQJPyn3FYggnSv+L5F+/gQowjyDZu6x7qBEzKCdMzGSU/mROlF6JyM77AocCaztR+lHjVQ5Skynq0O5DhM1m3fDtzqGd4Adobt0a5fF2RR6kR5W85nCKc9i9yL/1NZh44DInSndxonRrJ0q/VRW3KlRYclEVuCYBYtdaDiUP81irM1EAUfb6NVFidia1xPEMtHi9Mnat+sTG51Giv37izfy5+qlNZnPRBH5M2bmdKP0GYuLei6Rz/ozkxw5zovSPwLZIuis1x74HeK8TpfeWHbcVxK41k1oRp/5enmreyw+QpMkbnSiN6rZfgibRPPQDHzYL492pdT81Qw9KCmNYIz8lP6E1jyYSJ2YiPsuJ0vWcKF3aidItnCi9qm77LagTawB9Tlmr9R3UTNLzJNoyzELBwZKKvRDLfQAVKwdQQvJdbchAtYr9KQ4Qe0u2gbTLi/A11JE1AyXBlkGfZ1HCY5CSwilA4gVzEi84P/GCLydeECZe0Gf+/s/EC3ZHCepVgTclXtCYyPk6uqfqizhLIQmlb+Sdzw79D6ME7Xbm2Gsw0r8uw2yKn3M/prgovxAVzepxJcVBfQ/wq4JtJF7wKir4nY6u5ytm/+0SL7il6HVm36LFzAL0bFwsYIf+W1AHaePzYwoqyh4w7oOq0FWYQu2hqPDxICJn3ArslnjBuR0etkzOdJDuSWe9ifZkCZthFnCmHfpFz6Y8/JDy5EXG4l0OdSSdgeKOotfMBg4zY7gHJVJmoufmDER6ea0b30gKbonin3vNtu0TL/hOwfHzPBgyLELzSz0+SHHBHvR8wA79TZAPRGPxbCbqwCkqqvWYMe0A3GCHfv0z5VqKn/f/obPurQwhIngMUCNA9QPfcKK0FbPyUSF2rZWAB1AneYC6dKab8WSxyQLz/087UZpXrOwE2zNSPjdDL4o1xgWxa02PXWv5osJUDj5FfgKxByX33tWtsRky32cYWQQdQJLSl3TrXEUwah770VqH6gwksTTm46pQoUKFRjhR+gDyO74CrZdeAM4FNnOidIlSe3Ci9CUnSk9xonQTJ0o3QfFXWQFoCuVy33lkm3bHtMCJ0lucKL3aFOHqcRXFMWeKyEnXUZynmIfItWOG2LW2RHm6+k6zHjT/nW58MfOwLsVEt+kU5/gqVKjwOkAlUTg5sCxKMhQ9rJsxnw+jvFi5J5rIcKL0qdi1NkWM2/3M9ssRQ9JGyctpKGl8cysMSCdKr0VJibxtDwLbGR8ruiVLaLATxcHFbODNTpQeV/9HUwzcnvxrPQTcknV6IemzZt0KA2YM+zlRWs96/zySVtvQjGUIBRrPmHGs5ERpx3JNTpSeYYxBP4gCgTudKH2kbpcZlAdencg7LRZIvGAekrw7BklJ/TfxgjwPuW5geYrvkWmo6+qtjLzefRSw2+zQn446HIukBfLQjxYVHcMU/0YUAO3Q76FYfmwGcKQd+l+o724yXT5n0959lvucS7zgKTv0j2C41nYfCtA/kOPlchPqZt2c4Z/NPODixAvKCotZh8Rx5qdVRCgxluenYqGi2+KCbSle8CwF7Mb4MdkrjBGMtOhF5qcbOAF55+Q9604r8VxqF79HhZFmc3N2D/eh72UvxX5H6wJP26HvJl5wWbMBJF6wyA79D6Did7M4ejYinhyKyBdFnW6zUGd1XtfTTGAX47P4dzOGR1GBshXciTxE8wqDFvB4w98WUNwtNUgtaXICxZ9Dq0XIWcC5duhfZe6Rk9B1Wprh16EfeXd17GVouri+GbvWmdT8MW93orTML6Ob+AWS5K0nooHe2zkoBn8SyYt3q7gFsD7Fn8cMFKO0DNMxdBiKC5ZF91fgROmjZvsUoKfej8tId38frUcAXoxd6yTgnCYm9m8uGfsQ6jS8p2B723Ci9EexayXoPtwYJSivRu9vPCQKt6LYBywPM4FdYtdynCiN2zmRIT9+GsllL4Wu40lm3VahQoUKTeFE6WO8PolvzXyJn6S40DIXEW7GDE6UDsSu9T5EXpuG8UhFa+fdjLztnNi1Mu/3+pxDP5oPymwfuoGPUJz7TIEPkX+dHkZxYl6OYQEjY9oKFSq8jlAVuCYHnqEmNZOHh5u8Pk9KJsN01JXxGoy04GfMT+M47mtyro7Q5cJWhjJPLMhPmL8FdavlLR57GO6t8RQqYOUlxRaiCfQK4Efmmr4GY/D5LlSE89CifhDJA34L+FbsWgc6UXpNyfhLYdqriwKkBwvGDXr/uQXJJQmJF7xIsX9ct3A/ClTzGPJzEEP7/Si5mKKEzFTgO4aFn4c1ad41uNAcJ5MVOz/xgq4leRpgMZLhX49Z6PlTn/zZjvakDRZSovOdeMHPjQeUi76jDwEX5kmpJV4waIf+jqiz7EiUAHoRFfG/28aYWkbiBbEd+iegTrfMi20RCrS9DiXfJgr1nbyNGKLcv7DC6xSJF9xlh/7h1ArtQyj+OJccb8BR4DxqHgP1WAj8AxXWF6Ku3ReRXOBLFPvnZZgJhHboP5x4wV+bDSLxglvs0F8HxVHbAhtQ3PW0CBXaihby/agIvgvFpIBFKPn992Zjy8G3yE8G9KG5qJFJ/HM0Z+W9Hwv4pR36b6BcYicj9RTFpvXoAd4D3JZ4wT/s0H8H8rXcFT1L/wQcm3jBbS0cqykMGenqbhyrVcSu5aDu4Ly4bCqwjBOl++ds6wb+RfEaYwGSMmoJhqx2G/A2avfTQcA+sWt9EjgYkch6Yte6D5F1/oJipVWovf9VkP/IG5GccxH+hLq08q5bL+qs6iqcKL0xdq270bNmH5T8+0jsWr9BCg9j2ZnQKPneCgbRM6idz3EmekauT428tAewk/FlG7VfbYUKFSosqXCidH7sWucjgkAjAbSPWtx7LiM91R9ijLujzBgfMhLEH0JkkX8AVzlRWq8w9FGkvvRFlC98ETgL+b63RCiKXWsdRHpZG3WpR06UtpJ/WY5iAotFsfpASL6s9CBSqSpTXKlQocISjqrANQngROnC2LVOQx0DjV0b8xBLtgwPIA3evI6P+WhxuSTiHoqLOPPIlyJ7muL7fojhfj5XIymiPCwEds5pCX8NTpQOxq51O2LI1ye2skDo4ti11mssjnUDpsD2beTlVR9YDaFk2hndPudkhB36vcCULnYPNOImJJs0k+H3VYqSqlclXnCZHfonomLnQuBXiReUMb9epvi+Bt2jV6Nk59PAWd1K/OXBdCv8h4ZCeR1eYKRH1nTa80pZgBKaZeNIgG+2cjDTjXasHfpfMGOZPxrmf4vnPNUO/TsRI3pdREw4w3RaLE64juJuwHnAheM4lgqLERIvuMQO/StRsWIG8DtDNOjmOf5rh/4uyE90Gkpy96AC1u45z9YEwA7929AzuOzZOhVJon2yZJ/6sfwbdWtjh/7DwKYFu1qI7XsW6nqpj9VSVDQ+H3V9l3VOFRaX7dCfhua6EbI3iRc8aof+bui7u6I551QUB+QVF+4wP+9lePzQB5yeeMF/7NA/Gs1nRfHUItRttwXNu5GHqCMdJV4QA3vYoW8B1hjO3+OJDdA8l9cJPQV99mOFmxhOQKlHiu69VvFhNNb6+8Iyv//Y/J7dv1sh9vj56L5r/O7NBr4Uu9b3MgUE0x1mAy+ZBNmZSFK78bWLgCfGsNvol6iwNp1a/L4dcE/sWuuPEWkPSog+Jcg8+NqBx/DiFtT8Y6PYtVbvwMOsQoUKFV5P+BIqHG2P5qhMXvkc4CInSodi1/o3Ij++DeUFzgbOqu9wbhVmftwJEbfubuzaNdtXA/6XdaabueryomOa5/z3gO/FrtXb7nM/dq3D0TxtoZh8T+CE2LV2caL0d01efisiX+WRqQaRX3DemF+IXWt3RNbuwazzkez0jk6UFslcV6hQ4XWAnqGhMc35VWgRxgT6Oyj5kS1ELZQ8uRl4zonSXGaf8fB6ipFdFpnvxbpL6kIldq1LEeuwfpE2iIKINztR+lLOax5FC7tGGaA+YJ965mLsWlsDN1Lz1Mgk3Jp2XxmPgS+hBFIei3kAMWRaStq3C3P+zwNfQYHXFNTZdZgTpUt0+7Zhl5+GWOhTgX8CXy3pmhrNuVZFTKy3UuusegzYyyRAOznmXcA2jLxH5wFfT7zg/zofcUfjOQY4mfwC/FcTLzi9Yf+VUGK5FfPzZ4ADEi/IDWQrjD/s0P8kMlBuTG5fD/y/sS4WVqjQDHboTwHehzpB/pR4wR+b7L8ykoxdlXL5r7sTL9i2g/F8Bj0j8zqw/gusbv7/JfMzxfzcDRxhpFh3Qr4JeQWhucAbG30k7dBfDxWqdkYL/b8DX0i84Jc5Y+xBRbjZ6JoV+kOY6/sp1KH2BuAJ4OTECy4x249DMm5FBa6nUKH/EGpF/6XIZ+sOAKslXjAiXlsSYGKxtyE/2rzPdgi40onSfcdwDO9Ba4mMfJJJTX7MidKWSQumK+vtbZ6+j+Ii56uo6+tXKAn4WTO+qei7cRiSPr3QjHk6isOfA7Z3onQ0nmy5iF1rc3PuvO/yXHTNuh5L1p1/H/R+W5V47gdWbZBJLzv+luheLPLpnQPsYPx1KlSoUKFCCWLX2gwVnhYA1zhR+s8xOMdeyG91GjUSyT/QfPwq6hjLvKynoDn1Y6Oxw2hhTOuhLuu8ueRFYJWyQl7sWjOAv6E4vj6WHADudaJ0+ybnn4m601ZH5N+ngefbleutUKHCkoWqwDXJELvWG1Biuwf4AJL+GERJgUuBTxnd3MbXvQMlH6ehSSIFngd2cqK01HNmcYZhq5yFkijz0ft/FDioaIKLXWt9JM0xAy26U/Pac4HPN7Zkx661LFqAb4KSPBc6UVqqvWxkXH6JWD1lEj0/c6L0w+XvsjnMJL/QidIRMjSxa01FsndznCh9drTnmuywQ39p1G6/GsNZv/OALydeMCbda3boO0iC8h+JFzw2ymOti9jvs6kFjvNQEJsVva4EvtVpEa3N8WyFCr31/jGLEGP748bPp/E1pyPphrIkzTzgyMQLftbF4VboAozM41eRj+CzSN7xgrzPukKFxQHG3/A4RPrIK8ykQJR4wREdHHs2emavS+2ZnXVM75t4wQ11+05FXSov1xd1TAHqIiT9lxUEBtFi3028YBgL1w79N6HkwjIMJ0PMy9u/m7BDfwfEns1j3s4HDk+84KK6/VdExI8VGF7k6gN+mHhBnuzkYgsTN34TyerORrHjLFRgbezQmwfs6kTpmPhdxK41G7gX3ZtZcXcI3Vf7OVF6fRvHehwRxLqFV5EE4AdQMas+XliEOsQ3QNdsX1RsfQi4aayIe7FrfQYIKCboXOBEqTsW564bw8cQ07+Z0so8tG45p8XjOkj1o0hOFeAVYI+xuh8rVKhQoULriF1rU0RQziMI/Q+RVz7E8PlzISIabdyJf2TsWiug7ukd0Tz8I+CO+hyZUQr6LPnKCK8CH2mBDG6jwt2WKHacjpREDsvLd+a8firy93TN66eiwt+BTpT+udnrK1SosOShKnBNQhi2521IHqOeaTwfJTPemaeLax7yu6DEyV9pmIiWZMSutTxqE3/eidJ/tLD/MkhqZUeUHBpAzOcLuiF5ErvWyWjSL2JIYs55ohOlwSjOsw/qtFgLJcKuBT7rROmYFz0mK5ow6eehAvLjiRcM5GyfNDAJwSNR0Joi5v00aoHkQsQm3jLxgjErYpti20OMTIj0A99PvMAveF0vKpAcT3GS5lXgo4kXXNal4Y4LTDHzC8AOSFLyh8gTrG3JiQoVKowfTBHpb8A65Bcatkm84KEOj70U6po+HD0v7wFOTLzg/jaO0Qvsj7qeVkbJ6CDxghFxiR36PwCOID+58B/AHquCtLmOD6HiQz2JJ0Vdues1Sgvaob82IkVsjYoXKfJGPGVJKpwbVvIDqKBUXyTJ/A2H0P2xCM3jpzpResIYjKMXXWsXkeXy4tHnUPdPS9c/dq3vo7ikFW+1VtAHbIQ8bfM6K+cBX3Wi9PScbR0hdq0pSPlhM5S4u8SJ0ufrtn8UOJ38rrNB4EwnShs9jLsK03F3HcX+p4tQF9bJTpS2LGsYu9YFiLBX5HsCuuYrO1Fa2OFZoUKFChXGB7FrXY1yAUVYQP6cPBc4yonSi3K2lZ1vI9TFPB3lUjK/78uAw7PcYuxaVyCfyjz0A8c6UfoDs+9sM8aXC3KYayAC0JP183ELY41QzFwf3wyh/MLeyOczAX77esmJVqjwekdV4JqEiF0r060vkqnZ04nSMfPcWVxgCoEHoiT6Oqhj7QzgjFa0jc1k+ju0gFyKWidXiDrlOvpymKTCSxQvTDP0IfnIEV1VpmC3DvBfJ0qfLjjP15DJZv1CNUVsno3bCRCWJNihfy/wjpJd+tF1OgPJ/U16rWY79K9CrP5GycJB4NrEC/Yaw3P/kHwPDNC1XDnxgjJvmH2AC8h/nvUDqyZe0JK0zmSAHfrvRt1s06kV7vqAPwA7VUWuChUmN+zQ34CaRNdSKDkwCBybeMHZEzm2Ipji2VrA84kXPGuH/qYofinqkO0Dtki84K9jOKYVkbLANtSYs38B9inrLDavWw749xLirzUMsWsdhhjFeXPeADJzfyfqjP2JE6Vd98k1qg5XIZP22YyMHTLMAd7rROkfWjzuWqhDvqwDqFXMQ0SRZ/8/e+cdJklV9eF35m4OgJJkKYIiRY6CgiCIZEHA1Q8BFW9JVIKCqEUQEBEKRURJBqQKUEBEJAmSF1FUJIsIRZBQZFBgd2d3drdmvj/OLaenp6pzT/fs3vd5+oGd7qp7u7u67rkn/A5wEcU28x/dKN22BeNl8/8jcv1NR2yQHuCQTKrRKGm8QH4FVx+wba2fVxPznIDsafI+k4aDfrFWLyNyUEXMA77vRulJ9Z7bYrFYLK0n1upVJFBTREpx0sJv3Cjdu46xsp62azEyWt5+8QAAIABJREFUCWwO8Hk3Sq8xrz0O8cHlJc/MQYJyLyHVyB9BAk8J8HU3Sq+udU4V5roS8Az5yTEDSCJIVr32H2B3N0ofbXZci8XS3VSTPrB0hh0o7hExFdgFqfBarDCL6hbANohz5mo3Sl+qcMh3kP4QmRPBQfpdbRdrtXsNAapfIxnSmVGQNcrWwK1IE/tGmEx17fw+YGZ5cMtIDf4EyUZZAEyItfo78NnSqizjvMhrDq+QjftXEKMje/0Uc84Nkb5sv1pSA2AMGWJHIZJ7R3RwLrkYKS0POBSZ42qMNDRBnFa7O6Hf28YM+B3ID26BXKMbIpKfRVyDBH82Z2RPpxPGWHCrB7iMkY7LqYi8wueQALnFYulSEi943An91RBptA8i1U6XJl7wbD3ncUJ/A2AdRPf/nnb0pnNCfwJwJlKptRCY6IT+88AqVO4llvVZahuJF7wJ7OCE/uqIPO9ziRc8WeNxb7Zzbh1mP4p7Ti0AnnOj9JxmBzF90lYC3ildR2Ot3oMkyU2v4TQDVL6OhuFG6bOxVtsBv0S+80qVQJV4AUkkuzbWarcqr+1rcIxhmD3G7xH56mzemT34k1ir+90o/acbpa/HWvmMVAKYC1zW7uAWgBulC2KtjgTOZ6Ts1CuIXFQjVJOqOh84ucFzWywWi6X1vEPlAFfWyqScTCa7HtZD7Ms8n8M0xGdyjfn3L4DjCubzGhJ8eghJ1MjO9z7g0lirSW6UXlbn3Mr5ILKm5dkwvUjFWFbZNg24K9Zq9VqkDy0Wy9jFBri6kwUUZ2MMUP9i1fXEWk1HqiI2QrImFwLfj7XKlfCLtZoBHMPIDMspSIDso8CdFcZ7rxkr7zOeChxN4wGuPiRzZZmC5weRhXdtRDe5lN8ismeTGFqwPww8E2vVj2TCnIkEPoqYgASzTgCItdoIuMP8fRpy/ZwWa/V5N0p/W9c7GxtcBqxP9SDjFOBAJ/RPSbyga4J9xqF5ByKfU0uTcYVcT+1yZlaSqVFIBngmP3U4YnA+D5ybeMFfEi9IndDfCQkoHob0YHkcke66vk1zbhcbA+8qeG4q8ru0AS6LpctJvGAeEJlHXTihvyIiB7w+kiHaA/zHCf3PIFLJ7wL+Wo80YQUiJAt2MkPO+DVrOO5NRHa57ZjA4LOjMdYYoahaqtbnK2JkLL+JVIJNAMY5oX87cHDiBQmyDhUlpZQzDuntUTNulN4Xa7UOMAuxt+vlHeArJb057qD4M5lD69bUDyDJQnl2/3jEcXcogBulZ8daPYr07FsbCWKfhSTGjQpulF4ca/UG0h94ZfPnHjPXzaiwx6lAhFw7eQ7BJ5HMeivtYrFYLN3DWUjyQR6Z7HEec5FklHpYEbFri5iR/Y8bpa/GWu2O+Mt6EHtkASL9uwMS/JrKyGDZFOCHsVZXNNlLc3bOuYvoQXyG+yFrqsViWUyxAa7u5GqKM+j6gatGbyqjxs+BTRnadGXX5gmxVg+6UXpz2et3R4KAeUxFFrBKm78ZyCJc1CPLqTrjAtwoHYy1+hEivZIXoOhB3ufpsVaPuFE6C/6nefxRRm48s834OMSx9cMK884YMOccB9yMONwyIyA79pJYq3sXw35dFyEVbA7VnTwLkF5317V7UnXwBST4WktwC+DhxAsqGaPN8lPgBwXzeRP4hxP6OyP3rXGIgTsA7OWE/vcTLzjZyFCdYR5jmaUovu+AVNs1jBP6k4F0cZTtslgWB0wV522IfEvp+jIN+CvikB8HpE7o/wPYNfGCtxoca3Xgk9RRYVPCV9tRUWapiSuQRI+8Kq4JSGCoGb6HBGJKz78T8Hcn9Ne+Q6SAarlm5iI9nOqukDJ2bojY7XlyhQuQRLW8z2AccEus1UTEll8FsTO+xHA7ow94ELEtWsEaFCcCjQPWLf2DG6W3Ib/1TrIaw5NqxiGf1w2xVlu5UVpvv8AfIpXmDkMJggOIdOYXbXDLYrFYuo6fIH6NtXKe+zuyRp7I8PW2D5HjrXcNe4x8eV6Q/e+9pX9wo3RWrNWKSF/LGeb4290oHYi1+gTFvuapiE+rGRntP1I5GJc35pbYAJfFslhjA1xdiBulT8Va/RQ4iOGL1VykGfIjnZlZe4i1WhbJUM7bkE9FMijLA1zjKc7ayLJIKvF0wXggmTDN9kT4LrAJsuAXzXMykoE7y/x7a4qzcEqpJfBxufnvzub1eXNQyDV2Yg3nG4bpM7Yx8hk+1IiDpF0kXjDbCf0PAgHSTLuao2d+O+bhhP5awHuBZxIviOs49GCK5Y3KyXpYtJMQCbptyNC1lyKf2+cQQ/hKhl+XvebfX3dC/5rEC+p1wjSNyXLfBnCB54DbWtBv7WGKDf+FNCgd64T+R5EMvQ2BQSf070Ic1FYr3GLpLrZGemGVJ09ka2yps38TJNixS4NjfYT6Nu8ZfTQuHbdY44T+uoi89c6IY/8a4MR65Smr8EvEtluF4bboXKS/UUMBT/hf/7LDyE+EWgr4IiJhN0ix7TkfqeQ/BelF2ijXFRw/F3EgbYD0ZysPWp0GXIBIhA6YeS4wx/0TWbPfQvp2/NiN0lYl8Pyb4s9kEVJZ3jWYBLXvkG/zT0ISIfeq55xulL4da7UZooChzXnuBE5xo/QfzczXYrFYxiKxVlsg99otkfXxUuBUN0q7QkrZJJSsA5yNyFVPQdbSc4FvGUnbJ4BvIUGwrCf9efUmLbhR+nKs1Q1I8km5ndEPnBlr9SFkHd8K2fv+xsyjvGd8pT13T5Xna5nrolir/REfxESq270LESUki8WyGGMDXN3L0cD9gI9k8L2IZG0ujvJXqyGb26JARF7Gyq0VzjebIX3gXNwofSXW6kbg44x0WM+jyUoTN0oXGgNh55zzZ/QwPGN0Lq2RmesHsv4O76W4imki0j+kLmKtdkGuw2kY3edYq9OB07oh+9MJ/e0RQ3UTJJv+NkT2sShodFeLx18ZyabaANNHzQn9h4FPJV5Qi2FV1Ggd5PNeiBiFbwCHJ15wmwmm7Wqevz7xgn838x5KSbyg3wRgDgAOMfObBQSJFzzhhP7MCodPRIKoh7VqPrXghP77EfnP5RCDNwXmOqG/S+IFDzd63sQL3nJC/2cMbTBK6Ucq3eqd6w6Io7C0KvNjwD1O6G+eeEEz2W0Wi6W1bErt8m8TgW2d0F8t8YLnGhirj9qSXvIokkiuihP6LhL8+Lj507XASYkXPNPoObsBJ/Q3Bu5G7t2ZJN5+SB/LD7Rq3XSjtM84gM4E9kX2Wq8gfVMb7Z2UsRXF9vIUYCZwPJI0lmfz/Bf4EPDvZgJHpp/VNeTbt28jiTcKqTQ7AlgWeASRzTyekSoEE818FwDLulHabDJKHn9H9lJrMlIScSFDdnO3sDrF+4csgaduTID1BEr69FosFsuSSKxVpkAyGfHLTAW+DOwVa7VJMwkprcT4V74CfCXWqifzt8RaubFWRyPBuZeBk4Abm/THaCRotB2yf84SUT6P7KtvYGgPPNH8fbdYq43dKH255DxXIOt/XtL5a0iyeVO4Ufr7WKsPI/7SLRAbZ13y185FLJ5+1IrEWk1AEq7e6pagrcXSTmyAq0sxC9MvqV87dyzyIpUrrkY4htwojWOtrgX2YLijuR/pBVFLbx+NNJzeBNmIL0J+E0e5UfrnWiZehf0p3pxmlL63G4Cf1XH+bL7lf9vdjdL/mH8/RXEG+HygrgoRk/n5W0Y6949FAoNn1XO+VuOE/r6IAymb3yRgR8RAm8eQUyVrvHpw4gXVmm7XM/44xIG2CvLdZONtBtzthL5bQxXRbRQHJvsRA24Oko3c64T+LxGnVpaZfIYT+hchwa+WBBzNZ3Q++Rrgy1G8liiGekeMCuY7mAWsxHAn1jTgTif0V0m8YG4TQxyNGPuHIM64cYihvl+DDuAfM9LZl22yvoP007NYljic0F8KWBV4JfGCN0ZpzB6kd8BXkPv4/cAPEi/IqrrfQH731db2jH6Gqkjr5WYaq8TqQeQS68ZUOP0VWUOzsfcFPmEC7k82ct4u4ceM7AehEGnZ05D32RKME8GLtToQuVbmtSgBqJp8bT9ig4SAx1AFfyYZ+Gk3SlvxHW6BBHvzfgdLAbu4UXojEjQ6B8A4oW6lWGK71xy7K2IPtxSTBb8b8vlMA6YzVMF/ZBdWMM2l8u9/VJUTTFCzp8meKRaLxdIVmHtaqc8gYwLwHiQ4851RmMdUZL3eH9n7XwX8pCgYURLcyoJzE5C96IaIysAVsVYHNWpzuFE6FwlYrYUkxLyFJI32I5KC5Z/XOERK10ds54zvIUo65X6CPuDQViVFu1H6MCX2W6zVnkg/9qxtQmrm/q0W2T9jAqO29C3ga5j+nbFWfwIOcKO0kT2JxTImaKrRscXSCtwofRVxSC/MeXoukgWbx+eREuzZSLBiPtIA+iNZZmqs1btirT5lHqU69rhR+o4bpR9B+l75wJHADDdK6wkyVaKaY2o+JRUfJkvoq9SWtT0HkcC5F1m4U+BPwJamb0DG+yiuXBqg/mzik8h3TkwFvhVrVWtme8txQn88EoApN7wyB8yNSLbQf5Ag0s6JF7S6Yfhu5Ad8xgHLm+er8QPEECunDzgv8YJHEi94xgSvjkV6tExGgnnZQ2OapY8CD1J8vfYh1+VoshviJCtf37Lm7E05MRMvSBMvOAoJoO2GOPrWSLygboeyE/rLIX1B8uhlqILCYllicEJ/shP6FwKvAn8GEif0b3RCf4Uajl3FCf3TnNC/xQn9nzihv1Gdw58J/A757W2I2Bn3llSqXkt9tvN4GpRESbxgDuJgKXdkZ/ZO3n23H/hb4gWNOuvPRpz/pfaLQoIB32vwnB3HCf0pSIZznkRdL3VKvdWKG6WpG6V9Laxuv4ti23IuEJmxjkQSwK5GApbnARu4UXpHi+axHcWqC9OQxKJyjqxwTMYkYO0m5lURN0qfRiqjDkJ+6ycAa7hR2mxlXcsxmfCPUfw7j0ZjHrFWK8VaXYLcdxbFWj1kHKsWi8UyllmX4T0OS5mEyPPXTKxVr6mWqeeYpYH7EOWgzZH2DycA/4y1WqXCcROQCqkpDPc5TAX2QXxbTeFG6RNulF7iRul1bpTOR5K+inrUjzfjlh7/GpIIczHit1qA9M3a0Y3S8tYjLcON0muRXuYXIDbTJcA2bpR2NAm7A5yFVNNPR+yyich1cW+5T9RiWZywFVyWbmF/xJG1EnITTpGFMEQqhkZggljHxVqdhMifvGUW4Cwr50QkcJVlvE6ItQoQrfnBkvPchxgXreZKZIEt6pnVC+wfa/WUG6WPmbn8LNbqceA4YH1kUZrE8Aq3fiAGfuRG6Q9jrSabY+eVntxI5HyffIfOALB3jl5yNbYqOB/I/WR1oFPZMVtQ7HicAqyWeMH7q53EyDPtiRhrf0i84IE65zC94LnpSCbUdZVOkHjBM0Zm8VdIw9ZFZi7nIQGtbJ69SDVR3vU1xbz2gjrm3ij3Af9CrvXyAOdC4KJaTuKE/mRkM6GR6/1q4ILEC+otp1+f4qDuNKRis2kSL3gbuWc1QzWnZ8clPy2WDnA1sC1DAXuQqqp7nNBfN/GC3CoWJ/R3MseOQzZyKbC/E/onJF5QdWPrhP7mSGJA6T11nHlc4oT+HxIvmOOE/n5In8vx5jFA/tozgPRgbLinZ+IFFzmh/wzi8NgQqSD7EfALJFh/GpJU0Y+851uQ3oh144T+BCRwURQE2t0J/Z5WVQaPMtUSjsZEz7LEC+Y5oX8E0nuj9DqdhwRDroT/ZXjfYR7tYD5im+R9bikSbCtnDaoHh+cjqg5tw43SBUgyXKsTnNrBAYhDcDJDe/b5wAuIfd9WYq2WAx5geOLWRsDVsVbajdLftHsOFovF0iYy+63S81WJtVoRSZjYG6mSeQY4tsb744mIaktpNfQkhvb9exQc9zEq+zwORvortpJxVN6XjrAHTKLGgeYxarhR+hSSNL5EYtbuQ8jv1zoN+T7abkNYLJ3ABrgsXYEbpa/HWq2LLOQ7AO8Al7lR+kgNxy5E+huU4iFZC6UOMpCqp+cZHQ3ei5Cy4Kx0vJwJSPXNzrFW27hR+iCAG6V/RDa0xFpNQip6NGJUKMSBcUQmE5IT2JqEVAt9k+Js2X4kKFEvcynOdhqPVNN1ivFUNrwqZlUZaarzkSCLQgzH453QnwV8ssipWsabDDkay+lHqseqknjBvSbQtjZSjfRPk81fyjTzKMJphTPSfC4bIMHnfyVe8HzZXAed0N8VqWzYGHF69SB9OPZMvKDqe3ZCfzpwD1JxmDnt1gaONLJY9ZTSv4w4+/KCXJljqCtIvOBNJ/QfRxzX5aTIZ2qxLDE4ob8h0lumvFJ4PLAC8CkkuFR+3GRE1qX0d6/MeU51Qv+mxAuqrXkHUCw9OBX4CbB/4gXXmX5ORyDZqc8g97yZDDW6noNUXn2yyphVSbxgFlLlXs6lwKVO6K+HyOk8nnhBM8GBXooTWLLnxySJF8x2Qj9meN/TjEFa3IuznSReEDqh/yJwMrJ2vI1cm2fWaKe0gquB7xY8148JtGUYqZw3KA4GZwxSpYfukoQbpQ/FWm2MJOvtitgwIXCuG6XvjMIUjkJs/vI9zBTg3Firq9vUL81isVjazT+RvVYeC6mSkAoQa7UMImW9IkP3yTWAKNZqOTdKqyWaeuTbnQrxD01xozRPjvbdFNtrPWY+reZZRK4wL7E2pQ3Swp0g1mpbJKlsfURJ4ofApWNMnncrxBYr6te6FzbAZVlMsQGuJom1+iiyAXgf0s/oLDdK/97RSdVJrNWySFn0XOAvzTSebgYz7tXm0Swnk+/gnoLI7LU9wOVG6TuxVpsjfR/2RH5v5Rv7XiRIcS6yGJWfYz5wWKzVMYhz7w2jjTyCWKuJiIRQliWTNUzNYwHwfsQxVw8XIhvt8gVzEHjYjdLyQONoci/F2VbzEednJQ5E5KhKHavjkIz204BjapjDFRTrdQ+a52vCBKYqOWTnIt9j0Xt+swXBrbWR3+OqSOBqohP6dyD9pt4umesbwFbG0boeEmT6c+IFtRqDxyLXY+l1NRkJSv4U2KWOaV9F5Wbxl9ZxrrpwQn9ppBo1a/b7i8QLHqty2OHAHxi+YRhAHOQntmOeFksXsy3FDvDpiJN3RIAL2L3COccj9/evVRl7BSpX8nzGCf2rEi+4zvSiOrL0SSf0z0KSUVZAMmd/1WS/v5owFWINV4mVnGe+E/qPUFzlek8ja4oT+qsjsij9wE2JF3SqaftRSPCkPHg6j5Lq6LFA4gW3INV6HcGN0mdjrX6I/AZKbe25wC9Lk9NirZZCKsnWofi3PYAEhPcsT9pa0nGj9BkkG78TfIbioP8UxAH48OhNx2KxWFqDG6ULY62OQ6qvSvdgg8h6VEsA4FAk2JSXBHBGrNVFbpRW6vVdpDiSzWMq+f0W/54zZsY8Wl+9hRulA7FWX0XkcfM+r1NbPeZoE2t1MBLQynxo70Eq6T4ea7VPC+Wm2818KiesWTvLstgyZrMxu4FYqxOB3wOfQIz8vYFZsVZf7OjEaiTWSsVanQMkiOP9BuAV04R5zGJ0iYs0ggFWjbUaleCuG6WvuFG6N1KFU2kx2TzWqkjaDjdK57lR+lxRcMvwO6SvwBSGGosXMYHGmt7/AHiK4cbWAqTirqPXvalwOpWR0jgpUllWLYvqWPINzcnAIabHV7U5JOY8fQzJHmSOm282mV1fPlaKyFTNz3l6HpWDPFUxwZo/IZVUU4GlkQDU9sD1BXP6Z+IFVyZecHcdwS2Qyom8LCMFbOeE/lK1nijxgncQp0wfQ73MFiKfycGt/A5KMZUnzwKnI9JhRwL3OaHvV5nv3YjUxF3ItbIQqdzaPPGCegPQFstYZx7FGbUDFFcJl2bPljMO6R1QjVnkOxIyJlAh6Jx4wYOJF3wl8YJ9kQqW7zqh/7YT+gud0H/AVLq2HCf0e5zQ39wJ/UOd0P+0qWZrlK+Rb6v0IVXh9cxrnBP6lyKJGucgyQovOaH/lZzXLu2E/jec0H/IPHwn9JdpYP6FmKDQTETiuR+xXR4Cdky8oB0y1Ys1bpQeh1S83wf8F3gEcfZ9qeyl5yN7pLys70VIRvipwPvcKJ3VrvlaGqLSPmKwyvMWi8XS1ZgKq8MYUv9YgMjPb+lG6fOVjjXsS35vcpB75IeqHF9Jqei/iDLMCNwofRKxWct9AIPIPvKnVcZtCCO7+Fmkp/kCM9bdwIeNLOCYxfRDO5uRPrSpSM/tbTsxrwa5i+L1eQ7iP7JYFktsBVeDxFqthVSylC5qvchN8bxYq2vdKK23d8xoczoSlCiX8bsy1mrrTDJvDLIQWfCLDI5KDrS24EZpf5Wg2iA1aj3nEWu1KbLw1uLYWgQ86kbpE/WO40bpnFirLZCAxAFmvN8DP3CjNKn3fHnEWrmIxOK/3CitSdKvhACR6zkZqYxTSObwoabKqBIrV3huHJKh9Wq1CSRecLYT+n9D+mOtBTwBnJV4wV+qzr5+jkWqLzdgKDg3F/gL8lk0w/7IfaHcQJoIfMAJ/Y0SL6gpc9f0FDsVkfOah1RRnVQiX1gY3EV+q9OQIGpNJF5wg6k+OwSRcHoC+GniBW0xvk0/tBuQIGD2eWW9e77lhP7tiRcUVvYmXvA34KNGDpJGqiQslsWE6ygOzmf3jjweoXhd70PuidW4GPg2xX0zQe7pFXFCfxpSUbwqQ9UPmwBXOaH/5cQLLq5hLjXhhP6ywE2I9F4vRiLWCf19Ei/4fb3nS7zgTif090SqyldD7mdPAocnXnBPnac7HQkolScvnOaE/pOJF9xo3sMKSDby8gzZMC5wmBP6myVeUHXdrZXEC/5g1oblgbSBHo91YSSjv4SsRdORpJHvulH6iOkVuz0idbkKcs3cBHwYSYq6FbiuU6oKteBG6W8p6JMLYBK3PkVxFdALwBpjKCt6SeMq4Cvkf38LEOUSi8ViGbO4URrFWl2CSPH3uVH63zoOb7aX8gmIUkq53dkHnFRFFm9vxCbO5GsV8Dow043S16qM2zBulF4Ta3UtIl+7wI3S8hYKY5XdEBs6jymIQsOs0ZpMM7hROj/W6jBEvrq8X+sjVFc1sljGLDbA1Tifo/jzS4FP06bsiVYQazUVyVjJc+RMAo4D/m9UJ9Ui3CgdjLW6mHxd434g6tBm+k5gZ/IzKp5FMnUaZUcqB8hSxPCZjWTLfqrRgUwV2Y/No2WYHmy/RuQ+FwITY60uA75cpbz/f5jAwPlO6P8Eyeifk3hBrX3BXqU4y3+AOr4fE8xq++8n8YI+J/S3BnZC9JRTxGiZ1YIgyXYUSyf0AAc7oR8C91caywn9TyOO4+xeMwGR29nNCf1NjNThg4hTL4+5lAQWndBfjSFd7MKxEy94Adk4jAZbAcuQ/9ueiNxrdbWT2MCWZUkn8YLXnND/FiNlhuciVcp/Kzj0bsRZviYjbbNFyD2o2thvO6G/AxJsKcp8rCUgcgCSMFFuf0wBfuyE/uUt7JX0O2AjRvaYvNIkIdQd1E+84FZgLRN4Gky84PV6z+GEfhbYybMxpyCVcDeaf5+BOJZKbZjJiDTMmYh0cMsw99m2OX8yjGz0HxHZ3uxz+DSwe6zVHoisZlZ134N8j4cw1Kfqc8CLJuGsWoJOt7IixQ4jgNWB78ZaneFG6dsVXtdyTIBxJWChG6V1X+NLCGche6l3M1y+tQ84qpuDrxaLxVIrJpDUiMLHZUhCTlGC8b1Vxr051uoQJKmoh6GE51OAn1c5dg7wyVirVZB98WvAA436uGKtHMSfMADc5EZpYXKRGaPeJORuZyrFMuU9SOLRmMGN0ktjrV5AWrNsgvj/zgd+7Ebpwo5OzmJpIzbA1TjLUxxQmIhkNXQzLsWbzl5y+kGNMXykomlVhle2PIcE7zrB8cA25GfpHNVk0G0hQ5J45QwAf0WCCHcDv+u2hS3Wajkks7k8SLAv8nntW8/5jDzey3VO40wk47z8+5kPXDyKzdvrwrzXP5hHK5lNsQTNZCRgsz/wihP6e5k+MMNwQn8cI7OHQJyx70HkjM5AnJ3X5bxuLvCdxAtSI1N4GZLx3o8Yoa86oT8z8YJKEg+jwcoUZ+kpJGhrsVhqIPGCM53QfxRZM9dG7uU/AC6tENAeNMGpGxkKcvUiVQb7l1SLVhv7fif0r0WCD+U2ch+1Sb9+nspVYFsggY+6cUJ/ecS+2Q9JRppO/oZ8PFJ5cUQj44AEGxs9lsr3RJB+TJiq1X3It6fHAXs7of+FOiVvuwXN8OAWDCk9XMGQnHTpc6X/nYasHSEihT4WeZnKfe16kOv54FirTWuUhGqaWKtPIX02lgd6Y60eAw51o7QogN4xYq02BD4AvAHcUmvCVytwo/TVWKvNENmm3ZFr82ngm26UXjNa87BYLJYu5adIL+X3MNyO6QOOqeV+7UbpL2OtrkRsw/HAX6u0pCg//gUkwashYq16kaTlAxCf0ThAxVrNAvauRU3HJIxshSTHzgd+a/pHjiX+SGVZvxsLnutajOzzrA5Pw2IZVWyAq3HuRjRop+U8N5/iLONu4b9Urvhpppqo47hR+raR7fsM4ggCcY7/2o3SvJ5FozGnB2KtdkSyJ9ZBnD8vAl91o7TZRfN3wHcLnptvxujmHhMHky+HNxnYK9Zq1VFwfJyHGGe7l8xlLtJA+5hKBzqh7yIG7vqIHN65eQGfRjESeJOAeaNR5WN6uHyMyv0VMsfc+4FHndBfgMgr+YkXPG6e24SRlQUZkxFH8BmJF9zuhP5ByG8jy2CbgDT4zRzK1yBVXhMZkryaCtzlhP772y01VYV/UbyeLgDuH8W5WCxjnsQL6g7aJ17wkhP6JwOXI47Ycchm/XIn9A9KvOBXNZ7qEETScAWGbLw5SKLIjwGc0N8dyYpcF8liPQ/4YeIFWfC9Eg3Z3qai6kFgOYrvqxnjgc0aGafvWNjoAAAgAElEQVRFvEllGzOrmFEUy9eBfFbjGeqnOJY4mOJA5zLU1gd5PLBjrNXyY7HKyI3SubFWlzMUkM2jB1gWeDTWah03SmvOoo+1moIEAf/jRulLNR4zE7iE4d/NxsDtsVZbulH6j1irGcAeyOd/qxulj+ecqq3EWr0LSfzZFLGJUmAw1mpvN0pvGa15GNt7ppFZH+9GqW1Ob7FYLPzP37QZ8D3E5zQR6fN5nBulV9dxngU0mPjUAo5CKnXL1+jtgSTWals3Sgtl9mOtpiH2+sbI3n4RcEqs1TlIMsSgCYBtgazXTwN/6zZpYjdKn4i1uhVRRSqtyFuEtEm4rCMTs1gsddEzONhV95Yxg5EeeQaR3yh1ZiwEHgc26rYbdzmxVg8h/WnKndh9wNfdKD1/9Ge1ZBBrtTziuHmlVddJrNVZiEOlXNbpejdK66qAGm1ire5CqtvyeAc40DQ2bTtO6G+GSDhOQPqL3VlFgm8f4CKGHHGLkKDG4YkXhE3O5V1IkOez5tyvIrIFP0McQr3A660Oejmhr5HAUl4AvxIDyDX3wcQLHndCfwvgZorL+p9IvGDtknEnAFsin/1fM3lJJ/TXQ2TD8iQg+oBvJ17wvTrn2lKc0L8XMe7Lnbp9wIaJFzw9+rOyWJYcnNBfBkkayQsqzAPel3jBKzWeazLS32AvJEnkUuAPiRcMOKF/BFLtW7rW9iH3qP0ROcRtyA9gzAVWSLygr6Y3NXxO5yDBt1r6dQ4Cv068oGNrvxP61yOyzHn3xOMSL/iRed3jFPc2eyPxguXbN8v2EWv1BKKWkMciag90vgNs40ZpTT0vW4lxSh2EKB+sggRzzwVONw65Ws4xFUl+2YzqfWJ/40bp3jWcUwGnIfK/A8g19iCwf6VG9+b9PIuoO5QzgASUHkWSmjKpyEHEFtxvNNUPYq1uR5KuygPAfcCGbpRam8JisVi6BLO+9LpROqp93pvBzPk1JHGqiFeBlYveV6xVhAT3ygNkc5HA2UNI9dN7GFKGeRH4eLdVeZm+qecgEtELMP4IxLZouErOYrGMHraCq0HcKO2PtfowUjmzFqZnEHIT3Lvbg1uGzyGycJMY2kDNRaoNLuzUpFqJWbhp5fcRa7U0skl/tdHztikT92vIBv9YpK9BJuv0kzaM1WreqvL8O6MyCyDxgvuAmqrdnNBfFglulTptxpnH+U7o35x4QU1ZxTnnnoxUEbyXoWz9GYhUzClIBvgg8LwT+kckXnBzI+MU8CnqD26BOIOmIbKDeyLXY1EVWD9lzemNDORdOa/dHMlezmMKIonQ0QAXIiF1G/LbG4esCb3APp0MbjmhPx5QiRd0pHLVYmkEJ/TXBb6NBEgWAVcCp1S5n36GYlm8HiRR4Ae1jJ94wTwkUDWsd5cT+ksj97dyR/0U4INI5i7kB7f6gJMbCW4Z9qO24FY21rkNjlMRJ/SnIcG/tYB/A1ckXpC3hh+E2MTLMrwS7k9ItW7GCcj3m7dWLOWE/saJFzzUoumPJjch63eR/GKtTEDktTvBWcj3mAVzlwO+CWwTa7Wj6VtSSKzVBOR3OQFRhphI5cq1vWKtxmW9nYwNvwkSXHuipJLqXCSYXBrM/hDw11irtdwoLaroXgmpzMyjF7nf7MhIR93HkYDa1yvMvWXEWq2JJPvkVTeOB45EJEgtFovF0gUYn9CYCW4ZpiH+hEpMQVRdbi1/ItZqOvnBLRC74TikGGBFhq/9awJ/jLV6bze1zTAqTwfFWh2D2G+vulFab8sLi8XSQWyAqwncKH0O2DTWah0kG/DJbslEMJvCGYiz5+W8QIwbpY+auR8G7IYEES4EruimxaYRYq0+iFS+bA0MxFrdCHzDjdInmjjnukiw6ENIZud/Yq18N0ovbcWcm8V8x5eax1jj54jxlBdUGQTuHN3p1EwtDtXvN3jufQCHkVJUkxhuSK4J3OiE/q+ArydeUNgUtg6a6TfWA3zcCf2exAv6ndA/Fgk+lTqiUqTH149rPOd/qdxjrhXvuSkSL3jVCf0NkXvOxogE1/WJF9Sso95KTIDgbCT412N6Gn0t8YLbOzEfi6VWnND/AKIZP4WhDfEBwEwn9DdJvKBIwmwlhldVlTIJuZ82y45I8DqvEqVSdcprwLGJF1zUxNjVZAlB7q39iFzin5sYKxdTlfsHRLlgGhJIO9P0Ybyt9LWJF7zihP46SA/NPZEEqkuBm8t6ar1l5pznIFHAl5DKtbHGWcAXkb1WJbnfSmS9LKolAbWcWKtVkT6Z5d/LZCSY+zEkqaPo+AnAHch6WPS7LKcXUwkfa+UC1yLBrUXABKM8cRCSFV4e/Mn6mx2MVFjmsYDK38UE8iVGpwCHxlodX1q5ZmT7PmXmtBSSpX6BG6XN2iQbUHyfGY98/haLxWLpEEZG9nBkr9+LJG2e3YL7f1sxPsLPAycjSZnV7JMepK9qHjOQtapIgthF7NLyxJZeZM3cg7Jk127AjdK3kcozi8UyxrABrhbgRum/kB4sXUGs1c5IdmPmzHkh1uowN0pHZF6YrIQTzGOxINZqK+AWhhzqvUhfpY/GWm3mRumTDZxzNaSaZjpDhsAM4CexVhPdKO26ijfTm2ATZEP/QJeXzN+IZAbtxJAjJHPU7V+rFE4HWIHiHhsTEYdro+xDfU6hzwF7OKG/TeIFjzQxLogTcicaq+KCEmM58YLznNCfjWQ/Z1JTtwNfriMYdwvFxvM8JEDacYxU5N3m0TGc0F8TqZyYxtB3sRFwnRP6M1tc7WextJrzGXnvGQe8C9mQH1Rw3D+QwPn0nOfm0JrN6gTqD1YsAn4DzHVC/yjgMeDWsiBPLcxCkpHyxn8bua++AlyYeMGDdZ67Kqaq+CZg6ZI/Z+vfNU7or5p4wbBm5KYS7iLzKGIG8hnloZAs2jGHG6XPx1ptg6ynayBOoCK53owBxO4Zh7HdkCBTJ9iN4sSSqUiCT2GACwlKb0KxjZTHs26UzjP2691IxVipY2wzxF7sJ7+6aTJSTX16rFVveYWZG6VvxFo9ZuZVzkIq/7Z7EZsvAYi1Gm/msgVD96sNgCNjrbYye8NhGHn7FYE33SitlPzyCsWVboPZHCwWi8Uy+sRarYAoHi3H0P70KODAWKvN3Sh9tlNzq4GTkGrkWtfmHsRuzeNNKvsq5jK09y9nOpIA03UBLovFMnappcGxZQwRa/VRRDbx/QxVeqwJXBNrtW0HpzaanMvIRTuTTju1wXP6yMa5fPM7BTjDZHF2BbFWPbFWPpIxfiPi9Ho51mrPzs6sGOOE+DSSpX0v0t/uN8BWbpRe18m5VeFhxKGax2zE+G2Uep2fPYjz7Eon9BvNFs+4HpEXLG8m3o843YqckWAq7kr7giVecAmShT0DeFfiBR9PvODZOuZzIsWfx1XtqFQY43wbuTfl3a/OacH1YbG0BdN3cOOCp8cB+zihX1SJdR0SyCq/Vwwi964rWzDFu6itkqqUcUhVyc+BAFnbnnZC/311nudERt6TQaqovpR4wacSLzisHcEtw0zyq1tgqGK5ER6jspRtM+toR3Gj9CE3SjcA1mOon1sRC5F18htI0tn2wLZulM5p+0Tz6aX4e+mh+FrI+DL1BbfmIXJGIAk+pRWcGeMRZ1mlsWfEWs0G0lirf8da6Uyu3HAI4nQrvU8sRCrFK/XoU0gPsowvIjKCpcH4SYjc069KD4y1Gh9r9T3gDSQh8s1Yq8tjrd5dMNZfzXzy6APOqzBPi8ViWWyItVop1uqrsVYnx1rtEmvVDf7LU5GEh9Lky4lIIlat6iSjTqzVsojMcK1r8yLgaaTHbB4zKVayGUQSVIvsnnmIr8pisVhaRjcsEJbW8gPyJS2m0PkeNW0n1moZxJGQRy+S2dkIu1Pc+2ICsE6D520HhyHOkalIwGM64hC4zPSN60rcKB1wo/RXbpR+yI3SNdwo3deN0hEZ97FWM2OtHo61mh9r9VKs1QkmK7YTXI9kzpc7VAcQJ0QzWUmXIU6YeuhBKjfXbWJcEi9IESmu05Bebv3AI0gPmI2QbPwnyNcan4cYz+XnHEy84M16+884oT8d6TWRV8G1CHFoW4azG8UOwFWRDHKLpRsZT/FmGcSZ/KQT+o84ob9Z6ROJFywEPgo8jyQY9Jn/vgxsZ6qJmuXd5PeMXFRl3uORtXiC+e+qwG1O6Ndsh5vA1S6Ig3w+sj68ChySeMHltZ6nCd5HcVXvFKQnVyPcDzxJfuLEIuCCBs/bNbhR+m+k91ilSvqX3Ch9yY3Sc90o/Z4bpX9rdT9fE2iZYSqkqnEzxQGuOcDVVY5fusrz5ZzoRmkWhN6K4mttHMXr2wCSSJMduzqS9HZy9gI3Sv+OVF1di9wf/oPIs28MnIncN8pZAFzlRmnpc4eTn7neA6wda7V6yd8uRWzzachvZSLiGPyzqQQbhkn62guRjs/uW5ldeYEbpbNyxrVYLJbFilirI5Ck19ORJJ8rgcdirTq9j9mX/GQnBewSa1WkOtJpdkISOooYROyuBcg6/ySwawVb5EsUr8cplRVWeoArKs7WYrFY6sQGuBYjzCapKPMZYLNYq2oZl2OddlUmVKpY6aGysTBqmO/3ZPI33ZOBU0Z1Qi0m1uobiKNgQ4YkAI8Dbu3EtZ14wSJgG8QAnIM4S2YDzwLbJF5QKVu7GlciRn1/ncctQiQTmiLxgv7EC05NvGBG4gWTEi/YKPGCqxMveDzxgkMSL1gb6e/0gBlzESLjuV3iBQ80O34JG1HcE2wc0hTeMpxqTtGWOk0tlhbyOvBSlddMQqTA7nRC3y19IvGCGJGD2xP4KtIfZ5XEC/7R7MSc0F8D+DOStVvOI0jQv5KtUEovcp/+aD1zSLzg7sQL1kX6GmwEzEi84Jf1nKMJnqY4oaAPeLyRk5pq348jn98cxKGfraUzEy94vpHzdhumt+3PKa7Ca7RfZ1VircbFWp2KyAk9hfSQ/aXpIZKLG6VPIXZIecCnH/mubqoy7N1UDuhlDAB/dqP0zJK/vUqxXd2PJNn0MXwtG0Ds8fKA0VTgGyZzHZAexG6UznSjdCk3Spd1o/TLRrL9PER2cW7JuWcDMRLQKqXws0NslmUBTC+xPRiZMT8BSUjaK+8EbpQ+gKhxfAf5rC8Gtnej9OsVxrVYLJbFApOUGzCkSNSDJAi9D6mE7ySVeq5CvoRuN1DNT3YjErw7GkmWXM+N0ko2eSXZ5bnIWvglxO7J7ONF5t8HuVH6ei2TtlgsllrpGlk1S0sYMI+iwOUAi7lj043S/8ZaPQGsn/P0ANIcvRF+BRxDvsHyJrLZ7wZWptjo6gE+NIpzaSnGEfNt8hueb4JU2V072vNKvODfTuivg3y27wf+DdxTKtHX4Hn7ndDfCnFuHIA4aV5AnCZ58nMZE4F/NjN2HXO8G/iAE/pTgcF6q7NqZA6V5YjeacOYY51rEbmwvM/t6Tp6n1kso0riBYOmT9XlVHcgTAKOB75Qdo4B4E7zaBpTRbobUoGRJ1UMIi23CVLV6yK21iDixC5ydIwD1gbuqHdOiRe8UO8xLeBqiqXRBiiTZauHxAtedkJ/A2BrJIHlNeD6JpNEupFjkeDsFsi1NICpDqK9lWohUjFUGmT5P2DTWKuNTPAtjy8iCTxHI9VHC5FAy9dr6Ot6OhK8qVQtNh8JVHllf78YCVDnKScoJLHpl8APgQ+av1dK2lyIVKVXzBZ3o3RRrNVewEcQJ98kRPr0ejdKy4PXf0PeX964ExjaF2xfYchpSDA+11lrnH+nm8cSi5GBn4lcj0sBNwA/c6P0jY5OzGKxtJOvkW8HjkeSttdwo/TpUZ5TxgPA5gXPvUj37k1vo1iRaA5wuRulV9VxvlmIIkGeT3kC8KgbpX+JtboXOAKxef8JnJfXp9JisViaxQa4FiPcKE1jrW4GdmXkhmsA+H15w+XFlCOQDJRSo2gQ2UQf3+A5zwL2R6S9spL0QSQD5eBWy8g0wRwq/67rlbzrJnZBnBR5Zf/TgM/RgQAX/C8D/a/m0crzzkacPF91Qr838YIBJ/RXB85GnCLlzAN+nXhB7qbf9F6aBMxvNgBXNs92XlcPI70o8uSK+oCftXHsscpJSMb4UgxfC/oYmYVusXQViRdc64T+fsh97j1UDhDt1M65OKH/BeB8pBJlGsWJBZOBpRIv2NRIJ66HVKLtgDQez3MoLEIcIWOCxAvmO6G/MyJdNw75PLJKlz0TLyjqGVTr+QeRqp+7m51rt+JG6fxYqx2RhJhdEZvmGjdKH23XmLFWayA9TsttpwlIYPaTFPSnM0GsU2OtTsN83zUEtrJjH4212gMJRE1F9iETkT52mVTfdcD5bpS+VnbsE7FW30Hktich61gmm3SgG6Vvx1rdjwSTa1VuqOl1xp7/o3lU4ruIXVoewOsDflrSO20BxT1EB6ncl22Jx6iT3IT8ZjI7cGPga7FWW7pRGndschaLpZ2sTfF9ewFSydWpANfxwDXk3/+P7SK/0DDcKH0t1upcpKqqVO2nH5H3rie4BdL+5DOM9D1lcrqzzbiPmTEtFoulrdgA1+LH0UgG7DSGsvdTRGLjmE5NajRxo3RWrNUuSD+yTcyf7wK+WpQtEmv1XiRr+FVgRN8DN0r/E2u1KeI4/iyy4b4HOMGN0pYGNRrB9KDaGzEyZiN9QsqNwvlIn4GxyjgqOyi6VQ6gJZiqBBIveBbYywn9XZA+XdnvfAIS4Du0/Fgn9McjxviRSNBjthP6lwMnJ17Q1Q1eTUXH55Gg9USG3m8f8A8g6tDUupbEC541TvbvIX0HFXK/+mbiBfd0dHIWSw0kXnCNE/rXAlsiGadF1Vxtcw47of9hJLhVS7+iXoyUauIF9wH3mXM8gyTd5AW4FiL3tTFD4gX3OqG/MlL94yJyvL9OvKBbs5W7DmNftjwhpgI7UBxgmUaFAFeGSY6r+zt2o/T2WKuVgQ8g0lIPuFGa18Mu79jTY63uQuyWNZBkl7NLgoE7Ubm6u5TxyH2kZbhR+kCs1T5ItZlCglUTERntb5S89AakD1gec2mi8nEJ4UBkHSi9D09m6LMes8oUFoulIk8hPc7z9v4TEPujI7hRemuslUaq2ich9/8B4JtulF4B/+sLvw9S4fQ4I/s4dopvIMGs4xFVmIUYpSI3Sutqi2CSUXZFElnejfgcJwA/Jacft8VisbSbnsHBrkwwsDSBCdacxFCFxzXAt90ofbZjk6oDE6xZDnjTjdKmnFfmXINulOb28Im1WgqRQvoYkr2ikIbTM90ovT/n9SsgPT2WQhzGf+p0lo4xoO5BMnFLq1wGGTIK5yGG4BZulI5JR1SslYNI5eRVcM0BDnej9OLRnVVnMYGrbZHr8e9FslVO6F+DyPOUO2oHEAfrFxMveN28dhySlbwq8nnfngXX2oGpKtsUuX7/lXhBrtynE/rrIvJO2yKOtp8BP1sMJaxaivl8aWXFnsUyWpjr9wlgzZyn5wNB4gXfbtPYNyC9oWqp/HgaWDPvd+aE/hcRJ0gvsvHvQ5wAOyde8JfWzdhiGUms1ReBH5FfBT0IXOJGqR7VSbWAWKsDkSrPvJ6zpcwFznGj9Ng2zWM8Q4mFfyuvRjOv+Rbi7Cudax8iT7pHp/cR3Uys1WOIkzuP+YDrRmknJFstFksbibXaBqneLN+7LgLuc6N0y9Gf1XBM/++NEP/RQ5ncr0m0/i2yxk5F/BQLgR1Mf8V2zGV74DRkTz0fSYL9Vt6aZF7fg3y282utzK4wdg/yOUwHHnGj9O1mzmexWCyNYgNclq4h1moycCagS/58MfA1N0rzmnK3YszbkI1pefXPO8CamVEQa/V+RAvaYyg7ZT7ieNuh1ozUdhBrdSHweYakEzMWIe8jQRpyX+hG6ViWKCTW6gJEKrLU2F2AZCJt0GxAdHHECf0PIBWMRU6gRUjfsPWQXhY3MnQtLUTkAXdMvKDlMjBO6K+NVJ3NYOh3dT8wMwu4WSyWJRsn9LdGZPEyqTKQ9fdF4AOJF7RlI+2E/guAU+VlmVTxJxIvKOylZaRlvwi8F7nHXZJ4wX9aNNWO4YR+L2JDZQkKbXHcWBon1mpFJMGpKDlophult1Y5x8ZIctcExOF4V7uCMqbf0qeR3qPTgd8DPylvRh9rtTnSZ6/IthkEXkb6mP6000GkWKtPA99CerW+jvQPOy+nt5elhFirVxB5+DzeAbZxo/ThUZySxWIZJWKtvgmczFCC0Gyk9/nWbpR2pcRzrNXyyL46b216E5hRlHjdxJgzkYrWUv/IQkSZaEM3SpuSkK5xDp9BeqWviXxPFwInl8j1WiwWS9uxAS5LV2AyP+5AGm+XbsLnA/cCH2315jTWam2kSWie9NE8pKnzBYge8RbkS+AtAG5xo/QTrZxbrRhHwGzyHRcAb7tRuswoTqmtxFr1Is3Fv4Z8H71IheLhttl0Pk7onwicSGUpn9lIMDmvP9MA8AqwWuIFLXPEOKE/DdkALMvwComFwL+AjW3VkcViAXBCfwPEObwdYhdEwA8SL2hbcokT+vdS3EQcxE64Gzgh8YK/t2se3YoT+hsi8muZjdGLVP3ulnjBSx2bmGUEsVYnAV9nZAXRn4Bdi/rzGpvrYmAmQzbXXEQucKdWyy3FWk1Agtmbl8x1vpnrh90ofaLktT2IFOgGjJQAnQ2sD7zQ6cCWpTlira4HdiO/krYPWGGsJ+9ZLJZiYq1WB/ZD9ot/Aq7v5sSAWKtjgFPI9y/NBjw3Sn/bwvEUksyxfM7T84HT3Sg9pVXjFczhGCS4VRpgyxLBP9jqgJ7FYrEUYXtwWVqKyVpZA3ixTsmIDyMb2vJAzSQkuLQdEgBrJZsh1St5TEak0GYilS15/TNAsol2iLWa4UZpJxw6U6gcuFgq1qqn2Q2+cSRMAvqLHCGjgRn71FirAJGxfKdL9Ky7mVq+++nAlwue6zXP74ZUW7WK/ZDfWbnTYjzSOHhrxHlssViWcBIv+AfSZ3I0ORuRQi3Pwh0EHgM2WFKC8E7or4RUwnwGsXvuReRopjH8Hr4+cLsT+usuKZ/NWMCN0m/HWv0LSXZZA3gD+DHS06qSTXco0qOr1Gk1Demp9QNa3zT+YKSSvHS8Scg1dwkl/ZbcKB00vT9+D6yLJOMMIk61Pd0ofb7Fc7N0hlMRGflymbI+4AIb3LJYFm9Mi43TOj2POliX4r6xk5A1uCaMutH4Ku0lNqQ40XkS0ju+bQGuWKulyQ/oZe/1/2hjr0nzGW2EJJ0/1Ek/lcVi6Tw2wGVpCbFW04EQcYL3AxNjre4F9quxhHwnihu5TwAuirV6X4sXrTcpdv4PIpJpa1Ic3MroRxbwTgS4ZiMScisUPP9MM8EtE9g6Eul9tBzQH2t1EXBsJ0vO3ShdFGv1GvCRWKtVkOat99tM3VxuAHyKf18wvF9bHlOQQG8rA1wfoVhaaDziQGtLgMsJ/XUQY/g14K7EC5rSHrdYLIslVyA9uGYyfOPeg0gN/sQJ/UNHM5DjhL5CnCeDiCRg2+9dTuiviFS7L8fQvmHrgpePQ2QdP4rIx1m6BDdKrwSurPOw8qqvjEnA/rFWX623KX0Vvky+rdILbBhr5bhRmmR/NDLim8dafQjYGcliD7s5u99SH26U/i3Wan9Eaj1jAuIw9TszK4vFYinkX0iFf16Qaz7Ss7UisVbrIUko2wCDsVbPIC07fp/zckXlZNZKidCtYHtEfSXv/U4DPkcbAlzGR/U14CQkwaUXmBtrdaAbpTe0ejyLxTI26K3+EoulJm5EgluTgKXNfz8M3BNrlSftV85CJKBUxErIAtpKbkcWxDz6gJjqwS2QjVZHMkVNQOe7yHzL6UMW/WY425x/RcRAmgIcBPzRyCN2hFirDYHngOuB84FZwMOxVtX6pSxxJF7wIPL7rFTp1kPlANcCWh/AfYXiCsrxwKotHg8n9JdxQv9OpAfOzxB5y5ec0P9wq8eyWCxjm8QLBpD+lnkyiFOQrNhdR2s+Tujvg9yH7wH+gty7Pj0KQ38DeDe1J8WNBzZu33Qso8hKFZ7rQa6LVlLpfAvKn4+16om1Ogq4FXF0/RB4OtZqe/P8hFir/4u1Oi3W6kijMrHYEmu1XqzVjibxa7HByHktj1QCfAFY3Y3Sg20g02KxdCEXUxxwWoD4LgqJtVoDsfG2Q+yu8cBawJWxVnvlHPIwxf6sfqBlcogFVPMnt8tf9CWkP9s0YCnz3xWBX8dabdmmMS0WS5djA1yWpjGNnjdhZHn0OOBdSGPqalxN5eyT8bRYnsjoAe+NOP4Xmj8PIv0FLkac4NU0gxcB97lR+lwr51Yn5yBBnvlIRddshjSXG86YibVaGZGLKc/enYhUtu3R6LmbwVQLzgJWRqTzpiNzXAe4w/SMsAxnX0ReqlEpl0GkF10rCRn63ZXTCxzihP4RLR7zGmBLJMssu3ZWAG52Qn9Gi8eyWCxjn02R+0QeU4FvOaG/nhP6lRIEmsYJ/d2BXyD3q2nmsQJwsRP6uzR57l4n9CdXeA/7IIk8tbIAqY61NECslYq1+kKs1f2xVi/EWv0u1uqDHZpOUuG5QUQJoZX8neK9wDhGZr5/GbFtpiMOrqlIcsx1sVZ7AM8iv5tjgQB4LtZqvxbPuePEWrmxVo8i0qG/AeJYqxuMdNRigRulC9wovcWN0mvcKH210/OxWCyWPExl8acQ/1KWXDoHSZbauYZ+VCciSVTlNtkU4Eemcql0vIVIIlJ5Imtqxv1hve+hTmZRbCPORdQQWorpO/Zt8ivMJ5vnLBbLEoh1BFtawdYUZ2dMB3asdgI3Sh9DNrZFVKswaQg3Sm9FtIt/ijSrvh7pN3A48Dsql3XPBV5EggcNYzJQl290I+pG6aAbpV8HVkP6JRwMrOxG6anNzAuRjSyqqpvG6PdDyfgsYkiVXw/jgPcgWv2WEhIvWJR4QYD8HuutxB2MdzAAACAASURBVBoAPpV4QUslKRMveAw4HQnG5jEFOMMJ/SLncl04ob8u0tsjr6J0HK3vJWKxWMY+K1K5unxz4G/AE07ob9LGeZxBvnTbFMRxXzdO6C/thP4FiANkNpA4of+lnEBXvXuFXiSZwFInJkHnKuA8JLjqIMlEd8ZadcLmCshPjJkHXNiGxvGnmnOX04ckcm0Qa3VdrFUSa/Ug8rsocnBdhvx+p5f8bTLw81grt8Xz7hgm6evPSJLXFIZUND4OvB5rdVWs1UYdnKLFYrEsUbhR+gckEfcYZJ06HPHN3F/D4btT7H9anhyFEzdKfw4cgCR1LDSPPwCbu1H6SvnrY602MkkQfbFWs2OtLo61akg5xY3SN5AgWrmtsACRDb68kfNWYWWKWy/0AFu0YUyLxTIGsAEuSyuYQ7HUWEq+vE8e+1Nc0TEHqfJqOW6UPu1G6RFulG7uRumebpTeaoJGbwMHIhvrzME1aOZ4H2JIuDX2GMvFlJo/DbyAbETvibVqSNrHjdLX3Ci9zI3SK9wo/U+jcyphkMpVdZ3qd7UFxb2bJiK9lSz5zKC6pFAmc5Ai1/62iRf8oR2TSbzgO0ilZBELqSFAXiMbU3yfmgRs1aJxLBbL4sOj5AfFMxSyHr0fmNWOSlAn9CcAa1d4yYamN1c955yIOMU9xOmvkPXh+4xs5n4DxffOrF8piDOjD9gn8YJGq4WXdHZB1rxSG6cXceT8wjRTH01+AfwSCTplUuJzgT8B32z1YG6U/g2RBX0beMc85gOXAA8i0uK7I86tjSm2BXvMc3n73PFI5dfiwv7Ib7j8vfYg7/WTiFy8Tf6yWCyWUcKN0rfcKL3AjVLfjdKL3Sit1CqglEr95nsoSLpyo/QK4H1Idf9SbpTu7kbpv8tfZyrC/4wkQUxGkpY/CzzYaJALOB7pifgqYiv0I5VbW9TxvuthDpWlD9sxpsViGQPYAJelFVSqdOpHNqZVcaP0aWQjXb4ozQf+Cdxc64RirZaOtfpYrNWWpoy5IdwovQyRNPslsrn+HbCjCYb9upns1VirmUjTzfciDrTxSPDm7lirtRo9bwu5heIeZHOAX4/iXEpJKA6EWmmkylSrgnwH+DkSTD4SeE/iBX9q85wqOUJ7qE8aqxKvUxyUHaD1PcYsFssYJ/GC55H+PkWVphnZverwNkwjpbLDY2GV5/P4NFL1XR68mwp81Qn90l5FpyF2Wfn9sw84DoiAO4FzgQ0SL7DNvRvnAIqDNgPADqM4l0wh4FBEhvxERPbnY26U7uRGabXfRKNjXo046GYizelXA45GlBbyZJuKKFrvxwPrNznNbuJjFF8zMBQgDculrSwWi8XSdVxFcVLR84h6UC5mzX6ryvp8PrJmlK4HCpH5bUjaz4x7LtK3czlgmhulX3CjtCEZ41irbWKtrom1+kes1eWxVpuVjfcfRD0hz/btBy5qZFyLxTL2aVfTP8sShBulb8RafQ3J/J3M0II5F4jcKH2wjtMdCDwBfB2R2egHLgSOc6O0kkwQ8D95lwA4whzbC8yPtdJulN5Yxzz+hxuljwC6kWOLMJvMHzGyvLoH+QxPAjraJ8CN0pdirc5BpNtKN8/zgceQrO5OECLNxPOCbz1IENKSz4vmsUbOcynwu8QLDh3dKXE1Uj2V56AZj2h7t4I7Ke6pNx+4oEXjWCyWxQQj1xcg8reZU3wS+U72SUj1zXGtnEPiBakT+tcCezEymSgFrk68oN6K6n2QrN08FiKBlMvN+P92Qn8LRDZva+S9z0MygO8BzmhgfEs+laSqeyj+ztqKG6VP0KAUZoPjLUCqtQAw/bTqCeJma31egswgsGys1RomsW6s8zry2VRLWl0WWBdJGLRYLBZLd3IqkoT0LobbfH3Al9wobdjeirV6F9KaI49xSO8wr9Hzm7m90+jxALFWxyN2dOZTXBfYI9bqK26UXljy0oOAvyK+tGytn4cEAUfNXrFYLN2FreCytAQ3Ss8HdkX0fp9HHB+fRwJN9ZxnwI3SMxCN4WWQEuuv1lHefBJwGOJoWhrR3l8e+E2s1QfqmUubWQXZbOahkLLxbuAbSObsC+bf7yBZ2tu5UVqUXdRWjEPim4gRk80hk0ba143SlvaKWpwwTsgjGNnjYgCpyjtl1Ccl1ZFvMLIqby5wYeIFI7TDGyHxgkVIRvgcJPgN4uiaC1yQeMGfWzGOxWJZPHBCf3NEQvgWwEXW5ifI7xGU0Qp54DyOBv7L8CD9AuBNJCGoXqoFC4Y5UBIv+BcSYHscSQiYDuwM3Ahc44S+TZirgVgrFWu1W6xVGGsVxVp9okxl4CaKpXXGIwHFxQrTC+Q3sVavxFo9GWv19Vir8uSvaVSu3Cq9XrPfxSvkX+c9wHrAI7FWuzYz9y7hIqpXmIIEw4t6llgsFoulCzCtLzZF+khmvo67gO3dKL2jydOPo3KLiYZVj1qB6Y95AsOrtbMq5HNirf6nLmASb9YHzgGeQiTFTwA2c6O0qSCbxWIZu/QMDtqkS8viQazVJCSTMS/DdQC4zo3ST47urPKJtVoJ+DfFvT3edKN0uVGcUlVirVQtVXSjRazVhkgwcw3gIeB8N0qf6eysxgZO6G+PVFxuhPw2bgGOTrzgiQ7NZ0VEMmE3M59+M78g8YIB4zzdFzgUkVC4Hfhh4gXPNTCWg1w3WyKyhBckXnB3S96IxWIZkzihPxnp7bM8IkecIJUO08te2odstiflnGYOoBMv+G2b5vgepHr5/8yfrgDOSrygblleJ/T3BX5Gvr00H1gl8YI3yo6JkMqvcrulDzg+8YKz653HkoTpn3Ubkj2dfe5zkOvsY26U9pns6hjplVmahDgPsWH3GcUpt51Yqx2Aa5HfU/Z+5wH/ArZ2o3Seed3q5m95v7t5yG92A+RzzSQ7FXItK4oDO3OAFbJxxiqxVj8GvkhlqcI5wPLtkpa0WCwWS3djFIRipG9sOQPA9cCPkaqpF4HfN9OOo4H5nYL08spT6ekDjnGj1CquWCyWQmyAy1KVWKt3I02M1wOeBC52o/TVzs5qJLFW6yPZreUOqYzX3ChdcRSnVJFYq38iBkQ5C4GfuVHajl4eFsv/cEJ/AjBgqps6jhP6U5HKy9eyOTmhPx6pDP0QQ86bBebxscQL/t6JuVoslsUDJ/Q/jgSLQLJbB5DKzmXIlzhbaB4TGJL6ngvcAeyVeEG9/bBGHXPvvxdYm+EBq7lI0OzEstdPRqrT8gIMAM8nXrBaO+a6uBBrdQbS27L8M5wPXOBG6dHmde9H5CHXQ9a5iUgv2yPdKO1nMcFIir8AzMh5eoQjK9bqCmAPRLYoYwCp1joXqezPC2Q9hSRC5VWAzQYOcKP0N428h27BOC13QRyDWzNSoWUu8B2jkGGxWCyWJZRYq92AKxm5XvYh6+kyiG27yDw+4UbpqKicxFqdj7TGyCMFTnSj9LTRmIvFYhmbWIlCS0VirbYFngO+i/THOhl4JtZqz07Oq4C3yc/4yOi2cuVDGNm4fRHwFvJ5WyxtJfGCBd0S3AJIvGBu4gUvlc3p8wwPboE4lqcBl5keORaLxVI3Tui/D/gNkhgzHXGeT0UqufKCWyDr9lGIvOpTwF+Q9fyTYyG4BXLvRxzhFyCVHQDPAocjUs/lvIvKsjYrtHJ+ixsmAHEo+QHCScBB5jW4UfqUG6WbIwlQOwIruVF6yOIU3DJshFRk5zEFOLjsb18ALkUCgm8jlVv3IT08v0Jxldb7KZY3HAd0lVpCI7hROuhG6U1ulG4LbIaoGsxHfttvAScC3+vgFC0Wi8XSBbhR+ntgbyRpfQGSsHUvIoM9gyFbeDpi+90Ua1XUVqPV/AlJPMljHtJzy2KxWAqxmvmWQowG/vUMl7DJMicvj7Va3Y3SuqVx2oGRqzuaYgfMPMSR0zW4UfqnWKuPIMGsbRED40rgZDdKX+7o5CyW7uH/27vzOEvK6uDjv5kamGEGkAAuaJngQinBFREVFdFXUFyjEkWNWvWqaBJiQKOWKCYuaCkSo4n4JohVKq7IEhMVBX1x3wEVNSkhuBSiiGxDz17T+eO5w/T03NvT03P7Lt2/7+fTH5iu23XP9NzuW/Wc55zzV/Ruu3MADk2XNHcn0v1aeKbE+VLgyiYr/m1+QhqMJituIyTqTo7LPGqyYqYWxDcQds/2ck1fg1t4ltI7mQNbh6TfnsRKqvYXhKTjQrWKmV9T27zvdxJ8L6vT6DXAQcDvk6r9ZZ1G+9O91eZUm+j+c76Z0N5wwUiq9nLgwXUa3Z3wfbkqqdrpM04lSYtUUrWfrdPoc4R58JuAhwAX0H0GV0RogXv6AEI7j7AZY+W0WDYSNtz//wHEIGmMmeDSTJ7FzIs8LwTeNaBYeqrT6NlASWjj0u2NeYIwePLMQcY1G0nVXgbMech1Zzj5EwlDNq8FLkiqdqJP4UmjYJ8Zjm0i7C6TpLk4jN6VWr1MsMB2ke4guUWTFRviMn8focXeHtMOT2DV+YySqm3rNPoN3dvxQUggzmnORZ1GuwHPAJ5HuK87F/jkGMxauoLeXRc2Ap/vdiCp2lsIlVtbrGbmexUI9waT0x63kTCL5DuzCXbcJFX762HHIEkaTUnVThKuPajT6BB6vx+vBA4dUEzr6zR6JHA+oYX2lnbg3wX+vBOzJPVki0LN5O5sv5CxxR6EnvZDVafRXoTk1vSdHhB2Zv6Y0LrkMTu62a/TaGmdRvvWaTR9gPpIqtPoXoRd0x8H3kJI4P22TqOjhxqY1F9fISSyullO+BmXpLn4BeFaoZtNhOrvqX9eAzx3XFoRThWX+R3jMn9gXOb7zvEUpwKfJXxP1hG+F+uAfwY+1p8oF7S3Eb5n060Birks3NRptIowe/Zs4OnAkwnzqH5Yp9FIb/5IqvY24AxCgnSqScLr6oxZnmc9Yf7dTCYJibDVhHbla4AfAE90wUyStMhdS0gmdTMJPKlOowvqNDp8vgNJqvaXSdU+hLAB7Xjg/knVHpVU7e/n+7kljT8ruDSTmnATuFeXYxOMxsLyU+m9ODUJfCWp2rNnOkFn7sFfExZv9ul87gLCQO+RaME4XWc49yXA3diaqN6y8+bCOo3ubZvD+RWX+dHAm4EHEBZM/hV4Z5MV3RawNHfvJFzgTn+/WgN8oMmKWwYfkqQF4n2EavXp83smgeuA1xEGXu8HfBU4o8mKeqAR7qK4zPcnbAQ6mtACb3lc5hcCL22yotesg+00WbER+PO4zA8GjiEshnymyYpmHsJeiM4k7Eh+CVuvW5cCHwbeM8dzvoFQwT91tteewIHAu4F0jucdlL8nvI5e3fnzMsK9x4uSqv3VTpzn+cBv6X1fu5TQDvHphNbGP02q9so5RSxJ0sLyn/RuGbyE0GL5acAxdRqdkFTtR+c7oKRqfwb8bL6fR9LCsmRy0o1r6q5Oo92BhjCAeXr7j9XA3TutQoamTqO/JrRJ7Da4G+BTSdU+ZwfneAthDsXUfv8bCYtb90uqdtYLQINSp9H/IfRK7pZ8XAe8Lanatww2qsUjLvMXERarpi6KriPMgnpkkxULbRj8UMVlfhShQmBPwsLgcsKC7SuarOhV3SVJOxSX+euBUwhtUJYRkucbgMc2WXHFMGPbVXGZR4QWzfdk21aM6wizhx7ZZIU3AgPUmY10LOG6+qKkan+5C+e6kd5tetcBe4/D/KU6jVYQ5mrdOtfvR+e6+JIZHjIJLEuqduyqLyVJmk+dufCfI3RE6tXBCcIm9zs7EkPSKLKCSz0lVbthyg3jHp2PtYQF5icPO7nV8V16V3BNsINhlJ0WLn/H9gmy3Qg7tl/ACM7uAu5D75/fFcADBxjLohKX+QpCS6bpO/5XEHZnHw98aNBxLWRNVlwal3lMGIK7N3B5kxU3DjksSQtAkxWnxWX+GeDFhKrobwBVkxU3DzeyvngyELP9nLEVwP2BIwh/Xw1IZzbSv/XpdHeY4dhSwsatWb+OOy26n08YKL8H8O/A+3elNVCdRvt0znkIcDXw4enn67QQ39WuEF8GbqJ3wu9ak1uSJG0vqdqv1Wl0T8L7/18Cf9LjoZsJ89/PG1RskjRbJrg0o6Rqf1ynUQw8hZBU+QVw4QgNr/4+4ab4wWy7gLOZkIy7vYS6M6/raELy6tKkan8HHEnYqd2tAmwV8BxGM8H1K0KVWbcdNhuAqwYbzqJyJGEncDerCC2BTHD1WWfmzfdmekxc5rsDjyb8XHy7yYobBhGbpPHWZMWPgZOGHcc8eDyh8rWbPQjvZya4xtdVQNLj2C2E9smzUqfRSkIbzvuytaPBnwKvqNPoYUnVXr2zwdVp9Ci27ghfSbguf3OdRscnVfsfO3u+mSRVO1mn0TuAN7L9BqQ1wNv7+XySJC0knc0n76jT6Eh6J7iW0r2DUFd1Gt0DeCbhmvPLwLecfSlpvpjg0g512ptcMOw4uunc0B4LfJKwsL2e8Lr+FfBnW9oL1ml0ImGWz0ZCW5jd6jQ6C7h4B08xqu3PLiL8Xbtp6d/uYG1vd3onuCC0z+u7uMz3BJbszMyUYYvLfB9C26Hrm6yYcxumWT7XccDUeXvL4zI/CzipyYpefcW3fO3BwOMILZ0+02SFg2wlLQSrCdcx3a73NxIW/jW+3kS43ls17fNrCK2qd6Zi6SRCQmvqxqkVhGues4GjdiawOo32IMz1mLoQtuXcn6jT6MB5GBp/OmEz3nM7f54kXPOXwPv7/FySJC1EFxHe86dvFoGwYeWbOzpBZ8b92wjXFksI16E5cEWdRk+wxaGk+bB02AFIuyqp2puSqj2GcGN+PHBEUrV/mlRtDVCn0VOBdxBurPcm3GyvIJRgH0bvRO8E8JF5Dn9OkqrdBDyJsEN3ywXCesLu2JclVfs/w4ptEfgGvZNYa+hzyX5c5ofHZf5tQuudG+Myvzwu88f08zn6LS7zFXGZf4Awx+5i4L/iMv9OXOb3nKfnewSham7vKR/LgQzoOYsuLvPlcZlfCPyAsDD2HuBXcZm/dj7ilKQB+wQhkdWLLWbGWFK1HyMsIK0jJDNXd/7/XwnvZzvj5XTvCrAUeHidRvvv5PmeSe/7zCXAC3fyfDuUVO3mpGr/L3A/QvvxvwMOTqr2RHeMS5I0Kx8irC9N3ySzFrh4yxrbDjwL+BvCmttyQmJsFWHcwCh2R5K0AJjg0oKRVO01SdVelFTtj6Yd+ge670BZBbyCsJtk+i7mdYRZAZ/od5z9klTt94E/Bl5D2F17GpAkVTuSSbmFosmKmwgLR9N3Hm0itAM6e7svmqO4zA8lzJF7GCERuwx4EPC5uMyP7NfzzIOPAs8jXNTeofPfhwDfist873l4vjfSfWFuFfCKuMx7Dct9F3AMW2cMrurE+sa4zJ86D3FK0sB0Wi+ezfbvV+sJG3h+M/Cg1FdJ1b4NuCvwEuBlwIFJ1b5yDgmdmd6bNzHzvK9u/oTu194Q3m8P2snzzVpStVcnVfu+pGrPTKr2F/P1PJIkLTRJ1d4KPJywAXQtYUP1OuBcwviO2cjZvrocwn32s+s0mo/1AEmLnC0KNZI6Zc13J8zLumYXB0MfPMOx5YQdzL8G3tx57GrgLOAtOztrrE6jpYMcYt25AHEXzOC9DrgBOIXwGloGXELYLfzyuMz/grBT6TzgPbvQ8u6ddE/crATeTUgajZS4zO9FqC6cPtduy86tFwH/3OenPYywI7ybzcA9gJ9O/WRc5iuBF9P7+/sGoK8zQiQtHHGZHwucDBxImAV6epMV3x5qUN29AvgaYTPM/QjXVZsIFe/HxmV+XJMV3xlifNpFSdXeBHxqF0/zA0Kr3m42Ea6Td0ZN2DzWbVbHGuDKnTyfJEkagE43oMM7M7TuDPw8qdo/7MQpZuraspGwMWfWc0IlaTaWTE7asUGjpU6jowjtVe5O6J9/C3ByUrWfnOP5rgPu0uPwemC/Xe0DXKfRcwgJsoMIN+4V8Iakam/elfNqtMVlvozw2rqVMKfi+8Cd2Jo0Wd859tCdnUEVl/kSwgVg1OMhLbB3kxUjNUMlLvMXAu8D9uzxkIuarDi2z8/5c+DePQ6vB+7RZMV1077mIOAyesd5S5MV+/QvSmlhict8d0JS/0RgP+Aq4M1NVszpvXqcxGX+TuCv2Lo7dTNhd+tJTVacNbTAZhCX+QXAE9l+88FtwH2brLh28FFpVNRp9CjgC2xfdTUBnJZU7dt38ny7A9cSfjdM34CyGvhjr5ElSVp46jT6IfCAHofXA3fxGkBSv9miUCOlTqOHAp8FEkKSYCVwAPDBOo2eNcfTnkkor55uI/C5PiS3TgY+SIh5CWHB6yXAt+o06tWeRQtAkxWbmqxomqy4lTDr6QC2rQhaDuwLvHeOT7GjasDbj8dlviQu86PjMv90XOZfjcv8TXGZ90rszqfb6B33JDAfF7PvY/s2o3TiuGx6cqvj94RKhl5+14/ApIUoLvOlhCHUbyD83tudMAfz7LjMTx1mbPMtLvMHEJJ6U1uvLCVcr7w3LvN9hxLYDOIyP5DuyS0Ivwf/eqABaeQkVft1ICW8R9/K1pZE/wIUczjfBuDxwB8ICa3NhOuDW4Enu7AlSdKCdTrbt8eGkNz6d68BJM0HE1waNafRu2XYuzqtC3fW6cDlhBvrLSaA64C/nMP5blen0Z6EmKcnspYTKtCevyvn11h5PmGRd7qI0AZq+c6crMmKSeBz9E4WfbPJinVwe7XX2cD5hMHujya0o/rvuMwH3cbwC/SuOltDSAb32/sJ1VhTL6TXAjcRWiJup8mKmwkL9Bu7HJ4A/rHPMUoLyROBh7L9+/Uq4JS4zPcffEgD80K6/66HUFn7jAHGMluHAht6HFsOPHaAsWhEJVV7LqEK/emEFpYHJFWbz2Ge15bz/RC4G6Ed8BsJVY8HJFX7tT6FLEmSRs9HgXMI9+ObOp9bDfwXYV6oJPWdM7iGqE6j+xIWSu4IfAX49M7OfFqAHk3vWToHAPsTKi9mLanadXUaPYaw6PQiwsLUecA5u1q9BTyGsEDeLSm3CvgLwjwvDVGdRgcCGWHo+Q+Aj8zDzqFur4GpVhB2LW2pfngg4bV4RZMV63t8zWsJC497snVDwiQhAfO3Ux73ZODP2bbd3orOx3lxmd+jkzCbd01WTMRl/jLg3wjfky0/zxPA5wmzyvqmk9x7CiEReAthd/j1hEG4/9pkxQ0zfPlLgW8S2kzuSfjeriEkvj7QzzilBeZ59G7vuYkwh+/DgwtnoPajdxJ/N+AOA4xltm6k97UVhN+ZEknVbgQu7eP5NhDejyVJ0iLQ2Rjz8jqN/gV4NmFd7GLgi/2YV1+n0R7AqcDLgX2AXxDGhXxorptyJI0/E1xDUqfRm4BXE/4NdgOeA7yjTqMjkqrdqVk9C8wGurfQgbDA3ysRMKOkajcRbrD7fZO9o4qyJQB1GkWE+VzrgV/4xjs4dRq9mNBiZykhoXQc8NY6jR6fVO33+vhUPwR6VUtdR2eQalzmTyEkT1YRkjJL4jJ/Y5MV/9QtfOAFhETXYZ3PXQLkTVb8eMrjTqT3YvN+na/t5991Rk1WfDQu86uBU4AHExZP3wOc089EWye59RHgz9jaLmwTYYH5sh0kt2iy4vdxmR8CPIuQJJwg7Dj72qASgtKYmqkidQkzt/8cd18mvI90+527kZA0HzVfI7Sb26vLsQlCFawkSZLUF0nVXglc2c9z1mm0DPgS8CC2bjC+B2G95yDg9f18PknjwwTXENRp9DjgVWxb8bEXoc3d+fReJF8MPkmotJn+2pwEvpNU7a2DD2lGX6X3Qt4E8PFOguUdhAXBCPh1nUYvsUXL/KvT6CDgn9k2abolEfK5Oo0O6CQ/++EU4AK2b1e5Bnh9kxWTcZk/kvAan/6Y0+Iyn2iy4vZqv7jM7w18BvhjQtKmJbThy5qsmL7b/s4zxNUSqkQHqsmKbwNPm+enOYbQSmnqLJxlnY+PxWV+pyYrurUgvF2TFRuAj3c+JM3O+YQ2hd2SPBF9rtQcMecSZhLtwbaVXOuBnwDfGUZQM2myoo3L/NnAfxI2emy5brmN8G/5hWHFptmp02hLV4DjCJvBPgKc16m4kiRJWgyeAtyf7m3SX1Wn0XuTqnWWtrQIOYNrOE5m+wVuCAsl9+20Llys/p4wkHrqrIhNhEWYvxpKRDPoJNzeSkhiTLWRULWyGXgvoYpmT8IbcQJcVKfRAwcY6mJ1Ar0T+cuBJ/TriZqs+CLwEkIrqNWEiq3VwKubrDin87C30P1nfyXw1k7rQuIyXwl8HbgP4WLtDoTXzuHAlzqVS1N9k+6zpCD8PX80x7/WqDuB3pVrS3GujDRfzgMatp/rtAb4WJMVC7YSvTP78BGEDQdrCa1R1xF2kz5hVKs/m6y4lLAgcCYh9s8DzwXSUY1ZQZ1GdyYkT88AHk9oAXoW8I1Omx5pRnUaLa/T6El1Gj2vTqN7DzseSZLm6Hh63/9vJGzAk7QIWcE1HPekd2u7jcDdCQMYF52kaq/rJH5eS5jxsYyw4/itSdVeNdTgens7oQXdmwlzwjYBnyC0oLyS7gmNFcCbCK3VNH/uTe8Ku2VA3M8na7Li43GZnwscSkhYXzZtvtbhM3z5XoTXz7WElqWr2H4Twm7AgYTZb5dO+fy7gZTt/67rgM83WdHszN9jjOy/g+N/NJAopEWmyYoNcZkfQaiQfRahynoD8I/AacOMbRCarPgVcHin0vZuwNXj8Hu2yYprgJOGHYd22r8Ad2Xb9/g9gfsBOWFzmNRVnUZPAc4h3HsuAZbVaXQJcHxStdM36EmSNMpmKtJYsoPjkhYwE1zD8WPgvnT/5bscGNVEzkB0Sopf2fkYeZ15WmWdRhWhymZ9UrVtnUYHMnN1yVEDCXBxu5ywi6fbXLcW+O9+P2GTFZuA7/Y4vJZt2+lNFRHaWgI8kt6vneXAQ5mS4Gqy4qq4jgdncAAAC65JREFUzJ9OSKxuWQDbnTDM9QWzjX0MfYnwvei2g313ev87SNpFTVbcBPxFXOYvBfYG/tD5/bdoNFlxFYv8mk3zq1Oh9TS6b9bZgzBg3QSXuqrT6BC6t8Y+GvggYSe8JEnj4jzgWHq3Sf/iYMORNCpMcA3Hu4Cnsv3NxgbgG0nVXjP4kPqjTqOYUJl0HOH1dSnw+qRqrxhmXIPQSXRN3Qm5jm3nc0y3bn4jEqGFz2u6fH4z8DvgK4MNhwr4G0KSano832qy4ubOn68nVHN2W9BaT2jjuY0mKy6Jy/wuhMTpvsAPmqy4uj9hj6z/R0iEr2Dbqti1wEWdagVJ86jJirWEnzlJ/bc34RqhlzsMKhCNpVcTNvxMtwJ4ep1Gd0mq9rcDjkmSpLm6AHg9YezH1DWVNUCVVO21Q4lK0tBZvjkESdV+HziRkOCYICxk3wb8lNCabCx1kluXAy8k3JCvJOyu+EadRg8fZmzD0Llh/EmPw+sJA8I1j5KqvQ54BuHnazUhibwa+DVwTCcpOUindZ576mLwBsIMlxOmfO5DhFaX3UTA+d0ONFmxqcmKS5qs+NQiSG7RZMX1wJGECooJwvdxPXAh8PwhhiZJUj/cwMwJ5EXZ0lyz9jB6b2hdDxwywFgkSdolSdVuAB5FWC9ZS1hLvQF4I2EjsaRFasnkpHOlh6VOo30Jsyv+CPg28LUhLLj3TZ1GZxHmAHW7kboiqdoHDzai4avT6FBCldAebK3mWk+oHjo0qdrtKnHUf3UarSTMOzuAkHS8OKnadhixxGW+F6GlUErYVXsh8O4mK34z7XGnEHYn7UGoTtpESIad0GTFRwcZ86iLy3wJcH/gjsCVTVb8bsghSZLUF3UavRr4B7bv/LAGeH5StRcOPCiNhTqNvgw8tsfhCeARSdX+eIAhSZLUF3UaLSOsldw2zuuokvrDBJf6pk6jm4B9ehzeAMRJ1f5+gCGNhDqNEkKi4lhCcuvDwBlJ1d441MA08uIyfxTwt8A9CLP73t1kxY+GG5UkSQtXZ+7VnYAbkqqd2NHjBxDPEuAM4C8J19MQWhi/Lqna9wwtMI28Oo2eQegYMX3+6yRQAwe7KChJkqRxZ4JLfVOn0a3AXj0OrwPu2WkZJ0mSNLbiMo+AJxBagN0MfHJ6Ja7GSyexdQahwnozofL+U8CJSdWuHmJoANRpdEdCNc5G4JJRiEmjrZMc/RDwTEIF4BJCS6f1wJFWb0mSJGkhMMGlvqnT6Hzg6XSf7XYNcC93CUqSpHEWl/ldCO2H7wrsSdjEA/DaJiveO7TAtEvqNLqYMNdhxZRPrweuBA5PqnbzUAKTdkEnyXU8cCpwF+BqIE+q9ktDDUySJEnqk26JCGmuTiXMA5huDXCyyS1JkrQAnAvck5DcgpAQWQG8PS7zRwwtKs1ZnUYPBR7BtsktgOXAfYDHDzwoqT8eB5xF+J31R8CDgc/UafS6oUYlSZIk9YkJLvVNUrU/AY4CvkNon7KesEvwuUnV/vsQQ5MkSdplcZnfC3gIsKzL4RXAqwYbkfrk8YRkVjerCHNUpbFSp9Fy4DzCa3jL6zsitCs8tU6jBwwrNkmSJKlfut2cS3OWVO0PgIfXabQPYQD2DVZuSZKkBeJewAZgjy7HlgIHDzYc9ckGoKX7vdFmwtwiadwcS5i71c3uwAnAiYMLR5IkSeo/E1yaF0nV3jzsGCRJ0sIQl/mDgVMIbeRuBs4EPtBkxYYBh3INYWG4m0ngvwcYy6IUl/luwKGEhfvL+vQauAB4a49j6wltKaVxc2d63+9HQDzAWCRJkqR5YYtCSZIkjay4zJ8EfB14JnA34BDgdOCLnWTHwDRZ8XPgh8CmLofXAv84yHgWm7jMXwhcD3wR+ALwu7jMX7yr502q9n+A9wMT0w5NAJ9OqvbyXX2OUVCn0b51Gp1Yp9E/1Wn0sjqN9h52TJpXVxAS792sBb45wFgkSZKkeWGCS5IkSSMpLvNlwIcJM2OmXreuBA4DnjOEsI4Dfg2s7vx5A7AO+PsmK74+hHgWhbjMn0ZIQu0D7N352Ad4b1zmz+zDU7wKeBnwE0Ji6+fAyUDWh3MPXZ1GTyS8bt8B/C1wBvDrOo2OGGpgmk/fBWrCbOTpNgIfHGw4kiRJUv8tmZx0PJIkSZJGT1zmjwY+C+zV4yFfbbLiMQMMCbg98fZU4AjgD8DHm6z45aDjWEziMv8J8Kc9DtdNVtxnkPGMkzqN9gN+RUgMT3cLcEBStc4ZW4DqNLoT8J+EyteWUNG1FnhqUrXfG2ZskiRJUj84g0uSJEmjahWweYbjQ2mx1mTFJsLcpguG8fyLTVzmEXDwDA+5d1zmuw9hJtu4eAFhZlk3S4FnAecMLhwNSlK11wOH12n0IOB+wHXApUnVtsONTJIkSeoPE1ySNERxma8A9gNuaLJi/bDjkaQR8z1geY9j6wnVXSMrLvNVhDZ6v+skxTQ3mwmtIHu9FjbRfS6agoOAPXocWwUcOLhQNAxJ1V5BmMklSZqlOo32B5YkVfv7YcciSerNGVySNARxma+My/xMQmurGrgxLvMz4zLvtQAlSYtOkxV/AD4ArJl2aJIw9+p9Aw9qFuIyv1Nc5p9m6+/4G+IyPzUuc6+956DJikngU3RPYm0CLmiyYqZKv8XuZ2z/M7TFBHDVAGORJGmk1Wl0VJ1GVwLXAk2dRj+t0+hxw45LktSdN9mSNGBxmS8BPk8YXL9yykcGfL5zXJIUnERIZK0Fbu3890fAo5qsuG6YgXUTl/lK4NvA0wgVRyuBOwA5I5qQGxOvAa4nJDa3WAfcALxyKBGNj3Po3epzI7balCQJgDqNHknoEHAIsHvn42DgP+o0OnKYsUmSujPBJUmD9yjgUGDFtM+vAA4Djhh4RJI0opqsaJuseA1wR+CxwCFNVjyoyYorhxxaL88lxLrbtM+vBLK4zO86+JDGX5MVvwXuD7wN+CmhKqkA7tdkxW+GGduoS6r2ZuApwGrgts6nVwM3AcckVWuLZEmSgtMJ12zTrQTeNeBYJEmz4AwuSRq8YwgzL7pZCTwB+MbgwpGk0ddkxQRw2bDjmIVnAnv2OLaRkKT76ODCWTiarLgReEvnQzshqdqv1Gl0V+A4wsytnwPnJVW7bsYvlCRpkajTKAIeNsNDHlKn0W5J1W4cVEySpB0zwSVJg7cBaOn+O7jtHJckjaeZqmEmCUkuaeCSqr0NqIYdhyRJI2qS0NK3V7erLcclSSPEFoWSNHgX0HuBcyNw/gBjkST110fY2gZuumXAFwYYiyRJkmYhqdrNwEV0T2JNAhcnVdsONipJ0o6Y4JKkAevMjfkYMDHt0ATwsSYrfjr4qCRJffIfwOXA2mmfXwO8vsmKWwYfkiRJkmbhVYSNSlMTWS1hduUrhxKRJGlGJrgkaThOAE4GrgLWdf57EvDSYQYlSdo1TVZsAo4G3gr8hpDouhx4XpMV7x5mbJIkSeotqdoaOBT4BCGpdRtwLnBYUrU/G2ZskqTulkxOTg47BkmSJEmSJEmSJGnWrOCSJEmSJEmSJEnSWDHBJUmSJEmSJEmSpLFigkuSJEmSJEmSJEljxQSXJEmSJEmSJEmSxooJLkmSJEmSJEmSJI0VE1ySJEmSJEmSJEkaKya4JEmSJEmSJEmSNFZMcEmSJEmSJEmSJGmsmOCSJEmSJEmSJEnSWDHBJUmSJEmSJEmSpLFigkuSJEmSJEmSJEljxQSXJEmSJEmSJEmSxooJLkmSJEmSJEmSJI0VE1ySJEmSJEmSJEkaKya4JEmSJEmSJEmSNFZMcEmSJEmSJEmSJGmsmOCSJEmSJEmSJEnSWDHBJUmSJEmSJEmSpLFigkuSJEmSJEmSJEljxQSXJEmSJEmSJEmSxooJLkmSJEmSJEmSJI0VE1ySJEmSJEmSJEkaKya4JEmSJEmSJEmSNFZMcEmSJEmSJEmSJGmsmOCSJEmSJEmSJEnSWDHBJUmSJEmSJEmSpLHyv+XKrx9U9bhUAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ], - "source": [ - "X_xor, y_xor = generate_gaussian_parity(1000)\n", - "X_nxor, y_nxor = generate_gaussian_parity(1000, angle_params=np.pi/2)\n", - "X_rxor, y_rxor = generate_gaussian_parity(1000, angle_params=np.pi/4)\n", - "\n", - "colors = sns.color_palette('Dark2', n_colors=2)\n", - "\n", - "fig, ax = plt.subplots(1,3, figsize=(24,8))\n", - "\n", - "clr = [colors[i] for i in y_xor]\n", - "ax[0].scatter(X_xor[:, 0], X_xor[:, 1], c=clr, s=50)\n", - "ax[0].set_xticks([])\n", - "ax[0].set_yticks([])\n", - "ax[0].set_title('Gaussian XOR', fontsize=30)\n", - "ax[0].axis('off')\n", - "\n", - "clr = [colors[i] for i in y_nxor]\n", - "ax[1].scatter(X_nxor[:, 0], X_nxor[:, 1], c=clr, s=50)\n", - "ax[1].set_xticks([])\n", - "ax[1].set_yticks([])\n", - "ax[1].set_title('Gaussian NXOR', fontsize=30)\n", - "ax[1].axis('off')\n", - "\n", - "clr = [colors[i] for i in y_rxor]\n", - "ax[2].scatter(X_rxor[:, 0], X_rxor[:, 1], c=clr, s=50)\n", - "ax[2].set_xticks([])\n", - "ax[2].set_yticks([])\n", - "ax[2].set_title('Gaussian RXOR', fontsize=30)\n", - "ax[2].axis('off')\n", - "\n", - "plt.tight_layout()" - ] - }, - { - "source": [ - "# Experiment definition" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def experiment(n_task1, n_task2, n_test=1000, \n", - " task1_angle=0, task2_angle=np.pi/2, \n", - " n_trees=10, max_depth=None, random_state=None):\n", - " \n", - " \"\"\"\n", - " A function to do progressive experiment between two tasks\n", - " where the task data is generated using Gaussian parity.\n", - " \n", - " Parameters\n", - " ----------\n", - " n_task1 : int\n", - " Total number of train sample for task 1.\n", - " \n", - " n_task2 : int\n", - " Total number of train dsample for task 2\n", - "\n", - " n_test : int, optional (default=1000)\n", - " Number of test sample for each task.\n", - " \n", - " task1_angle : float, optional (default=0)\n", - " Angle in radian for task 1.\n", - " \n", - " task2_angle : float, optional (default=numpy.pi/2)\n", - " Angle in radian for task 2.\n", - " \n", - " n_trees : int, optional (default=10)\n", - " Number of total trees to train for each task.\n", - "\n", - " max_depth : int, optional (default=None)\n", - " Maximum allowable depth for each tree.\n", - " \n", - " random_state : int, RandomState instance, default=None\n", - " Determines random number generation for dataset creation. Pass an int\n", - " for reproducible output across multiple function calls.\n", - " \n", - " \n", - " Returns\n", - " -------\n", - " errors : array of shape [6]\n", - " Elements of the array is organized as single task error task1,\n", - " multitask error task1, single task error task2,\n", - " multitask error task2, naive UF error task1,\n", - " naive UF task2.\n", - " \"\"\"\n", - "\n", - " if n_task1==0 and n_task2==0:\n", - " raise ValueError('Wake up and provide samples to train!!!')\n", - "\n", - " if random_state != None:\n", - " np.random.seed(random_state)\n", - "\n", - " errors = np.zeros(6,dtype=float)\n", - "\n", - " default_transformer_class = TreeClassificationTransformer\n", - " default_transformer_kwargs = {\"kwargs\" : {\"max_depth\" : max_depth}}\n", - "\n", - " default_voter_class = TreeClassificationVoter\n", - " default_voter_kwargs = {}\n", - "\n", - " default_decider_class = SimpleArgmaxAverage\n", - " default_decider_kwargs = {\"classes\" : np.arange(2)}\n", - " progressive_learner = ProgressiveLearner(default_transformer_class = default_transformer_class,\n", - " default_transformer_kwargs = default_transformer_kwargs,\n", - " default_voter_class = default_voter_class,\n", - " default_voter_kwargs = default_voter_kwargs,\n", - " default_decider_class = default_decider_class,\n", - " default_decider_kwargs = default_decider_kwargs)\n", - " uf = ProgressiveLearner(default_transformer_class = default_transformer_class,\n", - " default_transformer_kwargs = default_transformer_kwargs,\n", - " default_voter_class = default_voter_class,\n", - " default_voter_kwargs = default_voter_kwargs,\n", - " default_decider_class = default_decider_class,\n", - " default_decider_kwargs = default_decider_kwargs)\n", - " naive_uf = ProgressiveLearner(default_transformer_class = default_transformer_class,\n", - " default_transformer_kwargs = default_transformer_kwargs,\n", - " default_voter_class = default_voter_class,\n", - " default_voter_kwargs = default_voter_kwargs,\n", - " default_decider_class = default_decider_class,\n", - " default_decider_kwargs = default_decider_kwargs)\n", - " \n", - " #source data\n", - " X_task1, y_task1 = generate_gaussian_parity(n_task1, angle_params=task1_angle)\n", - " test_task1, test_label_task1 = generate_gaussian_parity(n_test, angle_params=task1_angle)\n", - "\n", - " #target data\n", - " X_task2, y_task2 = generate_gaussian_parity(n_task2, angle_params=task2_angle)\n", - " test_task2, test_label_task2 = generate_gaussian_parity(n_test, angle_params=task2_angle)\n", - "\n", - " if n_task1 == 0:\n", - " progressive_learner.add_task(X_task2, y_task2, num_transformers=n_trees)\n", - "\n", - " errors[0] = 0.5\n", - " errors[1] = 0.5\n", - "\n", - " uf_task2=progressive_learner.predict(test_task2,\n", - " transformer_ids=[0], task_id=0)\n", - " l2f_task2=progressive_learner.predict(test_task2, task_id=0)\n", - "\n", - " errors[2] = 1 - np.mean(uf_task2 == test_label_task2)\n", - " errors[3] = 1 - np.mean(l2f_task2 == test_label_task2)\n", - " \n", - " errors[4] = 0.5\n", - " errors[5] = 1 - np.mean(uf_task2 == test_label_task2)\n", - " elif n_task2 == 0:\n", - " progressive_learner.add_task(X_task1, y_task1,\n", - " num_transformers=n_trees)\n", - "\n", - " uf_task1=progressive_learner.predict(test_task1, \n", - " transformer_ids=[0], task_id=0)\n", - " l2f_task1=progressive_learner.predict(test_task1, task_id=0)\n", - "\n", - " errors[0] = 1 - np.mean(uf_task1 == test_label_task1)\n", - " errors[1] = 1 - np.mean(l2f_task1 == test_label_task1)\n", - " \n", - " errors[2] = 0.5\n", - " errors[3] = 0.5\n", - " \n", - " errors[4] = 1 - np.mean(uf_task1 == test_label_task1)\n", - " errors[5] = 0.5\n", - " else:\n", - " progressive_learner.add_task(X_task1, y_task1, num_transformers=n_trees)\n", - " progressive_learner.add_task(X_task2, y_task2, num_transformers=n_trees)\n", - "\n", - " uf.add_task(X_task1, y_task1, num_transformers=2*n_trees)\n", - " uf.add_task(X_task2, y_task2, num_transformers=2*n_trees)\n", - " \n", - " naive_uf_train_x = np.concatenate((X_task1,X_task2),axis=0)\n", - " naive_uf_train_y = np.concatenate((y_task1,y_task2),axis=0)\n", - " naive_uf.add_task(\n", - " naive_uf_train_x, naive_uf_train_y, num_transformers=n_trees\n", - " )\n", - " \n", - " uf_task1=uf.predict(test_task1, transformer_ids=[0], task_id=0)\n", - " l2f_task1=progressive_learner.predict(test_task1, task_id=0)\n", - " uf_task2=uf.predict(test_task2, transformer_ids=[1], task_id=1)\n", - " l2f_task2=progressive_learner.predict(test_task2, task_id=1)\n", - " naive_uf_task1 = naive_uf.predict(\n", - " test_task1, transformer_ids=[0], task_id=0\n", - " )\n", - " naive_uf_task2 = naive_uf.predict(\n", - " test_task2, transformer_ids=[0], task_id=0\n", - " )\n", - "\n", - " errors[0] = 1 - np.mean(\n", - " uf_task1 == test_label_task1\n", - " )\n", - " errors[1] = 1 - np.mean(\n", - " l2f_task1 == test_label_task1\n", - " )\n", - " errors[2] = 1 - np.mean(\n", - " uf_task2 == test_label_task2\n", - " )\n", - " errors[3] = 1 - np.mean(\n", - " l2f_task2 == test_label_task2\n", - " )\n", - " errors[4] = 1 - np.mean(\n", - " naive_uf_task1 == test_label_task1\n", - " )\n", - " errors[5] = 1 - np.mean(\n", - " naive_uf_task2 == test_label_task2\n", - " )\n", - "\n", - " return errors\n" - ] - }, - { - "source": [ - "# Run experiment for XOR N-XOR tasks" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "mc_rep = 1000\n", - "n_test = 1000\n", - "n_trees = 10\n", - "n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int)\n", - "n_nxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int)\n", - "\n", - "mean_error = np.zeros((6, len(n_xor)+len(n_nxor)))\n", - "std_error = np.zeros((6, len(n_xor)+len(n_nxor)))\n", - "\n", - "mean_te = np.zeros((4, len(n_xor)+len(n_nxor)))\n", - "std_te = np.zeros((4, len(n_xor)+len(n_nxor)))\n", - "\n", - "for i,n1 in enumerate(n_xor):\n", - " print('starting to compute %s xor\\n'%n1)\n", - " error = np.array(\n", - " Parallel(n_jobs=-1,verbose=1)(\n", - " delayed(experiment)(\n", - " n1,0,max_depth=ceil(log2(n1))\n", - " ) for _ in range(mc_rep)\n", - " )\n", - " )\n", - " mean_error[:,i] = np.mean(error,axis=0)\n", - " std_error[:,i] = np.std(error,ddof=1,axis=0)\n", - " mean_te[0,i] = np.mean(error[:,0])/np.mean(error[:,1])\n", - " mean_te[1,i] = np.mean(error[:,2])/np.mean(error[:,3])\n", - " mean_te[2,i] = np.mean(error[:,0])/np.mean(error[:,4])\n", - " mean_te[3,i] = np.mean(error[:,2])/np.mean(error[:,5])\n", - " \n", - "\n", - " if n1==n_xor[-1]:\n", - " for j,n2 in enumerate(n_nxor):\n", - " print('starting to compute %s nxor\\n'%n2)\n", - " \n", - " error = np.array(\n", - " Parallel(n_jobs=-1,verbose=1)(\n", - " delayed(experiment)(\n", - " n1,n2,max_depth=ceil(log2(750))\n", - " ) for _ in range(mc_rep)\n", - " )\n", - " )\n", - " mean_error[:,i+j+1] = np.mean(error,axis=0)\n", - " std_error[:,i+j+1] = np.std(error,ddof=1,axis=0)\n", - " mean_te[0,i+j+1] = np.mean(error[:,0])/np.mean(error[:,1])\n", - " mean_te[1,i+j+1] = np.mean(error[:,2])/np.mean(error[:,3])\n", - " mean_te[2,i+j+1] = np.mean(error[:,0])/np.mean(error[:,4])\n", - " mean_te[3,i+j+1] = np.mean(error[:,2])/np.mean(error[:,5])\n", - "\n", - "with open('./data/mean_xor_nxor.pickle','wb') as f:\n", - " pickle.dump(mean_error,f)\n", - " \n", - "with open('./data/std_xor_nxor.pickle','wb') as f:\n", - " pickle.dump(std_error,f)\n", - " \n", - "with open('./data/mean_te_xor_nxor.pickle','wb') as f:\n", - " pickle.dump(mean_te,f)\n", - " " - ] - }, - { - "source": [ - "# Plot XOR N-XOR results" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "(-1.2865128424350156,\n 1.4879660966326593,\n -1.2529479199200702,\n 1.3480024397987906)" - }, - "metadata": {}, - "execution_count": 6 - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABfAAAAP4CAYAAACSud0gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5wrVfnH8c/ZufTeW4ArJXQbCEiRqiBNOtIndKT8KJYAUkTQIAhSlZqACAhKFUU60nuRIoNSQ/HSe509vz+eiclm0zebzd77fb9eeW0y5cxJuXfmPHPOc5z3HhERERERERERERER6S8DY10BEREREREREREREREZTgF8EREREREREREREZE+pAC+iIiIiIiIiIiIiEgfUgBfRERERERERERERKQPKYAvIiIiIiIiIiIiItKHFMAXEREREREREREREelDCuCLiIj0iHNuTeecTx5HjXV9REREZHTonC8iIiLdogC+iIgM4Zybyzm3p3PuYufcU865151znzvn3nXOPeec+6tz7ufOuRXGuq7SP5xzv6wIVPyhxX3SzrmPkn3edc4t2GDbbzrnfuWcu98594pz7lPn3JvOuSedc+c657ZwzgUtHrdQUdfqx6fOuf86525P3tPirX4GIiLjjc750inn3K1V58+ftLDPvBXb3zqCY19cUc6xLe6zhnNuMNnnBefcTA22/Y5z7lTn3CPJNcFnzrlJzrlHnXOnOefWa6Ou1Z9T5ePj5JrmJufcT51zC7RaroiITFmc936s6yAiIn3AOTcj8DNgL2D6FneLgGOAi7z38WjVbXLhnFsTuCV5+TPv/VFjV5vucs5NAzwELJ0s+p73/uoG2w8AdwDfTBbt7r0/p8Z2aeBkYP0WqvEv4ADv/d+b1LUA7NxCeQBfAMd473/W4vYiIn1P5/zRNzmf88EC08AaFYveAhbx3r/bYJ95gVeTl7d579fs8NhzAE8Cc2Pn6ZW99w822H4G4DFgkWTRd7z3N9TYbkXgFGClFqpxH7Cf9/6+JnW9laGfUyMfYdcxZ7e4vYiITCEUwBcREZxziwFXAstULH4MuAl4BngTmBZrKC0PrAnMW7Ht17z3j/SkstK3kobvXUAAvAYs471/q862PwSOT15e770f1pvNObcGcAUwW7LoQ+Ba4HZgEjALsBywBTB/ss0gcJD3/uQG9SxQDuCfCtxcsXpqYCKwNfZbLzmgUZkiIuOFzvnSDXUC08d673/aYJ+uBPCTsrYA/pS8/Cewgvf+szrbngbsk7w8y3u/Z41ttgJ+D0yTLHob+3dyP/ZvYg7s38NmwOzJNp8AO3nvL2tQz1spf06HA49XrJ4WSAPbAUskyzywuff+ynpliojIlEcBfBGRKZxzbk7gAWDhZNHjwL7e+9sa7DMAfA/4MbAyasxLwjl3HPa7APiD936HGtssCTyMNVzfA5b13r9Utc1SWKN5hmTRtcAe3vtXapQ3DdYoPqxi8U7e+9/XqWOBcgA/470v1NjGYTcYDk4WvQss4L3/sFaZIiLjgc750i1VgemPsJEcH2K98CfV2adrAfykvD9iN9yhzs0D59xa2M0pB7yIXXO8X2ObGymnGM5jnQHeqVHeLMCvgV2TRTGwrvf+1jp1vJXy57RWre2cc1NhNw+2SRb923uvFH4iIvI/yoEvIiLnU27I3wms0qghD+C9H/TeXwGsAuwHfDy6VZRx5EgslQ3A9s65jStXJnnqC1jwHuDgGsH7CcCllIP3l2MpeYYF7wG8958mjfaDKhb/1jm3SK3tW+Gth8MhlAMNswDf6rQ8EZE+oXO+jIbSCLUZgLo98EfBPsDryfOfOOe+XrkySRV1Hha8B9itRvB+NuAiyrGRU7z3u9QK3gN479/13u+GpdoBG3V4kXNu1k7fhPf+c+AHQGkEwWJJRwYRERFAAXwRkSmac24VYIPk5XvAttUNm0a8Oc17/3Sd8ic459Zzzv3aOXdHMgHYZ865951zUTKZaNOgqHPu+WSyr+e7sa1zbn7n3NHOubudc28lE/a97Zx7xtnkpSc651ZvsP+azrnznXNPO+c+SN7Ta865x51zVzvnflhrIrJkv9LEZUfVKds551Z3zh3rnLvZlSds/dDZhIKXVAfF65RzVMWx1kyWreyc+4Ozyds+Tb6PvzjnWskv3xLv/SdABktlA3Bm0jguOZhybtnra+W9B74PLJs8fxXYtZV8y977k4DrkpczANk2q19d3ufAPRWL0iMpT0RkLOmcr3N+t8/5FX4HvJA839M5t3CjjbvFe/8G5dQ4E4CCc27qik1+haXFAzi7Vt77ZP9SiqjHgB+2ePgfYql7AObDAvAdS1IOPlGxSNccIiLyPxPGugIiIjKmDqh4fm51T+guuAHLnVttKmDx5LGzc+58LD1Kzdyl3eSc2xC4BJixatWsyWMxYDVgl+R15b4DwJnAbjWKnid5LANsDKQY+vm26jwgrLG8lJt9IrCNc+46YBvv/XutFOqcOww4mqE37+cCNgQ2dM4d7b0/soP6DuO9v8c592vgR1ij9hRgR2e9yY5ONnsf2L1OEftXPD+pXi+4Oo6kPOHtTs65n3jv325j/2qfVjyftu5WIiL9T+f8Mp3zu3TOT3wGHIWlnpkamyA57GL5dXnvL3POXQZshc2LczhwuHNuHWySZoCXqBGYT77jfSsWHZPcvG/luJ87544B/pgs2s8590s/shzFuuYQEZGaFMAXEZlCOeccsE7FogtH4TDTAR9guUcfBJ7HJvyaD2v0bo/1lN4ZeIfOGr8tS3rIVTbkr8UCDq9gjdy5ga8A38ZSplTbj3JD/h3sM3sYy48+PdbQXglYawTVnA5rwN0G3Af8B8spOxfWG2tHbPK09YELgE1bKHMPYFvgZSx9zRNYA3t9LN+qA45wzt3mvb+5XiFtOgILaiwJ7OCc+zOWkqY0OdzB3vsXq3dyNgS9cvLYmnns6/He3+ecexqbDG4aYHXg6var/z+VkzwOq6+IyHigcz6gc/5onvPBztc/BpbCbtr/ynv/ZBfLb2Qf7ObRXEDWOXcDcC5DU+fUuvmxHHYjBqxjQbsTx16R7DcT1ot/OawXf9ucpRhcomKRrjlEROR/FMAXEZlyLYU1CsEmH+uowdHEYcBd3vua+XKdc4dijaXVsJ5LJ3vvnxuFepRsS7kh/xPv/a/q1MsldapW6jH+LrCS9z6qs//MQKf5108H9qrX6zzpVZfHepp9zzm3RrP8xdj7vgHYrGoS1vOdc/cBJyavfwh0pTHvvf/EObcLcAcWKLkU64UJcIP3/uw6u36Tco/B57z3r3Vw+LspN4JXocMAvnNuI6wxDpYS6L5OyhER6QM65+ucP2rnfADvfeyc+ynwZ+w8fgywebfKb3Ls151z+2K94SdgE9KWrjnO8d5fX2fXVSqeP9Bq7/uK437unHuQ8siTVej839beQCnl4PvYBNMiIiKAcuCLiEzJ5q94/qL3/otuH8B7f1O9hnyy/k2sJx7YOWn7btehymIVz+sFkEt5fm9vsP9t9Rryyf7vee8f6aSC3vvbG6WMSRrju2I99MB65zXzJjb0/sMa606m3MtrbWcTyHaF9/5u4KTkZakh/T610xGUpCqe18yz3ILK/YblJW7EOTeVcy6dBCEurVh1mff+Px3WR0RkrOmcX4fO+d3jvb8cuD95uZlzbsVult/k2JdiNw+gfM3xEjb3Tj1jfc0xjXNuOefcCcBvKlad0c78FCIiMvlTAF9EZMo1R8XzpjnGnXNfVEyQVv24tdNKeO+fBUq9rFdqtG0XfFTxfJm6WzXff3Hn3FQNtxxFSaOuNHFaK5/ZBfXywHvvB7Gh+2ApZxYdeQ2HuLbq9Wm1UudUmL3ieTu57ytV7jdH3a1MvvK3jOXxfRr4OZbaAGwUQb18/SIi44HO+Z3vr3N+ew6teP6LUSi/keprjmOazBvQ62uOW6quOT7BeuwfDATJNn/C8viLiIj8jwL4IiIyqpxzMzvn9nbOXeOce94590F1MADLGwpDe0KNhhsqnl/unDvQOdfOMUv7LwXc6Jzb2Dk3XaMdOpH0yNrROfcn59wzzrn3nHODVZ/ZysnmrdT/nibrX654PlvdrdrknJsW+G3V4oxzrmvHGGWfYJPwramecCIizemc377J5Zxf4r2/kXJqnnWSyWRHnXNuLqA6TdK+Y3nzpU1vARt777dqN5WPiIhM/pQDX0RkyvVmxfNZW9h+c4be+J0bOLPRDs65tYCLKDfWm5m5xe064r3/m3PuImA7bKKzE4ETnXPPAHcB/wD+4r2fVKeIn2B5cucHvpU8PnXOPQDciTVYbx5Jw8s5txw2BHzxFndp5TN7o8n6TyueT9vicVvxc8q56F/HPvN5sWHiO9fZ562K5638Lmup3O/NuluZUykHGgYof7dbYJ/FYVhvxec7rIuISD/QOV/n/JLROudXOpTyjYRf0OJoC+fcasCcDTa53nv/UZ11Z1TsW7rmWA74KXBknX16fc1xOOXc9hOwGzLrA+thowF+6py7y3v/Vp39RURkCqUAvojIlOuViucLOecmNMqJ670fMhGoc25io8Kdc4tjQ5lLvdWeBv4GPIM1mD6p2PwsrKEVMPp2wBrdB1IeUr948tgZiJ1zlwIHe+9frdzRe/+8c+5rWANsB6zRNg2wavL4MTDJOfcL4BTvvW+nYs652bGJ1+ZOFr0E/AX4F9YY/QQolXlMUv9WRtMNtlOPbnDOrQwclLx8BVgRC5YsAuzknLvEe/+3GrsWK56nOzx85X4v193KPOS9v7Jq2WlJEOEG7Hfxd+fc8t77Dzqsj4jIWNM5X+f8nvHe3+ucuxLYFFjRObeZ9/6KFnY9BlijwfovUeOGunNua2DL5OWjwCbAI9gIg0Occ3/23teaXLbX1xx3eO9vrVr2G+fcVtgEvCsBVzrn1vLexx3WR0REJkMK4IuITLmewhrVswPTY72UHu5i+YdQbsgfCxxer3HrnKs7uVwHGjZukzqcC5zrnFsE6123CrA21qAPgG2B1Zxz3/De/7dq/0nAfs65g4AVkn1XS/afGWuI/wZraO/RZt33pdyQPx/YrV6AxTl3WJtl90ySOidP+bvY03v/snNuN+AmwAFnOueWqZGa5h4s+DAALOKcm6f6O2jBNyue39n+OwDv/R3OuZ9gE/6lgeOAfTopS0SkD+icr3N+r/0UC6QPAMc4564ajYMkqXNOS15+AWS89y865w4ECtiEtuc551aqERS/q+L5Cs65qdoZUZGk51m+YlGn1xyXOee+id1oWh3rAHF8J2WJiMjkSTnwRUSmUEmj9qaKRdt3+RDrJn8nAUc0aMjPxNBJxGopDfeeutFGzjnXQln/471/1nt/gfd+L+99GmuElQIaCwI/arDv5977u733v/beb4b1Jtyloq67J0Pj21H6zL4ADmjUOxJYuM2ye+loYMnk+YXe+78AeO9voZyCYUFqNE6TifcerFi0QzsHds59o+LYnwK3t7N/ldOBKHm+h3NuyUYbi4j0K53zdc7vNe/9E8CFyculgR1b2GdN771r8Hi+xm6nY98HQM57/3BS1vnYKBCw77rW9/tPoHTTZmbshkM7NqWc1ug1yulxOnEUUJp8+DDnXLMJcUVEZAqiAL6IyJTtNxXPd3POLdDFsudJ/j7nvW80nHtdmp+P3kn+ztlkMrJlgRlarN8w3vuHGNrAXK2NfT/z3uexnOolq7ZZhdJn9qb3/p16GyVD+ueqt34sOedWopw657/A/1Vt8mPgxeT5HknO5GqnVDw/0Dk3SxtVOKri+QWNPsdmkp56xyYvJ2A3JkRExiud8yvonN8TRwKfJc+PoslNmXY557YAtkpePoHNvVNpT+C9Ul2cc0tUrkx+q6dVLPqpc66lLAXJdpUjI05tN41SVV3eo/xvdBZsDgYRERFAAXwRkSma9/4u4K/Jy1mAi51zM3ap+NIkY4skveSGcc4F2ERnzTyZ/J0KG1pcz/6tV6+u5yued5JqbiT7lz6zuZNeivUc0Wa5PeGcmwZLnVPKa7x39URsScqc3Uu7AOc456avKuoSrCEOsABwdvJbaXb8/YENkpcfArm238RwFwEvJM+3dM4t02hjEZF+pXN+Tc9XPNc5v8uSHvNnJS8nYgH1rnDOzYlNXAsQA6H3/rPKbbz3L1HueT8tlkqnOgZyOtZ7HuCrWMq8VhwHfCV5/mpFXUbiNKA0384PkvRAIiIiCuCLiAg7Uw5Qrg7c5Zz7Vgv7Netpdn/ydy7ggOqVSa+6s7Gcss1cV/H850mguLq83YDdGhXinDvCOfftGo23Sj+oeP5oxb7zOedOcM59qUH502Of57D9W1T6zBw2kVt1+c4593NsyHY/OhpYKnl+Sb0J67z312OBfrBJbX9Rtf4LYGvKwY2tgMudc/PVKs85N41z7mcM7V26t/f+2Y7exfC6nFA6FNabUERkvNI5fyid80ffMdhNdRg+Km8kTqc8h8Dx3vsHam3kvT8Lm8gYbA6D/avWvw1sR3ny34Occ2fXG/3nnJvZOXcm5dGGg8B2IxnxV1GXtyinGpyBBmmdRERkyqJJbEVEpnDe+zecc+sCV2E5SpcDbnPOPYo1eCJs4jsHzJFssx6wWEUxL9co+lTg28nzE51zawJ/B97EJo7bKfl7S/I31aCaVwL/To65CnC/c+5c4BVgXqxxuzaW73xRYP465awN/Ax4zTn3d+ARrNfVQLLPJpR7+30KnFix7zTAwcDBzrn7k2M9hQ31nwVYAmsAllIS3A7c0eA91XIGllM3APZ3zn0VuDyp44JJ+V/Deid+zNCJ08aUc25F7PMBeB3Yr8kuB2G/o/mxCQIvTXqHAuC9f9I5twH23c+KfTfrOOeuwT7X17G8s8sBW1D+3AeBg733v+/KGzPnYj0g58J64S/rvR9JnlsRkTGhc77O+b3mvf+vc+5kbPRFxymPKjnnNsdu9IN9L0c12WU3LN/9DMCxzrmrK2/ye+9vcc5tC1yAffe7AZs7567EbrS8ic23sDywOfZvA+x3s5P3/tYuvK2SE7FrqKmBfZxzx3vvX+9i+SIiMh557/XQQw899NADYEas0fAh4Ft8PIFNMurqlPmLJvvfgQVFn09eP9+gfstjQYV6Zd3TrCwscNDK+3od+E7Vvgu38bncDMxR4/hrVmxzVJ33uTc2FLxe2U9iQY1bS8vqlHNUxT5rNvnuW962zv7TJL+FUhlbtbjfxhX7PAVMW2ObJbAgUCuf+7+A77Zw3ELFPmGLdT20Yp/Lxvrfqx566KHHSB7onK9zfofn/Ipybq0oZ94m285a4/u8tcPjzoHNseOTz27lFvfbr+o7G/Y7BlZMflutfO/3ASu1+Tm19HljaYdK+xw/2v8f6KGHHnro0f8PpdAREREAvPcfeO8PwnKU7g1chvXEexP4AngXeA74G9aj7Rve+2W89xd6732dMg8FvgtcC7wBfI7lCb0Zy4O+pm+xV5H3/kGsp+CpWM+8T4C3gbuBfYDVWyhrE6zn1MlYIOG1pE6fJc9vAn4ILO4tzUvl8V/AGtH7YHnR/5l8JjGW6uUZ4GJgY+/92t77N1t5XzXe52+xVAWXVdRvEnAX1mt9Be/9vzspexQdhfXSBPiz9/6yVnby3l8D/CF5uSQ1etB575/23q+HfSYnAA9iDffPse//X1hAfktgWe/93zp9E02cTnkivC2cc8uN0nFEREadzvk65/eSt/QyreaWb+Y0yqlzTvLe39PGfrcnz9eiRj5+7/193vuVsVEnZ2Df++vY9/JG8vq3WGeBFb3393b8Lhr7FfZbA8uFP3ejjUVEZPLn6lx/iYiIiIiIiIiIiIjIGFIPfBERERERERERERGRPqQAvoiIiIiIiIiIiIhIH1IAX0RERERERERERESkDymALyIiIiIiIiIiIiLShxTAFxERERERERERERHpQwrgi4iIiIiIiIiIiIj0IQXwRURERERERERERET6kAL4IiIiIiIiIiIiIiJ9SAF8EREREREREREREZE+pAC+iIiIiIiIiIiIiEgfUgBfRERERERERERERKQPKYAvIiIiIiIiIiIiItKHFMAXEREREREREREREelDCuCLiIiIiIiIiIiIiPQhBfBFRERERERERERERPqQAvgiIiIiIiIiIiIiIn1IAXwRERERERERERERkT40YawrICIiIpO/KAzmAvYCNsQ6ENwAnJ4uxK+MacVERERkzKTy2QnAtsCOwNzAY8DpxUzu3jGtmIiISB9x3vuxroOIiIhMxqIwWBS4A5gX8IBLVr0NrJUuxI+OVd1ERERkbKTy2amBK4HvAoPYDf7S3x8UM7nfjmH1RERE+oZS6IiIiMhoOwvrVQfl4D3AzMAFURi44buIiIjIZG5vLHgP5dhE6e9pqXx2Ys9rJCIi0ocUwBcREZFRE4XBRGBtal9zBMCXga/1sk4iIiLSF3bHetzXMgDs3MO6iIiI9C0F8EVERGQ0pVrYZsFRr4WIiIj0m4WoH5OI0fWBiIgIoAC+iIiIjK4XWtjmuVGvhYiIiPSbZ6nfAz9A1wciIiIATBjrCoiIiMjkK12IX4rC4K/A+gzvODAIPJAuxI/1vmYiIiK9kcpnp8LSxQXAI8VM7uMxrlK/+B1Qa6Jaj/XAL/S0NiIiIn1KPfBFRERktO0JPJ88H6Tc2+6/wI5jUSEREZFeSOWzuwEvAfcCdwGvpvLZbCqf1QTucDZwSfI8xgL3pUdYzOReHquKiYiI9BPnvR/rOoiIiMhkLgqDmYCdgI2wDgQ3AOemC/HbY1oxERGRUZLKZ3cBzsUC0tUB+6OKmdzPel+r/pLKZweADbAb+nMCjwO/K2ZyT41pxURERPqIAvgiIiIiIiIiXZTKZycALwLzMjx4D/AJMG8xk3u3pxUTERGRcUc58EVEpO8kw8rXBXYBFgD+g/XGundMKzaFiMJgemBjYB7gaeDGdCGOx7ZWIiIi48qywHwN1k8LfAu4pjfVERERkfFKOfBFRKSvJMH7U4Drga2B1bHUK/ek8tkfj2XdpgRRGGwOvILlpD0ZuA54OgqD5ca0YiIiIuNLK21ttcdFRESkKV0wiIhIv9kE2Dd5PlD197hUPvv13ldpyhCFwQrApcDMVasmAjdGYTBLzyslIiIyPj0OvNFg/WfAHT2qi4iIiIxjSqEjIiJtS+Wz0wLbA1sC0wP3AGcUM7kXulD8HkAMBDXWDQK7A3t34Tgy3EFYnt7qXL0BMDc2wdxpva7USEVhMA02ee5CwHPAX9OF+LOxrZWIiEzOipncZ6l89hjgN3U2OaWYyb3ZyzqJiIjI+KQe+CIi0pZUPjsL1mPsHOA7WP7WHwFPpfLZNbtwiEWpHbwvmdiFY0htq1P/2iAGVu1hXboiCoN1gJeAPwEnAlcAL0RhsNqYVkxERKYEpwA/Bt6vWPYp8CsgOyY1EhERkXFHPfBFRKRdxwClNDalYK8DpgEuTeWzCxYzuU9HUP5zwOLUDyS/OIKypbGPG6xzTdZ3XRQGA8BWwG5Y7/lngLOAa9KF2Lew/6LAX4Cpq1bNDVwXhcFS6UL8UndrLSIiYoqZnAeOT+WzZ2A3wScAdxczubfHtmYiIiIyniiALyIyGUjls0sAG2A9128qZnIPj9JxpgF2YXiKFbCA+1zAxlhv506dA6xfZ91Asl5Gx6XAYXXWDTCy77UtSfA+j01gPJgcf1FgQ+A3URgc1EIQfx/sxlL173UAmAHYi/rvV0REpCuKmdyHwPVjXQ8REREZnxTAFxEZx1L57FTA2cDOVcuvBb5fzOQ+6PIhZ8Ny3jcycYTHuBx7T7tTDtyW/h5RzOTuH2H5Ut/J2G9pfoaPgLgRuK6HddkMC95TUZdSaqUDgKuAW5uUsSq1bzaVrNJp5URERERERER6QTnwRUTGt19QFbxPbAicOQrHe5vmaVRGNJFtMtx8T2AT4GrgAeCPwBrFTO7nIylbGksX4teBb2Kf9xfJ4veAE4BN0oV4sIfV2QW7cVPLYLK+mY+alPFRB/USERERERER6RnnfdMUsiIi0odS+exMwGvU7xE/CEwsZnJdzfGdymdPB/ZmeM/mQSzAv8AIc+DLCEVhsBGwH7AsMAk4H/hduhB/0kYZM2IjLialC3HPv88oDB4FvlxntQduThfidZuUsQ9wWoNNdkkX4nyHVRQREREREREZdeqBLyIyfi1F43Q2A8AKo3Dcw4BHk+el3s0e+AzYRsH7sRWFwZHANcA6WCqcLwMnAddHYTBdq+WkC/EH6UL80lgE7xPPUL/3vAf+3UIZBeCfyfbV+z8IXNxp5URERERERER6QQF8EZHx68MubdOWYib3DpZbfC/gFuAeLEC8bDGTu6nbx5PWRWGwDHBU8rKUL750rl8dm9R1vPgd9a9TBoCzmhWQLsQfAmticyqURh98BPwWWKedEQkiIiIiIiIiY0EpdERExqlUPuuAp4DFGR7o9MBbKJ3NFCUKg+OAH1F74lYP/CtdiJfuba06F4XBz4AjGNoTfwA4IF2IT26zrOmA2YE3FbgXERERERGR8UIBfBGRcSyVz64PXJu8LAXxB5PnYTGTO39MKiZjIgqDArAD5d731d5OF+LZe1ejkYvCYEVgVyAFPAucnS7Ej41trURERHorlc8uChwKbAlMC9wJHFfM5P4+phUTERGRUacAvojIOJfKZ9fE0qaskSx6GPhZMZO7aqzqJGMjCoNDgF/UWT0I3J0uxKv1sEoiIiIyQql8dkngLmAWhnfY2LWYyZ03VnUTERGR0acAvojIZCKVz84EBEmOepkCRWEwL/A8MBW188dvly7EmrhVRERkHEnls9cAG1A7ZeLHwLzFTO79nldMREREekIBfBERkclIFAabAJcC0wAxlg9/ADgZODBdiHXiFxERGSdS+eys2LxGtea3Kdm+mMld1KMqtS2Vz04ElgXeBu4pZnLx2NZIRERkfJkw1hUQERGR7kkX4qujMFgMyxu/FPAGcEG6EN83tjVrXRQGE4CNgFWxnoWXpwvxI2NbKxERkTExM42D9wCz9aIi7Urls7MD5wCbUn4PL6Ty2T2Vu19ERMPDZJYAACAASURBVKR16oEvIiLSQ1EYzAisnLy8O12IPxzL+vSbKAwWAv4OLImlBig1+M8HdksX4i/Gqm4iIiK9lspnpwJeAxpNQr96MZO7o0dVakkqnx0A7ga+wdAbEIPJY9ViJjduOheIiIiMpVr5cUVERKTLojBwURgchjXCb0ger0VhcEgUBs161k0Rks/hSiCdLKr8XHYGDul5pURERMZQMZP7HDi1zupB4BHgzt7VqGXfAVZk+OiBgeShc7qIiEiLlEJHRESkNw4FjqlaNiPwC6ynea7nNeo/qwJfa7B+vygMculC/HmvKiQiIqMnCoOlgBTwXLoQ/3us69PHjgUWB7bDrhnAAuP/ATYtZnL9OKz+2wwdSVdpAFgvlc86YCdgH2zk3WvAecDJxUzu415VVEREpN8phY6IiHRNKp9dBFgN+BS4vpjJvT3GVeqaKAxmADLAFsD0wB3A6elC/GwL+84IvIoF7Gt5D5gvXYg/6lJ1x6UoDPalfi/DkoXShfilXtRHRERGRxQGSwIFYKWKxbcCmXQhfn4MqjQupPLZFYDNgemw65Crkx76fSeVz54AHET9/P0fYenx9sZGEgxQDvjfAXy7mMl90oOqioiI9D0F8EVEZMRS+ewM2CRl21BuqH0KHA38spWeYal8dlngMOB7QADcnOz7j1GpdBuiMJgDuA1YhqGNzE+BDdKF+JYm+68N3NTkMGumC/FtXajuuBWFwQ7A7xts4oHZ04X4nR5VSUREuiwKg3mAx7Gc7pUpXQeBIvDldCF+dyzqNl4lPdm/DiwKvALcVczkBse4Ts2ufT4Dpm6w/v+Kmdwp3a2ViIjI+KQc+CIi0g3nAd9naC+rabAh33s12zmVz34DuA/YGutVNjWWO/WWVD67Rddr277jgKWT56Vzp8PqeUkUBo0aoFAe7j7SbSZ31wAfU/uzGAT+quC9iMi49wNgToa3RQeAhbDRbqMqCoMFozBYK0nhM66l8tk08EDy+CNwO/B0Kp9deUwrBrdgoyrqXd80unYaBMIu10dERGTcUg98EZHJUCqf3Qj4ITZ52AfARcBxxUzu1VE41uJAVGe1B14GJhYzubhBGfcCKzC8Me+BN4BUMZP7rAvVbVsUBtMDb2E3JOrZLF2Ir2xSxqvAzHU2eQdLoTPFDxWPwmAP4EzKIx1Inn8MXA98iI3OuCRdiJUfV0RknInC4F7s+qSWQeCGdCFef5SOPQ9wFrAx5U4HDwC7pQvxo6NxzNGUymdnAZ4E5mX4aIaPgS8XM7mmqf5GS5Ly5zYs9WC7Xipmcgt1uUoiIiLjknrgi4hMZlL57AFYT+bVsd7scwH7A/en8tkFRuGQqzdY57DJ6SbW2yCVz34Ja8jXOic5rP5rjaB+IzUnjYP3YD0G60py2x/bYJNjFLw36UJ8FrARcCcQYwGIt4AZgE2AbbERH49HYbDwWNVTRETGlygMpsVuAG/E0BGDXwdui8Jg4ljUa4RCYH5qj2aYHrv+GxOpfDYALqH5NVQtMfBYd2skIiIyfk0Y6wqIiEj3pPLZeYDjk5eVjTkHzAf8HNily4dtpWd8o21mbWH/2Vqsy2h4HfgEmLbBNs+3UM7xWI+4wyi/57eBY4CTRlC/tkVh8HWs0T8f8DRwbroQP9fLOjSSLsTXAtdGYeCwSQ53TFYFFZtNBC4GVulp5UREZKSuo34P/AHguuT//7Upn6ueAc5MF+JHRnDcrSinw6s+5szA/wEHjqD8sbA2Q0esVXLAur2tzhDrYTn5OxHQfFJ7ERGRKYZ64IuITF62ov7N2QFg26RHVDf9Hfi8zrpB4BFsUrp6/o0FyBtpOKw9lc/OnMpnD0jlszek8tmbU/nsoal8ds4mZbYkSdNSoH5e9leBv7VQjk8X4hOwnnLfwkYuzJ8uxCemC3HP8tlFYXAM8CCwD7AZcCjwTBQG2/WqDm2YHdiOoT0lSwaAb0Zh8JXeVklEREboDCw9XnVqvUHgJSAPnAbciJ0D1gb2AB6KwuAHIzjud2scs8RhaXXGm7rpCRNf9KQWtS3bwT6l66FDipnc37tZGRERkfFMAXwRkcnLHE3WT0vjnuRtK2Zyr2OTvMLQIPdg8jdbzOTqBqiLmdz7wNl1Vg8CNxQzuaeqV6Ty2QmpfHbOJAXPI1gv9rWBNbF0NU+m8tlaPe06cUhyjFKdSj4CtkoX4no3MIZJF+KP04X49nQhvqPXaXOiMNgIGwEAdg0QYEGLAeCCKAwW6WV9WvAlmo8WXLIXFRERke5IF+L/YjeyH6ha9Q9gDeDb2ES3YOcnV/H3tBFMPFvrZnA76/vRNTRu01/Vq4rU8Eab298P/AJYopjJ5UahPiIiIuOWAvgiIpOXRvlCPfACFnTutiOAg4BJFcueBDZssQfVj7FGKFg9SwH/R4AdKjdM5bPTpfLZXybHeh3rwT8xWV1q4IPdzLgwlc+OuEGeLsTvYKladsVGHNyG3SRYKl2I7xxp+T20D7V765WCI7v3tjpNTWq+Cf8d9VqIiEhXpQvxU+lCvDKW0mY9IJ0uxGsl6dz2YujN8mqdnquuZ2gqtkqeFkbT9aFLgCcY/nkNYufHM3peo7LLsRGWrY4y3KqYyf20mMlFo1gnERGRccl537NR+yIiMspS+exUWEB7AWo3Ug8sZnK/6aDcpbEA/TpYupzLgZOLmdyrNY6/KPAp8Hyjnvc1juGAlbGJSicAtwDXFTO5wYptAix3bjs5XZcvZnIPtbH9ZCsKg+eBehO/xsDV6UK8ee9q1FwUBrdi6YaqOx0MYqmZFkkX4mYpBEREZJyIwuA5yjfmq8XANelCvFkH5U6HpeRblKHnlEGsc8NX04X4P+2WO9ZS+excWMqhLSm/rxuAvYuZXM/eTyqfddXXfal8dlfgHCyI36xDRbqYyT3Tpbp8E5vzqTR/wlm1RnOKiIiMFwrgi4hMZlL57LJYL7P5sEapSx7nAHtWBsRbLG8d4FpgKoY2eCcBqxYzuX93o94t1mVT4Io2d9uimMldPhr1GW+iMLgH+Aa1R+ANYhMEjiS/cNdFYbA0cDs2kXGp8T+I3Uj6broQ3zJWdRMRke6LwuA2YDVqn6s8cHq6EO/XYdkLYPPaVHYEeALIpAvx/Z2U2S9S+ezc2E36V4uZXKO5h7p5TAfshE3+uxzwLnAhcGwxk/tvss06wDFYJ416PgTmLmZyIxolmtTnV8APKY9KcNjvZq9iJlcvZaOIiEhfa5ZXVkRE+lQqn50Jm9xtFeBj4E/AzcVM7vFUPrsosA0WrH0PuLSYyT3cwTEmAOczPHgPMCdwCrBBx2+ifVthve/amYj3xVGqy3h0HrBSnXUD2HfdNVEYfA34Otag/1u6EH/YbhnpQvxkUs6BwKbYtcsNwK/ThfiJbtZXRET6wjlYjvxaHHBupwWnC/HLwLejMFgMSAOvAQ/3cjL50VLM5CbRWuq5bsphaRAHseuI2YB9gY1T+exKxUxuUjGTuymVz96MpUVclto3Zs4ZafA+sTEWvKfGcX6XymdvL2Zy/+rCcURERHpKAXwRkXEolc8uA9wIzIsFtB2wJ/CXVD67ZTGT+xjrYVYY4aHWwtLx1DIArJ/KZ+ctZnKvjfA4rZq+jW0HsV51D45SXcajPPAjYLEa6/6WLsT3duMgURjMC1yKpb4p+SAKg/9LF+Lz2i0vXYhfxAL4B3ajfiIiMvaiMBjA5qv5qOoG7x+A7wLbUg4Ml/7+NF2IH6kuq8lxJgJ7AEthAe4LkvlrejaCcHKUymeXxIL3MDRY7rCRAIeQnLeLmZxP5bNbADcBC1G+dh3ArmcP7VK19qZ2R4/SCL7dgYO7dCwREZGe0SS2IiLjTJIH/kpgrmRRQPn/842AI7t4uHmbrHfA3F08XjP30nrv+3eAHdrJwz8FWJvawXsPrBeFwRIjPUASkPkrsGrVqhmAc6Mw6OWIDRER6TNRGAxEYXAgNkJuEvBeFAaXR2GwJEC6EA9iE9hvjU0c/xg2ynDtdCE+ts1jbY3lQM9ivbN3A+6IwuDUKAxGPMn9FO77DdY5YMfKBUnKxaWAXYHfA2cD6wPrdan3PdioinrXiQ7YPpXPTt2lY4mIiPSMeuCLiIw/61I7CFuydyqfPbKYyX3ehWNFTdZ/Rm9T1JyLNcJnZGgDrZTr/xFsAt3rgd/2cGTAeNGsZ9oejLxn2neAr9VY7rDv6RAswN8VSQDmO1ggYRbgIeCcdCHWdy8i0p9OxtKslG6wDwDfA9aKwmDFdCF+JgniX5Y8OhKFQQrLxx5g56DKc9++wJ3AJZ2W30tRGMwOfBn4AHgo+XzG2qyUR0bUMnP1giRQf17yGA1FbALkenWaB/gJ8PNROr6IiMioUABfRGT8WarJ+lmx3vmvdOFY92FB8S8zvDHkgQuLmdw7IzlAKp+dDlgEeK+Yyb3UaNtiJvd6Kp9dD5vIdr6KVQ74FxYUuLCYycUjqdNkbGnq90zzwIh74DM0bU61AWDVKAwGuhF8iMJgAhZ82QILInhgM+CQKAw2TBfiW0d6DBER6Z5kpNe+ycvKHvADWMD3CKp6bo/ALtgcPrUMAvvQ5wH8KAymBX6NjRwo9Rx/LklJd00v6pDMubQrNg/NNMA/gNOx68N6gfJB4NFe1K/KedSfPwHsOmGfVD57jEZoiojIeKIAvojI+NNsgrIvsElDu2EAOB6brHYOrPc2WBD4fuCgTgtO5bNTAUdjDeiZkmV3AQcUM7n76+1XzOTuTeWzE4GrsKHXHgsCLIHl/P9uKp/drpjJjShAnAyx3hxYDevVfwVw5zhv8L0KLEr9Bnc3eq1/1mT9F5R7XQL/60W/E/B/wDLAm1i+/l+lC3Gj3/JBWPAehr6naYErojBIdTJxroiIjJotGqwbALaOwmCnLk0qm6b+xPcDwJJdOMZoOx9LJVRpYeDKKAy+nS7EN4/mwVP57DxYwD5N+XprZeAHWEqiSdj1YfVnPABckspnZyhmcg3Pw6l8dgKWAvK7SfnXA1c1GkmaXKPtj40cTAHPAb8DzsTy8i9dZ1eH9cKfHtD1gYiIjBsK4IuIjD9XY0OoZ2Bo7zWwHk9/atZYakUqn/0u1hBasGLxJOAObILSho2rFhSA7aqWrQzclspnVy5mco812Hc1LHgP5c+gFMDdBniZEaSCSW4Q3IClKiql5zkIuDKVz/4KS9XyZDGT62X6oG7IU79n2gAjn/QYbH6Go+qsGwQurxGYOQkL3peG4s+HTWi3SRQGqzUI4u9DOaBQaQAbibI19p5FRKQ/NJuMfmosGPxFO4UmN4LXxHqKL4gFdEuTpNYySHdGKo6aKAyWY3jwHsqT+h4JtBXAT+apWQtLM/MScFO6EDcatXgi5bSNlefaGbHJZ+/ERmnOyvDz8QnA0al89hwgW8zkPq4uPJXPzo7Nc7BC8p7AJpr9ZyqfXbeYyQ3rtJJ0ALkaWK/imEtinU3WAE4Dzmjwnt4HhtVFRESkn2kSWxGRcaaYyX2ANW485cYOyetXsdyeI5LKZ1fEGkcLVK2aB0t3c8VIgvepfParDA/eg52XpgEOb1JEyND3Xu2gVD67cYd1c8Dl2Pss1anUIN0UuAv4G/B8Kp+9PJXPztHJccbIhdjIBSh/fqW/HwHXR2FwexQGm3V6gHQhfjQ5TrVB4BOq8s5GYfA1LHgPw69LlsV61A0ThcFUwEIMD94PqU4LVRYRkd65p8G6QSy/eyfB++OwYPa22I3qHbHrjHrniAFsXp1+tn6DdQPAt6IwmKHVwqIwWB6b0PdG4BwscP5sFAar1No+lc+WboTXixkEWIeKWYGLkzI/Zuj12fRYT/krkuurar8Flq94T6VjLUPVDfhUPjtrKp/9IfBPLHgPwztxbAG8h11v1BrF4YH8SEdpioiI9JoC+CIi41Axk7sEazRdgfWKfwH4FbB8l3qFZxnakCoZwBpajRqVrdikwboBYNNUPtvoHDUfjQO3AL+o01hs5pvYJKzNzpEOC+j/PZXP1ssr31eSoMiW2A2g+7GUOZ9hDdrpgemAVYDLozAYyY2gXYBjgMr5Ef4BrJYuxE9Ubbs9tRvZJd+PwmDTGsu/AN5uUo9X662IwmDmKAw2i8JgmygMFqy3nYiIdNXfgKeofRN+AAvEtywKg7mwXvc/qiij8m9JqZd56bg3YqMM+1kn1zA1RWEwL3AT1vO+Ugq7eb9wjd0WpfmI/dLn/H3sOmJaal8/rQeslcpnl0jls0em8tkTU/nsPtg1Sa33OQBskMpnFwFI5bMLYjn3j6fxfD2D2Fw4uzK0o0vpOuMJ6o8SFBER6VtKoSMiMk4VM7m7sYbPaFiPxsPOvw1cO4Lyp26yfgKNG64RsE6TMpbFRhAU26gX2FDwVjnshsYGQE8mkxupJIh/DnBOFAZnAHsxfCJBgF9EYXBRuhA3nFi4zjE+Bw6PwuAYLFfve+lCXC+//mzYb6rRTZBfRmFwVWXqnXQh9lEYnAv8sMb2HgvwX1y9Iump+SOsAT9dsngwCoMLgL3ThfiThm9OREQ6li7EcRQG38VG+VWebz8HDk0X4ktbKScKgy9hE9dvSOMb7oNY4DrAAr9FLF3ceelC3GzOlrF2PfVvaAwC97Yxz8ueWPq/agNY4H0fLHd8pR1aLBvsOmIz6l+7DWIpdb5W8bqVzoRLAc9iKXFaudk+AMxezOQuSuWzz2Aj/FbG5oa6GDizmMm930I5IiIifUUBfBERqaVRPlRH4/Q1rbgNOKzB+geLmVyjOpwJ7N3CcTrpGf9mm9sPYhOvjYsAfkkSyN6RxukFtsEa3B1JF+JPsZstjTxG8+9pSawn4L+rlh+D3Uz6CuU8uKU5C/ZKF+LXa5S1J8MDIgNYWqYBYOcmdRERkRFIF+IXojD4KpazfnksuHplnf+zh4nCYB4s9/o8NA8CD2ApdaZJXr8BPD8OgvekC/EjURhcBXyvalXpfPezNor7FrXnjCFZtkaN5e0E8AGmarDOUQ7eQ+uZAF5P5bPzYTdqWhmR4LEUOxQzuftp/z2IiIj0JQXwRUSklr9gwdtaDSyXrB+JZml+Pmq0spjJPZbKZ4+gKp96BY/12Gq79zg2suA9YCZaH77eKAVMQ1EYpLFebxtjgezrgOOTXPKjKcAmoWtkzlGuA8AFwC8p94avZ9g1S7oQvxuFwWpYUH57LA/vfcAp6UJ8V/X2URgEwE+pH8TYKQqDtbB5Ak5MF+Ln2nkjIiLSmmRE1S3Jo137Y6n0WjVNxfPlgGujMNg4XYj/2sGxe207bFLWnSjf7H4VOCBdiP/eRjmldHm1zn0eyxn/P0lqwE6uAer1rHcNjl+vnP9g6f5WaHG/UsqcmnPniIiIjGfO+45jDiIiMplK5bPLYYHQqRnaEPPArVj6msWAg7FeUQB/BU4oZnLP1ChvWqyn9CzAg1gO/FyDKsTAtMVMruFEdql89kqG90wr2amYyf2+yf6zYj3CPgHuLx0vlc9uS3ki1lZ6iW1UzOTaTimUTCh3KzZ8vXScQSyVwAbpQnxzu2W2efwXsIlg6zk7XYj3GM06JPXYEriszmqP5epfqN2JDWscZ3GajwgoHfN9YM10IX54JMcUEZHuisLgSSy1SqcGgX8By1amZutnSQ77rwIfAPd0MNHvnjQObB+ULsQnVS5I5bPP03yy+Gqlz7Nyn1bS5VQG90vXQd8pZnL/SHrgv9xCPT7Hrv0uaaO+IiIi44IC+CIifSaZeHVLLEXM4lij5Ryg0Cyg3eV6fBPLOfrVZNHnWFB7f2Bp4GYs8FxqUHms5/zaxUzuvlQ+O3ey76rJPrNWFP8fLCVKI9MVM7mG+ciTGwOnYJOmlnqmvQscWszkzmiw31RYGpUfUO6Z9ypwcDGTuzjZZg0sV/oa2A2FGZP3Wn1D435glSYpf2qKwuABak+YO4hNTLxYuhCPNF1Ro+Pfjk2GXM/d6UK8ymgdv6ouF2K96GvZL12IT+vCMb6EjcxoxSDwcLoQrzDS44qISPdEYfAfYJEuFLV4uhBXp2abLEVhMD3WMWNpqoLrd86x6Ks/W/p7//xiIFgWeB04HzgL2Bf4VZuH+jOWGmmOimUPAMvQeKTdfdgEuw6b6Pj4Yib3eGllKp+9CtiI4ddLHpvQ/jjggmImV2++HRERkXFNAXwRkT6SBO9PwRpNMRaULvVcuhLYqsdBfIdN+jY7EBUzuTeSZY9ijbFageengLuxnOL1UrU1GkY9CDxazOS+ngTa98duZiyM3cw4EzipFNxP5bNzYClYtgNmwPKknwycUczkaga/U/ns+dhw9Fp12ryYyV1RY59VsQbt0hX1/BOwVzGTe7vOe6krCoMlsB6AjayWLsR3tlt2G3W4CkvdU++7eC5diLsRJGmlLtMCp1PORQ/wMZYmKdeNXpJJ3v/HsZz6rebfXSZdiJ8c6bFFRKQ7ojA4G7tx3+r/4/Usmy7ET4ygHl/CRiO+mi7EjzfbfqxFYTAncCLwfSxffXzaoms/fnlq+a8w/JrzTmx+nzywBeW5j5p95j/GrmPXw4L4T2AdHX4H7E7t641BYJFiJvdCaUEqn10W2APryPIqlrrxeOzGTWUv/zeBtYqZ3D9b+hBERETGKQXwRUT6SNLr+9YGmzRNCzPaUvnsV4BHulRcvWHV22C9uC7H0u2UguulvzdhDcsZsZsFaYYOvR4AzgV2L2ZyPsnlOhHLAbsUUC9v7CDwJPDlm287fiosVdBcwBPpQvxgcvPiy1ij9F/FTO6VTt94krv99iabbZouxFd1eowW6nAcNsqgVoM6Bv6aLsSbjNbx69QphY0K+Ay4KV2I3+1y+RtjOe6htbQA64x2KiMREWldFAZLAw9hQehOg/hvAAt0Mpltcv4+A8unX/IQsEsP5q+pK7k++wE2sfsbwB+Ay6o7fkRhMAsw34+W22r6B2ef+AD1z4WHYj3bvwNsi6VBXACbeLilQHxF3ebHetnPz/DrtSOLmdzRFdvuCfw2eVkKVgxgn3mEdTyYgF0LnlnM5CbVqX+pvBmBaYE3i5mcgh8iIjIuKYAvItJHUvlsHusZXqtBOgjcVszk1u5trYZK5bPfBq7vUnGvYI25kk+BQ4qZ3EmpfHYLrId7PSGWhufwBtusDHwda4SmkmVf0GQS9+Meu2znb7z9/PHA3BWL7wO2ThfiYQ3TTkRhMDf2/oMGm6XThXjYnALdEoXBosDT2O+tVmN8/TYnyRsVURgshPXE+wrwDhaU+HunvfKjMNgUC0qkm2zqgYXThbiTyZBFRCZ7URjMA8wGvJAuxB/38LjrYpOgtzOZbaUfpwvx8W0ecybg99See2cQeA/4SroQv9hhnTqWymd3wnrLg53TS8HxvwKbFTO5YTcqUvns0djE7vUmtn22mMktVrVPo0D8EcVM7ucN6jg/dj22PTAT1hnkhMqc9al8dims1369mwqbFTO5K+sdo+p4ywPHAOsni/6Dzb90rgL5IiIy3jQMYIiISM/N02DdAEOD3WMlonEKnHacCdwAfANr+F5dzOTeStZtR/0e+oNYA3CxGusqtzkRWIVyDy5o4dw38cM3zq1x3BWAm6IwWCZdiD9tVkYz6UI8KQqDS7D3Wf1ZDgI3diN4nwTpd8KCHM8A56cL8aSkDv+JwmAnLAgSYL3uS8H8I+sF76MwmBkbUl8q8+pufCZ1jrUhNhpjGspD+HcALo3CYPtOJrZNF+Irk/RBaeA87EZPrXRQf1HwXkRkuCgMlgVOAtZNFn0QhcGZwGGjdT6olC7EN0ZhsDA2Um4+LFf7nC3s+jlwQvJo14VY7+9aBrAe6vsDP+yg7I4lgfFzsXN36XqidE7bAEvLeGKNXefFznW1OhI4alyTFjO5V1L57DcoB+JnBh4ETixmcn9sVM9k1OK+yaOe46l/fRljKRWbBvBT+ewK2CjHqSsWLwKcjf1e6t5oEBER6UcK4IuI9JenKfcUqlZK7zKmipncC6l89i/AhtSeTKydwP7rwAfAqTV6Q81Wo/ySAaxhuVCDsj0WmKWdOs31yXsfzPnZB9PXOPYA1uN/K6wR3w37YjchVmJoftmngJ1HWngUBgdTbgyX8tseHYXBNulCfDVAuhBfFIXBncCulHPNFtKF+LE6ZW6N9fKbvmLxf6Mw2CxdiO8eaZ2rjjUbcCmWJgGGfidbA3dh8x20Lem9/3QUBlthEzIvgX1GYJ/TU1i+XhERqRCFwWLAHVgv6pIZgYOBxZLzQcs9nKMwmBoLjC8FTAKuwAKv76cL8Xv19ksX4s+B65IylgUOpP75/lisA8J1pZvY7UjS9jRLKeewa6OeBvCxm/SN5hzag9oB/KepPwpwMFk/TDGTexXYL3l0TSqfnYjdcKgnwK5Tau27GBbcXx7rEPIl7DdUed1Q+m0cnspnm6beERER6ScK4IuI9JezsN5bMLwRWsr/2Q92A27E8r9WBj3/TZ3GVR2l9/NQKp/dpZjJVeaOfQxYk/p5VuencfqZRuvq2uPZ23D1bxzESZ26EsBPF+J3ojBYFcvnvxF23BuAK5PARMeiMFiHoT0MS5/H1MBlURgsXhrmn6QFOqJq/wFgdSz10LPAPVg6oosZ/p3MBVyXlDmpYv+1KDemL+8gaLI9Q28UVBrEcv12FMAvSRfiV6Iw+Cp2Q2A9LNjxN+BPvehFKiIyXkRhMAN2Y/MQrLd5Ld/DRr61NAF7FAbLA1czdIThmcnfwSgMrsHS3URNijoe+398fsrn8FKngguBw0c4Gfq3WtyuG6MT27UQ5Zv01RywcJ39LsBSzFQHuklen9atCrZoV5p/fsNGxaXy2Q2xOZOmSvavN3qzZCrshtG5nVVTRESk9xTAFxHpI8VM7qlUPrs7NsQXrBHiKOcWvXHMKlehmMlNSoYnb4YFn8F6wV2ONZS3arB7qQFd2Uj7KnBrKp/9cjGTKzXOfgvsgzVIXY39mw2VZhDAJwAAIABJREFU/4j6wd967lvn9X8thPUkrMVhk6t2TboQx8Bfkkc37UftRuwA1ljfjaqgfUkUBitjeeYXqVj8BBbIh9o3l2ZOjnl4ktbgGoZO8HdqFAaHYUGd3bGAwgvA2elCXC/Qs1id91A65qJ19mtLuhB/ggUyLuhGeSIik5soDGYFbsMmcm/EA5vSQgA/KfN66t8MGMACratHYbBCuhA/16C4j7Hz2q5YT/lpsBFlJwO/HmHwHlo793vg2hEepxMvUL/Tgk/WD1PM5F5P5bNbYfMNTYPdBChdc54JnN/9qjaUpv6NiJI/pPLZvbAOBe9i1xqXYHGN6vRBjcwwgnqKiIj0nAL4IiJ9ppjJnZfKZ/+BNUQXBV4G8lW908dcMiHaH5PH/yQTqb0F7EI59cmLwCnAN7Hc6dVKuWP3A36clP90Kp/dFrshUMp/PoBNQvtHLA96IwdgDdBmvblKPfSKwJZAFhuGXWu/AeCqJuX1i6/QeCTBsrVWRGEwERsFUH3zY+nk0ejz3DsKg6OwHuxLVK2bgE0cC+XvchDYOQqDo9OF+MiKOgxgqRlea/AefLJeRERG31EMvSlbj8fO2a3YCZi9yTYDwKxYzvVhac2iMJge632/a8Vx78bO5XekC/Fg9T4d+ivNg8vvYdc6vXYBltO9Mohd4oDf1duxmMn9JUk/syt2XfAmdt115xhM9Poaja8xPgNOxTohlObs6TRd0T0d7iciIjImnPeagF1EROpL5bMTsFzyMwIPFzO5/7a435xYT72PsWHt+9L8xvETxUxuSGA5KWdHLJ/pS8DvsVQnhQbleCyH/nnA5nW2uRfrxf8J1vvs9GIm93oSwH4Iu6FQHTy+BVi3iwGBUROFwf1YD7V6kwCfly7EtYIhJwAH0XkagIOBX3ew3xpYgzqLjbyYG/tuSgGZWvV5A1gvXYgf6uB4IiLSgigMAuBthua8b2SrdCH+UwvlXgh8n9ZS3r2XLsRDeupHYeCwG8brVW07iF17fCNdiJ9qrcrNRWHwS+wcVWu+n2eAbdKF+OFuHa8dqXx2B6zHfGki29KN8quBLYuZ3IjS8vVCKp/9Gnb9NZoG/5+98w6XnCr/+GcmwLJ0WASWDR1CW6ogvUhv0kWakEgRC00Eww8EBIWAitKUniAdKSu9SO9NmrTQBEJn6bBsyczvjzfZyZ2bZDJz71129f08z33m3klycpLJnXPOW74vkh2y3jfgoFAURVGUnlEDvqIoijKZxFi/FWKw/xKJJvsVMDLZZRKyQNw/crxxFds8kSSqvgL/jhyvY4Sf6btzAm8DM+ZsbiAL+u8B9wJrFTSzW+R4l+RtSIrVnQpsmLz1NVK49VAriL/s1L9vgqQI4FaIo+MNYBTwp5JD1reC+O6cdp5AJI165Z/ARl0e00BS4GdG9JOzxpGywsgN4HNgWSuI36p6stA2pkeyCRrAc4mMkaIoipJDaBuzIXIlnWgghuzlqtRxCW3jTCSqvorkyQQriPtE9oe2sR5wV0lfLrKCeMAF4TPnqyEO7sMQJzNI7Z8TgfMGQaZnQJi+OxqpDbMckgl5MXBV5HilY5zpuzUkQ3JVZEy9NnK8D4e4u0V9+S1wBK1sh7I5QC/cD2wXOd4Hg9imoiiKogw5asBXFEVRADB9dxHgFqQIbacF01WR4+2YOXZGYAtkQfs8cE/keE3Td+dAUqKrpNM3gZMix3Mr9vdnSIG1rEZ6A/gCKaA3G/BAweGNpJ/LlUVghbYxEhgBvG4F8edV+vVNENrGOsDfgXkzb3+EyC8tR+vzTO/VucC+ecaG0DYeRhbxvS6Y/4EY4bvleWDpHs95vBXER3TaKTG+/Az4NS3jSwQcaQXxlNb6VRRFmSZIZM3eo3PtmYeR6Pt+hUYL2v0ucEeFXRvA3VYQb9B2/B+Bgyker/pF7Q8GiRN4MWBcUgR+msX03ZHANcBqmbcnAEdGjvf7DseuAhyABH18ghS5PydyvC9KjhmBBFjMCjwKPNw+DzN9dyska3MZ5JmbkYEZ8R9ArvF+4CGNvFcURVGmRdSAryiKomD6bh0pUrok1RdJy0eO94zpu9siUjVzZrY9h0jXLIgUqOtEA4nuWz5yvKiLfm+LpLOvBoxHpHCOS/TzD6OluV7EnJHjfVL1fFMjoW0sALyALHCzUYwNYCKSSbAdMB8QAmcAQZEMUGgb/wf8rsfuNBApnHt7OO51pLBtlUjMdh5FJBR+BHwXue5rgcusIJ6cKRLaxiHAH8iP8N/LCuLzezi3oijKfz2hbRwHHJmzKZWr2RR4oJso9MSpegVSf6YocCB9f3MriG9uO/4UxNBbNG58ZQWxFistIIm8fwzJusu7h4WZipkaRSTHpp/TU8D6eXMr03d/ARxP36COL5H537+A0yLHuzXZdzbEOXM0A4/Afy1yvEUH2IaiKIqifKNoEVtFURQFpJDcUl0es5npu8MQo3n74mpJJK395vaDCngWWShWNt4DRI43Bhhj+q4BNNqiqsZ3OLyJGHqndfajf8FZkAX1MGAGK4iX6KK9s5AivmaH/fKM4CdZQXxfYlQ5sG2fbKZEXl/fRBw+3dJEiiW/gETVp46JbYFfhLbxXSuIPwxtY2bEEAB9n9da0sbvQtu4sIrsg6Ioyv8gv0Oc5Rsj8iY15Lv7a2BLK4jv76FNCzECv484/eejvyH/a+DAduN9wh1IBHgeMXB7D336X2IDpFZOHg3gcKCfAT+RMTyflt4+mdflgaMQqaHsMTuTXx9n5uRnXmAr03ddpOjuvVQrmpxSljk6oYt2FEVRFGWqRA34iqIo/0Uk0VSzAuOqFixLjukl4rqJFCxNF/FZDGQhbndoIzXqLgdcZfquGzne1d12pEDf9VpEAz5vQdcAbokcb6rUs++SNTps3wo4qGpjVhCPDW1jLSTVvMyIn72vbwEnIZJGIAv3V5HnY0HEkDIGkTfak5a2bfr5n4JI2axbtZ9t/ZiPlrRD9llcNml7N6QWQlEBxrSNFZFofkVRFCWDFcRfh7axBbA18APk+/QR4GwriN/upq0kc+xvwPqZt58FdgHuQ76vV0AK515rBfGnbccbwHDgBuAZ5Ls++92fGnO9zDEbIY7lVZJ2LwROn5rl8XrB9N0ZEGfI1sha/w7gogJZmzVLmqoDo03fnTlnrvQD8msQQZLRZvruL5FxeXmkntLhlDvy00LGJyDzhm6M9x8A3yrZflUXbSmKoijKVIlK6CiKovwXkEjgHJT8LIBEG12OaJi+0eHYVZFFeLeMRgqWztfDsSl5Edo7Ro43KIst03dPQaLz2s8zEVg7crzHBtD2BkixuGWBd4AAuCRyvEkD6XO3hLZxKxIRWcQ4YOYiWYPEEDI/IjUwNvO+iegZz9+hCz9D6iYsghjyz7eC+PGkjTowV9L2V4lcwmZI0cJFgNeAc5BMjbmA/wCzdDhflgbwIS09+zwmIc/oaoixp4w1rSB+sIvzK4qiKF2QZEM9DSxMf9m3GLgbyag6zwriJ9uOnRs4FnEEz0Rr7F0dkU9LeQ/YzwriMclxByDO3PbCqM8A67Q7CKZVTN+dC5mXrUTfLIk3ge9GjvdK2/6prFwRMTBT5Hh9IthN3z0WqSVTxgWI87zbgMEm4uwvcrjnYSEOodXoG1zQQJ6FlSLHe6/LfiiKoijKVIUa8BVFUf4LMH33HGBv+huq3wNWjRzvrYLjasAvkejpbrg8crydTd99DVmEd0uZ1u1HiENhIlIQ9dLI8cbl7NuRxLFxKBIRnhp57wUOixzvoV7aTNpNdeLbI8n/gTggppgRP7SNM4Efd9htCSSizUbS1F9ApHI2Qz7/kcl+dwK/soL40aTteRGjelGkXfo5NpF7kBoLjraC+NgermULOhvZ03vdBG5CCi+f0uGYlRGN/bcpLqj8KTAyq5mvKIqiDC6hbewDnF2yS7o4rSHj0UnJcXMgTuUl6C/fdjUi27IcMoe4M5VDS5zRr1Mc+X2iFcRuzxc0lWD67hrAZRRL0b0FLBg5XiNzzKLAyxRnKo6JHG+HnHPtgRjo82gijvPpq/e+D2lGpVG6l9AAbowc73uJZv4fEEnIYcm264GDIsd7rce+KIqiKMpUQy+F4hRFUZSpCNN3V0KM99B3EVZHIo9/VXDc1sCLdGe8nwD8hZY0zpW0FtvdUKRTWgNGIIblLYHzgIdN3x3RwzmIHK8ROd6JiBTMYsB8keOtO0Dj/XK0JIfSBWY6nm6DFFKdkjxcYZ/jEC3g3ZBo/f2BfyN6tNkMivWAe0LbWDm0jdUAh/JFdFb71qB1H34T2saGVS8gtI1RoW38DimQ+FHBbg3geWAUEmW3gBXEWyKRnGU0gXesIP4IOK1kv5PUeK8oijLkbEyrVkkeWV31E0Pb2CMZH25CIq3ba5hAop9vBfFlVhDf2lbLZDfK17xOV72fCkn05e+jvI7MKCTjbTKR471KywGenculhYmPJp8rERmivM+xRu/Ge5C5xLsFbWdpIJH6LkDkeJ9FjrcvEqyxLDLf20aN94qiKMp/C6qBryiKMu2zE8UR7TVk8dqnyJvpu1simuSdaAL3IFHsMwNPR46XNbCeDOyOLJiqOoXHUxwFnZIahEGkev4M/LBi+/1I6gG82uvxbdgU3+8G4kwpiy4cbG6jWFe2iSyyd07+ztun3ekzAxLVPnfOvlVpIIVwOxYQDG1jlWS/2ZK3skaE7H3+DNjNCuJ3kcV9yj2IFM9C9L++BnBjcgyIBq8B/JyWgWE84sTyUBRFUYaasmKjefteUOGYBqLLfntoG6OQeiafAQ8CS3Y4fu7QNmpFMnNTO6bvzoIY5qvc0z1M3z0scryxmfcOAd5AsvHmR+7VLcDhkeP9O6+RyPG+Mn13e+BGpBbBYNFAAkU8yh3uExEnwrGR473Q1rfPgOcGsU+KoiiKMlWgBnxFUZRpn1koX5zOnP0jkc05Pjmmk9H9A2DvyPFeztsYOd47pu+uiURyb5O09wUiuWLk9KmJaPPvXuHcKTVgZ9N3D4gc7+OKxwwlo5BFZl5kep3ywq+DjhXEUWgb5wL75myuAXN22WSdgRnv0zaWbH8ztI3pEWfCrsAcwONIkd2s7n1WGmEs8Api4P+LFcR9pKBC2xiB6CGPJL+A4TtItgEAVhBPAn4R2sYJwDrI53i3FcRD8lyFtjEa2DTpz01WED8/FOdRFEWZ0oS2MQ9SB2ZrZDy8DTjNCuLXOxx6GxJ4UIVa22sRTWCu0DYuRsaYdDyYgDili2gA4bRqvE/Ymuq1Y6YDNgSuSN9IJHX+ZPruqYjE3peR43WsCRA53l2m716E1LQZCKkEn4FI7/wAuA7JmjyobfvnwLbAXchca3/TdzdOjrsO+EvkeB8MsD+KoiiKMlWiBnxFUZRpn0eQiOI8GvSXWJkfWL5Dm2lhuNMix3unbMckPXl703fnRAqRvg18D7iUlpMgNai+iOjRT6Al+1OF6YA3TN/9F3BK5HhXdzrA9N16Vut1EHmFYudDA3hpCM7Zif2RBew+tCLL06j8qpGO3fIJMHtB+01gZGgbDwGPAWcgWvo3Autn+tZecC5LDXmelraC+MP2jaFtzIbUM1gqp43PEafSX60g7reYT97r+Az1Smgbw4ELgax28B9D27gE+JEVxOOH6tyKoihDTWgbiyGSLVkJtuWAfUPb2DCto1LA9UPQJSM5f1YfH8qN9yDj0OlD0J8pSVkR9zzqAKbvzo1IFW6AzBueB86vYrzPsHGX524gxvcdEKfDIkhAxwjgWeCcyPGiZN+DTd9NC+HOhRQc/lvkeB+ZvrsKcEfSRlqH59vAj03fXTuRBupIUgPgF8ictY7INP0xcrwXu7wuRVEURRlytIitoijKNIzpu9MjC6A7kcipvKjw70WOd33mmIUQY2oZ+0SOd+4A+7YycCCwJmKwfwqJkLoTmAnRO+9WezYtGnsNIqMyDkmjfihyvGailX8ksCcSef4icCpw5mAZ85MF30v01enNskvkeJf10nZoGwYSfbYH8nn+GzjDCuKHQtuYCYks3JBWtNk/slq/SUTkKcl+3cgUdMO7iM7/scAqJftlC9zGyOe0c8n+RaxgBfHToW3MiBgb5kU+11WBE0qO29oK4ut6ON+ASTIi9irYfLoVxPsXbFMURZnqCW3jNsTwmydb9hLieM1dZIa2UQO+ZPCkV2JEUqWo2Hoe6fgUAHtZQTwUzv4BE9rGrMiYPyPwYF52g+m7mwI3V2wyBpYGjkBkCds/vwnADyLH6yixaPruzIj0zlwVz53e4w0jx7ur4jF5560hzoYlyH/+bo8cb5MK7awI3A3MSmuu1EBk9TaKHO+BXvuoKIqiKEOBGvAVRVGmQUzfnQ74P0TbfgSyGP2avgviicAvI8c7te3YOvAysDDFBt6NI8f75yD0czbgfPpGIqd8gsio9EqDlhH9CiQL4V76FrlLI73PSYqbDQqm79pIgd3UQE1ynr8CP4scr8/gGtrGSkiRvRmRqMUbEjmX7D7TA39HpIjSfqevRyHOjkWQBTiII+MxYGMriD9J2hiFLKiHukj9hXRXkyC9jm6dCjFisF8LMbRk5YDGI9GVee3FwKVWEPdcN6FXQtuYF3iL4uK/44GRqWxPaBtzAD9G/kdmQp7hU1VuR1GUqZHQNhZAxpky1rSC+MGC41cEnuhwfFFdl8HiEyTq+v4y+ZzE2bAmEgU+J1I0/XwriN8bwr6l5z4Q+B0tGcQmcAnwYyuIv0z3M33XAF5A5gdlRedBsuGWA9Yt2N5E5o6LRI73dlEjSSDInck5q/I6sH/keANyrJu+uwbQybi+GrAJsAASsHJB+/WYvvsIErWf5wR4GViqfS6nKIqiKN8kQ73AVxRFUYaGc4HfIMZ7ECPmMOArpODrT4FR7cZ7mKx3eizlhtTbTN89pmpnTN9dzPTd35q+e7HpuyeYvrtEsukyxHCdx0CM99BXHmYnJMJ7SfpeVzrO7WP67ncGeL7JRI4XIMV1TwFuRQza36XNeB/axnShbVwI/AvJDDgEKR78dGIEybIPYrzP9jt9PRYp0gqyQE8X6d+mb6G37elubJ/UeZd+NBHN3W4iFtM+dWO8byLG7qeRezZ72/ZhJe3VkKi6b4KVKDeiDANWgMnG/keRgn2rAMsixvwnQ9vYdIj7qSiK0gvzV9hnVMm2zSocf0/yM1SR8e9ZQXxfB+N9HSlIfx/yvfx9pH7Qa6FtbDRE/UrPbSNzuWwNoxriSAiy+0aOFyO68KlcXEzfYvAgkfWnIDJ2Rcb79BwzIFl2ZfyN1pykjAYiabcNsFjWeG/6bs30Xcv03eVN3x1Woa2Usmcr5QHgOCQT7njgddN3d8uceykkiy9vvlRHAkFW7aJPiqIoijLkqAFfURRlGsP03RUQiZh26kiE94jI8f5aVsgrMUAfhKSxF3G06btFxvdsf/YFQiQj4AfAr4AXTd89AdicodNgb2ftkm0NYJfBPFnkeM9Hjndw5HibR45nR453V0601pGIvmtKei+WBK5OovtS9qHcWJE3ZteAnUPbSIvOVi1klzIdYhB4jv4L/iJSZ9FQzSHSe1BDItLnT37v5nx1+td+mFKU/U+lfJG8ngQsmvyeLdY4HXBRaBvdGDUURVGmBK/T2bD+ygDPsQWS5fU+1cemqjSBayvstzetWj11Wo7ZYcA1SfbUoJM4Dn5N8XXvGNpGnyLxkeM9i0jK7IdE6Z+NjO2XIzWNPkKy2fag82eXyuzkYvruMogToMqYfD+weuR41yaOhrSNLZF5x4uIvOLbpu+6SYZoJ6ro26ftGJnXvyV9h2p1A+atsI+iKIqiTDG0iK2iKMq0R5lRvQ7saPrunp1SfyPHO8X03RkQI2IeMaJhX1jsM9EQPZOW8TEbeeyWnX8IKFv4NRl4xH9XhLYxA1JcNo86EnG9OpDKDCxIb0bx6ZA09g+Rgsbd8htg8S72bwBvJscMhXMmK43U6/FfIhJH3wQPInUC5qX/NTQR49e/QtuYGXEqFUUApgUGB6XYbiLRtBLyvDxpBfFXg9Guoij/W1hB/G5oG2OQqO88+ZEnrCCeLJGTOKoXQbKiXkKy1orqlzSAB6wgHge8kdQTOXIQu99A5HNO67QjIsuXJ+VTR5zluyGSNF0T2sbsSE2YRYAIkXwbm2weRcuxW8T6iPF7MpHjfQGcBZxl+u6CSBR6Nlq9ag2aOlAmEbREybaUE4EVEUP/o6bv3gCcEDneE6bvbkZ/B8pcyDOxlum75wG3RY5X5Ax/AslqXIH+2W6pTF/72Jv+/RNkXvYSnWWaXijZpiiKoihTHI3AVxRFmfYYTnlEWjdRu0vR0lRvxyCR+ijhJyV9mdLaoU2KI8sMEs3dJG17c9N3LzF991bTd/9o+q41BP0ZRefibitmfn+V3uUCxoa2sTMinfQ53d37ToaCdurAMYj8TjfnaVbcfzq6l9rJ8iGwmRXE73fRRkdC26iFtrFVaBtXhrZxf2gbQWgbq7fvl9Q2OCj5M/t5NpK+HpwUTBwBTN/htFWkAqr03UE0qx9GIiLfDW3j10mkp6IoSrf8FMm8A/luS7/r3gN2TXcKbWNd4HEkIv9JxLm5I3B9Tpvpd/lvkmNXZeDG+y/pO0Y8DKxnBfGbFY5dkuK1cgOZP3VNaBtbInVSzgQOQ5wJUTKGQzVpu077/B4Y2Uv/kPH3byXb363QxqHAxsh8dSakxsuDpu+ui0jGQf693Qq4BnjX9N2f5DWcBKfsSksyKPv8jS/pUw2RPiRyvHcQ53jenKQB/BP41PTd9RKJnymVSaooiqIohWgEvqIoyrTHfcjiKI8G8EAXhbfGUrxAbQITTN89A9HWvwp4uK3tpUuOn5ILngYSbZYno9MAPkPSpw3gAiRyLkb6vhFwoOm7u0WOd/kg9ukzOhdt/STz+5lIbYN20jbyosUaSNR9AKxDb9Hr3Rpxj0KK4P0bWB5xjqR9/BpJ188rbNepT03E+TBbl/2pIffuLSSqbowVxGWL+K5JDN3nILrA6eewOrBnaBuHWEF8cnZ/K4gvD23jc+BoIK298BBwjBXEtyV/v4/8X81UcuqBylAQ2sYPkULS2f/bWZG6CsMR6StFUZTKWEH8Xmgb30YMqVsha8rbAT9TVH01xBCajZKeFTgcqRvjI5Iu6fa3gQOsIP5n8vePGVgx2zuTn1eStt+2gjgsP6QPH1DsRO0UpZ5LaBuLIobjdA2ejovDgItD23jeCuKnQtv4F+Lgz7v2BnBT0TlM350NMZj3et9OiBzvyZLtjyDR/0uW7JOXtTA9MsepEsE/C/AX03c/QiLhD0SKCX+OyAKdBSwDOMgcbhLiFPo+sEHO+UHu29jM3z9J+rICMh9Mpfr+g0gOvUXrc3rW9N2fRI53b4W+K4qiKMqQoJFXiqIo0x43INqh7dHaTeR73et3RDEXU14I9FuIpuohiDTIJabvZqOG36c4gr+BLIQGi+eAS5Pfs+dsIosyO+lnI/M+wMfA5pHjfYLo2aaFzAxaxu46cKHpu71GrPUjSYe/mZyo+gbwdX06tl/jp6tnIrt84KLk9zizaxNJR5+Y01ZqSF4n83faXhOJPjwckSxo57MuLwngL8ARSJ2DFTPnehWJOjeBZ3L6WYUa4lzplhiRR7oTMbgM76GNTuxEq6hfe4HhP4a2sVz7AVYQ32gF8WpJ32a3gnitjPEeK4i/Rj7zogjAN4BbBtLp0DYM4LcUO5IOCW1jRM77iqJMY4S2MXNoG3uHtnF6aBu/C21j9FCezwrir6wgPtcK4m2tIN7KCuI/ZYz3NcRxOD35680fIvJ9JlIrZ21gISuIs5JhixUcW5XvIo7Ki5ECrt3Khp1fsq1Ja7zuhp+Qf0/S7+efJ6+HJ695Y+mfrSB+u+Qcc1JeSD2PBpIhsT0yxheSBHEc12X7INdcxXif7dOfELmcPRGHwbeR7IKHgHrkeCdHjrdF5HhbR453NhLMUPTM1Ml8ZpHjfYg42E9B5lfpcYsiY3420HFp4DbTd1fqov+KoiiKMqioAV9RFGUaIykEtimyqMnyNfDjyPFu6KKtp4A0erjI6Jo1Cu9Ma2EJkmZdtFCsI4beY+gbad4tqTTO9yPH2xWJtroNMU5/iBiVV4kc75XI8U4GFkLS0v+AGPUXjBzvoaStA8m/zhqyqM4rDjwQDm3Cl42M7TSmRh04bfEN+WSGmQ9AIhBJZFX2QKIZr0IM0n8FlreC2AVWplrhvZQaMDPwkhXEmyIG98OAXyKRa1GH47NOkjeRIrt7Ivcp6/gAMbQMS5wW69D9/GI8UjPhIOBlunMA1IDtkMyU24F3Qtv4Q2gbg5lluG9Jn5rAXkUHWkH8qRXERc6SwxFDBMj9Ts/xGbCDFcRFzrGqLIXUVihy0s2AGLkURZmGSaLhX0MyhX6CfLc8E9rGn9qKpU8p/oyMM2VsbQXxu1YQ32wF8f0533dvUf69+3UX/RkNXNvlvfg9EgCQxydUK1jeTpkBuA6sCmAF8a3A9+irc/8RIilUlIGZ8i4SqV6FixCd+hkix1spcrxrKmZwPlOx/TzepZqcXh2RAarTmlOkn9/S5DsRLqeVnZCeI32GrqL/HGojZF7YSXoyzSA4vMN+iqIoijJkqISOoijKNEjkeJHpu99Boq9XRhaT10WO10tU9S+RyKsDgGWBL5DI+yL2N333+Mjx0pTli5Go9jTVPX39O3Bl5HgN03dPpBV5tRoSIbYZUoitTGO2jhg27cjxngOIHO92xFCbS+R4EbLwnkyicX8msugrIkYM0YOGFcTP/uD3Oxy/9ocvnbDeBy8yfSPmmdlHcdkCq/HIiEVBrvEgkshzK4ibSIZFPyeMFcTPhbbxNd1LCqwBXGUF8VPAU+mboW3ciNyPIoPG/sCjSGr6M4gBf+aCfZvAz5CIynHI59sNe1tBfFHSr+18AqMEAAAgAElEQVSAOyh/BrPUEUN0yoxIJsbwpE+DwSKUP6cL9dKoFcSfh7axPiJ3sAPS5/uBcwdJw7+KsUq1fRVlGia0jeHImJFm02S/qw5C5M6mWFHv0DYsZD7RiU7r0PNoZcy1U0OM25OQ7+DPkSy97RGjb/v3Wh0xnq8H3FWhbyBO76KxbE4kg+kBZHx4A7jBCuIJHdr8NOnv5MCHd4fNxkMjFmNSrd5c8vN3J6UFeawgvjG0jZuQudNw4IUq8nCR4403ffdsZBzsxC09ysI8iwQBjKK7MSRG5gknd9qxAzVgT9N3D4wcb2L6ZuR4k0zf3RYZ+/dFHNivIfO/MyPHa3cIHU31OVUdcaooiqIoyjeCGvAVRVGmUZIoqQeTn4G2c2Hyg+m7vwD+WHLI3Ihx9Z3EOL8HYlDfD1nIvg6cDZyfWSytiURLfZtWpNO/kLTlvHTyELgbWXhdEDleWbp4KYkszn20jBtFGHSOSu+a++deYt77516iceJSW9RpNqHWZ61bR/Tkq7IF3Ue3F8konIqk689YsH0RK4j/mv4R2sZiFEux1IAFE634vyPGm6qL+vH0dViMp7MTKe/87ewX2sYJVhAPxmf6GmIIyLv3deSZ74nE4HMpLXmoweQFpCbBfOTfo0nI/5miKNMuOwLzFmxrAAczBQ34SH+qcGeH7XchEioHI4ZfI/MKMnbWkXFpPHA6LQmaIlYNbeNupNbKBCuIx5Xs+wPKjbu/pG8G4vuhbfzACuK7Stq8DHEyEFPjjMU34B/zr0RT5gU14NsH+u6NwM6R432WOPW70e1P+TVSo2bjgu0NZJy9pkpjpu/Oi2R0jQWejRwvNn33KFr1VaqM903g0sjx/mT6bh2RNyqrAdOJmZCaCh9l34wcbwLwJ9N3/4w8I/MALyZBJ9lrmpVWjZoBYfruMojTIA2ouQy51k4OHUVRFEWpjBrwFUVRlHbGdtgek0nPToz0fvLTD9N3f0W+Lv/KyIIupFUM7WukyNlhkeNNXlibvrtcss97wP05UVRl/JxqxuAGvWmwd+IjUgNALXeNOxB5oSoUjfVjEQNuEfuHtnF8qmmMyBmULdLfs4K4EdrGH4BdEEdPFWfDSVYQfwyQyN7chBjL8/iM6kVu68CGDM5neg7FUjM1pqxxrDJWEE8KbeNYRIopjzMGKdJfUZRvjuUpNqLWgWVD26glxuApwawV9rmTlnxYLlYQN0PbOA6ptbM5MqbMQmt8yMqqzEB+Efh2lgGeR+YTjdA2bgB+nWSotTML5VIv7fKBcwM3hraxrBXErxUcczVS22TTixdavTlm1Mp5n9lmiGG8qiOkH5HjjTN9dzNEXu4sJIAhfUaayNi/S+R4pTJApu/OjsgU7kzrfj9t+u5+keP5pu+mdVZSB9JnwGmIzOMqbc3dQ5IVFzneH5MsgY0QyaciR0MZHyEZDXn9Xg0Zt9MAiabpu2OAfSPH+zAxuC/S5fkaSF2j9nPtgBjs07pKDeQztE3f3SI7l1UURVGUgaAa+IqiKEo7YxAZlKLimldHjvdFlYZM312a8qK6NaSInYVE588bOd7+6YLH9N2FTN+9F3gaiey+B3jZ9N11q14MSbRbBQ6IHO8/XbRblUsoNgI0kToCVbmR7vThG4jTI4+VEANFETMiEk0pFwMTKL6WcwGSiPc1kOco7euniNxSNhr+E0RP9ujMe1siMkZ5dRUayfFbIXI+Py7p+2BzOS0HVaPt9ZdWEA9ED3ioOQuR0cgaOsYjWTa//EZ6pCjKYPIR5c7VT6ag8R7gkQ7bPwW2L+tTaBvDQts4DdFLPwHRaZ+R4kyDOjBXh/M2kLo4qZxfHRlzHghtY8Wc/R+mu2Kw9aSPhdJtic7/Nl8Yw475u7kKNHNvQQ3YwfTdxbs4dz8ix2tEjncVsACSIXkX8BhwBrB85Hg3lh2fRMnfiDjkszaD0cDtpu8uGzneuUn7qyOFiEciOvNp35u05gxfAPuavntKkuk5PHK8axDnzG/oPpjhrKQmVHu/l0Rk+JbNvF0DtgHuM333cUQC6PouztVIfk5oO9ecSPZqtlZUeq/WR+pAKYqiKMqgoBH4iqIoSjtfIEbn9sKcTSRq220/IInCmgX4om1BZVc438zAMZHj9dG6NX13JmQRtnDb/gsBt5i+u3LkeM9XaL8omjvLm1Qv+tYVkeO9YvrusfTXWm0CrwDHd9Gch0TU5ckO5VEnkUbKoUqB1Mn7WEH8QWgbl1Jc6HeuzL6vAjuEtjE7MAfwrhXE40PbMJBo0emAZ6wgbi9C+O2SvtSR6Mkdk9cVOvS9Afyzwz6VSDIL9kKiJx3ESBECZ1pBXBpF+k2TGMlOCW3jHGAt5N4/bAXxR+VHKooyjXAp8DvyjfipRN6U5DpkbCuqHfKTTGZXH5Iis+shEejtEdILF7TXLfW232dExuEt2va7CDEsz0V1Q34NKeReiBXE403fvQo4pkNbqyNF3QdEEhBxVvLTDZsi8oft1BEpxMOAPRMN+ocBTN8dhhjw0yyM7DO5ZfKTzoNOMH3XBm5FJBUdRKZnD8rrFYHINuYVsQVxTM9I/2elTpJ50aHtPN4A9oscr905tQtSnyCPJhJocEwP51MURVGUfqgBX1EURZmM6bvTAVcgRuJ27dfHgB0ix3szs/9syAJ3L2TB9nGSFn1s5HhfAfNXPPUupu/+BfgKeCmJ8N8ZWDRn37Ro6S+QSOyy6xlNNY3VUcAFpu+OiBzvTxX7XJnI8Y4xffc5RMt3JSTS7ELgxMjxPqzajhXET4W2sSmyEF+y0/5IdP8tBdv+BXxAsbzQZ0hBVWCyvM2mJefaJ7SN31hBPDni3wriT8lEfifRh0+UtFGlCPMeVDPivGsF8VsV9qtEYgi/nu6i9qYarCD+Crjtm+6HoiiDixXE/wlt4yjEoNnuJH4NkTiZksyEZGwdQt/C5w1ENmeF0DZeQxyJk0PQE+P9aRRHsA/UeF90fB3YLLSN2ZMxC5hcZHwTxCFhZvZvIIbpIofJTKFt2IiEG8gYfGWbw/qrTp3d95W7dkwKAl9pBfHTnfYfAraguAZAUUHXbSjOksgeCxKIcDEi5zN9xT41gUOBU9o17TNsSfmz0uk5Go/MsU5HskM/Bh4qkG5ckPLaQPOZvmvkZQooiqIoSreoAV9RFEXJsgdivIf+i5xVAcf03TeRyPj3k9eVaS1e5kRShtc0fXcjqkeP1ZBCswBfJU6A+ehbsC5LHdikQrtFBVz7t9dsMkNj0smP7z3TIbNOGv934I+DVAAVgMjxrgCuSIwUI4A41X7vBiuI7w5tY2nEAbArxdIJ4wCnSKbACuIJoW38GjiT/AXocYnRN2Vp5DMpYjokcvKKzldRyN+Bk3L6kqWqEWf+0DZ+ixhfHpnCEhKKoihTDCuIfxvaxguIk3hlxHF6EXCiFcQfTKl+hLaxCFIYewFasiN1WmP56ojE2q+Aq0Lb2DUp5A3wfUrkZzpQVmy2CjUkkvrTpBj7psBuSAbZpYi02/pIDZaPkMKoRe2MRiTXGsjYujtwRGgbG1hB/E6y32vAU7QK8bZoNhkeT2Sbt5/cGjGI/zq0jXOB/RIn+JSi0/3M275UF+2n43xV4z1IwfiTI8crG8+rFNRtJ0bkBl9Hggz+EjneS8BLFfpTdL4m8K4a7xVFUZTBQg34iqIo/wUkOpx7IYWzakjE17mR43Urk7EX5Qvh3ySvDSSCu0jyZB1E6sRHpGO6WVDNhGh2v9Fhv9j03eHADxCjwJeIAfjhzOKuuuGiVmOCMT2Pz7nwqPU/ePFAYLfQNtaygrjTAq4yoW3siNyP0cnfDyIF9G7vpp2kuN+5iIEhjwZwmRXEpaniVhCfFdpGAziWlnH+QySS87S23assQntJTc/25/XQNn4HHEn/SNJeFuVHJD8Ph7axw2BG5CuKokxNWEF8JXDlN9yNvyEZbdB3HmHkvLcDMva4oW3MAhxF79/1IHr589B//tJEpAHLiut+BSwe2saHiITg95Exr4ZEdKft1JBitVXI9sNC5kObAUSO10x04G8lM9bVmk2atRp7v3YPwxsTs/dhb0S27fcVzw1MljfcC9HAXxSZV50DnJlI35RxK/DTgm25BV0prrkzWCyMfMZl57kRkW/sxqFjIBmj8yHzyf1M33Uix+tUo+hSpJ7MjPR/bmtIgISiKIqiDApaxFZRFGUax/TdRYF/Iwu7DYDvAicCz5i+u7Tpu0uZvmuWtZFhAaprq69Ssr2JFCidD3inZL8yFqRYd7aJFLR9CVkU74NEHj4IXJtIAYE4Gdp11kv5uj4dyMJrBDBocjqJhvrfEf32lNWAW0PbaNfercLd5MvjNBBnRlnx4MlYQXwOcq9XQbIsRllBfGpOxPqLwNsdmnu0yjk7cBSihZvWNxiPPEMDiaBfFbgl0eBXFEVRBpnQNpZBCpl2s778SWgbeyDf8cvSu/G+jsw36vQdK1K5m4ORyOqicWQ4cC9wA2K8B5l/ZK+lvUgpQCcjeLZ/m4a2sVj6RuR4dyBztjT7kAW+GssRz13Hdm/3U5prAgcl2QGVSIrQXoTIwawAzI7c41OBqzLzpCJuQO5Zu2O+gcje9JljmL77HTro/w8SRdI5KX9A5g29BBSkxWhrwPmm77bXYehD5HifIJmQk2g9W+l570AyChVFURRlUFADvqIoyrTP+bSip7O6rCOBpxFD6Jum7z5k+u5aHdoKGWAUdaYfo5HCZlV18PP4lP4L7gaiIb8+retOF10AWyHXuxYQIMXWKrPUZ+/wrzkW5K5vLVn/z0wjtghto0gjvjKhbQxHFpVN+hfQAzg5kdapTGJg3x44g75OigeAda0gDkPbWC60jb+EtnFnaBuXh7axZd55rCCeaAXx41YQP5aRM2jfJ0YKE5axdTfXUHCephXEgRXEo5GotpmQSL+BGPDriOGiF0eJoiiK0pnFOu/Sj9mAC+irlT9QsmPcU4gs4LNIFHzROJu+vwnVx5oYmTN1g5X9I3K8eyLHWw+Y8+KHz7rEf8xnww9eKOrf/EhgQSmm76bXsiVSSwhac4309XvATmXtJBrzmyCG/Cz/ATaPHO/JzDkPQOZ7u3Tq3wBoIBmWY8t2ihzveaT+QPZGNoFuMvBqiANnr047Ro43BpFCOg1xxtyEyCZtFjleVwEkiqIoilJGrdlUSVhFUZRpFdN3l6D6AjKNmlo3cryHC9rbgW8+Bb8T9yBpy3/tsN8EpNhtJWrNJkt99jbvzzgbY4e1Mu2HT5rw0LjpZtg+crxeMwkIbWMzZFFXxmgriJ/tsf2FgP8DNkcMIY8hWRkH0XLqpGn6FwJ2Kq8T2sacyKJ7YUTP9ZIibf7QNv4DLFTQjRi42griUqNAtyQOh18y8Ei2JvAHK4gPG3ivFEVRlCyhbawMPP5N9yOhASxrBfELSdT6S8gYN5jBa03Eqb14F8e8DBxpBfHl2TdD2zARXfyyqPgYmK2tNs1kTN/dBjgMyez7GpEQXJD8a24At0aOt3mVTieR6MsAY4FHsgVdTd9dGnGQ9Jo9UYVm8rNZ5HiVirEnjoyVkHvwB0RCqJs+xsCVkePt3HFPRVEURZkCqAa+oijKtE2RMTWPOvK9fyxSoC2Pq4FTgANppZ4P5aIMqmneprIwG0SO95jpu7+q0G43hdFY+rO3eWHW+WjW+nZlnDH9d4B/mr67YgXN2CJmGqR9+pFkCNwGLJF5eyNakYTtaf8/BO4E/NA2tgMuRuQD0n3/ENrG7lYQX5VzunEdutN1tFlioN8c0ei1EI3e8xC5IZLfbfo/J+nf45L+d6IGfB3axncQOYFPgButIP6y2z4riqIo/XgCyfobzTef5V1HpNNeQGRdFh2i89xPdwb8RYHLQtuYxwribJ2Zfei8Lr+mxHh/ADJ3Sx31M1Oe1VCnuBBvPyLHew1xMOTRMUq9B9rH+5eAQ/KM96bvzghsCywCvAlcEznel0ktpH+ZvvtdyrNDiuagdTrLBiqKoijKFOObnlwpiqL812L67uyJBv2cQ3iaToVe26kDm5i+m2ssjhyvGTneQcC6iLb8TUjxt6FK10pToTu1X0cK0KXRYqUp1AmVHA8bv/vvD89+7ILGt8Z/DrUazVrb0Fir1ZHIs22qtFfAo5RLE30BPNdj20fR34CQXkTePWgA+4W2sRRwBS2JoXTfYcDliZ5xO3lG/RQDcQAR2sZ8oW1sFdrGBqFtdMqC8JAU/S2AJRFN4MsQWYVdEON93rXUgJ/TKgJYhW2RNP+zkWt/J7SNPSseqyiKohSQyLrtiTjbpwb2Dm3jTqQo+2DTRCK0j0dkDKuSjs0nhrYxW+b90ZQXim8gdYX6YfruCFoZalXX9g0kS68ypu/OZPruSNN324MjFqTzGFx1DtlAskofQrIsd0HuzVKR412f06eNkOLFlyKfxYXA26bvbpnZbceS85cFkNSQebCiKIqiTBWoAV9RFGWQMX13hOm7FyDpy88BH5i+e5npuyMH+1yR44WI5ma3uvWl0emR490L7AscjUR1pRIsg80I4ADgowr7NhHdexBD8qBoi8Z1Y+/Fv3w/enzOhWm0G+9bNBBN1Z6wgvhNZIFZxGnZSPDQNqarUnA1iV7fk+6yJOpINNpP6V+kj6StOnBOaBv3hbbxSmgb94S28XPgXERHNu9ZuAf4Z2gb5wIRcB1wO/BWkZE8tI21kJR/aBUsTl93R7JFyhbeiyOFi6vMZz5FdPCzzAIEoW1sXOF4RVEUpQQriJ9EjK+D5fQfSDtrI3OGTrV/uiE1sk8AdrWCOESyxz7psp3h9K3JMpbicbwJPGcF8csF27ejy1o/yJh5Rvubpu+uY/ruhabv3mf67qWm725k+u78pu9eiFzj28D7pu96SeQ7SCBJpzG4RuvelX2mdSSbcA2kmP2EyPGeTaLps/2smb57JJJ9OHtbG7MAV5u+u1Ty98yUz5E+SF7TeU3azyMjx3um5DhFURRFmaKoAV9RFGUQMX13OCJP8kNaRnID+D5wn+m7cwzSeWY0fXdV03dXQlKv0wVIp8VuA3gmcrxPO7S/OZKy/ChwBLKg+WxgvS7kCWAUspgNKTfYTgCIHO9jROZnIDSBV+6YZ+nrgKXGG9N90WH/sui4KvwYuCanD+cgUfSEtrFeaBv/RK5zQmgbN4W2sWZJm9MhmQnd0EC07lemPPJsTcTwsSgiQXAa8A/EEZGVEmoCryKSNwGSTp91PoxAjOTb55znR5Q7hso0axuIhNR5iGGhqJ3PgMuRRX6esyIG3JI+KIqiKBVIMq42ZHCk914cYDvthVsHwr3IOHEmUpNlQSuIU5m3+YFe5nazZH6/kOJ+1pB5QhFVz53OYRrATyPHeyS70fTdYxBH/K7I2L8TYiB/PnkvndPOAfwKGGP6bh0Zg6tgAOORIICyuWr6mc8AXG767pI5+xxEcWZFPenrz5O/76d4flBDMihs5DMOgWuBjSPH+112R9N3lzN993TTd282ffd803fXLrkGRVEURRl0VANfURRlcNkNWC7n/TpijNwbKabVE0lRrl8hUcupNE8E/Cb5e3dkMTkr+YvBOvDbtjZnAIgcb0Ly9zpI9HR24Wwgi7aXkWJl61Ft0VhF3/4y4GPEMHwh5YuyMekfkeOdbfrufxAplPYIrCr9agA/jxyvgeONm+i7VyCLuKL7dl2VhkPbWBzRcn8XeCKRFSCJsN8+tI3lEJmYScBNVhC/mhy3DYkEDa3aA5sAG4W2saUVxLe2n8sK4omhbbyKaL9WNXTUEQmZrWnp5VZl+eQnu/iuIc/2ablHtPr1t9A2vrSC+JbMtoW7PH+WOvC6FcQfJhH0VwMLZLZ/ChyKSPEcT/GzaADrh7ZxN/AVkt1xsRXEnfT+FUVRlL5MT2/f6U8gY4uBOGT/CpyIjPnr0/1YVUYvba2FRNxHOdsm9diPhzO/34cY6feh1b90zLqfcgP+kyXbmkiAxxnIPOENIEg07Sdj+u6aSMYl9Hd8ZKV+smwKbBo53k2m7x4M/JnO93YYYNKqsVRGPdnnJ4jBPu3rTMAxHY6tAasnv5+KBBYU9WtL4KjI8S4oasz03Z8Cp9N37uOYvnsy8Mv2DAFFURRFGQo0Al9RFGVw2ZbiSJ8mkuo8EI4BTqBlvAeJXv8LUrBtaSSqK+/7fRJi7HdM393F9N3vmr57BxIRNd703TtM310PWcTVCtpYHNGCrxrx9QXwCuVR1iaicXo8krmQJ9HSQIrRXdT2/pPI/SijiTgJsqnQ6cJxx0w9gBMR7d72czeBu5FItEJC2xgV2sZtSObCDcDjwDOhbaya3c8K4mesID7FCuIzMsZ7A1lgt9/3evJzeiKXk8ep5C+E0wVlo+31aiRi7hJ6nwf0EhU5M3BzaBt7wGT5n7l6PH/ah3MBrCB+DHEifA/4BbAzMNIK4nOsIJ6APONl1JG6D5sghpL7Qtvo1imkKIryP03iqH6a6pJ7YxEZtGUQ4/0HiCH4aCuIP0WMxPsCnw9SF98EbgHe6fK4tBZOHm/T3TU3gdusIJ48J0kc/fshhuYnkbnIq8D/AZt0cCjfgQRW5J2/BswNLAUcGjne0e3G+4TUcdANMZJdSuR4pwCrATdWPLbq3KMGrNT23poUOxVSGiS1GCLHe57yAIzRQF6GIACm7y6LGO/T+Vn6AzLf+F6HviiKoijKoKAR+IqiKIPLMMplSbrVKZ1MUgz3VwXtNhHnAfSVL8lSR4zl8wObJe9lF2zrIQvBNPp7MJgViczeg1bUVdqXLOn5rJw2JiHyLAdGjjdZJz6JiPozHfT8k7ZfJ1loZjCQxfKypu+uGTlemDgwTkcWiCBSNhcCB0eOV7i4DW1jOHLv2ovJLg3cEdrGilYQv1LSxzURR0weqSbsikiUYjunASsgerEN5FlIoxgPR1LfFwPeA/4EXGoFcRzaxhXJMRtSLVNiMGgCp4W2MT3yLC8xgLYus4L42fQPK4gnAf2K3CWMQQwhnUify5UQh9LPBtA/RVGU/wlC25gT2AH4FmIgX77ioTFi+E2/e+dGAhVGh7axkxXEE0LbmJfus+zyaACPAPsjDvn56G7cy63VYwVxM7SNw5Hxp0p0/3NIcdb2dhqInEulorjJOLr1HbDpJ9MPf/r0xTaY6655lhqZU8unjji1R5u++53I8fLqBy1cod/t1IA0AILI8R4xffcnwFYVj69yrxpIhmaWjvWBknYvz/xd9jw2gaNM3x0H3BA5XntGxT4d+vdjRHZHURRFUYYUjcBXFEUZXO6mvBDZXQNo+7sUOwCqLELz9GDzfh9MQ24TWaguiyyar0Mi1arQQCRN1o4cb9fI8VKdf0zf3RiJWO9kvE+jsFaneNG3OsmCM3K8JyLHWwsxeH8HGBk53t6R43WK/tsZcT60j6t1JPL84A7Hd4omK9wnWfTvhVzHaYjDYf/kvROQyPJRiOb9H0kK+llBPBG57qNoRSP2KgVQlRpyHecyMOM9wKqJ0agjVhA/St/FfCdqgB3aRs8ON0VRlP8FQtvYC4lCPwdxfB6KGF0ndDi0CcxD33FzcnYccHZoG3VkLBsMiZI6Yqh+G5mTVJ3rNBBt9MeLdrCC+EYkiCLrqP8E0Y+Hvhlxy9Iq3t4ToW18C3FGXAnsNcfEcT848oUbRl7wyHkfzzYxN1i/hsg77lTQ5Ot0H4FfBx5oe+9Tqs/xqtQVqiPZglkeBvKcEFmeQmrypJQZ/WtIsMUY4CnTd8227YtR/PzVyQ88URRFUZRBRw34iqIog8s5yMK1fWHSAMYhRueOmL67jum715m++7npu2NN3z0HiZwfatJxoduFXBE1RHf1i8jxTo8cb1ukEGrVvsxIqxBZll9QvvhrJj8TkQXruh3OdWj2j8jxXo0c79HI8XIj7nLYpKQ/NaRAbxlPUn7PJwL/LtpoBXHTCuKHrSA+yApiB7gVqSnQHrU4N3BTaBsLJMd9bQXxcVYQj0IWuEcz7bAY8hxU5YeIcam0gHOGmZACvIWEtjFPaBvHh7bxSmgbb4e2cXloG6t10SdFUZRpltA2NkAcsu3OztkQA/ZnJYd3MqDvjUjDmBX2LSMdm8fRX46lEw1k/P1xWs+mCCuIrwWWRAz0KyNG+qWTzWn/0znWYQMcK86hFVU+WdJl5NefzHnIi7cUHdMAfmj67jw5286lN7vAGADTd79l+u4FwIdUz75Iz5fKO0LLUJ6+3kyrNhAAkeN9gmRfFvEQsF7keF8lfRsG/JNqTqClgCuTelMpb5Xs30BkmRRFURRlyFEDvqIoyiASOd57iCTJf9o2vYUU+8rTHu2D6bs7IZH6WyB69nMBP0KKz1aJWBosqhrxO+33QeR4DdN3FzJ993dI8dSq1JFIvHZWoziiqolE2J2ELMZupvPif8Eu+lR0zp63W0H8FqLTX7TfvSQawKFtzBDaxoqhbYxOohPz+DkwA/kZATMhKd/tfWggtRReKunHpyXbvgn2qLqjFcQTrSA+ApgXif6/ucMh4yiQTAAIbcNEIjIPR/T3RyLP6gOhbRRFOSqKovw3kTrT28dYA4muf5mBBQQsxcAlX19FaugMp/u1bx1xImwY2sapoW2c2F7XJkviTH/OCuInEKdx0bU3EAm7rgltYyFkHpWrlbPW2JeYe3xu0mAd2Ah4x/Tda03fXSjdEDnefcBxmb5BtbH+Y9N3ZwXuQa53hqrXQWsOV0eCCzxkrtxEjOKHIwEY65u+u2Wb4+FI4Pf0zfIYj8yT14oc71PTdzczffc+JFp/H6pnqq6G1JRK8Sl+bupITSFFURRFGXLUgK8oijLIRI73BJJSuyESQbYpsEiyQCrF9N0ZgTPJL2Y6K2KYHmomIQvLqueqU+5YCEzf3RpJQf8/RK+9G6ZPo6FM362bvrsZ5eNXE9F73whJvf4lEglYRrcF7dq5iXKHQlkBtZT9gPqZZQAAACAASURBVNsLjt8AeDi0jSORBe4TSFHeV0Pb6KelC6xB+WJ149A2fhbaxr6hbUzW3reC+BNgbWRBmhZ+nYQYYfZGnuuqReryqGr8/xyRBuhEJQmdLFYQj0cMQpt12PUCK4jL0vRPon9WTJ2kuG5oGzN32zdFUZRpjDUpHvtiWtHL36TjdwnEEVCFGOlr1vC+MmIw/hmSrfdIaBsXh7bRybEwivK5ysiKfWpnKUrG9zqwwFelyYN1YEvgIdN3zzB991nTd59BjO/fR+TmHkZqGZTxRCIv+KNOfepAmm35SeR4CwBG5HgLIdmsryP1Cq4H3jJ99wHTd59FnqsVgD2B7RD5opURWcWHTN8NkXnZGj326QjTd+8wffcW4NvAicn7cdvrpcmPoiiKogw5WsRWURRlCEgKnt7Rw6GbUWyUrAMLIMWyuoli75YLgfeRBVVVvqC4yNx+SJRengZ/J5pICn5g+u71wK8RHdcy6kiafFrcdw06y6acnf0jSbneD1mYzofo2J4BXBk5Xp4h4gqkKOvS9L2+BmKMLkv3BsAK4s9D29gEMc4vT2sxnL6umPxkWRC4JLSNphXEl2Xe/5LyAnHfSX4AGqFt3Aj8FIlU2wDJADkeiUJfDvlsn7GC+H1gq9A2lk22d/scfoE4oso4HFksH0V+9kWWJ7s8f0qnCPkGJUVvE+P898m/vzXkGrdGF/aKovx38yXFc5Ya8BqSKXU2mYKnUxkNRKLut8i4tij53+3Z93YFXgSOLWn3BYqLw9aQbLde+KDTDp9NP7xTgdg6Mrf5aea90UjW2TqR4z1n+u6i9NX0byetmbM9MtcaqMzR0gCR4zVN390dCWbJMh19DfIbIvKFRyCygQ/Sv1ZQr8GKW9OSYtwE+ax/gNR0WgqR/DkPuCKZ7yuKoijKkKMGfEVRlKmLUs3thOUoN84OhBsQQ/UDdDdGpIumvEVcJ4NtGTVgDmB3xAhQFsWXnjvbh/R1VqQgbp4B4UkyhtbEeH8jYshO7/MIYD3gZOCQ9gasIB4f2saGwFnIwi897+PAPlYQ/6f8MiezDN1lKKTXe0JoG1ckMjgg0evrVWyjjhSz3Yq+z1UDMehPvmehbdwG7G4F8bOhbWyLFBc8EliIanR6FprAZVYQN0PbuKtCeydXPG87s9HZ4DA5ayO0jeWRSNNxyP/IMDr/f8zbY98URVGmFS5DxsS879I6cIUVxPeHtnEtEil9NMVG7W+KOjLvCYHFuzhu/9A2jreCuKj4+1/Jr3+TGobPztlWhScQ54BF//vYGFef/j+vzPyttP5Qt8yB6OuvBXyvw76rmr47EyJNVDaWvoc4AkYjc4CiZ+UDkExL5DnpNEanmR+/QyRyZunQ326pZc6/BLB95HjbDfI5FEVRFKUyU9PkSVEURRFZlDK+QhZlVb+/J1GuP/syEtX+a2DVyPG2QvTRp+viHNDfYD6YZOWEytr/oGSfNEX7IlqaqV8jC+z1I8f72vRdw/Td7yFp4xtkjoPWQvEXpu+mket9sIL4PSuIt0WM2RsAy1hB/B0riJ8qvbq+LNnFvik1xCCydOa9i3poB/rLNrU7PDYGHgptw0i0fs9FohUnMDiMyTg77kEi6oqcNhdaQTymx/M8TvGz1ACeSJwIc4a2cQvwFPKsBEjq/l50zup4vse+KYqiTCv8AflOzM4z0u/sy5FgAKwg/twK4r8h4+7UtP5Mi5BeTP/o7U7MTbmj9gZE1z09TyrP0wT2toI4THc0fbdm+u48pu/O0emkSTHdvZFxN3vfG8D44Y2Ju1OrLQ58F/gX3dUgqANrmr5r0b8wcR6LIpH8ZZwdOd5aiKG9aNytAX9Lfl8AcaR0M59cmKF9rurAjqbvVgmyURRFUZQhQSPwFUVRpi4eTX6+Tf5i5CZghy7a6xNB3UYT+DhyvN+2vb9ewbmnFBMQHdNunQEe5RHZdeAEYF8kov7DyPG+BkgWZanWaRkNRHP1kaIdrCB+EzEI9MJ7PR4Hfcf0Mu32gbIIsD8tWaB16K5wXREPIkYJQIwUoW18D3FGZPXqxwN/B14MbWMv4EoriDsZ09u5GkmBH0l//eY6YpQCkUbasG37DMBvkP/FzXPajpEi1v/ssk8AhLYxPZJxsidiGPk3cIYVxHf20p6iKMpQYQXxe6FtrI4YZ3dBvh/fB04FTkqMzVmeRiRIBmOO0QDGAKvQeyH6J4GdrCD+MrSNZ5H5R9XxrIFI/BWxMSK/AnK9XwJ3Awe3Ge/3RGRglkj+vhs4InK8+4saTrIavo1o8m+JzOeuB/5gBfHzkex2l+m7FyPa8N0yP3Bvh31eBe5EHBl5NJBrTqVwTkeyMFanFV0fI2Pw8ZHjPZM5rhuGKiO1HQOpazB2CpxLURRFUfoxNUVAKIqi/M+T6KvviETGgyxM0gXwdYg+eDfF4OoUf9fXEENmO191eY7B5iG6X8A1EY3SMiYCb0eONy5yvCg13iecR7VFbhOYp8u+dcODSKp5t9f/AZmI76T46oM9tFOV/TK/91okLstlwNpWEPepvGcF8VgriDcHlkUklA5DpG12R/SKzwXeKSjkW0hSyHZTWgUWUxrAUVYQXxbaxspIIeQ8R1ITMULdnDkuLWo3FtjWCuKyws65JMb7McD5iGNkScTgcUdoG7/qtj1FUZShxgrit6wgtpEI9hHA/FYQF0nLnE7+nKRJ6zu0G5ZGIrZ74RxgFSuIXwFIxp/zKx7bAP5hBfHneRtD29gScfJm69bMhEjqbBvaxvqhbayywPmHHYpkdi2W2W8d4E7Td9ct64AVxM9ZQexYQTyPFcTzWkG8lxXE7ZlfPhIY0O1c4FVkLvZVyT4jKDbeg9S82ThyvLcBIsf7CnGIHwY8h8xb7gV2iBzviMxxETKfqdrngdgzupnrNoC3B3AuRVEURRkQtWbzm7TRKIqiKHmYvjsDsC2wLhJxPAa4LynuNYa+OutFNBCpEINWUdfstteBb0eO93HbuY9AjKNTkjSC6veIQXjtLo9/FInqegFJ6W6Pqm4CF0WOt0f7gabvLowsVqtG/B8XOd5RXfavMqFtrI0UZBtGa2HaRCIDi1LaD7aCuE+h3NA2tkBS+AdaXC6PL6wgnjU5zwHAKQNsbycriP9etkNoG3Mjjq1Z6btgTyUJ1gAeQ2oIzAz82wriT9rbaWtzemAbxMjyOeL0eBeJzN8aKb5cxihE1/f7iA7wA8BFVhCXRWWW9edniIGriGVyDDSKoijTDKFt/BwZM+q0IrAnIN/v3UbndxrfbkQypZpJu+lc4yFgIyuIv2zr23BETqdd6zx7ngbwMbCGFcT9CtGGtlFDDNBLlF3LF8Ywdljzp82JNaNGrd8lNIBHI8dbveTaKmH67tJI1tqyFQ95K3I80/TdVZC5Va88GTneSr0caPrudkiASafPN63V8wbi8O52rpM+f1W4KXK8vJoGiqIoijJFUAkdRVGUqZDI8SYg8h1X5GzeG3gJKTZWRh0xBl6LSILsjhiAY6TI6S/ajfcJfwF+xJQpNPcBIpfzLHAfUqC3W+M9wKrIfdkJuB2Yi5Zht560f3DBsaOptuhrIjUFzu2hf30IbWN25LP4oF1iwAri+0LbWAkxHm+KfF7/QD7LQxAJoHT8HodIF/QzoFtBfGNoGz9EpG4GW7c1K1kzBvgTvT0rDSTaroqWvQPMnvN+Wsj3JCQSc9Hk/fGhbZwFHGoFca5GvxXEE0PbuAYxGh1K9/fpayuIb0UcLoPB3hTLATQBG9BIfEVRplmsID49tI0bEJmwUUjWWYDI2HU7jnQau29AAhL2RyTyxgKXAOdZQTwup2/jgO2TDKwtkvY/RRy66yb9M5CCqUeGtvEbK4hfbWtmKSrUs3lkrkWYWJ+uqP91YDXTd0dFjteeKVaK6bszI0Xp50Yk2O5B5lZrINryB1AuF3hs8jqym/Pm0G+8Nn13QSTLdDbE4X5T5Hj9Mi8ix7vG9N2dkaCONMNiEjL3STNTDSTAZXtkPvWPHvpoIDVulqfzs3Rzh+2KoiiKMqSoAV9RFGXa42skCrkT5wAXJrI8e5u+ezCyIHs/crzCyOTI8T42fXdtZOG0E2Jg/wqJUh9NvoHxIyTquUrRs5QrEc3ctYBLk9deaSL69yORlPp9kr4vgKStzwbsb/ruyZHjtUdHV9UznQTsGjneG712MrSN1YDjaRXJfTm0jeOtIPaz+1lB/CJSTLidn4W2cRxyryYBd5ZFe1tBfFFoG39Hitn9mQ4RgV1wQeYcb4S28Xu6MyynUXURsJkVxBMrHLMaxdFydaR2QzblfhhiqBiBOK+KOIP8e11GA7inXfJnEBhF8efTSLYriqJM01hB/BpwTPa90DaeQOYYgxk48LoVxA8i2VUdCW1jGDJneNIK4n9l3p8NkX9Jx5hhyLiyZWgbq6UyPAkzVjnXeKPSMryohlEupu/uimjOZ+eI/wa2ixzvAdN3nwfOLmniI0R2ByRQZCA8nelXDfm8j6Tv5xuavrt55HjtThAix7vc9N0rkQy5GRFD+zLIfR+BXNf5keO9Z/qu20P/mkCI1BC4nr5yR3l80MM5FEVRlP9n77zD5SauPvzuyhXTTDFNdBAthBZqqKaEToAECASQIBAgIR+EEtFCC6AAoYYQAkEKhNB7D930XkIVYAyIZorBGFy1+/1xJF/dvZJWe31tU877PPv4rjSaGWnXOzNnzvkdpc9QA76iKMq3jzloH/L7V+B3ifEegMjxvkRkQtoSOd4HwC9N390fWSh9hHg6/Ro4Fpiv5ZK56Exj9VREz38xRCe2E8N/HjVkA2FLZLPhl4gXXGooXhjp9w6m764XOV7Wg/xxZHNiMXoaDpqI992ZyEIx6m0HQ9tYG7if7mPvEsDFoW0Ms4L4z1XqGb7BYaMRw/ccwJCoPIkeVhBPDG3jTjo33hcl83uPnh7/RyDP6eSS+lKZm42Qvj8D3FDReA+ip9vOQy7v/nYLbeOkPOmZ0DYseme8nwIc2eF1VXgd+f+Wdx8G4qmqKIoy3Qltw0RyjyyEyNtcagXxJ9Oxyb8Cu9O3sm9vh7ZRa410C21jKDJPWAaZ39wHHIDIofUDotA2zkLG/gWQxOXQ/be5DgwFbgttI3VgeH4KtRNenmOh+N3BQ42hk79m9c/eon+z5/RoubEflPW7iRiMR1W9UdN31wMupeezWx642/TdZenyVi9idmSsmRw53qtJQt316DkmNZA54eCSurJSjHsCedKDSwJ3mL67PJJzZkMkX9FNkeM9mXjnP50p/0TyaqVq4uEs44GNI8d7z/Td1YC3kLli3ndvEn0XaacoiqIovUIN+IqiKN8+RiNe42VyHzcAG5i+uybwFXB9Ngzb9N06sBmwM+Kp9SRioO7mYdRq9Dd9dyF6Gu9Tqi64vwSOjxyvYfrubxHPqr5arB+MeGq39in9d0XgIdN3XwLuAi6PHO9r03f3RbRy+9G1UG0gi7atIsd7pA/6dmpL/WT+Pj60jQvbeXSbvrsF4jG+eNpH03f/AxyQfFZlTKKiZ2DC0ogH+37I5sgUJGricCuIR2cLWkHcDG3jmZ5VdKMG7GIFcQ8po0Qy6KfIInwEcKcVxK0Wj6sQI0Bv2IJMkt8M2/airocBN/Hq7GvOB9bJOd5Evo9VEywqiqL0mtA29kMM6gZdkU8nh7axixXEvZEqaYsVxE+FtrE3Ej2YSqVMqzf+C8CE0DauAk60gvjN0DY2Q/TVh9A9qiu7cbAQIj24LOLpXdSPOmBl3m/8ycDZNv7TclvzyUBxgp9z0lf84bXbWfOzt7pduNjXn7Lmp2/yxFxL0OypgV8DTo8cr+oGN4gMXCob2NrHRZGoxHYycf0QeaAJyfs9EMeDxelKMmwAryGe/GcW1HNd5HhPtfQt7/M0kLnGK4i8T/oZHG367rXAbpHjTWzTZ4AHKpRpZWp0Q2Y+emNBP/8cOV7VaE1FURRFmS5Mb21jRVEUpY9JFnTnFZyOEU85D/Eo84BzgXdM3z3R9N1akiD3OsTzfQ/EcOoBb5q+m2c8BMD03cOAo0q6VtUIfx6yuTACMbj3ZYLVNdsX4QeIButFwAum7y4cOd49iHf4NYhH+xeIrM8afWG8D21jGKLtXzTuDkTyDhSSfDY3IwvxlDqwG3B9EqKeS+J9eA3VoyQ+Bt6zgvhQZMG/KDCXFcS/sIL43YJrqkR3bJV9E9pG/9A2/oN44/8RkeG5DXg6tI35W669Awlzb6WZc6yVomfTSeTHWsD8VhCvbwVxX2zo5HEZXfIGDbq0fhuAbQXx29OpXUVRFABC21gH2UxMDdvpvwOBq0LbWDz3wj7ACuIA8YI+HBkXOonsy6OGeInvDjyZ3NsNdHmOGy1lW//+FZKLpjLDJn7JEa/cOvX9F/0Hc/QK2/PmkHl7lD3qlVtZdcyo1sMNRBLwL520i8jIFUVnxsgc5H9t6vgESdALQCIZuCISqXY9Mne0gVUjxzsL2eTPRgHGiITPrukB03cHIlEAZXaHJZN/s5/BjsDppu8eZ/ruSNN3x5i+e5/pu9vlXD8CSSJfZT6QZWp+nMjxbkaSF2elgz4GDkUiOBVFURRlplJrNjsd5xRFUZSZjem7/ZFEbD+je7LWdxBD6nLkL5b2A+YFTiyoehJgIou4JRDv/BDxfP5bxe61C3+/BUmw1hfedVkmInr9ndTZBB6IHG+jPuxHD0LbWAwJzy5jLLBkkUSB6bu3IYaEovtbL3K8h5L2+gPbIInZPkO812dHQs9nK6kj5TgriI9vU6YboW0YyMbHkJJiX1pBPHvmmpPIl6JpAA9bQbx+SxsDEbmeA5Dv8XhEj38t5F6L7mslK4hfaD0Y2sb6tPfcayDehiu0yjBMD0LbqCEyAnsCwxDPxAusIA6nd9uKoiihbVyOeGsXJdM+C5E1mQdJEH9vTsTUtPbhKLpLsPQFDeT3dIU+rjeXPVffi3dnEYf3WrPBZh+9zB9eu721WBPg8oXXOPDCJTboh8xjbumNXJ/pux8hY0YeDSSi4vdIFOdcBeU+A4blJZY1fXd+YF9kI2A8Ysy/Atk0WB/Z4HkscryPWq6rJ+V7I3OTzhPTeWUaMXFM5Hjdvh+m786NbIJX2XBpAI9HjtfDaSVxhlgauZ/XIseb1FpGURRFUWYGasBXFEX5lpIsMtZBvJRmQbyP3kekYfJoIlrvswDzU2xkH4doba+UeW9QrnWapcww30T0TfuXtD8zWC5yvFenV+WhbfQD3kWeexlHWkF8Sua6JYBVJtWMLzdf7+DbqNXKch+cFDne0aFt/AC4FVgkc24K4t1+ByLlsyXy/LOL4hryuV2PSN10vGhNDD+7FJxuAi9ZQbxiUnYQ8CGih1/EqlYQP5vTTh3ZkBhnBfGU0DbSJHR5m0fXW0G8Q0F/a4gkzpqUb2rsZAXx1SXnFUVRvhOEtvEKIh2TRxoRlB2LXgO2S5Kv59U3DEkAWwPut4L4/TbtDwI+AObssOtV6WvngVyOWeGnPDzP0lPfD5swlisev6C1/feBg/pifDF991zgNxTPrTZA5omjEe3+IraIHO+OlrrXRDTgZ6e708hTwCYteYXy+nYp4pXfV8+9CSwdOV6PvDCJnv6PEKeIDYH/aymSRrZtGjnefX3UH0VRFEWZ7qgGvqIoyreUJEHtw8kLANN3Dy+5pEZXmHIZsyLezNn3VZkIPIQkKs1bqNXonRcWiHf3HPRtgruUXwJH93GdU0mMzKdRHhLfRAzrpyQJ9i5G5I3o34yp06RRftvN0DYGA3fSM09Bv6Tt160g3jqpfzZkc+YXiAf7V4in/n3T4GnuUuy5WUO0jVMWpdx4D7AK8CxM1ck/BDFCTEQkgc4CPrSC+NbQNnZN3qceiDGS0O83RZUn2v3bIl6EG+cU+RjR/FfjvaIo3xc+pdjIXaOnTMtSwD2hbSxtBfH49GCy0fpn4CC61pyN0DYuAP6vJIH5D2hvvI+Bx5L6fwCcQPV17QyRkB3Tf5auN80m/RtTQOYxKyMbJF8Bj1pBPKWPmjwV2UCfi573eCPwIDI+lhnvQSIUphrwTd/th4y36VywRtccbDVEgnH/NnUei+SiGZrp27RspNQQ+cATWk9Ejvcy8HLS95sQR4FDkIgREBmhQ9V4ryiKonzbUAO+oijKDMb03TmRpGdjIsd7vV35DvmqzfkG8DXtjfK9NZD/Hkn4lidJ0wTeBhbrZd2zIpr9F9KZdnkVqmjnTytnIp5gi5QVSrzCb0TC1AH5MH702SiemmsxGrXC9e4diPF8wYLzDUTL9WYriMfQpXN7XvIitI1NgBtC21gJkVH6F3ChFcQTcurrgRXEb4e2sT+igZt66KWL9JsRXeWUsT1r6MG4pF/bIOH6dboW/H8AfhXaxu+Au60gvjy0jWuAHyMyPs9YQfxBhT5/AmwS2sYPgTWSw58iUgKP9iYSQVEU5VvMpcjvaFUMJOnrLoCfOX4sMuZkqSPG3olIDpw8qvzmvp708SZknLgAeBUxju9dteO9oIlI0d2A6L8v0FogpsaHg+bg5dm7D8XrfxI2gV9ZQTwKGJVscCwc2sakKmNVOyLHe9f03bWB05AE7XVkw+B84LjI8Zqm745FIvLKbACtMn6bIdKKedSAPU3fPSRyvK9bTyY5l+ZGIirWBI4DdkaiMF9H5kUnI4b9TuadDboM8q1tLops3K+PfM+uRzZM5kOkfEYlDjCKoiiK8q1Ck9gqiqLMIEzfncX03fOBj4DHgdD03adM312rD5u5nuKkbw1EZiTow/ayfB053t+QEOu8hVgNSazbW76KHO9SxLBaRG8XZdNdzifxau+RR2CcMYD757G4c74Vak8NXfQpZNG5Xmufdn/nUWrNJrV86bu7kND41Sn+/OuUbFSEtnFoUs/WiHf8KsA5wMOJZ38lrCD+B2IIvwQJr/8v4im3Q9bjMjFYPFDSX4BzQ9vYATEKZY33Kanm7XuhbfwTGGAF8f1WEN/aqUHECuIXrCC+KHldbwXxA2q8VxTle0iAJAWFrjG1ncZ9TMboH9rGEGRDv4gDQtuYu+Dci0jOmLLx3Mr8PStdBtt9k+uraPL3Zr5QQzafz0KM5N285xvA5LrBn5fdAmoyhNeaDWadMnHCMl9+tJUVxNeEtlELbWNfRNJwFPB+aBtPJhvo00TkeG9Ejrc9MjYuBswXOd4RkeNNTM6PB64m//k0EQP3DS3Hl2/T7GAkJ81UkvnuaUgU2/vA58AxyIbOLMgm+3KR410A/Da5LNunbAL3POokXvYt7a6D5GU4FJnvrIdsEjwGfBo53ltqvFcURVG+ragGvqIoygwg0au/Ddi85VQD8TZbI3K8//VRW8cDf6S71EwDWZitDbyHeEP1VsqmiLeBxZHF87LkbxJPRJLfrVVwvogmcEHkePubvjsCMRQUJdi7G9i0w7rPihyvzNjQJ4S2MRfyfOYD6lcvtBoXL74eE43+U8ssMW70a2c/d/kyQ3Jsx08OXYyzlt6EDwZPjYCPgX8Dv40cb1xoG6cgnulFGxJTkKTETwDnWkH8TNKvpZLjRdd9AjhWEN/S0Q23IZHFeRzxxssjq7VbhVutIN66L/qmKIryfSXZtD0Y2AfxMh+JRHcVyZ41gL9ZQXxgcv26iGRLGVtZQXxbaBuLAL8ClkP02e9I2vo73WVW0jlNmYze6sh49SDFXuMpn1GczLUdjyHzjAWQ5LDrAcbkWv3NY5ffbuRj8yy1MTAo6f9NwO8jx3sLILSNPyCyM61zNIAtrCD+b286ZPquAfRLjfUl5RYBHk36nm2/BuwVOV7QUv5JRFO+iEnA3JHjjcv04y56RmI2kI2Z1SPHG5M9YfruxkhC+w2QecqNiNTNiTntNYAvgUUixxubqcNI6l+I/DnDG8BKeZECiqIoivJtQD3wFUVRZgzr0tN4D/I7PABZuPQVxyGL7jS5VwORL1k7crz/RY73GaIH2tfMghjwl6d4fBmIyLI832Hdo5Ewa5BQ+SLjfZP2+q6t18R0l3aZblhB/BniJfjIf+dbgfOXGs7EevdI9pFD5l3mxOW2yb1+9TGjuPSJi+L+jSlrIMaDhSLHs9OFM3Al5dEE/ZDPZ0/gqcTr72kkcqPsunmAG0Pb+En7u+yId9qcz2rtVmGr0DZWn4b+KIqifO+xgni8FcQnW0G8uBXEg6wgXh7xzC/y/KojOukpVaKXJoW28TPEsHoMsANwAGLw/juS+D2b8PZdxLhbNiZsByyc1FdmyJ6Q9LG3nmxrIUnnX0fmdiYw1wr+5OWvOeyarRGP9GWBYZHjbZ8x3s+JzNFouY90TnNaIqNXGdN3lzJ999+IPOIE03dfMH33l0XlI8d7BzHIn0mXd/xtwPAc432aELaMKzJzEJDIhDwZxTqSh+mAnD7dEznexshm/mAkb8JmBe2NA7bJGu8TNkE++6L551LADYlDjaIoiqJ861ANfEVRlBnD1hR7jdWRBU+fkIQHX2T67j+RRHATkrDpLOchHmM7FVTT2tcmEuq9eEnT89I+8RxIJMCPEAP07oi8SjvsyPHeTf7+D7Ah4rGXeo2l3IY863akXn2TgN2mQy6CQqwgfsP03fX7Naa8RbO5CLVa9+9ErcYTcy/BG0OGsdRXo1svb9Th1rf2Pv3JgrqfC23jH4iMQJmXYnq83cK8lZOQJLl9xToUe9+ndLrY3hzIfT6KoihKr0mTpM5LTyPpDXTJ7gA8g0T6zU/+b/jniLf0K3StR1vrNJNrf4d45Y+k3CjfRJwTqiSk/xfw6wrlytgntI2RSNTbUkgi+duAo6Igfh54LeeazRDP/DzqwA8RQ/RdVTpg+u7SSBTbHHQ9vxWAS03fXSxyvD/lXRc53gfIs+rhzGH67uyAA2yDGMTbcW7L+58hjhGtyY5BPqOdkLlEXr+aiSf9HUhy4jzsyPHyojuq9HVTP6DycQAAIABJREFUJBL1kQplATB9d27ECScGRuRsHCiKoijKDEE98BVFUWYMeQuZ3POm7+5g+u4I03e/NH03Mn33FNN3Ow7zjhyvGTnemBzjfXpuZ8RL6n5EPuW/iEF3LyTxWZabSRKdljAR0R79kGKvtiYS2l4HZkv+faPC7UxNVpZsUOwL/ATxOL8P8aDfFNiyQl3vIVr0hwALR453bYVr+pphU+r9Fu1hvM/w/Jw9ov8biPdhXkh5lv2RZLlvT1MPe1IHVgttYz6A0Db6h7axfmgbm4e2MaxqJaFtzBbaxrGhbYxCtHir0KCapjHMgHwGiqIo3zesIH4fMX5eixgzQZKhnwTsnOR5SctOoUvOLW8+8AJgIxu4ZRvNTeBwYKQVxDGySVA0FtQQ7+0yJiOe530xPs4DXIh4laftbwE8EtrGygXXFBnvs9wS2sbGFftwEt2N92T+Ps703R5JdsswfXdBZPPlLGA4sHSFy6KW97NQ/pkuZPrurCX1bYFsZOTZKWK6NPNbGVVSZ0qTak4emL5rJDr+7yMbVDcDH5q+e4x68SuKoigzA/XAVxRFmTHcQ7FsTQPRbcf03aMRA23qIT4r4AI7mL67TuR4n/ZVh5IFSA1ZSL+KLIxfRRY4WyA67bMAT0WO97rpu8OAU8j3mG4gYdQTTd89BTi7oNkmsAiS4HQ9ZDFWZSHULXFtYsT/b/JK7+dgqm1M/yxyvMeSa+qm724N/By518cAP5EZmp60lRcYPXD2+5Ew/XTB/yJwoBXET5VdZwVxAzgntI1zESNFFa+0TvhZaBtjgDOQ7wjAlNA2fOB3VhBPKLowtI1ZkcS1q1AeIZCliSye10Y0e9txR4UyiqIoSodYQfwWsFNoG7MhhuOPssnJW8pemkjGnEXP3/r1kUS0RZ7aKTXEE38VJCn6KUgEXtXxIyUAbkccFiYijgZ9RasUziDEsL5VTtmHK9TXD/hXaBuLJpsWuZi+OxCRHSqa9xjAjohGf1XOoyvSst3zbQBPRI7X+iz/B/y05Lq5gYdN390gcrzPc85vQPHnawAbmL5by0lGex8S1VEWKQrV7R8ekgw3y2DgBESC6bSK9SiKoihKn6Ae+IqiKDOGO5Hkra2eY+n7U0zfXRxZGEDP3+el6UOdfNN3BwO3Avci3kz7ItI0XyT9fBTRmp8jlZeJHG80XYuZ7H00kVD5NGz9asq9pS9FjPcgi7GysaiJJKS7u8JtzdO+CK8j4eaYvjsIkdy5GZHx2R44HXjd9N3VKtTVa5IEbg9R/JwaVy+8+h6I/MCaSHK/la0gHlFQvgeJN+T0GOdPAC4Dsl73/ZC8C36baw9EDDFQ3fhSQ777yyDRBfcg34u8Z3c7Kp+jKIoyvRmGRMHtmkZlFbAcxb/181N9jBoEYAXxXYj0XmuUYDvmsYL4KiuIRyPSMO084adlE78ObJFscnTDCuI3kTlSmfZ+HUnEmqcjn2UQ7aM7Z29zfiqm786HyDlW+UzS+cWqpu/ebfruZkkdK1LsIZ/lh8BRBefaOThMyjHeEzlejMjzTCm5tobMIUpJol4PLClyRDKHVBRFUZQZhhrwFUVRZgCR4zUQr/ZW/fDRwA6R4z0M7Ep52PGefdilk5L+gIwF6XiQXQzOB5yfLM4WBYgc7xwk/HgEomX/MXAOsHrkeGkYddkCsI544FchTUr768jxqiTEe7FCmeMzC79jEQMEyH2n9z4nkuisnTb7tHIkxdIwZ0eO964VxF9YQfyEFcSvZuUJOuBOep+kr4i56Jl7IGWX0DaWK7l2z17251rEc3IeYGckUeG7mfMxomn8814+J0VRFKUNoW0MDm3j34j03UWIZ3sU2sapoW3kjfs7UDyvKRpHWokRr/9lAKwgvgxYEPHythFt/nYYSf+XRWQC27EqUFXGJo8yOZ+9EOeJdszf5nyViLTnK5RJMaluG0g/twFIRMSdpu9eg9xXlVxIAHsXSNFcT/l35rqiCiPHewrR4M+bBzSBJ6iWX2AdYGDJ+aFAkUySoiiKokwX1ICvKIoyg4gc7+PI8bZEPIl/jiQqWyRyvBuTInNT7rledVFUium7syAe91XZGPif6btrAESOdyuwH6I7/zgiPbO46bvDTd+9kmoJ5KpQQ8ap35u+28273vTdJU3fPdn03StM3z3d9N3lkUXdhxQ/w2sjx7ssub4fxQns6shCdouC831CkoRtM+DZzOFPgCPoGbbdW/5CedK/PKrkJCibP2xacm4eeqdRvwLiuX8i8ryeR3SH10Y2YUwriG0riL/qtOLQNhYLbePk0DZuDm0jCG1jk9A2VN9WURSlJ+fTM/F8P+AwRO6vlQElddUo95ZOqSNe3S+HtmEDWEE83griG60g/hei2d6OV5NrX6K9Z/vHiO750Ar1FjEqqacHVhCPQ4zMudJDGfKS4GZZo2I/qvIe7XPNPJ5TJnV+2JHOxvih5MjZJEb4q3LKN4CvKUiAm7n+RiSislXa51Zgy8Shph2F0kUdllEURVGUPkM18BVFUWYwkeOFSNJYTN9d3vTdAxFD5BDKDaNVDKtVWCRpqxOGAJeavrss4vF2Ed2T0+2T/Jtq9xfRqW4tiCfUFciGB6bv7g38I6knbe8QJNHdVojX+Tx0effVEC/BvTN1zkX7xfkyHfazYyLHuw/4kem7iyAbISMrRhtUwgril0Pb+Aly/1ld2KLPqYloyC5RcL4KZR7wzyPeer2pO/3eLAScbQXx9kjOgl4T2sZ2iKFgAF1GiT2BS0PbsJN8AjOdZEOhX5HWtKIoyvQmtA0Tka8p4tDQNs5oyYNyD8U67TWqrUWzc4Z/hrbxYCJFk3IzMA7JGVTEukhy9yrzj7OtIJ4c2kanMj1ZziyLBrOC+PMkksHO6VMDeA7R/C+jyoZ1zfTd/REZxg+AyyLHez+vYOR4H5q+ezMiMdT6eTUQCcI1cvrbG5rAu5HjFY1puyNzkQOAVIpoBHBw5HivwNQ8TjsmZZZBNl3+CfwzcrwbTd+9Fcm1MCfwQuR4ncyhH0Seb95cuQl8RHfnC0VRFEWZ7qgBX1EUZSZh+u42iDRIP7qM0WWM6aOme6PtWkcSzv2cLuN9+motV0YN0ShfrULZ7DUbm767EuLxlBrva3SX/DkVSX62BCJHtBowFrg8crynW+r8AvFMLwuR/qBi/6aZyPHemV51W0E8IrSNpZCEuPMhiYo/QpK9rp4pOgX5Lm5M+WfzNaK9W1SmLIns2cDwaj0vpA5sG9rGvFYQ53o4ViG0jXmRjaF0LpS9n92RZIMX9LqXfUBoG3MgOsG/AoaGthEhCQnPUGO+oigzmLUpHxuGAssixueU0xBv6Kqb9zHiNb54Tlvp9b9CItUAsIL469A2bqRnZECW1Sv2oQnclCSB37xCf/OYSLXEsQcj0WVr0OXNbQARsFMFObg7KTYypwb3R5GNjXTT/hTTd38bOd7fC+r8DaJPvzjdn9cXyFh0TfvbqkQNSZibS+LI4Jq+ezywKPBF5Hitc7IzgIPoSoQ8P/AjYFvTd7dLNgeqSBVNJYk0PRCRx/kImU9mSZ/J0ZHjVYkeURRFUZQ+o9ZsqlSsoijKjMb03SGIt9CsVDdkTwYGJ4m6prX9O+jSf++EZ5GFTW88sKYAfwIuBB5BFmXpYqid5z7A75BNhAMKyjaAqyPH2yV7MEnMth8iV9NAEtf+AzEs7JlTVxNZFC8QOd64ivf2rSG0DcMK4jj5e0lE6/dXiPRNlc91Al0bH63lL7GCuDRXQ2gbx9CVrHlaWNEK4ip5D4r6cQiStDiPBvCiFcQr9bb+aSW0jVkRL8Cszm76/+V64GfflAgBRVG++4S2sS1wY5tiy1tB/ErOdRcB81Zs6gtgjoJzMXC9FcQ/b2njKGR+UUZq6G3HlKRcbz3NxyV9+YsVxKVG3tA2+iN5g7YF+iO5Xi6rKgeXeNf/je5zqAZyr01kgzpvvrRe5HgPFdQ5B6LTv21y/X2IdNL2lBjdO+RaYJfeGsFN310H2WQvYp/I8S7qsM59kE37NEFv+kwnI58NyLz9mMjxLu6404qiKIoyjagHvqIoysxhB2D2Dq/pn7x6ZcBPkrIughinD6F3BvxVetN2woZJsl5M310N8fT6OSId8ywSCl3GIcBIihfVdWD57AHTd1egK/kpyMJsXURP96dIePWSdN9IANjru2S8D21jFkSfeF9gvtA2PgD+jkQtjAEuo7qxYhCwP+IBmSYknpjUd3i7i60gPjG0jfcRg05vmYx4KU4LS1Fs0KkjkgMzk33pmSQv/Yy2RzakyqIdFEVR+pJ7Kff4fgOJ8OqGFcQ3hbaxF5Knpkpy+HGIbEqR7E6eBMztFBvwG8h4sXCFtmHajPcgz8cDVgtt41pkvrE8osnuA+dZQTweIImkujZ5dUzkeOebvvsJknvoh8nhe4C3kY35PBqIQ0SuAT9yvC+AM5PXVEzfnZacAClNRKLn9opa9EXsSbkU4F50MMcwfddENinI1Jn+2x+JqPARKR71vFcURVFmCmrAVxRFmTmYHZZvAK9EjjehbcnWhny3jhhWD6HLkP0wIi/T6SbCtDB1sRY53qfACabvngqcAzgVrl8UMTYXhcE3yMjeJPqolyB69ynpdfMjC+w1kI2EnZFoiIeBM5Mkat8IEv3zFZH+vWQFcUe6vKFtDECMG+tnDi8AHI+En/+XakaVlAZwORJJsSqyAfO8FcSf57S9BPIdez3rUWgF8T9D23gnqWPRTu4H+fxvARYJbWMuJBnxlshneztwjhXE71ao532KvTGbzEAJpQJ2o/y7vitqwFcUZQZhBfG4JILqDLr/NqX5Zg63grhp+u5WNJuHAz82mo0py4z98JFzYK16Ne93kGSj+xacqwMrh7axkhXEz2f69kxoG9cjm5tZGklfj0UMsFWYVo339PqfJ6/U0DwUifzbLrSNzVIjfhbTd5dAZGDGAfdWmfNFjnc1cHXiOT8lcryvTN+9nvIN6h91flu80ItrsjSAGyPHu3Ua6wGRAyySEagBK5u+OzByvIkV69ud8vnAVpHjHdh6wvTdWuR4KmegKIqizBDUgK8oijJzGNlh+TriLV2JxHg9F+IZfTKi6ZllbcqTjfY1k4DXco4HiPG8Ck1kAVwktVMH/pV5/0PEwFxUdjgwR+R4JwInVuzDDCW0jc0R3XgrOTQhtI2/A3+wgrhqstvd6G68zzIU2KmDLjUQ+YJ0E+HJvEKhbfwY6fdqyaGvQts4Hzgq7bcVxHcBi4W2MSfiuTl3hbbTsPbt6WmoAdETPii0jb2tIL6kTX2XAsdR7OU5LRECfcEclBuSZuTmm6IoClYQnxnaxljE43ux5PCLwJFWEN9q+u5+wPk1mjRrdeKaYSz51eiNKuoExojueLvN03WBR0LbWCdrxEfGujMRh4ABybGRwIFWEN8R2sZCtJfZqUoV2b+UtFz6e74uIus31cPd9N3ZkQSsO2bKjTF99/eR4wUV2xkLbGH6rk15voIGvcuFdDuSWHYRyjdj8jaeG0j+nD/2ot08XkMkfooYDIwyffcowK9gZDcp3vCoAQt2K+y7P0UcY9YwfXc8cCXwp8jxRlXrvqIoiqJ0jhrwFUVRZg43Ap9SbpBOaSCa4Ze2qzQx3DuIXEqZBEhqCG3nhd9AFtQLtGu7Df+KHK/bgtH03eWobrwHWUQNRAyrv6K7QbeOhOdfmSm/SGsFOSyMLEi/cYS2sQHiaZ5dCA9CvOaHUZ6wL8svKDc2VPU2bCLfhUPKCoW2sRoSwp/16h8CHAoshHiOZ1mL9sb7EBgPrER7L85+wL9C2/jICuI7iwpZQTwqtI2DkAiQ1u/SCOCsws7YxmLA7xEZJgO4Czh9WjT5c3iS/ESOJMdaEzMriqJMd5IIKh+JnpoCRInn/Zw0m2cCNGtdP1sLTviiqrX7c+AJ2ht568hc4E+IHEvar/HAfoke/g+Q+c1zaTJYK4hPCm3jMWQM3Rgx8qZMAK5GPLGrcCESiXY11bX9U5qIBExWouZqeuahmRPwTd/9DIlK+CWwD/Lc30Rk666MHK+ZRFpeiEjHtHvcdeDfHfaZyPGmmL67NRK1txBdkRc14H+IV/w8yNx2LrqP1fWkz+900maSL2ozJALxicjxUkeQC5E5Rdn8ZX5kU+QHyHhdxkiK5xYNMvNE03cPQj679DnPisy7tzN9d63I8d5s05aiKIqi9IqqngOKoihKH5KERe+ILBpBFnSptv2DiGHwGOD/gEUixzu+YpjuEciCZckKZeuI8b4snPlkZNFVplX6KeXGxLuAg3OOb9qugy3EiFb+vojx+hFEU/ZpZFG7c0uC31EV6tzM9N2qYf0zmuORxWneWL1raBvL5xzPY86COvLIfscayWsMsng9FVjVCuK329RxLGK8z2vzF6FttCaGnbNCv3YDlq1QLstFoW2U3rcVxOcCGyCbP28AjyNJknPlDQBC21gBeAbRNV4Y8czbHXgqtI3hHfaxjLORz7/1/33qyTizIwQURfmeYgVxwwrit6wgfjc1kAPbUasNotbdpvrJwFnbDUATkPFuAOJVXWVT2QC2SpJ9t/btUyuIH7CC+NlM31IeBe5EfsPfQOZbhyJG+N8i0YJV2BWR3BtB+fwojxqyCQ+A6burI0bq1vtO8/L8EXHgCBDPehNYD9lAuCBx3NgFMd5D+/H+KeAfmfYHmb67hem7O5m+u3jZhZHjvYw4h9jIBsLpwOrI5vqeyJxsXvKN4T+kOHF8D5Jojg+R8fkS4FXTd282fXdOZF7abi6ScrDpuz9oU+YSJGI1b55dRxIFY/ruPHRFw9ZbysyFzJkVRVEUZbqgHviKoigzicjxHjB9dxlEw3tNJDncVcA1keNNRrz0K2P67ryIJAh0tkG7GyKxcwSiZw6yoP4LYozdHwn5LuJJYPOCcw8BPynYfOhUwscAzk7q+k/yKuOTCnUeBSxi+u6e3yQd0yTp7AZtim0JvFyhuqcRvdt2RpEGIoUwH11e5adZQfxshTYACG2jH7AV5d+/bYCs7MHzRQUTxgNLIB6XnWAiEkql+QysIB6BGGGqcj495W3qyKaFH9rGElYQ9yrRdEu/HksSP15AlxwEwJfA9lYQz2yNfkVRvqUk0mW/QH5b3wX+YwVxlTGzjNzN2HuGLce+Ix/AaDaKBoZBiIf0EDqbu9SSayslnA9tY3bgPmRcSL2nlwDWQZ7BsnT/rS1jNsQB4ixgB3rKxhTlLwFxRngp875s47eOSNGtlnmf/XcfJAHuryn3vE8j6C4C/hw53tcApu/uieQ0SHMFNU3fvRbYO3K8sXkVRY43HpEr/FdSx3yIQ8VaJfcB8jz2MH330KK6U0zf/RldSWWzbAVcA5yHRKhVoYl8148qKhA53sem7+4GXEHX5kMj+fvqTF92pDhnUB3Y0fTdwckzUhRFUZQ+RQ34iqIoM5HI8SLE074v2IbOk5G+AoyNHO9Ppu+ejRjqa8DDkeN9AWD6rg/sDaxMzwXpg8CGJW2siyyQ80KKC+VNWvqYSpv8IXK8KtekLFex3O6Id9VjHdQ9valixKhq6PgrssivU27ErwO+FcRl0jEG8pnOjYTMf4oYs99LtO2LIgaydJt7WEH8Smgb/wU2Kbj2QtpL7BQxRy+vyyWRzlmv4HQdkW1aD7i/L9qzgjgIbeNWxLtyQeB14MpsQmBFUZROCG1ja0Rubha6DM2nhraxlxXE7TbGy8jdjP18wBDOWHozDg/vKLNqz9aL9kYiY1BVjqErL07WEN5EvNs78aQfC4y1gvih0Db2QeYQWeP/GERapR89xzUDODfzfkqF9oqM8w3EG75Ibg1kw+CGyPF+lj1o+u42yH1nnRdqiJF6DiQqoJTE+/92ZH5YhYHIONlObu4Y8u+5hsgfzVpwPo8mFSL9Ise7NpF23A+JFvgMkRq6LXK89LvRrh4D+X+lBnxFURSlz1EDvqIoykwkWfwMAya3asT3glnaF+lGHTgp9TyPHO9LZCHWjcjxvjZ9dyPEu38vxOvsM8Qz+Hbaey+vQo4BP3K80PTdS4A9Wk6li8nz6PIau6wXycHGVCzXQAyk3xgDvhXE40LbeALxnC9aoN5dsa6XQtvYBQnBH1RQrAlMBi4rqidJqHsh4tneypjQNv5K9yTCRdwX2sayyAbLx4jn3t6Iru5ydH3+NcRgvQC9M+BPob2RoFOqaB0Pa1+kOlYQf0x3Y4+iKEqvCG1jCcRjO10Dpvb0AcCloW28bAXxc72s/oEhUya+9bXRf/GsBj7AnQusyA+/iNjioz79ST4nRyIHgNA2hiCe9TVENmcckjsnjxrd9fCrcJEVxFNgak6AG5GcPvMDryKyL5sgUZWDECN6uol+ghXEN2XqupViaZkGEp1ZtMFRT9ochejSF+VMydOe/yPFRvJNTd9dI3K8JwraTTkYmeNVpYmM+4WYvjsHYkAvYxk6SyJc6TsdOd4biKRSEWURiU3gfarPPRVFURSlI9SAryiKMpMwfXd34GjASt4/DBwVOd4Dvazy8Q7KTgCOiBzv8iqFE2/8g03fPRTxfPoycrxGIgHUji9Kzu2DLHb2o0si5V3g4MjxrqvStxKeA15D9FrLFnpNyhP5ziyORxb2eU6Lt1pB/EzViqwgvia0jXuRJHiHIB5w2egGACcxFvcgtI3VgZspfo5DEY+5rSp051hgo8z7MUjkSKpl/Dmiub8ysBQSwdGbnD0PAZeFtmEhi+qLgCA1umRJpBV+gRgFPgIus4I4yqlzJLIxUDZ/eqUXfVUURZkR7If83ubprTcROb29e1Nx5HjNpS88eOO5J3310icDZxtcazZlN7ZW4ycfvshmH73UropOuaP1QGgbNeBwRC4lNXp/jSQdrZJvpYx0zHwUGcemksgPnddS/ubQNhZHEpwui4wtlwzf4LDX8N0DkXw+iyLG98foKUGT5qF5lOIItQYyz3mY4uiwGpIbaSpJctgfFZRPGY4kFc7F9N1ZgZPa1JGlCdweOd5HbcpViUj4Apm3tZsbNBCHk0pz3QrcjWzQWDlt14AzM976iqIoitKn1JrNb4zkr6IoyvcG03f/D9FOzRpnG8n7zSLHu7fD+gYjWvYexd7Kf0aStn2FhASXGdartltDPJJWpOdiJvW0WjhyvNLEcElSspWQhfYzLclop6V/GyJSPe10bfePHO/vfdFmXxLaxq7I9yT1/G4gC9H9rCCupPubU+cAJAHfrojh/VngPCuIC7XoQ9u4Btie3hnSW2kX9l41LL6Md5BNihgJaU/rvAH4edaIH9rGRsnx2TPlYuDgJMltN0LbuATZCGk1gDWAR6wgLjKiKIqizFRC27gbMcwWyak9bwVxVTmUXC44bPnZRw+c/fJPBs662eB4Ur/1P36dpb4aPS1V5hED81hB/Hn2YGgbhwKnFVzzFaKz3xumIMbbK4ArrCCe2JtKTN81EO/8bem+iV5HDPEL0bWZ/SLwf0hi3QdLql0FeAGJgPtlTr2HRo73l5Z+DEbmW2X8O3K83UvuxQb8NnVk+RhYJ/FyT+sYCCyPPN+X07mf6bt3Ixv9dYDBUyax0cevstD4MXw2YAhPD1305FFD5j2ypK10bv0xsGXkeKW5cDrB9N0lkXnlknSfw18AHKAGfEVRFGV6oQZ8RVGUGYzpu7MDH5AvedNAFmKrVk2qavruMCQx2/LkGz8bSHi220mi1mSRciRi5L0XuChyvAk55dZFFrb9M22nC5hdIse7ul1boW0MQpK2DgYen9YEnZnkwMsiC8NFkA2CVmLEA3yJRELoG0ciBfBL5PtyvRXEo/q4/uWBg5BcBhMQ48JfswkNQ9sYSzWN4rLEfX1BA4msSL3gRyMGjzkQLeTHEB3mss0Y2wrifwGEtjEf4lU/iPxNg42tIO62mZYkf7wTWIOuTTcDkYkabgVxnlSBoijKTKfNZmwDGGEF8UY553rT1hDEU/2wDi9N5w9FG7kN4GoriHdpaW8QMrcq8rSfTGd5grIcZAXx2b28diqm7+5CuTf4L4AQkfx5PZ2zmb57OOKE0aT7PO+3keP9LSlTB7YD9kRyprwKnB853qMFfXkI+HFJX0Yhc6PceaPpu8fREolQQBP4D3B45HjvJ9fWkMTFR9DldPI2cGTkeP8xfXdt4AHAWGXM2/UTXrqBIfGkqTfehMkXL7buS5ctuvbKdN94N5D58DNInp6rpkdCWdN3+yPPei1kY+jqyPH6WrJPURRFUbqhEjqKoigznk0p1quvI9IhiyEyIlX4K2KoTq9PaQLvAWsnyXIrkSysrkcWJynbA6eZvrtZ5HjdPMEix3vI9N0fI3JA2yAG3PsRff22kQShbeyLLEzTRXcc2kYA/NYK4h4bBhX6vwfiFZZKAoA8lxHA2nRfwH8EbF3VeB/aRh15FnshWvCvA3+3griSHn0nJFIAByAL5NQD/w+hbRxnBfE0RQuEtrEKsmGyBBLGn26+NJFoir1D21jHCuJ3k0uqepQ1EW/Bge0K9pI60LSCeM2iAqFtXER5wj+HLq1+h+L/izHi/djtO2wF8eehbfwY2Br5vvdLylzZm++roijKDORyJElpHnXE0NonWEH8VWgbV1DNgN9AIgQPQZKn9kOM8UcgG6zpeF5DDMsH59SxHeUyOf2Bp4HV6K5J344/AOdUKFeF3Skfn3aKHG+H1hOR451q+u7tyNxjYWR++M/I8V7NlGkgc7frK/ZlBOUG/MUQ54e3C87PX6GNy4A/Ro43suX40cAJLccWAS4zfbcZOd7lpu9uMmzC2HNPevG6H/ZvSFBm+tBq0G+vUQ+tNMHof/K15o/WQzbyXwb+Fjlej1xOfU3keJOBa5KXoiiKoswQ1ICvKIoy46mSbLZSQtrE+35H8heDNcTIPD/Qw4CfhHI3c8J9z6a78T5lEHC36bsLtCbcjRzvaWD7xPh7Xof/AAAgAElEQVRfKwohNn13OSRB2BZAc8lxo1/94+ChwxcePybr4WUgGrypLFBlTN9dHLgYuff0lbI+4pXfHzGIvwTc2E7eJyUx3l+MeLelC/AVgB1D2zjRCuI/dtLXCvwOkc/JMh9wfmgbhhXE5yX9GoLosX4JvFmU1C8pOwciAbB5QZH0eS0InAH8PHl/E/JZtJO2qdN7D8cqNBCjThllRoU6cm8pq9DltdeKgRh6epBI8NyQvBRFUb4t3ADcBmxJl0E8/fdh4JK+bMwK4mdC27gdGXOKjOVNJN/Lr5Pou1vSE6Ft/Af4Ld0jxC7MSucknvf/RGTh2nE0Mr/aBZFN+xiJcCvq10jgtLJxtR2m786CjJ/bAetSPI7WgSVN3x2UF+0YOd7/yN+46C2vVyhTdt+542OGxyLH6/FsE8nEPPmb9Lt4sum7V0aONyKJGMlLaFurQeM3b9631NnH3L1+m34oiqIoyncCNeAriqLMeB5rc/5TxBOtCovQ3qi6JDBV/9P03c2QBG/rAQ3Td28CTogc77kkLHjfkroGIF7JuWHTSah1Ubj1OojUzsC0zyOHzLvgfqvuwV9euLK27Jcftl6ya+JtXmWRmbI3xV51DeCXkeP1drH3c8R4D13PPDX8HhPaxi1WEBcmfOuE0DYGA8eVFDk+tI1/AX9EvPRTXd9nQ9s4KOnfEkhC4HutIE5zClwC/KRCF+rADqFtDLWCeAySW2FHiqVmWq+dXtSBoE2Z1xDjVB4x4qWX8jnlRqUxnXROURTlm4wVxHFoG9sjnu77I97cHwEXAl5vtd3bsHNS/050/d5+howrjwMjC5KGYwXxm7Q3Wp9DNeP9OOChJH/MdTA10m1F8vP41Jh24/08SETiClTL7/JD4H3Td93I8f7R23YrcndJnxqIlM+7OedSVmhT//8Kjm+EzCXyqCGe/8shTharNiGu5W+y14HV2/RBURRFUb4zqAFfURRlBhM53uum716HSLHkGQ/PiByv6iK6ilb8e+kfpu/uBlxKl8edgXiFbWn67kbAWNrLn2xCNd3TqSSe+f8kY7wHaNZqjDf6c9BKu/DLdx5l2/efZ/Yp3RzPhlPNSyxlSWThWbTYW7qTfrfwK4q9tRvJ+T4x4CO6qmVSAHMD1yJSA1lWQowF2e/VO0ky3E+QxHlVqQPzhrbxOV3ej5UiQ9rQiU5+azK+K2kvD3AhoulPTjsGcH7m/WUUb1jVkP8riqIo3xmsIJ4EnAKcEtpG3Qri6Zp00wriL4FdQtv4A/AjRDP8/r6QHEvymDgVi5/SmvzdCuJmaBtbIxEAWU/vBnAq0M2IHtrGwojhegzwZIVndxaSnwiqb24PBS4wfXdc5HhTJY1M3x2KROb9AslJ8xhwZuR4D1WstxuR471r+u4/gP1aTjWTvh7TJm/SZ4h0TR5NZGMoj7kLjmfpBxBTG1ujWc+bMDShWZNNeEVRFEX5XjA9veQURVGUYhwkjD1LA5Gv8apWEjnee8Ad5GuUp5qyjwCYvjsIODc5l/39T2VPzqOaVu1XVfuXYTVEp7/nuFOrMcnoz8WLr8+vV9uDjwfMmj3bqWHh/dw2uuqqnAsgh0XIN96nmNNQdytl7aS0Gu8hP/rARJKubtVhHyYiz/Mg5LsxV4fXt9JAEr3+B9kISRlN9895HOIdugfy3f0A2RjZC9itncHECuJXkc2UNBokztR/vBXEd2aKP0iXHn5rvc8Bf6tyY4qiKN9GprfxvqWtt60gvtYK4jv6MF/I6rR3SPsKcJFNi7x+RYic2maIxM7BwOJWEB+Ret+HtjE0tI2rEP392xHjeRjaxsZFjSYG953pXWL3JnBc4vyA6bvzItEKxyGSeQsCPwVGmL5bdQMjjwOB05EN+pQPgd0jx2un7x6UnKshG+R57NGm3tHAKwB/XWp4/3rB86tBrVnchqIoiqJ851APfEVRlJlA5Hhjga1N3/0h4t08Cbg1cryycOUiDkC0axfIHGsCXyOSMekCfWPEsyuPOrKAXblCe71J5jasSqHRA2fjvKWGc9zLN4EYVO+AqV5vg4G3rCCenJY3fXc+xBttfiTc+wrg9wXV14GLetH3lDcQD/8i43prkrZp4Qnk8yvyeJ+EyBlVoZ7Us2EH7TeRxXmDcimfIh5AkuQ2kroMxBtvGyuIXwlt4zC6NIifA55HPDMnAvdlvCR75QFvBbEf2saDiCF/KWQjwreC+NmWcs3QNvYCnkQMGRaiifxPRE5iHIqiKMo3lfEVypwJ/LVMCifZyLgreXUjyX9zG7Am3Y3JiwO3JQnfn86pdkF6v9auIRGDJiJjczwylqXnoCvx/N9M372xNTdRFSLHmwIcZvrun5A54ETgyeR4O05HNhGyUjpptNxJ2QS7KabvLovIN5ZxTuR4k0zfHciCq2y50ufvsuEn4dSK0w/xjSHD8Jbd8vkHCyoxfXcwkudJk8sriqIo3wnUgK8oijITiRzvBeCFaazjLdN3V0IM+dshv+13I4ugUZmic1Sorp2n2ItIqHmn9FjI5dGs1XlonqUZ228Qs0+Z8Hdg6dA2bgBWTYqMDm3jNOAvwzc4bG/EQ7o/XbIsk+gp0ZK+vxlJQttb/k6xtnodkW7pE6wgHhvaxl+AYwqKPIhsyFSlhkQQlG0KQJdE0BPA4UjCvdk7aKcBPIMk7Ps94h35KbIRc5kVxONC21gdkf9ZOHPdaGBXK4jv6aCtUqwgfgPxumxXroFEGJwX2kZtWvSOFUVRlBnKQ8gYMxfF85ejgd+GtrG9FcT3Z0+YvrsUstG7NBLtFUSO91TL9Zsisnat1JH51pFIjphWPqSa7n0ZDdN3DST/Tt791RA9+Z2QOUqviBzvC0R+r5NrPjd9d10kYm5PxEHkBSSS9OqCy5YvOJ4lnQcsSK02x5+W34ZXoqfZ/r1nmH/iWMb2G8xtC6zIZYusxdf9Bi6FzHenYvru5sjcaZ3k/b3Asb2VGlIURVGUbwq1ZlPXqYqiKN8HEs+nV3p5eRMxgO9Y0TMrr/1bgc2psJg9/fkrL1j183euAv6LLFDTa5pA7a5hy//7lOW22i05ViU8/U5g6972HaYmu/sLEl7fSNpNtWIPtoL4rN7WXdBeHfgTYghP8xJMQLze/guM6KC6JhLyfyWiyZs1KqQRGo8g+RKuA663gnhyaBtbUn3DpoFsoFyHyAZkIxWuRCRwZkc2c2ZtOd8AJgMrdpi0WFEURfkeE9qGg2zOlxnLG8j4uZQVxB8AmL67Z3Jdja4xPfUePzpT/xmIlFzZXON44E9WEHebY5i+ew2S76i1Xw0kMmzBgj43kCSuKyHj5diStgGOixzv+DZlZjqm765H+7nL0pHjvWH67lxI7p6pz73ebNCodXtcu0SOd2Wm/p2By+mam0FXJOCWkeP9d9rvQlEURVFmDqqBryiK8j0hCWe+g64I5E44OnK87abFAI4YcF9uW6rZnHToSjsfjhivs8Z7kvc8PM9SuyE70FW1ZTekM0/yHiSe2YcAGwH/Bu5FvO5X62vjfdJewwriIxFppO2QBLQLWEF8DOJ1+CDVP8sacIMVxGcDv0TkhlIeQjwQDwb2tIL4qoxM0WNISH0RcfKaiHjVXwTsSk+ZoZ0R78B9kUiQ1vN1RBLowIr3oyiKoihYQewjHuhlkX6plNyvAEzftegy3teQMSmdaxxl+m422q7KOHssLQlvE34HvN1STxOR/tmZ7knVs+3VkXlXE8kL80GbflSKcvwG8AjyPIryNj0ROd4bAIkk0G3ZshnjfRP4ErgFILSNOZ/be7A9MJ58EeKc2JrnqQack+YUUBRFUZRvI2rAVxRF+X5xBOUG2SKen9aGI8f7CElm+wvEmyxvMdqkVrvs3gdOGwisTcE49dps89eo1ToZwwYiGuvThBXETSuI77eCeE8riDexgng/K4ifmdZ6AUzfXdT03W1M3103CZlP2xxjBfFNVhDfbAXx52k/EKP+LS3VxPR8rg3gLRLjghXElyFh7MOA/RFd/4sRHfj3Q9s4LIk2wAriz+hKfJzHsYiE0WAkMd1uJWV3AzbJ6V9KDVi/5HpFURRF6YEVxFcDP0DGuiIadM0D9qHLeJ9X7oDM+zsKyrXihLaR1YMncrz3EQnAw5EN8WeAM4AfRI73CPB/wMlIot2Ud4CdIse7KamjCfy1oA8xkl/mhgr9m+lEjhcjmyh5ziB1YILpu4Myxw4FvqC7wT/9+zeR430V2sYBwAevzja/P9HoPyu1Wt5zqgPLIN8RRVEURflWohr4iqIo3wMSjfy/IprmnRAj3lJ39EU/IsebBFxh+u4riM7p3HQtxupIQtNDKNdpZ9YpE/ioOXuzYKFWxNSNC9N3F0USr32KJGzL8wabIZi+OxTxXN+ergX6O6bv7h853m1F11lBPAbYNrSNpRGjxFjgWcBDEsT2R57tdcD/pcb/5NpmaBubI95/WYP6XMCpiKbuicmxI5D5wm+SOkGe5enAKalmfGgby1KcJBnk8x1MzxwFKWniZUVRFOU7QGgbA4HhwJzAs1YQTzdP8WRc+wxYjOIxZmxoGysssMY+G30waI6iOUQdWC7z/h4k4m3dgnqz7AoclT0QOd7nwGnJi5ZzMeLxfwqwIiLz83zOnOQ0ZCNgR7onh/8S2DZyvN44ZrQltI1BwA7AskiumiutIP54Gqt9HNmwGJBzbn1kDvI7kMhR03d/hOSz+RkyNxkBnBo53r2hbWyH5LBhvJFXXQ9mm8a+K4qiKMpMQzXwFUVRvuMkSdqeRnRUq3itN5EFooFoom8aOV5vtfOL+rQKYCNJTocAoxAJlisjx5uY6L+/QcFC/Apzdf6x5IadNPkJsBCyeLsI8V5P630T2CdyvPs6v5Npw/TdOvAwsCbd7zNdoK8XOd6jndYb2saciLbuh4kXfet5A/FUNMk3SIxH5Hq+yFwzDFlcN4D7kg2EbJ1VciycjXgcFnGIFcRntKlDURRF+YYT2sZOiHF1nszhO4FfWkH8SUvZGvBjYD1kg/imJBF5J+3VkcT2vy4p9jyw0hlLb8atC6xIMz+QrwE8HDne+km9AxCngr8hEYRlvGgF8Yqd9LsqifzLcER6ZzYk2fy/EqmZPie0jTWR3EfzZg5PAn5rBfGFva3X9N07gJ+UFJkAzBc5Xjvdf0LbeASZP9VHD5yNX6z5a5rFfh0Tk3q/KCqgKIqiKN9k1ICvKIryHcf03X8Ae1PdeH8R4nn/OGJQH19Q7zJ0JaW9O3K8/1XoSx3x+t43aSvVev0Q2CxbR2gbeyd96UY0eGjzn4ut+/YDw5adFzH+Z/veunJLj+0D+Mk9rUpPY/kUYM3I8Z5rdw99iem7myIJafNoALdGjrdtX7cb2sYPaS+LtJ0VxDd1UGcNMeAvTf53bRywKHK/rZ9BE3gdWN0K4raLdkVRFGXmkvzmb4rIo82JjCkXWkH8bmgbGwF301OmpoE4FKxlBXEjqWceRALmxy1NnA8caAVxXKEvsyR1bJpzOp0HjCVxZHhp9gU5cJVixbdas7nXPSNObwKHIZJzE5Fk7OsCS5R0JQaG5W2cf5sIbWMuxLlhdrqP5+mz3NAK4gc6rdf03SUR54x2rBY5Xqk8YbJhM4XM9+vE5bbmvnmXhXwj/jmR45U5ECiKoijKNxqV0FEURZlGTN9dCFnAzo8kB738G+bhsz3VjffXRI63b1kh03cHIMlb92g5fh2we+R4ZTIov0WM99B9YT8vcKvpu0tGjpcmUL0Y8dw7HtGw5/G5FufoFXYgrtUWTa7NGu3fRUKr1wKWSo6NBI6NHO8y03e3QTT4W6kj46GLSM/MSDalWFKmDmw2ndptTSKbR0dzhES+4FDgRsRIk37n0vs7xgriz0Lb2Bj4M7AnEg4/CbgCOEyN94qiKN98kiiufyNjZir3si1wWGgbOyBSeNBzbKsjkXeb0LV5fTmS86aV/ZEowJMqdMkj33gPYuS9Atg9PbDC2Pf5+btPcvXCq1NvNtLkqOm4ddPtD565JCKFk97bQCQBfDupGgNYGJipBnzTd9dHPoMfI9J0VwB/SXIRVWFPZFOmlRqySXEQ0LEBH1ijYrnP2xehicwfBqYHDgnvZFy/gTw5V489liuRPASKoiiK8q1FDfiKoijTgOm7+yNJPg26Fn+nmb67Q+R4d83UznVR9bf+QcRTvR0eLcb7hB0QDzcn76Ik/Psg8g3W6aJ3W0RKJ03U+ufQNi4ANv94wKxzHPmDHU5v1uqz0GUcztZzZeR4hyftLJacG5XRkt2M7oblLHUkmqC1z6siuqtDEO/9a/tYa7ZdGNz0CpN7CZEVmqfg/GTgoU4rtYL4ltA2tgJOAVZODr8FnGgFcZCU+QLYL7SN3yOJdD+xgnhcp20piqIoM43f0LXhnR1TBwDXIJuzRY4DTUQK5r9JNNgmJe0cHNrGaVYQTyoqENrGECQxahH9kXlQt/F/v5H3s+IXETcuuDKTav2a800aGw6ZMun6Xd957OIBzTjMubd6cl9lNIAP2pSZrpi+uycScZhGOM6NJIP9hem7a0eOF1WoZnXEUJ+32W8gjhK9oUqemxcixxvZrlDiNHAt8j2sA8wST+bP/7uWV2abn2eGLspdw5Y/650h81xcJUJUURRFUb7pqAFfURSllyQeTn/LHEoXerMANybe5DN1IZdwF5L4rGgxfR2yCfFA5HilBmPTd+dAvOKK2N303SML7nswsHibvq5IYsBPSZKvXjHcd/dAwt+L2Mf0XTcx2L+Vc76ysdz0XQOJMnDokvr5HXCK6bubRo4X5lfRMbdR7BXWAG7po3a6YQXxpNA2TgLOLChyDbBAaBufpDIHHdR9R2gbdwILIPOMKK8OK4i/RnIfKIqiKN8ufkP+hngdmQOVyd7UEK94aO+RPTcivfZ6SZlFkflFGUNpcRyoAet++gbrfvpG+nZZJGn7vq1lWy6D/HtvALdYQTy6TV+mG8kc7e/J22z/akhenJPJd8BoZSzFz6AJ9DbK9G5ETq9oLtekK0qzCicAW9OS42m5Lz9kuS8/vPj4Ex45uJf9VBRFUZRvHFUkFRRFUZR8fkf+IrWOLCbLPMJmJKciC8tWI2oD0SzfJXK8+9sZ7xN+QLkHmkG+TA1I6PnkgnMpZWHni7a5dk7KDfy3UzzutRrLD6ErkqCWuW4h4JbEwN8XjADuKejPZGSxPb04GzFWfNXS7kQkUd9zwMjQNnbutGIriJtWEL9vBfE7nW4AzChC21g1tI39QtvYLUn6qyiKolRjScrH05H0nHNkSfOrVIm+alfm0wp1PECxQbqVuSqUGU/Xpn/673vAgRXbmF7sgMzRimT5djF9t10UAYjkTtHnWwP+05vORY73FV1OC63fjyawb+R4j1etzwri14B1gDvo+hw+RuSPOtkIUBRFUZRvPGrAVxRF6T2rUawlHtMlITJTiRzvKUSaplX79EFg04zmfBWqhD9/VXB8FySUvYgYuKrk/Ntt2v2c8oX+ncCj9PTEbyA6qn+GqYl2D8opB/J5L00fadMnmyY/RfT+s5/DK0hS32f7op08EiO7h3jKb4143dfJ6MkCiwBXhLbxs+nVjxmF6bs103fXWOX8Aw45/YhVXxpf7/80kiTx38AHoW1ocjtFUZRqfERxVFsd2RCfRL4R/3oriJ9I/r4NMYbn0QAetIK4NJLRCuKPkEjDvLYaiFzcmcgmfhXKDP0N4GUkWvAsJHHvU8DRwCpWEL9TsY3pxbxtzven2ibDA4huPHT/nJtIrqdzO++aEDne+ch88JXM4RHAhpHjXdRpfVYQvzR8g8O23mP1vbfbdp0Dr9h4/UMfHL7BYbXhGxzW7lkoiqIoyreKWrM5veR1FUVRvtuYvvsMYqTPW+w1gCByvL1nbK+KMX23H7Ahonv+YuR4L/aijjoSyr44mfseGE9iYDyFr/sNmDSl3u9qxCh6Z+rVn+jSv4Ykly1aHJ8SOd6RoW0sjCS73RQJs78ZOH/4BoeNB96nJVQ6w2mR4/WQo0mS7f0E2OKTAbMOPGjlXZZ5f9Cc61KrpXW8BP/P3nmHyU1dffjVyB13jI2NwGCI6DV0YgymBQihEyBNAkInCQkkooQAASJCJ5RAAInQew0lgOlf6L0qVCPABtOMu1ej74+j8c7OSjOz63XlvM/jx7u6V/deaca+9557zu9wUOz6T2ZjXRLZ8NfDi13/9AZ1OoQVeEOAVYGvgNebjIjoEiLHHIJ4D/bIKU6Bd4CVs7wEixxW4I1ApJnm6Pb2bpnF4e8+xPYT2vwz2NsOkxtq71cURVFaiRzzJOCEnKIUWf8sh+S1OZ9WmZzpwKXAH+0wmZNLJnLMwxGDcLUsTSUKbYwdJg09siPHXBV4EonEq5a5SYE97DC5PXLM3khE4gE01rKvx/52mFwxF/fPM6zA+xGyZmrEDyprniIix+wG/A4x+FuIg0QInGSHSaM1UkOydeFgoCV2/c5K8lQkD/8F7EvrZ24iDic7xa4/bm7HqiiKoigLA6qBryiK0nmuBtYtKCvRyRDjeUXs+i2I/ujctFG2Au+3wO1A2jOZXdpuwmvct/SaTO7eG4O0h5GmP00N46fATVbg7Zv1OwLxXK/H+Mgxvw+MA/pn11IkmdrB4x49Y/TYMUfvDdyGGJoNWjf8/0W0UNuQSaPcixhuy0NmTeHqZy4rTezZ75Xj1tjtT+/1HfoB8GqNsXwqcnBQb478qsGzdJjY9SchURELgq3JN96DvOfvIYcv9XSIF0qyzf19wOrV16eb3Tlj5e0ZPGsqG335Psh36VhavQ4VRVGUfP6GHIxvROs8XPn7MDtMPkEO3DeKHHMFxLD+jh0m3+a0dREwDDGsL43M+/cCf7bD5PlmBmOHyZuRY64HHI3k/OmBrCXOqBwA2GEyHTgicszjgBeAUdT3tq9N4poiCdqDZsa0gLgPyS0zkuJnKyMSkHUN+GPHHL0+sDFp2r9nueWr2SXz1rJROj9bq8w12bqrGfmjRhyOGO+hrXNHL+A2K/Cs2PXbfe+swBsK/DG7tx/wLHBW7PrzJPeQoiiKoswtKqGjKIrSeS4BajeXlRDua5HN42JH7Pp3AdsZafmp4964mweGrc7sUgkMg9QokRpz9ox7IptEqJ/QDgAjLbcgurj9qy9nfy8NXBy7/r2IDv+5yObzP4hW/Zax6+fJ51yMGBhA5rwSwLCZ36552fNX7he7/iu1nu6x689A5GSK9HtnUZNodzGgGU3/RfXQf3tE7qDtmscwKKVlrlu28vWgBKwVOWa9PAqKoijfeewwmQpsiczxzyFRWjcDP7DD5JKauu/bYfJinvE+csyRiAzN8cg8DzL3PoMY2Tsypg/sMDnMDpOl7TAZbIfJHgXe+8sgGv71jPcpcDkicXcKots+yg6T4+ZHJFrkmP0ix3Qjx/xz5JhOs/NS5jDxY2SdUkSJYucTAKzA+zHwBLAzhtF/ptl9UNkoucBzVuCt3dxTzDcOJ1/OqYSsJ/euLbACbzhisD8S+d4tAYwG7rIC73fzbqiKoiiK0nlUQkdRFGUusAKvH+LBcwCiPfoOcCFwYez6DY3WizKRY2575/C17z/XLpCDT1MwjHdj118pC5V+Hlib/MPj8g3/vfhvS82a4jXodlk7TOImxzcciAv6A9nwrWCHSTttfSvwlgeeRj7T6nD8EnB47PoXNjOGhQUr8LoDSez6uYcSkWNaSI6Bdu8qBb7t1mvaHpscel1LybwNuK+z3+1MqudQJNFexUPyPDtM5plnvxV4pyNembnGGiMt8+BjZ1UKy0CfankHRVEUpevJ5O1eAVYhf57+pR0m/5oH/W6AHBDUYwawph0m73R1/42IHHMnxAmk2mg/GfiJHSb3NdOGFXjXIobrIonHp2PX37Tg3u7I2ql6/VMhQfIfPIF8dlfErl83R8G8JFtb1kuWnAJnx65/VM19lwC/Iv/9JMCyC/K5FEVRFCWPRdWbTlEUZaEgC8s9PvvzXWOXj3sPSo00Naq87luRa6OswDNi10+twDsO+DeyoWpzg5GmFy01a8ovmuhzGWRj2QxFRoE53QKrkZMcN3b9D6zAWx84BtkE9wGeQnT2/91k/wscK/D2Qg6Y1gNmWYF3E3BS7PptDOZ2mMSRY16ObGjnUPmgLl9hdK+WkukC+wMPW4G3U+z6RcmKc8k8LZ9EPsMKqwD7RY75QztMHuvg4zXLTOp4WnYvz9n7l4G71XivKIoyX9gWmYPzKCNe711uwEeSp05D5vUi9lhAxvtVkAi/2qi4vsDtkWOuZofJe000FQL7FJSVgKvq3LsVMLSgzEQkEXcH9gKOtwJvl9j1729iTHWxAq931uZo5ADlNmBcvXxA2dryszrjNYA2hvgsl9PPKV4XmMBPkEhPRVEURVloUAkdRVEUpbP0GDxrapprvAfxwIeJlc1XJn+zC/BuVa1vgb/c9n8XnItsCgtJxZ7cztheh2a0VQvrxK7/Uez6h8auPzh2/V6x62+xiBnvj0L03NfJLvVANvTPWIG3Ss4thyOSQy2VC9PN7lw8agvuGr72HPkhRDbB78SQzgeG11wzgJ7A1Zk35rzgtqICIy2z+aQIQ4xFs4A/z6MxKIqiKG3ZqE5ZCVg9SzzbpdhhMgXR3c8jBW6yw2RBzfWHIQ52tXv0EjKHH9pkOw/QmoepckpdMYQ/QX0d/yFNtF+Zr3sAt1qBN7jJceViBd5KwFvIwYMDHILkbPq3FXiNEg7XSyicAE9agbeVFXiVPEw9gEbfq7l6HkVRFEWZF6gBX1EUReksj6371fiSkZYrxvo8Lq/+JXb9OwEb0STfEFg6dv0T+rfMqKvnVsbgqcGjkrFjjj64ic1chVeB18gPry4jckfPNtnWIoUVeEsBp2W/Vs/1FU3YU2vvscNklh0mhwLWo0PsY45ZYzf22ORQblp2g0o0RQpodq4AACAASURBVDX7W4G3RLPjiRxzKeBH5K87SsCywNhm2+sIseu/iCScboORlumVzOZnH/4X4FFgtB0mL82LMSiKoijtyMtbU00LMHse9X0c+V7oDyCSiAuKDSn2DDeADZppJHOc+AVyMP8WEok2HokW3S7L9VPEK02PVubvPohHe6fIZHBuBazskknrWmF74C8NmvgrUJm7K2vJyrrvXeC/yGFAZAXeo1k/75Gvm1/htWbHryiKoijzC5XQURRFUTrFrpscNmG62SNNK9Zd0byf83fvZNab07v1PL32vmxjWbs5+gDZUK1AtnmV3ZdBiZSPew/kTHs7E/GQHm0F3g9j16+7sbfDJI0c8yDgIcTjqrIhLCNGgQPnRzK6BcSuQPeCshKwsxV4fWLXn1ZbaIfJxLGB93mD9nsjRve3mhzPMBo7DdSNwOgMkWOu/nr/EVsss/L2y3zce1CCYczx8k8xxo2e9L8zl5v+5XN2mDR6XkVRFKVruQX4G8U67TfZYdKSUzbX2GEyC/hF5Jh/BXZE9sQP2WGyoA/1J9Oab6eWclbeFFmumguzP00Tu/4rVuA9DmxWMI5aEkQOr7P8AHHqKOIgK/D+VHToELv+ZCvwRiNe+z8FBiGJkTcGVsrp63HgPMTwX0sCTABu79ATKIqiKMp8QA34iqIoSoexAq83PfpcR5qmGO3dswfPnPLylz37bppnIM7DDpNy5JgnInq36Zv9ljYmd+tN2Sjx3yVH8eCw1Zhh9qj0MxbRX72+iXb/L0tY9wdgJ8RQcC9w+mLubd2/QbkJLIHoAOfxWYP7U2BSB8YTI4cmRYcKIBERXULm8X/tt916bn3aKjswodfA9lEEhtH9P0uv8cAVx9w9TwxEiqIoyhwP6w2B5YD3gedj10/tMHk/cswzkPm52mhdMVSfOI/GszywNQBjjn4wdv0z50U/neQGKmNrTykrnx/sg0QjrErxgUIFE0ls2w4r8Ppkbe2ArL8eAK6KXb86+mL1BmPph+TOebeoQtbeGdmfioTgTjlVS8DS2ZgvBQ5E1jNpVvYFsGPs+rMajElRFEVR5jtqwFcURVE6w67A4BxpFQC+7Nl3OSRku2nsMLkqcsw+wGmXrbD54JcGLktq5O4Zy8iGsKEBP2v3NSSU/LvEC3XKUuBj6ucI+A9ioB9M+417Gbgndv2mDfh2mHwdOeZ15CeOKyOe/P/XbHv1iByzBNwDrHfniHX4tPegoqqjkZwMN3dFv4qiKEpbrMBbB7iGtslqX7YCb9/Y9d8APMSofzQwCvGAvhU43g6TqIvH0h3Rvt+f1nkotQLvCuCQRlF984mrEQmfvPwAjwM3zo9BxK7/sRV4ayNz5BbAeohHex4pOXJEVuAtDTwCrEyrpM2uwB+twNsidv0PsmuNIuDKwFcdGD6I9E5KfnRHCvwwdv3RVuBdgiSs7Q88B1wfu/7UDvalKIqiKPMFNeAriqIonWGFwhIx6g9CvKa+7kijdphcEjlmGPUb9kpqlOyCahUdd6WYRxAd2zVob4A3gLNj18/LDQBA7PozrcDbDzGkUNVGihj+j+zEmI4E1kKS6ibZOErIQcGeXShntDWwPsAjQ1ZulXZqTwLsgRrwFUVRuhwr8EYAD9N+vl4TeMQKvNXiMJkE/CNyzEuAAcB0O0w6dPifHdqmTcwhf6O9vr2BGPS/pXPzWpdih8mMyDG3Bk5AxjoI+BLxFv9LJv0zX8gONG4CbrICry8wDtHgrxjGE8ST/ZjY9fO84y8BKoljq9chywJXAmOy3+9B1ooDyD/gvzt2/S/n+oHaYgDErv8C9R0eFEVRFGWhQQ34iqIoizFW4A0AtkU0y58s2GR1hrhB+RRkQ9xh7DCZOTXwxiEbvyLvqec70/bijhV4qyB5AnZH5GpmALVJfy9A9F/rErv+XVbgbQQcBWyJRFTcghj/P+7o2Oww+TJyzI2BPyJh68OA6cD9dG2iwi0qP8w0uxcZ70G+W70hk4QSo9Is4NVMO1hRFEXpPIcCA3Oul4ClEAO1D5Kzhg4e+EeOuS1wLLA50BI55h2IkbtdElYr8AYhGulFHGIF3smx638VOaaBaKVvjMjM3W6HSYfnvM5ih8kU4A+RY3pIgthpdpgUHrjPD2LXn2IF3hbIO/wlsCSSOPb82PXvr61vBZ5Fq2xhLSVgcyvwVo1d/83Y9adbgXcgElVZkbKBVoeB3+eNKXLMFZFkxHsic/mHyIHReYw5+n5EbjEPA7iv4UMriqIoykKGkaaLa/4+RVGU7y6Z5uxRwMm0NeDeBOxXoz/amfb7Ap8gOuq1Ht4p8PfY9X8zF+2vjiQhK9F2A1gGWoDVuvAwYrEge2f/pe1nUtGufQDZ2N4Su36XyhJ0hMgxf4Qkh6t434OMcQqwuR0mL3dBHych3oucaW/HvUuvUSTFBCLf0B35tzIguzYe8GLXv25ux6IoivJdxQq8pxHt+zxSYFzs+kV673WJHPOniGxLtcG3jBw0b2GHyTM1Y9kKeLBBs9uMe/SM14A7asZdRhKe/mkxTnzfpViBtznwaINqP84cBQYiBzrLAochh/AzkfXqmbHrf1R7Y+SYqyCyewPI0eef1KPvbXttfPAmGMbQmvIyEvW3Zuz6jXL9KIqiKMpCRTOZ5RVFUZRFj/2QcPFa7+s9gHBuG88OAH6GhFBXPMMqf79MZkCdi/ZfR3RJZ9QUTQN2U+N9LqdTc6BilpNS75ZZkKabA5csYON9d+Ay2hrvyX7uC/y9i7q6o/LD7vHzlNIUI23nvFjR1B0O/IVW4z2IEeFaK/D27KLxKIqifBdJEAN7HilyGN9hIsfsRet8UTuX9ATOzbmtdi3RDrNcno7MH+vXFJUQT++DOjzY7y6fNlFnthV4NyAG9QiR0vkCGBW7/ojY9X+TZ7zPOIMC4z3AkFlTdj3/pWv/gzg1VPMsMEaN94qiKMqiiHrgK4qiLGZYgVcC3gVGkh++DOLB/mYX9LUacAQSav4tcAMQxK4/bW7bztofiBjyl0MS3d0Yu/7krmh7ccIKvP6k6dcYohez1IzJ7PfBE4z97E26p2Um9OzP2/2WvnbMpOjnCyoUP3LM7Wgctj7SDpPxXdDXDcBeAE8NHsVpq+zIlO5tzrLGI4dc9yIe+LWkyL8hO3Z9XSgpiqJ0ECvwPMRzvYgjYte/oKPtRo65E3Bng2pt5pIsge14RLqtdl2UAhPvfOL8vfsmMx/Ja+ztvsPSW6zvT3lw6GrPYxifAgHwoM4PxViB9wSwCe2N7GXgbUT2Zrma8opE4max67fT+88Ob46hOSeRmcDSY8ccPRxYHhifOYcoiqIoyiKJauAriqIsfljIZoXu5RbW+2o8fVtm8G7fpfhgiaUqdcYAc23Aj13/Derrys4V4x49Yy1gG2BdJJFbn+jRM/5ph8n0edXnoshZL1+/9+/X3tsAGDLzWy568WoGzZpGKXN+HDpzMkvPnLwvcshycFE7VuAZ89AgsWQTdQYjRpa55eeIHu4hG3/5Xt+bnrqYB4euGt0zfK273+w/4iHgP0g0Sp7xHsTAs1L2539dMB5FUZTvGpcikigjaC9j8j6SyLQzDGhcpW2d2PVnW4F3NCK7U5GWo+rn5/fd6MBbe5Zns87XH7Fn/Cz2FHHSvnmZ73PRSmMNIy33Q+RdysA+wEVW4B2uRvxCDgQeo+3cnyKSeQ8jORJqMZAIiD2Ba6oLIsfsgRy6b9Fk/z0RqZzH6YL1rqIoiqIsaNSAryiKsvgxC2DM52/z2+g/DGhpjRx/ccCynLLaj/iqR992nk0LG5FjHoYkXK1ssJdHNnb7Ro65lR0mUxfg8BYaIsdcfS2MiwbPnMKXPZZg3/FPMWjW1Ha6AhkHRY55UXWSPyvw+gBHI5vt4VbgfQhcDJyb5wHXiKy9DZGN+jOx61cOW15rcOtMxKgz19hhMgtJAngSMKpnueWbI/2Xxh/ZdpxmE001U0dRFEWpIXb9L63A+wEyn2yfXS4DdwGHxq7fqUT3wIsNyqcgEVS147naCrzpiGzaqtnl94AhwA5TuvU0phi9GDd0FR5ZamVOfOMOhs/4hotWGgtpWp1LpfLDocBDwK2dfI7Fmtj137ACb23gcFoT2t4PnA/cgqwR8qJEE2BXagz4SPLcLZrt/+vuvTlh9V3GvhZ46wD/jV3/uQ4/hKIoiqIsRKiEjqIoymJE5JhrA2eevdI2W//2nQeAWrc3g/eXGMKxa+y2zIuHXPRJJ/vojciTbIroyt4MPJGX3C1yzIGIp9qKwMfAtXaYTGyij2WBDyjO1XKiHSYndWb8ixuRY14MHHS9tYFx6YpbcPuTf6d/S6Hcbwr81Q6T4wCswOuJJLgdTetmuvL3XcCusesnzYwjS5zsIeHt/bLL3wCnAGfFrp9GjvkYsBn5n+s/7DCZZ9EctViBZyFe+nljSZEkzSObfX5FURQln+z/22UQGZNm9NHrEjnmA8BY8v//PsMOkz/UGYuBRAWAOAn8uLYdIy3Tr2UmW372JneOWJfUyFUjLCMyOtt15hm+y1iB9zqwWkFxGbgndv2dqi9Gjvko8AMa5PBLgWuW2zi9cuSmRlJqcwb/GLB77PqTOj1wRVEURVmAqAe+oijKYkLkmKsBTwB99v/gcVIMzJr8cSVSVpz6OTc8fcl6dMKAHznm9xCPs2URLykD+DVwa+SY+2Sez5W6OwA3IolVK170p0eOeaAdJmGDrg6j/ibtAEAN+ML6gLFX/CwTeg2gd1LXaT6l1bgOIjUzOvvZqPl7J8SwcVuT4zgGOLXm2gAk2VwKnIUc5jyAeD9WtPhLyHfqqCb76RJi14+twLsMiTyoxQBOVuO9oijK3BO7fgzEHb3PCrwVENm39YHJSJ6dm8fBvkjS09qEszcCxzcYSwp8bAXeIHKM9wCpUWJy99681W84BilpfjqhEuKcoHScR5B1QN6LLQGP51xfigbGe4B7l16TK1YYndfuD4BbrcAbo7JHiqIoyqKIGvAVRVEWH/4M9AFKA4o9sEkhNWBLK/DuQ/TrDwFGIZvrS4HzYtefWXtf5Jgl4A5aPdeqXZt2A/6U/SFyzJFIWHlFY7yy6eoGXB455ut2mDxb51l2r1MGMOyZX/Xd48klV/rhY0utPPjZwSvESCTA49Ubs8gxlwC2BfoCz9ph8laDdhdFvgHKJSj99p0HmWGYmBTuckvAM1W//5S2esDVlBEjSUMDvhV4fREDfhHHWYF3YRwmH2dRIrsg3pOzkWSED+VFcMwHjsjGcBCta6JvgRNi1790AYxHURRFAazA2w5Zc/TILqXI3PGrsWOO/tG4R8/YCNgK2BKRDrzTDpMXOtDFkjQwCPcqz6bOxFRGoriUjnM+sD+yRqz+DBLga+DynHteBFamzmeWAtcutxGkaYrRLmyihDgsbAQ81fmhK4qiKMqCQQ34iqIoiwGZcX03mvBOMoAEYzZwHZLIs2LAHQWcDmxjBd4OsevPrrl1C1p1Y/M4LHLMk+0wqRhEexZ0nyKG018UPMvAbCyFJBjdBs6eftOOE15lxwmv8lr/EZy82o+PmNSz321W4O0du/6syDEPBM6kyuM8csx/Az+3w+Sr7PceiLb+NDtMmvIOjBzTABzgN8DqSHLdEPAr7c5nrkOMGAD0SsVpfIrZg1us9Xlg2Gp8260XK035jJ0/eXHS5pP+d3PVvYMo/s4YwMAmx7ARckhSxCBgA+Dx7PtxU/ZngZJp/B9uBd7JwCaIEeix2PU1v4KiKMoCIjsUvhEx8NZGh40FjrHD5AQkouuBTnbzCTANcXzIZauJb/DywOWKikvAPzvZ93ea2PXftgJvR+BqYOmqoveBPWLX/6JyIXPEGAj8A3EqKGRyt97pJ70HGeR79lfYDDXgK4qiKIsgasBXFEVZPCjR/P/pxqmr/ugL4I9V90Lrhmdr4GdAUHPfGg3aHQScFjnmTwCrcjHB4KWByzGxV3+GzpzMul+NL5mktWHv1dT1ihOB9rTN5my1yZ/yt1du4oD1nV3LRulPkWO+CFySVa9mB0TuZyvgD8DvkQR2RI75DHC0HSaPNXjOcxDjfeXgY2jW1o8ix9zMDpOvG9zf1VyNHCj8oHJhitkz/fW6+xofLDEE0hQMg5cGLsuLg0YOAX4bg59VfQFYk+L3/dK8HPjCQuz6nyGenoqiKEqTRI65IhLFtz4SvXQ9cGN2UNvM/csgRtmhwFvADXaYTAH2BPrXufUgK/D+PDdSKLHrT8tk1H5dW1ZKyyw77Ut2nPAqX/dYIr1ihdGGkaZpKl7dlbn/SuSQQekEses/ZAXecsB2SH6Ed4CHY9cvA0SOOQJxKvkJcpAzGTms2YqCqMHu4sBQz3gPML1LHkBRFEVR5jNqwFcURVkMsMOkJTNAr09jL/w7H1lq5fWRUGUzp7xMvgG/mcRfR9GaBJU3+y3Nyav9mIm9BsypMHTGN/zh7ftm28VtfIpssHoXVah9wBIpy0/7gk2/eIcnhtiHzjZKH3ZPy3nSMAYSSXAtsimsZn3gwcgxt7TD5Mm8fiPHXAcx3ucNYzXgd8AJReOeF9hhMjNyzO0QCZsDgaH/GrnJ1A/6LCke8VkUeWrMGe5pVuDdELv++0gCv19S9ZlllIEWxOOtGZ7O6tdbV7zfZFuKoijKQk7kmNsjEms9kPmjDPwI+FXkmNvbYVLXUBo55hHIgbhJ6xx0ZuSYP2bM0XWj8BCDfy/m3hh7DHKIvWU2/hQweyYtk//05l2fGzDkZ+OferuUpg9etsLoUYiES4ysj+6oGJuVzpFFet5dez1yzCWBJ4HlaF1r9Qe2ya7fC6yDRIWugnx3Hu6TzDoF+Uy3plgaUA/rFUVRlEUSNeAriqIsPpwG3F6nfBqicX8MhnE3xYb+EuIFX8udwFQk3LzWw6naAGwATOqxBEevtRczzO5tKk7q2Q9vzT1WPirwrCyxXRvsMJkWOeYVSCLbdhS5VpUxWPvrj3hiiD34m+69Bw+ZVVcFZa+ca5X3cQqymc9jX9obu6v5BfPAgG8F3jKIl5oJjItd/93qcjtMppHlIIgcs/vNy27wEcWSNgbyHKfGrv+CFXgOcBlihKkceswE9q7tpw4tND442hGJilAURVEWYSLH7IsklK2WuKnMAWOA46iTTDZyzK0RHfQKlTb6A/8eMvPbEyf17Nf+xla+BIqT/dTBCjwbiVibAdyHGIV/iMgQ9gQen96txzU/vHDilMo9J2Z/lPnG4Yi8YR6bAafbYXIqzJGQNOwwEf3AwPsW2BxZ01S+k5V12xmx638874atKIqiKPOOhlrJiqIoyqKBHSZ3AIfS3iPtBSTkeJgdJkfaYTIDeKVOU2Xg5eoL2QZpfeBfVXUqpIgBt40n2l0j1mGa2YOy0XaqKRslWoxSTyTsvggPeKKqrybC5FNaDJNSWmaJllmNKhcZ4EvAFpFjDigoH0TNc+aUdxlW4JlW4J0HjEeSul0KvGMF3tVW4PXKuyeTLsg7gKlQBpaq/BK7/lXAskj0wLlIfoJlYte/swND7UPjNUWXvhtFURRlgbEnkl+m6P/9g7J8MUX8BokCrKUE9Nvh01cOzsqL5v7LOiqfYwVePyvwbgHeRubTaxAdfA+4J3b9/WPX/1ns+pfErj+lXlvKPGcvij/7BPn+AWCHSXmO8R6IXf/5Pi0zt+zdMuuZqns+RqSSjpkXg1UURVGU+YF64CuKoixG2GFyceSY1yLezgOA54Fn7TCp3Qj9A9nMlGhrzK54KV1QuRA55ibIRneFqnrfZvdORbzwdgRWrO7g5QHLNhruFnWeY0rkmFsiWu2/zfpKAaPI/b0EPLHkSgyZ+W2jfpuhR8H1V8iXHQLZVL7YFZ1XcQI5+rzATxHvwQMK7nsTSbCbZ1wpZeVzyDTgz+n8MPka2SCPoPhwpKvfjaIoirJgWL5B+RDkYLcoFG59CubSBANr+lcrkS/tVgKeAf7SkcFmXAX8uOZaTyTq7gual4xT5j39qa9lnyuxmB0aHXY3HAsMn9ytF9PMHm8PnD3tD2tdMbMjTgmKoiiKstChBnxFUZTFDDtMvkE03guJXT+yAm8fJAFqD1r18MvAwbHrPwsQOeYoJGlY7WapL/A5sKodJl9FjjkUMfDPMRh3TxMMUtL8PViKyLTUY1VajfeQbeYM8jVs/m/wKF4fsAwAf159Z05/9eai3d/twC4FfZaB/1Gs938VYjjI8zw0gfMK7uswVuD1AY6sU8WxAu9Pset/mlN2PvDPnOtl5PCl7vejo8SuX7YC7xzgzJziBElO90BX9qkoiqI0xgo8E4nCWwX4DLgzdv1pc9nsRw3Kv6K+Pv03wDByjLQGMKVbT6Om7BNkbr4W+Ffs+h2Sz7ECb1Vg54LiFDjWCrx/xq6fFxWwSBA55hbImmFTYApwHXCOHSafN3Gvkd23K5Jb4HHgNjtMZtXU6w18H3lnz9lh0mgdV6/PHoijQRl43Q6Tlqqx9JncrRf3L70Gb/cdxhLJLLb4/C3W+fojDFlr/V9Bs8ciBzIpQP+WGfRvmfE94PbIMXe2w+Suzo5XURRFURY0asBXFEX5jhK7/k1W4D0G/BwYhSRm+1eNLv2vyde8LyGbbxc4GzEY702VbX2zSe/w/KDl8zs3DANJflePw7O2cjf4FaaXunP38LW4bNTmcxK2Pjd4Bd7qN5xVv21j256CeJmfDNyDJDnLe65TcyIWALDD5OvIMQ8FQtoa8FPgz3aYNHqmjrAGclBQhIm8/9Nyyi4H1kUkleYk5kO8IXeKXb9LwhRqOAewkUS60OotOR740YJK9mcF3pLId9wGJgBXZQl8FUVRFmuswFsDmWtXqro82Qq8/WLXv2Uumr4RkVzrTX6k16V2mNT7P/8qxNDajhIp44auWn0pBWbGrr9F54YKwOg6ZQYiI7cs8EGjhqzAM4AdgIOA79EqcXfzgprnIsfcLxtDZd4dgsjF7BM55qZ2mOQd9Ffu7YEY+3dD3nWK5CB6J3LMbeww+SAzqv8ha7MiMfhl5JgnAX8vWjMV9GcgUn3H0yrn90nkmMfbYRIAm77Rb/jgP661B1O79aKUlkkRWcYtPnuT4978d2qStnNCiBxzEJILCNqu7UrZezk9csy7OzJWRVEURVmYUAO+oijKd5jY9SeS7zVdYSz18sZK+dl2mPw3csyDgQsRQ3G63YTXjNtHrMNHfZYkNaqaSFMwjLcRI3g91qdAX3e2UWLfjQ6ib8sMJvbqzwyzveLNs4OXrzXgb2KHyWsAkWPuhUQf7FhVPh04zg6Tq4oGFDnmysBFtA39rxxaLJV7U+dpxsPwRCvw/h27fpucBZk28GFW4AWI3M5AJK/Bv2LX/7KLx1npswwcZAXeBYg+7RLAU8DtsevPrtSzAm81RHP4x8jn+x/Aj13/uWb6iRxzA+D3SJK66cBNwLl2mEyorWsF3vbALYiRqRJlcqIVeEfFrn92Z59VURRlYccKvP7Ag4gxt5p+wI1W4G1cibbrKHaYTI4c86fI/7+Vg/aK8fgpCozzFSb27HfB0Jnf7m3IQTVU3XzfsNV5rf8y1dUNYGRnxllFM57izXqT/w04itYh28C2wL+swHPntxE/cszByNorpf2aaTkkarBIbg/gJMR4D22dJkYBt0aO+X3EcH9qzX2DkajDFPh7B4b8e+CMmmvDgSsixyxN7tarz3Fr7Mb0bF1XnUfpkaGrYk/5zNj7o2f65LS7NSKJlEcJiepcEYkIVBRFUZRFDiNN9RBaURRFySdyzBeAdcg34peBO+0w2bWq/jLAzxB93DFfd++96kUrbsnDS61CUjIppeUUuKFslH6T6a7X6/tBYEtyjPgtRqm87ejflTCKzhbAff8Jfj7+v9Vj7VGd6CzrY1VgY2AacF8mP1RvTNchydWKEvfZdpj8r14bzWIFXgmRDFiB+oco18eu/9Mu6K8XYuzfjdYQ+ksKJHo628eGwMNZ+5V3WEaM6zvFrn9/vfsjx9wNMRhB28/gE+SAZnxVX8sgG/Ue5H9eW8eu/1BnnkNRFGVhxwq8w6jKZ1NDGbgxdv195qaPbA49DNgQkcW5HrjGDpPcA2gr8NZHPK9/tETLjNIh7z7y0bYTXx/YLS33j3sP5NZlvs8dI9Ztd+hvwITUME5HZHB6IvPIxTURg4VYgTcUiTLsXlDla2Cz2PXfaNDOaOCxOlX2jF3/5jr3D0QkCCfErt9Sf9TNETnmr5AE90XMAPpnCe5r7+0JTKTVqz6PrYE7kEP5PCYBVjNyOpFjLoFEwvUtqDLxTHvbm+8ZvvZheYVGmrLkrCkEz16x5LqXT2/jjJAdKF3dYAir22FS9zOeWzIng0NojfoLgHvU819RFEWZW9QDX1EURanH7YgUSx4lZFM3BztMPgZOr/weOeaGx751z9b7vf9Ej3uXXvOFq5bf9LHY9b9usu/rEd3ednRLy6Uhs6a8Oqlnv6JErWz05btt2qo13mfjfZOahK5FRI5ZAnYv6i9jdyTx7lyT6cofBdxap1qJtlEEncIKvEHAOOSwpowcGIwFjrQCb9vY9Z/uQFvbI9I9qwGfIpvXKzNjxcW0Nd5T9fM/rcBboUiDOHLMPohEQJ6s0tKIR99Pqq7tn/WVR4LIQ6kBX1GUxZVNaY08qqWERDHNFdkcengzda3A2xzJhdINKE3t1oszV/6hdebKP8RIywekGP8AurU7mDcMSuVkWGKY59Aa8bYJcLgVeFs3E0UQu/5nVuBdiOTVyaM/8JwVeMcA/6yTI2A/Wj3vaykj8047A74VeGsha6PtsvFPzPLGnNEFHvtDG5T3QqQQ8xwULOob7wF2oth4DxLhsR7w3zp1KvyAYuM9wLAJvQYsW1SYGgaTevZjpx/8ZnrOyc1/yU+RRHb9c8QpYp4ROeavkaiEynckQdaFQeSYBzSQlVIURVGUuqgBX1EU5TtA1o26nAAAIABJREFU5mW1O2IQT4C7gX/nGbVruBjRNB9Oe83314Eb6t1sh8kzwDM2Yin4a8eGfRXgAJvV9GsAD0w1e56KGGDbbqbTlM2+eAd7yhwH/w+RkO25pRvF3nsV8sK6O03s+rdZgXcXsoHuUqzA64F4M66NfC/WzoqqP+e+wE31DOs1bZ6MaNBWjEbLI5/frlbg/RHZ5OdRQvSHN6PYu/FHiBRQ0f27R47Z3w6Tydm1tSg2XpnIYYWiKMriynSKo7cq5fMFK/D6Iglou9NenzxNjdKpu8bP33HbMuvtnsnstbk/MUqVC9UFfYHrrcD7Xj0jeJbE9yzqHzSUEKm1c4GTrcA7OHb963LqLUPxO63MY7X9rwY8mbVfuXcoctg/EjnwnhsaeZTnSetU+Jpio3eFKU2MYaXMA34U8DFwuR0mT+XUy5uP27DZpHd+/EJR/iTASNNpqWHM8fbPnCt+D/yO4ucwAD8vCqGriBxzNeT7A63vu/K8LiJn1U67X1EURVGapZ4XoaIoirIYkMnavAxcA/wS8RC7A3gycsy6nld2mHyOeEzdg2zyQIyi1wNb2mHSlAEgcszBkWP+NnLMKyLHPCNyzLUb3ZOFY2+HaOlWrPETgBOAnf73q7MfRbzP57jaG2na8oNJ//v0mDfv/gaYjISOj8ye9cjIMRtuHuuMZxbwEnJgUEQzHmgd5ZI6ZWXg3x1t0Aq8NZH3diNwHCIjlLfxrRgktm2izfVoTSBXec+VdcaOSCLZRgyuU9bIy9Csuf8L6hsleluBVxRdoiiKsqhzC/X3enUP4LsKK/A2AD6i2PhtAMPcD55cc9TUz/MbyZfLKyEG4zENhnAi8BuaMB5n9AOuziIGanmX1rVQLWXyPbxPRA73q/uvPNAhVuDZTY6riLupfxhjUDD/2mHyBXAv+euaFFlH/b1B+9OAfyGyMdshUQr/jRyzVjMfJOFvXemgLT9/i27lRPIltRtRmqaGcUXNgc25SF6CYQVNzkJ0/s8tKG9D5JhG5JgjI8dcITscaJb965SVEWcYRVEURek0asBXFEVZ/LkK+F72s0nr//0bAuc3utkOkw/sMNkJGIF4UA+zw2RfO0wmNdN55JhjgA+Ac4BfIJ5SL0WOeVbkmPUMrNhhMtUOkz/ZYTIM6G6HyQg7TP5S0VrNNNNXRqQCbksNo+X5QcsP/7T3oAEp9E9bJVRWAM4GrmrUZwN8ikPnXwfqarh3kvuAZ2hvNKhox9+XeRjOwQq84VbgnWEF3gdW4E20Au8mK/A2zsp6ZeMc3oExrNBEHYfiw40ysA0NNu7IOyyikdTRt4hkT4VrqL/OGQK8kEkmKIqiLG7cjyQJr6WM6MGfN68HYAVeH8QBoH+jutNL3fu813dokbG+HsvV6X8JKrI5zed9M5D59uicskspnldKwD9q+jeBXevcAxId2Wkyr/Jv61RJkEP6In6PyOtUz9+Vnw+1w2Qi7ZPOVlOJPCxV/QE4NnLM7WCOUfwMxJmkrgLAwNnT+c3/HgDDwEjnDEk+PMOIEGM8Wbsr0hpZUfvFSYHngBF2mJzYjAZ95Ji7AK8ha9b3gHcix/xFo/syRlK8BqocNimKoihKp1EDvqIoymJMFtKbmwgW2ezsGznmkGbassNkgh0mL2YeW832PwC4i1b9VJPWTdbvkIS3TWGHST3j75+RTXKvnT95kRWnfl4rlF75cR9gy8gxR0SOeUjkmL+PHHOzZo36dpjcgGzqa8OwXwG2nxf6ppl0zQ8RXd3q9kuIHMG/gPeswNsRwAq8kcDzyKZ8JOK5vhvwpBV4ewJ7Isb7jkQjfNREneEUeyaWsnFcXVCnDNwbu349fdqHgQgxRuRxaU0SvccRzfxK+7VUPvPTCjwtFUVRFlkyL+VdEONrRVqsBYm82rRRIvku4ifIYWnDPecMs9sTnezjg6KCvrNnrLvnR8/2veapSxj32Jn89MMsSK6xMd8kJ0dA7Pov0qqjnyJzS2V+OS0nEbtJY8na3o0G0wR5+vYVDGBqUaEdJm8B3wcuA77K6t4PjLXD5Jqs2knZn+rcAN8CT1E/KvGiyDF7I44IR9Gk7WHHCa9yzkvXsdmkdyil5c+Ruf8EYOPY9audR3ahvmzOejQnAUTkmHsCtwGrVF1eHrgycsxmZI7GU/x8Zep8TxVFURSlGVQDX1EUZfFmtQbl3YAVgaa86TvBz5Bw9DzKSCLRq+o1EDlmd0T7/JtMxqaWMUjYNgDbTHyjMMNc1ueZiN57dZWnIsfcJfM0q4sdJmdGjnklsnHsj3h4PdaMd1dniV3/K2AvK/CWQcLl16btptUC7rACbwvknQ4jR2cY2aBfRXESvlrKiHzRfU3U/V+dNhPg7WxsKyCfWWXTX0IOQJx6jdthUo4cc1ck78HSWZtGdv8DtMr3ABC7fmoF3oGIgeF0iuV5ysDBFGvv52IF3srAaCQ8/97Y9Qu0HxRFURYMsetPB/5gBd7xyLzwVez6TRk0u4i1aDzfpMAdy874+qTVvvn4J2/1H26UjaZ9zGZRELkVOWbpyu69Txw0e7pYT/ssyTUjN5HC5rz8Z+ZdjF3/PCvwHgF+hayfYuCK2PXbSejFrj/LCrwXkJwrRQ/1ZDODacD11MyBVZSAm+rdbIfJ+8BB2Z+88jJwYuSYZyEJhFPg/4BbqS9VNwrR6F++Xv95rP1NzNrfxACb2WFSdLjf6PCj4uiQ+1lWyOQVz6B9voA5B/2RYwYNZCMvB46sM45LG4xVURRFUeqiBnxFUZTFm2Y87MqRYw4DPpsHRujVKU4kWsrKc4kccwnE4+tXiKF8emY4P84Oky+rqv6YqiRsfVtmNLJM5+mebwjcFjnmZs28gyw3wD8b1ZsHrEh+8tUS8p5PAMZSHHHRn/YJiYtIkU3vPrHrN5P47XLgD1nbtRt6E7godv1vrcAbiyTN3TGr+xBwd22SXCvwBiKasbsiUkgPM+boC8Y9eoYN/BTJzTAd0Xn+T170Q+aBepkVeD+jWCe5hMgwNUWWjDGkrezBbCvwTgdOiF1/nh3kKIqidIbY9WfRXCRVV/MljeebJ4H97DD5yj5l22Pf7D/ir0aaklYb2XMS22Z0R6TtDsgp227Q7OlbkQ3g/qXXoF27xaRI1Fsuseu/TP2kuNX8lXwDehl4FTmAnlvOQxwmRtL+fd+NJFCda+ww+ZYqWabIMT+hcRLc5TvZXYocjrxXp069w48y8LodJs0cWK2JvLsiBiARGYUyiXaYvB455u+RhMmVQ6vK+vcqNIGtoiiKMpeoAV9RFGXx5kngQyQRae2mrowYQJ/Jfn81csw/22FyWxf2P4n6Ui25cjyZ1/29iIdzhd6Id9joyDE3yTaSIBv4ORvIt/oNZ/AX72Dmq7mUyN9slhCvsk0Qr7KFlXrJZE3EeN9IGuetBuWfIFryjwEXxK5fb/MMgBV4ayHe/bV9VzaxZyOh6RWj+gPUMVpYgTcCkcAZRevntTZw0NgxR28Xu/4/qNEabsCnFHuBloGPO9BWgEgSVdMdOB75PjeVKE9RFOU7wLXIQXyRgfcm4CeVg88Ljv+Pf/8/f/dO2TAunml2F3m/NG3BMIr2rAbwMyvwfh27/rSasn2pciD4okffZg34ZURK5vRGFWuxAq8fku+lD/B07Pr/i13/Zivwfpu117Oq+nPArjUJWTuFHSZfRI65GXAq8tw9kfnoYuCUeSHvl3EVDaLn5gID+IsdJkWyeQCPIO9xPdrP7yXgtCb76tm4SuM6dpicHTnm/yEJfVdB1h4BcNc8/AwURVGU7whG2nxCH0VRFGURJHLMsUgSue60bnAqRtFqo2bl518AjyKyIhsjeqg3AdcXSNjU69tGpFOKOMUOk3Zh35Fj7g1cV+e+I+0wORfACrzdEC9sANb6+iPOffn6PCt9M7Ixv7fD5OwGdRYYVuD9BTEUF5Egeq8D6tTZBtgJkbOpficpYsjecNyjZ3yGeM3NBj6qF5WQae6/hHj3177fr4FdYtd/tM548tq8AdHqr7W0lJEDhuVrPfYbtLct9RMM7xa7fsODKyvwvodo8eaRAhOBZWPXb5SsV1EU5TuBFXgnInlqauebd4FNajTNK/eYwAZA3+zvRobYlxBnhSuBO2LXL0eOeSetkV5cOXJTrhy5aSP5nDLwb+Co2PWL/q/PxQq8w5FogCWqLt8O/DJ2/clW4A1CIgYHAM8CT82LiK3IMXsi8/GXDYzfc9tPxdFiq3nQ/BTgBDtMzmliHMOQNeBmVZdnAsc2u56LHLMPMIFiyccWwGpGZlFRFEVR5hXqga8oirKYY4fJuMgxN0SSr26LbEQGIB5i1QbXinf6eYhkSUVbtAz8CDg4csy/IhIuU4Fb7DD5sEHfUeSYJwIn0uoJV7Gtv4ro0eexJ8UG9xTYi1ZP5zsRDdxVgdIrA5fl7O9tw6/feYhuaZkUUkP6m5w9d73de2Git4WEeyk24JeRg5o3ESmbWhLEYDIOka15A9FrXRmJxLi6lJYf/F30n3NnlLpt3avcMhgg7j1w2rFn7ll6askVv0AS5p6RafJX+A3F73Ug9cPS25Hp+O9VUFxC9P63pr5BvpYHEI/9g2n9XlX+vhK4o8l2NqtTZiDa/KMoNvIriqJ8p4hd/0Qr8N5Akr+uixzsXgX8Lc94n92TIPlLsAKvTxPdrIPo7e8M3GIF3iujvv9Le9TUz0tbfvYWG335HttPeJWrl9uYhFKREf9qJALv37Hrj+/IM1qBtw/w95yinYEbgO2zefPKjrTbGbJk7l2WkyXTh18b6AG8YodJJdLh53S98f63wDvAI3aYNLUes8NkYuSYo5GDng2R5Lp31UgtNmpjWuSY5yAyhHlcrsZ7RVEUZUGjHviKoijfMTJj/tMNqjXjrV5JCOs10o3Pko/+FtkEfolsYs+xw2Ry5JhrIxvBpRCjcpj92Y5iY/urdpisVfklk1y5DtEoBWDIjG+/OOW1W//PnvrZDMQQcAkSSbBdwbMliIfVhPqPveCwAs9AjPjb1RSVkfGPBl5GvNF2yK6nyMHJp8BWseu/WdNmD8Tb/o69xz+9yoHvP9YuLAPguDV24+klVwSJqNg0dv0vs/sj4HsFQ06Am2PX37vJ51s6a79/g6oHxK5/eTNtVrVtILr1ByK5BD5AZH9uaFbCIDPSNNKxHdlR44+iKIqSjxV43RHv+mE0l79FSNNyibRUNkpsPOkdTnrjDh4fYnPaqjtSlqVFOTPkVx/okv0cAofGrl83+Wk2PgNxIli5zvjWi13/xabHvpAQOea+iPSPlV2ajazTLgEOBdbo4i73sMPkltqLkWMuj3z+72U5iAqJHLOEyAluCkwDbrPD5N1GHWcHFWcCR9AqB5gi69WDs4MRRVEURVlgqAe+oijKd4DMgH4iMAKY0cQtzWySS4in9weIzmohma5+G4mSyDGNzKPfQzZJZWTTdCJigC4y3qfU6NTHrv8JMCbTYl/z8HceWn7Xj1/Y3xCpGBDD7fpIMrktEC3TWjmhUxdm4z1A7PqpFXi7A+cjUkeVefwd4LDY9Z8GsAJvJ8QzbnckkuJJ4NrY9fOSuZnAQ0u0zBz+yw/ltdaGZZSBg957lKcHjwLDWBn5zCpe/o0EhZvKGJhxII2N91A/qV0umVTBzdRJTNgE9yOh+XlauGXk8GRBJIpUFEVZZLECrxeSmLwX8Ezs+p9VymLXn20F3p7I/79L0DhpqmAYpcxQz1NDVuL6ZTdMfz7+KcOeMmH2WfZ2D708cLnZyJro+7Sf9vZDjNUHNzH8JZEIwHpsASxSBvzIMfcCroE2CYW6I44YF9Vcr0cZmTdTJPKzHm3WYJFjro6sLyv5kJLIMW8AjsjzsI8ccwSStHfdqstnRI55PiK9WHhYn8kNHRk55t+QaNUS8LAdJh80GLOiKIqizBfUA19RFGUxJ3LMa5CkZvOCFDHgr2iHSRo5pgFQzyM/csxuSCj27ogkS1G7LYhxuXpjXfE0PwLxrHrdDpMXatrfCHgiu6/63hRJzHokcAqwPWIEeA/xMPtno0iCBUWmvb4CEMeu/0Z2bSlgdeAb4KWOaOlmHoPDkXe5PRCM/vxtTnrjzrr3/WzDA/ik9yCAz2LXH5a1dT5wOMUGld8jn0ecHbTUG9eDiOdcPePMp4iX++y6g51HWIF3HPL9qTYiVYwCP4xdvzA5r6IoitIWK/AORA7XB2eXZiPRUUdWe8BbgWchBvW9kSiq5klT+iSzpt755N//VCK91g6TiVbg9Ubmk6KcMQlgxa5f92DfCrwBiCxQPQ6PXf/CZoebRaPtixwwvANcF7v+N83en7WxDXAY4iU/AYkquLKZuTPzYo8QSbiOHMLn8TWyzngNcb5YnfZOImXgfcCuGNkjx1wOyW0wgPZruReBje0wmfMs2frzKcRZI88JZaHOcaQoiqIojVADvqIoymJM5Jg7IAnZ5jU7Ikb1rZGN2N2IR/sc43q2GTsJ2Id8D+Za8rzsptKq4V/haWAvO0zGZ/20SVyXw5Z2mDwSOWZfxNvvi4XYcL88ECDeexWeAdyKIb8Tbe6DJBRcObs0CRg8duIbpePfqv9V2W99lw+WGAIwK3b9nll7o5BN9hK0P2yZjnjcGcjneQ9wSOz6uV7qVuDdQ7HEUTUfATsvCEmC7PDjYOBYWmUFnge82PUfnN/jURRFWdSwAm91xBC/AfJ/ft58H8au7+bc+waNPd6L6BO7/vSsnfWRZLL1aDbB+aNIBEFR3p4VYtevmzOoqq39kZwt3WiV9pkC7BG7flO5X6oOmmtzvtyHzJ2z6t0fOeZKwP+a6asOnyNrvqvtMPkma3cNxJFiIG0PwGcC29ph8kTVGM5BcuwUHSDsZYfJTVX1N0WiDfNIkcOa5eZlYl9FURRFmZeoAV9RFGUxJnLMZxFvpGa5DtFO70fzWrPVIcnVGrKzgW3sMHk8csx1kE1bXzrmzVWR1vER6Z8Ts/trDcXvIV5ms7J6Peq09zc7TLwOjGGBkHn1vYIYiWuf90tgzdj1J1iBNxQxHCTAI/W89DJPx0toq/ebAsawGd9wzdOXFlofvunem702PoSWkllGPALXrBgBMkNIQFs93Om0lSqqjP0jYJ3Y9dt5LFaNjx7JbHb55EW2//RVBs2exvg+g7ltmfV4eKlVwDAS4CtgpY56JTZD9u63QAwoT+Z5YFqBZwLLATMbRRYoiqIocw5AK4bZRlI4KbBi7Prv17TxFWIA7ijfAIMq0WqZ5N7LDe7ZMXb9exo1bAXeaCRBfG3kH8AFsesf0cwArcDbmFaJwOp3U0bWN9+LXT9u0MYawKt1qjSMBogcc2XgrcYjrstnwIhag3nkmCORnEg7I1GW9wNn22HyVk2995DIwzwS4Bo7TH5ZVf+3yHerHsvYYdJmvs7m8jHAssha8omORDQqiqIoyvxCNfAVRVEWb5ZpUF5GPOcN4AE7TKLIMbcHbke0Tiue00Wb7MqmsmdNnVJ2/4WRY56JGHebTz7XioFs8KYA69HeeF/payVEkue6JtpcVDZmDmIgrqUEDAEOywzNh9A6n0+3Au+vwCm1G9BMLuB05Pmr36EBMLHXAMYNXZWtPnuz3YdtANcvuyEtJbPSvw18bAXe8bHrXxK7/nOZMWQdRJpnU+C4grGPBA5AksXVcjVwRPdyy+p/e+UmY63JH885aVh18qesMfluVpn8KRevNNbM3sEvgL/ntNMpMuPSMcDxSO4AgMQKvEuB31Z7LcaunyAh/4qiKEodrMAbg0QubUrrvNZM/pQrrcB7DrgB0cZPkUTnG9CxNUUKXFEzL76GSACOLBjLLODxZhqPXf9xK/C2Bc5G5kGQQ+ZzgNM6MM5f036OJvu9F/ArJIKuHr+keN1WRubfRnI+7yCH7VZBO80wFFm3tYlysMPkQ0TK8MgG9xc5YoC8j1o7RksTY5pa/YsVeJsg68aRVZffsgLvJ7Hrv9JEe4qiKIoy3+iMMUVRFEVZBIgccywia1KPGXaYXGSHyYV2mEQAdpjcC6yFbPCeAx5FJHGgrbd9GfF270X+Bq8ErEnnjfcVEmTDv1WddhJgS8SIX0+L1gDunYuxzE+2o+37ruVXyOFL9Sa2N3Ay8Luc+mNoG7bejrPs7Ri31CptrrUYJa5ZbiNutDaorT4E+EcW7k/s+mns+i9m3oob1xl7Smty4TbErj8N2OKA9x9/bq3JHwOtH7iZnbvs+fHzrDz5U5DPfOOiZ+kkvwZOpdV4L13LIcm5XdyXoijKYo8VeMcCjwB7kX8oXY/NEG/9p4DLM2/pC6m/FqhE7kHrgf2ryNw4h9j1y0gy9qI5sUftPfWIXf9hxGA9ColGGx67/l+yw95mKdJvB3mm9ZpoYwTF828pK69L5jV/EnOvf98oae0cIsfsHjnmEZFjvho55mRkjVGEAbxQc62ewR/kncwx4GcShQ8gnvfV2MC4LM+QoiiKoiw0qAe+oijKYkjkmEcA51PfAAzQJ3LMI+wwaePFbIfJ24hxuNKegXg7/xHRnk2AWxHvtPO7cOh5mIiXXL3Eaway0T+A+objR2jSo24RYGidsmOswLugOgEgbY3Sucw0u3976mo79Qun/yDZ4rO3Xtzgq/dv8VfeYfUJvQf+lOKN/MlW4H2DbHonArcgn1lR/UpURS6x638ROWaPFFIjp40ysM1nb/B2/+EGULYC7yBE8ulZ4LHOhr5bgded+p6NB1qBd3KjhIaKoiiKYAXeusihKHTuIL/6HheRlTsPObw9FJkSUmROmQX8BPgYMfpvhMjmXAtcGrv+lJz2bwY+odiofYQVeH+LXf/TZgabzT9zE5n1FW0l7qpJaZwsF8R7vmiOLSMRDA2xw+TyyDF/jhz+F1EvQnMGkh+nIZFjmsCNwC4UP38t3Wt+b+SwUkIOFCZnvx9Oa46e2npLIuvJvzYxDkVRFEWZL6gBX1EUZTEjcsxlaNUBbWYTdF7kmM/YYfJ0UYUsyeuVwJWRYy4BzLLDZHbkmKNobMDvimiv7YG7gP0p9vZfternWsrIJv7QhTVhbQ73I89dRD3PuCURD8Dnq649Q/2N8RTEE63vx70HTb5m5CZTrhm5yT+AnzUY5wjgpqrfL0AiNuqN76EGbQ7NM94DpBgMnDUN5Dn2qRnf81bg7Ry7/scN2s9jNWBQnXITGE3bZ1UURVlksQJvbeBARIbuE+Dy2PWfqH9Xh9if5g2yjUiBPyHJVX+DzOm/QDy13wD+Gbv++Kxuo3mrwkjqe6SbwNbAVZ0ZcCe4BtiwzliubaKNK5Ak63kH6SXg4g6Mp16ugRSIae/BXuHCSvLaJtgDMd5D89+VvjW/19PsTxEHg+pDnLEUr1NSJA+OGvAVRVGUhQY14CuKoix+7EsdD+ccDODJyDH/aIfJWY0q22Eytern9yLHvB1JRja3odb1GIOEPn8D9Kf9Bm8qIuWT99xl4BY7TH4+D8c3LwgRKZy8JLZTkPdQj1o92ImI9+I6OXUBzssSwn4DYAXenohhp6P0BHbL2ulL288kQbzyNrcC73nEO++C2PVfrGnjNSTCoN3nWSLlwz5LVn6tLV8XuNsKvO9n8ggd4XtN1KkX0q8oirLIYAVedaReJd+NYwXeWcDRXZTIs8i42xkMYDByQPwRsFvs+gfNZZvNGIvnp+TsZcjhQ7VmXcXL/WbkYL8uset/aAXeL5BDhxKtMkIlRH7o+g6MZwbFXvYpMoc/Avy85vplSD6ZZvk5HT/oqU1AfCcwAViK9msDAzlQqF4XzKL+s83Kua4oiqIoCwzVwFcURVn8GEbHE7WawJmRY+7Tif72R/Rp6US/FcrA0cDMgnID2AHR0H0kp3wJig8tKuHQiwRW4K1mBd4/gCeAL4D3aqo8g+QDmFbQRIoYN16ruX4Fxcb7a4ETq8awBuB3aOCtVDbDTyNekdXMQD6rzREtXwd4zgq8X9bU+zs5n2cZaDFM7lt6jS/Il0oqIc84thPj/kETdcY3rqIoirJwkyUdr0TPlWibIP73wI5d1NX7ND7cr/xffiEij9MMywAPdIFO+Sc0lhp8eC77aJosD8xY4BTk0B1EQvAoYJ9mDqYjx+w/7tEzRt3/2Fkf3v3EudP//sI1k7ad8Nr9yLx7RAcPZm6j+PMrIc4Rv0AOwA9F8sWMssPkQDtM6skeEjnmcpFjnhI55l2IJFKzdokEWePcUX3RDpOZwI9plchJaP1sbwVOr2nnduo/2x0FZYqiKIqyQFAPfEVRlMWPt+icN3wZCbu+riM32WHyZeSYmyFG5Z8iRtmOUkIMvj3r1DGAAXaYbBU55g2IMb8ZysC7nRhTU0TO/7N33mFyU1cffndlg03vVXQQNaE3h4QOAUJJCC00KdTQ64cgdAIRvYQOQaIFCNX07hB6701JaJaBEHqzsa2Z748jebSzkkYzO2tict7n8bO70tW9Vxp57r3nnvM7xkrI4vNb4DYriP/TaV2m726CLJgNGp5zPYim7WHA65HjvZ6UPRP4fVMVafkjsonzTN9djr4ecllqQD1yvImm7w4BLgJ+2+k9JPQCSyPelysBCyLGg30y59OfdeBS03fvTXWGrSC+LbSN4xBN+jQhofHwbNbEsxdb7x+fTzXtkpSzGnB/m31et0KZl9usszKm786KGEB+jeQreAg4K3K8VwerTUVR/mfZjWKP5xjYg0by+oFwCSJ3U8REROrttMjxbjB9dy5gb1qvUXsReZdd6HyzGUQep5XheLJ6Yida/UcBR5m+25Ma3E3fNUzfXQkZH16MHO/L5mtD25gJyfOzzNB6rT40rvUs/dX7Uy/95vsbuW/edTfwdPjQqYsAX1lBXLghHdrGyoALbED+e1JHPOCvA7CC+J/IPKUSoW1sguTLmZpGBEhVPgU2toK43+diBfHToW0sCuyMSBF9lfTxwRz5xIuAPZF5Svb+6ojXRuB7AAAgAElEQVTzQRW5IkVRFEWZbPTU61OKFLCiKIpShdA2pke8k6ans0ir6a0gzkv2VqXtNegsSew3yGKrlbFyVyRZ6qG0t+Bb2QriZzroVyGhbcyGLEB/ljk8ATgOOKldrX3Td6dBvAHzPrc6ou+7h+m76yJJAVdNzsU0vNXfA34fOd5VTXVfjBhsihiHJHM7mown/gCoA2HkeEtk+vAWYsgv+twOixzvlOyB0DaWRhbicx619Bbmo7Mttg7VwuwPihzvzBZl+mD67ufAjCVFosjxuikHkW17XuBRRI853YSpIcatzSLHaymboCiKUhXTd+8ENqT4uzSMHG/xLrW1H+JZn353p2PWBcDezR7hGWmf7NiWRw24M3K8TQfQNxvwWxRbOnK85miyyYrpu78CzkDGCICxSMTCEZHjTfJ0D23jFGR+lEcdkd+bPvn7KeAAK4gfzxYKbePnSM6hXhrvR1Zq5jtEq/8QK4g/a/deQtuYGdHOH0Znc9Q/WEF8VAfX9cP0XRN51zZP+jIRSaa7f+R4H3ejDUVRFEXpFuqBryiK0iVC2+hBjLnbIfrkzwG+FcSfTM5+WEH8VWgbmyPec9Mhi+BseHwZNcQI3SkvIp7o07RxTR3Re38d8XpagnwD9neIrmrVOutJPYcUGe9D25gBGIE8n8eqJlxLPutbgNWbTg1FQt8/QCRr2mFzig3IPcBOpu/eRv+w7nRRfTJivI+zJ03fnYli7/uUqZC+79dWj4vpAa4xfXcosjGzP7BQSfkYmL/5oBXErwL/Z/rukjTkeFq9x3UkiqFdxlC+6XVTB3VW5XQaWtHp59mLzNOuNH3XjBxP9XgVRekWUcm5mIpyYabvLowkgX0ncrzcOiPHO8f03UcQb+fFkPHRB+7Pk3OJHO9Ppu/+A8kBsw7FRvw6Yshui2RcqiVjZSungbHkPIukjt0Qp4J5kcS6FwB/6VLugGxbGyP691mGI7I6M9F3c94pqaqHhvEeJDpuVGgbP7GC+FmA0DYM4GL6Gu/Ta2vIPG11K4i/6uBWUranvTliMwOVTZpE8s7+KpFimgsYEznep92qX1EURVG6iRrwFUVRukCy6LkCSSBbQxaW2wFHhbaxkRXEj03O/lhB/FBoGwsji7nlgc+RxGUWsjjLowbcmuiIdtruV6Ft/AmRe2lF6tEVAsdaQVwPbWN/4K7kfLp4TL32hrXRlceRhK0XW0HcnCA1NcAfiYSIpwvJsaFtnJb0pZXO7GrATwrO1YHDQ9vw2/TCN1ucHwacmvyeXVinv++NbB58nUjhbIJsTvyY8mdXR7y/50MSBHaDOrIZMYZqi20D0Uruh+m7PVTbDEnfpzMix3unWjf78GfEkF5U97kd1NkS03dnQGRz8jYOepHntzGyYaQoitINLqM4KstAvg8LMX03nUusmRyqm757O7Bn5HjvN5ePHO85kqTopu/Oj+SlmYEkaXpyfDpkvPoOuC9yvLtN33WBP5b08wXTd2cpM7qavrsUcADwC8TgPRyITd+9BYk4ewoxZud9B1+aSNpk6xuCfB9vTGN+MhsyJ/ip6bu/65YRPxn//kDDIaGZXUzfPSlyvLeTeU07idZ7EQmb20Pb2BfZ+P4JxYmHU2m8eYA322inmUVpP2FtlrUG0HYukeP9B+hY/lBRFEVRJgdqwFcURekO+yPGe+i7KJkOuDW0jfmsIG7bU2wgJFrspzQdfii0jWUQT+tsSHQNkVE5PrSNLRFD/yvAXVYQT2yz6SORRfIeLcqNQ8LqT7aC+PPk2KzAR8gCMWU0ssicg9YLvhpiCP5pCyP84cDxTceGI7qzNVrLyIwoOdeDLFBnBdoJwW6l0/81Ep1QxHTA+qbvPgfcnZTNfsZF9CAawu141I1DFvtFSY97gAMr1lVHoj6uLDi/JbJh0orRyAbHeVUaTfICbIK8U/cD9yAa9IvQMC6kPw+JHO8fVertgNkol4mAvv8fFEVRBkTkeE+Yvnsikkel+fvuKkRGJBfTd+dEkqxnk8P3IN+nfzN9d/nI8b7JuW5ZZCM0TRj+nem7PvB/yGb6/kiSc4DRpu/+H3AhonO/MPnj/4nAsabvXgkcEDlen3HM9N0NgVuRCLPsWGgAvwQ2ArZC5iKpYZmkrfsAN9ms2BHZTH0NiVDYOFMu+3MPRHO9W4lvZ0ecMIroAX4OXJA4QYTJfbRjHJ8LuB6JMqui+5670Z84sqyNSOW9BzxgBXGcU/T9NvvXzOKhbSxrBfGLoW2siUR2WEhUiQ+MbFfCUFEURVGmBNSAryiK0h2aDeIpvcgidyvEQz+VbRkKfPo9LTIORBZXBwNzJ8fuT/49Rl9v7a9C29jECuLKuvZWEE8MbeN3SDLbsqS0w5FF8QXA56FtbIsk0M0+kzoNzddWpAvvA8qM96FtTEN5hMChoW2c3iJEvMpmTLuRDLcDH1K8UXEjogdfxnBEYsdK/q6SJ+CjyPHuBDB9dxTiUdlqce0gC/WBeNGl1IAdI8f7qOD8CRXrOShyvBtbFTJ9d2pks2CrzOHmzZxeZFPhAeDkyPH+VrEPnfAh8j4NLykTDmL7iqL8DxI53pGm7/4dMYAujmyCXgbcEDlenzE0kYyZH9lI3pv8yKpeRCJne5oi/UzfXQzJjzNt5vDUSdub0N/r20TmA1siBv+TkQ3jqZLz2fnWUGRMWtT03bXTvpu+OxXyXT+E/LEwjew7CFgmaWtNJGntLYgRfiTiuZ8lpnhzvIaM090y4FcZw7Nj8J+Sf53wK1o7EkwgZzxKkt5eR1+pvP+EtrGLFcS3NRXvRj6iJULb2AwZu9N5yHLAZoAf2sauFSIpFUVRFGWKQg34iqIoAyS0jaG0NjIvEdrG6oi32NrJsddD2zjRCuKrB7WDTSSLmtND2zgL8ez9Bll0P07/xeL0wIOhbSxsBfHoNtqoh7ZxHbAD5QbeuYFTQtv4DeIF3rwobidR7WPAMVYQP9ii3EpI6H4R0wC/CW3j4pINlluRRXLevdWAe9vViI0cb7zpu1si3vPT05BiMhBvx4OQxenMBVXUEcPCsu20i3g4phyctFWUXO4TJNnstUky3YFuQL0FbBI53ht5J03fTQ1CragD+yKbHK04lb7G+yJ6EU/Cv1co2zGR432beKH+jv7vewy8A7R6pxVFUdomcrx7gXuLziffwf+HjD+p0b4syX0NMcg3S/W5iPE+b1zJk2xJNdf/gCSRtU3f3QuR9tk6p540B9H6SDQViGd6Kwm3XmBdYIbI8f5C4oGeSNfcj2jwN9MqYmqOFufb4SMkGnIpiudS92V+Px9YEXGgyM4hqnIo8HRSR14uoqua8zqFtjEP8qymayo/OxKBehOwkxXEaVTGVlSLDixjBhob781REA4yjyqMImmHJLJgSyTKdiYk19P5VhC3LSMU2sZUNDas3kGiXAeSd0pRFEX5H2KgXnOKoigKTAS+bFFmWuBvNPRiQTzergpt44BB6lcpVhDHVhCPtoL4U0R2pGgxNQRZRLfLccBnlBt5exH975WRTZCyBV2RN1UNsKwg/mkF431ZPVkuBJ4ObWPxvJNWEEc09Oiz91dDvPeOrNBGPyLHewx5L45BjCq3ANsC6yQav2cUXFpHFqtztdFcHTGgn5Np/3lgVcQQnkonPYsslNcF5o0cL9VGvpf2DAN5XFJkvE8wK7bRQ4WNiySh7+4V+2YgMkQbViw/EFxkAw3EaJ++o58BWzZ7wyqKokwmzkI06LOG8GZDbTN568stCo63qmdJEgN/5HjfIgb6onpq9PWWn7ugXB4HNf39M/KN963oQRK9DpjQNmZ88KFT17XfeeT6obWJveTPpf4SOd4kj/jEQeO3wE+Recx1JNGfbfBjGknj000AgH8DNyVa+1n2RAzqRZ/Lr5AcTGn+oRF0brxPZRJXoHxOWJTfoS0Sg/ttyHPcFJnD7wu8kshNtlPXOkiUy02IZNNI4N3QNsokGRVFURRlEmrAVxRFGSCJl7ZP/uKqjhhC10AM4XnJR09KZHW+T37c4vy67VZoBfFbiHb5cy2KGlRLnvoVfRds6e9HWkHcjj75M0BhwrsMywF/C22jyOP9cESzd0zm2CjgZ1YQP9tGf/oQOd4HkeMdHzneRpHj/TpyvOsix0s9tE5CDCrNC9eRwK5kEgK2YBxwKTAicrw+3nSR470SOd7WiLzB0MjxVooc75jI8R6MHC8rC3QL4hnY3JcqxuZa0tfSRImIMbsKdSQ6oBVLUi7rlMcKbZZvm0S3eS3Es/R6JMLjEGDxyPFeHOz2FUVRmjF9d2FgnzYvS3OKNDOQqO/svKlsQ7eHRIosSYhbFinQjGv67k6Zv7dv49qUevLvedN3O97cDm3DCG3DR5Kq3rfTu48fd/sj53z76+iZbF6BiUiUwy7N11tBXLeCOI3au49qEWdZpkY28U+g4SlfQyILbgMuD20j+5n8tEKdvwht4xfI/KvVfLOIOuIgsTPFiXZB3peq0outOADJk5DWC/I8DMQBZ9bcq5oIbWMR4A76JxmeE7gntA2zC31VFEVRfuCohI6iKEp3OB7YADEQpgueGJnkH4V4sBUxHAn17kq4b4e02tDttzmRLOCMsvBfK4j/GdrG4ZSE6COG+UeQxXaZZ98uiDf0bxCZmxD4oxXEbXmXWUE8LrSNY8l4nhdgIB7tuwCn5dRTB84JbeO8pNzYJJph0Eg8sQ80ffd0JIneUGBU5HivAZi+eyvluvTpYv6byPFKkxMnbRUa4yPHm2D67npAgLy/KaORd3/hkuo/AZ4E7jF99yMkaeK1OX16H3gZ+FFZX5H/b/3eg0R3+beIFM67iAZzu1TdFBkQySbN9ck/RVGU75vNaM9TugZ8gIwJzTyKjBPt1JdGib2XOXYvErWXN8b1AJskCW23orFZW0WupQYcnlxrIgluq/axhswXepJ/VwKe6bt7Ro53e8V6AEgMuU/RFD0wtB5Ps9e/RrHyp2+fcdiPt3oQeCZyvH+X1DMTksOlkw3oOrAKsqmcPrfs894RiRi7IPl7PNXy4VwBzNhBf1I+ALa0gviJ0Da2KSkX01rLvyq/I//96UGkBren9VwSZCNs6px6epF57x7IWkFRFEVRClEDvqIoShewgvjTRON+H2RCPxOyCDsLWXSUGfChb2K374M3EY3VIiZ51IW2sQwi8fJLwAht4yngJCuIRzZfFNrG0oie+/uIkTtvgTcEmBd5TmV65yMQbdsNEO+qJYALQttYEjjKCuJSg3QT5yKLsmPo7xGVpYZEH/Qz4KdYQRzT1wu/YxLd3S0RmZdFEI3US4C/ZmVUIseL6K8xDBLxULaI/ihyvAEbpE3fnQHxFl8ACQc/HPGIWxdJ6NxD/0XvBETL/V/IonjjpK81ko0Z03e3iBxvfHpB5Hh103cPR7z+oNgI8yLyfy3bx98hn3PqPZhqOf8bkYOoEoUYAzdUKNcS03d/hGzwfQQ8HDle1egCRVGU74N2o5WeRBKS9xljTN9dEDEItyub0oNoui9s+u5byRh4CjL3KPr+ngvJvdNcTyt6kTnFXIjhu4pn9a8RyTmH/vOIuYFbTN9dM3K8RyvURWgbQ5K2C6V/Vv7snW0ffOjUwyrMd04Blq/Sbg51ZIwsS6x+UmgbFyaODLcg87JWFEUzVmVuRM5xPWRetHdBOYP8+VEnzEfx+1Ojb9LeMn5SUk89Oa8oiqIopagBX1EUpUtYQfwFkqT2xOzxREPzY8oNxU8OYteqcCgS3pvHBBJ92NA2lqd/ktOVgFtC29jTCuKLknILIF7Va1Roe2rE0Dq0pEyMGPAPpO8iaBpEP3w++i/aC0kWneeGtnEx8DxiWC1aXLWzMTCJROt1nqTeMSUJcYFJxvsLEE+s1OC8IKLDu4Hpu7tEjtcqaexmlHvCdaLpm/ZvOGKw2Cz5N1Xm9LfIJtX+mWPp80w9FFcCPkc8KqF/4rmNgL1oMsRHjneH6bu/QjZRFkkOpzrxHyLyVadHjjcpD4XpuyvQN69DVs5gzsz1ZVrKvcBRkeN9WFCmEqbvzgdcTV+ZgdGm7zqR4z0wkLoVRVEGkUdKztUQnXQH2YD/V+R4rxSUPYXOjLefAacn/94xffdYREv9n8iYPRhsTLXE6TdGjnej6btfIPOnZtLN6SOQpKVV2BSwWpSZB3G2eKmoQGgb0wI70bnOfC8ytpaNkTMhzgY3IJ71ewNLd9geyJh8KLJh8zaykZLn9b5uaBsrWEH8XGgbByPvRtrP9Oe5yKZCN3gficjIe5a99I0OKeNbip9nHRjbUe8URVGU/ylUA19RFGWQsYJ4POXJR++0gvi1gvOTBSuI70QSczUbq78A1rCC+LPk79Ppa7wn+b0OnBHaxvTJ4nEUYnCvQi/iuf1viiVbepBFddGCdPvQNlat2N4kks/m2pJ6e4G2QuABQtvYApF+iRBJmddbhHyDeLDtkWk3+9NBFvetGEp50uCyTZJCTN9dGYkGuAIx4k/VVGQYIiOV9/mlerHbItq1qdRAM4WJ5yLHuwUxbPwY8eScIXK8qSLHmz/R529OIp2GvedRA+5GpBjSMs8kf6eL6BeA7SLHaxU5U4rpu8OQqINm77p5gTtN3+1UC1hRFGWweQyRvsn7Lu0FTooc75nI8UYWGe9N350eSWLayZoza/RfAJHm+ZzBM95/A3iUj6Egzg6prvz6JeV7gfWTzfkq/JRqOWRa9W9O2o+eyNZ7ExJB2uoz+2toG0dYQfwNIrdTJpXYig+sID4TGefnpnzzYXUAK4jPQOYDPvAQkmh2fWA/K4jroW1MHdrGeqFtbBXaxgmhbbwY2kYU2sbI0Daq5nW6qKAvqR7/1RXruZHi59lLlyL9FEVRlB826oGvKIoyeTgZWVTtS99J/AN0liyt61hBfG5oG1fQkEZ5EtlcqAGEtjEHsHbB5T2IN/wmiGRO1bDiLHcg4eh59NI6pP3B0DY6SSB7IWLwnZO+n00NkXu5qp3KQtvYFriGvgvxxYBrQ9uY1griywou/S3FHlq15PytLZoflZTLo0Z+csFSErmcuynXrs0mdytqexlkkybNDZFXx/ym706FGPu3Rt6lp4HzI8d7C9kUqcISlC+WZ48cb1XTd4cCvWly3sTQ0ttFeZutgEUL+jAESVS7U855RVGU75VEwmxzxDCaNXiOAw6PHO+aCtXMRHni2aqkY8uwLtRVxLRUkzP8NhMN18rgXsUgn/Idrb3mxyCRD8CkMWtGYFzkeOOSw/9BIidbbdjfgESHboNsloxGItfORIzox7e4vgc4MbSNFRBHhy2RPAen0UgiW6UfdeDGZI55W4uyIN7sAFhB/DQyR+hDaBs7IQ4neZGvcwObhbZxgBXEZ7do63QkcnEd+nr6AzhWEH9Uob8gmwx7INET2c+4jkSBVvm/pCiKovyP01Ovt9rEVxRFUbpFIi2zKeId9ZAVxM98z12qTGgbiyCh62XsgSz0t6S9RfsEJDT8T4jxtjkk+hREv7wVXwDLWEEctdE2oW0sjBjy108O1RBj+V5WEH/QRj0Gkiw1lc7JUkeSt85rBfH4RJJmR8SjfTgil2OWVP9M5Hgrl7WfeHy/gmygZA3YqR79h8DfgDMjx3vK9N1pgLjJgL0usAXyjj6MGAeqJGkrowZcjrw/J5aUeR2RTViDxmeferptHjnePVUaM333RuQeijZDbo8cb/N2bqATTN/1kc+46P/Ch5HjFeodK4qi/Ddg+u6yyAb718AdVXOpJBuy/0YM+T8UxkaONw2A6btrUJwcvQbcHDner6tUmkQRPtGi2C5WEF+WjNW7I7IziyAb4yOBIyPHez20jSuB39B/DKwDXwEjrCB+NdP2kGZd/dA2nqM9Hf0vkzbvRKLlpkfy8pza4rrPgOWQOd5elG9iTEDmUP8pKpBEQN5M6+TFNWAhK4hLZXBC2xiK3NdvkI2O54HzrCAulDEqqGdWxJlnB2R+NRaZF7mJBKeiKIqilKIe+IqiKJMRK4jfRfQ5p0RGA58Cs5SUeQYJpW6XxxHDwPbIwivV1X0DMayPQharrYwAMyJarIe307gVxG8BG4S2MV/S7rvAh61063NYMbk+jx7EG2yE6bsvIve0LOU6syk1JNFwKZHjjTN9dx3EY3K1prbriK7s1sA2pu++h3jJ1UzfvRMxrB+DeNDVkvK7Ip9Lkdd8lrLFci8SyfAGcBz5Mjq9iHfhBpm/074PBa4zfXfeyPG+adEPkEXxr0r6cnmFOrpBTLkBoaP8CoqiKJOTyPFeRJKFt8uaiMf+5KKe/BtMmdjsd/qjwD1IIvYsNcTYXLRhncdTwPU05Hmy1IFjMhF8JyLznHSOYgBbUK+vd97//ei49cXLfAJiKE7H5jri5b9F1ngPkBrvQ9sYhhjt60iEWDt5WqZD5HeWsYL4xaS+svkiyHPaHHG+2JnWEQjHtzDe9yDzmCrzql7EmH5SWSEriCcgc4YBzRusIP4E2DW0jf2QiNKPrSBW7XtFURSlMmrAVxRFUSphBfH40DbORgywzdSAR5PEYncA27VZ/c+QzYEtrCD+K/DX5gKhbVyNGOdbsR6JAT+0jekRA8JQZHG5LSJnMxq4FLgulQhKmIh4TG8PzBDaxktI/oIrKxrzW4b3x/QMT9pO9c+rGBp6kY2MlkSO9x6wuum7yyPh32shi+J0YZy2t0Dm742RJLJGUxkQSYEqGr49yCbD4jQMBuki2gdGJZIMNqKln16Tbg7cQF+Zhiy9yObMlplry7gd2TDYgf7RHNfRvQR3rbgN2KXgXH0y9kNRFGWyYvruRnSQQ2aA/AbRsV8gc+xrZPyvYtStwuem716HbMB/i0jMfUXf5O6vAntHjvd81UoT3fYdkEi1vYEZklNPA7tbQfwCgOm78wOHJeeyY3NvD8zw2KyLnL7+R69lI9h6kM3xG4E/WUHcL5IyMXwfjCTdTXMPfIyMy1tSbQ7Qi8y19gYOSI7dhUT+zUF+NMCnwN8r1A3i2X92IkVYtJE/M+LNX4UaIp04WbGC+FsyMkCKoiiKUhWV0FEURVEqE9rGECSpV7PO+nPAJlYQfxjaxtTIgnNp2l8s14BFrSB+O6ftYUhS2DIt/Dqi3T8CWYweS19N22bD8tXATlYQ10LbmBvxgJuXxmI1LXeSFcS/b9X50DZmQBarw/POvzd8lgm7rGS/Gfcay7SoKvUiJGn/8MjxvFbtZ0n03b9kcDWDszyKbATsiXjuzw38AzgfuCxyvEkbJabvLoXkHVgGMRJchUQktAojPwbxAj0IWAG5v6uBUyLH+zhb0PTdXkRffg9EUuhd5N29vIsa96WYvjsEMU6sRl8DSA3p+/KR470zOfqiKIoyuUgkXl5GEs4Opjd8luMixzvW9F0D2chfGJkz3A2shETxLZP8PhikBu/zgVcyOvltk8x35gO+aNZZN333AESnPpfeeo27Hj6TofU+8vt1YEkriHMj+ULbOAzZ+MjjbGD/Nrr/uBXEIzJ1r4kY8ofRd/4F7W2q/AeYPfn978CxVhCPCm1jNiQBcIwkoH+3jb7ubQXx+W2UVxRFUZTvDTXgK4qi/A8Q2sZaiNHzJ8A3SMKs09tIwNVc39L01Ul/IOvJniyozkc8t9pdvN9rBXFzOHpa76LIwq1MN/xwxDh6XsX2trGC+K+hbZyHGJWLPM0Wy/Ncy+njKYgubR++NqZmu9X2+PabIVMPo/UzeRj4HHgP+HOeF5/pu1sCByLeZl8AVwKnRo73SXJ+FkRzv5vkLbY/Q6IDTmyWtzF9d1ZEkmcY8EjkeIUyQInB/RPKZZL+ikgANfdjNJIg+rnI8UZXu5XJg+m7MyIGkN/QSOb3MLBX5HivfG8dUxRF6SKm784O/B6JYpuR1rJr3fKI/wrYLXK861oVNH33YCTJ6mByceR4ewxW5abvHgmcUFbmjofPYnhtQvZQHTjFCmK3uWxoG9MBHyBRCnmkm+wHUE1X/v50DpdEQa6NbEb8CJHnGYtswE/Xoq4yUieHkcAvaIyt4xBD/7yUv1s1xAveVP15RVEUZUpBDfiKoig/cELbcIA/01cXto6EVK9mBfGYLrY1E6JjOgJZpD2AeMwXeovl8LUVxNOXtDEdkuw06ykPsiB7H1kYvojovbdaHNaA+6wg/nloG1/QCFnP4ygriP/QqvNJlMKfEG+/Sc/7vEXWfvpGc6VVWl2f8KvI8W4uOmn67lHA8fQ3gPwDWD1yvE8SL8R/Ux6x0CnfIO/UqYjBfRdEsuDd5PiriCHnSGSTJ+UWYKfI8b7Kq9T03VMR3d1m0sX2NJQvyutImP3ukeO938b9DDrJZsZCwMfqda8oyg+JxHj/BPIdV9Uo+ybiTLAvklsnvS5NXO4gm5+zFdQ5DrgMiVD7smI/90vqHGyWihzv9W5XmkQ2XE2BTGFPvYY59jOCpy9rfmAx8FcriH/TfE1oGxsgOv5l/ASZWx1CX3miPHaxgviy0DYOQuYpaRRkDZHA+wtwb4s6Wm0UtKIoF0Ja71hgMyuI7x9AG4qiKIoyWVENfEVRlB8woW0sAFxCXw10kt/nQZJ37dyltpYF7kcW22nyzp1pP/Fd6dhkBfHXoW2sgiQD3oKGzutdiPbqHJR76GfpBcxE/7Vw0yCpv1UC3bR/E4HfhbbxRySxXQ9w/43mSmfT2uOwhniP3VFUwPTdhWnkIWiua1HgCNN3z0NkbD6i+wb8GqLzm3rDn448n/TeDkBkBH6dc+3mSKTAFgV1H4/kQ1glU18dyU1wPWLQKaMH0fJ/zfTd+4HnEfmeDyre26CRREZ0OyJCURTlvwGX9oz3dWCjyPHeNn33z8i4sQUy/t+HbPqvQUMyJe/6SyPH2zfvpOm7yyBj4FxI8vTLkvwwtwNntdHPTrnO9N19I8d7qMv17khJjqF6Ty/bjn4q7+Z6gbcKLquU48YK4nOTSMW5ECBrHxAAACAASURBVD391XPKPQFcHdrGrsjcoLkPNjB/hfYGyreInOEiyd/fIe9BiMjsXGYF8YeToR+KoiiK0jXUA19RFOUHSmgb0yKe6vOVFJsAXIx4VEXAn60gfqaDtgzE+3t+WofNt+IpK4hXzdRtAuskfz6QjRgIbWPOpM0xVhC/nxxbArnvKtSAkVYQ/yq0jReQEO8iA/v2VhD/pb1baWD67s1IkrsyA/63wMZli/4K4fNfIxr8aeLW9POoN/1d1P5wqkUuvER5srgyD7qlIsd73fTdFZFEs7MieskBIoewA7ANEhHxJCKHdAry/KqSbgCMAzaLHO++Nq5VFEVRKmL67kcUG9vzuAaR9ZsPGJMXMWX67g2IUb9ozHozcrwlcq67jP6bvTGwQ+R415q+ez4il5elhoxZnyFOCAMlHf+OjBzvxCQyb1dgN2TO8hYiPXd5Vn6wFabvFs9T6nV2evcxdn73seaBN/VGX8wK4n5G/CR3z8c0ZGjymMcK4kkb4cn88igk0nBmRPLvEmQTfmxyf/ORPwdoNRcZTyMZ8EAYgcxppgVesYK4UpSGoiiKovy3ogZ8RVGUHyihbVQNFU8Xd6mX/glWEB/dZlsbIdIl3eDnVhDfkxjufWBd+iaVvRDYP/F0z+tLL7KZUNUbcEPE4+8QxEjcTIxI0SxsBfF37dxIFtN3dwEuLSnyKGJgeKdFPWcC+9FaSibv3h9B7nVT+ifyuxA4GTGq/Boxnk9LOZ1qGO8BLIUkxksNJway2N4scrwHmi8wfXc0YHbQVg0xKJiR433ewfWKoihKCabvjqOvXFoZtyc/N6YRZXUHkhdkUg4T03evB35JsaH3jcjxlmzqx9E0ItSaqQEW8A4i73YAjci6F5Cx7yHgWco3p9tiWDx+5TsfOfsI5F7SMTP9eQVgW0HcZ0GeRDQujOR3edYK4noinzORojG3Xq+d8eJ1ry/3xeilkXmLkbTTA+xuBXHh/CO0jc+RvAVF7GMFcb+8Qsl8azpE+rCWHFsY+FdJXSC5jH5WcO5O5N0YKCt34pAypZBEjg6xgnhCy8KKoijKDwKV0FEURfnhsi3VdESb5XWOSpLQ7g0sjnhDzw68BlxhBfFnOXUsPvDuAvAYsHpoG9sBO9G/773AXoiht1+iWAAriGuhbRwBXEv+/We1Uf+AJFh9A1nYN5frQfTer0KkeQaSIPUviIFgCfouwGvIBsEvI8f7T4V6Xqa10TzvM68BX0aOd7zpuycAP03+fQeMjBzvH0m5/UzfPQO4FfH0K6PTBISHAIvl1DEMGGn67nyR4016z0zfnY7OjPdp/dMi7/G5HdahKIqiFPMisilcNCbciBiIpwPWQr6T03GqBzHYPmz67nKZjda7yJdiAxmfb88eSPK+9EvSmqEXyY9yGHCc6bsnI7Jz3wDvRI5XN313O2CZkjrapTbft5+eBKyf6UP2507AdSQOEKFtWMh8Y+VMHa+EtrFjFMQvmL77JUVyfj09vQcvu821D/z9tOeSeudEohEvtIL4paT+6YC6FcSTEs4nhuAy430N2UzoR2K0b/Zsz3WuaOJyROKv+fO9CjgMiQgdiMzReOCE0DZeBC6ygvjtssLJRsT6wKpIFOONVhC/O4D2B40kMfCRSETHLKFtjEGiFE9TY76iKMoPG/XAVxRF+YES2sYrwNIDqOJ+YD36hjt/DWxhBXEfD+nE4N6xvEyGqh7d44C5rSAu9KhO+uTR0Fv9CjF+f4YsDi9DNiZuIz/ZWZo0Ndu3PyLJbDsaPJNEf+cii9a0vbuBvSPHK9Knba5jWiRZ7Mw5fW7FO5HjLdSi/jkQb8Q5S+qvI5/B1B30oQr7R453TqZPUyOfR6dtxcCFkePt043OKYqi/K+TeISvh2jVL0B+Pp0aMm+Ylsb3d5lh9tDI8U5L6h8OPIdsrjdven8BLNvksb8qosFexsOR4+V6fpu+uziSgL23RR/bobbMF9En57xwzazkjF8xPbw13ewvbXLuB8uGtjFz0n7z2Bsj85dl1lnzUBdxrijq36KR4/Xzfk+iJI8GVksOPQIcYwXxg8n5MUjuoKJ6D7WC+LSimwxtYyrg54hszttIzpppCorXgbmsIP4otI1lEMN5HbjbCuI3kvpG0p5kXh5p9MFEYCsriEcW9H1+ZANl6aZrTwGO6HS+NxiEtjENEr2wYuZw6mxyK/DLdiSZFEVRlCmLwVh0K4qiKJOJ0DaWC23jotA2Hglt4+bQNn6ZeBKBLGQHMpFfL/nZQyOEfRpgZOKhn2UksqAe6EKn6rg0DFihrIAVxNcgIdp3IAu46RFDwNPAvslPj3zjPfRffPYCv0e8njoicrz/RI63DbJQXhmRddmoqvE+qeMbxFuxXTmYGtBPZziH/ZL+lX0WPYhebifziFbvSAz0kUWIHO875HPs9H02kIR2iqIoygAxfXd5JOH6vYhhuNl4n35Xf4qMpalRvMwwXkfk3QCIHG8ssDby3Z8dN54CfpY13idMV6Hr35Sc24PuGu8BmHfs5z0UjJW91Pl6yLAfm777c+C35I+9BuJ1vzdwIvAefZ9H+qxPLDDeb408w1Uyh0cA94W2kT7viym/76NC2zg6M7/M1r920qeRiIPCHRQb70naOT+0jX8gkkVHI8/+tNA2jkvkg7ZG5P7y+BLZJGhF+lkOAa7Nmbemnvd30DTnSK51geNC2yjLDTC52ZW+xntofG6b0R3pIUVRFOW/FJXQURRFmUIJbWMXJGlYaoCuIQnfrk+8z88BbKrJ6FQllSPZGTg9PWgF8behbTiI11W6WC1rt44YagcyDuXq0Ye2MTWSoG4P+nvuzQYci0jDHEz7ofI14NDQNi4diFdW5HgfIeHjnV7/lOm7CwI3ABtUvKwXySnQD9N3Z0O856ZGpJeq0Oln1+pdNBDDUDNHI5tKwyrU0UwNuLLNaxRFUZQmkkiyJyhONHor8E8k0fn8SGLTKvQAw03f7Y0crwYQOd6HwGam784HLAJ8EDnemwXXv0hD+72IfjruGQYSsVhE7wb/fuWJGmzSmzNu1YH3ppmljjgVpJr1RRvjG0aOd0QSaXAEsCOSq+YlZD7WLwoyMT6nuZCy9aZztLNC27gD8TZfG1izoA8zILkFZkKkANP6F0G819tNOrtl098zIfKCmyBj/eWIMXp+5D6HIsb+0ci7dTES9VHFiaAHmTfsGNrGFYgRfC3EseOflM8DjwJ2C23jWCuIL6pyY4PMbyh+R2JgO5qkpRRFUZQfDmrAVxRFmQIJbWMBIF1MNGuqbgU8YAXxRaFtbIMkSSvzhmqXOrBPaBsTgMutIP4CwArim0PbWBU4ENFW/xZ4E/EKSiV4UlKvqE7b/wiYNdk0eAN4wgriehLGfQeS+LZsA2FLxPjdLr2IdvsMSMTB98nyiBddK9LF3p3IongSiQTCUUhkQbsL8MHkquYDkeO9YPru7cj7ncfNyGezDI3PPr33QyLH+6/Us1UURZnCOIvy8WJFYItEU/4SWhvVs6wMjDN991Lg2GSzm8TbvjQHTeR4H5u+exmwW0GRicAKpu8+kHj3N1MlB00rmpPUHrT856OfAH7RPCFJPQBGzrNcD7AssgFRROr0QOR4/0YSwO9foT+rA3MVnOtBtO2Xt4L42dA2NkCiAMpyxewX2sZpVhCn0Xz7Ihv/XY1aQJxE/mUF8QnkJCUObeMSwGmjvhh5tw5HpBPTqIUqGwBzAReGtjGVFcR/aqPNwaBMOrFVLgNFURRlCkcldBRFUaZMHGRBXJSsdA8AK4hvREKydwE+6FLbPcCCiFfXB6FtTEpCZgXxs1YQ72AF8QJWEC9pBfEWiEdXN+VLeoDhSLj2ZUji2+dD21gUuc91M+WKqCG6vaNpX/YnRvTfvzdM310MuAeJhijjO+AZ5H3YInK85gRneyGL4/8m4/3ZkeOFzQcTr88tSq7bENHSPRTxSIyQzZz1I8c7czA6qiiK8j/IRi3Oz0sj0eoYqhvvU4YCewKPm747m+m7PabvrmX67smm755i+u46yeZzHvshCXPzMJDx7i7Td/PGvCsZuCH6VsRT3AdWiRzvTCuIH79h3hUfqZNa4XuSxEI9nLb4z3ln2tnrwMfIJnuZcfa2DvpTRVZoWgAriMcjiYjLPi8DGWtTtqP7xvuU/Yrka6wgfhw4JvmzirSeAawDzJL83Uv7dpDjQtsY1uY13eYpiu+3F3h2MvZFURRFmcyoB76iKMqUyYIUe7X1ApMSlVpB/CVwWWgb+yLG/G4yHJHs2ckK4iKJkn90sd1PEMNA86J0GWAUslFQJRFuHYlK+AONSIYq1ICbrSDuI9+T6KgujRgeXm0+PwjsTzWvt80jx7sn74Tpu9MAJ3S7Y11gfMHxlZHnW8Q0SAK/04DcZHtJgt7dEKmAicgm0JWR433deXcVRVH+p2ilCZ4mOQeJ+jqK9o2lqXe4i0SbrUNjs/1Q4EXTd7ePHO/V7EWR440Dfm367kFkZP4ydYI4FWxPf0m5e6k2fyjiW2C7pA99OH/Rdf5v5DzLP/bzD19mju++4oNhM3L3XMvw4fCZ0n5dgTyrA5H5W3PS3o+ACzvo03OUR0CMB14GSIzT21Wo00jKLwLM0UGfqjIbMnd8L++kFcTHh7YxCnFQWBiZF/6ooK4akhx4IMyMJAH+W/ZgaBvTAssBE4DnrCCeOMB2yjgHkdFpDuioIZ/lJYPYtqIoivI9ox74iqIoUybvUrwgqyXnm8k15BbQrlf6ZaFtzF5wbhEGPt5EyML2Thoa+1kMwKT/wrcIA9HwvQQxBsQVrqkBXyP6rJNIEsT9C/H6fhZ4P7SNw0Lb6GdcD21j/tA2RoS2YVZor4x1aB1hsGeJ8X5xRPt15gH2o9vEwKIF56pEPRSWMX33R8BryKbNOoi3/vnAM6bvDnRhryiK8r/CYy3Ov5RK1ESO9zbiFQ8Nz+F2kpHviWy4Qt8kuMsCr5i+e4/puwuavttr+u4vTd+9yfTdh4F9StqpIQb8PkSOVwdep/35D8k1QZ7xPuGJMdPMfOGfF/4Zf1xyk1qw0Bp8OHymtJ0ngQutIP4a2Vy4s6kPfwPWsIK4bYkfK4g/pDz/yyVWEH+W/D4H1eQWRyU/m3Xsu00d+KqsgBXEDydRnyOAVYG/J6ea37WgQntV3stJzo+hbfSGtnE0Et36CPI5jg5tw65QT0dYQfw0ktuq2dHha2BTK4ijwWpbURRF+f5RA76iKMqUSUB5GG2eV/m5wOc519WA94EvM+faDYkeQs6COGEg8jmfI5I4C1hBfBZieC0au2JgLK2N8XHSp6utIK5bQXwaooffavF2E7CaFcSvpwdC29gKuA5JppYyC+CR0W0NbWPB0DbuQTZWHgXeC23jjtA25mvRZhFFXuog93F75Hi5kQWm7xpIkrMqnnMXIbJEo1oV7BI9yLuYx6NIBEYedWST5/m8k4ncwrU0ZB2ym0CLAd+3rq2iKMqUwokl5+rA7tkDkeOdh+RruQbx9n6Icp31LNNSPh9ZD3gYGcNvAjZH5PHKNvN7aUipNHNFi/aKeAHJJZNLsjmwFyJ/+DzwDfAOcCSwbuR43wJYQTzGCuJNkeStawALWUG8rhXE/+qgTyl7A7fkHL8WODjz96dIZFoZD2f6UkWep1NqwF2ZzYWWWEE8FtgA2fR5DMmPdB3wE5ry/xTQ6hmPRSRsUk5E5nnTZ47NCfihbexQsdttk0S7msjGmIck5Z3XCuL7B6tNRVEU5b+Dnnq9EycDRVEU5fsmtI3daYRU99AIqb0J2CYvjDe0jeWQBWo2zPhx4K9AkU54WTLYLO9YQbxQ88HQNvZHkt61y1fAslYQv52p6y0y8kBN1ID76KvPmsfbiKfSpND70DY2QrzeitjHCuLzsgcS2ZwQCd3Oez7fAfMkv7+Y/N4cFv8esFyaCLgqpu8eAxxbUmTHyPGuMn13VsRo8CtgGOLJ9zzVZYM+QDwdX6I4EV63WSlyvFwdV9N3dwEupe87mUoebBs53nUF141ANgCKqAFzRY7XjSSGiqIoP2hM37WBi+krpzMW2CFyvJsqXD8TspE+9aB0sJwa4EeOt2vzCdN3f49EaVUlRiTtLoscb6zpu72Io8GPkA3nkZHjdS3hfWgbIxCD7XzIXOZiK4ifKSg7BIk0mx/ZLPgPsuFRB+7MzoEy11wNbEv+5sd4ZON/eSSZ/OI0cg51kxoy/xthBfFr3agwM1/L29ipAXdYQbxZaBsnAkcUVHOSFcS/T+qbDcnvkJdLoY7M7Ra2gridaBNFURRFKUU18BVFUaZcrgF+i4QNQ8OgOR1irO2n620F8QuhbSwLrIB48PzLCuJXQts4rrlshqreaAuGtrELklh2KcTb+W0aicbaxU2N94mn+sxIErd9C/rUi0ii/B3xjJI8cSKXEwN/QTzO7rGCuNlL/25kE2NrGgbh1Ej8CGI0bmZRRB6oiKmRxfJCyLPO6++CSDj02XkVmL47PWIcsBE92JcQDdTzEC33uem7GK0jnoDXm747L2K0XiBzL4tTTS4oZW7Ey6tVstxOSZ91qtF7QpHxHiByvD+bvvsN4vVmJYdfB46MHC/PwzClaNMnpRf5jNSAryiK0oLI8QLTd29BZFTmA14Fbo4cb2Kycbwn8EvEwDkKOCdyvKyHs0FnUjUDJW2zKOpq24r1pGPX7pHjXQaTksvfCiyRKTfW9N29I8dr1ttvm9A2/oB4+ddoOG3sFtrGYVYQn9JU9ieI9/m8mcPvAVtbQfxkSTOHItESCzYdn4jMj/6MfOY1uv/5pbkTrgdOtIK4XzL7TrGCuBbaxvbA/TSiOtJ50fuI5BJIvoYe4CAam0vjESeUrHzi2uQb70muXwB5D7qyAaEoiqIooB74iqIoUyyhbVyJyNbkGbMDK4idNuraCzEKF/ENYmSdoUVVnyBe28skf0+k883iCxFP8bOBnyXHxiGLrqnp70X1MLC2FcRxaBtLIkbvuRGvK98K4jFljSXeansl/xZO7uMS4AwriL/NKb8UYrQoY3vEkLEG+Z9THXjACuL1m08kxvu/I8nR0oVmajQ4Menb2cCmybEJyCbFgZHjfWb67l+RhXbzc6oaUZHyBiJPUyZf1C5fI2H9DmJgeB24IHK8u7OFTN/dFFlIr4R45F0NnAJ8jBjc68CYRJ6ApmunQzY5tkGiBxZoLpOhBswTOd6/B3ZbkzxLdwZWSfr8V2BUXh8VRVF+SJi+Ox+y6T0/jbGmjnjnbxg53iNJuYMpSDY+SKRj53jESLse4sgQAw8g48xYREambJyrJ9c8DJyc5pkxfXcY8CYynhlN5XsQmZwHO+18aBvrIRGGRaxqBfFTSdkFkLnJcPreS4zM5ZYqmw+FtrEjkuA3vY/0Hp4FVuz0HlowBljZCuIPBql+YNKz2Qf5/McjiewvsoL4k6ZysyD5CHqAh3LOb41skJSxTF6Ug6IoiqJ0ihrwFUVRpkBC25gHGE3xQnMiYFpBXMkgGdrGrDTCgZuNu3VEr/ZkxJDbinShPFAmJP+G5/TpI2D25Pg4JCfAoUkSuMlCYvB/DzEO5xnEa4gR43pg9YJq6sAoK4j7haGbvns0GR39HJaOHO8103dnR3RXo8jxPk+unQkxchclOm6Hd4A9aC8JcisejxxvRFmBjIEn9c4HeV7vAquVGduT+38I+DGtNyxqwG2R422RuXYlZHH/ROR4ZfkGmttdCXlOsyT9TrX2bwB+EznehKp1KYqiTGmYvpvq0OfNAWJkQ/0viCF4U7ozRrXibcQw/zTwCuJ93zwmTEA8zG9uUdf1keNt3XzQ9N0dEXnCPGLgvsjxNmqn01lC27gekcLLe6514DIriHdNyp4CHELxuPcRMm96BjjLCuKHM+3MiYyxeXPBVrTrHJDyCrChFcRF+W/+60ieU0S+g0odcQBZIE/KUlEURVE6RSV0FEVRpkx+RLmRfAjiBV/JgG8F8SehbfwOCY9ulpB5EzguKfMGfcPD8+iWl/ZQ+urrZpkD2AxJOjbaCuKvutQmIMb5VgsvK4gnJnqpRcn4/mwF8ZjQNu6j2IDfg3j/5WFTvCCuAzsChye67c3SL7PTPcPIN0jY+V6IfE835g6FC3XTd01ENihNrpe9jzQ0/ZikP0UcRyPPQ5FBIX22o4F9TN8dApyESAalofOfmL57eOR4l5S0lfZ7KkQ+IU2Um+33r5HcAye1qkdRFGVKJNlMLjLeg3wnLgGcAHxBZ8beTlgw+bcixWPqUEQqbxwiQVhE0Vgwgr6bzVkMJApvICxK8XPtAVYNbeMgRNplBOXPNk1gbwK/Cm1jD8Tjfn9E/73TvASdfp6ft2u8D21jYSSv0Nutoiu7ReKVvwuSV6CGSBSumVO0B5kzq/FeURRF6SpqwFcURZkyqZIU7YbQNi5G5FZmA3ZHtOk/RjzFHrKCeFIYlhXEfmgbIXAAYnD+ApEsOS+TZPUsGolzv0/qwJpWEN9WVii0jR5ExmYfYElkQ+My4JxmWZzQNoYDLvKc5gpt40NEwudkK4jHFjRxPqKnejQNnfgYWeTvn/x9QdL+TPRPYvsJkggwj9koXhDXkvNFfIAk0e1GgsClgWMixzvG9N25EfmBgbJK3kHTd7cGrqJ44wbkmeyU6ArnSecYiDRPmTHhbWQTYSRwaSI5dA6SXyHLrMDFpu8uFTnegSX1gRiu5i44V0c2Cf6oUjqKovxAmZPWG/jp9/IMTD4Dfk/B783MiuTZ+UVOuRoybvTbcDd9d1pkw7hs07xoDlGVMYicXhFLA6fTXgRkWu4iZO7TKldMKz5BnmG7LJr+EtqGgXj/j8vOTzPnF0fmTKmsYj20jduAPawg/rCDtisR2oaFRPXNhYzndeT5fYFEiaZ6+F8Ax1hBXDSvUxRFUZSOUQO+oijKlMlTSJjzfBQv1mYC/g/YKimXTRrnALeGtnEE8Fq6ULKC+FHEq6iIdwbc8+5RZuRNORsxyqaL2umBPwKbhbaxbmqYD21jKuAuxJsqfUZzIp7ea4a2sYEVxP3kT5LndkpoGxfQSGr2SHYhaQXxh6FtrIUYpn+cufxFYHsriD8u6PuriKE77/M1KNHfjxzva9N3L0c04LthJDnI9N1T6F5CtjmaD5i+uzCyYVQlcmBa5Fl/V3Bu+hbXB5HjHZ9pex7KPfoPMH33qcjxrikpUxaZ0oMY96cHvmzRN0VRlCmRCJGiqTI291DssV5EDfGQn6b9rlXmbmTsX4W+MmifAb+OHK+WLWz67jTAgxRsSifUaa2X3orngE1KzqfjfKcRkAMx3teRz6bIeP81MF3BuRoQhbYxH3A8sB3iePDP0DbOBC5I56ehbcyN5FeYJXN9D7Lh8rfQNlbIy1fUJa6kMW/pofG8p0c2dc5EpCsfKXH4UBRFUZQB0S2ZA0VRFGUyYgVxDfgdjYVTGQshi+R0IZp+92+GaI++FNrGTys23c/w+j3RA4wqKxDaxqo0PKrTe04XXasjyWVTtqURCt3T9HMtJBFqIYmEz8PAIsDNoW08F9rGaaFtLJicfxnxnlsJSSy7IrCiFcSvl1R7DvnjdA2Rtemjt2v6bo/pu8uavruJ6btLJf3plofjdMDywC2Il12rd66MGpIYt5ndaLynVSjKD/A1EmVSxj+b/l6b1oaksxKZnSI+anH9OGCwjAuKoiiVMH3XMH13XdN3tzN9d/lu1ZvkYLmGxiZ4KwzgD/SXgCviXuAnSfmBjEFlfIsYkg9Bxrs3EeP9zMBI03ePSBLWpvyOFsb7FT995/M7Hj5rydA2Pglt473QNk4JbaPdudQrbZafnPRQPn6WjZtpjpgngZ1oRA0uDJyHOGGk7INEHjbPi3qBxRHjf9uEtrFwaBvnhLbxRmgbr4a24SV5ptLzP6bYmaIXkdR51Qri+9R4ryiKogwmasBXFEWZQrGCOPUYv4fWC+Yyo+hSwH2hbVRZyJcZnFOaF9aDIRkyHhgS2kZvaBtzhLaxc2gbu4e2sWSmzI45fcn2yc78vW1J2RotFoahbZiIxrkHrIoYuw8CXgltYwSIt74VxM9aQXyTFcTP5YWHN3EtcGqmv3Hy+1hg88jxPk0Lmr77I+BZ4AXgdsQ7/3KKn30nn8n4yPHGIREdWc/39Lk9mfStVd29iCGmmSVpzyhzoOm7szQfTDwki2SeUtmim5qOV3kecyCfbRHXkx8RkGX2Cu0oiqIMCqbvrodE0t2PJJN9zvTdJ0zfXbBLTRwIvJz8Xva9Wkc89o9GZEmWAPIkUOqIUf2nkeNtFDneC8AOiLfzYMwtfGQMPQ3x7F6ShvzdfIgk4e2m76ZRBjuX9WOLMc/959SXr595eG3CWojn+HzI5sAzoW3M20a/nipr57+cYYgHO/S/h3eAQ5EItaxdIv1938y87hclbcSURyjkkjh6vIhsDiyOzIcPA14MbSONqqsSnbBAu20riqIoSruoAV9RFGUKxgriR60g3hhJnhm3Kl9ALxLyfkSFss8CT5NvaK0j4ecfNB17ocN+lTEEMZg+jxgBAkTH9bXQNm4JbWN6xFOraMHbQ18N+RkpHhN7k/NlnI0szNO605/Dgb8kuq5tETlePXK8/0Nkd05DDPIHAwtEjjdJhzeRf/kbfeV50n4XJcBN/6WUvTt15DN9LunXKMTY8kckCuJOxHPuZ4jxpofWhoZDTd/9k+m72f59VNDfIqYC3jJ994pkAyPLicB9ye8xjfd1LLBlshGB6bvDTN/dATEMVDGOFEo3JBsqZRI7w4C9K7ShKIrSdZLvyduR5J9ZVgYeNH13+EDbSL4HV0U2yG9DNtvzvlt7gHOTca4WOd6bwLzAGcgmK8j39khg1cjxHsm0cS8S0XYREs01ro0utmMET73Bm6Py1qWxqV+Yq2a6CePivf41Kp2HNCdjnxcZpyphBfE7wF9p34hfR6IWft/m2OaaPAAAIABJREFUdVm6ETl2OyI10/ysFqS1bv42oW1sSGuZurbsGkmOpMuRcb25X7PQcAQYXaG6qJ22FUVRFKUTVANfURTlh8FzSBLNTuml3LsJEC/y0Da2RjRfF6KvRuwjiHf2WGTBOBPwErLQvrnN/tQQD7upCs6nC7VmozWINNDliHG/SPqmBryceF+thyTUK6JOYrzOI7SN2YAtKA6vXgCR4emX/K4I03fnRYzhv0I2Vx4Azogc76Wc4nvRVxO2Fal+67nAbxDN+KcQffs9kPtNF7Pp74dHjjcxrSByvPfI3/C5yPTd0Yj0QCsd5H2A4abv7pYkdr0CkdFphxmRJMVbm767ceR4Dyb9G2f67kbI/4ltEJ3ap4CLI8d7H8D03QWQ57oI1Ta/xlPyHmT6U5ZEcFPgyAptKYqidJuDke/lPAmShZBINH+gjSQbpJcDl5u+uzqysT8DfecL1yNJV7PX1YCDTd89JCn/XbrZmtPG64h8DabvPkm5jE2WHgae4D2NyrsCmePMQY6EzM8+Do0h9cKgsl5g29A2dreCeHzFdndFxuvsXK2OyMZNS//PtQbcZQXxY6FtPIXMl0rlAJtINwsOA/7UxnXNxMjYuG4H19YQz/jfUy7T04tElbTDqkndRfWtGdrGQshc8kUkUXHeM/6bFcRvt9m2oiiKorSNGvAVRVF+GFwKuMiitNPoqkrXWUH8TmgbSwNbI9rh4xEvubutIE4NoX9Py4e28SENDdmqvIqEyW+H6NhP28a1PcAvkaRi45BNgDyDxezAExXqqyFarEU0h37nYVZoRwr67mLAY4hXWmpI3xHYzvTdTRPvwywbVq07oQ58EDnevjRyBKRtPwUcSyOa4G3gqMjx/lK18sjx7jR991MkEWArdkGkgu6nWuLDPNIIkitM3z0YMc48GDnel4hUTrNcTsp1NELjq0RIXBI53ictyrR6DzTyUVGU74v1KP4OioF16IIBP0vkeI8nCcodJAfMOOAZJHorBsnfAqyBbFgPBx4Fri8y3udwN9UN+DAw4z3IM0w3za8lfwyuzTz+mxrla+2pkblNJQO+FcRfA5uGtrEcMveaCNyBjLX30fAkTzfeP0Q2yrGCeGJoG9shevPXtOhXykRkU/9yZKz+MZ2NYQ8jn23Z5nYRvYgTSFFEYUpM9VwKKXNXKWMF8duhbeyEvLPp554+438Du7fZrqIoiqJ0hBrwFUVRfgBYQfx+aBu/QDzdZ6CvF3UVauTrkhe1N5bEw65C2XGhbZyIyMCUcRNiuH4O8WiqIwl2F0e86tuVobGAXyML1mHIAi9dBL6M6NRX4TMriN8sOR8hC92yMfWtsgZM310B8SZcElgUWSRmP7/epP7A9N35s97wtB9S30OBRnzkeJeZvns5sFhS7z8Sr8h2uQ34La0X62kugvuRDZtOFvgk18yLGFMAxpq+ezxwcuLd34fkeZfp2TdzFeK92or7KY6EqdPG/zFFUZQuM3GA5zsicrxPTN89F8npshuiGw/wuum7ByBG4tTAW0/+PiHR6x+DJJ03gKcix/sip4lmCbXBpgY8b/ruKhR7po+fa9wXJwPHFJyvI7JxefdTihXEL9BXmvCtJNHqvoiX+0QkCu4CK4j/k7muDtwQ2sZHyFyxKHIvldjbzAriuwGS+eVtVJ83ZetaC9mk6HQDu0w6J8UArg1tY0YriC+uWO8/WpyvIU4MWEH8UmgbP0IiHtdPzt0OXGQF8ccV21MURVGUAaEGfEVRlB8IVhA/mCRT3QaRFVmr4qXpovmP3e5TaBtDEJ3a31YofrgVxGHO8XfobOE3zgriO0LbWAAxGCyBeEvdR74WaxGzhbYxVVGYuxXEn4W2cR0iR9NcZw1ZJD7S78IE03f3BM5HPoOy++xFPMbWRRIXp9yLaBgXkW7mpMbxUTSS4/YjcrwY0RUeCKcicgzTVSibesHNSveS9A1H3ucvkWfbzFIV6jgJ0f6/J3K8Vgv9lCsQuYF56PtZ1hCZg3Mq1qMoitJtbgH2I3/sM5BIusHiKmDLpmOLA3fR+K7MfmeaiOf2cBo5aMaavnsmcHQyTqVycwORD2yXdIw6D9GkL8qL8tImH778ByTyYF76OyD0AH+ygriTDfJ+WEH8FiK7V6Xs35O54nFIAtlmUpm9q0Pb2MgK4qesIB4T2saKyLxyFeR+DkQ2AdLPLc9xJP27SA6x25wX2oZvBfGEVgWtIH4ltI3Hkc38PGmcR4A/hLYxBzInutgK4iNRGTxFURTle0JDuRVFUX5AWEH8lRXEl9Kep+/7iBzO60lSr25yPNWM95cXGO9B5IHa5TvEMIAVxB9ZQXyqFcS7WEF8BKLN3859fgG0WgwegGjIQ2NDBEQ6aOvE860fpu8uihgC2knANmdyba/pu0eQhMjnUEOiA/4MPIm8EzsDG7YhTZDX517Td7cwffdm03cfN333ksSjfRKR44VIiP+HLaqrA2l0w8sUR1nESHRGO4ma68DvTd/Nc1aoEmp/fuR457ZhvCeR7VmT/tJMbwDrRI73btW6FEVRuswZyJjUbDSuI2PE7YPRaDI+NBvvQca8onHPAOaibwL54UjulWzy16VL6ugm6TObgESLTYM4BRS1vco6ax66GJL3JPXQziZUvw44eXC62pokirKX8k3zWYCHQttYIbmmbgXxKCuIT7aC+CREEukvNCSA3mOQojjaYAhwdhvlt6eRgDamMcf4HPgZEiG4MRKB90ZoGzt0p5uKoiiK0j5qwFcURflh8reSczUkIdfmiLb604gn2afAP0Pb2LMbhvzQNqahSWM9h7GItE5h8lIriF9DDOTQWPymP+v0NUaki9ETrSD+tKDKr1r0KUsduKzIAJ/p48eIF/yuwJ2Il/8RwJJWEOclnk35LfV66bMeFo/n5x+8zJ7/GsV27z3JRh+89Fly6hTEkDFjwaX3AyMix9stcrzVIsfbKHK8KyLHa+mZVoTpuwYidXQzkrh3NeSenzV997hs2cjxnkES+D5bUmUPEqEBcAliCMjzSDQQr7drqO6l34N4wi+ac+5BZHMhr60aoqE/pmI7fYgc763I8X6CyDpsgXgrLhM5XtlzUBRFGVSS5ONr0Hd+MAEIkI3dfsZX03eHJhr1A2HjAV7fzIGm786a/P5Zacn2KDI+X49ETx0EmJHjXUM1/fSdk/F/UWBPJELrfMQwvJ0VxN+3sbuK9//UwAWhbUwf2sZUoW1sENrGfaFtfI3I+MwEjECkGzejWnR/jfY249tl+6pz2CT57NKINM5IZG5zPg15oXSTKY1KCELbWLDbHVYURVGUKvTU692KVlcURVH+W/h/9u47XHKyeuD4d26W3WVhadIJIC2AIB3pvSggvVcTEJCiiICEqoBC1B9VejFBqlKkNwHpoIIC0gxKDSxNlmVZyrKZ+f1xEmbu3CSTmTtz75bzeZ597jIp7zv3XnaSk/Oek9y83Icsd268kUmXOG8HhEim8KwMXALtWUF8zCDnsArFwVsA2wrilnX0k/OtCvwCCZSPBP6LZNlvSr2EzJtI6ZQL84LuoW2MRDKu5iY/Ez/9PjwPrGcFcTeDBF9Z/qIf3fbxTKO3qlayn6cvN+Etfvncjcw25fOv6t/UoPryrPOd9oNV93HJzlivAS8iQeOufsibvnskBeV3kJIH20WO99XDkyT4czES6E9r66bf90OQhsdpQ74vkJvntGeBgdzsHxE53lmm786R7N9OzeOlIsf7T8Z72RK5YW/MAq0hmXfrRo73QvMxSik1PTB91wTmBV6NHG9807YRyEPzQ5GHsB8hzW1Pad635Fg/Q5qjd9P2kePdZPpuH7KKa3EGJqalnzdlEtZqyIPd+5DybzMjyQ3nRo73eOOOpu+ORhr+3t7inI9EjrdeibF7JrQNwwrizGB5aBsbIe+5rIbLkAHXTtcgSQuvtjjHIcjKhYWRh+h70P8atFtWbJE8kSu0jQeRB115czrFCuITO56ZUkop1SEN4CulVJtC25gZKUWyG5L9/DeklulzwzqxJqFtzIE0md2m4eUJSBbZjRQHQqvAYlYQvzGI8S3q5VHybG0Fcall+6FtnAycQP/Abh+SHXc4MBPwZt7NatO5dkOWfjfe3FeRm9IPkOZyVwHnWUH8cZn5tSu0jbHnL77huOvN1WahMvA5wixTPueaJy5m5ngyRlPS+Z3zLc9vltmi1RALRY73dvdmDKbvvgfM02K3h4ANmx8emL67AlJOaWHkJv8q5Oe5fcNuVSRQ9BKStTgO+H3keK82nOcKZNl7qwy7tP/AsnkPMpLSDkchfQW+RLLv/i9yvNdanFsppaYbSVB6N2Rl3hpIhnljoLaGPNBeJykV1s6516GgD0yHtosc7+bk/BsjD/NH0P/zPEaueeYmO+jcqAb8NnK8w/J2MH13JFI3/mAk47yVv0WO106z9K4IbWM08FMk638BpPfPRUhixmcN+1WQlXob0V5ZwTxXIQ+FNiG7pvx7wCKN9elD21gJWQG6VMkxzgN2J78Bb2ptK4gfb7FPptA2xiHlm7LEwHVWEO/eybmVUkqpwdAmtkop1YbQNsYiGVqrUw8grwDsF9rGrlYQ3zCc82tkBfFHwLahbSyFzHcicrP2NWTp86IFh/cBOwBnNb4Y2sYsyHL4OYFngb8WlJd5OdlnebIz4yYg38uWQttYDQn2Qj3rPD3nzsBtVhD/vsy5AKwgvja0jY+Sc66dvHwfcJIVxI+WPc8g7bX1uGdmucFcjVqtRnMQf/N3X2DW+IvMA6dU+loFI6DLn/FJJv3cJXZdHwkA9asDHznes9RLIWH67lX0D96D/Ez3A06KHO8HOedfk3LBhj7gmKJVCJHj/QMJBiil1AzJ9N25kEzsFalf10D/f2cryGf5QbRfu/2x5PzNgeI0Q34iEhBPtxVleqe+CkRHjne/6btrAy6wVXLcXcl4aamdVsH7GnBh+kLyPVkDebD7KPA58tA/q5Z/3jmbe6H0XGgbMyG9DDahXm5uPuBEYMPQNjazgjitWT8bco22Lt1pMrsn8G1gFSTA3vjzjIF9m5vLWkH8dGgbyyDXDYshpRzPRh70Z2XA7wHcjTxsyvMpMJiEmreQBxFZ4/chfaOUUkqpIac18JVSqj0nUC/X0tfwtQJcEdpGXj3yYWMF8ctWEF9tBfGtSfbVecAiJQ6dpfE/QtvYG8mI/iOSzfU48LfQNjLPlQT2f4zcvDXWWk0z3Y9szAZrYV/y67VWkfIsbbGC+C4riNdBlsqPtoJ48yEM3gOss/Bn4+Mf/uc+qFSo1OTtpV+/MeGtWpVKZvB55QlvtApgv0e9MVu3pDVgy9igaKPpu4tSHDj/sem7M+dsK9PD4FNgx8jx/lRiX6WUmpGdiSQiQPG9YQ1p4NqW5CHqDsjKv0YVJIC8PXJd8j7y7/udSG+cohJ315q+O2vDGE9Fjrdz5HhjkODvSkiiQdFnVtzw9XuR471o+u4I03fPQK510n42byOl48oG76tI4P+8kvt3085I8B4Gvvf1kQA4oW3MCjyIXKN1I3ifWgxYGQnCv4GUybka+JYVxHdmHWAFcdUK4gesIPatIL4ZefAyOWtf5Ge6G8X1+8+3gridXkfNLiP//4MK0jNCKaWUGnKaga+UUiUly43zAsV9SCB4F6QZ51QntI3FkED4Nq32Tfy14diNkXI8zVYB7glt45vNmVUAVhD/JbSNDZFl5+lN5TPAyVYQ39TG9Bckv3lpH3LD3hEriD/v9NhB+gyobPf2P1lm4jhuXnAl/j3rfERjvsaUCnw4cpZK3lte6LOPWOOD//DXubP6swLwQOR4ZRrUlRY5XtX03XeRbL5WWn1P16A4sDI7Uif3nxnbrkECBEV+GDlec7BIKaVUg6SvyO6UezhbIb9pOqbvroo0rl8FqZt/FXB55HifAx+T3bNlBSSwv2rkeP2a3pu+uyvZn+0VJJC7O9nXW79FAsmtXIuU+Qsix3szee1MpPZ/ozmAI0qcL/UJsHvkeGEbx2D67ihgLaQHzN8jx/tfO8cn0uB2VgC6inzPAmQlxYodnL+VFa0gvggpa3h4h+dYHvketJKWU2zkI7X425Jc338duY6/HPgusto0/V6mX0+wgvhf7Z5fKaWU6gYN4CulVHkzIzeNRToOJPdKcmNyMnAc5W7Sa8C/6N/czCW7GVwfsDTwemgbk5NjzrCC+LmkBv/3kGzsDwAbuNUK4g9pIanhugWyjPlFpGFtXkZUjDTkndbcSPJAaJmJ77D0v+/ie6vvRzUppXPvfN9g57fyewAv9cl7RQH8XgWvX6Z1AL8G3NJinzIrL/L2uRD5XfpGzvYnkMDRsDN9dybk34yPIsfLyyhUSqnhshDSP6aMKtLzZwDTd/emnpmcBjzXA/YxfXdz5KHrdhmH9iGlXFzggKZteXXI07ksnzGPeYBdaX2tEwNO5HhfJR6YvrsAEtjuxJdIosIbwI2R401q52DTd/dFShOlZeomm757EXBkm58ds5N/rdSHPIwAKXdTphRfuw4KbeNlK4jPzNshtI05kWufbZDfvfuQrPm3kl1Wzzu2QfoeT0HK7lSBO60gfrndCYe2sQlwOvUHGv9DykfeiFzDLoD0fzjPCuI/t3t+pZRSqls0gK+UUuV9hizxLmri+WrBtuGyN3B8G/t/AmxlBXFjBvf6FC+tXyD5+j1gz9A2DgZORQLwVeRGcVfgydA2NrWCeELeiULb2Ab4HfXatSCBY8i+4TSACwrf0dTpbuAeYHOAZ2c3icbU+7K9PHZ+bl5wJbZ9+2mqVOij9lU+/pszz8VNC62Sdc4qkvl4c4/mXCYr7rzGprM57kdKJYzN2FZFsiIzGyBHjjfR9N31kN+vfakHnz5Hvqf3A2uYvvtwUf37XjJ9dywSWNgPmBX41PTdADgucryPhmNOSimV4V3yM7YbpZ+9ZzdvMH13XuBS+pdZS8+3NnA0MIb8gHEfsBMDA/jjkWuILH1IoLXZYmRn+jczgG8C/2h4bYOSxzarIqveftnBsZi+uxtStqXRSGQ1wxjaKxH4T+TBSdb3uQqkWQFz5OzTDWeEtrEAcJoVxOMbN4S2sTDS0HgR6r8PawAHh7axFfIAZc+S49SQa895gO8APw5t4zbgTCuIS12Lh7axAXLd0Pi9+Bry+X2mFcTrl5yLUkop1XNaA18ppUpKarpfmLO5iiwRv27oZlTakRTXC212mRXEzfXTs7upDtSH3HheSD2TrI/6TfGqSKZTpqRZ7Y0MXOmwONL0FuSmrbGu/pnkBKxD25gttI39Qts4MbSNvULbGFPyffRc8oBkO6TW78fjRg+sTHDOkpty+lKb88aYueQXbMRorjNX44cr78EnM2XG0mNgt6RkQS+kwZ48/wIOKzqB6buzIA960kZwjUH29Nw/adF89sOkye0YJBCxJ/KAbVskwPQg8C/Td62iufRCUgbhXuT7kNZoHoMEJh4wfXeq+R1USs3YIsf7APn8bHWNMAU4MHK8hzO27YF87ucFhPcHRpFfBo9ke7Ossn2Nrs54rZ2yM83Xc5088E2D0F4Hx6bN4U8uGHtf03e/3sYpz0d+Vs0/z7RRb1qX/4WCMUFKHZa97styFPBEaBvNje/PA8zk742/L7MhjYf3ovyDhQqwD/Lg5+vIw5tDgX+GtrFS0YGhbVRC21gHKcFUITsmclhoG2bG60oppdSw0AC+Ukq151RkuS/UM8trSMOtna0g/mS4JpYltI00y6ydf++vyHjtBtp7CDAiZ8wKsFdoG7PlHHcE2TdTBhKoPQk4B8mYCoD1rCD+SfJwpZ/QNnZEGtFdmhx3BRCFtrFRG++jp6wg/swK4qOAee+ef/k9mrfXKhVuX3BF9l19XzZd/0i2X+eHXLjERkycKbO/aw14PnK8Xi7xvpHi36Vjimrvm747N9Jb4TxgqeTlxpv1vwKbR453V5nJRI43BamVfwX10gCpZYD7mgPmpu8uZ/rulabvTjB99xPTd280ffdbZcYraXcg63wVZIn+Pl0cSymlBusw6k3Paw1fJwNXIo1Ozcjx8vr7LERxMHh+4GGKy+A9kPG6B7zU9Fr6+XJS5Hj/adyQ1PO/pmAezVZOHrim7kdK4bRjIrB35Hj3t9wz28LIZ2Fe0LpCvX9QS1YQh0gj2/Qhfvpz+QLYzQri50Pb+DqwZs6YNWAS8G2kbOQHZcfOsBRwYvofoW3Mj9SWz/o96CN7RV6RGgOvNSvJeS7KOyi0jaWR5smPJHMsKjm0VZtzUkoppXpGS+gopVQbrCD+PLSN7wA7IIG6scCTwIVWEL/WjTFC25gXWVI8GXjYCuJPB3G6KvApkgFcJM0iO8sK4q+WlIe2MStSNuWXwPZIltRgH/6OQjKwXsjYtkHB+WNgCSuIWwZAQ9tYAfgDA29QZwduD23DylhlMGysIP7iGd/9I3AackM/8HtQaZmUVgFWMn135sjxytSYb4vpuwcjqx2apeUXLgfuaDpmIaQR3EgkK/4I6rXr+5rO8R6wfhKUb0faXDCrtJKJ/H96WZLp6AK/aBp7W2Br03e3iRzvzjbHzrIz+SUpasDPTN9dH3kQeE3keIP5/1sppQYlcrw3Td9dGfgBcm0zEvgLcE7keP8tcYpXKM6argJLIg8JsjKaDaTmePO8PjR9d21kFeH3gbmQ64D3gCmm784ZOV5jiZazgdVKzDc1Aunp8kYy3vum756FZI+3MgVpGHtn3r/hpu+uhqw6/Bi4PXK8jzN2K5P139bKACuIbw5tY6Fkfl9H3t81DeVsTia/GXEFKXn0HvIza86gb0cFsEPbOCxJsjiI7pbtaSzZ1KgP+FZoG8tYQdzvAVBoG2ORBzWtevmkRg5uikoppVT3aABfKaXaZAXxFOCPyZ+uCW1jJBIgPYD6v88fh7ZxvBXEv+3knFYQ10LbuBqpFZ4XGP8EadB1Dkn2WmgbqyBB++8k+/wXOAOpZ/ttBncTlgZrsxQt2a602N7oR2Rn8vchWWUH0JAZNjWIHC82fXcPpC7+GGT+nTSZa2elRCmm736H+tL7ZlOAgwE/LXtj+m4f8GvgcPr/DIpqIM+P9AO4I2N7kQ0pfuizLlJf+FQkgJ81NsBFpu8uFjle3Ob4zcYUzKeCvM9dkAcLx5m+u2HkeG8MckyllOpY5HgfIv9GntrB4dcgpeBGk59d/UvqWeFZNgYGrB6LHG+86bv/pB5IHoE8BDgF+J7pu+tGjveu6btfQ0r5tPN5OQVpgNroJOS655stjh0B3Jz1wNn03fmB64F1Gl7+1PTdIyPHa+7XEwEvAkuT/b2rItcEbbGC+CMySj6GtjEC6UdUlIhxLrIq4/ftjpthLDAytI096e41V5lro/kZuIJjL2DBNsZ5sJ1JKaWUUr2kJXSUUmrqcS4SCG18uDobcE5oG/sO4rwnIwHzxsBu+vfTrCAeawXxmlYQX50E/FcFHiVprppYPDnP40jTsCNLjJuVNVYFbrWCOG9Z9g05x4F8Zv2pxLggKxjyPuNqyfapTuR4jwHLIw9L/omUlHmg5OFV4M+R4w2mbm2eo5BgeJaRwJSm0jk/RTLjm38GrW64F+1gbkVBoQrwhem73yQ7eJ/qQ1Y+rFOwT1lPlNgn7QmxKHBVF8ZUSqlhkTTm3gUJiBcpaoJ+gOm7AxrImr47K+DT/4F8+jmyBPUHDovRXmJaDbgucryvyh4mD9DfpnXwvgY8nRO87wNuB9Zq2jQzcL7pu9s1vpg89D4eeW9Z1z4XRY7XzdWCoyiXVb4k8pBkMI3ga0j2f4ysfOtmU/mbWmyvAv/JeH0D8q9lGtWA26wgfrbdiSmllFK9ogF8pZSaCoS2sTCwX87mGvCzpJ5926wgfhOpye0jjT5BMr72BY7LOOQ05Aavua4oSAbV00i2XZEYKQGUBnXTG7dxFDc5PYOBDxtS9yO178v4OOccJK9PLHmeIRc53muR4x0ZOd4qwNaUCyqnTX1/3qNprUk96Jw19lcPREzfHYkE8DvxegfHXE/xQ58bgb0L9mk0VwfjN7sQ+f+szEqIPmDd5AGDUkpNkyLHux0ps9epuciugb490gw86+FvBdgzqWOft6ovz3jgEdN35wQwfXdDpN5/mTrsFWSFWZZNgFXIfnhdBY7JOOYDpO5883u8C1lN2E2fIoHtVp+H6QrAzwv2fRkJiE/K2aeClDVaEUn86Fb5nFeRz/R7yf6crQFvAtuHttHcG2dyyTFuRFZ0KKWUUlMNDeArpdTUYSOKy24sgmTBd8QK4jetIP4+MAswkxXEy1tB7Dc3fw1tY3Zgs4K5GJSvHbo6cAlyk/c8ksG/E+CGthGGtvFcaBu/CG3jq/NZQfw2UqbnFuo3ZpOQm8CtrSAuW97k2hbv4doyJwltY8XQNvzQNl4ObePp0DaOC21jzpJz6IaNgZlK7Pci8J0kg78XJhVsq6TbkwzKK4B2v0dV4C06KBUAnA68T/aN/D3ITf48OdubPdfB+P1Ejvc6Uve/uTRDkaUHO65SSg2zdwZx7CfJn2bztzhuFPLvu0t+oLnKwKzruZCycONM33WRh85lS9bdHTleXrPc9QqO6wO+ZfruV5/ppu/Oi2TsN3emryHlCtcsMZ/Skmu+0yn3PivJvPI+O5cCbkYeMkxIXosb9r8KuXbrKPkk8RH1oPvnwKXAalYQTwJs6ln2MfWffwUps3QO8EpoG40rLv/UYj63AktZQbyTFcRTbaKHUkqpGZPWwFdKqalDmcD0oGubJzdvRcvcm28is5S58TOA1a0g/kH6QmgbGyCN8Rqz+5cD9g1tYx0riF9N5vgKkjk1F/A14K3GRr6hbSyD1A+fE3gGuDa5mWv0O2SFwYoZ872P1suvCW1jG6SkTx/15e0rAk5oG+taQTyYYEVZZb7XWyMN8rq5PL3ZNcAPc+ZTQRoGA5yAlFIYqcKhAAAgAElEQVRoVwzs0kEDWyLHe8v03bWQoMQ2yM/qE+Bi4PjI8aqm7z5P6yDCHZHjZS25b1vkeA+Yvmsm81mZ7KzLRkPxu6SUUr30HJJNXtT4NKvBdw3poZL173/YYszxSHmW7+VsryXj5V0/jUJWHU7OmFeWKrBP0qD9WORaZFbgSWRlYqsSdjEQJxn/xyIZ+1njVpJ9DwMeKTGvdlwEWEiPmjIM8h9uzAb8CmlOvwvSRPhj5Jrh0aQs4zPIA+12VrjdA/wEeAG5Lp0b+KDxWtAK4rdC21gpGfdQ+jcwTj/vZwduC21jESuIP0MC9I8iiSKN7yftzXSgFcTj2pinUkopNWQ0A18ppaYO95IfWK8iN7GvDHaQ0DbGhLaxX2gbl4W2cW5oGxuFttF4E/MeUrO0G04PbWOhZNw0M7u5NA9IRv+AJr1WEH9oBfHL6Q1baBtzhrZxEZJtfiJwCJKN9VpoG6s1HTsJaW56NnIzCRJY+AXw3aQRca7QNsYgDdzS4D3Ub/YWA7zCd949D5L/cKeGZK3f1ePgPcj7HUf/IEg65uWR4z1p+u5oissjFZmJQTygihzvlcjxtkdu8pcA5o0c74jI8dKSUZdTXNbmFSSbr2six/sicrzrIsc7FngoZ+xqMnavVk4opdRQMRjYNLTRzdTLvTX6DBiflrNpcgfyOZf3b/e1wD4FY6YZ4UX3vDXKJ7XdhgT9/wYchCQSzISUkbsBaC7Z0qiKZIDvgCQS5AXvUwZS/jBTaBszh7axfmgbGyTXLKVYQVyzgvgnyMqvUylXXi4vmaAP+dzdDEmM+C/yQOM7yGcxVhB/QfvNkTcHfgb0WUH8qRXEbzQG7xvey2dWEF+OBOqz3kc6v52S/acAWyAP+NOHLVXk57qOBu+VUkpNzTSAr5RSUwEriN9Fgs3N0uyx45rL3bQrtI2lkQcBlyLZagchdeVvCm1jVDKPKvm1Xds1e8O5NkKahGZ97vQBW4a2kblUPrSNr4e2cSPwP+CApuNAsrruaL6BtYJ4ghXEhyfblwB+A8wLHB3axmIt5r5NMv+8+e4e2kaZ1QqDEjneO8AFOZsrwEmdZK13MI9xyFL+K6kvZ38bKTuQ9m5YguLgRZEqxUGYUiLHG58E8z9r2jQe+fmnQaDGYNB1gBU53vuDHb/AwUgpgMb/h6tIAMFuagCslFLToquAdQu27YisSLqD/v8Wzow8lH/K9N0FGw+KHO9LYDv6l2hJH2r/GQn+F61UG0Hr+920QW6rf4eryCqzk5DSPo3jpmMcDlydc+znSCD7Avo35c1TQz43+gltoxLaxuHIZ/CDSKP7caFtHNOUkFHICuLQCuLjgH+VPaZgnrsiwfufAXsiqwvC0DZ+mOxzBtJzaUAQvsDOyXkLJQkiS5H/e1BDVggAYAXxxGR16DzJ6/NZQbxtsvpTKaWUmmppCR2llJp6/BRprnoE9UZqEXC0FcTXD+bEoW30IdlvaZC8sZzINshN17HJf5+PBDsHG6CuADuHtnEg0sCs1b7z0VRKJAnqP5ZsK8oAmwe50fMztm+L3FCPQm78DeDE0DZ+bAXxgMz/RKv5jkQy75oDxb1wOBI0PwR5DyDBjBMjx7tkCMYHIHK8N4Hvmb67PzAG+Lgp8JxVv7isGvIzzJUEdnZBvu/PArckwZ1CyXF/Rm7Uq9Qfir0C7Bo53pODmHcpkeM9b/ruysgKhW2R6697gDMixyvKWFVKqame6burkd/Etgp8LXK82PTdfwPr0//zPP37okigd7fGg5MVXksBDvIgeRLy4PUxJDu/WyYi115ZgfXPk/GfR8rmFPXY+TuyEuEwpAwgSJD9SCSJoKjEUKMK2Q8DDkO+T41mQx4O9AG/LHn+1N3ACm0e06iCZLWnGq8vzwlt4+9WED8BnBraxm+RxrcjkVVvWxect4qUQsz6HgAQ2sY8wGUl5vdB84tJjfsXWxyrlFJKTTUqtVqvV90rpZRqR5JJvgKSnftsG41bi865KRLEzPMRkoU0Odn/90gWVTdWai0CLAQ8XrDPl8n44xtfDG3jV8BRtK4FXwXOSTLuG49fHLmRNsh+L+tbQfxw84uhbWyNNNLNMxGYO/1+DQXTd+dClul/CTyakWU+7EzffRLJsMz6Xqe/x3m16H+J1BCe0FwSyPTdI5EyPo3HRsCWkeMVZg+avvsQsE7OnM6JHK/Tsj9KKaUA03ePB04p2KWGBG1/TXHt9Rh5mDsamBw53v8KxjyUjPJ7HagCTwBnIs1wV0GuOT4n6bMDXBE53v9M3x1DcVN3kJVxPzd9dySy8nBi5HjvJXPeNTlfKzXkYcE6keOlZQAJbWM08tAir578J8ACVhCXfqCelCD8e9n9c+YK2ddpVeBqK4j3zhi3gnzfV885FuAlK4iXzdoQ2sZMSO+B5Sm+Vo2BRawgfrtgH6WUUmqqpxn4Sik1lUnqfD7R5dN+o8X2OZDMsCj5718j2c4zMbgg/kSkrn6E3Agvz8AAbg25wRvPQDtRrpFrH1ImpdmByGdd3o3locCAAD5wZzLnBcl+/xcPZfAeIHK8D5N5Tc0OR2r7Qv37ltYfvhBZRdAszeJ3kSX2r5u+ezpwbuR4NdN3t0NWhDRbALjb9N0l8h5mmL67IrBewXz3N333uMjxBrN6QCmlZnRly9QMCOQ2MZAVViaA6bsPA8dEjvdoxr7LUV9V16n082dlJKs/9SKwc+R4zzft/xmyemsx8q9NngGIHG8yUlZmwLYWJiBZ5ac0Bu8Tq1DcDHZWYC2KEzb6sYL4ydA2rkKSNspIG9qmn+1F12h9yM8pa9xaaBt/RZrP5l2jFa1Q24bilQPpPI/U4L1SSqnpgdbAV0qpGcOA5cNNYuo1ZrGC+DmkKVmUe0Tde+Q3Wr3ECuIvkvr9uyb7puOlxzxNfkbe6BLjp7KWWS9PfoO2PmDFrA1Jo7PGurtV6vN9AKnXq5pEjvcwUh7hvoaXn0MCIYdS/77VqH8/0wBAGoRZBDgHyYYEKSmVVZvYQIL4uxRMqVVZgJmRQIxSSqnO3dti+yfIqrYy5WMWavj7OsBfTN/NehD7PoO/l30zOUdzycBlgb+avrto44vJ6rAzyQ44x8DrwK15gyUl0+4mv97+ecCcSRP2AfXvc8btZJ9mNvL53OpaEeR9foisEi3TN+Ddgu0XU1we8fyCY7/dYvwpwBZWEJ9VOEOllFJqGqEBfKWUmjHcgtxAZwWzq8CfknqgX0lKyyyHLCMv4lDPfm8MzP8FafiWnu/fyE3xj5L5XI9kfK2Zk30PEiwvukFL388vrCD+T8b23OX3ybEf5m20gvgppDHaT5P5/gHYAdgsWSWhMkSO90TkeJsjmYBzRI63YuR41yfbTkF+p36DNDX8B/UsuVT698NM37WQ5fV51ytVJHsvT9HPP5X3u6eUUqqcx5Egft4D81mBTUueq7k5rIGUUGt2JZ0Fq1PfQXqq5JkFODrj9fORQDvI+02vUd5Byrq1aiy/N/LZlx6fugU4srmEXJOnyGhs22ASxeUKM1lBPMUK4lOQh+KtauiPAM5GHnq0iiX0AVcUjPsccBDyfUgf7Kffz5OtIC5aSdCqDrABbBHaxkIt9lNKKaWmCVoDXymlZhChbeyO3PBC/aarhmRHrWUF8WvJfhUkc3124AXgGKT5WrMacJMVxDuEtjEHksG1DrLE/M/IjfF8wL+B6zsJeoe2sSpSTqiP7BvFp5C66X9Isvybj98MaRaaZwKwRvJwQQ0h03cryO/KqILdTkAa9uVlbdaA0yLHOy5njFHIKpKvMTDQUwUeiRxvg3bmrZRSaiDTd2cDLkJWRfUiSWzByPHGNY15InBSm+epIdcFpwIPtth3fOR4mSVrTN9dHllZOBvwN+D6yPG+KDMB03f7gM2BjZBM8VuAv7UI3gMQ2sZPgNNzNp+YBOI7FtrGQRRnvrfjc2DWVr2cQttYBtgfWAKp8f+7JImi6JjtgRtbjJ9e465pBfHrpWddUmgbfUgpHxt5+PEScEHStFcppZTqKg3gK6XUDCS0jXWRkiTrI8HTPwCnp/VBQ9vYEMksS2vmTwZ+j2TP7dZ0uvuBHawgnpAE/TdAmqyugNzAN/ZZ+RDY1griRzqY8zaAT/+6ry8mYxfVR00fRlxOft3dODnXClkPAGY0SdO9NZGg+lNJ3f1ejWUggYsi5yE/ox+Sn2m5YuR4zxaMswP12saNdfknAetFjlemJrFSSqkSTN9dGLluWJ/uBvKXiBzvlYzxdkBWdJUtufcwUiJvJfqXe8syKXK8WduaZY8l1zVHAMcjiRYAnyLl6r5EVpVdhSROtPqMzTr/fMiD7271ypvdCuKPk3MvAuwIjEUa597TKrhfMM8RSIJH2nQ4TxVJ8tijk3EKxu9Dri/3ot4PIP16uJbuUUop1W0awFdKKQVAaBurA48gN23NN923I0vJt0623wc8kTQhWwjJHlul4PRV5IHBWUjd1PuBx8oGzUPbGA1sgWT0vwQ82MaxY5EHCEU3o+t18nBhemL6roM0L06z3ScDFwBHRY73ZQ/Gm53iUgAg2ZwnIdmNjQ2F05vkCyLHO7jEWOsipZA2Qd7XnwAvcryws9krpZTKY/ruQxQ3EG9HDSlPs0heeRrTd3dBEhLSz4b0uApwMvAx8mD6AeDxpEH6WKTm+8iCse+MHG/LbryJbgttYwySNLEJslKyQv/msncC21lBPLnhmCWRkjWrIN+Ta2gK9CfXW2cCP+jCNKvIgxUTeaiwVtP2F4Et0xWg7QptYy7kOmFHioP4U4DZrCDObHjf4dh7Iw+q8ixnBfEL3RpPKaWU6taTdaWUUtO+48kO3gNsBZxiBXG/OrRJJtit5DSDbdCH1JNNS52cDDwQ2sb2VhC3CuJiBfHnSNC1EwvR+vNuaeThRU8lJQa+D+wEjAEeAn4bOd7LvR67xbx2A37X9PJIpHzNGOCAHgxbFDRJhZHjjTN9d03g50jPhJmBV5GHQaWW+UeO9whD8PNVSqlpmem78yEB1yhyvI4yoxOvAusyuBr1qQrw66La8pHj/dH03S+RsjjLJC+/DpwUOV6Qc8xE03dPR4LfebpVSqbrrCD+NLSNF4C76H/dlv59C+Qz/DcAoW18F7gBmIl6oH8b4PuhbXzXCuLPQ9s4BLk+yywb1IE+4MfAadQb1TdaGrgjtI3lrSBu1RB3ACuIPwR2Dm3jFOQaNs8IZCVp1wL4yHVR4wOjRjVgP2SlhFJKKdUV2sRWKaVUGojfiuLPha0yXtsQWLnFcXk2YGDQuBc+oLgRLh+MnKXlQ4TBMn13XmTJ+OlImZoVgUOBZ03f3bjX4xfMK81QzFvRsJ/pu4v0YOgPgJcLxoWkPnHkeG9Fjrc/cgM+c+R4S0aOd27keG3f8CullOrP9N31Td99DMl0fw14zfTdQ5LPh05cTGfB++YHrTES/D271YGR4/0JKf+3GFJLfYm84H2DE5BM9Sw14MSkXv3U6qfkPwyvAQcChLYxO3AtEshOfy7p+9oEODq0jQOBc+le8D6dwy/JDt6nc1gW2DO0ja1D29ggKY3TrsdazOE9ZCVmNy1G/rVvFejFdZNSSqkZmGbgK6WUgnI32lk3KmsMcsztQ9tY3AriAXVtu8UK4g9C27gN+C5N76EKTJhpDLuvceDlse+uDPxskFmHRX4DLJn8vdLwdSRwjem7C0eONznzyN5aBFiqYHsfsCldftiSlDD4JRBkbK4B90WO91TTMVWkKZ5SSqkuMH13faQsXuPn40JIMHceZPVTWyLHe9T03fuQ4HAZNaS0y/+QsipfQ+qbX9ncuLbFuDXkAUTZ/eOklE5WJnUFWB3YGLi37Dm7IWnAvhgwMXK8t7L2SRIv9ik4TYV6EHlXZBVklhrdKZeTZ6YS+1xO/bro3dA2fmAF8U1tjHEP8B/ke9b8sKAC/LbTWvsFXkEa12ZdG/fRxu+hUkopVYYG8JVSSmEFcTW0jfuRm+28jKKsG9hJXRh+TeRGqJd+DHwLmD8tilulQlyp4C2zJXGfkZb3mQU4vNuDm76bNgHOu9GbF1nufnO3xy6hTC+BnjTMiRzv8mRlwilIfeLUXUi5HKWUUr3lIZ9DjZ9PaTD1WNN3z48c770OzmsjQcy87OtHkZImzyDXF5cgtdJT2yXz+DV8FdTeC9gdad4aIf15booc74MO5ofpuyOQUj9FNmSIAvjJfE4AfgTMkbz2KHBE5Hh/bdp9Reo9a/KkDz++XrBPBZi/7cmWU6Hei6DVfqn5gD+FtrGjFcQ3AoS2sQqy2mBzZFXGzcCvrSAOAawgjkPb2Br5OS2U7NOXnPca5He82y6muM/DUKwwVUopNQOZmpcEKqWUGlq/SL42B2trSK32BzOO+RMtytOUsOogj2/JCuJXgZVr4L0zerYv3x01lnvm+wYHrbI3f59rscZdDzV9txc3snPTuua72WJ7r7wJ/Jv8n2MV+HOvBo8c7zdIFtuewP7ANyPH2zJyvPG9GlMppdRXNe/XIv+ecCagoyaukeNFwN5IMLXW8AfgaWC3yPE2QwLWv0M+Bxr1Ab8yfXd703dnQVYJXApsBKyGBPgvAcaZvnuB6bujO5hmFWlwWmQoV8ZdBJxIErxPrAU8YMoqwUYLljhfWh7ozRb7dbM2fKqajNtpGaYrQtsYHdrG5shqjJ2BOZHrKQd4KgnsA2AF8UvIakIb+T05E0kQ2bOxSW8XXY2sHAD5HYf6ddRhVhC/2IMxlVJKzcA0A18ppRQAVhA/FNrGDkjTtvTGsIY0PdvfCuIBWdhWEEehbXjAsZTLssrS8wA+gBXE75i+eyngFuw2AtgMuKLLw7+HlH4pCjD0ehVCpqSUzfHAdWT/DC9KAjG9nMN45GZYKaXU0CkT9J6505NHjneN6btPAzcBFvIZUwVWAl42fXcbJHDfHLxPVZFGoKsC6ySvNT9sGIGUgJkDyc5vZ35V03dvBrbPOG9qSFbGmb67LLBvxqY+JAHgZ8hDi9R/S5z29OTrsy32m5nia7gqMB4pbVTW3cBPkBUWaePcdoxBfp4nIas4mhv1jgEuoKGUoxXEnyFB9cvpsWTlqgNcjzw0mB9JhrjQCuK/93p8pZRSMx4N4CullPqKFcQ3h7ZxO3KjPDvwjBXEr7c47HjgDeRGMa/GapH1Q9vY2wribgfNs5S5gew0WyxX5Hifmr57OXBAxvmrwFtIDddhETne9abv7o2UKkgDKZORFRYnDNe8lFJK9VSU/FmI/M++hwc5xpZI8J5kjHSckUiCwFVk16AneW31huOL7Gb67v+Q93NT5HgvZe2UNObdFMnongUJhH+BlHFrnsPVkeM9U2Lsbti2YFsfsLXpuyMix5sCYAXxv0PbeABYn4HzrgH3WEH8cmgbY5Dvc973uIxfAc8hP6sieyHXDs8g5ZP2AF4Flu5w3D2BhXO29QHfCm1jSSuI/9Ph+QclSWy5LfmjlFJK9ZSW0FFKKdWPFcRTrCB+0AriW0oE79MbmPvoLHgPcjMfhLZR1Ei1LaFtVELbWCW0jW+HtrFow6ZXkJvKvJruVeD+bs2jydHAPxrGSecwEdiph81zS4kc70qk4d3PgA+R4MquwFum755u+m6ZRnRKKaWmEcnnzmlkB+9rwO2R4z03yGEOIfsztw8Yi3zuFD04n4g00y071mnAi6bvXmz6br/6+6bvjkQeTN8D7Id8xv0UCTr/q2lMD8msHiqtyuz1MbCfgE29PE6VegmXV5D3B9J/Zz5a3/enP4PG3kaTgJOR64JTC46tAQ9YQXyVFcTXIUkddwE+5R6+5Fm7xD7trApQSimlplmaga+UUqobvjXI4ytI/fOfDnYioW2sjdQ/XTZ5qRbaxq3A96Mgft/03Z8DQc7hl/SqXEzkeBNM310HCRjsiCxZfwS4OHK8d3oxZge2QZarNwZbRiHL4GcFDhyOSSmllOqZC5BG6scipU5SdzLIZuKm7/YBixXsUkNKzOUF8GtI1vcuSBC6nRVy+wOvm757auR46WfaMdQz3RsD2rMitdUXQ5IRXokcrxd14Ys8VLCtCjwZOd4XjS9aQfx6aBvfRHoNfBv5ft0JXGkFcRqIX5Xy2fc14ELgFiRO8HcriCcmDWIXbXHcQQ3/fQTSqwAGt6qxVfmmL4EB2fehbSyNlFVaDvgAKYt4V1YpSKWUUmpaUanV9HNMKaXU4IS2sR2S1Vak6AayCtxuBfE2g5zHssBTDFwKX0WWf69mBfGXpu/+AMkmmzPZPhkJYhwVOd6Xg5nDtCopK/AcsAzZP6cqsHjkeC1XZSillJq2mL47D1LuZmbgkS5k3qfnfY/iDPqfAEsg2fON1wlV4G0kQeAA4OcdTiEGHkAy6q9BAvV5dogcr9W1TE8kn8GPIe+38TM4rU2/XeR4bdfjD23jNGQFYNlA+hnAbMA3gPeB3yMlcIoy8AHWt4L44WTMNykuy9QNNeByK4idxhdD29gdCdg3/h4ZwJXA96wgrqKUUkpNgzQDXymlpjFJZtGBwPJMPZlFfwY+QbLYmlWRpemTgDXJD+J3Iwv9KLLr2PYBKyCZd9dHjneh6bsBsjx7FPC3yPH+14Xxp2ULIjfsefqALU3f/QjJrJuCNPf7c+R40+QNcRIwsYEfISs2PkCW/P8mcryPh3FqSik1pCLHe5/eNP+8FMl8b1ZDPkeuRgLFLwCHA0sCnyGZ9z+LHG+c6bu/AtYDNulgfAPYENiY1gHlZTo4f1ckDeW3Rh4ybNqwaRJwRCfB+8QfALfEfrXkz+HJ177k67ZI6cFWHgxt42AriC9Erid6EbxPrzX6gEeBwxo3hraxEPLAoa9h/LTs0F7IKodLejAvpZRSquc0A18ppaYhBZlFVyGZRcNWRz20jYOA8xmYQVdFlnZ/Hbis4BTrWEH82CDn8A6yzD5LFfCtIP7+YMaYXpm+a1KvpZvnXeT7GyM3x31IZuPWkeN90tMJ9oDpu78FDmXg6pBngPUix5s4LBNTSqnphOm7Y4G/IKVc0mzyavL1gMjxLm3afxTwZfODYdN3RyDl545AHsiPanMq6dhF9osc73dtnrfrTN/9JrAa8DFw92A/X0PbuAApKZO3EjJ9PQ0MFJU0Kvoe1pCHIPfQurdBJ25F6uvfhjTp7fc7EtrGccAvco6tAk9bQbxql+eklFJKDQnNwFdKqWlEaBsLItlxWZlFeyKZRRcPw9QAsIL4gtA2PgROQOqOAjwMnGAF8cOhbYwAdgC2on6zGCPv4azBBu8TrZ5K61PrfG8BLyEN5/JWSaRlEBob6W0I/B8SHJhmmL67GhK8h4Hvd0UkK/+XQzoppZSazkSON9H03fWRMjh7AXMATwLnRI434HO/uc57w+tTkGzyPyTNaVdHavdfS+ta6VC/bsoKQteAz4EbSpyn5yLH+xf9m+oO1iHA88CPkXJFnyEl82ZDVk7+HXlYsDfFQfcyAfnvI8kcvxrEfLPUgEOsIC5KNFic+nVlsz5kdYdSSik1TdIMfKWUmkaEtnEs+QHFKvCsFcQrD+GUMoW2UQHmAqZYQTyhadtMgAPsh9RH/TdSe/6GbpQACm3j0uT8eQHoHa0gvnGw40yvTN/dGfgj5TIVG30BzBc53oSWe04lTN89C/gh2b8rNSCMHG/YyikopZRqzfTdQ4BzKd+o9QP618FPs7i/FznelV2e3lQntI1RwJcZ2euXI8kgWcHvRl/Sv9lxoxi4CdgD6Yu0Jf2z+2tI9vx9wNltTLsK3GYF8bZFO4W2cTKSRJJ3jhetIF6+jXGVUkqpqYZm4Cul1LSjVWbR4kM7nWxJID6znrwVxF8iqwRKrxQIbWNtJCi/APAycIkVxC/k7P5/wO7AaAY2gXsGWX6tckSOd53puwciD1XaCeCPAhYDnu7JxHpjLvJXZFSArw3hXJRSaoZn+q4ROV5bpQAjxzvP9N1xwLFImZ5Wmkvv9AH3I5n80z0riDNXOACv0zp4D1JKb0GyH5b0AW9aQTw5tI1tkFWXuwNzItcHF1hBHAKEtrEesFPBOOnvgYEkexxQYm4BcFzB3C7NeF0ppZSaJmgAXymlph1vkX9zVQWiIZxLzyWZ/L8GjqSeIbcl8KPQNn5gBfGARmRWEL8U2sbGyE1ammVVQzLCDkgeIKhiaW37dnWtCbDpu8sAmyE/u7sjx3u5W+du8CxSLiBLzLT1MEIppaZJpu/OjgRd9wPmMn33VSSj/pykbA6m786CNLAdA/w1crxXG88ROd6NwI1J/XwPKRXTrIo0zZ0lY9vGwIum714IXBY53kddeXPTloD84Hejh5AM+ywV4HcASU+m65I//YS2MTNSqi5rtd9k4OfAKsn224E/WEH8eas3YAXxK6FtHAb8lnrmf/r1LqS0j1JKKTVN0hI6Sik1jQhtYzHgP+TfXP3ECuIzh3BKPRXaxtbALTmbq8ByVhC/lHNsBfgmUrM9bFEzVTUwffcPSKPAMpl4ID+LhyLH26gLY48GfGC3pk0BcGDkeJMHO0bDWHMDryG1k7P+n9o6crzbujWeUkqp/pIGt48gTWlTaVD3WiRQfBASlB/bsP16YN+s5q5JEP8aYPum872KrBRr5U1g/cjxXmvz7UzzQts4ELiwYJcYaU57BrArA4PkrhXELWvfh7bxPeRzPUsNuNAK4oPLz3zA+ddG6v6vALyP9I+6ujmJIynruBOwC/L79fdk7Nc7HbvhvNslf0YCDwBXWEH88WDOq5RSasamGfhKKTWNsIL41dA2fkT/Wq/p17uB84Zxer1wEPklgyrA/sARWQcmZXye7d3Uhp7pu2OAzZGmc/+IHO+5Hg3VTvmCKjARafjaDecwMHgPYAPjgZ90aRwix/vA9N2tgZuRG/f0d60GHK/Be6WU6r5khdW+wMLAfPQP3kM9I3s34L9IVnjz9p2QUnnbNJx3eeSzaC3gE2q4V00AACAASURBVOAsJJu7BvwFWBs4scQUF0JW8W1a9j0NFdN35wLWRD6vHokcb1In5wltYzRQtYK430NxK4gvCm3jv0j9+lkbNqWfj0dYQfx2aBt7ADcin80LAi8i5XEeKjmFzSm+vtuijbczgBXEjwEDGiQ3Cm1jDJLdvyFyLVNBVnn8OLSNra0gvreTsUPbmB24B/gW9eupnYBjQ9vYKC0hpJRSSrVLM/CVUmoa05BZ9E2kGdvvgaumt/IwyU1kXl3/KnC7FcTb5Gyfrpi+uw8S3J694eV7gT0ix3u/y2PtDlyds7mG1KKdFylFcCPwm8jxXunCuPMiZaLykgs+BxbodmmDpHzDXsCySKbelZHj/bebYyillALTdw8D0pWCVYpXeqUPiMeSv/JwxcjxnjV9d1skK7+PesPUCvAcsEHkeB+avnsw7SU6LNGNz7ZuMH13BHAa8oBiZPLyROAk4IzI8Urd0Ie2sRXS5HUN5Ht0F/BzK4j/1rTfPEj5wj2pZ6afYQXxHYN/NxDaxpXIA5q8n/+rVhD3tK9TaBunAsdkbKoCHwMLWUH8aQfnvQzp29RcGigGngdWSpJMlFJKqbZoBr5SSk1jymQWTSci4Ovk37i/1clJQ9swgO8iy7/TG9NLrCAe18n5es303S2Q5d/NN3wbA7ebvrtG2Zv3km5A6r+vSP8b0CrwIbBp5Hgdfe9bWJXi65LRSKZm2Qy/UiLHm8D0t3pFKaWmKqbvrolkxadalWmr0f+hdZYNTd/9L3AF9eA91D+7lgNOQZIe/oiUfhlJuSbtiwJTRQAf6Qd0eNNrY4H/A75AVmYWCm1jH+RaIu0pVAG+DWwS2sZmjdnzVhC/Dxyd/OmFO5GHA1lqwK09GheA0Db6gANzNvcBcyClBK9o87xpQkDW75eBXMOsCTzeznmVUkop6KxJnVJKKTUULiP/c6qPpFFaO0LbGIXcGN6E1DzdEslgezm0jQ06nGevHUt9eXejPmB1ZMl31yR15jdBagg3ltN5AFi3R8F7gDKZbm1nwymllJoqHEw9eFxGmT4sU4AdyM/SrwC26bszRY73ARLIp+Q83ig1yx4zfXce4NCczTXgBNN3Zyo6R9I09uxk/8bvUx/y4PzspHfQULkeWR3R/HNIs9/PGnBEd80CzNVinzL9EpotTH2FRB6rg/MqpZRSGsBXSinVfaFtrB7axrWhbYwLbePV0DZ+E9rGAm2e5irkJg/qN3lpQPlUK4j/3sHUXOq1VQ3qn4MzAzcmN7lTjWTZ/LoUf15v2O1xI8f7MHK8PYH5kTqui0aOt0nkeP/u9lgNHgfeY+BKA5LXXgf+2cPxlVJK9c6ylL/3rAKTkBVyecH2GlLDfKEW5xqD9I4hcrzLgA2Q3id5ZQerwANTUSm1dYG8AH0FKWm3XItzbIxklWcF6fuAlcgvWdh1VhB/gSQK3EL/z/x/ABtaQfxqj6cwCXlQUOTNDs6bdw3TaKpc7amUUmrqpyV0lFJKdVVoG9shgfcK9Zv1I4C9QttYywri18qcxwriOLSN3YDdkYZ3JvAScGEndViT7LKDczb3IdlYOwJXtnvuHqqS3+gtNblg26AkGYsf9Or8TWNNNn33CGTJetqcGeqrD34SOV47DXaVUkq1wfTdSpdLsjV6h/7/tmdJa9d/DGyfvHZvznHnR473elJCp8hHwIT0PyLHexh42PTdZZGSbHM3jf0usH/LdzN0yqwWaLXP2BLnmC3rxaTs4NbIqsWxwN+ASwdbdtAK4veA7UPbMIGlgHesIH5xMOfMk1z/bYbUpl8AeBlZjZlVxqcKfEY9gaQ0K4jfC23jDiRRpPn3tYr8P3B/u+dVSimlQAP4Simluii0jdFIaZvG4D3Us8ROR4LkpVhBHCMB9W4E1cckcyiyZBfG6ZrI8aqm794MbEd+0OPmIZxST0WOd6Xpu2ljvhWTl/8BnBg53p3DNzOllJo+mb47BvgpcACwgOm7bwIXAKcnJdW65XKk/0yeS4DxSKP0P0aO90kyvy2Ra4flk/0+Qkqs/CL571uQzOe5yf6cvDhyvCnNL0aO96Lpu8sBP0BqwVeBO4BLkofXU4uHkDr3ozK21ZB+QM+3OMeTLbZ/AoTNLybXdDcDmyPJBBXkZ3h0aBtbWEH8cIvztmQFcYT0POqJJHh/AVLzPn0QtF7y9U2k7E36ei35+15WEE/scMgfAY8iKxhTVWTFxz5WEA/4XVRKKaXKqNRq2gRdKaVUd4S2sSPFWUtVYG4riMcP0ZS+kjQtG09OllniQCuILx6iKZVi+u6KwBNIXdXm4MQ1kePtMfSz6i3TdyvA14Ba5Hj/G+75KKXU9Mj03VHAn5GAZirNRL8T2LpbK59M3+1DeqvsQj1gmn69HHDysv+Tz4QlkQfxYeR4nzVtXzeZ76zJOWvIyrUHgK0ix5um+6eYvnsScGLTy+nPyYkcL2h1jtA2bkYy6bPK6PzaCuIBDWtD2zgZOCFj/7Sp/cJWEH/eauzhFNrGzkgD4zynIGWVZkOutc61grjVA5FWY84P/BDpzzAKuA840wriFwZzXqWUUjM2zcBXSinVTa0y3NNSNUMewLeCuBraho9kRzXfwNaAzym+yRsWkeM9Y/ruhsAZwNrJyxOB8xh4Qz9dSII4U1MGpFJKTY/2on/wHuqfj1sgq79u6MZAyYqyPYC7kWz/RYFXgQuBK4tK9yTbXi7Y/ojpu1Zy3jWRGud/AP6UlX0/Dfo5koX/U2D25LV3gePKBO8TNnAjA/vmXAkc37xzkvRwUM65+pAVD9sjD2WmZgeSX4qwBsxmBfEG3RzQCuJ3gOOSP0oppVRXaAa+UkqprgltY0PgLwW7fALMawXxZwX79ExoG3MADwIrUM9eS2vH7mkF8bXDMa+yTN9dGLl5f2VazyhUSik1vEzfvQ8J6GaVnqkCN0WOV7rsneot03dnRhrOTgGejhwvrxFvpqSczNrARsk5bs3LNg9tYzYaegfkONEK4lPamUPD+UcD30Kuw560gnhSJ+cpMc4rwGI5m2PgdiuIt+3F2EoppVQ3aQa+UkqpbnoQeBGwyM52umS4gvcAVhB/FNrGOkiW3m7AHMiS6bOtIH5quOZVVuR4byI1W5VSSqnBmov8/ioV5DNSDSHTd2cD9gCWQbLsr4oc7w2ApHTQ452e2wriGlKf/dESu09Cki5mLdjn7XbnkDxE+DGygjD9/ZoY2oYHnJbMsZteR1Z7ZP2e9wFvdHk8pZRSqic0gK+UUqprrCCuhbaxPXA/sCD1pmd9wL1MBcuJrSD+BClHc8Zwz0UppZQaRk8hK9Lygvj/HMK5zPBM390IuAmpx572B/iF6btHRI531lDOxQriOLSNADiE7LKDnwHXdXDqHzHw+mss8EuS99vBOYtcwsCyQakKcFmXx1NKKaV6Iu9iTSmllOqIFcT/BpZG6o5ejdwcbQl8eziz75VSSinVz2+Tr81Zz1WkxMoFQzudGZfpu/MCt1LPeO9r+Hqm6bubDcO0TgTSEjvp70jaJNixgvjjdk4W2sYoinv3uKFtFGX8p+cZGdrG8qFtLJVk9Be5Frgi+XvakDktnXiMFcRPtxpPKaWUmhpoDXyllFJKKaWUmgEljWV/B4yi3hvmM2DXyPFuHc65zUhM3z0a8HI2x8BdkeN9dwinBEBoG2OB/YHdkZUBjyNlB9tenRHaxlrAYy12+7YVxPfkHF8Bjkr+zJ28/BJwlBXEtxWM2wdsCziAmRxzgRXED7f3DpRSSqnhowF8pZRSSimllJpBmb47N1J3fWHgVeDqyPE+Gt5ZzVhM370a2IXs/kEA4yLHW3AIp9R1oW2sTev6+9+xgvjunONPBY5pejnNpt/aCuI7BjlFpZRSaqqlNfCVUkoppZRSagYVOd4HwDnDPY8Z3EcMrDWfqgEfDuFceuUfwHhgzpztn5KToR/axrxI5n2zPiSIf1poG3f2oAnuoCTzPgjYCvn53gOcZwVx2w2AlVJKzdi0Br5SSimllFJKKTV8rib/3rwCXDmEc+kJK4g/B04p2OVXVhBPzNn2bfKTD/uQZszmIKbXdaFtLAU8C/wcWB1YDTgWeC60jRWGcWpKKaWmQRrAV0oppZRSSimlhs+jSC8CqJeFST0DnDe00+mZs5BM+gkNr32CNLf9RcFxM5U4d5l9htIlwDwZr88O/L5EA16llFLqK1oDXymllFJKKaXUDM/03ZHAfMBHkePlZYP3auw+4EDgh4AFfABcBvw6crwJRcdOa0LbmBlYE1ld8DcriD9psf8SwH9yNteAN4HFrSCOuzrRDoW2sTjw3xa7rWwF8dNDMR+llFLTPg3gK6WUUkoppZSaYZm+Oxo4CQmgzw7EwA3AUZHjvTGccxtqoW2MQurUj7eC+IsenH8V4AfAUsA4wAfubVW/PrSNq4HdczYfaAXxxTnHzQ3sB6yN1Nm/HrjZCuIpnb2D1kLbWB94sMVu21hBfGuv5qCUUmr6oiV0lFJKKaWUUkrNkJLM9z8BP0WC9wAGsBPwuOm78w/X3IZSaBuzh7ZxLtIwdxzwYWgbvw1tY/YWh7Yzxo+Ap5CA+obALkhj13NLlJTZD7iC/iWGPgOORsrVZI23KvAy4AHfBXZGAvj3hrYxS8dvpLXXSuzzSg/HV0opNZ3RAL5SSimllFJKqRnVpsB3Ml7vAxYAfjy00xl6SUmbvwAHA2OSl8cAhwD3J9sHO8bywNnJf6ZxCCP5ejCwQ9HxVhB/ZgXxPsDiwB7AjsD8VhD/Oit7P7SNEcBNwNiGMdPxNgBO7vCttGQF8RvAnQzsZ0Dy2hNWED/fq/GVUkpNfzSAr5RSSimllFJqRrUj2YFWkBrtuw7hXIbL3sDKyPttVAFWAfbswhjfR+rVZ6ki5YtasoL4dSuIr7GC+EYriD8u2HULwKQetG+2f2gbI8uM2aEDqGfiV6n/jr2DfL+VUkqp0jSAr5RSSimllFJqRjUz+YHldPv0bifyH2JUkdIzg7VYwRh9wJJdGKNRq/ONBebp8phfsYI4AlYCDgXuBv4MHAEsZwVxXkNepZRSKtOI4Z6AUkoppZRSSik1TB4lPyO6Cjw0hHMZLmPIT+7rA7pRL/5NBmb4p6qUqxvfjrdbbJ8MjO/ymP1YQTwROC/5o5RSSnVMM/CVUkoppZRSSs2orkaatsZNr6dZ+acP7XSGxRPkr0KoAY91YYzLKH5IcGkXxmh0C/AR+XXor7GC+NMuj6mUUkr1hAbwlVJKKaWUUkq1zfTdhUzfXcP03QWHey6dihxvItLI9pWmTROB3SLH++vQz2rInQ98wcBgdzV5/YLBDmAF8T+B4xvO2/j198C1gx2jabzPgH3oX38+fUjxCnB0N8dTSimleqlSqxWV+1NKKaWUUkoppepM310ECfpuiZRFqQG3AQdHjhcN59w6ZfpuH7AJsCzwHnBr5HiThndWQye0jU2QIPrcDS9/AOxqBfH9XRxnA+AgYGkgAnzgJiuI8+rjD3a8FYDDgPWAScAfgQutIO5p+RyllFKqmzSAr5RSSimllFKqFNN35wCeBham/4ruKvA6sHLkeBOGY25qcELbGAVsAyyK/CxvsYL4i+GdlVJKKaW0ia1SSimlhpzpuxVgA2BlYAJwc+R4/xveWSmllCrh+0iAt1kfsBjgAGcN6YyGgOm7o4DvIu/9DSRDf7oKbifB+uuGex5KKaWU6k9r4Cul1P+zd99hVhX348ffQxXB4BcsxBBBY0SjFCuICqhgDYpRiS2y2CURCxERC0UjoLGLiA1QEMWGXQQDKAEbFlRsP6VIBBuCBaXt/P44d5e7vbJ7gffree7DKXNm5i6w55zPmfMZSVUqlXrhLWAqcCPJxHb/azqq3wXV2jFJUmn8meInPP1zFfalSjQd1a8jSdD+UZJJbR8BFjUd1e/gau2YJEnaJBjAlyRJVabpqH41gReAVvl21QVubjqq31+qvleSpDKoSZL3vigb1VveTUf1awY8T97c8ACNgGebjuq3Y9X3SpIkbUoM4EuSpKp0JMkEgYVdg2QDl1ZtdyRJZfRSMftCCfs3ROcBm1HwvFWD5OFzryrvkSRJ2qQYwJckSVWpPUWnXqgB7JsapS9Jykx3AktJHrqmWwt8C4ys8h6tX/tR9BsHAdi/CvsiSZI2QQbwJUlSVVpB8akXVlIwKCRJyhCLeg5dAhwEzM23ay5w0KKeQ7+u+l6tVyso+ryUDfxchX2RJEmbIAP4kiSpKj1WzL5s4JFFPYcWNUJfkpQBFvUcOodkLpO2QHdgX6D1op5D36/Wjq0fj1H0fXMNkoltJUmS1psQo/fIkiSp6jQd1e9O4BySVDo5o/GzgR+AfRf1HPppdfVNkqR0TUf12wyYAexJ3jfIIjAHaL+o59AV1dE3SZK0aXAEviRJqmq9gL7AktR6NvA0sJ/Be0lSJlnUc+ivwCHAHSTpdAB+IZkLoJPBe0mStL45Al+SJFWL1GS1WwM/Leo59Kfq7o8kScVpOqpfXaARsHRRz6Erq7s/kiRp02AAX5IkSZIkSZKkDGQKHUmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfEmSJEmSJEmSMpABfCnDhRBqhBBmhBBi6nNWKY87Le2Y10MINQspUzOEcGwI4Z4QwgchhG9DCCtDCItDCG+GEK4PIexfhr7OT2sz/+fnEMIXIYTnQwgXhRAal+XnIEnS+lDI+aptKY45Ma38wHK2u3kI4f+l1dOllMddlXbM48WU2yyEcGoIYVwI4eMQwvchhF9DCItCCDNDCINDCK3K0N+izu8xhPBjCGFeCOHJEMJZIYT6pa1XkiRJUvFCjLG6+yCpBCGEnYF3gHrAD8DuMcYviim/HfABsCWwCtgzxvhBvjKHATcBu5aiC5OA3jHGT0ro53ygWSnqA1gK9IwxPlXK8pIkVboQQv6L4f/EGA8p4ZgTgfGp1UExxoHlbLsDMA0IwEKS8/uPxZRvDbwB1Aa+A3aLMX5VSLlTgCHA70voQgQeBi6OMS4uoa9luWlYCJwYY5xVhmMkSZIkFcIAvrSBCCH0Af6dWp0UYzy8mLJPA39OrfaPMQ7Jt/9C4AbWvYWzGHgcmAMsA7YB9k/V0SBV5nugW4zx5WLanc+6AP45wNdpu+sDuwF/A5qmtq0CDowxvl5UnZIkrU9FBKa7xBinFHNMpQTwU3XdBvwjtXpXjPGcIsrVBl4H2qQ2nRxjHJ+vTACuB/qkbf6c5Bz/EfAT8FvgIOBwoE6qzELgyPwP+/PVnf5zOjbf7t8Ae5Cc43PesFsGtIkxLiiqTkmSJEklM4AvbSBCCDWAGcB+qU1nxRjvKaRcFjAqtfom0C7GuDZt/2nAmLRDhpIEH34tpK7fAiOBrqlNPwN7xxg/KqKP81kXwN8hxji/kDINgGeBDqlNU2KMpUobIElSZUsLTK8ANk8tvxFj3LeYYyozgF+f5AH6jqlNhT48SKXqGZBanRhjzB9EJ4QwAMjpyxrgEuC29OuAtLJ/JLkeyLmuWEwScP86f9lU+dybhhhjKKLMNsB0YJfUpntijKVK/SdJkiSpcObAlzYQMcZsoCeQE2i/IYTQNL1MCOF3JGlxIBndnpUveP8H4I60Qy6OMV5WWPA+1eZiklF2OTl26wMTQgi1KvA9fgJ6pW3qFELYorz1SZJUSb4Ankgt7xNC+EtVNBpj/Bk4gySdDcA9+c+LIYQ2QP/U6nfAufnrSc1Zc1VOtcBfY4w3Fxa8T7X7KdAFyElz81tgdPm/CaSC//9M23R0ReqTJEmSZABf2qDEGD9m3c35b4C78xW5iyTvPSQjAvO/Cn8ZSRAe4PkY402UIHXjfwawJLWpJdC9jF3PX+cHJCl5AGqxbtShJEnV6QogO7V8TWETwK8PMcZpwIjUajOSNDhAbuqc0SR57yGZk6ZA3ntgEOuu7e+MMRY5wW1auz8Dp5K8fQBwRAihfVn7n88racvbhBAaVrA+SZIkaZNmAF/a8NwIvJpaPjyEcAZACOF04MjU9tnAdekHhRD+j+QmPccASinGuIx1I/sBLihjnwuzMm15s0qoT5KkCokxzgUeSK3uSpLTvapcCsxLLZ8TQsiZSPdKoHVq+ckY44P5Dwwh/AnIKb8GuLq0jcYYPydvar2KnuNX5lv3HC9JkiRVgAF8aQOTGhGfP5VOO5LAPqxLnbMm36EdgLqp5Y9ijG+Usen705b3DiFsWWTJEoQQtiKZKDfHwvLWJUlSJRtIci4FGBhCqFNM2UqTSjGXnkrn3hBCB5K35wCWUkjqnJT0uWSmpFLglUX6Of6Q1GS45bVb2vJK8k5oL0mSJKmMDOBLG6DUJLI5I+gbAi+n/gQYHGN8v5DD0l+Jn1XI/pLaXALMT63WANqVtY40/Vj3+2c+69LzSJJUrVITsI9MrTaj6KD5+mh7KnBnWttTSFLNQZI6p6jzZYXO8cBbrHto0RhoUY46clyWtvxqjDEWWVKSJElSiQzgSxuuG4DXUss5eXFnA8OKKJ8+4e3H5Wwz/bjfleXAEMLmIYR9Qgj3AX3Sdg3z5l6SlGH+BfycWr48hNCgCtvuy7oH5jnn9ydjjOOKOaZC5/gY4yrWpe+Bsp/jtwghdAghPAUcn7ZraFn7IkmSJCkvA/jSBiqVSmdSvs39C0mdk6NR2vKycjabflzjEsrOCyHEnA9JIOR1kvQ/OW6OMd5Z+OGSJFWP1CSxN6dWtwEurMK2fyJ5sy5d3xIOq9JzfPr5PXWO/wGYDnRNK3ZxjPGFcvZFkiRJUooBfGkDFULYhYI39BdXR1/KYT5wQIzxouruiCRJRbieJO88wD9DCI2KK1xZQggHUXDy3D6Flc1QbwMtY4w3VXdHJEmSpI1BrZKLSMo0IYSawGhgs9Smb4CtgcNCCD1jjKMKOWxp2nJ5J6BNP+67Esqew7qJ6+oA2wPHkeTObw5cGkLoHmP8tfDDJUmqPjHG5SGEYSSp6RqSzN9S0kh4AEII3YrZvSLG+GIRxzUA7gMCyWS23wFbAWeFEB6OMf6niDqr+hx/bNpyPZLz+ikkE9juAfwjhNArxphdzr5IkiRJSjGAL22Y+gBtU8vPkUwY9yZJrtwbQwgvxBgX5ztmUdryzuVsN/24/5VQ9sXURIDp/h1C6AP8m+Q1+3tJbvglScpEtwEXANuRBKVvjjF+WYrjnihm3wKSgHdhrkvbdyfwFPA8SUD/7hBCyxjjikKOq9A5PoRQO1+fij3HxxgnFlLHUOAW4HySh/hLgf5l7YskSZKkvEyhI21gUqlzBqVWlwNnxxjnkEy4B8kIuhGFHDozbXm/crS7LbBDajUbmFXWOgBijDewLrBxcgjhhPLUI0nS+hZj/AW4OrVaD7hqfbWVSp1zbmp1AdA3lUN+dGrbjsC1RRxeoXM8sCdQN7X8LeWbCDcCF5EMKIDkTbu2xRwiSZIkqRQM4EsbkBBCDZJX63NS5/SJMeaMkrsWmJNaPiaEcGK+w18GVqaWdw0h7FXG5k9LW34jxri8jMen+yeQM9nu0BBCnQrUJUnS+nQv8Flq+YwQwk4lHRBjDMV8mucvH0Kon2onpDadUSO4BgAAIABJREFUmZrMFpKgeM5bdeeHENoX0uTktOUuIYQmpfhe6dLP8S+lgvFlFmNcy7r5eGqQvHEnSZIkqQIM4EsblotZN7LuxRjjvTk7YoyrgZ6sC4zfFkLYOm3/98DYtLoGlrbREEJD4MK0TbeWrdt5xRg/Bx5Ire4InFmR+iRJWl9S59eckfe1gMHroZlhrHvL7e4Y45S09pexbmR+DeDeEMJm6QfHGOcCL6X18YrSNhxCaA70SNtU0XP8K8DU1OoBIYQjK1KfJEmStKkzgC9tIEIILVj3Gv+PwFn5y8QY3wKuT61uRZK7N90Q4OfU8p9DCL1L0W5N4G6S/L8A7wETytT5wg0jScUDcJmj8CVJGWw8695yOxFoXVkVhxA6Ar1Sq1+QvKWWR4zxqVQfAHah8IfwA1h3Xu1VwkS6OW1vTvJAvX5q0/MxxpnFHFJaQ/L1S5IkSVI5GcCXNgCp1DmjWJc655IY48Iiig8CPkwt/zWEcEzOjhjjZ8Df08reEkK4Jv9IvrR2twUeA3Ly1P8M/DXGuKaw8mURY/yYdbnwm+IofElShkqllLk8tRpIJmqtsFTqnPtYlzrn7BjjD0UU7w18nVr+Z/5UeDHG/7Lu7YAATAghnJ+6hiis7Z2AF4EDUpsWA1nl+R75xRgnA7NTq/s6Cl+SJEkqv1DOFJeSqlAIoQ/r8sj+B+hcXH7aEEI74L8kD+kWA7ulUujk7L8QuIF1D/G+JAnUv0cyMe5WwP7A0UCDVJllQLcY4/Ri2p0PNEut7hBjnF/C99qLdZPdLQJ2ijGuLOYQSZIqVQgh53z6cYxxlxLK/hfIn4N+UIxxYDnbvg34R2p1VIzx9BLKn8C6t+DeA/ZKpfjJ2R9IrhcuTjvsM+Bx4COSB/HbAgcBR7Bu4tovgCNjjO8X03budUeMMRRVLq38ccCjqdU3Yoz7lnSMJEmSpIIM4EsZLoSwM/AOUI/kxrtljHFeKY67gXU38GNijFn59h8O3ETyKn5JJgPnp0bNF9fmfMoQwE8d8yLQJbX6jxjj8FL0R5KkSlHGAH4HIP+D7HIF8FN1TSMZLf8lycP2ZaU47jHgL8W1HUI4lSSNTdMSqovAI8CFMcbFxRUsRwC/BjAXaJHa9OcY47MlHSdJkiQpLwP4UgZL3fy+TDIaHpIg+u2lPLYeSb7enVKbjogxvpCvTE3gGODPQDuSUXlbAEtJgglTgcdTr+WXps35lD2AfxDJWwXgKHxJUhUrSwA/Vf554PC0TWUO4Kdyz88B/pDa1DXG+Ewpj92WJDDeCFhNMgr/vULKbQYcDxwF7AVsQzIY4DtgITAFeCTG+G4p2y1TAD91TE+SFEHgKHxJkiSpXAzgS5IkSZIkSZKUgZzEVpIkSZIkSZKkDGQAX5IkSZIkSZKkDFSrujsgSZIkSZKqTghhH6At0IpkDqv/I5kn4xeS+bAWkMzV8VqM8c3q6qckSTIHfrULISwAiDE2K6msJEmqOp6jJUkbkxDCwcDfgD+TTIRdWt8BTwNjY4xT10ffNlReK0iSqoIB/GoWQljWsGHDhsuWLavurkhSpgvV3QFtWjxHS1KpeY7OUCGEWsDpwIVAi5zN5agqJ3DwMXATMCrGuKbiPdywea0gSaIKroNMoSOpSBMmTACge/fu1dwTSZKUznO0pJKEEE4BriZJkZMTXFgDvAe8CrwGfAh8TzLK/gegIcno/EbAriRpdtoCLUniB7sAdwL9QghXxhgfrKrvI6n6eN0hVS8D+JKKtGLFiurugiRJKoTnaEnFCSHMAPZjXeB+JjAOeDjGuLSYQ5emPgCvA2NS9TUCugOnAu2BHYAHQgjnxRgPrPxvICmTeN0hVS8D+JIkbcRCCL8l38R0McYl1dsrSZK0nrUnGW1/PzAkxvhZRSpLBf3vBO4MIewI9CfJp9++oh2VJEnFM4AvSdJGIoSwOdAZOIzkdffdgDqFlFsFvE/y6vwkYEqM8Zcq7KokSVq/7gX+FWOcX9kVxxg/B84MIfyLJJAvSZLWIwP4kiRt4EII7YBewLHA5um7ijikLrBn6nMe8HMI4XHgzhjjq+uzr5Ikaf2LMZ5VBW3MA9Z7O5IkbeoM4Esq0g477FDdXZBUjBBCF2AQyWh7yBuwXwl8TtET0+3IutH5DUheg/9bCOFVYECMccp6/wKSys1ztCRJqiped0jVK8QYq7sPm7QQwrKGDRs2XLZsWXV3RZIyXVGjyTc5IYRdgVuBg1n3c1kJPA9MBV4F3okxri6mjjpAG5Lg/0HAESQj8wEi8BLQO8b40fr4DhsCz9GSVGqeo7VJ8lpBkkQVXAc5Al+SpA3Pu0BNkguFGSQT1D0aYyz13WOMcRXweupzWwihIXACyUj8A0ly6b8DbFa5XZckSZIkSaVVo7o7IClzjRs3jnHjxlV3NyQVVItkpH2HGGOHGOM9ZQneFybGuDxVT0eSAP5/KGQCXEmZwXO0pJKEEG5MfXYrpsz2qU+xD+xDCJ1CCG+FEGZXfk8lZTqvO6Tq5Qh8SUVavbrI7BuSqteBMcb/rq/KU3V3DiHsv77akFQxnqMllcKFJGnxpgEfFFFmPpAN/AV4qpi6GpKk3jMHr7QJ8rpDql6OwJckaQOzPoP31dGOJEmqVs5hIElSBjOAL0mSJEmSJElSBjKAL0mSAAghbFXdfZAkSZIkSeuYA19SkXbeeefq7oKkKhBCaAxcCpwHbFHN3ZFUCp6jJUlSVfG6Q6peBvAlFal9+/bV3QVJ61EqcH8J8Hdg82rujqQy8BwtaUMTQtgLOAI4ANgN2AZYAywBXgPujzG+UAntZAGjSll8UIxxYEXblDZ2XndI1csAviRJG4EQQgtgZ2AzYCHwfozx5yLK/h/JiPteQP2czSQ30ZIkSZUqhDAd6FDIrjrAjqnPSSGEZ4FTYozLq7J/kiRlMgP4koo0evRoALKysqq1H5KKFkI4Grge2Cnfrh9DCMOBq2KMa1NlA3AxcDnQkCRoD7AKGANcVyWdllRhnqMlbWB+l/rzK+BR4GVgARCBvYELgT8CRwFPhRAOijFmV0K7hwFfFrP/60poQ9roed0hVS8nsZUkrVcfffsRrUa04oaZN7DkpyXV3Z2NSgjhTOBxkuB9yPf5DdAPGJcq+3/AVJIg/ZapMj8BNwA7xBjPiTF+VtXfQVL5rVy7kuwKxLf69+9PCIH77ruvwL4YI506daJu3bq8//77uduzs7MZM2YMBx98MI0bN6Zu3bpsv/32/O1vf+Odd94ptJ3mzZsTQsj91KlTh2bNmnHGGWewcOHCUvc3KysrTz3pn1122aXsP4AqNm3aNAYOHMiyZcuquytSdfgIOAloGmP8R4xxQozxtRjj6zHGO4A9gJmpsh2Akyup3U9ijO8X8zGAL0nKeBUegR9C2A5oBvwfUA/4BVgKLIgxLq5o/ZKkDduYd8bw3tfv8c/J/2TWolk82v3R6u7SRiF1/r2ZdQ/jVwEfACuBFiTn5QCcEEK4H7gCaJva9n3q2NtjjN9XcdclVYLsmM27S96l4+iO3Hv0vezcuOyTyw0cOJCnn36aiy++mEMPPZSmTZvm7rv55puZPn06Q4YMYffddwfg559/5thjj2Xy5Mm0bduWfv360ahRIz755BNGjRrF+PHjue222zjvvPMKtNW0aVOGDBkCwE8//cQrr7zCqFGjeP7553nvvfdo3Lhxqfs9YsQIGjRokGdbw4YNy/z9q9q0adMYNGgQWVlZbLnlltXdHalKxRj/XML+n0MI5wJzUptOAMau945JKlHMzoa1a4lr15L944/U2GKL6u5Sxggh0LFjR6ZNm5Zn+5IlS7j00kt56aWXWLx4MdnZ2Xz//fflOv8X1YY2LWUO4IcQmgNHk7yKti/QqJiy3wGvA5OAp2KMC8rVS0nV4uWXX2bUqFE8/PDDPP/884WWOeqoo3juuecYPnw4vXr1yt2+YsUKRo4cyRNPPMHcuXP54YcfaNy4MXvvvTennXYaxx9/PEk2j7w6derE9OnT82yrX78+O+20E8ceeyx9+vQpcNNenIEDBzJo0KAi9zdr1oz58+eXur5MsaGcxNdmr+X+Offnrp/W+rRq7M1GpyfJxLMRmAD0ygnGhxBqkOS3v4kkwD8GaJwqexMwMMb4Y3V0WlLlmL9sPr+s+YUZC2fQakQrBnUaRJ/2fahVo/SX93Xq1GHMmDG0bduWM844g0mTJgHw8ccfc/nll9O2bVsuueSS3PLnnnsukydPpn///vzrX//KU9cll1zCIYccwt///nf++Mc/0rlz5zz7GzZsyKmnnpqnrm233ZabbrqJ0aNH06dPn1L3+/jjj2errbYqdfmy+vHHH9nC4IQ2LteEEC6sYJn1958uJcb4XiqG0JiCqQElVZPlAway8uvkZZUVNWrS4MwzqrlH61dOnCLGWO46srKyePHFFznppJPYaaedCCGw2WabVVYXNzjTpk3joIMOKrC9Xr167LDDDnTt2pW+ffvSqFESYi4pjpNfTlxn/vz57LDDDiWWnzdvHs2bNy91/ZmgVFf4IYSaJE/AewH7p+8q4dCtSGaZPwK4KYTwX+AO4NGcfLySMleHDh14++23eeGFFxg+fDh///vf8+wfMWIEzz33HEcccUSe4P0HH3xA165dmTdvHs2aNeO4446jcePGLFy4kGeffZZnnnmGLl26MGHChCKfQPfo0YPmzZsTY+TLL79k4sSJDBw4kKeeeopZs2ZRp06dMn2Xjh070qlTpwLbHQG3fr007yW+/DFJO7r15ltzxE5HVHOPNio5V0AfA6emn1dTOWNvTz10v5h1wfvuMcbHqrifktaDGmFdJsyVa1fS76V+TJg7gfuOvo/WTVqXup4999yTyy67jKuvvpq77rqLM844g9NOO40YI2PGjKFmzZoAzJkzh7Fjx9K2bVuuueaaAvVstdVWPPjgg7Rs2ZJ+/frx5ptvltj2IYccwk033cSnn35a6v6Wxpo1a7jhhhsYM2YMn3/+OfXr16dDhw4MHjyYli1b5pbLuckbMGAAu+66K9dddx1z587lr3/9a26u3ylTpnDdddfx+uuv8+uvv7LzzjvTq1cvzj333Dxtzpw5k6uvvpq3336bZcuW0bhxY1q3bs1VV11Fu3btyMrKYsyYMQB5biwHDBjAwIEDK/X7S4XYrZh9sRRlqlLt1J/GC6QMETbfPHc5/vxzNfYk83z44YdsnvbzAVi1ahWTJ0+mc+fOjBs3rpp6lpmaNWuWO49CjJFvv/2WF154gWHDhvHEE08we/ZsGjRoUGjs5p133uHJJ5+kdevWdOvWLc++/HGdhg0bcuGFRT+T3hDjQMUG8FOB+9NJXrvPeac2PWg/H/iQ5FX874AfSCbFa5T67EqSXifnuANSn2EhhGuAUQbypcy12267MXToUP72t7/Rt29fOnfuTIsWLQD45JNP+Oc//0njxo3z5M5dsmQJXbp0YfHixVx22WUMHjyYWrXW/apZunQpJ598MpMmTaJ79+688MIL1KhRcDqOrKysPL+0hw4dSqtWrXjrrbcYP348PXr0KNN36dSpkzfI1WD0O6Nzl09tdSq1a9YuurDKaleSm+4HizmXjiYJ4EdgksF7aeNx1P5HseiHRbz7/97l7SVvA/DW4rfY++69GdxpMJcecGmeIH9xrrzySp566in++c9/8s477/D6669zww035J7zAR57LPn1ceaZZxb6Bh0k1w377bcfM2fOZMGCBTRr1qzQcjk++yyZdiNntFVpLV26tMC2hg0bUrt2co455ZRTmDBhAl26dOG8885jyZIlDB8+nP32249XXnmFPfbYI8+xEydO5NZbb+W8887j3HPP5Te/+Q0Ad911F+eeey7t2rXj8ssvp379+kyePJnzzjuPzz77jOuvvx5I3ljo0qULTZo04YILLmDbbbflq6++YsaMGbz77ru0a9eOc845hx9++IEnnniCm266KfcNglatWpXpu0vlUNKgu4wRQtiDZA4fSOIMlWFUCGFnYGvgR+BzkjmBRsQY51VSG9JGrUb9+uz4+ecAZG9go5bXt8Lm4FmyZAnZ2dlst9121dCjzNa8efMCcZlVq1bRvn17Zs+ezaOPPpobC8ofxB89ejRPPvkkbdq0KTG2s+WWW2508Z8iA/ghhC7ALSR5dHNO+ouBh0lOeK/GGL8pqYEQwjYkOXcPAv4K/BbYHhgJXBRCuCDGOKUiX0LS+rHPPvsAcPfdd9OtWzdOPfVUZs2aBcCpp57KihUreOCBB2jSpEnuMVdccQWLFy/mxBNP5Nprry1QZ6NGjXjsscdo1aoVkydPZvz48Zxyyikl9qVx48Z069aNO+64gzfeeKPMAfzSmj17Ntdeey2vvPIKy5cvp0mTJhx11FFceeWV/Pa3v81TNmc03Weffcazzz7L3Xffzaeffkrbtm1zU9ssXbqU66+/nokTJzJ//nzq1KnD3nvvzaWXXsqhhx6ap75Vq1Zx5513Mnr0aObNm8fKlSvZZpttaN26Neeffz6dO3dm9OjR9OzZE4Dp06fnCaJk2ii+5b8u54mPnshd79F6/fydbcL+L/XnJ8WUSd/3wnrsi7TRazdgUnV3oRCbU4chDOnyNgOnDWTl2pWsyV5D///0Z8YXM7i/2/003rzk3PK1a9dmzJgx7LPPPowYMYIDDjigwKilnIls99xzz2Lr2muvvZg5cybvvfdengD+2rVr+fbbb4EkB/6MGTMYOHAgtWrV4sQTTyzTt05/sJDj+eef5/DDD2fy5MlMmDCB7t2789BDD+WeJ7t3785ee+1F7969eeWVV/Ic+8EHHzBnzhx23XXX3G2LFy+md+/enHjiiTz44IO523v16sUFF1zAjTfeyHnnnceOO+7IpEmTWLFiBePHj2ffffcttM/77bcfrVq14oknnqBbt24b3Gvb2mAVzFeQ2a5IW364kurslLacM9Bwb5JYxFUxxiGV1I600Qr16/OnuckztVjEeW5TlT+1bfPmzVmwIMkePmbMmNy373r06JH7dh/A+PHjueuuu3j77bf59ddf2WGHHTjllFO45JJLqFu3bqnaXr58OUOHDuXxxx9nwYIF1KtXj3333ZdLLrmkQCrDnBQ2AwYMoFu3blx++eX897//ZdWqVeyzzz4MGTKE9u3bF2hj8eLF9O/fn2effZYff/yRFi1acNFFF9GsWbPc+ioag6hTpw4dO3Zk9uzZfPNNiWHmTVZxI/Bz7lLWAA8B9wP/Sb2WX2qpWd2fBp4OIfQBDgFOIwnm70oSUKjwZLqSKt/q1asBOOaYYzj99NO57777GDx4MABvvPEGWVlZ/OUvf8kt/8svvzB2bDLX1FVXXVVkvfXr16dPnz78/e9/56677ipVAD9dzgi7yvbMM89w3HHHEWPk+OOPp1mzZsyePZsRI0bw5JNPMmPGjELzqV1wwQW88sorHHXUURx55JG56QYWLFhAp06dmD9/PgceeCCHH344P//8M8888wyHH344I0eO5KyzzsqtJysri/Hjx7P77rtz2mmnUa9ePb788ktmzJjBCy+8QOfOnWnTpg0DBgxg0KBBeV4/Awp9zaw6TfhgAr+u+RWANk3alCmlg0plM5KR9b8WVSDGuCrtIc+iquiUpKrX74B+HLvLsfR8siezFiUP2p/79Dn2vGtPJhw/gbZN25ZYR8OGDalbty6rV6/myCOPLPB23A8//JBbrjg5o9eXL1+eZ/tHH33E1ltvnWfbTjvtxNixY8s8Cv2xxx7LbSdHzqj6J55IHhxffvnleR5yt27dmq5duzJx4kS++eabPH056qij8gTvAR599FFWrlzJGWeckfvgIUfXrl259dZbmTJlCmeffXbuz+TJJ5+kVatWm3SOW2WWGOP0kktlhhDCiUDOjcWbwBPFFC+NecDjwCxgIZBNkh3gaOBkklQ914YQ6sYYBxbTr2UltJP5M2hLFRQa1GdN6h7XFDrFu/DCC5k/fz633HJLnlQvbdq0yS1z+umnM2rUKJo2bcpxxx3HlltuyauvvsqVV17JSy+9xOTJk/NkMSjMsmXL2H///Zk7dy777LMPF154Id9++y0TJkzg0EMPZcSIEZxzzjkFjnvzzTe57rrr2G+//TjzzDNZuHAhjz32GIcccgjvvPNOnkESX3/9Nfvttx8LFiygQ4cOtG/fniVLltCrV68CgxErYvXq1bnzIO69996VVu/Gprh/EWtJXr3/V4xxfmU0FpMZIKYAU0IIV5E8Yf9beeoKITQFzge6kozoX0Nykn4CuC1nIr9y1t2J5C2D0hgTY8wqb1vaMGXmKLzCvTrosHIfm5OvLSsri5tvvpmpU6fmjqpv3rw5t956a57yb775JitXrmS77bYrcCOcX5cuXZL+vfoqa9euzQ16F+Wbb77JvSk/4IADyvxdpk2bVuiT4aysLJo3b85PP/1Ejx49WLNmDdOmTePAAw/MLTNs2DD69evHOeecw4svvligjrfeeou33367QHC/R48eLFiwgPHjx+cZXbhs2TI6depE7969Ofroo9l2221Zvnw5Dz30EHvttRevvfZagZ/Hd999ByQn/jZt2jBo0KBCXz/LJKPfHZ277Oj7jLCmujsgaf1psVULpmdN5/L/XM71M5PULguXL+TpT54uMYAfY6Rnz56sWrWKXXfdlWuuuYbu3bvzhz/8IbdMUYH5/IoK9Ddv3py7774bSF4tHzFiBHPmzCnxBrUwHTp0KHIS23nz5lGjRo1Cr0N22203Jk6cyLx58/IE8HfeeecCZT/8MBlpmH8EW7qvvvoKgBNPPJGxY8dy7bXXctNNN9GuXTsOO+wwTjzxxBLTCEmCEEIr4J7U6grgb7Eis0cmMYExhdQxG3g8hDCSZCDhb4ArQwiPxRjfq0B70katxub1qbU2ydi54pFHWfHIo9Xco+L97n9fVFvb6QH8wlK9jB49mlGjRnHssccybtw46tWrl7svZ+LW4cOHc8EFFxTbzqWXXsrcuXM5++yzufPOO3MHLVx66aXsvffe9O7dm8MOO6zAG3/PPvsso0aNyjMQcOTIkZx77rnccsst3HHHHbnbL7vsMhYsWEDfvn0ZNmxYnu9Y1BuHJZk/f37uzyTGyHfffcekSZNYuHAh/fr1K3Si2/JYtmxZkbGSJk2aFJjLaENQ3BXzHysrcF+YVN1npnLhl0kI4XBgPJB/1oE2qc/ZIYRjYoyzK9xRSQBsscUWXHXVVbnpW0aMGMEWW2yRp8zixYsB+P3vf19ifTllVq1axXfffcc222yTZ//o0aOZNm1a7iS2TzzxBN999x3du3fn2GOPLXP/p0+fnvtUN12nTp1o3rw5Tz75JEuXLuWkk07KE7wH6NOnD3feeSeTJ09m4cKFbL/99nn29+3bt0Dw/t1332X69Okcf/zxBVIDbLnllgwaNIhu3brx2GOP0atXL0IIxBipW7duoXMCNG5ccgqETPLpd58y84uZANSqUYuTW55czT2SpIqpyAPx9SHnNez0G7DaNWtzXZfrOGD7A+gxsQdtmrRhYKeBJdZ12223MW3aNP71r39xzDHHsOeee3L66aczbdq03BvC3Xffnccff5y33nqr2DQ6b731FkCeyWIhefsuPRh+/PHH065dO/76178yd+7cAmnqqlL+yecguakEuP/++4vs24477ghA3bp1mTx5Mq+//jqTJk3i5Zdf5qqrrmLgwIE8+OCD5bpukSpDCGEeycjzczI1bW0IoTnwHFCfpK89YowfVaTOGGOxTxpjjLNCCL1JBizWAP4BFByqmpQtdqbD1Ah9R+FroxYa1K/uLmw0brnlFmrVqsV9992XJ3gPyZxEt99+O+PGjSs2gL9q1SrGjh1LgwYNGDJkSJ43Dv/4xz/Su3dvrrnmGu6///4CmRH233//PNeOkLwR8I9//IPXX389Txvjx4+nYcOGXHHFFXnKt27dmtNOO4177rmHslqwYAGDBg0qsP3www/nmGOOKXN9RVm+fHmh7UDS/40qgL8+g/cVaSf1dP5RkhP8CmAY8BLJdzkG6A38DngmhLBXjPHLCnbxdOCNYvaXe6S/tCH55Zdf8jx1feSRRzj88MPXW3s5ueLS9ezZM8+EuWVRUm62nIDDwQcfXGBfrVq16NChA/Pnz+ftt98uEMAv7OlzzlwBy5cvL7TdnNxuOSP8fvOb39C1a1eefvpp2rRpw3HHHceBBx5I27ZtCw0sZLox7677+zvyj0eyTf1tiimtCtq9FK93l7pcjPHlSuiTpGp0dIujeevst6hXux61ahQ/wv3TTz/lsssuY5999uHSSy+lZs2aDBw4kP79+3PbbbfRu3dvAP7yl78wePBg7r33Xs4444xCJ7KdO3cuM2fOZM899yxx5Plmm23GTTfdxMEHH8yAAQO46667yv+F0+y4445kZ2fz4YcfFkjNM3fuXIBC0+Hl98c//hGArbbaqthR+On23Xff3GuCL774gj322IMrrrgiN4Bf1OS/0nrUjCTdXkZeTIYQfgtMJrl/h+RBQ1UN7R0H3AZsQd48+ZLyCfUN4FeGFStW8O6777LVVltx8803F1qmbt26uTGConz88cesWLGC/fffn0aNGhXYf/DBB3PNNdfw9ttvF9hXWIqa2rVrs+222/L99+vCmx9//DG//PILe++9d4GBm5BkRShPAD99vgBIMg3MnDmT3r1706FDByZOnMiRRx5Z5nrza9asGfPnz69wPZlkQ8w9fzNJ8H4tcES+QMP0EMJbwANAE+AakgB8RcyLMb5fwTq0kcm0UXhVoW/fvnz00UdccMEFTJ8+nfvuu49u3brRtWvX3DI5k9l+8UXJr6zllKlTp06ho8unTp1Kp06dWL16NR9++CEXXXQRo0aNYscddyzwBLgy5KQEKGqUXc72ZcsKxj/TJ/HNkZPyZvLkyUyfHAKuAAAgAElEQVSePLnIdn/66afc5Ycffphhw4bx4IMPMmDAACAJcBx//PH8+9//Ztttty3lt6le2TGb+9+9P3c9q3VW9XVm03B1CftzXh8vqVxO2Q3x2kBSPjv8X8EgdYyR21+/naw2WWxRdwuys7PJyspi7dq1jBkzJjd9W9++fXn88ce57LLLOOqoo/jDH/5A69atOemkkxg/fnzuK97pli5dyqmnngrA0KFDS9XHgw46iA4dOjB69Gguu+yyUgXWS5Iz4f2QIUN48MEHc4Pm77//Pk899RQHHHBAgVz8henevTv9+/dnwIABdOrUqcAoueXLl7PZZptRt25dvv322wIpfZo2bcrWW2/N0qVLc7c1aNAASH5WTmKrTV0IYSuS4P1OqU0XxRjLHg0qpxjjmhDCxyQT2jatqnalDVHYvD7P/PkoALp99jnbTimYVlYl+/7774kx8s033xQ5Orw0KhK72HLLwl8qqlWrFmtTaZLS2ygqBlFZsYnGjRvTtWtX6tWrR5cuXbjooosqJYC/MSqYp2E9CyHsVoFj9wJyEiKNLmyUYIxxLPCf1OppIQSHfUoV9OKLLzJ8+HBatmzJsGHDeOCBB6hbty5nnXVWnond9tlnH+rWrcuXX35Z4lPjKVOSt3jbtWtXbP772rVr06pVK55++mmaNWvGgAEDCn2SXFE5uXqXLFlS6P6c9ECFTd5X2Ii6nHK33HILMcYiP6NGjco9pl69egwcOJBPPvmEhQsXMnbsWA444ADGjh3L8ccfX+HvWFWmzpvKFz8kD2ga12vMUTsfVc092uiFSv5I2gjFGLl0yqX0fqE3XR7owve/fM8NN9zAzJkzGTx4cJ6c8TVr1mT06NGsWbOG008/PTedzMiRIzn44IMZPHgw7du359///jf33Xcf/fr1Y9ddd+Xdd99l+PDhufPclMaVV17J6tWrueaaMmfVLFSXLl3o3r07Dz30EEcccQS33347V1xxBQceeCCbbbZZgfl7itK0aVNGjBjB7Nmz2XXXXbnyyiu55557GDJkCCeffDK//e1vc68NrrnmGv70pz/Rt29fRowYwR133MGRRx7JRx99xGmnnZZbZ7t27YAkP+3o0aN56KGHeP99xwlp0xNCaAi8COTEBq6MMRY+HHX9qkiefWmTUSMthY6T2JZfToxgjz32KDZGUNIUIBWJXZRWztxHOfP95FfU9vJq2zaZr+mTTz4pcb6lTVWVBfBDCH8KIUwA3qlANX9JW763mHI5OTZqkswyL6kc2rRpww477EDPnj2pXbs2Y8eOpW7duuy+++5cffXVfPXVV5x33nm55evVq8fJJye5zou7Ef/ll1+48cYbATj77LNL1ZfNN9+cYcOGkZ2dTd++fSvwrQq3xx57AOR5nSvHmjVreOWVVwCKzfubLucmPee4svr973/PKaecwqRJk9hpp52YMWNG7qh+gBo1auR5Qp5J0ievPbnlydSpWaf6OrNxezn1mV6JH9PnSBuInEnNS2vWolm5k9u+9r/XaD+sPVdeeSXt2rWjT58+BcrvtttuDBw4kJdffpnbbrsNSObDefHFF7nvvvuoU6cO1157Leeeey7jxo3j0EMPZfbs2XmuC0qjc+fOtGvXjvvvv5/PPvusTMcWZdy4cQwdOpQFCxbQp08f7rjjDjp27MisWbNyz/el0bNnT15++WX22GMPRo4cSa9evbjttttYvHgxV199de4beN26daNly5ZMmDCBiy++mCuuuIKlS5dy991353kbYf/992fYsGF89tlnnHXWWZx00kk8+mhmTwQoVbYQQgOSCWRz/jMOizFWzhO8svWjFtAitVrRtLvSRi3Ur8/On3zCzp98Qly1srq7s8Fq0KABu+22Gx988EGeN/TKqkWLFmy++ea8++67hY6ynzp1KlD62EVhdtllF+rVq8ecOXP48ccfC+yfMWNGuesuTHr6nuzs7Eqte6NR0lOfin6AXYGHgDUkaW/WVqCu6SRPyX8GahVTbrtUuUgyUr+s7XRKO77Tev75LGvYsGGUMtUJJ5wQgXjdddfl2b527dp44IEHRiA+8MADudv/97//xW233TYC8YorroirV6/Oc9zSpUvjkUceGYHYuXPnuHbt2jz7O3bsGIE4derUAn3Jzs6OLVu2LHJ/YQYMGBCBOGDAgGLL/fjjj7FRo0axZs2acdasWXn2XX/99bn9TdejR48IxHnz5hVa54EHHhhr1KgR77333kL3z5kzJ3711Vcxxhi//vrrOGfOnAJlfvjhh9ikSZNYq1at+MMPP+Ru33rrrWOzZs2K/U7VYfmvy2O9a+pFBhIZSJz95ezKrH69n7P8+En/eI7Wxmb468Nzfz8zkPin4X+Ki5Yvqu5uaeNQ7b+z/RR6HstO3YMfXd19SfWnHjA17V771mrsy9/S+nFPBerxWkEbvey1a+PapUtj9sqV1d2VKpHzu6G0ZTt27Jhn27x58yIQe/ToUaD8vffeG4F4zDHHxO+//77A/qVLl8bZs/PeQxfWxllnnRWB+I9//CPP9v/3//5fbNiwYaxdu3b8/PPPc7dPnTq12LhIs2bNCsQXsrKyIhD79u2bZ/s777wT69SpU6o4S/7283+PHBdccEEEYqtWrYqsY9SoUUX+XHPk/OyrIVay3s9bpc5zG0KoB3QAdgY2AxYCr8cY5xVRfmdgMHA8eV/Lr8i7EH9K/flpjHFNUYVijF+GEH4kmZDmT0WVK6V/hRB+B/yWZNLcL0hGKI6MMb5XwbqljHbPPffwyCOP0KFDhwKj82rUqMGYMWNo1aoV559/Pp06daJp06Zst912vPjiixx99NFcc801jB07lsMPP5xGjRqxcOFCnn32Wb7//ns6d+7MI488Qo0apX8RKITA4MGDOfbYY+nfvz8zZ86stO/aoEED7rvvPk444QQ6duzICSecwPbbb8/s2bN58cUXadKkCSNHjixTnQ8++CAHH3wwZ5xxBrfeeitt27Zlyy23ZNGiRcyZM4f333+fWbNmsc022/C///2PPfbYg5YtW9KqVSt+//vf88MPP/DMM8+wZMkSevfunWfymEMOOYSHHnqIrl27sueee1K7dm06dOhAhw4dKu1nUh6Pzn2UX9b8AsDu2+zOHk1KP9JRklR6K1asACjTROe99ulFvVr1OPPpM8mO2cz9Zi773rMvE/86kX1+t8/66qokEUKoAzzGuglj7wUuKEc9nUgeAgCMiTFm5dvfHGgUY3yrmDr2I5nAFpJA3R1l7Ye0KQk1avBL3bqwZg2b19l03q7Oysoqct8dd9xRpmuwHKeffjqzZ8/mjjvu4A9/+AOHHXYY22+/PUuXLmXevHm8/PLL9OzZkzvvvLPYeoYOHcorr7zC7bffzhtvvMFBBx3Et99+y4QJE/jxxx+5/fbbKzy30NChQ/nPf/7Dddddx2uvvUb79u1ZvHgxEyZM4Mgjj2TixIlliucAzJ8/n4EDB+auL126lJkzZzJ79mzq1avH7bffXqE+51i2bFmedvLLysra4OYjKlUAP4RwPjAIyJ9AKTuVFufsGOPPqbKbA8OAs1P15wTuvyGZgHZ4eToaQqgL5MwOtagUh3xBErz/fXnaS9M+bbkOsCXQEvh7COFW4J8xxtVFHRxCKPg+S17lT0olrUcLFy6kd+/e1KtXj/vvv7/QX8w77LADN910E2eddRann346kyZNIoRAq1at+OCDDxg5ciSPP/44Dz/8MD/99BONGjWiffv2nHbaaZxwwgmF5o4vSbdu3dhrr72YNWsWTz/9dJ5JdCvqmGOO4b///S/XXnstkyZNYvny5TRp0oRzzz2XK6+8ku22265M9TVt2pTZs2dz22238dhjjzFu3DjWrl1LkyZN+NOf/sT5559Py5YtAWjevDmDBg1i2rRpTJ06lW+//ZZGjRrRokULhg4dyoknnpin7ltuuYUQAi+99BLPPfcc2dnZDBgwoNoD+GPeHZO7nNU6q1x/x5Kkkk2YMAEo/uayMD336MnmtTfn1CdOZU32Gr788Us6jO7A6GNG89fd/7oeeiopA2wTQti+siqLMS4sx2EPAkeklmcBtwK7FXetGGMszyQRzYGpIYTXgKdJUvh+RRKob0aSYvcU1sVCrisu2C8pUd7rjg3ZmDFjitx38803lyuADzB8+HCOOOII7rzzTqZMmcKyZcto1KgR22+/PZdccgmnnnpqiXU0atSIWbNmMWTIEB5//HFuvPFG6tWrx7777ssll1zCoYceWq6+pdt2222ZOXMm/fv357nnnuO1116jRYsW3HHHHdSvX5+JEyfm5sovrQULFuSZwLdOnTr87ne/44wzzuCSSy6hRYsWxRxdesuXLy92ouBOnTptcAH8EGPxkyOEEK4CBuSsFlIkAq+QTC67PUk+u53Tyi4A/g3cG2P8tdwdTWap/ya1+nCM8cQSyr8G7Av8FGPcoriyhRzbCRgPPA7MAD4HVpOk5jkMOB3I+Z9a4Kl/vrpKDOA3bNiw0LxVUnUbPXo0sGmdpFV+73/9Pi1HJA8kaoaaLLp4EU0aNKnMJnwaoCoVQljWsGHDhp6jlYkqeo6e8vkUTnjkBJb9uu7f95UdrmRgp4HUCFU2TZY2Hp6jM1AIIZvKn6g1xhhL/SZ/Wl/K3I8YY4F/V6UYgZ++vzirSQYpXhtLCooUw2sFbSqMDSjd5ZdfzrXXXssLL7zAYYcdVt3dyQTr/Tqo2BNvCGEn4Iq0ziwGXgVWkswY3zK1/UDgVOBykuA9wCfAv4AHY4yVMdNivbTlVaUonzOzRr1iSxXuDWD7QkbWvwU8E0K4HZgCNAV6hBAeiTE+W1hFMcYti2soFeB3FL6kDd6Ns27MXT5ml2MqO3ivMggh7E7yBtnvgMapzd8B/wP+G2P8oLr6JikzdN6xM6+f+Tpdx3fl4+8+BuDql69mxeoV/PvQf1dz7yRVsk3pActskthEO2AvkkF4WwG1gWXAxyQB/ntijF9UVyelDU1ctQrWrGHlm7Opvesu1Khfv7q7pCrw5ZdfFshE8N5773HrrbfSqFEjOnbsWE092/SU9OT89FSZCNwAXJaeez6E8Of/z96dh0VVvQEc/x6QRVBBxQU1xS1yKTXNBUtwSdzR3HJFyV1TcyM1FX+57+a+giJquZuaa65ZlpbmlloCWmAuCLlvnN8fdxgZZ2DYB+R8nuc+MHfOPfcd6vHOfe857wG+RquJvxgtWf4Y8AcWSCnTcungR/F+T0rRLTsTxyVJXDmgRN6/JIToDBzS7RoImEzgK4qiZAc37t8g5GyI/vXQWkMTaa2kByFEHqAf8CmQ6NMTIcQNtKnri6SU/2VAeIqiZEJl85flpx4/8fHGj9nz1x7y2ueld9Xelg5LUZS0dwttPTeLMTWaPoX9HCKRBxJSyntAiG5TFCWNPL90idj7D7g9cTIFdn6LbeXKlg5JyQDVqlWjTJkyVKxYEUdHR65cucLOnTuJjY1lyZIl2NvbWzrEbMNcAv993c9TUsrhr74ppdwhhJiMtlhtTrQV7htIKdNuZcmX7sX7PVcS2se1uZ8OsSClPCyEuAiUA+oIIazS+IGFoihKlrHg5wU8faFNjqpZrCYeb3iYOUJJS0KIOmi1ZV3jdpk5xBWYBAwQQnSUUh5Nz/gURcm8nO2d2dFxByP2jaBJ2SaUzV/W0iEpipL2ekopt1s6CEVRsjAra/2v8oFFnwcqGah3795s3bqVdevWce/ePZydnfH29mbYsGF4eXlZOrxsxVwC/0200fffJNLma7QEvgQ2pVPyHinlEyHEbbTpb8WScEhcm/ScFnceLYFvj1ai4FbizRUla6lWrZqlQ1CygIfPHrLo5CL96yE1h1gwmuxHCNEGLXlvzcvE/T20KeSX0KaLg7YI+5to08nz6NoWBb4XQnwspdyUkXEripI6aXmNzmGVg1nes8w3VBRFURQlW3r7wQOeXrgIQOyDdBknq2RC48aNY9y4ceYbKunOXAI/rn57WCJtQuP9fiRV0Zh3AagDlBVC5Ihfzic+IUQRtORE3DHpJa0XBFKUTKVixYqWDkHJAlafWc2dR3cAcHN2o1W5VhaOKPsQQrwHrObl9fwsMAHYksg1MgfQChgFVEJL/AcLIcKllCfTP2pFUdJCRlyjL92+xI7LOxjqocqiKYqiKEp29ibw6OpVAOSDRKtOK4qSDqzMvB9Xaz7BRWNfSRBEpDqixB3T/XQA3kuknZeJY9JDBd3PJ2iLAyrKayUmJoaYmBhLh6FkYrEyltk/zda/HlRjEDmszD0bVtLQPLRZYBKtpn1VKeWGhJL3oF23pZQbgGpA3H88e11fiqJkEel9jf7p75+ovbI2w/YNY/7P89PtPIqiKIqiZH73c+Xivm7hWlVCR1EynrkEfnKldw34zfF+/ySRdn66ny+AdKn1J4T4ACive3lM1b9XXkdbtmxhy5Ytlg5DycR2Xt7J5TuXAXCyc+KTKon906ykJSFEQ6A6WvJ+hZRycGKJ+1dJKV9IKYcCy3S7quv6VBQlC0jva/Tsn2brZ1cN/G4gmy9uNnOEoiiKoiivq70ODhyq6wVA7H1VQkdRMlpaJ/DTlZTyFHBI97KbLoluQAjRCaive7laSnnzlffdhBBStx0ycXxeIUTdxOIQQrhjuKr9gqR/CkVRlNfHrJ9e1kzuVbUXue1yWzCabKe57mcUkJr6FsN4OYusRaoiUhTltbGyxUpqFK0BgETScVNHjoar9a4VRVEUJTsS1i/Th/KhGoGvKBktqXUO6gkhnM03S1o7KeXqJJ7XlEHAccAR2C2EmAIcQPssPrr3AW4AX6Sgfye0Bf3OAVvRFgGMAJ6hLfbnjTbC30HXfr2UUg1RVhQl2/k18lcOhR0CtAUQP63+qWUDyn4+QBt9v0VKeS+lnUgp7wkhNgM9gffTKjhFUbI2R1tHdnTcQe2Vtbl85zJPXjyhxfoWHO1+lIoF1Ro5iqIoipKtWFvrf5VqBL6iZLikJvDNZWXiFnNNSvZGoi24lyJSyt+FEG2AdWiL7P5Pt8X3D+AjpUxNTf6Kui3BUID5aCMXFUVRsp1ZP74cfd+uQjvecHrDgtFkS666n6fSoK9TaAl8V3MNFUXJPlwcXNjdaTceKz24cf8G0Y+jabSmEcc/OU5xp+KWDk9RFPNWo923XrN0IIqiZHFWLxP4saoGvqJkuKSU0BHpsKWKlHI38DYwHbgIPAD+A84AAcDbunI7KREBtAVmAkeAq7q+n6GVGDihe6+ClHKglDLBBX4VRVFeV3//9zdfn/9a/3pIzSEWjCbbipvxlhaLqEfpfjqlQV+KomQRhw4dQgiBEIJly5aZbFMqXynK7C5DblutRNo/9/6h0ZpGRD2KMmi3dOlShBCMHTvWZD9dunRBCMHevXsN9m/bto2mTZtSsGBBbG1tKVKkCK1bt+bw4cMm+/Hy8tLHLITAxsaGIkWK0L59e86dO5fkzx4QEGDQT/zN3t4+yf1YyunTpwkICCAsLMzSoSiZmJSym5Syu5TytKVjURQlazMsofPAgpEoSvZkbgT+qgyJIgWklH8DI3Rbco4LI5GHCLqE/EbdpijZWq1atSwdgpJJLTm5hOex2nqpniU8qVqkqoUjypbuAgWA/GnQV1wf0WnQl6IoGSCtr9EBAQF07tyZnDlzGr3nZOfE1o+30jikMU9fPOXi7Ys0W9uM/V3342CjVZXs1asXmzZtYvLkybRs2ZJ3331Xf/yWLVtYs2YNvXv3pmFDba3sFy9e0L17d4KDgylfvjyDBg3C1dWV8PBwVq9ejZeXFyNHjmTSpElG8djZ2bF8+XIAHj16xKlTpwgMDGTXrl2cPHkSd3f3JH/u//3vf5QsWdJgn3W8MgGZ1enTpxk/fjxeXl64ublZOhzlNSKEsAOqA0XQBspdlFL+ZdmoFEWxtPfeeIP7u/dgVbgwVrnVumeKktESTeBLKbtnVCCKomQ+ybkBVrKPF7EvCDwdqH89sMZAC0aTrUWiJfDfA5aksq/3dD9vpLIfRVEySFpeo6tVq8bJkyeZM2cOI0eONNmmXsl6BLcK5uONHyOR/Pj3jyw5uYTPan2mb7N8+XLefvttfH19OXXqFLa2tty6dYs+ffpQsmRJZsyYoW8bEBBAcHAwXbt2ZcWKFeTI8fK2xN/fHx8fHyZPnkyZMmXw8/MziCVHjhx07txZ/7pnz576hwDz589n3rx5Sf7sjRs3plq1aklun1z37t0jt0p0KJmAEMId8ESbbXcNOBq/5KwQQgAj0UrEOr1y7Emgv5TyZMZFrChKZvL2xx/Dxx9bOgxFybaSUkJHUZRs6vbt29y+fdvSYSiZzN6/9vLPvX8AKOhYkOZvNrdwRNnWUbQZZS2FEHlS2onu2JZoNXKPplFsiqKks7S8Rrdr146qVasydepU7txJuCpXuwrtmNNoDgCDawxmUM1BBu+/8cYbzJo1i3PnzhEQEABA3759uXXrFitXriRXrlwA3Lx5kxkzZlC8eHGWLFlikLwHcHBwICQkBEdHR7744guePjVfsbJ+/foAXLlyJcmfO6mWL1/Ou+++S86cOXFycqJhw4YcO3bMqJ0Qgm7dunHgwAHef/99cuXKRfPmL6+RJ0+epFWrVri4uGBnZ4e7uzsTJ07k+fPnBv2cP3+etm3bUrRoUezs7ChcuDB169Zl586dgPbwo3t3bZxV3bp19aV/unXrluafXcn6hBC2Qog1wAVgETAFWAv8KYT4Il7TVcCXaMn7V0vgvgccFkLUycjYFUXJPFRuwDQhBF5eXkb7b9y4ga+vL8WKFcPa2hohBNHRKZvsnNA5lOxFJfAVRUnQjh07KFCgAEIISpQowePHj022c3NzQwhhdANqyvnz57G3t6do0aJERUWZbDNt2jSEELRr185gv5SSjRs34uPjQ5EiRbC1tSV//vy8//77zJo1i4cPTS+mY6rOrb29PWXKlKFXr17Jrh8bv2ZwQltWrEkbV1fYnBW/rdD/3uWdLthY26RnWErCvtX9zIu2NktKzQDy6X7flqqIFEXJMDt27GDHjh1p0pcQgilTphATE8PEiRMTbTuwxkAO+R5ilvcsrITxrYSfnx9NmjRh2rRpDBs2jE2bNjFgwACDG8+dO3fy+PFjunTpkmC9+YIFC+Lj40NkZCQ//vij2c/w119ahY98+fKZaWkoJiZGn5SI2+J/3/H396dnz57Y2NgwadIkhg4dyoULF6hbty67du0y6u/kyZO0bNmS6tWrM3v2bDp16qT/zLVr1+by5csMHTqUr776ilq1ajF27Fg6dOigP/7OnTvUq1ePI0eO0KNHDxYtWsSQIUMoUKAAJ06cAOCjjz6iV69eAIwaNYrg4GCCg4Pp3bt3sj67km0EAx0xTsrbA+OFEJ2FEG2BzrwsNXsJOK77KXX7cgKrhBDGdbYURXntpeX3jswu7p4+Nbp160ZwcDCenp588cUXjBs3LkussZNekppDMdfm1e3QoUOA8RpJpra4wSVZlbka+IqiKABcu3aNOXPm8Pnnn6eqnwoVKuhvgPv06cM333xj8P6ZM2cYM2YMRYoUYfHixfr90dHRtGvXjn379uHk5ESTJk1wc3MjKiqKPXv2MHToUObNm8eOHTuoUKGCyXN7enrqEwh37tzh+++/Z9myZWzcuJETJ05QtmzZZH2WEiVKJDjazdnZ2eT+rO7Wg1tsv7Rd//qTKp9YMJrsTUq5TwjxM1qdWj8hxD1guJTyRVKOF0JYAVOBHmg35yeklPvTLWBFeQ0sO/gnKw4lrRS0T9VijGxheD2avP082079naTjP/EqTc+6ZQz2DQ35lR8u39K9cqWq8z26Jak38xo0aMCHH37IwoULGTRoECVKlEiwraebZ6J9LVu2jIoVKzJz5kzKlCnDlClTDN6PW2w2fp18U6pWrcratWs5e/Ysnp6G54wbBRhXA3/w4MEABqV1kqJBgwZG+xYtWkSfPn24dOkS06dPp3bt2nz//ffY2toC0KNHD8qXL0+/fv3466+/DGrmnz9/nn379hn0+/jxYz755BNq1KjB999/r59x0Lt3bypVqsSQIUM4dOgQXl5e/PDDD9y8eZOvv/7aaCBDnHfeeYdatWqxdOlSPvzwQzUqT0mQEOIDoC3adT4W2A78Abigzb5zAfoDz3SHfA/00K0bF9dHSWA5UBcoDnwMvKylqCiKko1dvHgRBwcHg31Pnz7VfxcICQmxUGSZk7kcyrhx44z2jx8/HsDke6+uA+Tr65vg2kBZ/ftSihL4Qggn4APAAyjKy8Xv7gD/AD+g1dT7Ly2CVBTFsvLmzasfndejRw9cXFxS1d9nn33Gjh072LBhA8HBwXTp0gXQbnA7derEs2fPCAwM1I+ii42NpW3btuzfvx9vb29CQkLIn//lup3Pnz9n7NixTJ48mYYNG/Lrr79SqFAho/N6eXkZPHWNjY2lefPm7Nq1i0mTJhEYmLx7ETc3tyz/FDe5gn8P5lmsdo9Xq1gtyhUoZ+GIsr2BwGHAFhgE1BVCfAlsSyiRL4SwBloAXwCVdbuf6PpSFCUbmzp1KlWrVmXMmDGsXr06ycfFylimHJtC53c6U9ypOA4ODjg4OHD37l3q1atndGP733/aLYKTk5Op7vTy5NGqg8XExBjsf/DgAQUKFDDY5+rqyqpVq2jSpEmS4wZYsGABb775psG+cuW0a9u2bduQUjJixAh98h6gSJEidO/enTlz5vDbb78Z1NCvVKmS0UOBffv28e+//zJ58mSj6fNNmjRhyJAh7N27Fy8vL/3f5LvvvqNRo0b6v4GipFAX3c8XgLeU8mDcG0KIUWil895DS/BHAD5SygfxO5BShgohfNAS/65Ac1QCX1GyHymJ/e8/Hu3dC0+ekrN5M0tHlCm89dZbRvtu3LhBbGwsRYoUsUBEmZu5HIqp9/buLz8AACAASURBVOIS+EnJvXTr1i3LJ+oTkqwSOkIINyHEYrSF87YB/mhT7Rrrts66fduBG0KIRUIIt7QMWFGUjOfg4MCYMWOIiYnR/+OZGkIIgoKCcHJyYsCAAVy7dg2AkSNHcv78eQYMGEDDhg317deuXcv+/fspXbo0mzdvNkjeg7aY3aRJk2jfvj0RERF88cUXJIWVlZX+6e8vv/yS6s+VkMjISPr374+bmxu2trYUKFCAjz76iFOnThm1DQoK0v99du/erb+Zjz+F7/nz5yxcuJCaNWuSJ08eHBwcqFKlCvPnzyc2Ntaoz+3bt1O/fn1cXV2xs7OjSJEieHp6snDhQgD9VLXDhw8DGEwzi3/xk1IalM9Ro+8tT0r5M9CVl9Pb3wE2AHeEEPuFEAuEEBN12wIhxD7gNrARLXkv0EbkdVUL0ymKUqVKFTp06EBISAi///67yTYxMTHcuHFDv10Ou0yLtS0Y/f1oWn3dikfPHjFo0CD++ecfKlWqxPLly/nhhx8M+kgoMf+qhBL99vb27Nu3j3379vH111/TtGlT7ty5Y/IaaE716tVp0KCBwVa0aFEAQkNDAUzO7Ivbd/XqVYP9rz4MAG10HmjlhQoUKGCwxd34//vvv4A2W7Br164EBQXh4uJC7dq1GTduHBcuXEj2Z1MUoAbad4RN8ZP3AFLKO8B4tJyAFbDu1eR9vLb3gXVo3xsqpWvEiqJkTlLy7MJForp/QtSnatxPnFfvmd3c3PSzGFetWpXgOjXr1q2jbt26ODs7Y29vT7ly5ZgwYQJPnjxJ8rljYmIYOXIk7u7u2NvbkzdvXry9vdm/33hSdVwJm4CAAE6fPk3Tpk1xdnbGwcEBT09Pjh8/bvIckZGRdO/enYIFC5IzZ04qV67MqlWrDPpTMkaSR+ALITqhLXrjyMvaeImxB3oBnYQQfaSUa1MWoqIomUH//v2ZP38+S5YsYeDAgckuN/Oq4sWLM2/ePLp27Yqvry+jRo1i7ty5lCtXjqlTpxq0XbZsGQBDhw41GsUX39ixY/n6668JDg5m3rx5yaoxZ2OTPnXcQ0NDef/994mIiKBevXp06NCB69evs2HDBnbu3MmmTZto1sx49MLGjRvZvXs3jRs3pk+fPoSHhwPw7Nkzmjdvzp49e3B3d6djx47Y29tz8OBBPv30U06cOEFwcLC+n6VLl9K7d28KFy5M8+bNcXFx4ebNm/z+++8EBgbSr18//VS1oKAgwsPDDaamxZ9+9vM/P3PhlpZAcLRxpF0F01P7lYwlpdwghLgNhACFdbvzoE11r2vikPjX8BtARynloXQNUlFeEz3rljEqa5McI1tUMCqrkxwzO70sORMUFJTifhIzYcIENm7ciL+/P999953R+4MGDWLVqlUG+6w/swYn+DXyVxqPbczh1Yfp2bMnX375JRUqVMDPz4/Tp0+TM6dWOrtixYoA/Prrr3z00UcJxvLrr78C8Pbbbxuez9raYJR7mzZtaNasGb169eLdd9/lnXfeSdmHTwOmvqdIqT1jnT59OpUrVzZ6HzAYpbdq1SqGDx/Od999x9GjR5k5cyYTJ05kzpw5DBgwIH0CV15XxXU/Dyfwfvz9pp/aGb9fINFWiqK8nqysIG5Q2bNnyCdPEHZ2lo0pExo8eDBhYWHMnTuXSpUq0bJlSwCD67+fnx+BgYEUK1aM1q1b4+zszE8//cSYMWM4cOAA+/bt05fbS0h0dDS1a9fmwoULvPfeewwePJjbt2/zzTff0LBhQxYtWmRybZyTJ08ybdo0atWqRY8ePbh27RqbNm2ifv36nD59Gnd3d33bmzdvUqtWLcLDw6lTpw4eHh7cuHGDfv36GQy4VDJGkhL4QoiBwOy4l7qfl4AfdT/j5oI6A28CtYC3dG1zAcFCiPxSynlpFLeiWFzmqoObtGOSq06dOvrfbWxsmDJlCm3btsXf35/Nmzenqm+ALl26sH37djZu3MiPP/5Ijhw5WLNmjf4GH7TR5j/99BNguk5tfOXLl6dIkSJERERw8uRJ3n///UTbv3jxghUrtBHl5tqaEhYWZvKJs5eXl/4pfJ8+fYiIiGDChAmMHj1a36Zfv37UqVMHX19fwsPDyZUrl0Efu3btYteuXTRq1Mhg/8SJE9mzZw8DBgxgzpw5+rq7L168oFevXqxcuZI2bdrg4+MDwJIlS7C1teXMmTMULFjQoK+4+sHOzs4EBARw6NAhwsPDE3yKHn/0fbsK7chtl9v8H0nJEFLKg0KI8sAAtFq2hUj8Yfu/wHxggZQyOpF2iqJkUvGv0WmpZMmS9O3bl7lz5+oXBotvxIgRRnXmL9hfYNCBQfAQDi84TN7CeZk5cya5c+dm3rx5dOzYkdGjRzNr1ixAKxtjZ2fHmjVrGDNmDHYmEgC3bt1i27ZtuLq6UqtWrURjtrKyYu7cuZQvX55hw4axd+/elP8B4ilVqhSg1bUvXbq04WfWjYiPa5OYuEEPjo6OZr/LxKlYsSIVK1Zk+PDhREdHU6NGDT7//HP69++fJovrKdlG3Je1mwm8H3+/ufK393Q/HVMVkaIoWVKdOnV4OnO2/nVEqcRzDQ6dOpJ3muHAvLsj/HkYkrSxvbmHfEaeoUMM9t3x7c5jE6PLEzsmo8VP4FeuXNno3jooKIjAwEBatWpFSEiIQe4jICCA8ePHs2DBAgYNGpToefz9/blw4QK9evVi8eLF+u8F/v7+VKtWjYEDB+Lt7W1UD37nzp0EBgYazAhYsmQJffr0Ye7cufpZ+qBVSAgPD2fEiBEGgywHDx5M9erVk/mX0SQlh5IaQUFBJr+/gpabKVy4sMn3sgKzCXwhRENgVtxLYDcwTkqZaL0JIcR7QABaaR0BzBJCXJJSps03akVR0t2rN6Vt2rShVq1abNmyhWPHjqUo6f2qadOmsXHjRp48eYK/v7/RgnZRUVE8ffoUgDfeeMNsf2+88QYRERFEREQYvXfo0CH9xSIqKop9+/bxxx9/UL58ecaMGZPs2MPDwxMsKeTl5cXff//N3r17KV68OCNGjDB438PDgw4dOrBmzRo2b95M165dDd738fExSt7HxsYyb948ChcuzOzZsw0WzbO2tmbmzJkEBgYSEhKiT+CDVmLI1AyD5Kxl8ODpA9afW69/rcrnZD66RPwEIcRE4G20dWqKAfl0TaKAv4HjwFkZNyRUUZQsKSmJ45T64osvCAwMNLp2gfawvHz58gb76sv6nI06y/JRy+EBRLeJ5vi/x/HO7U2HDh345ptvmDt3Lq1bt6Z27doUKlSIIUOGMHnyZPr27cuyZcsMrmmPHj2iS5cu3L9/n7lz5xrUn09I2bJl6dixI6tXr06z7ygtWrTA39+f6dOn07hxY/21NDIyksDAQEqUKEGVKlXM9uPt7U3BggWZMmUK7du316/xE+fRo0c8f/6c3LlzExUVhbOzM1ZWLyudOjs7U7JkSa5cucLjx4/JmTOn/sF/VFRUqj+n8lqzQiuh89zUm1LK2HgPg8x9L1DfGxQlGytVqhQRT5+qfwhSae7cueTIkYOVK1caJO8BxowZw/z58wkJCUk0gf/06VPWrFlDrly5mDx5ssFD/bJlyzJw4EAmTJjA6tWrGTt2rMGxtWvXNirn4+fnx4ABA/j5558NzrFu3TqcnJyMShRXqlSJrl27snz58uR+fLM5lNR6dZZofC1btnx9E/hCCCtgDi8v/EOklHOS0rEuwd803uh9a2C2EOJtKWXyC1QqipLhbty4YbRv5syZeHh4MGzYMP3IeFNMPVXt1q2b0RPg+O127NjB+PHjTY7ESwuHDx/W13mPU7lyZQ4dOmR2IT1TPD09E3y6C/Dbb78B8MEHH5hMoNerV481a9bw22+/GSXwTT3Rvnz5MlFRUZQtW5YJEyaYPGfOnDn1tXYBOnXqxNChQylfvjwff/wxnp6e1K5d22jxP3M2XNjAvafawCv3/O54vOGRrOOVtCeEcDRVq1aXmP8d81PhTfXZS0q5NC3iUxQlfcVdo9PjRsTFxYXhw4cn+eG2EIK6D+uy/PxyqAaypKTthrYc8zvGO4XeYfHixRw9etSglM7//vc/wsPDCQwM5JdffqFDhw64uroSHh7O6tWrCQ0N5fPPP8fPzy/JcY8aNYo1a9Ywbtw4Dhw4kNKPr+fu7s7w4cOZNm0aderUoX379ty7d4+lS5dy//59QkJCDB48JMTR0ZHVq1fTsmVL3N3d8fPzo0yZMkRHR/PHH3+wefNmtmzZgpeXF6tXr2b27Nm0atWKMmXKYGNjw+HDh9mzZw/t2rXT3+y/9957WFlZMXHiRO7evYujoyMlS5akRo0aqf7ciqIoivKqGzdu8ChXLuzv37d0KFnWw4cPOXPmDC4uLsyZYzq1amdnZ3A/b8qlS5d4+PAhtWvXNhoUAFqeYcKECfp8RHzVqlUz2mdjY0OhQoW4e/euwTkePXpEtWrVyJ3beOb9+++/n6IEvrkcSmodPHjwtV3E1twI/JZopXAkMDGpyfv4pJRfCSHyA2N0ffkAW5Lbj6JkNpmpDm562b17t9G+WrVq0aZNGzZu3MjXX39N+/btTR5r6qmql5eXQQJ/06ZNrF69mpo1a1K5cmUWL17MqFGjmDlzpr5Nvnz5sLW15enTp1y/ft1s7f3r168DmFzxfdy4cQQEBBAbG8s///zDjBkz+Oqrr2jXrh3fffedwWi3tBC3OJ+rq6vJ9+P2R0cbVzAxlZC5c+cOAFeuXEl0MeH78b5UDRkyBBcXFxYuXMhXX33FnDlzEELg6enJ9OnTTV7ATXl18Vo1dT9TOCeE+ERK+X1qO9ItOL8C8AJUAl9RsoC4a/Sro6jSypAhQ1i4cCGRkZFm2968eZNBnw6iuFtxXrR+wT9P/uHe03s0XduUEz1OUKRQEaNSOjly5CAkJIQ2bdqwdOlSZs+eTUxMDPny5cPDw4OVK1cm+wbM3d2ddu3asX79eg4fPoynp2cKP/1LU6dOpUyZMixcuJDPP/8cW1tbatSowdq1a/nggw+S3I+3tze//PILU6ZMYc2aNdy6dYu8efNSunRphgwZoq/b7+XlxW+//caOHTuIjIzE2tqakiVLMmPGDIP698WLF2flypVMnTqVvn378uzZM3x9fVUCX1EURUkXu3fv5pmXJ03Wfw1Age3bsK2avJxE3mlTjcrqJEf+VYEpPjYzuHv3LlJKbt26lej9vDmpyTM4OzubPCZHjhy8ePHC6ByFChUy2T6h/Ur6MZfAb6L7GQF8mYrzTAT8gCJAM1QCX1GytMmTJ7Nt2zZGjhxJq1atTLYxV50jMjKS3r174+joSHBwMEWKFOHAgQPMmTMHHx8ffW3fHDlyUKNGDY4ePcr+/fsTTeBfvHiRiIgI7OzsEk1MW1lZ8cYbbzB37lwiIiLYuHEj8+fPZ+DAgUn49EkXN6rf1EwGQJ8UMTX631SCPK5dq1atkrUGQdeuXenatSvR0dEcP36cLVu2sHLlSry9vfnjjz/Mjsa/dPsSx64dA8BaWNOlUpckn1tJVyWAfUKIJcBwU6Pxk0I3U24iWk1bNStWUbIRLy+vBK/XDg4OJsvRmVKwYEFu3dLW5Tn771lqr6zNvaf3+Pu/v2m2thlHuh+hQ4cOdOjQwejYVq1aJfhdwhRzo7bWrVvHunXrzPYTEBCQ4Jovr+rZsyc9e/Y0287cd5+KFSuyZs2aRNtUrlw50enf8fn6+uLr65uktoqiKIqSatYvB7zFPlAj8ZMr7n6+SpUq/Prrr6nuJyV5hqTKkycPAP/++6/J9xPar6Qfc8NNa6HdzG+SUj5L6UmklE+BTWi18GumtB9FUTKHMmXK0K9fP0JDQ5k3L2VrU/v5+XHnzh1mzpxJmTJlcHBwYPXq1Qgh6NatG/fu3dO37dGjBwCzZs3i0aNHCfYZV1amS5cu2NvbJymOmTNnYmdnx//+9z/++8/c2l3JE1cX99ixYzx/blx69ODBgwBGdf8T8tZbb+lXqH/2LPn/JDs7O9OkSROWLVtGt27diIqK4siRI/r34y+IG1/g6ZcjHZq92YzCubJu3bjXVG/grBCiXnIOEkKUFUIcRStzF7cg3dG0Dk5RlOzl7UJvs7HdRqyFdk357cZv9NvZz8JRKUq2t1QIcdXUlpQ2unZLLBW8oiiZRLyycfJBisYOZWu5cuWiQoUKnD9/PlVr2Li7u+Pg4MCZM2dMjrJPbp7BlLfeeoucOXPy+++/G+Rm4hw7dizFfSspYy6BHzcn4mwanCuuDzXPQlFeA2PHjsXZ2ZmJEycalGxJioULF7J7926aNm1K79699ftr1qyJv78/oaGhfPbZZ/r9nTp1om7duvz555+0adPGoDYbaAnnsWPHsnbtWlxdXfnyy6RPGCpevDg9e/bUP0xIS8WKFePDDz8kLCzMqMbdiRMnWLt2LXnz5k3yyMMcOXLw6aefEhkZycCBA00+zIiMjOTChQv61wcPHjQ5IvDmzZuANsIyTv78+QG4du2aft/z2OesOvNyJKBavDZTqQuEoj0cd0Mbjb9ICJErsYOEZgRwGm2hWwE8AAZKKb3SNWJFUbKFhqUbsqjpIgDezP8mYz3HmjlCUZR0VgBt5p6pTSahTQnd+4qiZGPCIIH/0IKRZF1Dhgzh6dOn+Pn5mUy+37171+zofFtbWzp16sS9e/eM1iv666+/+Oqrr7CxsaFLl5TPnLe1taV9+/bExMQYrb935swZVq9eneK+lZQxV0InLgkQkwbnihvammhiQVGUrCFfvnyMGjWKESNGJOu4y5cvM3z4cFxcXFixYoXR+wEBAezatYsVK1bQsmVLmjVrhrW1NZs2baJNmzbs2rWLUqVK0bRpU0qUKEFUVBR79uwhNDQUNzc3vv3222Qv6Ddq1ChWrFjB7Nmz+fTTT3FxcUnW8YlZvHgxtWvXZvjw4ezdu5dq1apx/fp1NmzYgJWVFYGBgSYXhUnImDFjOHPmDIsXL+bbb7+lXr16FC1alJs3b3LlyhV++OEHJk6cSPny5QGtNEGuXLmoWbMmbm5uSCk5evQov/zyC1WrVqVBgwb6vuvXr8+GDRv46KOPaNKkCTlz5iTKNoobj3QLJeYqTOOyjdPsb6OkjpTysBDiHWAa0BctEd8LaCSE6CGlNFrBUQhREVgJVNW1B/ge6CGlDMuQwBVFyRZ6Vu2JEIJWb7Uiv0N+S4ejKNmZWrhIUZS0YfUygR+bDRazTWydoYULFxoMhksqPz8/Tp06xcKFCyldujTe3t4UL16cqKgoQkNDOXLkCN27d2fx4sWJ9jNlyhSOHj3K/Pnz+eWXX6hbty63b9/mm2++4d69e8yfP5+SJUsmO75Xz/H9998zbdo0Tpw4gYeHB5GRkXzzzTc0adKErVu3pvk6gqkVFBSUYLnFypUr07Jly4wNKA2ZS+DfAQoDBdPgXHFP7FM+T0RRlAxVv379RN8fOHAgCxcuJCwsLEn9PX/+nM6dO/Pw4UPWrFljcuETGxsbgoODqVatGj179uTs2bO4uLiQN29e9u/fz4YNGwgODubAgQPcuXOHXLlyUa5cOfr370/fvn1TdBF1dXWlb9++zJo1i8mTJ6fpSPxSpUpx8uRJJkyYwK5duzh06BB58uShUaNGjB49mvfeey9Z/dnY2LB161bWrFlDUFAQO3bs4P79+xQoUICSJUvy5Zdf0qlTJ337KVOmsGfPHn799Vd27dqFvb09JUqU0C96Z2Njo2/bo0cPwsPDWb9+PdOmTeP58+fkL5cfdOsU+1byJYeVucuGkpGklA+BAUKITWiL0LqhjZLbK4RYBgyTUt4XQlgDXwAjARu0m/n/0GrnL7NI8IqipIq5a3Rm0OPdHpYOQVGyu9RlbxRFUXTq16/Pw+jN2FSogHB0wDr/6/9wPrE1aebMmZOi3APAggULaNy4MYsXL2b//v1ER0eTL18+ihcvzvDhw+ncubPZPvLly8ePP/7I5MmT2bx5M7NmzSJnzpxUr16d4cOH07BhwxTFFl+hQoU4fvw4o0aNYteuXZw4cQJ3d3cWLlyIo6MjW7du1dfKzywS+2/m6+ubpRP4IrHFloQQP6ON0vtGSmm86lRyTiTEWuBj4KSUsnpq+nqdCCGinZycnExNnVEURbGkf+//S7HZxXgeq9Xv/6P/H7i7uFsyJDWCLBFCCEdgOlpNfIE2Jf4a2gK1A4C3efk3/A7oLaX82wKhZhnqGq0oae/czXO4OLio9VReP+oarWRL6ruCoijZ0ejRo5k0aRK7d+/G29vb0uFkBun+PcjcXIeDuiCaCiFS/C1bd2xztGTCwZT2oyhKxrp+/TrXr1+3dBiKhQT/HqxP3r9f/H1LJ+8VM6SUD6SU/YCGQDja9bsE2qJz7+he3wW6SSmbquS9omRtWfEaHXwmmOrLqtNxU0f99UVRFEVRlMwvK37vUFIvIiLCaN/Zs2f56quvyJcvH56enhaIKnsyl8DfovvpCCwRQiT7iYIQwgpYrOsjfp+KomRyBw4c4MABozLaSjYgpWTlbyv1r/0q+1kwGiU5dLXvuwLPeLkwHcBNoJKUUq04pCivgax2jb5w6wK+W3159PwRB8MOMu7gOEuHpCivPSHEdiHEJ0II47qViqIoyZDVvncoaaNatWrUqVOHfv36MXz4cFq2bMm7777Lw4cPmTdvHvb29pYOMdtINIEvpfwJ2IM2aq8Z8LUQIskFjoQQuYG1QAu0JMJeXZ+KoihKJnbinxNcvH0RAEcbR9pWaGvhiJSkEELkEEKMB/ajrXMjeFlOpwCwTbfwraIoSoYqX6A84zxfJu0nHZvEzss7LRiRomQLzYClwD9CiJ+EEKN0C9oriqIoilm9e/fm3r17rFu3jtmzZ3Ps2DG8vb05cOAAHTt2tHR42UpSlgseiDblHqA1cEEIMUQIkeDCtkKIAkKIz4DzQFzWJ1rXl6IoipLJxR99375Ce3LZ5rJgNEpSCCEqAyfRFquNW6h2E+CHtii9ACoDvwghAoQQakViRVEy1Bd1vqBh6ZeLqnXZ0oWw6DDLBaQor78Tup9WQHXgS+CMEOIvIcQcIUQ93UL3iqIoZsmnT3mwbj33ly3n4bZtlg5HyQDjxo3jt99+4+7duzx//pzbt2+zY8cOvLy8LB1atmM2gS+lvAJ8BDzU7XJFWyQvUgjxpxBipxAiRLftFEJcAW4AM4CiaAmDh0BLXV+KoihKJvbg6QPWn1uvf+1XRZXPycx0o+7/h3aTHrdQ7S2gvZSyrZQyCCiPlswXaMn9McApIUSVdIqpmBBiqhDighDivhAiWgjxmxBirBAibxqdw0UIMVoIcUwIcUcI8UwI8Z8Q4owQ4ishRPm0OI+iKGnH2sqakI9CKJanGAB3H9+l7Ya2PHn+xMKRKcrrSUpZC+3+vSfwLfAY7btASeBTYB9wSwixVgjxcXJm2yuKkv3Ix4+JHjacmIDxPFgdbOlwFCVbScoIfKSUh9Ge2F/g5XT8uAt/I+Bj3dYIKPVKm/PAe1LKo2kdvKIoipL2Nl3cxL2n9wBwz++OxxseFo5ISYguAX8SGM3LUfcbgApSyg1x7aSUt6WUbdGu1bd07SoCJ4QQE4QQNmkYUyPgLDACKIe2Bo4T2uj/8cBZIUTVVJ6jPvAHMAGoDeRDKxmUG23B3k/RRhgOS815FEVJey4OLmxou4EcVtokoJMRJ/nyyJcWjkpRXl9SyptSyhVSSh8gP+ADrEBbG0cAzkB7IAQtmb9PCPGpEKKExYJWFCVTElYvU4jywcNEWiqKktaElNJ8q7jG2vS6Dmg3xlVJ+AFALHAK+ApYL6V8kco4X1tCiGgnJyen6OhoS4eiKEZu3LgBQOHChS0ciZKRPIM8ORJ+BICpDaYyovYIC0ekl+yF1F9nQogv0ZLkcbXubwH9pZQbzRznAiwE2uh2SbQH9H5Syl9SGdM7wHG0pP1DYCpwQBejD1opPWu0mXpVpZQRKThHSeAc4KDbtRMIAsKBQmiDCXrrzgnaTIRvUvh51DVaybSy+jV6zk9z+GzPZwBYC2t+7vkz77q+a+GolFRQ1+gsSAhRA229uhZAhXhvxSUJzgHbge2p/Y7wulLfFZTs4saNGzy/dh3R6iMArEuWpPCxIxaOSlEyjXT/HpSsBL7BgUI4AbWAYmgj3wCigL+Bn6SU6gqWBOqCryhKZnLlzhXenP8moCVUrn92HdfcrhaOSk8lB+IRQsSi3WAL4Bu05P2dZBzfGlgAFNT1EwvMklL6pyKm74G6wAugnpTyyCvvdwbi5tsGSimTXZ9JCDEf6K97OUtKOdREm1bAZt3Lc1LKt5N7Hl0/6hqtKMChQ4eoW7cugYGBdOvWTb//9u3bDBkyhP379xMZGYmnpyeHDh1KUp+xMhavIC+Ojj8K0fDOlHf4pecv2Frbps+HUNKbukZncboH5C3QHri/z8sH4XEJgxvADrSE/n4ppap9hfquoGQvLyIjuVGtOgBWhQri+uspC0ekKJlGun8PSrSEjhCiaELvSSljpJS7pZTLpZTTdNty3T6TVy8hhK0QYlJqg1YUJWNcvXqVq1evWjoMJQMFnQ7S/96kbJPMlLxXTLsFtJFSfpyc5D2AlHIT2mi7DWhfOKyBFJec0ZXFqat7GfRq8l53zjXA97qXXYUQBVNwqriaThKtJI8RKeUW4LTuZUUhRO4UnEdRMrW0uEYfOnQIIQQzZsxI0fFDhw7l66+/pk+fPgQHBzN69OgkH2slrFjRYgVCaPc7v//7O7v/3J2iODJSWFgYQogEt/Xr15vvxMICAgLYunWrpcNQMhkpZaiUcq6Ush7aw/3OaAME7qF9T3AFeqAl8G8LIbYIIbpZKl5FUTLW1atXCb19W/9aldBRlIyVw8z754QQQ6SUgak9kRCiJrAScAdGpbY/RVHS35EjWv6tVKlSFo5EyQgvYl8Qc3L68QAAIABJREFUdCZI/1otXpvprQcGSCmjUtqBLunfXgjxNbAIcElFPB/F+31FIu1WAvXQHhi0AJYn8zxxw3PvSCn/S6Tdn2h19+MfoyivjYy8RtepU4dHjx5hY2O4XMa+ffvw9vZm7NixKeq3bP6ylMpbirCYML7r/B0flv4wLcLNEB9++CFdu3Y12l+rVi0LRJM848ePx9fXl5YtW1o6FCWT0g3IWwusFULkALzQrtnNgRJopfJ8dK+DLBOloigZ6ciRIyAlcVdq+eABUkr9g3hFUdKXuQS+E7BcCNEW6Cml/Ce5JxBC2AOT0OrmW/NyCp6iKIqSiXz353dE3NNKkhd0LEjTsk0tHJGSGCllxzTsa7MQ4jAwLxXdvK/7+RBIrE7uwVeOSW4C/xLazIH8Qog8iSTxS+t+3knu7ARFUQxZWVlhb29vtP/GjRvky5fPxBFJVzRPUZ7lfpalkvcAb775Jp07d063/uMemOTIYe52TVHSl5TyObBftw3UrXcTV2pHLVyhKNmJEAh7e+TjxyAl8tEjhIOD+eMURUm1REvoAI/Rpst5o43G756czoUQnsBZYBBa8h601e0VRVGUTGbWj7P0v/tW8sXG2iaR1kpWI4SwF0IUF0IUN/W+lPJOKh8KlNf9vKK72TdJt3DtvVeOSY7Fup8CGGOqgRCiBVBF93JBCs6hKEo8caV2goKCAK0EixACKSWrVq3Sl4+Jex9g//79NGzYEGdnZ+zt7XnnnXdYvHixUd8CYXL03pEjR/jwww9xcnIiZ86cvPvuu6xYYTy5x8vLCzc3NyIiIujQoQN58+bFwcEBb29vLl++bNQ+LCyM1q1bkydPHvLkyYOPjw+hoaG4ubnh5eWV4r+RKb///jutWrUif/782NvbU758eaZNm8aLFy8M2nXr1g0hBLdu3cLPz49ChQrh6OjI33//DUBMTAz+/v6UKVMGOzs7ChQoQIcOHYxKKD1+/JiAgADc3d1xcHDA2dmZt99+m+HDh+s/e9zfOv5/NzV6UkkOKeXvUsoJUsr30NbDUxQlGxGOjvrf5YMHFoxEUbIXc0M6KqNNiauJ4Wj8XlLKvxM6SAjhCEwHeqHdYAsgAugjpdyRBnEriqIoaehUxCkOhmkDo62FNQOqD7BwREo68Aa2oC1Wm6ZDOoUQdrwsv5Pg94N4rqMl799I7rmklPuEEBOAL4BhQoiyaAvjXkOr2esN9NE13wVMTSRucyvOOSU3PkXJDj766CPKlClDly5d+OCDD+jVqxcAHh7aEhVLly6lT58+1KxZk9GjR+Po6Mi+ffvo27cvf/31F9OnT0+0/3Ub19Hl4y4ULlyYoUOHkjt3btavX0+PHj24evUqEydONGj/4MED6tSpQ82aNZk0aRKhoaHMnTsXHx8fzp07h7W1No7ozp07fPDBB/z777/06dOHcuXKcfToUerWrcuDZCYhHj9+zO14tYABbGxscHLS/tk4efIknp6e2NjY0L9/fwoXLsy3336Lv78/Z86cISTEeEzThx9+SOHChRkzZgwPHjwgV65cxMTE4OHhwbVr1/Dz86NChQpERkaycOFCatSowcmTJylRogQA/fv3Z+XKlXTt2pUhQ4bw/Plzrly5wvffa0uPFChQgODgYKP/boqSUlLKSEvHoChKxhK5HOGONrlV3r8PBQpYOCJFySaklIluaMn3YWhT4mOBF0A04JdAe28gTNcuVretAJzMnSs7bkC0k5OTVJTMKDAwUAYGBia5PSA9PT2N9kdGRsquXbvKokWLSisrKwnIu3fvpiimhM6hpE6HjR0kAUgCkB02drB0OAmx+L/ZWXlDm+oeC7xIh75d0ErkSWB9Etqf0LW9l4pz1gP2xjtv/O0y0A2wNtNHtJlNqmu0El/MjJny7yLFkrRFDR9hdHzU8BFJPj5mxkyj42937WbQ5nDnLqn6PAcPHpSAnD59epLavfqdAJC+vr4G+yIiIqSdnZ3s0MH4WjJw4EBpZWUl//rrL/0+T09PWaJECf3rzec3S2tna2md01qGXQvT73/y5In08PCQVlZW8vLlywbHA3Lq1KkG55o2bZoE5O7du/X7hg8fLgG5Zs0ag7Zx+5Py/SI0NNTUvzkSkDVq1NC38/DwkNbW1vLMmTP6fbGxsbJt27YSkPv379fv9/X1lYDs1KmTyb+Zvb29PH36tMH+sLAwmTt3boO/f968eWXjxo3NfgZT/93SgMWvc2ozeZ2bpdsqJNKmuG6zN9OXF/ArcMrSnyszbep+Xsku4nIDN+p/qP8e8uTsOUuHleXFfY9Rsrx0v96YK6ET93/RDLT6dj/rEvp5gGVCiO+EEMUAhBBOQohAtNFub+jaXQO8pZSfSCljzJ1LUZTMpVmzZnTv3j3VU6u7detGcHAwnp6efPHFF4wbN85kLd3sIq4UQWJbWFhYhsVzLeYa35z/Rv96aK2hKerHy8tLTcPPvnLG+/1pEto/MXFckgkhCgPdeVl3/1VlgK5AjcT6kVI6J7YB6ruLkqm9+eablg7ByMaNG3ny5AmffPIJt2/fNtiaN29ObGws+/fvN3ns3//9Tbuv2vEi+gUvKr1g+ZWXS2TY2toyYsQIYmNj2bZtm8FxVlZWDBw40GBfvXr1ALhy5Yp+37fffourqysdOnQwaDts2LBkf04fHx/27dtnsM2bpy0jcvPmTY4fP06LFi1455139McIIRg9ejQAW7ZsMerz1TiklISEhFCnTh2KFi1q8Ld0dHSkZs2a7N27V9/eycmJ8+fPc+7cuWR/HuW1NRitnG3pRNqEAVeBhmb6ckKboV/ZTDtFUV5DzZo1o1mzZth5eGDfuBE527TBKpej+QOzoLh78hIlSvD48WOTbdzc3BBC8Px5gpVDs6S4MonxNysrK5ycnPDw8GDBggUGnzkuB5DUrVu3bgAEBQWZbevm5maZP0ImleQp9FLKP4QQHmij8ccDdmgX+XNCiPloN9KF0RL3Eq1G7Qgp5f00j1pRlAzh4uJivlE8Fy9exOGVRWyePn3Kvn37aNCggcnp4tlZiRIl9BewVzk7O2dYHHN/mssLqdXjretWl6pFqmbYuZXXxqN4v9smob2dieOSRAhRDm3kfTHgLjAC2A5EoiUXPIEvgbrAQSFEFynlNwl0pyhZ2qvX3Mzg4sWLADRo0CDBNv/++6/J/cXyFKNdkXasZS0UhEnHJtGoTCNqF68NQIUKFQCMar8XKVLEaGBA/vz5Aa1sTpzQ0FCqV6+OlZXhGKaCBQsm+7pbrFixBD9jaGioQbzxlStXDisrK6PPAMYPZG7dusWdO3fYu3cvBRIoURD/s8yZM4cuXbrw9ttvU6pUKerWrUvz5s1p3ry50WdWlFeoERiKoiRKnxv4X4BF48hI165dY86cOXz++efpdo7Vq1fz8OHDdOs/pTw9PfVrAz1//pzr16+zfft2BgwYwPHjx/W5nW7duhmtIbR161bOnDmDj48PlSsbPvN99XWlSpVo2bKlyRgyMieSFSSrBq6UMhaYJoT4FggEqqONxh/Jy4v+VaCHlPJQGsapKIoFXLp0KVnt33rrLaN9N27cIDY2liJFiqRVWK8NNzc3AgICLBpDzOMYlv26TP96mEfyRyEqCi8XpQXIlYT2cW1S8pB/NVry/hHwgZTyfLz3bgObhBD70Mr0vAUECiEOSylNZwwVJRnyDB1CnqFDUnx83mlTyTstwWUZzMq/KlD/+6VLl7iP9kU8M5FaSQlWr16Nq6uryTalSpVK8PhmbzbTEvhArIyl85bOnOlzhjx2CX/SuBr3icWTFbz6QCYu9gYNGuDv72/2eB8fH8LCwti1axeHDx9m//79rFixgg8++ID9+/dja5uU56uKoiiKYiwuN+Du7m7hSDJG3rx5EUIwZcoUevTokezBjUlVvHjxdOk3tby8vIxyFdeuXaN8+fKsXbuWiRMn4ubmZnJAYlhYGGfOnKFly5YJDliMU7lyZYvnRLKKFA3FkFJeBCYDz9BG28e5iXYzfSj1oSmKYmk//vhjstoLIQyevrq5uekXVlu1apXRtKk469ato27dujg7O2Nvb0+5cuWYMGECT548IaliYmIYOXIk7u7u2NvbkzdvXry9vU1O048rYRMQEMDp06dp2rQpzs7OODg44OnpyfHjx02eIzIyku7du1OwYEFy5sxJ5cqVWbVqlUF/6SEyMpL+/fvj5uaGra0tBQoU4KOPPuLUqVNGbeOmogUFBbF79268vLxwcnIyKG3z/PlzFi5cSM2aNSmUvxD3xt6DxVDofCEaljKePb19+3bq16+Pq6srdnZ2FClSBE9PTxYuXAhoF2ghBIcPHwYwmPb26tN45fUkpXyCljwHLbluTlyb68k5jxCiElBN9zLkleR9/Hj+A+JWuXQAPk7OeRQlK/jxxx+TfZ3OCGXLlgW0kXoNGjQwuSWWwC9TugwAdlHaRJ2w6DA+/e5TAC5cuAAk/gAgMW5ubvz555/ExsYa7L958ybR0ebWtE66kiVLAnD+vPE/UX/88QexsbFJ+gwFChTA2dmZ//77L8G/5auzAPLly0fnzp1ZtmwZV69eZcSIERw9etSo7JCiKIqiJEdm/d6RXhwcHBgzZgwxMTGMHz8+yccFBQXRunVrSpUqRc6cOcmTJw+1a9dmzZo1Jtu/WoZ2/fr1CCH47LPPTLZ/8uQJefPmxdXV1ah8T1rkVRJTvHhx/QOcW7dupUmfStIlO4Gvq3W/CtiMNoJf8LJsTgHghBCicZpGqShKljR48GAGDRoEaFOjxo0bx7hx4wymSPn5+dGxY0f+/PNPWrduTf/+/cmXLx9jxoyhUaNGSaopFx0djYeHB1OmTMHJyYnBgwfTunVrfvzxRxo2bMiSJUtMHnfy5Ek8PDx4/PgxPXr0oFmzZhw7doz69esbzT64efMmtWrVIigoiHLlyjF48GCqVKlCv379mDt3bir+SokLDQ2lWrVqLFy4kNKlSzN06FC8vb3ZuXMnHh4e7Nixw+RxGzdupFmzZuTOnZs+ffrQvn17AJ49e0azZs3o378/d6PvYl3JGqoCEv7d8C/du3U36Gfp0qX4+Phw4cIFmjdvztChQ2nSpAmPHj0iMFAbCers7My4ceP0D2vi/juPGzfO7BN35bVyQfezrBAiwRl+QogivBw0fCGhdgkoF+934ydYhuK/bzw9SFGUdNGuXTvs7OwYN24cjx4ZV8mKiYlJ9Eby3XffpXjx4uQ4k0M/t2f1mdWsPb2W6dOnI4TAx8cnRbE1b96cyMhI1q1bZ7B/xowZKeovIQULFsTDw4Nvv/3WoB69lJLJkycD0KpVK7P9WFlZ0alTJ37++Wc2btxoss3NmzcBePHihdFDCCEEVapUASAqKkq/P1euXAavFUVRFEUx1r9/f0qXLs2SJUsM1tRJTN++fQkPD6dOnToMHjyYjz/+mPDwcLp06cKYMWPMHt+yZUucnJxYu3atyVzItm3biI6OplOnTuTI8fKWKy3yKuZcv36dS5cukTt37mwzEyMzSVYJHSFEU2AJ4IqWtI9FW9V+J1rN+zfRRtXtEEIEA4OllGk3nEVRMol/ir5h6RCSrOg/yRrgmqYGDx5MWFgYc+fONTk1KigoiMDAQFq1akVISAg5c75czzIgIIDx48ezYMEC/UOAhPj7+3PhwgV69erF4sWL9U+w/f39qVatGgMHDsTb29toEZSdO3cSGBhokGResmQJffr0Ye7cufoR5gAjR44kPDycESNGMHXqy/IHgwcPpnr16sn8y2jCwsJMjtr38vLSj1zv06cPERERTJgwQb/wHUC/fv2oU6cOvr6+hIeHkyuXYdWSXbt2sWvXLho1amSwf+LEiezZs4cBAwbwnt97+G73BaBgzoI0vtiYVUGraNOmjT45smTJEmxtbTlz5gwFCxY06Ov2bW3AtbOzMwEBARw6dIjw8HA1BS7zug0cwXDmXFo6BtRBG/H+HpDQEB2vV45JjvjfPG3MtI3//uu1upSipLEDBw6YXKTNxcWFPn36JKuvYsWKsWjRInr06EG5cuXo0qULJUqU4NatW5w9e5atW7dy4cKFBBcms7a2Zv78+bRq1QqHIAcevvMQbKHryq68uPaCUaNG6Uf5J5e/vz9r166le/fu/Pzzz7z11lscPXqU48eP4+LikqYLsc+dOxdPT08++OAD+vfvT+HChdmxYwd79uyhY8eO1K9fP0n9TJw4kR9++IF27drRrl07atasia2tLeHh4ezatYuqVasSFBTEvXv3cHV1pUWLFlSpUoWCBQsSGhrKokWLyJs3L82bN9f3WbNmTfbv38/UqVMpXrw4Qgj+z969x+dc/g8cf12zsc1hM5NjyCHnw6SSQ1uig/hGCDkMHVGUQ0VEvwjl6zuqfaXI5FhClBDmXIokShSmEiXD12Fh9v798bnvue/t3unevd07vJ+Px+ex+/58rs91XfdqPp/7/bmu99Wjh05UUkoplbb+x6yBXv1f6Z9BSe+TcZ75uuPn58fkyZPp1q0bL7zwAsuWLcvwnP3791OjhvO64VeuXOH+++9n8uTJPPXUU1SqVCnN8/39/enevTuzZs1izZo1dOjQwel4TEwMAJGRkcn7PBVXcbRp06bk7/WJiYkcP36clStXUqxYMd59911KlfJMEsfvvvsuzfhB8+bNU8UzCrNMBfCNMcHADKCXfRfwEzBARL6ylWkMTACewxrZ3we4xxjzlIis9HTHlVL53/Tp0/H19WXOnDlOFxmAsWPH8tZbb7FgwYJ0LzRXrlxh/vz5lChRgkmTJjl9+a5VqxZDhgxhwoQJzJs3j5dfftnp3JYtW6YaIT5gwACefvppvv76a6c2Fi1aRFBQEGPGjHEq37hxY/r27ct7772X1Y/PsWPH0pyOFxERwe+//866deuoUqUKzz//vNPxFi1a0LNnT+bPn8+yZcvo27ev0/EHH3ww1cUuKSmJN998k/LlyzNt2jRunX1r8rFnmj/D0088zbyYeSxYsMBpdKOvry9+fqljpTmVB1DlDBHZjnPw3NOWAaNtrx8l7QD+ANvPa1iLz2aF46qPrYE30ykbnsZ5SqkU1qxZw5o1a1Ltr127dpYD+AD9+/fn5ptvZurUqbzzzjucPXuW0NBQateuzauvvkr58uXTPb9jx45s2LCB8f83ns3bNyOJwrWy16gzoA6vTng1y/2xCw0NZdu2bQwfPpw5c+ZgjOGuu+4iNjaWW2+9NdW9SHY0a9aMHTt2MG7cOKKjo7l48SLVq1dnypQpDB8+PNP1BAUFsX37dv7973/z4Ycf8sknn+Dr60vlypVp1aoVjz32GGBN9X/22WfZsGED69ev58KFC8kB/VGjRjmtRRQdHc3gwYOZOHEi589b0xw0gO85xpi+GZdyj4jMy6m6lVJKpda1a1fuuOMOli9fzrZt22jVqlW65VMG7wGKFi3K4MGD2bhxIxs2bEj13T2lyMhIZs2aRUxMjFMA/+TJk6xdu5awsDAaNmyYvN8TcZWUNm/enJwi187X15fHHnvM7QGMruzdu5e9e/e6PDZ06FAN4DvIMIBvjOmANeq+PNdH3U8FXrblvAWS89+ONMZ8jLXAbW3bOcuNMYuAISKiczWVUgBcunSJvXv3EhoaSlRUlMsyxYoV48CBA+nWc/DgQS5dukTLli0JCQlJdbxNmzZMmDCBPXv2pDrWrFmzVPv8/PwoV64cZ86ccWojISGBZs2aUbJkyVTntGrVyq0Afnh4OJs2bUrzuL3PrVu3dhlAb9OmDfPnz2fPnj2pbgJcXVQPHTpEfHw8tWrV4tERjyZfKH19fPnflf8RtTGKgIAAp995r169GD58OPXq1aNHjx6Eh4fTsmVLypYtm+XPqwo2EdltjNmE9ZCgnzEmRkS2OpYxxvQC7MNO54nIXymOVwOO2t5uFpGIFM18B/yONdvvIWPMPSKyLmVfjDE3AfYpK0lYMwWVUilERERkapHXtMqld27Lli1p2bJlhnWndR0MDw8ndkMsW49tJSImgiRJ4id+YuXBlXSq0ynD86tVq+ayfzfddFOqEXSnT5/m9OnTmVpILq16XWncuDErVqzIsNzcuXOZO3dumsfteXjTm3pftGjR5PQ8GalVqxbr1qX6p1N5zlxyZrabYC3krpRSKhf9+9//pkWLFowYMYKvvvoq3bK//vorU6ZMYcOGDfz666+p0gkeP348w/ZatGjBzTffzKpVqzhz5gylS5cGYMGCBVy7ds1pEKKn4iopjRs3LnlkfFJSEidOnGDFihUMHz6cFStW8PXXX3PjjdnPTBEZGZnuPZC6Lt0Avi0NziP2t1ij7vuLyM60zhGRr4wxTYBXsUbjFwF6Am2NMYNEJOM5J0rlcd5MS5ObOnfuTP/+OTNF7syZM4gIp06dytKiMCmdO3cOgAoVKrg8bt/vanG64OBgl+f4+vpy7dq1VG2UK1fOZfm09mdXdj6bq9GNp0+fBuDnn392yuGXSCJvxL6R/P7ChQvJr4cNG0ZoaCjR0dHMmDGDqKgojDGEh4fzxhtvuHwIogq1ocAOoDiwxhgzGdiAdb/xoO04wElgjMsa0iEiScaYF4H5WPcXnxlj3gVWASeAIKwHCEOB0rbTZovIIXc/kFJ5VWZyqBcErau25oWWLxD9TTTT75vOg7Xdy39vl5CQkGp02uTJkwFo165dtupWyoHn8jEppVQecPZZ6zun7+efc3b4SAACH+5G6f9M82a3csUdd9xB165dWbp0KUuWLEleXy6lI0eOcNttt3HmzBlat27NPffcQ1BQEEWKFCEuLo6YmJhMLygbGRnJSy+9xOLFixk4cCBgpc/x8/PjkUceSS7nqbhKenx8fKhUqRKDBw/mxIkTTJw4kQkTJqS51qDKGRmNwLenzLkG/BsY5zjqPi22Ms87jMavA9wAfGSMWSoirv9vV0rlKUFBQTled1hYGN9++2226zl58qTL4ydOnHAq5w57frc///zT5fG09mdXdj6bqzy+9nIP/OsB1jZbS2KSlRb852d+pmZIzTT70bdvX/r27cvZs2fZsWMHy5cvZ86cOdx777389NNPOhpfJROR740xXYFFQDDwf7bN0XHgQRH5w802FhhjbgCmYOW5H2jbXFkAPO1OO0rldTl5jc5rxoWPY9Ctg6hcqnK262rfvj1Vq1aladOmJCUlsWHDBj799FNatGhBp06dMq5AqYxlNPrlQcD+P9sBrAfdvwAXsR6A18SarVYXa9T9CrKeck4ppTzKft9xKbB48r6ki5e81Z1cN2nSJD755BNGjRqV5iCKadOmcfr06VTr7AEsWrQoOX99ZtgXvY2JiWHgwIHs2bOHffv28eCDDzqlsvVUXCWzbr/9dgCnlMMqd2QmB/4PWLnuv8lq5SKy02E0/jCs0XJds1qPUso79u/fn2N1lyhRgvr16/PDDz8QHx/vMv1NZtSuXZvAwED27t3L2bNnU42qj42NBaBp06Zu97VOnToEBATw/fffc/78+VRpdLZty+o6nJkTFhaWXH9iYqLTKvOQ9c9Wp04dgoOD2bZjG4mNE6EI3F7p9nSD946Cg4Np37497du3JykpiTlz5rBlyxa6dOkCWAsPAly7di35tco5xpiNOVCtiEjmVlZMu4I1xpiGwBCgA1AFayDAUWA5MENEzqRTRWba+I8xZhXwBHAXUAMoBSQAvwFfAXNFZEt22lEqL7Nfoxs0aODlnuS8Yr7FPBK8B+jQoQPz5s1j+fLlJCQkULlyZYYPH864ceP02qU8QkTSjNAYY0ZiBe9PAo+JyOp0yt4PvGcrv11EsjPMdYIx5tlsltHFj5QqxOz3HTVLlEjeJxcvpFW8wKlZsyaDBg1i+vTpvPmm62W4fvnlF4Dk78eOUuaTz8iNN95ImzZtWL9+PQcPHnS5eC14Lq6SWfZUw0lJSTnajkrNJ4Pjk4Fb3Ane24nIFRF5AWiJNcJAKZVP7Nq1K0frHzZsGFeuXGHAgAEu08CcOXMmw6fIRYsWpVevXpw/fz5VbtjDhw8zY8YM/Pz86NOnj9v9LFq0KN27d+fcuXNMmDDB6djevXuZNy9n0pFWrlyZdu3aERcXlyqf3c6dO1m4cCGlS5fOdBoFX19fnnnmGc79fQ4+B65Ct3rdnMqcOHGCH3/8Mfl9bGysy1y/f/1lpS4PDAxM3lemTBnAyvunckUE1kKtntoi8NAityLyu4g8LyL1RKSEiASJSBMReSW94L2IxImIsW3p9kVEfrG1cauIhIiIr4iUtLU5QIP3qqDbtWtXjl+n87KEqwn8di7rKQ2HDx/O3r17OXfuHFeuXOHIkSNMnTrV5Ro3SnmSMaY5MAlrpH14esF7ABH5HOu6fAmYYozJzqqB9Un7+i+ZKBNuO66UKqTs9x2m+PXvf1KIRuADvPzyywQHBzNx4kSntLN21apVA1Kvz7N27Vq31syzj+KfPXs2ixYtIjQ01GlRWztPxFUy4/Lly0RHRwPW+kgqd6U7Al9ERnuqIRH52hgTBoz3VJ1KqdyTcgqYo+joaKdAbmYNGDCA3bt3Ex0dTY0aNbj33nupUqUK8fHxHD16lC1bttC/f39mzpyZbj2TJ09m69atvPXWW3zzzTfcdddd/P3333z44YecP3+et956i5tuuinL/UvZxsaNG3n99dfZuXMnLVq04MSJE3z44Ye0b9+eFStW4OOT0TPRrJs5cyYtW7Zk5MiRrFu3jmbNmvHbb7/x0Ucf4ePjw/vvv5+loMPgEYOZ8NEEZJfAQdjxyw7+XvU3f/31Fz///DPbt29n4sSJ1KtXD7ByLJcoUYLmzZsnL9y3detWvvnmG2655Rbatm2bXPfdd9/NRx99xEMPPUT79u0JCAigatWq2Xp4ojLkqRy7ObHYnlJK5Yhvjn9D3xV9CfANYOdjO/Erknqhd6XyoKexBtDNFpGclvuOAAAgAElEQVSfMyoMICI/G2PmAM/YNnduqjQfv1LKY0xxhxQ6LoLYBVlISAijR4/m+eefd3l80KBBvP/++3Tr1o2uXbtSsWJF9u/fz5o1a3j44YdZsmRJltrr3LkzpUqVIioqiqtXr/LMM8/g55f6nsdTcRVHmzZtSl7EVkQ4ceIEn3/+Ob///jvVq1fnpZdeytJnSct3332X3I4r6R0rbDKTQsdjROQK4LGHAkqp3JNevraoqCi3AvgAb7/9Nvfffz8zZ85k/fr1nD17lpCQEKpUqcLIkSPp3bt3hnWEhITw5ZdfMmnSJJYtW8a0adMICAjgtttuY+TIkdxzzz1u9c1RuXLl2LFjB6NHj2b16tXs3LmT2rVrEx0dTfHixVmxYkVyrnxPql69Ort27WLChAmsXr2aTZs2UapUKe677z5eeuklbr311izV99nhz5DuAt9DqQOliF0Xy6oLqyhbtiw33XQTr776Kr169UouP3nyZNauXcu3337L6tWr8ff3p2rVqkyZMoWBAwc63UA89thjHDt2jMWLF/P666+TmJhIeHi4BvBzjuvVjTOvKPAk1oKv7v0BK6VULotPiOeumLu4ePUiAK9tfY1xEeO83CulMqUl1gPzrCYO3okVvG/lRpt3uXGOUkqlycchgC+XLnqxJ94xZMgQoqOjiYuLS3WsUaNGxMbGMmbMGD777DMSExNp3Lgxy5YtIzg4OMsB/MDAQLp168bs2bOB1OlzHHkiruJo8+bNTml/AgMDqVmzJpGRkYwYMSJV6mJ37d27l71796Z5XAP41xlXqRFU7jHGnA0KCgpyNc1FKW+bO3cukP7oewUvvfQSr732GmvWrOHee+/1dnfSdf+C+1nzyxoAprabyvAWw73coyzREWQeYozpgzUjrpp9F3AGmCIir3upW3mOXqNVXlaYr9FTd0xl5BcjAfD18eWrR7/iloq3eLlXhZ5eozNgjEnAengeKSLzs3Beb2Ae8I+I6AP3PEbvFVRhYb/v6NO+PSfDrGuuT2goFfbu8WKvlMozcvw+yPP5HpRSqoD6448/Uu3bt28fM2bMICQkhPDwcC/0KvPiE+JZf2R98vuu9XRN8cLGGPOgMWYfMBcreG+wcuu+BlTX4L1SKj94rvlztLyxJQCJSYk8tuoxEpMSvdwrpTJkj/C2zOJ59pH3//NgX5RSyi2OKXSkkKXQUcqb0kyhY4yZDrwmIn/mVOPGmPLAKBEZmlNtKKXc9/DDD3u7C3lKs2bNqFmzJg0aNKB48eL8/PPPfPbZZyQlJfHOO+/g7+/v7S6ma8VPK5IDHLdXup2qwVW93COVW4wxd2EF6e0L4BngCjALmCAif3mrb0op9xTma3QRnyLM7TSXhv9tyD+J//Ddye94c+ebPHfHc97umlLp+QboAPQzxrwjIt9ldIIxpjEQiXupdzDGHAWSgCdFZH1G5XOaMeYW4H6shxL1gRuAROAkVqqgeSKyxsNttgOeAJrb2jsNfAe8LyIfebItpQoy+32HCQggsFcvfEoUxxQvjohgjE7CUiqnpZlCxxiTBCQA7wBviMgJjzVqTEXgeawLaTERKeKpuvMbnXKnVP7xyiuvsGLFCuLi4jh//jzBwcE0b96cESNG5ItV2PN5+hzQ6flZZoxphhW4v9u+C+uL/HxgnIgc81bf8gO9RiuVt03aOonRG63ltYr7FefA4APcGHSjl3tVaOk1OgPGmA7ASqxg/FmsNWgWiIsv5MaKhj0CTAdCbOd0FJHVWWwzyXZuZxFZmb1PkD3GmM3AnZko+hnQS0TOZbM9A7wNDEyn2CdAdxG5nI129F5BKaVUjt8HpRfA3w2EYV3wrwEbsL7wLxeRS1luyJhAoDPQB2gDFMH6gN+KSDO3el8A6AVf5WXffWcNDGrSpImXe6KyKz4hnnJTyyWPwI8bGpcfR+BrcCCTjDF1gAlY1124/rtbAYwRkR+90rF8Rq/RKi/TazRcuXaFsHfC+PGU9U9apzqdWN59uZd7VWjpNToTjDFzgb5Y37EB/gQ2A79gpbQLBGoC4UA5rv9e54lIPzfay0sB/F+AGlifeSmwBTiG1b9mwLNALVvxLcBdIpKUjfZeBcbY3u4DpgAHgaq2tuypiT4Qkb7ZaEfvFVShoPcdSqUrx++D0kyhg3URfRJ4GSgP3GPbEowx32BN4duJdRGMB+JF5LIxxh9rlEAIUBu4HWvKfjMgwFa3wZomNx5417MfSSnlKXqRLjg0fU7hYIy5EXgF62G5D9dvJDYCo0Uky9PvlVJ5k16joWiRorzT4R1av98asK51Kw+u5F+1/+XlnimVpgHARa6PCi8HpJUPy34NjwaG5HC/csNPWAH1pSKSctGKr40xMcA6oAXWSP1HsAYQZpkxpgbwgu3td0ArEbloe7/LGPMJsAq4D+hjjHlXRLa605ZShYXedyjlXWkuYiuWmVhPyZ8Hfse6iQjEuqCOAD4Cvrcdu2SMuYJ1Q/IbsBf4EBgOtLadZ2zHhmEtljfL1ZRBpZRSnvXRj9dTfHar182LPVE5wRgTaoyJAg5h5cq1z3L7BmgnIm01eK+U8oZ+/frlaG7cVlVa8WjYo8nvn179NBeu6KJ6Km8SkSQRGYw1wn4lcBXrep1yu4o1a661iDydnZHoeYWIdBCRxS6C9/bjF4GnHHZl54b1WcDP9voZh+C9va1EW1v23+vz2WhLKaWUynFpBvDtRCRBRKYC1bGm4i/Dyo3v6kbDN439l4CPgU5YgfsoEfnH459GKaVUKvEJ8aw/cn3dsq71unqxN8qTjDEljTH/BxwBngGKYV13DwBdROR2EdngzT4qpfKuTZs2YYzBGMO777qeFGuMoUOHDrncs6yZ0nYKoYGhFC1SlAFhA/D1cZ5kbP+MrrbJkyd7qdeZFxUVxdy5c73dDeVBIrJVRDoBpbBmrNtTzXa2vS8lIg+JyHYvdjPXicg+rEVmwUollGW23PedbG8Pici2NNo6hjVDEaCtMaaEO+0pVRidn/kO8YOf5nS//lzZv9/b3VGqUEgvhY4TEbmGtcjLJ8aYokBLrJuLBlh55EKwAgeXsVLqxAH7sdLs7BCRKx7tuVJKqUzR9DkFkzFmJNaIsRCuT7M/hpWe7oOCMFpPKZV7xo8fT+/evQkICMi4cBa8++67zJw506N1plQmsAwLHlpA1aCq1A6t7bJMkyZNGD489eLtYWFhOdo3T4iKiqJatWr069fP211R2WCMsedZPyki6wBs35G/8V6v8iT7yPlrbp5fDahse705g7KxQFvAHyvl7yY321SqULm840sub7DGCAU+8gg0aODlHilV8GU6gO/IdqMRa9uUUkrlYZo+p8CagrXwm8FKXzcdmAlcAULdTVkhIn95qoNKqfyhWbNm7Nq1i6ioKEaNGuXRuv38/PDz88u4YDbdU+OedI9XqlSJ3r1751j7V69e5dq1a/j7++dYGyrfm4t13X4FK9d7brrBGFPFU5WJyK+eqsuRMSYMa1YCWLMJ3VHP4fWPGZT9KcV5m9xsU6lCxad4YPJruXQxnZJKKU/JMIWOUqrw6tWrF7169fJ2N1Q2aPqcQkGw1pkZhTUC/0Q2tj9yue9KKTd58hr98MMPc8sttzBlyhROnz6dYfl169bRvXt3qlevTkBAAMHBwdxzzz1s3px6sGvKHPgvvPACxhi+//77VGXPnTtHQEAAnTp1ctq/fv167rnnHoKDg/H396dRo0Y5Mqo/Li6OPn36UK5cOYoVK0aNGjUYPXo0ly5dcio3fvx4jDH88MMPDBs2jMqVK+Pv789XX30FwOXLl3nttdeoX78+/v7+BAcH07FjR/bs2eNUT1JSElFRUTRq1IiSJUtSqlQpateuzaOPPsrVq1cBK/3PsWPH2Lx5s1Pqn7i4OI9/fpXjztt+HvRC2+8ARz20HcnBfo5xeL3EzToqO7z+PYOyvzm8vtHN9pQqFBzvO0zx4sn75YIG8JXKDW6NwFdKFQ65MWJO5azlB5Ynp8+5rdJtmj6nYMq51SGVUnmWJ6/R9lzw7dq1Y+LEiUybNi3d8nPnziU+Pp6+fftSuXJljh8/znvvvcfdd99NbGwsrVu3TvPcyMhIXn/9debNm8fUqVOdjn344Yf8888/REZGJu+bNWsWTz31FM2bN+ell16iePHifPHFFwwcOJDDhw/zxhtvuGznyJkjvLD+BWbcNwOwRsj//fffTmV8fHwICQkB4NixY9x2222cO3eOQYMGUatWLTZt2sSkSZPYvn07GzZswNfX+atTr169CAgIYPjw4RhjqFChAlevXuW+++5jx44d9OnTh6effppz587x7rvv0rJlS7Zs2UKzZs0AmDhxIi+//DIdO3bkqaeeokiRIhw9epSVK1dy+fJl/Pz8+OCDD3juuecIDQ3lpZdeSm67bNmy6f43UnnScaA2VrqW3Jbn7xWMMT2Ah2xvdwHL3ayqpMPrjFa0djzuMge+MeZsBnUEZaZTSuV3jvcdjgH8pIsawFcqN2gAXymVpm++sVJy3nrrrV7uiXLXkh+uD17qXr+7F3uicsAWrNH3SqlcMn7TeF7Z/Eqmyj7e9HFmdZzltO+JVU/w7reuF4tNaVz4OMZHjHfa13FRRz499Gny+8dqPsa7vTJXX0batm1Lu3btiI6OZujQoVStmvYD33fffZfiDl/eAZ566inq16/PpEmT0g3g16tXj2bNmrFw4UKmTJlCkSJFko/NmzePMmXK8MADDwBw4sQJhgwZQo8ePVi4cGFyuUGDBjF06FCmTZvGwIEDqV69ulMbc/bM4enVT5OQmICPsSYcr1u3LlXQu1y5cpw8eRKA0aNHc+rUKT777DPat2+f3M7IkSOZOnUqMTExPProo07nBwcHs379eqfA/n/+8x82bdrEmjVruPfee5363KBBA0aMGMGmTZsAWL58OXXr1mXlypVO9TourNu7d2/GjBlDuXLlcjQFkMoV67AC+C2AmFxu+xRwKcNSXmKMaQS8Z3t7CegjIu7e4zgu5JHROnyX0zhPKZWCY2zAx3EE/qU8+0+LUgWKBvCVUmn64YcfAA3g51enLp5i49GNye81/33BIiIR3u6DUsq7Tp065dH6pkyZwi233MLYsWOZN29emuUcg/cXLlzg8uXLFClShNtvvz05jUx6IiMjeeaZZ/jiiy+47777ADh69Cjbt29n8ODBFC1aFIClS5dy+fJlHn300VSj5zt27MiMGTNYv349TzzxhNOxasHVSEhMAODDHz4E4Pbbb2fChAlO5YoVKwZYqWxWrlxJWFhYcvDebtSoUUybNo3ly5enCuA/++yzqUblz58/nzp16nDLLbek6nO7du2IiYkhISGBgIAAgoKCOHz4MNu2baNVq1YZ/t5UvhcNPAH0McZME5HcTKXzuIiszLhY7jPGVANWA8WBJCBSRH5K75wMJDi8LppB2WJpnJdMRILTq8A2Ql9H4asCzzE24JxCJ6OJLkopT9Ac+EqpPCMiIgJ3F95UqS07sIxrcg2AFje24MYgTe2plFIqbWFhYfTs2ZMFCxa4zFFvd/jwYXr06EHp0qUpWbIkoaGhlC1bltWrV3PmzJkM2+nZsydFixZ1ekgwb948RIS+ffsm7ztwwFrDsm3btpQtW9Zpa9euHQB//vlnqvrb3NSGvo37Ou0rHVKatm3bOm32mQKnTp3iwoUL1K9fP1VdISEhVKhQgSNHUqf9vvnmm1PtO3DgAD/99FOq/pYtW5Y5c+Zw7dq15MD+a6+9hr+/P61bt6ZSpUr06tWLhQsXcuVKRoOGVX4kIoeAJ7EG0W00xjzg5S55nTGmAvAFUMm260kRWZrNas87vHaZFieN4xqFVCqTnAL4mkInWzQGojJLR+ArpdLVv39/+vfvT5UqVTh48CD+/qnTdlarVo1jx45x9erVVCPR8rPx48fzyitpp0qoWrVqnl5ELq30OcYYwsPDk6fwK6WUypzxEeNTpbXJilkdZ6VKq5MVq3quSn49d+5ct+tJz4QJE1i6dCkvvPACn3/+earjFy5c4M477+TixYs8++yzNGzYkJIlS+Lj48OkSZPYuHGji1qdlSlThvbt27NixQrOnz9PyZIl+eCDD6hbt67TrD97Bo158+ZRoUIFl3WlTJ9jN7XdVD499CnxCfEAHIo/lGG/siowMDDVPhGhYcOG6a4jYE/lc8cdd3D48GHWrl1LbGwssbGxLFy4kAkTJrBt27bk/PyqYDDGvGx7uQloC6w0xhwDtmHlx3c5AtyRiPxfjnUwlxljQrGC9zVtu54TkffSOSWzHBeurZxmKYvj6Jbf0iyllHLi45QDv+Cl0LEH1DUGklrVqlUZP348/fv3z1K99nu6zDysiI2NJSIiIkv1Fwb59v8yY0xl4BmgI1AFSASOYi1286aIZDz8J+tt+gDbgeb2fSKij8pUofDrr78SFRXFiy++mGNtzJs3j0t5MIdeeHi4ywtIcHC6M2q96uSFk2w+thkAg6Frva5e7pFSSqn84KabbmLgwIFMnz7d5YPeDRs28McffzBnzpxUX97GjBmT6XYiIyNZsWIFH330EbVr1+bw4cNOud8BatWqBUBoaCht27bN0ucoW7wsU9tNZcDKAYC1qO33f35Po3KNUpctW5aSJUsmpwdwdObMGU6cOEGTJk0y1W6tWrU4deoUbdq0wccn48nOJUqUoEuXLnTp0gWA6OhoBg8ezOzZsxk5ciSQuS+7Kl8Yz/W1awRrYdmqti2zCkQA3xgThLUmgH3ay1gRifJQ9T86vK6XQdk6aZynlEqHKeE4Ar/gTl7RGEhEqv3BwcE0adKEcePGOe2Pi4sjJiaGqlWr0q9fvwzrT3m+o2rVqmWxt4VDvgzgG2PuAxYBKaNnTWzbE8aYB0Vkt4ebHoxD8F6pwqJ06dIYY5g8eTKPPfYYoaGhOdJOlSpVcqTe7IqIiGD8+PHe7kaWLP1xKUmSBMCdVe+kYsmKXu6RUkqp/GLMmDG8//77PP/886mO2RedTbm+5Lp169i5c2em23jggQcIDQ1l3rx51K5dGx8fn1SLtD788MOMHj2acePGERERQUCA8xqT586dw9/fPzmXfUr9mvRj7t65bGELiLWI8I5HdyQvbGvn4+NDx44dWbhwIWvWrEnOyw/WgrJJSUl07tw5U5+rb9++jBw5kmnTpjFixIhUx//880/KlSsHwN9//53qnqpp06YAxMfHJ+8rUaKE03uVr6V8GpOVpzMFYuF6Y0wJYA0QZts1RUQmpHNKVsVhzWioBIRnUDbC9vMysMuDfVCqQHNOoZP3gs+eoDGQ9GMgKQc2bNq0iZiYGKpVq5ap2El+i6/kBfkuB75thfqlWMH7S8A4oBXWxfc/wDWsi/WnxhiPRayMMTcCE7FunDy7YphSeZT9yWlgYCBjx47l3Llz6U6nSmnu3Ll06dKF6tWrExAQQKlSpWjZsiXz5893WT5l/rfFixdjjOG5555zWf7y5cuULl2aChUqkJiY6HRs0aJF3HXXXQQHB+Pv70/dunWZMGECly9fznT/s2r37t106dKFG264gWLFilG1alUGDRrEiRMnUpXt168fxhiOHDnCm2++SaNGjQgICHB6yh0fH8+oUaOoW7du8mJ3d999N+vWrUtV35UrV5gxYwZNmzaldOnSDG091PoXcRE0vtgYsP572H+/mzdvxhiTvOkFNH8xxkw3xpTL4TbKG2Om52QbSin39evXL1MjnNwRGhrKyJEj+eabb1Ida9WqFeXLl2f48OG8/PLLzJo1i0GDBtGlSxcaNmyY6Tb8/Pzo2bMnW7ZsYeHChbRt25ZKlSo5lalcuTL//e9/2b17N3Xr1mXs2LG89957TJo0iUceeYQKFSq4vMbaGWN4p8M7ye93Ht/JrN2uUxi99tprlC1blk6dOjFs2DCio6Pp0aMHr7/+OnfeeSeRkZGZ+lxDhw7lnnvuYeTIkbRv356pU6cya9YsxowZwx133EGPHj2Sy9atW5eOHTsyYcIE5syZw8SJE+nevTtFixZ1Kte8eXP279/P2LFjWbhwIYsXL+ai5hzOj+7K5tYm97vsWcaYAGAV1wfFvSkiHh3aKtbTxeW2tzcbY1yuEG2Mqcr13+kXIlJwhxEr5QGO9x2+NWpQatSLBE18lRKPP+bdjuUQjYGoPEdE8tUGbMQKoicCd7o43tt2XIA5Hmx3la3Od7HyFgq2+4Ns1ns2KChIlMqrAKlUqZJcuXJFatSoIX5+fnLo0CGnMlWrVhVArl696rTf399fbrnlFomMjJQXX3xRHn/8calUqZIAMmbMmFRthYeH2/+uREQkISFBgoKC5IYbbkhVt4jIkiVLBJDhw4c77e/fv78AUrlyZRkwYIAMGzZMWrRoIYBERES4rMuVcePGCSDjxo3LsOyqVaukaNGi4ufnJz179pQXX3xR2rVrJ4BUrFhRjhw54lQ+MjJSAOnQoYMEBQXJI488Ii+88IKMHj1aRETi4uKkWrVqAkjr1q3l2Weflccff1wqVKggxhiZNWuWU309e/YUQBo0aCADnhogtERohFAaGThkoIiI7NmzJ/kzVa1aVcaNG5e8xcbGZup34mVevwbllQ1IAi4C04AKHq67IhCF9ZD8mrc/q5d/z3qNVgVabGysAPLGG2+kOnbx4kWpUKGCAPLAAw84Hdu7d6/ce++9EhwcLCVKlJDw8HDZsmVL8rXNkat9drt27bLfs8v8+fPT7Oe2bdukU6dOUrZsWfHz85MKFSpIRESETJ06VRISEjL8nIBQC2E8EjIlRP6++LfLckeOHJHevXsnt3PTTTfJqFGj5OLFi07l7NfSo0ePuqzn6tWrMn36dGnWrJkEBgZKYGCg1KxZUx555BFZu3ZtcrlJkyZJ69atpWzZslK0aFGpXLmydO3aVXbv3u1U359//ikPPfSQlC5dWowx6bbtRV7/N1s3l9exJKwBbv/KA30pCqx2+K7+HmDcqCfCoY65aZSpCVy1lfkWKJ7iuC/wuUM9qeIKWeiP3isoVcBoDCRzMRBH9nvK8PDwdMs5xFILmhy/jhqR/DMTzxhzC9ents0WEZeP+owxG7Cepl8DKorIX9lstzuwGGvkfR1gGbbpeJLNHPjGmLNBQUFBZ8+ezU41KpeZV/JPLlIZ5/7f+I4dO2jZsiWVKlXi999/Z+nSpXTr1o3OnTuzbNmy5HJpLeBy+PBhatSo4VTnlStXuP/++9myZQtxcXFOo+0iIiLYvHkzjv8uPfnkk8yaNYtVq1bRoUMHp7oeeOABVq9ezffff5886m/u3Ln079+fzp07s2DBAqfp9vYFWaKiohg6dGiGn99ePq38b/369aNatWpcuHCBqlWrcvbsWTZt2kTr1q2Ty0yZMoUXX3yRdu3aOY2c79evHzExMVSsWJFt27Zx0003OdUdERGRPCrRcRTe2bNniYiI4ODBg8TFxVGuXDnOnTtH6dKladq0KTt37mTG1zMYtm4YAG2rt2Vx+8WUKVMmuY58vIht/vnDy2HGmN1YU88F61q3AZgPLBeRLM9jNcYEAp2BPljXzyJYv+9vRaSZp/qd3+g1WuVlO3bsAKBFixZe7kne90/iP9R7ux5Hzx4FYFaHWTx+y+Ne7lWBo9foPMgY877t5XQR+c7LfVkKdLG9/RJ4CusBQ5pEZL+LeiKAWNvbGBHpl0Z7rwL2hTn2AZOBQ1gL1w7DmsUP8IGI9M3s53DRjt4rqEJhx44dzD48mzlH5mSq/ONNH2dWR+dZb0+seoJ3v303U+ePCx/H+IjxTvs6LurIp4c+zdI57jDGaAwkgxhISps2beKuu+7KMM5gn22QVg58f3//HF1zIAfl+H1QlnPgG2OO2F6uEpGM/+t71kMOr2enU24O1wMQ/8J6uu8WY0xpwJ5CYLiIxOtCUqqwOHTokNP7rl27cscdd7B8+XK2bdtGq1YuZ6QmS3nhAihatCiDBw9m48aNbNiwgb59079fjoyMZNasWcTExDhdvE6ePMnatWsJCwtzmrI/ffp0fH19mTNnTqpcuWPHjuWtt95iwYIFmbp42W3evJnNmzen2h8REUG1atX45JNPiI+Pp2fPnk7Be4Dhw4czc+ZMvvjiC3799ddUOe6ef/75VMH7vXv3snnzZrp27eoUvAdr0ZhXXnmFTp068fHHHzNo0CCMMYgIxYoVw8fHhyU/LEku371+d6fgvSowmgFPAi8D5YF7bFuCMeYb4GtgJ3AQiAfiReSyMcYfCLFttYHbgdts9dn/YAxwEmuxvczdYSulcp39Gq0B/Iz5+/oTdV8UozeMZsb9M2hzU77PRKJUZtlTyaSdayr3dHF4fQewNxPnZOeL98tAKNaDgobAAhdlPgH0aZ5SmXDo0CFOnz3t7W7kOo2BOLPHQLIrrbREQUFB+TWAn+PcWcT2Rqzc+d97uC+ZYf9LuQSkTsp5XazD61ZkI4APTAXKAbEi8kE26lGqQPj3v/9NixYtGDFiBF999VW6ZX/99VemTJnChg0b+PXXX0lISHA6fvz48Qzba9GiBTfffDOrVq3izJkzlC5dGoAFCxZw7do1p/y/ly5dYu/evYSGhhIVFeWyvmLFinHgwIEM23U0bty4dHPEf/vttwC0aZM6IODr68udd95JXFwce/bsSRXAv+2221Kd8+WXXwLW4nyu2j11ylqGw/45SpUqRceOHVm1ahX1Gtbjp7I/QVUocmMRHqr7UKrzVf4n1hCNmcaYGKwF1p/Buj4HAnfaNifGmGtYD7ZdsX9B/hUrfc5MEfnH0/1WSilv6XhzR9rXao+vjztff5TKt1ZgzdbrDKx0VcAYY48kbRSR33OrYznNdq800BizDGvQQ3OgLNbAhu+w0u1+5MUuKqXyCY2BeF5+ygaTV7hzB/snUAH4n4f7khn1bD9/FpHEtAqJyB/GmPNASYdzspuYUWsAACAASURBVMwYcxcwAGtV+qfcrUcVPNlJS5Pf3XHHHXTt2pWlS5eyZMkSunfv7rLckSNHuO222zhz5gytW7fmnnvuISgoiCJFihAXF0dMTEymF1OJjIzkpZdeYvHixQwcOBCAmJgY/Pz8eOSRR5LLnTlzBhHh1KlTWVpoJrvOnTsHQIUKFVwet+93NbW2fPnyqfadPm2NbPjiiy/44osv0mz3woXra20tWbKEKVOm8Pbst+EHa5/4CUPjhjJ16lTKlcvR9U6Vl4hIAjDVGPMfoANWCpz7sAL5KaV1zb8IrAE+AD4VkXSnsyulVH5kjMHXaPBe5S3GmBCgElCKtB+yJxORLTnQjblcD/LnWAA/u6lnHerZRBZG5ovIF0DaN9RKqUzrFNyJFc+uAODvPn1JOnsOuXSRGz5fjSlaNMPzZ3WclSqtTlas6rnK7XOzQ2MgKi9w5y72R6wAfjXPdiV9xphiWFPgIHM3Fr9hBe9vdLM9f8D+L8skETmUXvl06skoGV6QO/Uq5U2TJk3ik08+YdSoUXTu3NllmWnTpnH69Gnef/99pyfEYK2OHhMTk+n2+vTpw9ixY4mJiWHgwIHs2bOHffv28eCDDxIaGppcLijI+nMKCwtLHhWfG+ztnjx50uXxEydOOJVz5Coll73c9OnTGTJkSKb6EBAQwPjx4/m04qf8/dPfcAzqHq/L/PnziYuLY+vWrZmqR+VPInINaxr4J8aYokBLrPQ4DYCqWClzimE9kI4H4oD9WGl2dojIFS90WymlvOr85fMYYyhRtIS3u6IKEWNMKWAo1kP31LkW0ia49/1dKaU87srubxHbQLakCxcpEpJxAD8/0xiI8jYfN85ZiPXEu0dGBT2spMPrC2mWSl3G3TvycVir1x/CWvBGqULHz8/P5f6aNWsyaNAgjh49yptvvumyzC+//AJAly5dUh1zlUstPTfeeCNt2rRh586dHDx4MPnCFxkZ6VSuRIkS1K9fnx9++IH4+PgstZEdYWFhAC4Xa0lMTEwOnjdt2jRT9TVv3hwgy0H3X+J/YfeJ3RAERcOKsmXjFmrWrMm2bduSR/UD+Pj4cO3atSzVrfIPEbkiIrEiMllEeotIaxGpLyI1bT9bi0gfEZkiIps0eK9U/uTn55fmdVqlT0RY8P0Car9Vm/Gbxnu7O6oQMcbUwUrfMh7ru6bJ4qaUUl6R8r7Dp3jx5Ndy6aI3upSrNAaivM2dAP48YDsQZoyZ6uH+pMdxJYbMBBvs81IC0i3lgjGmETDC9nagiGRujosLIhKc3gacc7dupXJar1690jz28ssvExwczMSJE51SudjZFzZJGdReu3Yt772X9WUp7E+wZ8+ezaJFiwgNDU21IjvAsGHDuHLlCgMGDHCZsubMmTMefzLdqVMnQkJCWLRoUaqceFFRURw9epS2bdumyn+flmbNmtG6dWuWLVvGnDlzXJbZt28ff/31F2DlxN+3bx8f/vBh8vF7a9yL3zU/Lly4gK+vL0UdpjSWKVOG3377LasfUymlVB7Sq1evdK/TKm1rD6+l9/LenLhwguk7p3PgVNbywirlDtuM8lVYM9kNsIXrA8UEWIK1/tpHwN8O+5cCrwD/l4vdVUopJynvO4xjAP9iwQ/gg8ZAlHdleQqeiCQZY/4FzAeeM8a0BqKBrcDx7AS7M+C48kNm5uYUc3FehowxPliL3voCH4jIxqycr1RhERISwujRo3n++eddHh80aBDvv/8+3bp1o2vXrlSsWJH9+/ezZs0aHn74YZYsWZKl9jp37kypUqWIiori6tWrPPPMMy5HHg4YMIDdu3cTHR1NjRo1uPfee6lSpQrx8fEcPXqULVu20L9/f2bOnOnW53alRIkSzJkzh27duhEeHk63bt2oUqUKu3fvZt26dZQvX5533nknS3UuXLiQNm3a8OijjzJjxgxuv/12goOD+f333/n+++/Zv38/X375JTfccAPHjx8nLCwM/4r+UAYIgoQDCTR4sQEnT55kyJAhlCx5fRLT3XffzeLFi+nYsSNNmzbFz8+PO++8kzvvTLXuqVJKKVXg3FvjXlpXac3WX7eSmJTIkDVDWNd7ncu0dkp50ACslDkCPC8i/wYwxrxoO75IRFba9vkBg4BJWGvbzBGRNbnfZaWUcs0Uv77kllwoHAF8jYF4TnoL5Hbq1IkmTZrkXmfyiSwH8I0xjnkXDNAMmONwPKMqRETcyd133uF1ZtLi2MtkJt2Oo6HArVg5godn8VylCpSMpnkNGTKE6Oho4uLiUh1r1KgRsbGxjBkzhs8++4zExEQaN27MsmXLCA4OzvLFKzAwkG7dujF79mwg9dQxR2+//Tb3338/M2fOZP369Zw9e5aQkBCqVKnCyJEj6d27d5bazowHH3yQ7du389prr7F27VrOnTtH+fLleeqppxg7diwVK1bMUn2VK1dm9+7dvPnmm3z88cfJK86XL1+eevXq8cwzz9CwYUPAetI/+PnBvP3h21Zm80uwr+w+6tSuw+TJk+nRwznj2fTp0zHGsGHDBlavXk1SUhLjxo3TAL5SSuUj9mt0eHi4l3uS/xhjePP+N2k6qylJksT6I+tZuG8hvRrpjAaVo/5l+3nIHrxPi4hcBaYbY45grXEz3xjTRERybJFZpZRKT8r7Dp/i18NySYVkBD5oDMRT0ltwt1q1ahrAd8GISNZOMCYpm22KiBRx50RjzCmshWz3iki6/zWNMeeAUsA3InJbFtr4E7gB+BhruqIrLwN1ba972n5eEZFlmW3Hob2zQUFBQa6muSjlbXPnzgVItQCLynvGbhzLhK0TAOhWrxsfdvswgzPyJR0aqXKVXqNVXqbX6Owb+vlQZnw9A4DQwFAODD5AaGBoBmepNOg1OgPGmD+AcsCrIjLeYX8S1qj8LiKywsV5K4EHgMki8lIW27TX3dk+ut+dMipteq+gCouU9x2n+w/gn3VfABDy3iwC7r/fSz1TKk/I8fsgd0bCb8G6wHvDj8CdQC1jjK+IJLoqZIypiBW8t5+TFfbUO11sW0YW2X6eA7IcwFdKqewSERbtX5T8vmeDnumUVkoppRTAhDYTWP7Tcn7732/8felvRqwbwdxOc73dLVVwhdh+Hkux/xrW2nSBuPYZ0MG2ZSmAr5RSOcU5B/4lL/ZEqcLBnRz4ETnQj8zahhXAD8RKc/NlGuUiUpyjlFIF1q4/dnH4zGEAShUrxf21dPSDUkoplZGSxUoS/UA0HRd1BCBmbwy9G/WmbfW2Xu6ZKqCuAX7A/1LsPw8EARXSOM8+tPvGbLQ9wRjzrAfKgDWj/u5s9EUpVQAYxxQ6LhZ0VUp5ljsj8L1pGTDa9vpR0g7gD7D9vAZkaRqgiARnVMYYswkIt5XX6aJKKa9yHH3fuU5n/H39vdgbpZRSKv/ocHMHHq7/MB/+YKWee/LTJ9k3cB+BfmkNhlbKbSeBakDpFPt/BRoCaaWIrW77GZCNtuunc0wyUcbO4L3Z+EqpPMTHcRHbSzoCX6mc5uPtDmSFiOwGNtne9jPGtE5ZxhjTC7CPCJgnIn+lOF7NGCO2bVPK85VS1wUGBhIYqF9g87IkSWLJD9cXw9H0OUopVTjoNdpzpt83nWB/awzPkTNHeGVT2gurKZUN+20/a6fY/w1WYLyjMSbE8YAxpijWwDWA39xs13hwU0oVUinvO5xS6OgIfKVyXH4bgQ8wFNgBFAfWGGMmAxuwPsuDtuNgjXAY45UeKlVAPPzww97ugsrA1mNb+eP8HwCUDSzL3dV1RrNSShUGeo32nPIlyjO13VQeW/UYoYGhNC7f2NtdUgXTVqAjkHIQ2mKsIH1JYL0xZjRwBKgBvIw1Al+Az91o8y63e6uUUg5S3ncEtL8f35o18SlRAt8a1dM4SynlKdkO4BtjagCdgdux8vaVxMrj9wfwNbBcRA5ntx07EfneGNMVa/HYYOD/bJuj48CDIvKHp9pVSqm8yDF9Trd63fD1yY/PZZVSSinvGhA2gL8u/sXjtzxOaGCot7ujCqZVwOtAM2NMVRE5BiAiG4wxXwDtgMZYi9amdMZ2bpaIyOZs9FcppdLkV7cufnXrersbShUabkd6jDFlgGigC2lPp+sCTDbGLAUGi8hpd9tzJCJrjDENgSFAB6AKVr77o8ByYIaInPFEW0oVZuvXrwegbVtdzC0vunrtKkt/XJr8vkeDHl7sjVJKqdyk12jPMsYwqvUob3dDFWAictAY0w8rl33K/FfdgI+5ngrW0XGgq4gcz9keKqVU2vS+QynvciuAb4ypijUFsBIZ58IzWDckdxhjWomIu7n7nIjI78Dzti0r58WRzfx9IhKRnfOVyi9+//13b3dBpWP9kfWcTrCei1YuVZmWVVp6uUfK24wxR2wvV4nI0HQLK6XyNb1GK5X/iMi8NPb/D2hnW+OtLVAOuISVH3+5iPyTe71USqnU9L5DKe/KcgDfGOMDrAQq23adwBqJvw44BFwASgC1gHuBgUBF4EZglTEmTER05XqllMomx/Q5Per3wMfkq3XJVc64EWuB+u+93RGllMrvvj7+Nbv+2MWgWwd5uyuqkBCRrVgD5ZRSSimlkrkT7ekDNMRaSOdToI6ITBSRb0TknIhcs/3cJSITgTpY+f6wndfbIz1XSqlCLOFqAst/Wp78vmfDnl7sjcpD/rT9/J9Xe6GUUvnYpauX6LO8D7e/dztD1wzl4N8Hvd0lpbLMGFOhILWjlMpbrh48yMmWrTjRpCmnHuri7e4oVeC5E8C3/2UeBbqJyPn0CovIBeBhwD6t/+F0iiullMqEz37+jAtXLgBQK6QWYeXDvNwjlUf8aPtZzZudUEqp/CzAN4BjZ48BkJiUyMgvRnq5R6ogMMa0M8YE5GKTh40x/zHGlM+Jyo0x5Y0xM4BfcqJ+pVQeV6QI1+KOkXTqFEmn/vZ2b5Qq8NwJ4DfFGn3/vohczswJtnJzsHLPa5RJqXyiVKlSlCpVytvdUC4s3r84+XXPBj0xJltLe6iCYyHWtVZXNFaqgNNrdM4xxvCfe/+DsS2bterQKtYfWe/lXqkCYC1wxhiz1RjzqjGmjTGmWA625w8MwQrkv2WMud0TlRpjmhtj/gscBgbb2lFKFXAp7zt8Aosnv066dNEbXVKqUDFZTUdvjPkH8AN6iMhHWTivG7AEuCwiuTnyIE8zxpwNCgoKOnv2rLe7opTKJ/53+X/c8MYNXL5mPUM9MPgAdULreLlXuUKfUmTAtk7NZqAlME1ERni5S/maXqOVKtz6f9Kfud/NBaDBDQ3Y8+QefH2yvIRYYaHX6AwYY5JsLx2/gF8BvgZibduXInLFQ+11Av4DVHVo8zDWw/5YYJeIZBh1M8aUAJoBEcAjQA37IaxZ+cNE5BNP9Dk/0nsFVVglnTvHiXoNADAlS1Lxpx8zOEOpAi3H74PcuQO9CATbtqywl7/kRptKKaVsVh1clRy8b1yucWEJ3qtMEJEkY8y/gPnAc8aY1lgLzW8Fjmd25pxSSimY2GYiH/3wERevXmT/X/uZ/e1snmz2pLe7pfKvZ4C7gHCgjG1fMaCVbRsLXDbGfMX1gP5OEbnqTmMissIY8znWKPkXgLJATVs7Y4EkY8wB4CAQb9vOA6WAENtWG2tNO/vMfXuA4i9gMvBfvbdQqnAyxa+PwJeLFxERnRWuVA5yJ4AfBzQB2gPvZuG89g7nK6XygTVr1gBw3333ebknytFHP16f/PRwfV1WRF1njLnm+BZrxNwch+MZVSEiosNLlcoH9Bqd8yqWrMioVqMYEzsGgLGxY+nRoAdB/kFe7pnKj0TkbeBtAGNMQ6xgfgRWQL+0rZi/7X04MB5IMMZ8iRXM3yQiO7LY5mVgmjEmGogEngIa2w4XAerbtvQ43jx8hzUw4AMN3CtVuKS87zC+vuBfDP65DElJyD//YAI02YZSOcWdHPjrsC7i/zLGZGqpaWPMQ8CDWFP31rrRplLKC06ePMnJkye93Q3l4H+X/8eaX9Ykv+9Wr5sXe6PyIOOwpXyf2U0plQ/oNTp3DLtjGFWCqgBw6tIpJmyZ4OUeqYJARPaJyAwReQgIxVonbhiwEjjH9WtyINAGeBXYko32/hGRd0QkDGgEvIw1Oy+B9O8JLtnaHQs0FJGmIvKeBu+VKnxc3Xc45sGXCxdyu0tKFSrujLJ7G2sxHH9gkTFmKlae3VTLThtjygDPAs/bdv1jO18ppZQbHNPnNCnfhFplanm5RyqP2YJzbl2llFLZEOAXwJS2U+j5cU8AonZG0a9JP+rfkNGgZaUyR6xF6fbatihjTZcLAwZijZovggcfsIvIfmA/MMG2dk51rDz5IVgpfS5jpdOJA46KSFIaVSmlCjlTogTExwNWGh3KlvVyj5QquLIcwBeR340xw4D/Yt1MvAAMN8bsBQ5h5cgvDtTCSrXji3XDIcBzInLcQ31XSqlCxzF9jo6+VymJSIS3+6CUUgVN9/rdefubt9n26zYSkxJ5du2zfNHnC293SxUwxpgaWGl17Kl1ytsP5VSbtuD8L7ZNKaWyxBQPTH4tF3W5S6Vyklt5bkXkHVse3WlAAOAH3GLbHNlvNhKwgvez3OynUkoVepo+RymllMp9xhj++8B/CXsnjIhqEUS3j/Z2l1QBYIypwvWA/V1AZfshh2LnsGbX2Re1VUqpPMOneInk10kXNYWOUjnJ7YXqbEH8NcBQoDPWtLuUjgEfA2+KyDF321JKeUeZMmW83QXlQNPnKKWUstNrdO5qcEMDdj2+i0blGmVmQXClUjHGVMQ5YF/N8bDt53lgG9cD9ns0hY1SKi9wdd/hPAL/Ym52R6lCx1gp9zxQkTFlgQpASawbjxMicsojlRdgxpizQUFBQWfPnvV2V5RSeVynxZ345OAnAExsM5HRrUd7uUe5TiMmKlfpNVoppTJNr9EZMMYkcX2dGvvv6yKwnesB+90ics0L3VNu0nsFVZhd/ekn5J9/MMWLU6RSJXwCAzM+SamCKcfvg7I8At8YM8f28jsRmWHfbwvWa8BeKaVygKbPUe6w5dPtDNyO80P2P4CvgeUicth7PVRKqfztWtI1ivgU8XY3VP6zA3gV2CAiid7ujFJKucOvTh1vd0GpQsOdFDr9sEYO7PVsV5RSec2qVasA6Nixo5d7ojR9jsoKY0wZIBroQtqjAboAk40xS4HBInI6t/qnlMo+vUZ71+XEy7yx4w2W/7ScLx/9kqJFinq7Syp/MFjfpe8AVgK7jDGxwCZgu4gkeLFvSimVJr3vUMq73AngnwZCgOMe7otSKo85fVrjeXnFRz9+lPxaR9+r9BhjqgJbgUpkPJXPAN2AO4wxrUTkt5zun1LKM/Qa7T0iwp1z7+Tr418D8Mb2N3jpzpe83CuVD3Tmev77BoAfViC/OTAKuGqM+Rorlc5G4EsRueKlviqllBO971DKu3zcOOeo7WeoJzuilFLKNU2fozLLGOODNaKvMlZw/gQwFiuFTmmsYEFp4Dbb/j9s5W4EVhldmVGp/2fvvsOkKNIHjn/fTcASluxKEJacVMyYEPFMyGEOKAqnZ0C9k1POOwUFPdQfYs7hTgwYTgTkREEUBEQPUQ+VpGTJEpe0sPH9/dG9s8OyYeL2zOz7eZ56uqe7uuudZZiqqe6uMqZSIsLV3a72vR715ShW7FjhYUQmHqjqZFUdoqpHA01xLqC/ACzFqYvTgNOA4Tgd+NkiMkNEhovIqSISys13xhgTdYU7dlKwanXlGY0xIQulA38STgOjT4RjMcYYUwb/4XOOPuxoGz7HVORa4Eicx/OnAJ1U9SFV/VZVd6lqobv8TlUfAjoBH7nHHgkM8CZsY4yJL7edeBvHHn4sAAcKDnDLlFtQ1UqOMsahqttVdYKq3q6q3YBM4CrgZWA5zu/tmkAv4AFgDrDTo3CNMaZM+b/8wsauR7L5yKPYftNNXodjTEILpQP/RWA9cIGIXBLheIwxxpTiP3zOFV2v8DASEwcudZergctVdU9FmVV1L3AFsMrdZB8wY4wJQEpSCi/3fZkkcX5OzVg9gzd+fMPjqEy8UtUtqvq+qg5W1U5AW+BfQKGbRYB0zwI0xpgyJDdtimZnA1C4eg1aVORxRMYkrqA78FU1G7gQZwz890RkjDverjEmwWRmZpKZmel1GNWaDZ9jgnQszt33Y1U1N5AD3Hyv4XQOHBPF2IwxEWR1tPeOb3Y8Q04a4nt956d38tve3zyMyMQrEUlxh8kZLiIzgMXA9UCyx6EZYwxQdrsjqUEDkho2BEAPHKBw02YvQjOmWgh6HD0RmemuZuOMsXsncKeIbMDp1N9fySlUVc8KtlxjTNU777zzvA6h2rPhc0yQiuenWRbkccvdZaMIxmKMiSKro2PDg2c+yMSfJ7Imew07D+xkyKdDePfSd70Oy8Q4d86a4ymZ1PZUDr7D3n9Omt3AXJzJbY0xxhPltTtSsrLI27EDgIJVq0hp3qwqwzKm2ghlIpxeOHf34bcUoLmbKiJ+xxhjjKnE+0ve963b8DkmAPuA+m4KRnH+nMiGY4wxia12Wm1e7vsy5447F4D3Fr3HNUdeQ98OfT2OzMQaETmWkg7704E6/rv91vdS0mE/C/heVSM2LoWI3Ay87Q6jZ4wxYUlpk0Xe998DTgc+p5/mcUTGJKZQxsAHp4Hhn8raVlYyxsSRiRMnMnHiRK/DqLayD2Tb8DkmWGvcZbATzRfnX1NRJmNM7LA6Onac0/Ycrj3qWt/rwR8PZk9uhVOQmOrpO+BR4HygLiW/kXOA6cA9wMlAA1Xto6pj3EnoIz2o9IvAJhF5VUROivC5jTEJqrx2R0qbNr71gtWrqzIkY6qVoO/AV9VQO/2NMXFm9+7dXodQrU3+eTJ5hXkAHJN5jA2fYwIxHWcc+34icqmqTqjsAHdC+gtxnpD7NMrxGWMixOro2PLEuU8wdcVUtuVso16Nemzau4m6Nep6HZaJPcUd9l9Tcof9t6paUMVxpOOMsX+9iCwCXgHGqequKo7DGBMnymt3pGRl+dYLVlkHvjHRYp3xxhgTo/69+N++9Su7XulhJCaOPE/JXDTvisjDItK4rIwi0khE/gEUD9Z8wD3eGGNMkBqnN+a585/jwV4PsuDmBXRo1MHrkEzsuQ9n6JwGqnqOqj6iqv/1oPN+KPAzJU8AdAOeATaKyBsicnoVx2OMiWMH3YG/apWHkRiT2EKZxPY1d/UHVX0mwvEYY4wBtuds57NVn/le2/j3JhCqul5E7sR5PD4Z+Btwl4j8iDOx7T6gNtAe6I7TDiien+YvqrrBk8CNMSYBXNnNLrab8qnqQ17HAKCqTwBPiMipwE3ApTh35NcCBgADRGQZzl35b6rqds+CNcbEvOSs1r71wnXr0Px8JDXVs3iMSVSh3IE/CBiIjWlvjDFRM+nnSRQUOTdkndj8RLIaZFVyhDEOVX0ZGIxzR70AqcBxQH/gj+7yeHe74NyxP1hVX4lUDCLSQkRGi8gSEdkrItkiskBE7heRBpEqxy2rvYg8IiI/iMh2ETkgImtFZI6IPCgi3SJZnjHGGBMKEekc5vF/jVQsAKr6laoOBJoBtwMLKLkrvwPwGLBeRN4VkbMiWbYxJnEkpaeTlJnpvCgooHDdem8DMiZBhdKBX3wF3u7SMybBtWjRghYtWngdRrVkw+eYcLid+F2Ap4BfKXti+V+BJ4AuEe68Pw9YCNwNdMa54z8D547/B4CFInJcBMoREbkfWAT8HTgaaAjUAFriDFNwH85FC2MSjtXRsU9VefPHN1m2fZnXoZjY8KmINA/lQBG5G/i/CMcDgKruVtUXVPU4nAv8rwB7cNoKNYArgOkislxE/iYih0UjDmNMbKuo3ZHSpg0kJ5PcujVFu7KrODJjqgdR1eAOEJmPcyffbar6UlSiqkZEJDsjIyMjO9u+5Iwxji37tnD444dTpEUArB2ylpYZLT2OKibYk18hEpEmwOFAXZwf5ZtUdWsUyjkKZ2K+2jiT9I0GZuAM1XMh8GecoX02A8ep6sYwynoB50kDgB+BsTh3D+4GGuNM5nsxME9V7wyxDKujjTEhWb1zNTdNuYnPV31Or9a9mHndTEQSuhpL6DcXCSJSBCwFTlfVHUEcNxR4FFBVTY5WfKXKTAeuBG4EevjtUqAAmAK8rKrTqyKeWGZtBWOgcPt2kurVs6FzTHUW9XZQKHfgT8IJrE+EYzHGGANMXDrR13l/astTrfPeBExEXnPTn/23q+pWVf3JfVz+p2h03ruewum8LwTOV9UH3TJnu53og9x8mcCoUAsRkYGUdN6PAY5V1adVdY6q/qCqn6vqGFU9BefufGOMqVK7cnfxxeovAJi1ZhZjfxjrcUQmBhQCnYCP3Q7ySrmd96PdlyFf9A6Wquao6ljgPOCF4s3uMhW4CJgqIktF5KqqissYE5uSGzWyzntjoiyUDvwXgfXABSJySYTjMcbEkPfff5/333/f6zCqHRs+x4RhEB7NU+MOi3Om+/J1VZ1TOo+qjgNmui+vE5GmIZRTB2foH4Bpqnq3qnvFqwyqmhdsGcbEA6ujY1v3zO7cdfJdvtdDpw/lt72/eRiRiQGDcernE4EJIpJSUWYRuQun815wOu97Rz3CkrJPEZHXcIbNHYzTeS84FyEWUjIcX0fgbRGZICLWe2dMArN2hzHeCroDX1WzcR6D3wC8JyJjRKRVxCMzxnguJyeHnJwcr8OoVjbt2cTsNbMBEITLulzmcUQmzng5T43/Rf1/VZDvNXeZDPQLoZyrcca6B/hHCMcbkxCsjo59I3qNoE2DNgDsPLCTIZ8O8Tgi4yVV/ScwHKfj+xzgjfLyup33j+LXea+qy6MZn4g0FJEhIrII+BLnhoDabgzrgRFAK1U9GmeS2yeBve7+i4A/RTM+Y4y3rN1hjLeC7sAXkZnA40A2zpi2dwKrRGStiPxXyNYHjwAAIABJREFURGZWkmZE+D0YY0zC+GDJB6j7hPIZrc/g8LqHexyRiTOr3WVjD8o+zV3mAN9WkO+LMo4JRvFjKdtV9evijSLSWETaiUj9EM5pjDERl56azksXlEwZ9t6i9/hk+SceRmS8pqoPA8/idHpfJSJPl84jIndS0nm/CafzPmozIYtIbxF5F+fi/+M4E9ALzl33n+BcbM9S1X+o6ib3faxQ1btwhgRa5uYfFK0YjTGxr2DVavZ/9jl7X3kVPXDA63CMSTgVPrZXjl6UjH9XvBSguZsqUtwQMMYYUwYbPseEaRJwPM48NVU90XwXd7lcVQvKy6SqG0VkD86Eul3Ky1cWEUkCTnBf/iTOjJC3AkOAdn75lgKvAC/YEDrGGC+d3fZsrj3qWt766S0ABn88mEWDF1G3Rl2PIzNeUdU73MnlrwJuF5FtqvoP8HXejyHKnfcikgn8AbgByCre7C434zxJ96qqrq3kvWwUkSdw2hxtIx2nMSZ+bBswgMJfna+MGj1PJ7VTJ48jMiaxhDIGPpSMeVecytpWVjLGGFOOdbvW8dW6rwBIlmQu7XypxxGZOOTJPDUiUoOSu/7XB3DIOncZ7AzNLXE6/gF2AB8Az+HXee/qjPNo/+cikhFkGcYYE1GPn/M4jWo1AmDtrrUMmznM44hMDLgO+AznN/JIEbnJ7bx/zN22GThLVX+JdMEi8iGwFmcy+SxKfqd/DlwGtFTV+yrrvPdTnK9mRAM1xsSVlDZtfOsFq1ZXkNMYE4pQxsBPCjMlR+ONGGMiLysri6ysrMozmogYv2S8b713Vm+a1G7iYTQmHnk4T43/raR7A8hfnKdOkOU09Fu/AGfc/dU4HQ4ZOGP1nkXJED6nA/8s72Qikl1Rcs9pTEyyOjp+NKndhKfOe8r3+rn5z/HV2q88jMh4zX1S7WKc+kqAF3DuvAen8763qv4cpeL74TyJLzhz54wB2qvqOao6UVULgzxfDk4n/q+RDdMYE0sqa3cc1IG/2jrwjYm0UIbQMcZUE2eccYbXIVQrNnyOCZc7Tw0489S0wJmn5k4R2YDTqb+/klOoqp4VQtG1/NYDGbImt4zjAlHbb70msBU4tXhMXtdMEekFzAOOBC4TkRNUtaJx+Y2JO1ZHx5drjryGdxa+w9QVU1GU+764j5kDZ1Z+oElYqpojIhcAc3EmhQXYgnPnfbQ674vNwRn2ZoKq5odzIlWdA7SORFDGmNhVWbsjxa9zv2DVqmiHY0y1Yx34xhgTA9bvXs/8DfMBSElK4eLOF3sckYlTvfBmnhr/CwNpAeSvUcZxgSg9I9ajpTrvAV+nyDDgP+6mqyhjYl1VrXDCW7sL3xgTKSLCS31fotsL3bii6xWMOXtM5QeZuCQiRwR5yI049VUyzkSw+8o7RxDD2lSkSxVcIDDGVDMpbawD35hosg58Y0y53n77bQCuueYajyNJfFOXT/Wtn9HqDBrWalhBbmMqVNacM9Geh2aP33ogw+IU5wlkuJ3yygGYWmYux+dAAU5b54QK8hkTl6yOjj9HZBzBL7f/wuF1D/c6FBNdawj9gvjHFexTIvD73TrvjTGhqKzdcfAQOmuqIiRjqpUKGwAiUs9d3RfCWHilz3UYcBKAqv6nkuzGmBiQnx/WE7UmCFNXlPRDXtD+Ag8jMfFMVUOdnD7ccnNFZBvORLYtAjikOM+6CnMdaj1OB0bxBYlyj1fV/W5MmYBNKGESjtXR8ck676uNaF84N8aYKlVZuyO5WTNIS4O8PIq2bqVo926S6tWr8BhjTOAqu4KfDRThTBJXZqe7iLzmrj6jqj9UcK4ewCT3fHbnvzHGuPIK8/hs1We+133a9/EwGmNCtgToCbQXkRR3gr5DiEgzoJ7fMQFT1X0isgYofkY3uZJDiveHdROCMcZE07pd62iZ0dLrMEzkvOF1ABVxJ7cvnoDhz6pa0V3/xcf0AZ7DqU9PV9XNUQzRGBOHJDmZlNatKVi2DHAmsk07+miPozImcQTSkV7Z3QODcO6G+xCoqAM/0PMZY0y1MnftXPbmOSOJZNXPokOjDpUcYUzZ/C6q/6Cqz1Rx8XNxOvDTcYas+W85+XqVOiZYcyjpwG8LfFdWJhHJwHkiAJwJfI0xJqbs3L+TodOH8s6id/jh5h/o2Lij1yGZCFDVP3gdQyWuxqlHtwLTAjzmU5yJ55sCA4DHohOaMSaepbTJKunAX7XKOvCNiSBPHrU3xhhTwn/8+z7t+yBi1zlNyAYBA/HmYvlEv/UbKsh3vbsspJyn+yox3m/90gryXUzJ32FOCOUYY0xUXTvpWl774TUOFBxg8MeDUQ112HRjgtIb5wa8KYEOk+vm+winXv1dFGMzxsSxlCy/iWxtHHxjIso68I0x5erQoQMdOtjd4NH2yYpPfOs2fI4J03Z3WeV3nKvq98As9+UgETm9dB4RuQY4y335pqpuKbW/tYiom2aVPt41FfjRXb9DRI4po5zmwEPuy1xgbDDvxZh4YHV0/BvVexTJ4oz09cWaL5iwdILHEZlqoqu7LPMJtgr8r9TxQROR+iJytogME5HJIrIxgHo/2DJ6+Z2zsvR6JMo0pjoIpN2R2rULqcceS61LLyW1S+cqisyY6sHGojfGlOuUU07xOoSEtyZ7DUu2OsOA10iuQa/WvbwNyMS71UBDSoaOqWp3AF8DtYFpIvJ/wAyc9saF7n6AzcDwUApQ1SIRGQx8gfM4/2wReQz4HCgATgL+DjRzDxmmqhtDezvGxC6ro+Nf98zu3HbCbTwz3xnx7K7pd9GnfR/SU9M9jswkuEbuckuFuQ61zV2G08ZYALQO43hjjEcCaXekX3wx6RdfXAXRGFP92B34xhjjIf/hc87MOtN+tJtwTcJ5vN2TRzlU9SfgMiAbZyz8B4GvgNnAnTiTym4A+obTqa6q/wWuAHYBdYEH3HK+AZ7B6bxXYKSqPh5qOcYYE20je42kcbrTH7p211pGzx3tcUQmWkSkiYjMEJGZInJ2gMec7eb/TETqRyiUA+6ydpDHFTdSw5kY3n+Iv9+AKWGcKxDXA0dWkIZFuXxjjDEmIqwD3xhTrtdff53XX3/d6zAS2tQVfuPft7Phc0zYXgTWAxeIyCVeBKCq03B+FI8BlgL7gN04w96MBI50h9sJt5z/4DzGPxpYDOwB9gMrgX8C3VX1gXDLMSZWWR2dGBrUasAjZz3iez36q9Gs3rnaw4hMFF0NnAkcC3wZ4DFfAt1xxq3vH6E4fnOXwc4uWZx/axhlP4dzof8IVc1U1d+Hca5ArFbVRRUkm+TemABZu8MYb1kHvjHGeORAwQFmrJ7he31++/M9jMYkAlXNxhmqZgPwnoiMEZFWHsSxXlXvVtUuqlpHVTNUtbuqPqCqOys4bo2qipt6BVDOBlX9u6p2U9V6qpququ1U9Ub3aQBjjIl5f+j+B447/DgAcgtzuWv6XR5HZKLkbJynwz5W1QOVZQZw803BuXP93AjFMc8935UiUjOQA0SkFnAVTvzzQy1YVR9T1Qmqui7UcxhjjDHVkY2Bb4wxHpnz6xxy8nMAaN+wPe0atvM4IhPvRGSmu5oNtMAZtuZOEdmA06m/v5JTqKqeVUkeY4wxEZSclMyz5z/LKa854wtP+nkSn638jLPbBjTKiokfR7nLb4I87ltggN/x4Zrgnu9w4GVgYADHvOzmV+CDCMVhjElAufPmkTt7DgWrVlPr0kuodY7VZcZEgnXgG2OMR/zHv+/T3obPMRHRC+fHNX5LAZq7qSLid4wxxpgqdHLLk7nu6Ot488c3Abhj2h38eMuPpCanehyZiaCm7jLYOWA2u8vMSAShqpNFZAHO0DwD3Cf1hqvq3NJ5ReR0YBRwGk4bYaGqjo9EHMaYxJT75Vz2PPMsAMmtW1kHvjEREmgHfjcRyQ4zT7cAyzLGmGrhkxWf+NatA99EkAS4zRhjTAwZ/bvRTFo6iT15e8isk8mO/Ts4rM5hXodlIqcASAVqBHlcmruMZF1+Bc5QOPWB04HZ7m/5X4C9QB2go7u/uOztwKURjKEqPCQizXGeHsgB1gFzgJdVdaGnkRmToFLatPGtF6yyOV2MiZRAO/D/UcE+DSCPMSYOde3a1esQEtaKHStYtn0ZAOmp6fRs1dPjiEwiUFWb28aYasLq6MSTWSeTp857irppdbmsy2WI2LXXBLMVOALoHORxxfm3RSoQVV0pIifjDIdTfKNdA+Akv2z+H8CfgMtVdWWkYqgip/itp+FckDgSuE1EngGGqmq+J5EZE2cCbXekZGX51gtWWwe+MZESaAe+tR6NqYZOOOEEr0NIWP7D5/TO6k3NlIDmEDPGGGMAq6MT1fXHXO91CCZ6vgVaAVeIyP2qWlTZASKSDFyJc9PcgkgGo6rLRKQ7zuS0V+MMk1PPL8suYC4wDhgfSLwxZDMwESf+VUA+0AxnIuDrgXTgz0AGMKiiEwUwEkFGmLEaExcCbXekZLX2rReuXo0WFSFJdo+RMeGqrAN/DjYerjHVVn6+c0NKaqqNvxppU1f4jX/fzobPMcYYExyro6uPvMI81u5aa5Pdx7+PgMuAtjjjyt8bwDGj3PwKTI50QG6n/DtuQkTq4HTi71bVvZEur4p8CxxRxp31/wOmiMhzwOdAC2CgiIxX1Y+rOkhj4k2g7Y6kBg1IatiQoh070AMHKNy0mZTmzaoiRGMSWoUd+Kraq4riMMbEoLfffhuAQYMGeRtIgsnJz+GLNV/4Xp/f/nwPozHGGBOPrI6uHnILcrls/GV8s/4bZg2aRZcmXbwOyYTuHWAEkAX8TURaAvep6prSGd2JZR8C+uN03v8KvBHtAN1O+3jtuAdAVfdVsv8XERkAzHI3/RkotwNfVeuXtw98d+jbXfgm4QXT7kjJyiJvxw4AClatsg58YyLAnmMxxpgqNmvNLA4UHACgc+POtK7f2tuATFwSkXpuSo7AuQ4TkX4i0i8SsRljjImMgR8OZMqyKWzN2UrvN3rz87afvQ7JhEhVC3GGqzngbroaWC4iC0TkHRF5xV0uAFbgdN6Lm/9KVS3wJPAEpKqzgaXuy54iYv0ixkRQShu/cfBXrfIwEmMSh1VUxhhTxSYtneRbP7+d3X1vQpYN7AAuKC+DiLzmpu6VnKsH8CHOeLHGGGNixJAeQ6iTVgeA3/b9Ru83erNqp3WGxCtV/Q5nHPbNOJ3zycBROOPc3+Auj3K3C7AROEdVv/Uk4MS22F3WBBp5GYgxiSalXcmQb/kLF3oYiTGJI9BJbI0xxkRAXmEeE5ZO8L2+tMulHkZjEkBlk8wPwnn0/kPghwiczxhjTBXq0aIHU6+ZynnjzmNf/j427d1E/wn9+er6r0hJsp9y8UhV54pIZ+B2nLvwS4+LpDidy+OAF1V1d7RiEZHjcS4odAEa4HRmV0ZV9axoxVSFbK4/Y6Ik7cSSCW9zv/7aw0iMSRzW6jPGmCo0feV0dh7YCUCrjFac3OJkjyMyxhhjTCw77YjTmHL1FM556xzyi/KZv2E+o+eOZljPYV6HZkLkdso/DDwsIg2A5riTxwIbVHVnNMsXkSOAN4HTgz2UxOn47uouc4HtXgZiTKJJ694dqVUL3b+fwl/XUrBhAynNm3sdljFxzTrwjTHl6t69slE3TLDeXfSub/2qblchYjc8G2OMCZ7V0dVLr9a9eKDXA9w7814ARs4eSZ/2fTjm8GM8jsyEy+2sj2qHvT8RqQ/MBo6gmj55JyKnU/Lkw1xVLfIyHmPiQTDtDklLo85tt5JUvz41Tu5BcjObxNaYcFkHvjGmXNY5EFk5+TlM/nmy7/VV3a7yMBpjjDHxzOro6uevp/6V/yz7D/PWz6OgqIDrPryOb2/8lpopgYx6YozP3UArnDvpV+M8CTAT587/PC8Dq4yItMaJGWC2qvYqtb8B0F1Vv6jgHB2Bt/02PR/ZKI1JTMG2O+r9ZUiUIjGmeorbDnwRaQH8Cfg9zt0DBTiV+STg2XAeOxSR5jhjAZ4AHANkAo2BVJzH637CGU/4TVXNCeNtGBPTcnKcj3d6errHkSSGj375iH35+wDo1LgTRx92tMcRGWOMiVdWR1c/KUkpvHnRm3R/uTs5+Tks2rKI+7+4n0fPftTr0Ex86ecu1wInqOqOqipYRLoD5fUCZorIoFLbpqnq5iCKyABmisginN/r3+NMBJyPM0zRucD1QPEX53uqOimI8xtTbVm7wxhvxWUHvoicB7wL1C+1q7hBcJOIXKiq34dYRH9gTDn7DnfTucDfReTSMMoxJqa9//77AAwaNMjbQBLEe4vf863379bfhs8xxhgTMqujq6f2jdrz6O8e5faptwPwzsJ3uK/nfdStUdfjyEywRCQZOApogTP+fXJlx6jqmxEoujXO3fcvVmXnvesiYEQ5+zoCY0ttOxMIpgO/WDc3lUeB54ChIZzbmGrJ2h3GeCvuOvBF5CjgA6A2kAOMBmbgvJcLgT/jXF2fIiLHqerGEIpRYCkwB/gB2IDTcKiF87jhNTgd+K2Az0SkW4jlGGOqiewD2Xyy/BPfaxs+xxhjjDGhGHzCYCb/MpmGtRryfJ/nrfM+zrgTyI4ArsT5fRkoxZl4Nlx5brmrInCuWLMRuBzogfM0fQucJ+lr4UwQvAKYC/xLVZd6FaQx1YmqUvjrr2hhEalt23gdjjFxK+468IGncDrvC4HzVXWO377ZIvI/4C2cYW9G4TwiF6ynVfXxCva/JSJDgCeBBjhX7u8MoRxjTDUxaekk8gqdYUWPPfxYOjTq4HFExhhjjIlHSZLE5KsmUys1mL5fEwtE5FTgI5yhXrx6FHMlcCzQsKoLVtWRwMgwjl9DBX83dwz/D9xkjPHYgc9nkH3PvRRu3EitSy6h4bNPex2SMXEryesAgiEix+E8RgfweqnOewBUdRzOJDwA14lI02DLUdWCALI9B+x1108PtgzjrY0bN1K/fn1EhL59+1aa/5FHHkFEEBGmT59e5vkefvhhTjvtNJo1a0aNGjVo2rQpJ5xwAsOGDWPZsmWVljFo0CBfGf4pLS2Nww47jN69e/PUU0+xd+/eSs+VqEaOHHnQ32bBggUV5i/+m3bq1Cmocv76178iIiQnJ/PNN99UmHfnzp1kZmYiIpx22mmoapn5nnnrGWeGjmdg8V8WU7t2bdq0acPll1/O22+/TUFBxV87a9asKfPzISLUrVuXzp07c8MNNzBv3ryg3qsxxsQaq6PjUzzX0R999BGDBg2iQ4cO1KtXLy7qaOu8jz8iUg+YiDMMbPHd9Le4uxV4FrgdZyjXn/y2jwP+QGg3ppXl3zid4OdG6HzGxDRrV3gnqVFDCjc6g1Xkfv11ufVwJFg7xPoKEp6qxk0CHsJpxChwcgX5rvHL98coxrPVLWNhGOfIzsjIUFP1XnjhheLPiL733nvl5lu+fLnWrFlTAb3mmmsO2T9mzBitXbu2+n3mDkmpqak6dOhQLSgoKLecgQMHVniO4pSVlaXLli2LyN+gMmPHjtWxY8dWSVmBGDFixEF/i379+lWYv/hv2rFjx6DK2bdvn2ZlZSmgRx55pObn55eb94YbblBA09LSdPHixYfsX758uZ5w0gmV/rt26dJF58+fX245q1evDujzISI6bNiwoN5vHPG8HoqlBBThPI12L9CznBRInp7AsOK8Xr+vWEpWR3vH6ujKWR0dmTr6lFNOSZg6+sOlH+rqnaujdv5KeP6dHesJuNuvXr7Kb3vxtn6l8l8IbMMZ8mZgBONIBxYDBThPtHv+t4nnZG2F+GDtivCF0u4oys/XDR066fpmLXR9sxaav2pVdIJTa4fEQjukmot+fVMVhUQsWJjtfvD2ASkV5Gvm9yF9PUqxnOVXxvgwzmMVvkeKiop8X5aHHXaY7tixo8x8Z555pgLaqFEj3bJly0H7Bg8e7PsybN68uT755JO6ePFi3bZtmy5btkz/+c9/ateuXQ+qRPLy8sosx78S37Nnjy9t3LhRP//8c+3Zs6dv/5FHHqmFhYUR/5uUtnDhQl24cGHUywlU6UoZ0O+++67c/KFWyqqq06ZN85Xx8MMPl5nniy++UBFRQO+///5D9v/000/atGnTkni7ot3u7Kbr1q3TzZs365dffqm33nqrpqSkKKC1a9fWGTNmlFmWf6V8zz33+D4fu3bt0p9++kkfffRRTU9P9+V5//33g37PccDzeiiWkt8P/kgl68A/9G9sdbRHrI6unNXRka2jr7zySv3000/jso7en79fb//4dmUk2uOfPTSvoOzPcZR5/p0d6wn4wq1r55faXmYHvrvvJCDf/f3bKYKxZAFLgP04F/kzvP77xGuytkJ8sHZF+EJtd2y9dqCvA3/vuLejEJnD2iHVvq/Aa9Gvb8I+gTMMT3vgRCq+u8+Xwiir+I73HwLIu9vNOz/U8so4Zz2gK864fcXnV+C0MM5pFb6HFi1apKmpqQroDTfccMj+f/3rX74vuddff/2gfS+99JJvX8+ePXXXrl1llpGbm6tXX331QV+oZfGvxMtSWFioxx13nC/PtGnTgny38a+4Uk5NTdUWLVoooH379i03fziVsqr6/t1q1qypy5cvP2jf/v37tX379gpop06d9MCBAwft37Nnj7Zr18650p0syuUoI9Hn5z9/SDlfffWV1q1b19dY3Lhx4yF5/CvlESNGlBnv5MmTfXl69OgR0nuOcZ7/SIul5PeDvyiCyTrwD/4bWx3tIauj40u81tEpKSk6fvz4csuJhzr6uw3facqDKcpIp63xt8/+FtHzB8jz7+xYT8Bvbr19b6ntxfX5xeUc97ab56kIxTHTTd/7lZ0HLAJm+e0vL83w+m8ZS8naCvHD2hXe2P3iS74O/O233ha1cqwdUu37CrwW/fom5AOhFzAFyCG4O/wKQiyvRvGHDZgSQP7Fbt5NYf2B4DG/ckunfODWSo7PriSpVfjeGj58uNPJKqKzZs3ybd+8ebM2aNBAAT3rrLMOOmb79u2+R+eaNWum2dnZFZaRn5/vq4CTkpJ06dKlh+SprBJXVX333Xd9eYYPHx7kOw1ednZ2pe+tKhVXyjVq1DjoMcjyHicLt1LesmWLNmzYUAHt3bv3Qfvuvfde3+dm9uzZhxz797//veS74mznB3XyA8m6Ze+WQ/Kqqk6cONGXv3///ofsD6RSVlXt2LGjApqcnKy5ubnBveHY5/mPtFhK7o/sLyKdvH5fsZTsR7n3rI4un9XRkamjx4wZU2lZ8VBHj5472teBz0h02vIq7+zx/Ds71hOQ6/4evrac7QPKOe56nI72JRGKo6wn+AJ9qs8u9h/697S2QhyxdkXoQm135P74o68Df2P3Y7WoqCgK0Vk7xOt2iIl+fRPSJLYiMgKYAZwP1MSZBCeYFIq6fuuBzORRnKdOiOVVZhrQVVVfiNL5TRUZPnw4HTp0QFW56aabyM3NBeCOO+5g586d1KpVi5dffvmgY1555RX27dsHwKhRo8jIyKiwjJSUFB577DEAioqKeOqpp0KKtWPHjr71LVu2hHSOYEyaNIlJkyZFvZxQ3HDDDbRs2RJwJqyJhiZNmvj+3WbOnMnYsWMBWLhwIWPGjAHgj3/8Iz179jzouJycHN9npmGzhtDD2f67Nr+jSe0mZZZ18cUXc8YZZwAwfvx41q9fH1LMxZ+RwsJCtm/fHtI5THxQ1V6qemakk9fvyxh/VkeXz+ro8OvoNm3aMGTIkErLioc6eugpQzm3bcmcpNdOupZNezZFtAwTtjx3eaDU9j3usnk5x+2vZH8oyvp9Hq3f8cbEDGtXhC7Udkdq166I+zcr2rKFgpWrIh3aIawdUjbrK4hvQXfgi8i5wAhKKvG1wFvA/wEPBJAeDDHWWn7reeXmKpFbxnGheAw40k09gD/g3PV4HvBvETmhooNVtX5FCdgVZnwmTDVq1PB9gS5btoxRo0bx8ccf8+9//xuA+++/n7Zt2x50zMSJEwGoXbs2V155ZUDl9OrVizZt2gCE/INbnbs8AGjQoEFI50gUaWlpDBs2DIBPPvmE+fPnR6WcP/zhD5x5ptOnOXToUDZv3syNN95Ifn4+mZmZPProo4ccM2vWLHbu3OnEeWwaJDvb+3frX2FZ119/PQAFBQV89NFHIcXr/xmpX79+SOcwxphYYXV0fIqXOvq6664jJSUloLJivY5OkiTevPhNMutkArA1ZysDJg2gsKgwouWYsGxwl41KbS/uzSrvd2VxL15gH9ZKqGpSmCk5EnEY4wVrV1Q9SU6mxkkn+l7nff111Mu0dkjZrK8gvoVyB/7t7rIIuBPIUtWBqnqvqj4QSAox1v1+62kB5K9RxnFBU9XNqrrITd+o6uvuHYrDge7AHBE5J5wyjPd69erl+0IcPXo0N954IwBHHXUUQ4cOPShvTk4OCxYsAOD4448nPT094HJOO+00wLmCvmLFiqDj/OWXX3zrnTt3Dvr4RHP99dfTqlUrAEaMGBG1cl5++WVq1qzJjh076NGjB9988w0ATz/9dJkV31dffeVb39xoMwBpyWlc1OmiCss5/fTTyzxHMIo/I61bt6ZWrXCvXxpjjPesjo5P8VBHF9/NFoh4qKOb1m7KuIvHIe6N0jNXz2TYzGERL8eE7Cd3WfoLYh7OjXF9RKSV/w4RqQ/cgjM0wuqoR2hMNWDtiqpX45RTfOu5VdCBD9YOKYv1FcS3UDrwT8RpQPxbVZ9S/0s40bXHbz2QYXGK8wQy3E7QVPUhYD7OEEKvikhE7ogw3nnsscdo2rQp+fn5bNq0iaSkJF599dVDroiuX7+egoICIPiKtEuXLr71NWvWBHVsUVERjz/+OACNGjXi8ssvD+r4RJSamsrw4cMBmDZtGvPmzYtKOe3bt/eV8+uvvwLQt29frrjiijLzr17t9/vKHTHnnLbnkFGz4scts7KyqFmzJhD85wNg8uS68sSgAAAgAElEQVTJLFu2DIBbbrkl6OONMSZWWR0df+Khjg7mMxIvdfRZbc5i2OklnfajvxrNawtei1p5JiizcTrqe5XaPs5d1sC5OWywiJwjIoNxJppt6u7/sEqiNKYasHZF1Uo7+WTfeu5/51EV3YjWDjmY9RXEv1A68It7oKZFMpDKqGousM192SKAQ4rzrItORABMdpdH4FzYMHGsQYMGnHfeeb7Xl112GSeeeOg/a/HjThD8Y0f++Xfs2FFuvr179/rSpk2bmDFjBmeeeSbff/896enpTJgwIair/4ls4MCBZGVlAdG9st6//8HD35T1OFwx/88ITh3LJZ0uCaic4s9IRZ+PvLw83+djz549LFq0iMcee4xrrrkGgAsvvJC77roroPKMMSYeWB0dn2K9jg71MxLrdfTIXiO5oP0Fvtc3T7mZmatnRrVME5D/uMtuItK1eKOqzsfpxBec37DPAVPdZWs32zrg8SqL1JgEZ+2KqpXapTNJDRuS2qULtS66ED1QeiqQ6LB2iPUVJJJQ7hrfDLQksHHoI20J0BNoLyIpqlpQViYRaQbU8zsmWrb6rbcCquZZIBMV3377LePGjfO9njp1Khs2bKB580jOF1WioqvOdevWLXP78ccfz4cffhi1mEo72e9KeawqvrJ+ww03MH36dL7++mtO8XtEL1JKTy7z6quv8sQTTwR0bJIk8fuOvw+qvIo+H4888giPPPLIoeUkJfHSSy9x0003IWLzjBljEofV0YeyOrpEOHV0KGK9jk5OSubdS9/l9LGn8+NvP5JRI4O05EBGIDXRpKrrRORMnNs7dpfafQPOHG7Xc+hksd8DV6nqTqJARJoDZ+EM7dMASFXVG6JRljGxwtoVwQun3SFJSRw2fx5JVTxsi7VDSlhfQfwL5Q784sGWulaYKzrmust0yp/kBw5+LHFueZkiwP+bNCpD9ZiqUVBQwI033khRURFHHHEEtWrVYs+ePfzpT386JK//BDLZ2dlBleOfv2HDhkHH+d133zFq1KigjwtVx44dfTOVx7LrrrvON0lQZVfWCwoKDrrLwT/l5ZV9XXL8+PG+iWI6deoEwDPPPOMbD7G0gyYZOgBntDqDxumNA3ovxZ+RUD4fRUVF3HfffSxevDjoY40xJlZZHV02q6Md4dTRoX5G4qGOrlujLlOunkLvrN5888dvOO2I06qkXFMxVZ2tqp+q6rpS2/NV9UagDU5n/r3AEOBUVT1BVVdGOhYRaSoi7+CMrT8WuBu4CRhURt4XRCRPRCIehzFVzdoVoQm33VHVnffFrB3isL6C+BdKB/6zOGPgDxSRqv4fONFvvaK7Aq53l4WUPKoYUSKSBFzqt2lhNMoxVePxxx/nxx9/BJyrpcVf7JMmTTpkhu8WLVr4xsb7+eefgypn6dKlvvXiR7nKoqq+tGXLFj744AM6dOgAwEsvvcQrr7wSVLmh2rZtG9u2bas8o8dSUlK47777APj888+ZO7f863bjxo2jbt26ZaaHH374kPy7du3ijjvuAODUU0/l66+/JjMzk8LCQm666SaKiooOOaZ169YlL7bBJZ0DGz5nzZo1HHAfJ6zo8zFixAjf5+PAgQMsXrzY1+DcunUrF198MTk5OQGVaYwxsc7q6LJZHR1+HR3MZyQe6+gW9Vow47oZtG3YtkrKM+FT1V9Vdayq/p+qPqOq/41GOSLSHlgAXInzVL5w6J3//p5z87UWkV7RiMmYqmLtitDES7ujNGuHWF9Bogi6A19V5wEjcIbRmSgiFc/KGEGq+j0wy305SEROL51HRK7BeQQQ4E1V3VJqf2sRUTfNKuP4dBG51u2gL5OIJOOMQdjN3fSlqq4J9v2Y2LBy5UoeeOABAK655hrOOecc7rrrLo488kgAbrvtNvbuLXnAIj09ne7duwPOVfFgvvyKK4umTZvSrl27gI5p0qQJl156KbNmzaJpU2cOq7vvvvvgcdajZMqUKUyZMiXq5UTCgAEDfH/T+++/P2Lnvfvuu9m0aROpqam88sorNGjQgKeffhpw/v2fe+65Q4456vijSl6sgYs6XRRQWV9++aVv/dRTTw3omBo1atClSxeeeeYZX8NkxYoVjB49OqDjjTEmllkdXT6ro0Oro/3r19mzZwdcViLV0bsO7KqSCQRNbBKRVGAKcDhOp/1bwLnA7eUdo6pLKBma9rzy8hkT66xdEbp4aneUZu2Q2GqHmBD5X+0LJOGMQd8TeBsoArYAjwGX4Qxd07OyFGyZpco/Cme4GgX2AfcBp7jnfhwocPdtApqVcXxrd78Cs8rYX9/d96t7vsuBk4HuwJnAncBPfufYBRwZxvvJzsjIUOOd3/3udwpow4YNdcuWLb7t//3vfzUpKUkBHTJkyEHHPPTQQ8X//vr6668HVM6cOXN8x9x8882H7B84cKBvf3nefPNNX55hw4YF+A5DN3bsWB07dmzUywnUiBEjFNAaNWqUuf+NN97w/X1mzZrl+5t27NgxpPLmzJmjIqKADh8+/KB9ffr0UUDr1q2r69atO2jfK/99RanpxFGjSQ0tKCgIqLzevXsroCkpKbp27dqD9q1evdr33kaMGFHm8Xl5edqxY0dfXNu3bw/8zcaHkOsOS5ZCSVZHe8/q6PJZHR1aHb13716tX7++Atq2bdtqV0fP/XWuNn+8ub747YuRPrXn39mWAq7bbnF/xxcCN/ltv7B4eznHPefu/8Lr9xBLydoK8cXaFaGLRLsj7+efddcTT+qWSy/X3S9Eth6ydkh8tEMSWPTrm6APKKnsi1Pp15WlgrCDdq767/TrRC+d1gPHlXNsa798s8rYX7+C85ZOi4Fjw3wvVuF7yP9L/F//+tch+2+77TYFNDk5Wb///nvf9q1bt2p6eroC2qJFC929e3eF5RQUFOgJJ5yggCYlJenSpUsPyRNIJV5YWKhdunRRQDMyMjQ7OzuIdxu8eOscKCgo0Pbt2yugZ5xxRliVcm5urnbq1EkBbd++ve7fv/+g/WvWrNHatWsroBdddNFB+y567yLl1JLviieeeKLS8iZPnuzL379//0P2B1Ipq6q+9957AeWLU57/SLNUvZLV0d6yOrpiVkeHVkerqt59993Vso7+dMWnmvxAsjISTftHmn634btInt7z7+x4T0APnJvTXsS5Qe4GoHEUypnu/ob/vNT2yjrwB7v7N3j9t4qlZG2F+GHtivBEot2xd9zbur5ZC13frIVuaNdB89esiUxwau2QeGiHJLjo1zdBH+BU2uGkMhsEIcTRAngU51G+vTh3wv+AM7xPgwqOa+3XAT+rnDwnAfcDH7ud9Ntw7uzPdssbhzP+fWoE3odV+B7ZunWrNm7cWAHt1atXmXl27dqlzZo1U0CPP/54LSws9O17/vnnfV9+vXr1Krciz8vL02uvvdaX95577ikzXyCVuKrqu+++68s3atSoAN9taOKtc0BV9a233vL9fdq0aRNypVxcFqAzZ84sM89jjz3myzN58mRVVd2bu1drjqqp3IPSwNmXmpqqEyZMKLesefPmaUZGhgLaqFEj3bBhwyF5Aq2UCwsLtXPnzgpogwYNdM+ePcG98djm+Y80S9UrWR3tHaujK2d1dPB1dLHdu3f7yq9OdXROXo4e/eLRykiUkWjrp1rrjpwdkTq959/ZsZiAmsDNwDvub8sXgUtL5WmE06le1s1ve4DbIxzTJvfct5faXlkH/hXu/hyv/66xlKytEB+sXRG+SLQ7ivbv1829evs68bdcfIkW+f2dw2HtkNhvhyS46Nc3QR/gdJCHlarijcVLsgrfOwMGDPB9wf/yyy/l5pswYYLvy/Cpp546aN+NN97o29eiRQt9+umndcmSJbp9+3ZdsWKFvvbaa9qtWzdfnn79+mleXl6Z5QRaiRcWFvqu9jZp0kT37dsX/JsPUDx2DhQUFPgeDStOwVbKS5Ys0bS0NAV00KBBFZZ1zDHHKKAtW7bUPXv26AeLP/D9MG57T1tt0qTJQVfLp0+frhs2bNDffvtN586dq7fffrumpKQooLVr19YZM2aUWVaglbKq6jvvvOPL++ijjwb13mOc59/ZlqpXsjraO1ZHV87q6ODraH8LFiyolnX08u3Ltd4j9XxtlX7v9tOioqJInNrz7+xYSzg3ji0rp2P+M5xJYWvg3IRW/GR7mTfAAbdGMK5c95ylLyRU1oF/pXXgl/l3sbZCHLB2Rfgi1e7I/eEHXd+yla8Tf8/Lr4QfnFo7JF7aIQks+vVNVRRiySr8WDN9+nTfl9aDDz5Yaf5+/foplD2G2SOPPOJ7pK68lJKSonfeeafm5+eXW0aglbiq6ttvv+3L++STT1b+hkO0cuVKXblyZdTOH6xAKmXVg/8+wVbKRUVFetppp/kaSdu2basw/7fffnvQeIlXT7ja96P4vpn36S+//KInnXRShZ8PQDt37qzz588vt5xgKmX/hl5mZuYhj/TFMc+/sy1Vr2R1tDesjg6M1dHB19GlVdc6esKSCb62CiPRR+dG5Ae859/ZsZSAZODHSjrlHwD+6rdtOc4d+qPc5XK/fXuBzAjFtsUtf1Cp7ZV14N/l7l/n9d83lpK1FWKftSsiI5Ltjl1jHvN14K/Paqt5y5aFfU5rh8RPOyRBRb++qYpCLFmFH0tycnJ8jyt17txZc3NzKz1m7dq1WqdOHYWyxzBbv369/uMf/9BTTjlFDzvsME1NTdXGjRvrscceq/fcc0+FV/mLBVOJFxYW+q4ct2jRIqD3kAgCrZT9Hw0LtlJ+6aWXfMe99dZbAR1zxx13KDjjJda+vbbvB/GCTQt8eSZPnqzXXnuttmvXTuvUqaO1atXSVq1a6SWXXKJvvfVWhQ081eAqZVXVcePG+fI///zzAb2POOD5d3a8JSAJaA+cSACTzBPmRPOJlqyOrnpWR8eveKij/cc09lcd6+ghU4f42ivJDyTrnDVzwj2l59/ZsZSAq/w66n8F/gScDfTHufu+uMN+sZvnESCp1DmSgNF+57knQrF9457v+VLbK+vAn+run+r13zeWkrUVYpu1K2JTUW6u/nbOeb5O/N/6XKBFldS1lbF2SHy1QxJQ1OsbUafSMR4RkeyMjIyM7Oxsr0Mx5hCbN28GIDMz0+NI4sO0FdM4/+3zAciqn8XKP69ERDyOKqHYHzNAItILGAr0xnk8P1CqqilRCSoOWR1tYpnV0SYceYV5nPH6GcxbPw+ADo06sOTWJSQnJYd6Squj/YjIeJw507KBbqq60W+f4IyHfx5OB8qPqnpsBef6H3A0MFNVz45AbKOAe4GdQDtV3eluvxCYhNMWSC51zPE4Hf8Ad6nqU+HGkSisrWCqi0i3O/KXLmXL+RdAfj4A9e7+K3Xv+HNEzm2MB6LeDkqK5MlEJEVEGoiI/fg3JgFMmzaNadOmeR1G3Ji4dKJv/ZLOl1jnvfGEiIwAZgDn40yeJ0EmY0wcsDrahCMtOY33L3ufRrUa0aVJFz688sNwOu/NoY7B6Zwf5995D07vODDGb9OESs41Aad+7hKh2F7GGQe/PvCuiNSqKLOIdAY+cGPYDbwWoTiMMXEk0u2O1M6dqTf0Lt/r3U8+Rd6ixRE7vzGJJqyOdhFJAwYAlwAnAQ399m0H5uNU9u+oal44ZRljTCwrLCrkw58/9L2+pPMlHkZjqisRORdnwvhia4HZwAacH+vGGGMMAC0zWjL92ul0bNSR2mm1vQ4n0RzmLv9Xzn7/7SsrOVfx/gZhReRS1XUi8iDwEM6wPktF5EX8ntgTkZ5AS+AcnMlr03AuSNylqrsjEYcxxtS55Wb2fzqd/P/9D/Lz2TnkLzT9dCqSbBeUjSkt5A58t1J/E6dih0Pv2muMc/ff+cAIEblOVb8MtTxjjIllX6/7mq05WwHIrJNJjxY9PI7IVFO3u8sinCF0nlYbK88YY0w5jj283JFbTHhq43R4lzmuiqru8ntSM6eSc+13l8EMiVchVX1ERJoCdwBHAA8X73KXX/hlLw70QVW1u++NMREjKSk0eOpJtp5zLlK/Phn3DbPOe2PKEVIHvoicDXwEpFJSoe/FuTtgL1AHaOsuAVoBn4lIX1X9PKyIjTEmBn2w5APf+oUdLyRJIjpCmTGBOhHnx/e/bXxaY4wxxnNFXgdQHlX9i4jMAh4Ajqog62KcCXSnVElgxphqJbVtGxq+9k/SuncnKSPD63CMiVlBd+CLSD3gHZzH6MCZgOf/gK9L3+UnIqcCfwP6uvnfFZG29tidMSaRFGkRE5aWDF96eZfLPYzGVHPFrV4bGNsYY4wxFVLVycBkETkKOB1ojdOW2Isz/N5sVf3OuwiNMdVBzTPO8DoEY2JeKHfg3wo0wrnD735Vfai8jKr6FdBPRO4FRuGMkT8YGB1CucaYKnbWWWd5HUJcmLd+Hhv2bACgcXpjzmhtDRDjmc04Q9vZvDPGJDiro40xkaKqPwE/eR2HMSZ2VXW7o2DNGqROHZIbN67Sco2JVaF04F/gLr+qqPPen6o+LCLnAacBv8c68I2JCy1btqw8kzlo+JyLO11MSlJY84MbE46vgKuArl4HYoyJLqujjYkLTUXkiDDzNI1kQMYYE4qqbHccmDWLHbfeTmrnTjR+710kNbXKyjYmVoXSy9QB5+7794M87n2cDvwOIZRpjPHAunXrAOskqEiRFh3UgX9Zl8s8jMYYngWuBAaKyCOqur+yA4wx8cnqaGPiwssV7NMA8hhjTEyoqnZHwfr1bB/4BygoIG/eN+x64EHqj/pHVMs0Jh6EMsti8fi6m4M87jd3WS+EMo0xHpgxYwYzZszwOoyY9u2Gb1m322nMNKzVkDNbn+lxRKY6U9V5wAicYXQmiojNBGVMgrI62pi4IBWkQPKUzmuMMZ6oqnZHSosW1Bt6l+/1vrGvs+/f/456ucbEulDuwN+J8xhfZY8CltbCXWaHUKYxxsQk/7vvL+p4EanJ9nif8Y6I9AS+BN4F+gPLReRNYB6wDSiq7ByqOieqQRpjjDGJby0ld9h7QkRWuauqqm3L2B6qg85njDGRVuf228hbuIgDH38MQPbf7yWlVStq9OjhcWTGeCeUDvylwGHA1cATgRwgIgJcg9OIWRJCmcYYE3NUlfFLxvte2/A5JgbMoqTDQIHGwF+COF4JrW1gjDHGGJeqtvY6BqC1uyx9IaG1uy3UO/s9vTBhjEl8IkKDJx9n66qVFCz9GfLy2Hb1ABo+8zS1+l5Q+QmMSUChDKHzkbs8RkQeD/CY0cCx7vrkEMo0xpiY8/2m7/l1168A1K9Zn7PanOVxRMYAhz5yH8ij+faYvjHGGJNY1gK/usvS24v3hZJKn88YYyIuqXZtGv3zVZIaN3Y25Oay45bB7Hn5FVTtOqKpfkK5y+4lYCiQCQwRkZOAMcDnqrqvOJOIpAO/c/Oe6m7eBLwSVsTGGBMjxi8uufv+wo4Xkpac5mE0xgDwgNcBGGOMMdWdiCSpaqXD1kVTeU8BxMjTAcYYU6mU1q1p8p8P2T7gOgpWrQJVdj/4Dwo3bCBjxP1IcrLXIRpTZSSUK1ci0gOYAdT026w4E9vuA2rjdPD73/23H+itqt+EE3CiEZHsjIyMjOxsmxrAxJ7Nm525qjMzMz2OJPaoKu2ebceqnc4woh/1/4i+Hfp6HFXCs7vDTZWyOtrEMqujTYyxOtqPiGwHPsF5en2qqu7xOCQTJdZWMNWFl+2Owh072XH9DeR9+61vW+OJH1DjpJOqPBZjyhH1dlBIHfgAInIM8BbQpdSussbTWwwMUNUfQyosgVmFb0x8+t+m/3HcK8cBUK9GPbYM3UKNlBoeR5XwrHPAVCmro40xJmBWR/sRkSJKxorPB+YA/wH+o6o2BE0CsbaCMVVDDxxg5x1/Yf+UKdS7bzh1b7nZ65CM8Rf1dlAoY+ADoKoLgCOBC4E3cCa3zQaK3OVSd3s/4CjrvDcm/qxatYpVq1Z5HUZM+mDJB771fh37Wee9McaYKmV1tDExbTTwM84P+jScoWWfBlaLyA8i8qCIHO9lgMYYEwyv2x1SsyYNXnyehv96lTo333TQPi0qYv/UqWhenkfRGRN9oYyB76PO7fsfUTKxrTEmgcyZMweANm3aeBxJbFFVxi8pGf/+8i6XexiNMYERkRSgLrBHVQu8jscYEx6ro42JXap6D3CPiLTFuaGtH868cCnAUTg3wg0TkU3AFGAyMENVo977JCLJwNU4Fxe+U9UlARzTBTgeKFLVcVEO0RgTg2Kh3SFJSdQ677xDtufOms2OP95EUpMm1O5/FelX9ye5RQtE7OEwkzjC6sA3xpjq6KfffmLFjhUA1Emrwzltz/E4ImMOJSJpwADgEuAkoKHfvu3AfOAD4J2q6DAwxhhjqhtVXQk8CTwpIvWBC3A6888F6gHNgBvdtE9EPsMZameKqm6PUlgX4DwpXwR0CvCYXOA1QERkq6p+GqXYjDEmaPveeBOAoq1b2fPMs+x55llITSWpUUOSGzUmqXEjkho1JvnwTGqdfx5pxxzjccTGBM868I0xJkj+w+f8vsPvqZlSs4LcxlQ9EekJvAm0LN5UKktj4Hw3jRCR61T1yyoM0RhjjKlWVDUbeBt4W0RSgV44nfm/B44A6gAXualIROZRMm7+LxEM5UJ3+bWqrggw9pUiMhfoiXNjgHXgG2NigqqSekx38hYtpGjzbyU78vMp2vzbwdsAioqsA9/EpZDHwDfGmOrqg6UlHfg2fI6JNSJyNjAdp/Ne3LQX+BH4yl3u9dvXCvhMRH7nScDGGGNMNaOq+ar6mar+SVVbA8cAI4EFOHVzMs6QO/8HLBGRX0RkjIicLuGPCXEizgS7M4M8rjj/SWGWb4wxESMi1BtyB5nz/kvDV1+hRs/Tkdq1y81f66ILD9m27/3xHPhyLkU7d5Z7nBYVofv3RyRmY0JR7h34InJ/8bqqPljW9lD5n88YY+LJkq1L+HnbzwCkp6ZzbrtzPY7ImBIiUg94B2fCPICPcX78f+3OW+Of91Tgb0BfN/+7ItJWVXdXYcjGGGNMtaeqP+JcYH9QRJpRMm7+mUANoD1wp5t2iMjHqjooxOJaucvlQR630l22DrFcY4yJGklNpVaf86nV53wAdP9+CnfsoGjbNoq2badw2zYKf/2V1K5dDzqucMsWsu8aCkVFACQ3b05qt66kdutGcvPmFCxbRt6PP5G/cCF1brqRenfdedDxqmpj7ZsqUdEQOiNxrswDPFjO9lBZB74xcaBv375ehxBzJiyZ4Fvv074P6anpHkZjzCFuBRrh1NP3q+pD/8/efcdZUZ79H/9c2+gsVUGpooAUIbFFIYg1aESNBUlERU2emGp61GiKSYx5EvOkGpNfYsWoaFCDhaioiL0iAgIqoFRBYOlsvX5/3LOF7efsOTu7e77v1+u8pt0zc60xzsw191x3XQ3d/XngDDO7GvgFoUb+V4BfN0egItI0ukaLtE3uvg64GbjZzDoR6uWfAZxGKIHXE7gQmJ7kKdpF08IE9ysfL0c3vyIZqLXdd1iHDuQceCAceGC97fY8/EhF8h6gdO1aSteuZe9/H6/RtuithTXW7fzzXyh68026fOfb5I0a1ej4ynbuZPv1vyJnyBA6nnM2Wd26NXpfyUwN1cA3ak/WN+X1UlOT/yLSTHr16hV3CC3OrKWzKubPOfScGCMRqdVno+nz9SXvq3L3681sEjCeUIdXCXyRVkDXaJG2z913AbOAWWaWBRxLqGE/uQmH3QLsRxhANxHl7bc14dwi0kq11fuO3KFD6fiFz1O8aBHFS5dBUVGdbUvXrd1nuWzHDnbc/De8oIC9/32c9qecTPuTTya7Xz9yBvQn+4ADsLzwYXT1nvrWqRN7n51P6e13sO366+lw+mQ6TbuAvCMOV49+qVV9CfzjE1wvIm3MsmVhvKxhw4bFHEnLsGLrChZsWABAXnYepx1yWswRidQwlPCifGaC+80kJPCHpjwiEUkLXaNFMou7lwHPRb/vN+FQ7xES+JOAPyawX3ndyJVNOLeItFJt9b6j3fhxtBs/DgAvLqbk3fcoWrSI4kWLKV2/npwhB5E35jDyxowlq2+fffYtfHY+XlBQsbz38SfY+/gTlQ3MyO7TB9q3p/Oll9D50kuqbDI6nHYqO/9yE+wtZM/997Pn/vvJOXQ4nS64gNxRo8AsJPPzcskbPTqlf3fp+vWUfvwxZVu2ULZ1K2VbtlJWUEB27960n/QZsnv3Tun5pOnqTOC7+7xE1otI2/Piiy8Cbe8inaxZ71T2vj9lyCl0bdc1xmhEapUfTTckuN9H0VT/Uou0ErpGi0iSniQMkPsZM/u0u89vaAczO46Q8HegZl0JEWnzMuG+w3JzyR1xKLkjDoUp5zXYvsNnT2O/Jx9nx+//yJ6HH67ZwJ3S9esB2PPoo/sk8AHajR9P4bxnKV60qGJdyTtL2XbNtfu0y+rdm74L3thnXeFrr7Plsi+S1aMHWT26kzNoELmjR5M3ejS5Iw7FOnSoaFu2fTvFixdTvHhJ+NLg3XcpWbES317H0GdX/4h248bR4cwz6HDqpJSX99n77HyKXn6Z7P79yD6wHzn9++3ztUK58iHc9EVC0FAJHRERifz7ncr69yqfIy3UVkKvugEJ7tcvmhbU20pERETqZWYT0nVsd382BYf5O2EQ+3bAA2Z2vrvPrauxmZ0E3BMtFgF/S0EMIiJtQu6hh9Ljb3+leOkV7Hn0MUpWfUDpmtWUfria0g0bIEpCF73xJmU7dpDVpUvFvu0nfJr2Ex6j6K232HXnDPY88CC+d2+t56legqds88fRAL0fh+O/9DLcc2/YmJVFVq9ekJsbthcmOORJWRmF8+dTOH8+BVddTfff/44Okyfj27dTtmMHha++xs6/3ETZtm2Ak9WpM7Rvh2VngzteVAxeBpZF3tgxdPzCF8gdPoyszm2C54QAACAASURBVJ0BKJw3j50317yUWOfO4cVDVhZeXIzv3AmlpeQddSTtJ06k3cSJ5I4ckbEJ/YQT+GZWnhTY6O61/5tV+37tgP0B3P3DRM8rIhKnNdvX8NKalwDItmwmD21K6VGRtHmHcK39AvC7xuxg4Q7oAkKvuiXpC01ERCQjPEN6xn1zUtABz93Xm9l1wPVAd+BxM3sG+A/hPmIn0Bk4lDB47kQqx8b7hbuvbmoMIiKtiRcXh5Izq9dQsmY1ZR9tDBuysyE7CywLy84mq2dPOh5xBLkjR5DdsydeVBQGxf14M7mHHExWly743r0Uvf02Ra+9TvFbb1Gydh1lGzZQunEjlJTUev6yTZtYN+QQsrp3I6t7D7J79qRs5466Ay4ro2zjxoT+xqxevcg7+mjKNn5E0WuvV7x4oLiYgmt+zNavfaPu01V8zF1TybJl7L43VHfNHjSQ7D59KF5c+yOn79wZkvbVFL34EkUvvgS/uoGs3r3J6t6ddsdNoMs3v0F2jx4J/JWtWzI3AKuAMuBswkW+sSYCj0X7que/iLQqDy59sGL++MHH07NjzxijEanTbML19hNmdqO7f7cR+/wa+CThwfyhNMYmIiKSKVp090B3v8HMDgS+Fq2aGP1qU/63/Nndf5nm0EREYlFWUEDJBx9QsmoVpavCtOTDDyldvSaUwSkrS+h4WX32J3fECHJHjCBn8CD2PvYYha++RvHbb0NxceIBFhZStuEjyjZ8RO1p/vrljhhB7qiR5I4aRc6Qg9jz8CPsvu/+ipcGZR9/zN5HHql1X9+6NYkz1lS66gNKV33QpGOUbdpE2aZNlCxfzq7b76Dv4rfJ6tgxJfG1dMkm0ptyQ9Kib2ZERGqj8jnSStwMfA/oA3zLzI4GfgM86e67yhuZWUfgpKjtuGj1esJn9U1mZv2AbwCTCeV8SgiD3j0A/MndU3MXuO85s4DngU+Vr3N33XOIiEhz+1kD248APhvNFxAGpX0P2AV0Ag4mDCzfjfBy/RHg9VQH6e7fMLP5Ubz1FbVeCvzY3e9PdQwiIulQtmsXJStXUbpyZUjEr1xJycqVoZd7mYdkvHso91JWhu/dgxdsS20MGz6icMNHFD71dKP3sW7dyO7bh+zevfGiIsoKCsIAs1sLoKio0cfJPuggcgYOIKtrV3IOPZSOZ51JTv/++7RpP3EiXb51BTv/chO77rm34eObYV26hBJAnTthWVlY1/yQPM/ODv9Miwop27WLsoJtmBlZ++0H2VmUbtpE6fsroLS05nGzssjKz8d69CDnwAPI6t07lNLJywN32p90ImUbPmLvM89QOO9Zyqq8TMj75CcyJnkPYOWDAjR6B7Mywo3E59y90T3wzewzhB747u7ZCZ20DTOzgvz8/PyCApUdlpZn27ZwEcvPz2+gZdu2adcm+tzYhzIvwzDWfXcdfTr3aXhHSTUlYxvBzD4FzAXaV1nthIFty5MDfaj852nAHuAEd385BeefBNxNSDzUZi1wprunNBlhZt8A/lh1XVMT+LpGS0uma7S0MLpGN4KZXQD8Eygm1KH/h7vXyJqYWR5wGXADkAdc6u53pykmAw4nvDToRxjQfjuwBpif6ut1W6N7BckULeW+w8vKKJw3j10z7qJ48RK8uAiKS/DiYiguxktKkuvh3oCsPvuT069/GHi1b1/IygpJ69JSvLQ0vAzYtYviZcsofucd2Ft33fmcgw4i74jDyTviCHKGHER2nz5k77//PgPP7vM3u+N79oRk/pYtlG3eTNnmMC3dvJmyrQVk778feYd/kryxYxMedLZ0wwZ2/PVmdv/rbrywkJyDDiJ3+DByhg8n99Dh5A4bRnb//qHGfZK8sJDid9/FC7Zh3fLJys8nq1u3kKxvZE17Ly2l+O232XXvTIoXLabDqZPo8tWvJB1TiqX9Pqg5E/jnEx7od7l7l4baZwpd8EVavn+88Q++NPtLAIwfMJ75l8yPOaKMpeRAI5nZJ4A7gRHVNjk1/zkuBqa5+1spOO9hwAuElwS7CeV55hK++DsT+CaQTXiZcLi7r2vqOaPz9if8HZ2Bj4HeoAS+iEgz0jW6AWY2AniNcB2c6O4vNmKfY4B5hMFjj3D3pemNUhKlewWR5lG6ZSu7Z97LrjtnNLkMS22sfXuyBw4gZ9AgcgYOJHvQIHIGDSSn/wCyD+iLtW/f8EEiXlJCycqVFC9ZQvHiJZSs+oCcQQND0v7ww8nu2TLL8XpZGZSUhN7vkqi03wc1Zy36s6OpBr0RaSUWLVoEwKhRo2KOJF5Vy+ecPfzselqKtAzu/qaZjQZOJ1x/jwL6Al2AHYRyOa8A/wYe8UTf5tft94TkfSlwqrs/W2XbPDN7g/BioQ/wC+DSFJ33JsLf9g/gEOC4FB1XpMXSNVqk1fkm4eu4WxuTvAdw9xfN7E7gEuAKoMV0NRSRzJLO+45QxmYvvnt3GMh0127Kdu3Ed+2ibMdOCp96it3/mQ2Fdfdq30duLjkDBoQk/OBB5AweTM7gQWQf2A/LzQGz8MvKAgzLyyWrV69G9wRviOXkkHvIIeQecgiceWZKjtkcLCsLlLxvsepN4JvZmYQec7X5ppmd1cDxjfAgPxYYQuj5p66rIq3Ea6+9BmR2cqBgbwFzV8ytWD77UCXwpXWIkvKzo1/amdnhwPHR4m3VkvflMc0ws0uAE4CLzOxKd9/YxPOeT3hRsYlQjmBWU44n0lroGi3S6pxEeB6el+B+8wgJ/JNSHpGISCMlct/hxcUUPv88JStWhjruBQWUbS2omPedO0Oyvvy3d29CsVh+Pp3On0LHc88lq3t3yMvFcnIgLy9Mc3NTlowXaSka6oE/FphOuNGoyqh8SG8sI3xO/7sE9xMRic3Dyx+muCzU0DvigCMY2G1gzBGJtFhV3279s552txAS+NnAGYRe80kxs+7AH6LF77r7Ft2si4hIC3VANE20OHN5+wPqbSUiErPipUvZPfM+ds96gLJNm1J+/NzDRtNp+sV0OOMMsuqoFy/SVjW2hE5tT8OJPCFvA54CrnP3ZQnsJyISK5XPEWm08dF0N/BqPe2errZP0gl84LfA/sDT7n5nE44jIiKSbruAdsARhLHhGuuIaLo7kZOZ2Ypo1t19SC3rk7XP8UQks5Vu2cqehx5i98yZFC98O+njWPv2WMeOYVDTTh3J6hSm1qkz2X370PHsz5E3dmwKIxdpXRpK4P8euK3KsgErCD3yvww80cD+ZcBOd9+abIAiInHZVbSLOe/NqVg+Z8Q5MUYj0uKVD5j7rruX1NXI3deZ2Q5Czfrqg+w2mpkdT6ihXwhcnuxxREREmslbhC/QLjOzP7j7hw3tYGYDgMsIz9+JDjY/KJpW/5p+ELUPat9YqRo3R0RaMXdn94y72Paz6/A9e2psz+qzP+1PPJHsXr3I6tYN69aNrG7dyOrejawuXUKyvkOHymlWVgx/hUjrUW8C3923EXrPV4g+TTdgo7unfuhnEZEWYvby2ewtCfX4Ru03iqE9h8YckUhgZj8un3f362pbn6yqx0sgnnZAr2hxTSN2WU1I3vdP9FzR+doDf48Wf+Xuy5M5joiISDO6jZDA70IY2P1Cd3+ursZmNg64A+hKSJrfmuD5PqT2ZHtd69POzLoBRwJHRb8jgb7R5nnuPjHF5zsK+CphcPu+wHZgMXAXYTDh0lSeTyRTlO3YQcH3f8Ce2Q/vu6FdOzp85hQ6TjmPdhMmYNnZ8QQo0gZZGOMugR3MygtAb3T3mq/ZJCFmVpCfn59fUFAQdygiNezeHb7U7dixY8yRxGPSjEn89/3/AvDz43/ONROuiTmijKfi5hEzKyN6+Hb37NrWJ6vq8RKIpxdhEFmAe919agPtXyY8uO909y5JnO9XwJXAcuAwdy+ssu0ZwoM67l7vvzNm1tDFNz8/Px9do6UlyvRrtLQ4ukY3gpn9FziZymv168Bc4D1CiZyOwMGERH956RwDHnf3Sc0bbeqZ2UoqvwyoLqUJfDO7Gvg5UFe33heA05taLUDP85Ipyu87ct5/ny2Xf4XSVZX9eXMOPpjOl11KhzMmk9WtW1whisQp7fdBja2BX0G97kUyRyYnBdZuX8sTK0KVMMO4aMxFMUckUoNRe7K+KTcPySb/q44iVdSI9uUJ94RHnzKzw4DvRYtfqZq8F8kkmXyNFmnFzgLuA06Llg+PfrUpv54/CkxJc1zNpeo9ykeEMXNOT/lJzC4FfhktfgBcD7wJ7EcoBTwZOBZ4wMxOcPeyVMcg0tZ06NCBXbfdzqbrfg5Flbf7HadNo9tPf4xpUFmRtEo4gS8imWPBggUAjM3AwWLuXHgnZdG9/AmDT2BA/oCYIxLZx/EJrk+3ql/k5TWifbta9muQmWURBr3NAe5096cS2b86d6+3i1DUQz+/KecQSZdMvkaLtFbRF+ynm9k04DtAff8HXgD81t3/lcy5zOwNwov577j7vCrry29qN7r73mSO3QR/BlYCr7j76iielJbzicr0/DZaXAsc7e4fVWnyiJn9P+CLhC/2phFKFYlIHYrfX8HLf/wjxQsXMjRK3lvnznT73xvoeOaZMUcnkhmanMA3s2zgMKAfoT5fg5/eu7sukCKtQKYmB9yd2xbcVrE8fez02GIRqU3VB/HGrG8GO6rMd25E+/I2OxM8zxWEerlbgO8muK9Im5Kp12iRtsDdZwAzzGwQ4bp2AOHauBNYR0hwN/XL97GEBH71F9GrgDLgbOA/TTxHQtz9tw23arLLgO7R/JXVkvflvg2cR/hn832UwBepwUtL2fvU0+y67TYKn5nH4tM/C0OHMnT5u+SOGkWPv95EzkGD4w5TJGMkncCP3tz/BDifxD6Bd3SBFJEW7OW1L7Ns8zIAuuR14XPDPxdzRCItm7sXmtnHhIFs+zVil/I2qxM81ZXR9GngRLNaqwXtVz5jZuW1+IvcfVaC5xIREUkZM5sQzW5z97cA3H0VIaHe7OHEcM7mcnY03UEoV1SDu+80s/sIvfBHmdnB7v5ecwUo0pKVbtnK7nvvZdftd1C6uuateqfpF5N/7TVY+/YxRCeSuZJK4JvZOGA24Y11W774i0gGqtr7fsrIKXTK6xRfMCIJSPazeDNrB+wP4O4fJnn6JcAE4BAzy3H3kjrOdQDhi73yfRJRXnrnnOjXkLuj6TZACXwREYnTM4TObL8B3mqG8+0iDIrbqxnO1SKYWS5wVLT4UgPj5DxNSOADjCcMJCySsYoWLWLXrbex+8EHYW+1/+uYkdW9O9l9+9Ltim/GE6BIhks4gW9mXQkPwd0In97dSRjB/WbCDcmfgWXAQOAzhPI6DtwFzE1J1CIiabKneA/3LLqnYlnlc6SVWUVyn8VPBB6L9k3267znCAn8joRyAC/Wc66q+4iIiGSC3YQv15sjeQ/wITAcOAO4pZnOGbehVN7HNNRJYGmV+RHpCUekZfOiIvY8+ii7br2dotdeq7HdunWj0xc+T6cLp5H7VJOGnhKRJkrmIf1yoDchKT/N3e8BMLObo+1z3b08afBDMzsT+CcwNdp2exNjFhFJm4eWPcS2wm0ADOk+hHH9x8UckUjCmvJlXFP2nQVcHc1fRt0J/EujaSkJ1t5taNBZADN7hjAoHe6urwRFRKSlWA8cRCPGjEuRJ4FDgclmtojw4qBqt9pvmtlZSRzX3f2yVASYBlXL+K1poG3V2iD90xBLoxTu2clP/u/shhuKpFpREUfNX8vRS2t+tJs7ejSdLrmYjmecgXVIpGK2iKRLMgn8U6Pp6+XJ+/q4+0NmtoHQy+4mM3vZ3Zc2tJ+IxO+CCy6IO4RmV33w2jpqbItINe7+epQ8nwhMN7Pb3X1+1TZmdgFwYrR4h7tvrLZ9ELAyWpzn7hPTGLJIq5aJ12iRVm4eIYH/SWBGM5zvN8CFhC/nD41+5Qw4vgnHbqkJ/C5V5nc20Lbq9s51NTKzggaOU32Q4IQUFxfy6+InmnIIkeQYZI+Hxzbux4gteZRlZ/PRqJGs/tSn6DfpMxx51FEUFxdz1223AVBWVgbAbbfdxtixYxk7diy7d+9m5syZNQ59xBFHMGrUKLZt28YDDzxQY/sxxxzDsGHD+Pjjj3n44YdrbJ8wYQIHHXQQGzZsYM6cOTW2n3jiifTv35/Vq1czd27NQh+TJk2iT58+rFixgmeffbbG9tNPP51evXqxbNkyXnyxZp+jz33uc+Tn57No0SJeq+XLhClTptCxY0cWLFjAggULamy/4IILyM3N5dVXX2Xx4sU1tk+fPh2AF154geXLl++zLTc3t+Ieb968eaxcuXKf7R07dmTKlCkAPPnkk6xZs++7yq5du3L22eGl4Jw5c9iwYcM+23v27MnkyZMBmD17Nps3b95ne58+fZg0aRIAs2bNYvv27fts79evHyeddBIAM2fOZPfu3ftsHzx4MMcddxwAd911F8XFxftsHzp0KMceeywQ/l2qbuTIkRx55JHh37277qqxPdX/7pX/b9EaZCWxzwhC7/sH69heo0eBu78MzCR8Mnh5EucUkRjk5uaSm5sbdxjNZu32tTyxItxAG8ZFYy6KOSKRZlPes313va0adgWh5m42MMfMrjWzY81sgpndCJR/hbcBuKaJ5xLJaJl2jRZpA/5KKFU33cz2T/fJ3H0NcAzwMKHnvbHvl3aW5K8lq9pVuKiBtlW/RlAXY8lIpVnwr9ElvHfSicz/wfdYNOU8tg3oD7V0YsvKyiIrK5kUooikgrl7YjuYFRJ67k939ztrWX+xu9foUWBmlwL/AJa6u2rMRcysID8/P7+goKEX+yLN79VXXwXgyCOPjDmS5nHDczdw1dyrADhx8Ik8edGTMUck1bT0h8bYmVkZ4SX756qUs2vMfvcC55GCa7SZTSIMHltXuZu1wJnu/not+w6iiT3wU1lCR9doacky7RotLZ6u0Y1gZlcC1xPqs09190XNdN4cwmC27YEVhHuFLwNJdf129w9SGFt5QqLJX96Z2bnAfdHiV9z95nradqCy48LD7j45yXM26V6haO9ufqoSOtLMPvId3FL8AgB9O/dl9bdXk51Vf3Uv3XeI1Cvt90HJlNApivarXihrB9AdOLCO/fZE07q2i0gLU/65VyZcpN19n/I5F4+5OL5gRBohGmPmzDo2N6aurQGdgLHAEMLD/Px692gEd59jZqOBbwKnAwMI9e5XAg8Af3T3rU09j0imy6RrtEhbYGYXAeuAOcAkYIGZzSdce9dS+bxcJ3e/I5lzu3sJ4eu3quUhN6YyEd9C7KgyX2dZnFq2N1RuJ23y2nfk+qtqlggRSaeSshJm33gAm3ZvYv3O9Tz34XMcN+i4evfRfYdIvJJJ4K8FDgF6Vlu/AjgcqOv/zcOacE4RkbR6Ze0rLNu8DIDOeZ05+1D1hJEWbywwnZB4ryqZurZG6IX2u6aHVfHZ/g+iXyL7raKJvRdUN19ERFqo26i8ZjuhnO2E6NcYDjQ6gW9mh0WzK929amK7vJzdh409VitStRh0vzpbBVUHrl1dZyuRNignK4fzRpzHTa/dBMA9i+5pMIEvIvFKpoDVwmh6aLX1LxEeuk8zs4FVN5hZN0Lte6fy03gRkRajau/7KSOm0CmvU3zBiCSmtrq0idSy3U7oGT/O3Zc1X9giIiIZp/o1O5315xcAb1Lzpf4qwjN5U8e9aYmWAyXRfEMlAYdXmV+SnnBEWq6po6ZWzN+35D6KS4vraS0icUumN/w84FxgYrX1M4CvA+2AZ83sBuB9wmf53wP2o/7Bb0VEYrG3ZC/3LL6nYvnisSqfI63C7wm9+coZidW1LQN2qpyNiIhIs7gk7gAiPyHcKywgJLzbDHcvNrNXgGOBT5lZnrvXNZjtxCrzz6U9OJEWZtyAcRzY5UDW7ljL5j2bmbtyLpMOnhR3WCJSh2QS+P8B/gSMMrOR7r4YwN1fMbMZwDTC52p/rmXf1cCNyQYrIpIOjyx/hIK9YeCpwd0G8+kBn445IpGGufs2YFvVdVFdW6Nt1rUVERFptdz99oZbpVQZ4Z4gt5nPG7dZhAR+F2AKoaPhPsysc7QNYJG7v9d84Ym0DFmWxfkjz+d3L4UKmvcsukcJfJEWLOEEvruvNrPjCSPYb6+2+TKgELiUmp/4vQ5MVU8/kdZj+vTpcYfQLO5YWFlO9MLDLqw6uJdIazM4mm6MNQoRSbtMuUaLSNIKgO7AwIYathZmNojKkrzz6hj35p/Ajwh/+6/M7HF3r35f9DsgP5r/TeojFWkdPj/68xUJ/AeWPsDNJTfTPqd9rW113yESr6QGlHX3eXWsLwa+ZGa/AE4A9ifU1nvV3V9MOkoRkTTZtGsTj777aMXyhWMujDEakaZRr3sRERGJLAY+DXzdzOYDC6Ln9XJe+27pY2ZjgbF1bO5jZtOrrZvj7hsSOYe7F5jZ94F/ECoDvGxm1xNKBvUmlBk8I2o+j1p66ItkisP7Hs6Q7kN4f+v7bC/czpz35nDW8LPiDktEapFUAr8hUQLh1nQcW0SazwsvvADAscceG3Mk6XPv4nspKQtjXR3T7xgO7nFwzBGJiIg0LBOu0SLSJPcQEvgDgZeAql+ZGvBgkl+dursnm0c4i1CDvzbDqJlDOB5IKIEP4O7/NLM+wHXAIODvtTR7ATjb3csSPb5IW2FmTB01lV/O/yUQyujUlcDXfYdIvNKSwBeRtmH58jCuVVu+SN/xVmX5nIvGXBRjJCKpZ2bZwGGEHmhdgeyG9nH3OxpqIyLxy4RrtEgmMLMuNP4a/WECh/4b8FngtLpOncCxWh13/6WZPQF8DTgO6APsIHyZMAO41d1LYwxRpEWomsCfvXw2u4p20SmvU412uu8QiVfCCXwz+3E0WwD8pbEXPTMbBpwP4O7XJXreWo7XD/gGMBkYAJQQ6uE9APypKbX2zSyXUALoZOBThN4A3QjlgD4gfGr3N3df1JS/QUTi9c6md3h13asA5GXnMWXklAb2EGkdzGwAoYfb+UCHBHZ1QAl8ERGRNIlern8BuBA4ijDYamM4CTy/u3uZmU0m9Ho/DegPtCMksx1YAnzc+Mibzt1/Cvy0CfuvIoEXD+7+CvBKsucTyQSj9hvFyN4jWbxpMbuLdzN7+Wymjpoad1giUk0yPfB/SmW9vDPM7Fx3L2jEfsOr7NukBL6ZTQLuJiTVqyqvqfc/Znamu7+exLF7A+8APWvZ3BUYHf2+amY3uPuPEj2HiLQMdy68s2J+8tDJ9OjQI8ZoRFLDzMYBswmDs7Xp3nUiIiKtiZn1JXQ4O7J8VTrP5+4ene+BKjGUl4z5kbv/J53nF5HWYeqoqVz79LUA3L3obiXwRVqgrCbsa4SadC+Z2SEpiqfhk5odBtxPZY/4nwDjgYnA/wGlwIHAw2Z2QBKnaEdl8n4R8EvgdOAIQm+FnwHbCP/srjaznyf7t4hIfMq8jBkLK8esuvAwDV4rrZ+ZdQVmEa6R5b3pL482O/An4OvAb4CFVdbPAC4BLm3OeEVERDKFmWUB/yH0ujdgFaFOPYRr8dOE59xXgeIq6x8HbkdfyIlImpw/8vyK+cfefYyte5IuaCEiadKUBP77hBuPoYQk/gmpCalBvwc6ERL1p7r7de7+vLvPc/fvANOjdn2AXyRxfAeeBMa5+2h3v8bdH3H319392eizvyOp/NzwSjMb3JQ/SKSlys3NJTc3N+4w0mLeqnms3r4agJ4denLqIafGHJFISlwO9CZcy6a5+3R3rzpw21x3v8ndf+juY4HPAVuBqQDufnuzRywiSWnL12iRNurzwOGEa/TvgUPc/QtVtv/B3ae4+9GEsWv+ELUdDfzZ3S9JURzHE8rFPp+i44lIK3dIz0M4vO/hABSXFfPg0gdrtNF9h0i8mpLA/x6hdzpAd+AxM7u8nvZNZmaHE244AG5z92ert3H3GcBT0eJFZrZfIudw97XufrK7v1BPm3epLAOUQ6grKNLmXHDBBVxwwQVxh5EWdyys7MT0+VGfJy87L8ZoRFKm/E3U6+5+T70tAXd/iDDAnQE3mdnwdAYnIqnTlq/RIm3UudF0LfADdy+rq6G7b3L3bwNfBfoCs8yseyqCiDq+zXP3zak4noi0DZ8f9fmK+XsW13yM0H2HSLyaksB3d78WmAbsBXKBv5jZH6PPA9Ph7Crz/6yn3S3RNBs4I02xPF1l/uA0nUNE0mB38W7uX3J/xfKFY1Q+R9qMEYTeejW7zQTZ1Ve4+8vATMJgt2l9ES8iIpLBynvfz3D3klq213iGjr6ie5bQI/8r6Q2vfmaWbWZdo3J9ItLGTBk5pWJ+7oq5bNy1McZoRKS6Jifa3f1fhE/wPiL04Psa8GiaLuzjo+luQm3AulRNro+vs1XTVO2uW5qmc4jEat68ecybNy/uMFLuwaUPsrNoJwDDeg7jyAOObGAPkVajfHD31dXWl9fS7VTHfnOj6Skpj0hE0qKtXqNF2rBe0XRltfXlPfHb17HfvwnP2Ql/9W1mb5jZ62Z2XD1tLop+/Ro43OmEsntbEo1DRFq+/vn9GT8gpM9KvZR/L/n3Ptt13yESr5T0lHf3l4CjCQPiGXAy8GIaasOPiKbv1tFroTyedcCOavukWtWboHfSdA6RWK1cuZKVK6s/Y7R+d7xVWT7nojEXYWYxRiOSUkXRdG+19eXXxAPr2G9PA9tFpIVpq9dokTas/IazegK8/Bq9fx37fRRNByVxzrHRL7+eNrcBtwKfbMTxjMq/Q0TamKkjp1bMVy+jo/sOkXilrNSNu38IjANmEy7qw4FXzGxCKo5vZu2o7LWwphG7lPc+7J+K81eLpRPwrWixEHgo1ecQkfRYv2M9T6x4omJ52mHTYoxGJOXWRtOe1daviKZ1fW4yLJrmpDwiERERASivR1H9S/V10XRUHfuV94xX6RoRSatzR5xLVlQRe/4H81mzvTGpxS/38AAAIABJREFUNxFpDimtVe/uuwif9v2WkMTvCTxuZpel4PBdqszvbET78jadU3Du6n4LDIjm/xz1+K+VmRXU96P+3hAikmIzFs6gLBozbOKgiQzIH9DAHiKtysJoemi19S8RrsunmdnAqhvMrBuh9r1T87N+ERERSY0l0bT6+GlvEq7RZ5hZh6obLHwmWj5Y04b0hicimW7/zvtzwuATAHCcmYtnxhyRiJRL+WCzHvwAuIzwKX8e8HfgqiYeuurNTFGdrSoV1rJfk5nZpVQO8rcYuDaVxxeR9HF3bnvrtorl6WOmxxaLSJrMIyQBJlZbPyOatgOeNbOvmNkpZvYV4HVgv2h7XYPfioiISNM8T7hGH1ttfXmh6V7ALDMbbmZ5ZnYocB8whvCSfS4iImm2TxmdRffU01JEmlPKE/jl3P1WQi38jwk3Kk0dJXJPlfm8OltValfLfk1iZqcCN0eLHwNnu3u9x3f3bvX9gG2pik8k1Tp27EjHjh3jDiNlXlv3Gks2hc5PnXI7cc6Ic2KOSCTl/hNNR5nZyPKV7v4KIYlvhE/x/ww8Fk0HRc1WAzc2W6Qi0iRt7RotkgEejabHmtl+VdY/CLxBuEafQugktgdYBHwuarMX+N9milNEMtjZh55NblYuAK+ue5X3t7wP6L5DJG5prXXr7vPN7FOEuvjVP+dP1I4q840pi1PepjHldhoU1fL/N5BLSLp/xt2Xp+LYIi3VlClT4g4hpW5bcFvF/Hkjz6NzXjoqbInEx91Xm9nxQHtge7XNlxG+TruUmgPQvQ5Mdfet6Y9SRFKhrV2jRdo6d3/DzH5K+EK8P1FNfHd3MzsTeJzan5l3ARe4+7LmilVEMlf3Dt2ZdPAkZi+fDcC9i+/l6k9frfsOkZglk8A/Ppouakxjd18RJfF/ThPqvbt7oZl9TPi0sF9D7au0WV1vq0Yws6OAhwk3W7uAz7r7G009rog0n8KSQu5edHfF8sVjLo4xGpH0cfd5dawvBr5kZr8ATgD2B3YDr7r7i80YooiISEZy9+vqWL/WzMYAnwdOoso1GrjV3VX/XkSazdRRUysS+PcsuoerP311zBGJSMIJ/LoSAw3sswP4VqL71WIJMAE4xMxy3L2ktkZmdgDQtco+SYtupOYQBtEtBM5y9+ebckyR1uLJJ58E4KSTToo5kqabvXw2W/eGzsWDug1iwsAJMUckEg93/wC4Ne44RKRp2tI1WkQgera9M/qJiMTmjGFn0CGnA3tK9vD2xrdZvHEx6xeuB3TfIRKXtNXAT5PnomlH6q+pP7GWfRIWDRz0BNAdKAbOc/cnkz2eSGuzZs0a1qxZE3cYKVG1fM7FYy4my1rbf/5EREQqtaVrtIiIiLQcnfM6c/rQ0yuW7118r+47RGLW2jJYs6rMX1ZPu0ujaSmVA/olxMyGAE8CvaPjTHP32ckcS0TitX7Heua8N6di+aIxF8UYjUj6mNmPo983zSw7gf2Gle+bzvhEREQylZkdEuPpPUVtRCRDTB01tWL+nkX3xBiJiEA9JXSiQVsBcPdna1ufrKrHS3C/183sGUIP++lmdru7z6/axswuAE6MFu9w943Vtg8CVkaL89x9YvXzmFl/YC5wAOFG5jJ3n5lMzCISv7vevotSLwXguIHHcVD3g2KOSCRtfkrlA/gZZnauuxc0Yr/hVfattT6viIiINMkyM1sHPA08Azzt7iua6dwPmlUfv34f1og2IpJBTj34VLrkdWFH0Q7e3fIuO9rtoEtel7jDEslY9dXAf4bwIO/V2pWvT1b14yXqCuAFoBMwx8xuICTbc4Azo+0AG4BrEj24mfUk9LwfGK36C/C6mY2qZ7dd7r6ynu0iEhN3r1E+RyQDGGHQ+ZfMbLK7vxt3QCIiIkJf4AvRDzNbQ5TMJyT0P0jjuevKznsj2lRvJyJtXIfcDpw1/CzuXBiG5di0a5MS+CIxaqiEjlH7Rdya+Euauy8EzgUKCLXwrwOeB+YB3wGygbXA6e6+LolTjAaGVln+OvB2Az8NBihtUteuXenatWvDDVuwN9a/weJNiwHomNuRc0ecG3NEIs3ifcL1dighiX9CzPGISIq1hWu0SIb5HfAmIRFe/lzcH5gG/BNYYWYrzOwWM7vQzPql6LwNPYM39jld3fNFMkzVMjor96ykS1cl8EXiUl9P+J8luL7ZuPscMxsNfBM4HRhAqFO/EngA+KO7b40xRJE24eyzz447hCar2vv+3BHn0qWdbjokI3wPOAL4EWEg9sfM7Ap3vznesEQkVdrCNVokk7j79wDMLB+YQPhSbiIwhsrk+CDg4uiHma0k6p0PPJNoBzV3b21j3olIC3LyQSfTo0MPtuzZwoziGVx+xOVxhySSsepM4Lt7rYn6utY3N3dfA/wg+iWy3yrq6T3g7s/Ut11EWo/CkkL+tehfFcvTx0yPLxiR5uXufq2ZvQP8A2gP/MXMRgDfcveyeMMTERHJTO6+DZgd/TCz7uyb0B9N5fPoQcBg4FKaXopWRCQhudm5nHvoufz9jb8DYTDbcQPGxRyVSGbSG3kRqdOcOXOYM2dO3GEk7eHlD7NlzxYABuYP5LhBx8UckUjzcvd/AScAHxGSAV8DHjUz1d0QaeVa+zVaRAJ33+ruD7n7t9x9LNAbOAe4HSiJmjW5FK2ISDLKy+hMYhJr31xLSVlJA3uISDoogS8iddqwYQMbNmyIO4yk3f7W7RXzF425iCzTf/Ik87j7S8DRwELCw//JwItmNjjWwESkSVr7NVpE9mVmHczsJOC7wPcJA91mxxuViGS6CQMn0KdzH/rQh/ySfOaumBt3SCIZSdksEWmTNu7ayGPvPVaxfNGYi2KMRiRe7v4hMI7wub4Bw4FXzGxCrIGJiIhkKDPLM7PjzOynZvYssBX4L3Al8CkgN2q6CPgjoIEvRKTZZWdlc/7I8yuWb3zxxhijEclcSuCLSJt099t3V3zeN67/OA7ucXDMEYnEy913AWcBvyUk8XsCj5vZZbEGJiIikgHMLMfMxpnZNWY2FygAngKuBcYDeYTr81LgJuA8YD93HxOV13korthFJLN946hvVMw/seIJXl37aozRiGSmOgfBMbOn0nROd/cT03RsEREA7lh4R8W8et+LBO7uwA+iwW3/SkgW/B3QXbiIiEh6FQAdovmq9eyXA09Hv2fcfWNzByYiUp8hPYawX6f92Lgr/OfpV8/9ilnnz4o5KpHMUt8o9hMJI92nkqXhmCKSJj179ow7hKQs2riIN9a/AUC77HZMGTkl5ohEWhZ3v9XM3gP+DfQCjow5JBFJUGu9RotksI5UPgu/QOhl/7S7r48vJBGRxhkxYATvvPMOAA8sfYAlm5YwoveImKMSyRwNldCxFP9EpBWZPHkykydPjjuMhN351p0V82cOP5Nu7bvFGI1Iy+Tu8wk1dt9B12iRVqe1XqNFBIBjCCXtfmtmXzQz1XoUkRbt4ikXY8MqHxlueO6GGKMRyTx1JvDdPStNv+zm/ANFJLOUlpUy4+0ZFcsXHabyOZJRjgdOAJ5vTGN3X0FI4v8RuB24o/49REREJEnfIQwmv43w4rwPMBX4G7DMzFab2R1mdomZDYwxThGRWl01/qqK+X+9/S9Wbl0ZYzQimUWD2IpInWbPns3s2bPjDiMhc1fOZd2OdQDs12k/ThlySswRiTQfd58X/TYnsM+OaHC8S9z9knTGJyKp0xqv0SKZzN1/7+5nEQaRPwL4PvAYsIOQ0D8QuAD4B7DCzFaY2T/NbJqZHRhX3CIiEO47Nr25iRMGnwBAqZfymxd+E3NUIpmjvhr40oJ9+OEKnnj6PtZ89D7duvTmiq/8Mu6QpA3avLnROcAW4463KjsQf2HUF8jNzo0xGhERkfRojddoEakYUP6N6HejmWUBhxO+ojseGA90AgYB06MfZvaeuw9r/ohFRCrvO66ecDVPrXwKgFvevIVrJ1xL3y594wxNJCOoB34r9cjjM/jiqiv56Z7/xx1Lb447HJEWYUfhDma9M6ti+eKxF8cYjYiIiIhI/dy9zN1fdff/dfdTge7AOOCfQCmV48mlpE6+mV0U/fSZqogk7ITBJ3DUgUcBUFhayP+99H8xRySSGdQDv5Ua1H84rA3zm3N2xxuMSAtx/5L72VOyB4DR+41mzP5jYo5IJD3MbEL5vLs/W9v6ZFU9noiIiDSPqEzO8VV+5XXwndQONn9bdMyfAY+n8LgikgHMjKvHX81Z954FwF9f+ytXjr+SHh16xByZSNvW5AS+mWUDhwH9gK5Ag4PUursGyWuiYQePhpfC/Ob2RfEGI9JC3LGw8j8tF425CLNUPuuItCjPEB6+nX2v5eXrk1X9eCIiIpIGZrYflcn6E4AhVTdXa74EeDpFp94BdAaWpeh4IpJhJg+bzMjeI1m8aTE7i3by51f+zI+P+3HcYYm0aUk/pJvZAOAnwPlAhwR2dUAJ/CYaOGgoeaVQlA0788rYtGk9vXur7pikVp8+feIOodE+KPiAZ1Y9A0CWZXHB6AviDUgk/ep6Q6U3VyIZoDVdo0UEzKwnMJHKpP3wqpurNV9KSNg/Azzj7ptSGMpaYBjQPoXHFJE2rup9R5ZlcdX4q5j2wDQA/vDyH/jOMd+hc17nuMITafOSSuCb2ThgNpCPEgWxyM7OptfeXNZ1KgZg6dIFSuBLyk2aNCnuEBptxsIZFfOnDDlFA+lIW/ezBNeLSBvTmq7RIgLAR1Q+O1d/hl7Ovgn7j9IYx+OEBP6xwO1pPI+ItCHV7zvOH3U+1z59LSsLVrJlzxb+9PKfuOrTV8UUnUjbl3AC38y6ArOAbkAZcCfwAnAzoXf9nwmf4w0EPkMor+PAXcDclEQtAPQo6lCRwH//gyV8+tOnxhyRSDzcfd/yOYddFGM0Iunn7rUm6utaLyIiIrHLqjL/HpUJ+6fdfUMzxnET8D/AhWb2O3dXKR0RSVhOVg5Xjr+SLz/8ZQBueP4GvvjJL9K7U++YIxNpm7IablLD5UBvQlJ+mrtPd/e/V9k+191vcvcfuvtY4HPAVmAqgLvrLX+K9CjrUjG/5qMVMUYibdWsWbOYNWtW3GE06JF3H2H55uUAdMnrwpnDz4w5IhERkfRqLddoEanwT+BCoJ+7D3X3L7v73c2cvMfdlwNfJnTme8rMPtuc5xeR1qm2+45Lxl7CsJ7DANheuJ1fPPuLOEITyQjJlNAp7+b9urvf01Bjd3/IzDYAzwE3mdnL7r40ifNKNd2zuxNKGMJHBR/GG4y0Sdu3b487hAa5O7+c/8uK5cs+cRkdczvGGJGIiEj6tYZrtIhUcvcvxR0DgJmVjzT5DHAS8B8z+4DwvL4W2NPQMdz9urQFKCItUm33HbnZufz6pF9z1r1nAXDTazfxjaO/wcE9Dm7u8ETavGQS+CMIve8frGN7dvUV7v6ymc0EPk/owf+tJM4r1fRqv1/F/KbdzdpxQzLAojUFbNpeSHFpGYvXFDCyX7e4Q6rV06ue5qU1LwGQl53H98d9P+aIRERERET2ZWbln0zPdvcrYgzlp4TneaKpEcrfDkzgGErgiwgAZww7g/EDxvPch89RUlbC1XOvZuZ5M+MOS6TNSaaETnkWb3W19cXRtFMd+5XXvz8liXNKLfbv0q9ifkvx5hgjkbbosQXrWL1lFxu27WHhhwVxh1Onqr3vLxl7CQd0OSDGaEREREREatWfkCRfGHcghKR9+a/6ckM/EZEKZsZvT/5txfJ9S+6r6GAnIqmTTA/8omi/vdXW7wC6AwfWsV/5p3h1bZcEHdh7MKwL81tMn1FLavXu2r7iLd2mHYWxxlKXF1e/yFMrnwIg27L54bgfxhyRSPMws6fSdGh39xPTdGwREZFM9hHQF4j7we34mM8vIm3M0f2O5rwR53HfkvsA+P4T3+fZ6c9ipnd+IqmSTAJ/LXAI0LPa+hXA4cCRdew3rAnnlFoM6DesMoGfsyveYKTN6d21HQWEgZI3ba/+vq5lqNr7/gujv8Dg7oNjjEakWU2k8vP3VLE0HFNE0qRfv34NNxKRlmQJIYE/KM4g3H1enOcXkdapofuOX534Kx5c+iDFZcU89+FzPLTsIc4aflYzRSfS9iVTQqf8k79Dq61/ifDwf5qZ7VM/z8y6EWrfO7AyiXNKLYYOGV0x/3H7ohgjkbaod5f2LPcBLPcBLbIH/oINC3jk3UcAMIyrxl8Vc0QizS6Rz931SbxIG3PSSSdx0kknxR2GiDTevwjX26lxByIikqiG7juG9BjCV4/8asXyD5/8IcWlxXW2F5HEJJPAn0e48ZhYbf2MaNoOeNbMvmJmp5jZV4DXgfIRV+sa/FYSNHjwMHJLw/yOvDI2f7wx3oCkTendtV3FfEvsgX/9/Osr5s8ZcQ6H9q7+TlGk7XL3rDT9agxELyIiIilxB/A88Akz+21DjUVEWptrJlxD13ZdAVi+eTn/eOMfMUck0nYkk8D/TzQdZWYjy1e6+yuEJL4B/YA/A49F00FRs9XAjckGK/vKzc2l597ciuV3li+IMRppa/br0p5P2HI+YcvZtKMQ95ZTWWPpx0u5f8n9FctXj786xmhERESa38yZM5k5c2bcYYhII7l7GXAG4Rn522b2spldbGYHmVm7BnZPKzMbYGafMbOpZnZRnLGISMvUmPuOXh177fNs/tN5P2VH4Y50hyaSERJO4Lv7asLAN6dRcwCey4B/RvPVP81/HTjR3bcmHa3U0LOoQ8X8ilVLYoxE2ppO7XNobyXkUkxRSRnb97Scz99ueO4GPCrVfdohp/GJvp+IOSIREZHmtXv3bnbv3h13GCLSSGZWCnwMTCI8Hx8B3AK8C+w2s9IGfiVpiOl/zGwpoczto8BdwK21tPuRmT1uZrekOgYRaR0ae9/xzaO/Sf+u/QHYuGsjv3/p9+kOTSQjJNMDH3ef5+7/jZL5VdcXu/uXgIMIyfyrgW8B49z9SHd/v8kRyz66l3WumF/7kf7xSmrl5lT+J2Lj9pZRB39VwSpmLJxRsXzNp6+JMRoRERERkUapPu5MbOPVmFlnM3sC+CtwSCPO8RJwEnBx1a/wRUSq65DbgeuOv65i+fcv/56dRTtjjEikbchJx0Hd/QNqeXMvqdczqzuwDoD1Wz+MNxhpc3Kzs9hbHAZa2LRjL4f06RJzRPC7F39HqYeYjh90PMf0PybmiEREREREGvQs0FJqUt4NnBjNrwDuBboDl9fR/ilgA7A/cDqwON0BikjrNe2waVw37zpWFqxky54t3PzazXzv2O/FHZZIq5ZwAr/KZ3ML3P2PKY5HEtSzfe+K+U27NsQYibRFeVV64G9qAT3wt+3dxq0LKt8NXjn+yhijEWn5zCwbOIwwNk1XoMFBat39jnTHJSIikmncfWLcMQCY2WnAZwkvE+4AvuTuJWZ2JnUk8N3dox77FwLjgV83V7wi0vrkZOVw5fgr+fLDXwbgxhdv5OtHfZ32Oe1jjkyk9UqmB/50wsX+rdSGIsnYv0s/iKohbi75ON5gpM3pc+AAygr2MG3IIIbs37nhHdLsljdvqfj8bkTvEZx80MkxRyTSMpnZAOAnwPlAhwaaV1X+MC8iLdzgwYPjDkFEWqfyQWqXA190jz5tbdhbhAT+oWmJSkRatETvOy4eczHXzbuOtTvWsmHnBm558xa+euRX0xSdSNuXTAJ/M9ADWJviWCQJfXsNCh8zAltrjCks0jRf/vzkuEOoUFpWyp9e+VPF8hVHX4FZykqBirQZZjYOmA3kk8J6uSLSshx33HFxhyAirdMxRC/sE0jeQ8VTJ/unPiQRaekSve9ol9OO7x37Pb79328D8Ovnf82XPvklcrNz0xGeSJuXzCC2K6Npr1QGIskZeODQivktObtijEQkvR5e/jArC8J/fnp06MG0w6bFHJFIy2NmXYFZQDcqe9OXfw7vwJ+ArwO/ARZWWT8DuAS4tDnjFRERkWa3XzR9L8H9iqJpXgpjEZE27Euf/BK9OobU4YfbPmTGwhkxRyTSeiWTwH+A0KPvtBTHIkkYevCYivnN7eKvUS5ty1133cVdd90VdxhAGL2+3P988n/omNsxxmhEWqzLgd6EpPw0d5/u7n+vsn2uu9/k7j9097HA54CtwFQAd7+92SMWkaS0pGu0iCTOzIaY2ffM7D4ze87M3oqmM6P1Q9J06r3RNNFusOWDr21NYSwi0kokc9/RKa8T3/nUdyqWf/XcrygtS+TDHxEpl0wC/6/AGuCzZnZ2iuORBA0Zcig5ZWF+W7sytmxRHXxJneLiYoqLi+MOg4UfLeSZVc8AkG3Zqp0nUrdTo+nr7n5PQ43d/SHCQHYG3GRmw9MZnIikTku5RotIYsysp5ndCywjDAZ7NqGszahoek60fpmZ3WNmPVMcwrpommgt+2Oi6YoUxiIirUSy9x1fPfKr5LfLB+DdLe9y35L7Uh2aSEZIOIHv7gXAmYQa+PeY2W/MbGDKI5NGyc3Npeeeys4Ty5ZrbGFJrXVb9/CTfy/ka7e9SlFJWSwx/OGlP1TMnzPiHPrn948lDpFWYASh9/2DdWzPrr7C3V8GZhIGu728xh4iIiKSEtFz85vAuYRncavnlwWcB7xhZqm8+Z0XHf98M2tUPsDM9ie8WHDg6RTGIiJtXH77fL5x1Dcqlq+ffz1lHk9eQaQ1SziBb2ZPATcCBYRBcL8DrDCzD83sRTN7qoHf3BT/DRmvZ3H7ivn3Vi6OMRJpizbvLOS/C9fz+sotfLyj+cs0bdq1ibvervxU71tHf6vZYxBpRbpF09XV1pd3l+lUx37l1+ZTUh6RiIiIECXL/wP0IyTQ1wPXAkcD3QklbboDR0Xr10Xt+gOzzSxVA9PfEU2HAL9sRNwdgH8RXvSXAv9MURwikiGu+NQVdMoNjyFvb3ybh5c/HHNEIq1PMiV0JgLHASMJb+Ah3FgcSLjZOK6e38ToJynUo7RzxfyaDe/HGIm0RXnZlf+Z2LRjbz0t0+Nvr/+NwtLw4uDIA47kU/0+1ewxiLQi5QPMVf8/645oemAd++1pYLuIiIg0zYXAaMIz9MPAcHf/pbu/6u7b3L00mr7m7r8EhgOzo31HA9NSEYS7v0T48s6AH0Q194+mWk18MzvQzC4hfDEwMYr7r+6ekhI6ZtbPzH5tZkvMbKeZFZjZm2b2YzPr3sRjTzQzb+TvtlT8PSJSt14de3H5EZUf+v7i2V/g7vXsISLVJZPAh5qf99W2rrafpEH3rMr7m48KPowxEmlrhg4diuX3rVjetL15e+AXlRZx06s3VSxfcfQVpK7zkUibtDaaVq+XW/6wfWQd+w2LpjmpCCLND+W5ZvYZM/ttNNjfJjMrNrNtZrbQzP5kZqNS8XeItGRDhw5l6NChcYchIo13TjRdCZzn7jvqa+zuO4EpVF7Dp6QwlkuBlwnP6OcALwD3EnXQM7MS4EPgH8AhUbu5wHdTcXIzmwS8DfyAUIu/E5APjAV+BrxtZoen4lwikhpNve/47jHfpV12OwBeXfcqj777aKpCE8kIydTAz2rir0b9XWmaXu32q5jfuGt9jJFIW3PsscfSfeDIiuVN25u3B/59i+9j/c7w73Tfzn05b+R5zXp+kVZoYTStPjDdS4SH79Oqj1tjZt0Ite+dkFRoknQ+lJtZb0LJgTmEJMI4oBfhxUNXQg/FrwNvmVmDZQFEWrNjjz2WY489Nu4wRKTxPkm41t7q7o3qFRO1u4VwDf9EqgJx992EL+T/QCizV73TXdX6/MWEErqnuXtJU89tZocB9xPK/u0GfgKMJ/Ty/z9CmZ4DgYfN7ICmno/wsmJ0Pb8fpeAcIm3e/2fvvuOrqs8Hjn+e3CQ3exDC3lNZAgoqIFJHFRdKWycq4mrVqtVqnVWxP0fVqnWUWqvUiThwiwMUREARRES27BFmyJ73Pr8/zs3NIPPmJjfjefs6r7O+55wnGnPOec531Pe5o2N8R6YMm+Jfn/zeZLYc3BKM0IxpFYJS086EVrv4Ts5jDnCgaF9ogzEtTmpC6RgLexuxD3xV5clvSwevvWbENUS6Ihvt+sY0U/NwBsYbV2H7KziJbTcwX0QeAn7B6f/2z0A7qh/8tlbKvJTH4ryUP4xTYy8cmABcT+lL+ZGqurOOl3BT2rpgJfAesAhI813zBOBGnA8Gd4iIV1Xvrs/PZIwxxgRJW998XR2PW++bV2xdVy+qWgj8SUQexqndfxzQA+cemo3Tqm8eMENVtwfx0k/g3LM9wHhVnV9m3zwRWQa8DHQA/oaTgK+PTaq6sp7nMMYEwd1j7+bt1W+zJ2cP+3L3cfYbZ7PgsgXERlY1TJcxpkSgXeiYJqRjSg//8gEyQheIaXGmT5/O/hWf+9cbswb+11u/ZsnOJQC4XW6uPvLqRru2Mc3Y+775IBHxN59R1e9wkviCM3je08AnvnkPX7FtODXs6qPiS/lUVf1GVeep6k3AZF+5kpfyulLgC2C0qg5W1btU9SNVXaqq81X1Xpxugkq+Zt8mIj3r8wMZ01RNnz6d6dOnhzoMY0zt5fjmSdWWOlRJ+dy6HCQiCb6p2hbwqpqmqv9U1d+p6ghV7aeqw1X1TFV9NJjJe18LvF/5VqdXSN6XxPMKMNe3eomItKtYxhjT+ILx3NExviNvn/s2EWHOkBvL05Yz5f0p1h++MbVgCfwWoEeX/v7lA66cakoaU3flB7FtvBr4jyx8xL98yRGXkBqb2mjXNqa5UtVtOC/GpwGZFXZfDvzXt1xxjJqlwImqmh7otRvjpVxVd6jqyaq6sJoy64GpvtVw4Oy6XMMYY4xpIJt989PqeFxJ+c3VFarEQeAAcHrZjSJyiW/qUsfzBcPEMsv/rbKU020QgAs4q+HCMcY0tjHdxvDMac/412f+PJOHFjwUwoiMaR7qncD3jU5/iYg8KCLTRKS6G7FpAH16lY7Vty+qcQcsNNsXAAAgAElEQVQZNS1fRHiZBH4j1cBftXcVH677EABBuPnYoIyXZUyr4Kvt/qkvmV92e5GqXgn0wknm34HT3cxoX427X+p56ab0Uv5lmeU+DXQNY4wxpi4+w/lofpaI/KamwgAiMhGnCzoFPg3gmlLJtunAizh98je2Mb55LrCkmnJl7+NjqixljGmWrjzySq456hr/+p1z7+SDtR+EMCJjmr6AE/gi0k5EXsMZ8O5FnMHqrqK0eXzZss+KSKGI1Dc5YCrRp89AXF5nOcPtJTPjYGgDMi1KRIUa+I3RvO3RhY/6l8/qfxb92/avprQxpi5UdYuqvqiqD/mazC8K0qmb0kt52QEzPA10DWOMMaYungHyfMuvi8gDItK2soIikiIi9wOv+zbl+46vi5KH9mq70GlkA3zz9dUNiOsbIyerwjGB+j8R2SwiBSKSLiIrRORpERlcz/MaY+rhiVOf4PjuxwOgKBe9cxGr964OcVTGNF0BJfBFpC/wA3AeTvP0siPWV+ZpX7keIjIukGuaqrndblLyS8cjXrXmhxBGY1oaV5gQE+k89xcWe8nMK2rQ6+3M2skrK17xr98y6pYGvZ4xLYmIvOCbrg/B5UPxUl6V48ss25uAMcaYkPP1JX8TznuzC/gLsENEvhORV0Tk3775t8BOnJZyETiJ+D+p6o46XrKkK71OwfkJ6kdE3JQO5FubfvVLWhJ2reelRwHdcT7uJwGDgWuBFSLypIhE1PP8xpgARLgiePN3b9I9sTsAWYVZnDXjLNLzAu7R05gWLbzmIuX5bnAfAh19m17GGRivL06i/hCqukpEVgGHA6cCXwUSrKlaSmE0e2KcfMimLas45uhf1XCEMTUbONAZA/OKfqlEusJITXDjDm/YSjz//PafFHmdjwTHdjmW0d1GN+j1jGlhJuO86P/YmBcN8KV8APV/Ka8sllicroEACoD3gn0NY5qCknu0Mab5UNV/iwjAP4BonAT9kb6prJLKcXk4yfvnArjcWmAkcJWIvKWquwOLOmjiyyxn16J8SZm4AK+XBrwDLAA2AkU4HzNOAaYAMcD1QCKV9CJQQkRqat6eGGB8xjQrDfHckRqbyrvnv8voF0aTW5TLhgMbuO6T63h14qtBv5YxzV2dE/g4/eb2xUkQ/KHkYUJEYmo47iucl/WjA7imqUGyJ5aSCo3bdm0IbTCmxRgxYoQzb6TrZRVkMe37af51q31vTJ3tB9oAda2lV1+N/VJenUeBbr7lp301/itlL+WmOSu5RxtjmhdfEn82cANwDk7t8Iq2AG8DT6nqlgAv9S5OAn8QTk3/3Tgftks8JyJPBHBeVdXeARwXXWa5sBblS2KNrrZU5ZYA3VS1YtPhZcCHIvI08AXQBbhURN5U1Y8CuI4xrUZDPXcM7TCUFye8yHlvnQfAaz+9xqTBkxjfd3yDXM+Y5iqQBH7JIHVf1rEmwM++eb8ArmlqkBKWjFPJAHYeCPQZz5jyioqcZ96IiMZpWfqfZf8hoyADgH4p/Tirf0ONb2lMi7UJJ4FfaZ+6DagxX8qrJCJTgN/7Vn8G7g7m+Y1pShr7Hm2MCR5fUv4m4CYRScVp3R6PUyNrl6ruDcJlngB+izNYrVDagh7fersAzxvogFh5ZZYjqyxVyl3JcbWiqjk17F8rIpMo7RngeqDSBL6qJlV3Ll9lAPvgb1q8hnzuOHfguby39j1e++k1AP7w0R9Yec1K4iIboq6PMc1TIH3gD8a5ab9bx+P2++bJAVzT1CAlMtW/vC83LYSRmJbk1Vdf5dVXG6f5WpGniMcXP+5fv/nYm3GFNaUxt4xpFmbhvJSf1sjXbbSX8qqIyHigpAnPPmCiqlZ7flVNqm4CMoIVnzHB1pj3aGNMw1HVvaq6QlW/8c2DkbxHVfOB44A/A3OAdTg1+8F5n9/rW6/rtDXAkLLKLNcmK1dSpjYt++pMVedROk7OWBEJaHxAY1qLhn7uePyUx2kT3QaALRlb+OuXf22waxnTHAVyk2rjm++q43HVDXJr6ik1vrRCxb7CoDzzGdOoZqycwfZMp+vsdrHtuOSIS0IckTHN0r9w+qA/XUQm1lQ4iEL6Ui4iY3G6GojASbqfoqrrgnFuY4wxpq5E5B++KaSDVahqnqr+Q1VPVtXDVLVnmd1XqmrPQKYAYynA+cAOTtc1NSkps63aUvVT0ktAFJDSgNcxxtSgXWw7Hj+ltELfk98+yZIdS0IYkTFNSyAJ/JLaaPHVljpUyQ14f7WlTEA6pZQ+R6VbhUETZKt3ZPD7F77jN0/M5443lgf9/KrKIwsf8a//ceQfiQqPCvp1jGnpVPUgMAGnD/wZIvKIiFTWt26wrxuyl3IRGQl8iNMdTw5wuqouq+95jTHGmHq4EaeP+yr7iheRF3zT0MYLK+RW+eZ9RaTK7nxFpBOQUOGYhhBod0DGmAZw8ZCLObnXyQB41cuVH1xJkafiUBbGtE6BJPA3+eZ1HcHiJN98ZQDXNDXo1rmvf/mAq9ou/4ypM68qy7eksyM9j+0HcoN+/s9++Yyf9vwEQExEDH846g9Bv4YxrYGIzAUeAw7ijHNzE7BRRLaKyCIRmVvDNKcel2/0l3IROQKYjVOpoAA4W1W/qc85jTHGmEYyGbiU0oHXG8tlwBScAV0b2wLfPIbq8wnjKjmmIZS0kCjAKhoaE3IiwrQzphEd7gyT9ePuH3ls0WMhjsqYpiGQBP7nON3hnC8iterPXkSOAn6N84X70wCuaWrQr9cQ//J+d0E1JY2pu9SE0trwe7OC//v18DcP+5cvH3Y5KTHWgtWYAI0Djsd5IS2pVSZAZ2Ckb19V0zjKvzDXVaO+lIvI4TjPJMlAEfA7Vf0i0PMZY4wxrYGq/s83bQ/B5d8ps3x5NeWm+OYe4P2GCEREjgMG+FYXqKq3Ia5jjKmbXsm9mPqrqf71++bdx4YDG0IYkTFNQyAJ/H/jfKFOAl4XkejqCvtesN/CSSBkAi8EcE1Tg779BhPme+RIj/KQnZUZ2oBMizB06FCGDh1Km9hIwnyjWKTnFFJYHLzn2+92fMeXm78EwCUubjr2pqCd25hWSipMlW2rbKqvRnspF5HewBdAqu88k1T1g0DOZUxzVXKPNsaYhiAiA0XkKhG5RkRGB+OcqroU+Mq3OtmXRK943YuAE32rL6nqngr7e4iI+qavKjk+WUR+VV0cItIfKDsa5zO1/ymMaZ0a87njxmNuZHjH4QDkF+dz9YdXo2o9XpnWrc4JfFXdBkzFedk/GVgtIn8BjigpIyJjReQiEfkf8ANOs0AFblZVyyw3ALfbTUp+aY8Fq9f+GMJoTEtRcpMOd4WREuf2b98XxFr4ZWvfXzD4Anok9QjauY1pbVQ1rJ6Tqx7XbvCXcl+ZrsAcoBPOs8Xlqjoz0LiNaa4sgW+MCYSIdCozyO6QKspMA1YA/wKeAuaLyJe1bYFfgxtwxqxxAbNF5G4RGeXLITwG/M9XLg24K4DzJwJzReQnEblfRM4WkZEiMkxEzhCRp3C6D+rqKz9DVWfV82cypsVrzOeO8LBw/nPmf3CJ82oyd9Ncnl3ybKNc25imqso+aqujqg+KSDucm2834IGSXb75l2WKl9Tqm6qqVvu+AbUpjGJvTDYAv2z+mRFHHZI7MaZOcnOd/u5jYmJITXD7u8/Zm5VPp+RqG9/Uytp9a5m1uvR5+dZRt9b7nMaYkLoBWAjE4ryUP4STbA/HGVz3Bl+5gF7KRSQFp+Z9ycC8zwBLRWRQNYflqOqmavYb0yyVvUcbY0wdXIAzyG4O8NeKO0XkeuCqSo4bC8zEqcQXMFVdISK/BV7HadU/1TeVtQOYoKo763GpQb6pylCAp4E/1+MaxrQajf3cMbzjcG469iYeWfgIANfPvp5uid04s/+ZjXJ9Y5qaQLrQAUBV/wScg/Nlvrom+T8DZ6nqffWO1lSrjSfWv7x15/oQRmJaipkzZzJzplOxNTW+TD/4mcGpgf/IwkdQ33e/0/uezuD2g4NyXmNMaKjqCuC3OIPoxuC8kH8DzMMZUNeF81J+RoAv5YOBfmXWrwN+qmF6MZCfxZimruw92hhj6mCsb/6lqmaX3eEbhP4O32oB8CjOvXYJzrv9CSJyWn0DUNXZOPf0R4DVOB8TMoEfgXuBwb6WfYHYCfwOeAyYD2z0nbsIZ6Dab337Bqrq9apaGPhPYkzrEYrnjnvH3evvSserXs576zwWb1/cqDEY01QEVAO/hKq+B7zna3p3HNADp8laNs4L+jxV/b6+QZraaROWDOwGIC19S2iDMS1OakJpFzp7M/Prfb4dmTt46ceX/Ou3jbmt3uc0xoSeqs4WkcHA9cAZOC31PMAmYBbwT1VND2GIjeJgTiHr0rKIjnQxuGtSqMMxxhhjSvTCqX3+bSX7TgDa+fb/XlX/ByAi04G1ON3XXQh8XN8gfIPo3uqb6nLcZqoZu8eXkH/LNxljmrGYiBg+uvAjRv13FJsObiKvOI/TXzudb6Z8w2FtDwt1eMY0qnol8Ev4atytCMa5TOBSItv6l/dk16e1oTGHKlcDPwh94D+x+AmKvEUAjOo6ijHdxtT7nMaY8kSkM06f84cDyUCEqlY3wGxQNOBL+VfV7W8qPl2xk3ve/gmAcYe346Hzh4U4ImOMMSFSm1EXG3tkxpKXxs2V7DvBN8+kzCCvqporIq8BtwBHNWh0xhhTRoe4Dnw66VNGvTCKfbn7OJB3gFNfOZWFly+kU3ynUIdnTKMJuAsd0/S0i+vsXz5QuC+EkZiWKJg18NPz0pm2dJp//bbRVvvemGASkXa+F+1NOF3I3IrTn+3kSso+KyKFIvJL40bZcvVIjfMvr0/LCmEkxhhjQuxdEfFUNvn2S3VlKkzFQYqpjW+eW8m+0TgfFOaqasXrrfXNO2OMMY2ob0pfPrrwI2IinP73t2Rs4bRXTyMjPyPEkRnTeCyB34J0SOnuXz6g9ofMBFdqQvBq4D+75FmyC50uNwekDuD0fqfX63zGmFIi0hf4ATgPp6VdyZg0VXnaV66HiIxr8ABbgZ6pcbjCnH/lO9LzyMkPVs7FGGNMM1TVWHFKae376saUKzsFQ0mf74nlghSJorR2/YJKjit5wXRXss8YYxrUyM4jeet3b+ESFwA/7v6RiTMnUlAcnPH5jGnq6t2FjoiEAb1xmuZH1VAcAFWdH4TrdgH+CJyJ079uMaX96z5V3/51RaQrMBIY4ZsfCST4dt+nqvfW5/wNoXunfuCreH8gPCe0wZgW4aijSlvI9usQzyMXDiM1Por2ibX6X71SeUV5PPntk/71v4z+C2Fi3xKNCQYRiQA+BDr6Nr0MvAL0xUnUH0JVV4nIKpxudk4Fvmr4SFu2yPAweqbGsmG386Fy/e4shnZPDnFUpqUpe482xjRJNSXcQ9Ul3A6c54JhwPQy20/CSc4rsLCS40oGdMmuZJ8xpoVrCs8d4/uO5/mznuey9y4DYO6muVw862Je/83ruMJcIY7OmIYVcALfV0vvzzj95NXlK7zW57q+a58KvE7pQ0SJob7pKhGZEOjI9SLSncr7BGzS+vQa6B+JYL+7/oOMGjNo0CD/cmJMJMf1b1fvc764/EX25u4FoGtCVy4YdEG9z2mM8bsc56VcgT+o6nMAIhJTw3FfAQOAoxs0ulakX4eE0gR+WqYl8E3QDRo0CFWl2OMl3GUfwo1pSlS1Kf9PuRjoB0wSkX+q6i8i4sJ5twc4CHxfyXGH++ZbGyFGY0wTUzY3EEqTh05mZ9ZO7px7JwBvrnqT5Khkpp0xDZEmP1SWMQEL6MFCRO4B5gDjcWrd17bJX72b/onIEJwR5ZNw+u27BxgDjAMeBzw4/fJ9KCKBjmhRNkYFNgD1bjXQ0Pr3G4L4GmEeiPKQm2OVI0z9ZGRkkJERvO6Y9ubs5f759/vXbz72ZiJcEUE7vzGGib75lyXJ+1r62TfvF+R4Wq2+HeL9y+usH3wTZF+sTONPL37N2Q/P5r2l20MdjjGmeXnRN08ClojILOBHYCzOu+8rquqp5LjjfPt/apQojTFNSrBzA/Vx+5jbuX7k9f7155Y950/oG9NS1bkmvIicgpM0L7EVmIfTFK8xOp96AojFSdSPr9AdzzwRWYbTZUAH4G/AlACukQXcBXwHfK+q6b4WB1/WJ/CGFh0dQ5v8cPZHO33trl23gmHDRoU4KtOczZo1C4DJkyfX+1yqypUfXEladhrgjCZ/xfAr6n1eY0w5g3Fert+t43H7fXOrJh4kZRP4NpCtCbbdGXl4tiyhO7B2V9dQh2OMaUZUdZ6I/Ben1V4ScFaZ3TuB+yseIyI9cLqWVeCbho/SGNPUBDM3UF8iwuOnPs6B/AO8suIVAB5c8CAp0SncPOrmEEdnTMMIpCub63xzL04zuydVVaspHzQiciTwK9/q9Mr60lfVV0TkMpyufS4RkdtUdU9drqOq+4H/q3fAIZBS4PYn8Nes/8ES+CbovF7lYG4h7ggXse7a/wl5ftnzvLf2Pf/6C2e9QGxkbEOEaExr1sY331XH46y9aZCVTeBv3JNt3ZyYoDqsUwLf+pbX7MoMaSzGmGbpKmAlcAXQB6dl++fAX1R1XyXlry2z/GnDh2eMMdULkzBeOOsFDuYf5MN1HwLw58//TJvoNlw27LIQR2dM8AXyJjkS58v7G6r6RGMl730mlln+bzXlXvDNXZSvUdDidfG09S/P/n5GCCMxLdETs9cw9m+fc9ojXzFnZVqtj1u3fx03fnqjf/26Edcxvu/4hgjRmNaupF1rfLWlDtXFN99fbSlTa4kxkf4BvwuLvWzdnxviiExL0q9Dgn95455sCou9IYzGGNPcqONJVR2sqtGqmqKq56vqlioOeQzoCfRU1U2NGKoxxlQpwhXBzN/O5Lhux/m3XfHBFcxaPSuEURnTMAJJ4Cf65rODGUgtjfHNc4El1ZQr29XNmCpLtUAn9TzTvzzf8z0eT2XdFxoTmEhXGMUe55vd3qzaDZRc5Cli0juTyC1yklcDUgfw95P/3mAxGtPKlbxUj6jjcSf55iuDGEurV74ffKslbYInPjoCd7gLgGKPsnGPddNkjGk4qpqmqltU1QawNcY0KdER0XxwwQcM7TAUAK96Of/t85m9IRQpS2MaTiAJ/JJqt4XBDKSWBvjm61W1uKpCqroTpx/7sse0ClddfDcxRU5PCJsT8vnks5khjsi0JKkJbv/y3szaDXlx37z7WLLT+d4WERbBqxNfJToiukHiM8bwOU53OOeLSK36sxeRo4Bf47Sus2bxQdSvbD/4uyzBaoIrxu3yL6/ZaR+IjDHGGNM6JUYlMvui2fRp0weAQk8hZ7x2Bs8ueTbEkRkTPIEk8EsGrRkYzEBqIiJuoKR/mO21OGSbb96qRvZKaduOYzK7+ddnzH0qhNGY5u7YY4/l2GOP9a+nJkT5l/dm1ZzAX7B1AQ8ueNC//sCJD/i/jBtjGsS/cQaUTwJeF5Fqv5aJyOHAWzhJ/0xKu6AzQdC3TDcn62wgWxNkHfsMYbN2AiyBb4wxxpiGVTE30NS0j2vP5xd/TtcEJwXoUQ/Xfnwt1318HcXeKuv/GtNsBDKI7VPAecClIvKgquYFOaaqlO3PN7sW5UvKxDVALLUmIgdrKJJYw/46O6XPb5ib/g8A5usyPB4PLperhqOMOVT//v3LrXdMKs0FrtqRUe2gjFkFWUx6ZxJedfrlPaHnCdx07E0NF6wxBlXdJiJTcQZiPxlYLSL/AvzNZ0RkLM7H7V/j3M8jcWrf36yqlgUMorJd6KxPy0RVEbHxgk1wDB8ykOnLncdwG8jWGBMIXyu8U3BarScDUdUfAThd6J/YoIEZY5qcirmBpqhHUg8WX7GYCTMm8P3O7wF4ZskzrNu/jpm/m0lSVFKIIzQmcHWuga+qi4F7cF7+3xGRoCegq1C2FmFtuu8pqR7c6vrquOriO4j1daOzLb6A9z96JcQRmeZq37597Nu3z7/et308beOdPGB6TiE/bEmv8ti/f/N3tmQ442AlRyXzv7P/R5gE0ujHGFMXqvog8CROrfpuwAM49+2SQee/BF4CJuEk7wGmqqrVvg+yTknR/m5ODuYW1arlkjG1leouJBYngf/L7iyKbCBbY0wtiUg3EfkK+BaYCpyPk8g/voZpnG8yxrQyFXMDTVWn+E7MmzyPcwee69/2+cbPOeb5Y9hwYEMIIzOmfuqcTfPV3PsaeB3nJr9eRB4Vkd+KyDgRGVvTFGCsZWv6R1ZZqlRJbcPGaiFQKVVNqm4CMoJ9zaTkFI7N6u5fnznP+v0ygfnwww/58MMP/ethYcIJA9r7179YmVbZYezM2sljix7zrz9+yuN0SejScIEaY8pR1T8B5wArcBL5VU0/A2ep6n0hCrVFCwsT+rYvrYW/wbrRMUE074tPGR7hfCgv8igb99amgaoxprUTkSRgHnAc1T8jVDYZY1qpirmBpiwmIoYZv5nBPcff49+2dv9ajn7+aOZsnBPCyIwJXCDVYb/Cqb13Pk5tvrbAn4A3gDm+fdVNcwOMtexbb226xSkp0yrfZk7rd55/eX7YcjweTwijMS3JSYM6+Je/Wr2bYs+hNf7u+fIe8oqdb2dDOwzl4iMubrT4jDEOVX1PVYcCQ4E/Ao8BzwNPALcAI1V1sKo2jyfxZsr6wTcNKSbSaeHhChN2pOeGOBpjTDNxK1BS22sTcCXQG4hS1bBaTNY3qzGmyRMR7h13L6//5nWiwp3ewQ7kHeDXr/yaB75+wN/VrzHNRaD9WVT8Ct/gX+5VtQAoaa9Tm6q8JWW2VVuqhbp80m3EFzr/eXfGFTLrPesZwQTHoC5JtPMNZpuRW8TSTQfK7V+1dxUvLC/9fXvk5Ees6xxjQkhVV6jqM6p6i6pepao3qepjqvp9qGNrDfpV6AffmGBqnxTNC1cdw9w7TuSEAR1qPsAYY+As33wrMEJV/6uqm1S1Nt3UGmNMs3L+oPOZN3keHeKc5ySverlz7p2c+fqZHMg7UMPRxjQdgQxiG8pm9quAsUBfEQlX1UqHkhaRTkBCmWNanYTEJEZl9+TTNr8AMHPBv/ntxCtDHJVpCcLChBMGtmfGIqfZ/hc/p3F0n7b+/bd9cZv/a/YpvU/hpF4nhSROY4xpCsoOZGs18E2wxUS6GNC5sYajMsa0ED1wWtL/S1Ute2WMafFGdh7JsquWcf7b5zN/y3wAPl7/McP/PZy3zn2LozodFeIIjalZnRP4Ie4ndwFOAj8GGAEsqqLcuArHtEqnHX4+n+7+PwC+Dl+Bx+PB5bIWj6b+ThrYgbe/28oxfdoyul+qf/u8zfP4YN0HAAjCwyc9HKoQjTGmSejZLg5XmODxKtsP5JJbUEyMO5D6E8YYY0xQFALRwMZQB2KMMY2lY3xH5lwyhzvn3MnfF/4dgC0ZWxj9wmieOOUJfn/U7xGxoT5M09Xc3iDfAe7wLV9O1Qn8Kb65B3i/oYNqqqZcdCt/ffBBMtxe0mKLmPn2NC4499pQh2WakbFjKx9zemCXRD659VfERUX4t6kqt3x+i3/94iMu5ogORzR4jMaYqolIGE6/tslAVG2OUdX5DRpUKxMV4aJ721g27slGFX7Zk83grkmhDsu0AFXdo40xpga/AMOBNqEOxBjTfLSE547wsHAePvlhRnUdxaXvXkpGQQaFnkKu+fgavtj0Bc+c9oy/qx1jmppm1TG1qi7FGUQXYLKIHFexjIhcBJzoW31JVfdU2N9DRNQ3fVXx+JYkLj6BUTm9/etvL34+hNGY5qhXr1706tXrkO0iUi55D/DmqjdZsnMJAG6Xm/t/dX+jxGiMOZSIjBORD3EGcl+D88G7pkHm6zPQvKlGuW50dlk/+CY4Su7RqsrezHy+XruHtfb7ZYyp2Rs449KdEupAjDHNR1W5geZowmETWHrVUoZ2GOrf9s7qdzj8mcOZvnw6qhrC6IypXNAS+CLiFpEOItItWOeswg1ADuACZovI3SIySkTGishjwP985dKAuwK9iIicKiKTSybg1DK7h5bd59vfJJ05eJJ/+euIlRQVFYUwGtPcpKWlkZaWVmO5Qk8ht8+53b9+w9E30C2xof8UGGMqIyL3AHOA8Ti17ht8oHlTvfID2Vo/+CY4Su7Rry3czJmPzeOW137gg2XbQx2WMabpexZYDUwQkfGhDsYY0zzUNjfQXPRu05uFUxZy9ZFX+7cdzD/IZe9dximvnMKm9E0hjM6YQ9WrCx0RORwnof5roLtvs1Y8r4ich9OEP01VX6jPNVV1hYj8FngdSAKm+qaydgATVHVnPS51G3B8Ffsm+KayptfjWg3m0gtu4o6/TeVglIc9McW8PvNpLrnoT6EOyzQTs2fPBmDy5MnVlnvq22fYmO50o5kclcxtY25r6NCMMZUQkVOAe8ps2grMw7kvFoQkKEPfDgn+ZRvI1gRLyT263+jT/dvW7LQa+MaY6qlqroicAXwEvCMi9wPPqGpGiEMzxjRhtc0NNCfREdFMO2MavxvwO6768Cp/TuPzjZ8z6F+DeOCEB7hu5HW4wmwsSRN6ASfwReSvwN04tfhrqrEXBfwNKBaRj1R1d6DXBVDV2SIyGLgeOAPohtPf/SZgFvBPVU2vzzVaipjYOMbk9eXDqDUAvLHk35bAN0GzdX8OT86dwxOrSmvf3zX2LpKjk0MYlTGt2nW+uRf4M/CkWhvQkCvbhc4ve7LweBVXmDV2MMHRv2PpB6L1u7Mo9ngJdzWrXjKNMY1IREq6y8sD3MD9wL0isg7Yh/MMUR1V1RNrKGOMMc3Gib1OZMXvV/DXL//KE98+gVe95BblcuOnN/LC8hd48MQHGd9nvA1ya0IqoKd7EbkPp4afC+cGvwhYUM0hb1Da7U3FmusBUdXtqnqrqg5Q1ThVTVTVoap6X3XJe1XdrKrim8ZVU25cmXI1TsH4mYS9Qc0AACAASURBVBrKOcMu8y9/mriWOXPfC2E0piU5kJPFv36+Aa+vYu/hbQdw7QgbKNmYEBqJ0xLuDVV9wpL3TUNybCSp8W4ACoq8bNufE+KITEuSEucmNaH092vLPvv9MsZUaxxOS/OhOM8M4FTsOxw4zrevqmmcbzLGmBYlNjKWx055jEWXL2JQu0H+7St2r+D0107n+OnHs3DbwhBGaFq7OifwRWQQcKdvdTkwQFVHA49VdYyq5uP0xwt2w290l066mWEHnBrRnjD467u/D3FEpqV47qep5MlmAEQjufXIZ3GHu0MblDGtW6JvPjukUZhD9LV+8E0DOqxMLfw1NpCtMaZmlY1/Y+PkGGNavZGdR7L0qqVMHTeVmIgY//avt37N6BdGM2HGBH7e83MIIzStVSA18K/xHZcOnKKq62t53Pc4N/3BAVzT1IPL5eLuEx9HfPUrFqak8dyLD4Q2KNPszVo9i399/y//ene9mk07rOscY0KsZGSpwpBGYQ5h/eCbhlS2Gx3rB98YUx1VDavnZJ1BG2NatEhXJHcffze/XP8L1464lvCw0t7H31/7PoP/NZiLZ13M2n1rQxilaW0CSeD/Cqep3XRV3VuH47b65l0CuKapp3POupRfp/fxrz/60wMUFNh4hqZ6J554IieeeGgXl1sztnL5+5f715N1DO04ja/X7CG/0NOYIRpjyvvGNx8Y0ijMIfp1LFsD3xKspv7K3qMP61SawF9rNfCNMcYYE2RV5QZasg5xHXj6tKdZc+0aLhx8oX+7oryy4hUGPDuAi965iNV7V4cwStNaBJLA7+ybL63jcdm+eWwA1zRB8NCUl4kuclo+rk/M4b5HrwhxRKap69q1K127di23rdhbzEXvXER6vjPURLfEbhyXdDuCkFvoYdrc2jbKMcY0gKdwPrJfKiLRoQ7GlCrbhY7VwDfBUPYefVinRP/2dbucgZKNMcYYY4KlstxAa9G7TW9enfgqP1z9A+P7jPdv96qX1356jYHPDuSCty9g1d5VIYzStHSBJPBLmszVtZptyZuFvbWGyNAjjuHcwjH+9eczZ7A7bUcIIzJN3bZt29i2bVu5bffPu58FW50xq13i4rWJr3H5cUP8+2cs2sLSTfsbNU5jjENVF+MMMt8VeEdEEms4xDSSLskxREc6j1AHsgvZl2Wt4Ez9lL1Ht413kxIXCUB+kYetNpCtMcYYY4KostxAazO0w1A+vuhjFk5ZyKl9TvVvV5QZK2cw6NlBXPD2Bazfb5UaTfAFksDf7Zt3r+NxR/jmljEOoUdueYPUXKf/rr0xxdz6j/NDHJFpyubMmcOcOXP86/M2z+NvX//Nv37vuHsZ3W00Zw7vzLF92/q33z9rJTn5xY0aqzEGRGQs8DXwOnAKsF5EHhWR34rIOBEZW9MU2p+g5QoLk3K18F/9ZlMIozEtQcV7dNla+DaQrTHGGGOCqeJzR2t2bNdj+eSiT1h8+WJO63uaf3tJIv/wZw7n6g+uZkempT9N8ITXXOQQ3wE9gDOAR2pzgIhEAL/Dada/IIBrmiBJTe3IlUkX8kDhSwDMdH/DjT8sZNiwUSGOzDR1+3P3c9E7F+FVLwDjeozj9jG3AyAi3DlhEBc+8w2ZeUWkZeTz+Ow13HX2oFCGbExr9BXOvRbfvC3wpzocrwT2bGBq4ZyjurJi60EA3li8hVOGdCyXdDWmPgZ2TiQtI4/DOibQMcl60DLG1I6IdAZG4oxVl0Bpi/sqqerUho7LGGOauqO7HM1HF37Ekh1LmDp/Kh+u+xAAj3p4btlzvLTiJa4bcR23jbmNlJiUEEdrmrtAauC/7ZuPEZGJtTzmYaCjb/n1AK5pgujePz9P/4POUAT54cpfXpwU4ohMU6eqXP7+5ezIcr4gp0Sn8Mo5r+AKK32+bxvv5pYzDvev5xQUU+zxNnqsxhikzFRxvTaTaSCnDunIUb3aAOBVeOD9n+3vpAmaKeN68+o1o7n7nMEM7Z4c6nCMMU2ciBwpInOArcBbwBPAVJyu+GqajDHG+IzoPIIPLviARZcvYlyPcf7t+cX5PLroUXr9sxe3fHYLK3avCF2QptkLpJbdW8CPOF3ivCIifwaer6ygiPTCeQi4AKdW3xxV/TrAWE2QREREcMvQu7li820AfJ6yid/cNJTXHvwWt9sd4uhMU/Tskmd5b+17/vXpZ0+nc0LnQ8qdPKgjyzYdYEi3ZE4d0hERywUa08juC3UApmoiwl/OGMCkZxdSUOxl3a4sZizawqQxPUMdmjHGmFZERM7BqVgXQc0f77VCGRsl2xhjKnFMl2OYe8lcvtj4BbfPuZ2lu5YCkFmQyaOLHuXRRY8ypP0QJg2exIWDL6w0p2JMVUS17vdfEekNLAZScG7gmcAu4DDf+nycJni9Sg4BtgMjVHX3ISdsxUTkYGJiYuLBgwcb/donXN+dL1O2+tfH7u/MrHuX06ZN22qOMq3J9OnTySnM4eY9N1PgcQZcvH7k9Tw5/skQR2ZaKfsiZBpVQ92jX/p6I89+4Qxu5Y4I47VrRtO5TUxQr2FavunTpwMwefLkkMZhjI/do5sJEWkPbABigRzgMWAhMBvnXf5uYDnOmHen4HSdK8BLwHQAVZ3X2HE3VaF8nzemMdlzR92oKu+sfoe7vryLNfvWHLJfEE7oeQKXHnEpvxnwG2Ii7F2gmWvw56CAEvjgT+LPBIb5NlV2opIfYAnwG1XdHtDFWrBQ3vAPHNjHxHuHMS+l9D/LoPQEZl27kD59BzZ6PKbp2bRtExe9cxGLDi4C4Ij2R7D4isVEhUfV6Tw/bz9Iz9Q4YtzWtbapF0sOmEbVUPfoYo+Xy55bzPq0LABG9k7hyYuPtFZLpk7S0tIA6NChQ6X7f9h8gHeXbuev5wzGFWa/W6bB2S9ZMyEi9+Ek6RU4UVW/8m33+rado6rvlyk/HKcb3W7AXar6YKMH3YRZAt+0FjU9d5jKFXuL+eyXz3h5xcu8u+Zd8ovzDymT4E7g/IHnM2XYFEZ2HmnvBM1T003gA4jzW3U2cDFwHE6N/BLZODXx/we8pfW5UAsW6ht+UVERF/7laN5K/MG/rWuWm1cnzOK448aHJCbTdFz1wVX8Z9l/AIiJiGHpVUs5rO1hdTpHRm4h5z21gIjwMG445TBOHNjebkgmUPaLYxpVQ96jV+3I4Ir/LMbrezq6Z+Jgxh/RKejXMa3Tox+t5q3vnFaWN40/jHOP6R7iiEwrYPfoZkJEFuEMWjtXVU8us73SBL5vX1+cbnQjgFGquqQRQ27SQv0+b4xpPjILMnln9Tu8vOJlvtz0JVpJPeiBqQOZMmwK5w86n07x9m7QjDT4c1Agg9j6qWOWqk5U1VQgHqfrnCRVTVDVM1T1TUveN10RERG8+Y9l/NFzFuL7r7QtvoAJH5/J08/9NbTBmZB6dcWrzFk2h16+nrCeGv9UnZP3AP+eu4GDuUXszSzgrjd/5I//+55Ne7ODHa4xphoi4haRDiLSLdSxGMeAzomce3RpUvWJ2WtIzykMYUSmudm4cSMbN26sdF+b2Ej/8rQ569mdkddYYRljmr4+vvkXVeyPqLhBVdcDLwMu4KoGissY04RV99xhaifBncDkoZOZc8kctv5pKw+c8AB92/QtV+bnvT9z82c30/kfnRn272HcMecOFmxdQLG3OERRm6aiXgn8ilQ1R1V3qmpmMM9rGt4/p77HQ8k34i52PhqlR3n44677Of3Gw9i5Y0uIozONbfaG2Ux+bzJjff+cP+h8Lht6WUDnGtItiTZxpYmE7zcdYNKzC/nnp2vJzi8KVsjGmApE5HARmSYiG4FcYAdwyFO3iJwnIneIyJRGD7KVu+qEPnRIcroky8gt4i8zfrC/i6bW5s+fz/z58yvdd/GYnvRMjQUgt9DDIx+txurTGGN8En3zrRW2l3xFjq3iuG988+ODHpExpsmbP38+c76aw5aDlh8Khi4JXbj9uNtZe91avr7say4behmxEeX//C5PW86DCx7kuBePI/WRVM576zymL59OWnZaiKI2oRTUBL5p3m694XFeHPwUKXku/7aPk9dy1JN9ee7FB0IYmWlMC7ctZOIbE/1feGPCY5h2+rSAu705dUgnZv5xDOcd083fB6/Hq7y2cDO/++cCZi3ZhsdrSQVjgklE/gqsAK4EeuA06SuZKooC/gZM8w1sZxpJjDucW88Y4F9fsfUg107/noNWE9/UU0R4GLedVTqe0YK1e/ly9e4QRmSMaUJKmuR4K2zP8M2raq1XUr5j0CMyxjRpRZ4idmTu4Lvt33HlB1dapYAgEhHGdBvDCxNeYNfNu/jvWf/lhJ4nEBFWvjHUwfyDzPx5Jpe9dxkdH+vI8H8P5845d1rt/FbEEvimnAvOvZYFk5cxdn8X/7ZdsUVcvfVOJtw4kE8+ncm6dSspKCgIYZSmoazYvYLTXzudvGLnud7tcjOkwxASoxJrOLJ6cVER/Gn84Uy/+liGdk/2b0/PKeThD1dxybSFLNm4v17XMMY4fIPT3YPTzN0LLAIWVHPIG0COr/yEBg/QlDOqbyo3ntrfv752VyZ/ePE79mYeOsCVMXVxRLdkzjmqq3/9kQ9Xs3pHRjVHGGNaiZKa96kVtq/3zUdVcdyQhgnHGNPUrT+wng3pGyjWYj7f+Dnvr32/5oNMncW745kybApzLpnD/lv3M+u8WVw5/Eq6JHQ5pOwPaT/wwIIHOO7F42j797ZMmDGBB79+kC83fUlWQVYIojcNrcZBbH0D1Q72reb5+r+rWGZuLa61XVUvqXuILVtTHfTG4/Hw4OPX8eiB58hwV6ycAWFeSC5wkVzopmtxW84behVXXHobLperkrOZ5mBj+kZGvzDa3xwrNSaV+5LuIzoimsmTJwftOqrKFz+n8cxn60jLKE1QpSa4efuGsUSG23dFUyUbIK8GIjIIWI7z7+pH4DxVXS8iE4BZOMPXHPKHWkTeBc4E3lDVCxsz5qasMe/R7y3dzkMf/EzJY1nn5GieuvQoOiXHNPi1TfM0ffp0gGrv0Vl5RZz/9AL2ZzutOiJcws2nHc6EI7vYgPIm2OwXqpkQkZeBC4H/qOrvy2x/GLgFKAZGquryMvt64DxXxAE/qOpRjRlzU9ZU3+eNCbY7H7uTndk7mc50eiX3YtU1q3CHu0MdVqugqqzcs5JPNnzCJxs+qbHWfZiEMTB1IMd0OYaRnUcyvONwBrUbRKQrsspjTL01+HNQbRL4k4D/+Vb/qKrPVlKmZMT6mkxS1dfrHGUL1tRv+D//vIyr/30G36TsqrFsj8woJsSN59arHqdT5+41ljdNx66sXYx5cQwb053usRPcCXx16Vf8+OmPQPXJgUDlF3l4feFmXlqwibxCD/dMHMz4I8qPsq6qlmAwZdkvQw1E5Fng98AB4HBV3evbXlMC/y5gKvCzqg6uuL+1aux79Ocrd3Hv2z/5uxVLjXfzz0uOome7uEa5vmleapPAB1i2+QC3vv4D2fmlL3qnDe3EracPICrSKl6YoLF7dDMhIpcD/wE2qGq/MtsH4HS/J0AW8G/gF6A3cAWQjPPOf7uq/r2x426qmvr7vDHB8p8X/sN327/jeX0egIdOfIi/jPlLiKNqnTILMvli4xd8st5J6O/I2lHjMZGuSAa3G8zwjsM5suORjOg8giHthxAeFt4IEbcKTSKBvwboByxS1dFVlClJ4NcUsCUGKmgON3yPx8Pf/nENH2x/m33hORx0F1ZaK79EbJFwYvbhjO75a0YecSLHHnsybrd9mW2q0vPSOX768fy05ycAosKj+HTSp4ztPpZ9+/YB0LZt2wa7/t7MfN5bup0px/cmLKz0T4iqctV/v2NQl0RG9E6he0osHZKi/f3om1bJ/uPXQERW49yzH1fVP5fZXlMC/xJgOpChqskV97dWobhHL1i7hztm/khhsXOfDXcJ44d04qLRPeiRaol8U6ou9+jtB3K5/Y3lrE9zmlR3SIrif1cfS2KM1cQyQWP36GZCRNoCaTj/zUar6uIy+0pq4VeWJBCcBP8xqmr9vPk0h/d5Y4Jh3759vLriVW78+kYA4iLjWHfdOjrG27AYoaSqrNm3hkXbF7F4+2K+3fEtK/esxKtV5+xKxEXGcXTnoxnddTSju43mmC7HkOBOaISoW6TQJvBF5EhgCc4NfKKqvldFuZIE/tXA55UUGQO87CszQlWX1TPuFqO53vCzszLZsHEVa9YtY+bCaXwWs5KcyMp/l9zFQo/sGLp529Mn/jBGHnYC4086n/YdOjdy1KainMIcfv3Kr1m4bSEALnEx67xZnNn/zBBHBt/9sp/rX/q+3LYIl9ClTQzdUmLpkhJDl+QYOrWJpmubWDolR4coUtOILDlQAxHJBGKp0OKtFgn8icBbQLGqWkbPJ1T36KWb9vPn134gr9BTJhYYe1g7LhnTk4Fdkho1HtMy5Bd5eOTDVXz20y6eu/xoDu9cfnwbj1ftI7mpD/vlaUZEpCcQCexR1fQK++4EbsN5nijrHeAqVT3QOFE2D831fd6YQBR7ixk6bSg/7/0ZgMlDJ/PihBdDHJWpKKsgi+93fs+3O75l6a6lLN25lE0HN9V4XJiE0Su5F53jO9MpvpN/3im+E72SezG4/WCiwqMa4SdolkKewJ8K3AXsUtUqs61lEvjnqGqlo1mIyDqc5nf3qerUekXdgrSUG/6uXdt49LmbeDfzIzYm5NVYXhR6ZkXTt7gTveL64lWloDiPfE8+hd58CrWQhPBEuif3pW+3Ixg2ZAwDBxxJREREjec2tVPoKWTCjAnM3jDbv+2ls1/i4iMu9q+vXbsWgP79+x9yfEN76P2feXfp9lqVHdw1if9ccXS5bYvW72XZ5nSSYyPpkBRFr9Q4urSJIdxlfew3Y5YcqIGI5ABRwAWqOrPM9poS+JcB/wXSVTWlseJt6kJ5j16zM5PHPl7NT9sOvfawHsmcMawz4w5vT6zbmr22VoHco1WVLftyDmnNkXYwj0umLWJMv1TGDWjPyN4pREVY9zqmTuwe3YKISBRwLNAeyAW+V9WdoY2qaWop7/PG1KTkuWNbxDZOfvlk//bvrviOEZ1HhCosU0vpeeks27WMpbuW8v3O71m0fRHbM2uXbykRHhbOwNSBHNnxSI7sdCRHdjySge0GEhdprYRpAgn8j4BTgRmqelE15WqTwH8KuBb4WFXPqFfULUhLu+F7PB7+98pjzP5xBps929kSlc6emKoH16iLqGIhNS8SryjFonjCFI8oXlFS86PoVpxK9+ieHNZpKEcd8St6duvPlq3r2bZrI7v3bWXPwe1k5B0gJjKelPgOtGvTmY7tu9GlYy86dexOm5R2reYDgcfrYdKsScxYOcO/7YlTnuCGY24oV662/es2BK9XWbxhH/PX7GHLvhy27s/xD8JX0alDOnLvb4aU2/bUp2t5deHmctsiXEK3trH0So2jQ1I02flFpOcUcu4x3Rneo025smt2ZuIKg56pcZb0bzosOVADEdkIdAduU9VHymyvKYH/BHA9sFJVh1Tc31o1hXv08i3pvLxgE9+s23vIPndEGGP7t+OUIR05pk9b+1vVygTzHv3Goi08PnuNf90dEcbIXimM6d+OMf1SSYm3rhBNjewebVqlpvCsYExjKPvccfaMs3lvrdNBxzFdjmHhlIU2dl0ztDVjK99s/YZvtjnTit0ratX1TkWxEbG0i21H+7j2zjy2PZ3iO9E7uTd92vShd5vepMaktvTfkQb/4WqqtnW4b740CNda5ZsfFoRzmSbK5XIx5dJbmcKt/m2bNq7l60Ufs3zDN6w5sIL1rh1sjM/FW8c8Q364si2+oNJ9Ge5cNrAF2AIHv4J5T1R+kpL3z2zftLX87qhiIbo4jGhPGFHF4SR5oknSeJLDk0mJSiU1vjNxMYmEISBhhIkgIoS7IklOTCU1pRPtUjvRqWN32rXrhMvloqioiJzsTHJzs8nNzQaga7c+IRsXQFX54yd/LJe8v3vs3Yck70MtLEwY1S+VUf1S/dty8ovZuj+HLftz2Hkgj+3puexMz6N/x0P7aUvPOTTZX+RRftmdzS+7s8ttH9Er5ZAE/rQ561m8YR/uiDB6t4unbbybNrGRJPumpNhIPF4lr9DDKYM7EhtV/s/pV6t3E+cOJ8V3XFSEiwhXWLl+/o1pAN8BPYAzgEeqL+oQkQjgdzgf4hc0WGQmIEO7JzO0ezK/7M7ilW8289lPu/yD3BYUefl8ZRqfr0wjMSaCzsnRREeGEx3pIibSRXRkOKnxbgZ1TWJg50Tio1vHR+rWxJuejmf3blzt29frPD9uLdeDBgVFXr5eu5ev1zofjgZ0TmRU37Yc0T2ZAZ0TreWHMc2YiMz1Lc5X1XtDGYsxpnl67NeP8cmGTyj0FLJ4+2Je/elVJg2ZFOqwTB11S+xGt8HduGDwBQBkF2azNWMrOzJ3sDNrJzuzdrIjawc7snawcs9KNhzYUOl5copy2HRwU7Xd9MRFxtGnTR96JPWgfWx72se2L5f07xDXgQ5xHYiPjK820e9VL/nF+cRExNTvh2+Ganr6Lslo7amhXEkN/Oo+1eyvcE7TSvTs1Z+evfpzCX/yb9u7dxeffP4G363+gp3ZW4kIi8TtiiLKFYU7PJrI8Cj25aSxI387u8L2syMmp9qBc4MlP1zJD/eQjgcoAvKAA8AWp0Chb6rMHmB96WqY1/kE56nkQ4UoJBSGkVQYSUKxm3hvNBGEE4ZTWHz/hEkYLly4xIWLMMIlHJe4gMq+fnjxoqiWzgGiXbHERsYR704iITqZdeE7mZH9if+oa0dcy33j7qvDv6XQiY0K5/DOiYf021uZkwZ3oEtKDAeyC9m2P4eNe7PZm1nFB6DconLrqsrqnRmAk8RYtSOj2msN75FMbFRpszFV5e43f6TIc2gLJ1eYEO4SIlxhREe6SI6J5NGLhtMuobQvub2Z+cz8ditFHi9FxV6KPF6KvYrHN3l9c4BYdzh3nzOo3E1uf3YBP2xO918nPExwR7hIjIkgOSaS+OgI6+e45XobOBcYIyITVfWdWhzzMNAR5z7+eg1lTYj0bh/PPRMH84cT+/LpT7v4dMVONpT5GJmRW3TI37KyRKBH21gGd01iYJckOiRF0SbWTUpcJIkxkfY3oRnSoiKK169n96gxxF5xOfF/+D1hSYGNj/B/5x7Bmp2ZfLV6N1+tdlq+lbVqR4b/Xnj1CX247Pje5fZv2ZdDXFQ4idER1hLEmKbveN/8zZBGYYxptnq36c1Nx9zEQ988RJeELjbwaQsRFxnHgNQBDEgdUOn+jPwMfkj7gaU7l7J011KW7VrGpoObKPRUlSQrlV2YzfK05SxPW15tuUhXJAnuBOIj44mOiCZcwin2FpNXnEdmQSYH8w9yWt/TeP6s50mJTsEV1nq6fKwpgV/ySaPaUeZVtTbVcEoyWRUHwzGtUGpqRy658EYu4cZaH7Np41q2bF1PZGQUEZFu3JFuoqJi8Hq9/LDia35ct5BfDqxmi6/rnpxwD8mFESQWRZHojSFR4olzJZDvzSXDm0WW5JDpyudgZBE5ER7yw6vuTioQ1bUwUIEMt5cMdz7O/17VJ4iDpsL/yRMPduX+5Z3ID/+cyGHDcKWmVn5cMzSqbyqj+pb/ebLyiti0N5uNe7LZn11AQnQESbGR9OtQ/oEjr9DDsO7JrN6Zye6Mav/8+cuXlZlXVGnyHvAn4QuKvGTnF7M3s+CQfoYP5hbx8oKaB5kBiI508deJg8tt+2V3Nne9+WOVx4QJJERHkBgTSf+O8Uz97RHl9n+wbLvTlYL6vsz6ulpzWpw4c2eCId2S+fsFw8odv2DtHr77ZT9FHqXI46Ww2EusO5y/nFn5g4AJqreAH4EjgFdE5M/A85UVFJFewFTgApz/1HNU9evGCtQEpl1iFBeP6cnFY3qyPi2LT1fs5LOf0tiTWf3fKlXYtDeHTXtzeH/ZjnL7wgSSYyNpGx9FuwQ37RKiaJcQRWqCm+TYSFSh2KsUe714PEqxV4mOdJHo+zvizCtP3KpqS28uGzKeHTtQjxfNzyf76WfIefkV4v/we2Ivn0JYTN1qJYmI/wP5H07qx7b9OSxYu5ev1+7hx60H/R+NwRl3pqJLpy0iv8i5FyZEh5MQHem7z0SQEF06RUe4OGdE13I1+L1eZU9mPm3i3ESGW/LfmEawF0j1zY0xJiB3HHcH8e54bjj6BmIjLc3XGiRGJTKuxzjG9Rjn36aqZBZksjtnN2lZaWzN3Mrm9M38kv4LG9I3sDVjK7uzd1PgqbwyZUWFnkL25e5jX+6+Kst8sO4D2j/anp5JPdl4w8b6/ljNRk2J94NAim+qr5Ka942UqTQtTUlN/socdtgQLuDaep2/qKiIA/v3sD99LwfT97H/YBo7dm1i577N7M3cyf68vaR79lOoRSiKgm+uePCSE5ZPrquI7PAisiI85EWUvuxGeiDCI0R4w1DRRmlNUJNxW908+pmXXO+/yPVtc3XrRuTwYUQOH07kkcOdjE8LSrzER0cwpFsyQ7olV1suxh3OQ+c7Sen9WQVs3Z9Dem4hB7ILSc9xpozcQsJdYURHuA7plqLYq5w4sAP7swvYn13AgexCfyK7IleYEF+h+50IV+3/ncdV0o1Bsaf63y+vOh8JDuYWER156BfrYo+SW+Cp5MhDVXatFVsPMvPb8v1TtYmLtAR+I1BVFZHfAotx7t1PAf8H7CopIyJfAl2AXiWbgO3AxZhmpW+HePp26M81J/Vj6/4csguKySv0+KZicgo8bNyTzcrtB1mfllUuCVuWV2F/diH7swtZu6vSIrXiDg9DcT5Uqioll4t1h9MmLtLfDVmbODfRES7yikpjzSv0UFDs9bdOiooIIyrCRVSEC3eEiwiXEB4W5m9ZFOEKI9rtIjrSRWxkODFup+ugWG4e/AAAIABJREFUyJKPCFI6CxMhMjyMyPAw3BH/396dx0lW1Xcf//yqqvfu6Z59hmEZ2UQ2QWVRQIYtgiJuEaMkshlxiRpJ4mPAGB4TfTSLEpckBomAGjWAaxQ1goPiyjayIyD7MPtM7921/Z4/zq3uqu7auru6u6r7+369zqtuVZ1776m6t+t3+px7zwl5Jg5nls36WGdlo1xBHuvpwfv6xp57by99H/8EA1+4mtbTT6P5uONoOf444vvsM+VOlH2Wd/Dml3Xw5petp284xa8e3cHdT+zm/mf2cOiEu+BGkpmxxnuAvuE0fcOl5z86++h140MaAr3DKV77qZ8C0NmaYFlHM52tTYymMmPnyEgqpK7WBN/9iw205HV87+wf5a4nd9HenKC1KQwf1doUJ+tOKuOkM1mSmXA3W1tTfFIdQJ1Msgg9QmjA32u+CyIijaurpYvLTrps0utP7HmCazZdw6UvvVRX5jeo0fQou4Z3jaWdwzvZNbyL3cO72T2ym+HUMP/8in8GwkUg3a3d3LvtXk7/0umksqXvCM5Z3racdx3zLrYObGXr4Fa2DW7jsV2PsW2o0uAvhVa0r5jW52tUlRrwdxAaAA6qwb4Ojh53ls0lMk+amppYvWYdq9esq8n2Bvr7iMVitLS2EY8XNpIODw/x5JOP8tTTj7B56xNs27WZVHo0avDIhMdshkw2QzabJpVJkc6myGTTpMvcnhSLxYlZnJjFMIvhnmUw2c9Aso/BzABD2SGGGOHg7Rk+9PNmmrOF/7BmnnqK4aeeYvhbYUKaly5dSmLffdlx80+Ir11LfK+14XHNamLLlxNbuoz4sqVYW1tNvrN6tLyrZcqT9y3vbOGj575w0uvu4er7dMZJZrIMjqbpG05NajhY2tHMO047iKZ4jOZENAxOPBaG34kZsZgRj1nJ/pVlnc2ceujqsaF30hlnOJmOGu2TDIyMN6ykijTAT6Udo9iY2k1FrqCs1KkgtePuj5nZ8cB/A0cD3cASxu+Ee3n0mDvStwNvcPetc1pQqZlYzFi/srNsnuFkmgc393Hf03t4dGt/1GAfOhj7hitXtKsxWqSTEmBwNM3gaJqndw4VfX8+5K70zuQNSZYTjxltzXHamuK0Ro+5Bn8j9xuZf0dS4R1KRaewiu5ocg8XAOT+GptyHQuJGM2J+FhHw8mHrOIl+5e/fuYNF16IZ7M0n7yBvn/8JzKPhzu3sjt2MPS1rzP0ta+Hz7N2LUv/5UpaTnjZeHEyGVIPPkRsaQ+xri6ssxOLFe+4WNLWxB8csZY/OGJt0feHkmn2W9HBnqFwLnmFGxpbJ3Qc7xoYvyJrYCRdEKOKaZlw19rvtvTxN9ffU36nkQNWd/KVd51Q8NqNv3maf/r+g8Sj2BozIxaD5nhsbE6J1qbQWXT8gSv4kxOfV7D+9b9+kh/e8xxZZ6zjyqMvIXc8mxNxWhIxXnrQCl77kn0K1v/+pmd5cHNfwfnW1hwf+57yh847bO8eDlrTVbD+xge3sq13hHDqhfPQzDAgEQ9D6LU2hf3vv6qTlXlD9gHc+3S4w+Ko/cpf3CALyvXACcDrgU/Pc1lEpEG87nWvqyrfFRuv4NrfXstnf/NZ/uKlf8ErD3olR6w+gpg1xgUSC0U6mw6N70M72Tm8s+Bx1/Au/vqkvy7oYNkysIVjrjqG3cO7GUwNltly8A9n/EPB8DWdzZ1VNd4DjKRH+MgpHyl47dfP/JrLbr6M9uZ2ErEEMYtF9arw/0XGM4ymR+kf7WfXyC62D25nVceqqva3UFRqwN9EmHT2tBrs61TCvyulx3UQWUA6u0r3Nre1tXPIIUdyyCFHzmGJCmU2P0fyrrtCuvMukvfeC6OFtzV17t4Nu3dT6WYna28ntmwZsZ4eYt3dWE8PsZ5uYt3dxDo7IZGAeAyLJyAeh3icWEcHtqQrNBx0LSG2pAvr7CLW3gYtLQvyargw4bGRiEMrcZa0NbG2Z3LnR3d7Mxe8fP8iW6jOIXt187E3HVXy/VQ6S+9wit6hZNHG9lcetY7TD1+T1xAQXncPKeM+1hlRbNzslx64giWtTeNXyiZik4YJktkVNeK/BHgt4cr6kyi8m24A+ClwLXCDe6UmN2l0bc0JXrR+2aQJuyH8JuwaHGV7/yjb+kbY1jvCtr6w3DuUGmvYTERXwcdjxlAyTe9Qir7ot6RvOEWJC/zrUrE7onIyWa+qIXk2re1pq9iA390dXQn/mnNoe+VZDP339fR98lNkt2wpyJd57jlia9YUvJbdsYPtrzhz/AUzrLOTWGdniM1LlxJbtpzYstBR3/VXf1nQwO+jo2QHBoh1d7Oss4Wvv+fEsK+s0zecGku5c6NvOEX/cJrhVIaWCXFnJJVhRVcLuweTJe8SyZnY+AyTh7Erp7158r8+mejnb2JnzhAZ9kyYV6KnfXKn9dbeEe57probjFcumXxBwO2/38VNv91c1fp/dsbBkxrwr//1U9z5+K6q1r/snMM458V7F7z2f79xLyOpDP/zlxuq2oYsCJ8H3g6cZGbvdXc14otIRWP1jjIe2vEQ1/32OgB2Du/kslsu47JbLmNZ2zJO2vckTt7vZE5efzIvXP3CRTV2+VS4O6OZ0FDdn+ynb7SPvtE++kfD8kBygP5kP3946B+yb/e+Beud8J8nsG1wGzuHd7JnZE/Z/Vz8oosLGvDbEm080/dM1eXsHe1lWdv4/xVLW8OFAK2JVnpae1jetpzVnasnTVi7umM1KztWTroD8ri9j+Pm82+uev8wfsHEYlGpAX8j8EfAkWZ2orvfNp2dmNlJhPF4HbilQnYRmQPxvdbStteraDv7VQB4MknqgQdI3nU3yTvvJHnX3fwuEX4iDvh9+XHFfGiIzNAQmWeq/8EvX7g41t6Otbdhbe2hsT/3vL0da+8g1tNNfNUqYqtWEV+9KiwvW4YPD5MdGMAHBsj2D+CDA5DJhkGeYzGw2FgjhKdTkErj6TSkUngmagSIxbCo04FYPFqOY01NkEhgTQmIJ7B4PG+7Frbd0hw6Mnp6sK7yM6hDuArSh4ZCeQcH8ZERrLUVa2vD2tqItbVBa+uUOjQ8kyG7ezfZ7dvJbN9OdvsOfHSU+OrV4S6KdetYsWQJK0rcWZC7YnC6Dt+nh8OjMZI9kyG7dRuZ555l+Lu30/ySFxNfW/wqTqmtqFH+m1HCzDoIV+MPuHtfuXVlcWlKxFjd3cbq7unfTZXNOsl0FrNwBbtFV6a7Q/9Iil0DSXYNJtk1GK76T6azY1cct0dXG7ck4qQzWYaj4VJyQ7Mkc5N5R/NqpDPOaDo7NvTOYDLN0GiGoWQ6Gr4nV6pcwywk02E7yXS25J0C4c4mr4uOiGp+g++77z4ADj/8cKypiY7z3kL7uW8kuWkTyV/+itFf/5rk7Xdg7e0k9i+8ajy7a0KDrzve30+mvx+eKxxHydraWPJ/PlDwWnLTJna8/g/HX4g65y0Wg3ic5uZmVnZ2sqqzg6YDD2TZv/9bwfojP76ZgWuvhUyGNc3NXNfVhbV3kGprZ7iplWSimYRBkznN++9Px9mvpCURGxuqJ3nvvaTuux9raWFNb5KLfQ9DHmPYYwxlYwy7kU0ksKYmUp1LGO1ZTlM8xvPXhsbvzK7doX6QzdKy+WlW920na0bWYnj0mI7FScWbSMWbyEb1hnR0cng6jQ8P48PDdO3Ywuq+7STjTaTiCdLxBKl4gozFJ93S1pyY3FiRncI/n1PJW0xL0+TzKh6zih0nsrC4+6iZnQ18A/hU9L/6Z4FfunvlmQhFZFHKr3eUctCyg7j2tdfy4Y0f5ok9T4y9vmt4F99++Nt8++Fwp39TrIl1S9bx2HsfK7gyf+vAVm5+/GZWtK9gZfvK8NixktbE5A78ueTuDKYG6R3pZc/IHgaSA6ztWlvQgA7wu52/Y3P/ZkbSIwynhhlJjzCSHmEoNUTvaO/YEDR7RvbwZ8f+WcFY8gDHXnUsd2y+IxqwubzDVh5WsH8z4+GdD7NruLpO/b7Rwn8Hu1q6MAzHiVucZW3LWNa2jOXty8eWl7YuDaltKc3x5oL19+neh+HLh+f0WC3Eiz7LqdSA/w3gk0Ab8FkzO8HdK99LkSdqMPhs9HQIuHHKpRSRWWfNzTQfdRTNRx0FF10IwE1XXQWjoxxzwAFknttC5rnnQtqyleye3WR37SK7azekajP8wphMBu/vx/v7w9Pabn3uxOPElizBuqOe7XQmdBZkMpBO4yMj+PBw5e2YYS0t4c6ElhasuTk8b0qEDohMOuqISEEyRba3F7Llh6yxzs7QkJ5IhLKk0xAl9yxmoRGGWCx0UmChkyOZxJNJGB0Nj01NxJYsiT5nN7HuJVhrK9lt28ls3kxm27bweSNL//VztL/mnBl8qTJdUfyeUgwXqVYsZpOGRoHQftnd3kx3ezPPK7LefMhmwzBmBnlDpoR/ADwaN304mWY0lR0bgz039M3YEDiEzomse96jU260sNzoOrkheCDsK9exkOtkGE1neWGFuVoA7rjjDqDwH2lraqLlmGNoOeYYungPnk6TefbZSf/geCZL4pDnk92zB+/rx4dKD28UWzb5ro1s74QrzjOZELtz2x8chN27Q5mKXGGXfvZZRm/5SdH9JSj8ByV+1pl0vCHEjc5ofoKRH/6I/k9dCYReyVeWLD20n3ceSy/9eMFrvf/3IwzfcAMAx0SplNSfvpOBi9/FUDJDZzRnzY43nkvyN7cDcHqUJvJYDFpa6Hvf/2HPmeeQTGdZtzRMLrz9jW8i8/jj+MgIbxsa5m2ZDOnWNtItraRa2kg2t5JsasHc+eUb30HvuucRixkHrg4dENv/8I340BDW2so7R2DQYxgO2SwWJbJZHOfmc9/Lju6VjKayrFrSSra/n93vvxQfTUIyyQee281Qawd84JQy34IsJGaWuzKnhfBj9PooZcxsJ1CpcurufsAsFlFE6lCxesdE8VicP3nhn3DuYefylXu/wg8e/QG3Pnkr2wYLxzZPZVOMpEcmDatz95a7Oe8b503abluije7Wbrqau1jSsoQlLUs4cvWRXHnmlQX5vvPwd/jyPV8OMxVGw6/klp3wPJVJkcqmOGP/M/jgiR8sWP/jt32c6357HVnPhrzZFH2jffSO9JLxwlaJD7zsA3zijE8UvHb5LZdzwwM3lPx+8p2x/xmTGvCBqhrvAQaSA5NeW962fKwB3zB6WntY0b6C5e3LWd62fPyxbTmrO1YXrBuzGI+/73G6W7vpbumecuN4zGLz3tGy0JVtwHf3HWb2eeD9wBHA983sze5e1X2eZrYW+Gq0rgOfd3eNgS/SIKypCZqaaDvrrJJ53D1cPb5zJ9neXrJ79pDdEx69t5fs4OD4P/a5x1QaHxwg2xca6bP9fXhff7gCfWio9h0C8yW6Ej7XiDFt7vjICIyMVBnOq9jkwADpRx6Z+YZGR8lu3052+/aqsmeem8EMmSIiNRCLGa0lbts2M5oTRnOiuej7jcYSCRL77Tfp9ebDD2P1zT8ee+5Rx3l2YADv7SO7ezeZnTvJ7t4Vhr+bKJnCerrx3j4qDXpvnR2TXysx3n5Rmcnd+J6s/iJha5pcfisy/Fspy5d2sj66q2xs/Srm/rFsFoaH2W/1Eg49aGXBe9lt28biYe6baB5I0Tww+eaoS160kpaXHVHwWuq++8cuclgapVL+4owDaDrwwPF99/YyctMPxp6vAWKrFtcYsotJ1FjvwCXunvujX8/4vDi5RyO0DRS26BSnWzZEpKyWRAsXHX0RFx19Ee7Owzsf5tYnbuXWJ0Pa3L95UgMywPbB4v9TDqeHGR4YZgvjwwQmi8wN+PCOh7n+geurKuPazsl3hW8d2MqDOx6sav2Z2j0yuY2gvSl09DfFmuhq6SrosMh/3tncyf5LJw+5e8O5N9ASb2F5+3KWti6d8jBF+/VMrjNK/ah0BT7Ah4FXAC8ATgTuN7MvAF8B7nH3gmuNzCxGaLA/D3gb4cIYgAeibYnIAmJmWFcYy75WPJUKw8oMDZEdHMKHh8ae++AQ2aGhcPX/tm1ktm0LdwRs20a2tzcMsdPRQayrM4zn29EBTU3hivRsFrKOZ7OAh6FxEk3hn/tEExbd2u6ZLGTSUadDtJzO4OkUnkqH56l02I5P2O7IyFhHhg9Wd7GzdXSMp9ZWSCbDZx8exkeGYaTSLARFttnTTXzlKmIrVhBftRKamslu2UL62WfJPLd5Wtucrtjy5cT32ov42jUk9t678goiIjKnLB6P5q/pgSp+ptvOzhuCL5sd76iPln10FB8YwAeHoMiwMS2nbGD5tddALIaPjuADg2QHB/D+gdCJMDIyNhxP4uCDJ63ffOSRtL/p3LCfZDLcIZZK4clUdLfY6NgQefHVkxsIYsuWEd9772gIPEJzZCYTrlrPZiCTDXe1jSaLNtZbR2eI2W1tIW5DdIfaKIwm8dHRsTvhYsXWb63+CjVPTo7XPjJS9fqWKPx3z5ond04V24csGOsJZ3h73mtPoUZ4EZkjZsYhKw7hkBWHcMlLLgFgKDVE/2j/pLzrlqzj3MPOZfvgdnYM7WD7UHhMZyfPS5Q/fnv+vqpVbMLVchPt5u4C6Gntoau5i32695mU56BlB/Hy/V5Oa6KVtkQbrYnWsdTd0s3StvEhaI5aM3nOupvOu4mmeBOJWDVNtZMduXr+5liU2WfVDPpvZgcCPwb2pTDYDxEqALnZEXqiPLkKQu6v50ngNHcvP5D2ImRme7q7u7v37Ck/wYTIfLjmmmsAuOCCC+a1HI3Kk0myfX1ke/vC1X6JRLiSMRGNFdzSEjocKlyJ6JnM+LA1uZRMQjIFTYnwz3lTUxiTPxrSptg/6GPbcw9j5D+3JUwek4jndWQkMIvhYx0T0W34WceaEmG7zS1YaxjKh1QYsid8zt5w5ebQEPGVK4ivXUt8zZopNVRUsLgGuauChVpq7tLMYXefdFuFmVUz98wz7v7WmhZuAVCMlnqmGF3fPJUKHRG5Ye/ypJ99FmB8zhuz0Gk/MIAPDoaLF4YGsVicpsMOJba08Br71AMPhmH4Rkeix9Ewf08sHubvicexWBx3p+UlLy7ohPBsNlyB39yMtTSH8rW2hiEUZ0Yxug6ZWbhqBV7n7t+Z7/LkM7O9gfcArya0IaSBxwlz93zG3Wd4C+vYfo4F3gWcDKwF+oD7CRckftHdZzRap+oKsljMV73D3ccmbs1N6No32seSliUcu+7YgrwP7XiIe7beA4QhZGIWCxcckpufKUZTLDSQr+1ay+GrCocD2jKwhV3Du4hZjJjFiFucJS1L6G7tnjTmu8gEs14Pqqpbx90fNbMXA9cB+WNpdACHTMg+sdDfB87X0DkisthYczPxFSuIr1gxs+3E4+Gf7ypu2a9qe2bEly0jXmRc4ylLJIi3tRFfs2bm25LpOA+4Nlp+D1BsXKQNVHGlnZnd5O5frV3RREQWL2tqCkMRFpFYt27Sa/G2NqgyLjcd+oLplysWo+1V5WYNEJl9ZnYmYajdnglvHRWlt5vZa9z9zhnu5zLg7xgfrQpgJaFutAG40MzOrlVngYjUnpmF4WNautira6+yeXNX+k/Xms41rOnU/7VSn6q6Ar9gBbOXAe8DTgNK1TJ3ATcDV7r7L2dUwgVOPfZSz4aiSe3a29sr5BSZE7q6bwIzewg4GPilu59QIk/u6rtK39/97n5EhTyLimK01DPFaKkzitF1qB6vwDezI4FfEC4GHAI+QWg7SACvAd4LxIEtwIurnX+vyH4uAq6Onj4JfAy4G1gFXEK48h/gVuDUiUMDT2E/qivIoqB6h0hZ9XEFfj53/wUh4GJmLwD2ApZHb+8ENrv73Mz6ICKzSsFZpH5Fd8YdTPjH/B+qWOXtwP8Wef1E4EvAoWb2Ine/q3alFJHZohgtIg3qSkLjfQY4y91/mvferWZ2F6Fesgb4e+Ciqe7AzHqAf4qePgsc5+5b87J8z8yuIszZdzLwx4TRBkSkBNU7ROZX+YGXK3D3B939Znf/7yjdrMZ7kYVj06ZNbNq0ab6LISLFvSZ63OLu364i/zZ3f7JI+grwaJTn7NkpqojUmmK0iDSa6OKDU6Kn10xovAfA3b8M5ObveauZrZrGri4GcpNHfHBC433O+4HeaPmvprEPkUVF9Q6R+TW9qY1FZFHIBeijZj6xmYjU3osJV99vrMG2fgi8Gzi2UkYRqQ+K0SIyBavMbN9abczdn5rmqq/PW766ZC74T+BUwlA65wBfmOZ++oHri2Vw9wEzu55wFf7hZnaguz9aLK+IqN4hMt/UgC8iItKYcrMYzmiCt8gD0eP0Z30SERGRevX5Gm7LmX47wonR4xBwe5l8P5mwTtUN+GbWxPgFCb9y99EK+3lb3n7UgC8iInVJDfgiIiKNKTeR/LYK+XIT2JWbnG3nhG2KiIjIwlEvkwwfGj0+4u7pUpncfbOZ9QNdeetU62DG2zkeKJcReKhI2UREROqOGvBFREQaU24mqZFymdy9mljv0WPHjEokIiIi9Wg74ar3eWNmLcCK6OkzVazyNKFRfZ8p7mrvvOVK+3k6b3mq+xEREZkzasAXERFpTHuA5VGaqdyV971lc4mIiEgj+lN3/848l6Erb3mgivy5PJ2zuJ/894vux8z2VNhGdzWFEhERmQk14ItISeedd958F0FESttBaLw/qAbbOjh63Fk2l4jUDcVoEWkwbXnLySry58aubyuba2b7yR8ff6r7EVlUVO8QmV9qwBeRkpqamua7CCJS2ibCpLOn1WBbpxKG0fltDbYlInNAMVpEGsxw3nJzFflbiqxX6/205C0X3Y+795TbQHSFvq7ClwVP9Q6R+RWb7wKISP26/fbbuf322+e7GCJS3Mbo8UgzO3G6GzGzk4AXRk9vmWmhRGRuKEaLSIPpz1uuZlicXJ5qhtuZ7n7y35/qfkQWFdU7ROaXGvBFpKT777+f+++/f76LISLFfYPxCek+a2ZTnoA2Wuez0dMh4MYalU1EZplitIg0EncfJQz/B4UTzZaSy/N02VyT5U9cW2k/+RPXTnU/IouK6h0i80sN+CIiIg3I3XcAnwcMOAL4vpntVe36ZrYW+F60rgOfd3eNgS8iIiKz5YHo8SAzKzmcb1SfWTJhnWr9DkhHy4dWyHtIkbKJiIjUHTXgi4iINK4PM/4P54nA/Wb2j2Z2lJlNivFmFjOzF5rZPwD3AydFbz0QbUtERERkttwWPbYDx5TJt6HIOlVx9xTwm+jp8WZWbhz8ae9HRERkLqkBX0REpEG5+yDwWsJt30a4Wu1S4E6g18zuN7OfR+l+oBe4C/gLoCda50ngNe4+VGwfIiIi0rCui9JT812QyDfyli8uk++i6DEDfGcG++kCzi2Wwcw68967z90fncZ+RERE5oS5+3yXYVEzsyxg3d2auF7qTzKZBKC5udyFKyJzo7e39yl332++y1GPzGw54R/0sya8NTHI24Tn3wfO19A5xSlGSz1TjJZ6ohgt1TKznxCufM8Ap7j7zya8fx7w5ejpF939ognvrwcej57e6u4biuyjB/g9sJQwJv6L3X3bhDz/Afxp9PR8d79ump9HdQVZFFTvECltLupBasCfZ2aWJtwJ0TffZZkDuVpN77yWQqZCx0zqRTfg7q47x8ows5cB7wNOA5aVyLYLuBm40t1/OVdla0SK0VLndMykXihGS9XM7EjgF0AHMAR8nFAvSQCvIdRj4sAWQsP75gnrr6dCA36U72LgC9HTJ4CPAZuAlcAlwDm5bQCnunt2mp9nMdUVylFMWvh0jGWhqeU53asGfFkwzGwPgLv3zHdZpDo6ZlIvdC5OnZm9ANgLWB69tBPY7O4Pzl+ppF7pb6zx6JhJvdC5KFNlZmcCXyUM51fMs4Th/e4ssu56qmjAj/JeDnyE0kMH/wJ4tbvvqqrgUpJ+BxY+HWNZaBrtnC4587uIiIg0rqihXo31IiIiUlfc/QdmdgTwXuBsYF/CkDqPA98EPu3uu2uwn4+a2f8C7wZOBtYA/cD9hGF6vujumZnuR0REZLbpCnyZM43WuyU6ZlI/dC6KzC79jTUeHTOpFzoXRUS/AwufjrEsNI12TmucQhERERERERERERGROqQGfBERERERERERERGROqQGfBERERERERERERGROqQGfBERERERERERERGROqQGfBERERERERERERGROmTuPt9lEBERERERERERERGRCXQFvoiIiIiIiIiIiIhIHVIDvoiIiIiIiIiIiIhIHVIDvoiIiIiIiIiIiIhIHVIDvoiIiIiIiIiIiIhIHVIDvhQwsxeb2YfM7Adm9rSZjZrZoJk9Zmb/ZWZnVrGNDWbmVaZrqizXGWZ2fV6ZNpvZ983sjTP+0A3MzDZO4bvOpQsmbEPHS6piZj3Rsb3czL4dHdfcubGxivXXT+Fcq7i9aJvHmtk1Zva4mY2Y2TYz+4mZvc3M4lP4bDpnpe4pRjcWxWiZS4rRIlKJ6hELm+od0ohUf6leYjorycJkZrcCLy/yVjOwf5TebGbfA85z9945KJMBnwPeOeGttVE6y8y+DbzJ3UdnuzwLxEOztWEdrwXvbmD9fBcix8wuA/6Ows7olcCGKF1oZme7++4y29A5Kw1BMXrRUIyW6VKMFpGSVI+QElTvkPmm+kuV1IAv+dZFj1uBG4CfAk8CDrwE+HPgIOBVwHfM7BR3z1bY5kXA7WXeL3nSRz7C+El/L/AJ4GFgv6g8JwKvAa4C3lphWwvRhUBHhTyrgR9Hy79z91+VyavjJeVY3vJWwrly9jS39SHg22XeHyxbELOLgI9GT58EPkYI/quAS4BXAy8Dvmlmp5b5rdI5K41CMbrxKEbLXFKMFpFyVI9Y+FTvkEak+ku13F1JCXcH+B/gj4BEifc7gJ8TgrwDf1wi34a8PBtmUJ4DgGS0nbuBjgmNfC+AAAAbFklEQVTvJ4Cb8vZ10nx/h/WYgEvzvqPLdLyUZnCM/xJ4A7BP3mu547mxivXX5+W/YAbl6AF2Rdt5BlhdJM9Veft6a4nt6JxVapikGL0wk2K0Uq2SYrTOWSWlckn1CKXoe1W9Q6mukuov1Z/7GgNfxrj72e7+NXdPl3h/EHhH3kuzPWbZnwNN0fJ7ov3nlycdlSfX6/WBWS5Pozo/eswCX5rF/eh4LXDu/k/ufqO7Pz3PRbkYWBotf9DdtxbJ834gd+vvX5XYjs5ZaRiK0QuWYrTUhGK0zlmRclSPkIjqHVJXVH+p/txXA75MibvfC+yMnh44W/uJxox6bfT0d+5+W4nyPAncEj093cw6Z6tMjcjMXggcGT29ZbZ+FHW8ZI69PnrsB64vlsHdB/LeO9zMCn6vdM7KQqQY3VgUo2WBUowWaVCqRyxsqneIlFX39Rc14Mt05HqTMrO4j/XA3tHyrRXy/iR6bCWM3yfjzs9bvnYW97MeHS+ZA2bWBBwbPf2Vl5/05Sd5yydOeG89OmdlYVKMbhyK0bKgKEaLLAiqRyxcqneIFNEo9Rc14MuUmNnRwJLo6YNVrPJRM3vCzEbNbLeZ3WNmnzWzIyqsd2je8gMV8ubPnH5oyVyLjJklgPOip/3AN6pYTcdL5sp7zOwRMxsxsz4ze8jMrjaziUFwooMZn4B9JueazllZcBSjG4ditNQ5xWiRRUj1iIVL9Q5ZJBZ0/UUN+DJVH8pb/noV+V9GmGm5mTApxBHAu4F7zOxfop6uYvbOW36mwj7yb/3ap4oyLRZnEmbLBrjB3YeqWEfHS+bKiwi35rYAXcDzgYuAn5nZ182sq8R6tTrXdM7KQqQY3TgUo6WeKUaLLE6qRyxcqnfIYrCg6y+JyllEAjP7I8bHhboD+GaZ7FsIvbq3Ab8HUsBewCsIf0DtwHuBbuCCIuvn/2ENVCha/vsaN23cW/OWr6mQV8dL5soe4FvARuARYAhYDWwA3g4sA84FlpnZWUUm2qrVuaZzVhYUxeiGoxgt9UgxWmSRUj1iwVO9QxayRVF/UQO+VMXMjgS+ED0dAv7E3b1E9tuBfd09NeH1u4D/MbPPAj8m9E6db2bXu/v3JuRty1tOVihe/vhUbSVzLSJmthQ4J3r6OPCzMtl1vGSubAbWlbji44dm9mngB4TJlU4HLgE+NyFfrc41nbOyYChGNxbFaKlTitEii5TqEQub6h2ywC2a+ouG0JGKzGw98H2gA8gC57v7Q6Xyu/tgkR/8/PcfBv4476X3Fsk2nLfcXKGILSXWW8zexPj3cl2ZCpiOl8wZd0+Wu13T3Z8D3kC4ygNm91zTOSsLgmJ0Q1KMlrqjGC2yOKkesSio3iEL1mKqv6gBX8oys7XA/wLropcucfcbZrpdd7+V8YlxXm5mE8/F/rzlSreT5L9f6TaVxSI3w7wD1810YzpeMlfc/VHCVR0AB0e/Qflqda7pnJWGpxjdsBSjpSEpRossLKpHLBqqd8iitlDqL2rAl5LMbAUhoB8YvfR+d/9CmVWm6v7osRVYPuG9/Akf9qa8/Akfni6Za5Ews4OB46OnP3P339do0zpeMlfuz1ueeD7V6lzTOSsNTTG6MSlGywKgGC2yAKgesTio3iEypuHrL2rAl6LMrBv4EXBY9NLfuPuVNd5NyVu3gAfylg+tsJ1DSqy3WOVPUHNtDber4yVzpdy59jsgN+nMTM41nbPSsBSjG5pitDQ6xWiRBqd6xKKieodI0PD1FzXgyyRm1kmY5OHo6KVPuPvfz8KuchWGUWDnhPeeAJ6Nlk+usJ0Nedu5oxYFa1RmZsCfRE+HgOtruHkdL5krh+Utb85/IxqT8TfR0+PNrNzYchvylm+b8N4T6JyVBqQY3bgUo2WBUIwWaWCqRyweqneIFGj4+osa8KWAmbUB32X8NqvPuPsHZ2E/JzHeI3Wbu2fz348mVvlm9PRgMzuxxHb2A06Nnv6vuy/2cdNOAfaNlr/p7v3lMldLx0vmipkdAJwRPX3M3Z8tku0b0WMXcG6J7XTmvXdfNO7dGJ2z0ogUoxueYrQ0NMVokcamesSio3qHCAun/qIGfBkT9TLdyHhP0NXA+6a4jaVmdkqFPM8HvpL30udKZP0Xxm9j+bSZdUzYTgL4dyAevfSPUynrApV/i9w1lTLreMlcMrPXRVeClHp/LeE3qCl6qdS5djWwO1r+f2a2qkieTwLd0XKpc03nrDQMxegFQTFa6pZitMjCpnrEoqR6hyx4i6n+YqGDQATM7AbgDdHTXwLvALKl1wB3v2/CNtYDjwP3Ad8C7iTcnpIizG7/CuAioD1a5Wvu/uYyZfo74EPR03uBjxPGp9oHuBTI9Wh9yd3fOnkLi0f0w7CFMJv1M8B+E3vDi6yzHh0vqZKZHQUcNeHlL0aPDxOOd74fuPuWvPUd+D2hd/s3hMlaRoBVhCtE3g4si7L/FDjD3ZMlynIxkJto6wngY8AmYCVwCXBO9N6twKml/hZ0zkqjUIxubIrRMtsUo3XOipSjesTionqHNArVX6Zw7ru7khLuDmFShymlIttYX+W6WeDTQHOFMhnwbxW29S2gZb6/v/lOhB723HfysSrX0fFSmso5dsUUfyM2TFi/2vW+BiypojyXA5ky2/k5sEznrNJCSIrRjZ0Uo5Xm4BxTjFZSUiqZVI9YXEn1DqVGSaq/VP9d6Qp8GRP1XE2JuxfcqhLdmncOYVy9Y4C9gRVAG9AHPEqY6OFqd39wCmU7g9DjdTyh92sXoSfsP929lpOxNCwzu5nxcbQOcfeHq1hHx0uqZmZXAH87hVVOcfeNeeufDbwUOA7Yj3CudQL9wJPAL4Br3P32KZTpWODdhEli1kTbuh/4MvBFd89UuR2ds1LXFKMbm2K0zDbFaBEpR/WIxUX1DmkUqr9UTw34IiIiIiIiIiIiIiJ1SJPYioiIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi4iIiIiIiIiIiIjUITXgi0TM7Aoz8yhtmO/ySCEz25g7PvNdllozsw15594V810eEZF6oxhd3xSjRURkMVG9pL6pXiILUWK+CyD1w8zWA4/XaHMXuvs10yzHBcB6AHe/okblmXNm1gq8EXgtcDSwEmgDBoFngUeAO4GfAj9399Q8FVVmwMwMOA14M3AssDfQBYwA24FHgU3AL4Cb3b1vnooqIg1MMbq2FKMXB8VoEZHZoXpJbalesjioXiIzoQZ8qUcXACdHy1fMXzGmz8xOBK4Dnlfk7SVRegFwTvTafwNvmpvSSa2Y2Trgy8CGIm93RGk9cHr02jZg9VyUTURkllyAYrQ0AMVoEZFF4QJUL5EGoHqJzJQa8CXfNuB1Zd4/FXhPtPwT4NNl8t5Vq0I1GjM7DvgRocccQo/5jcA9QC/QSfhhPp7w490CxOe6nDIzZrYUuBU4IHppEPgG8GvC31IzsBfwYkIQXk6J4+zuGwGb3RKLSINTjK4BxejFQTFaRGTWqV5SA6qXLA6ql0gtqAFfxrj7EPCtUu+bWU/e06fcvWTeRe7zjAfga4B3uvtIsYxm1gn8IeHWKWksf8t4AL4LeLW7by6W0czihECsKyVEZFoUo2tGMXpxUIwWEZlFqpfUjOoli4PqJTJjasAXqSEzOwx4YfT0aeDt5canc/cBQqCWxvOWvOXzSgVgAHfPAD+MkoiIzAPF6EVFMVpEROqa6iWLiuolMmOx+S6ALDxmto+ZfdzM7jKzXWY2ambPmtl3zeyCqEex2Hobo1nCT857zYukKyaslzCzV5jZP5vZbWa2zcySZtZvZr8zs2vM7OWz+6nHHJK3/MtaTC5jZoeY2V+Z2XfM7PdmNhR9p8+Z2Q/M7F3RpDfltjFppnIzO9jMPmdmj0Tb3BwdoxOKrP8qM/sfM3vazEbM7Ekz+1czW1Nhv7l9boyerzSzj5jZvWbWF6U7zeyDZtZWbltTYWYrzOxyM/uZmW2Jzoft0fMPRFcvzGT7ywkTCwFsc/eHZri9sjPJl/g7KJc2ltlXp5n9uZn9b3TMR6O/09ujY7Oy1Loi0vgUo8coRitGV7s9xWgRkVmieskY1UtUL6l2e6qXLFburqRUVSJMEONRuqZEnkuAobx8xdI9wPoi626ssF4uXTFhvZ9Uud41QHOZz3dFXt4N0/yOzs3bxi01+M7Pr/KzPQq8oMx2NuR/f8AbCOOuFdtWFrgwWq8J+M8y+30OOLDMfnP5NgJHA8+U2dYjwPPKbGvs/KjiPO2r8H1tAV46g+OyKm9bo0Bihse54PiU+R6rTRtL7OcsYGuFdfuAc2Z67iopKc1tQjG6mu9IMbpwv4rR1W2v4PiU+R4Vo5WUlJSihOol1XxHqpcU7lf1kuq2V3B8ynyPqpcssKQhdKRmzOwS4N/zXvou8D1gD3AwcCFhZvUjgNvM7Gh3356X/0PACuDvgcOi14pNjDOxx7INGABuBu4EngBGgLXRds4jzOh9flSWP5/WB6zOY3nLJ0Sf8e4ZbK+N8MN4J/BT4GFgN2Em+v0I46IdTBhP7SYzO8rd91TY5ouBDwJJ4ErgDsLdOGcCbyZMiHKVmd0GvJdw3O4hzJj+JGEm9LcDhwNrCJWbEyvss5swScs6wiQ93wJ2Ac8HLgb2BQ4Ebo4+Q1+F7RVlZu+LPhOEyuANwC+AnYRz60zgnOgz/NjMjnH3B6axqx2ESYW6CRPOXAJ8bjplrlK5CaJyLiR8NgjneQEzewPwdcJkOCngO4SKzVbC+XQKoRLZBXzTzM5w91tmXHIRqQuK0YBidCmK0TOjGC0iMkWqlwCql5SiesnMqF6yUM13D4JS4yTK9KITZkbP9Z6ngXOLrN8G/E/eNq4vsZ+NuTxVlus0oK3M+8uBn0XbzFCip5ba9KLHCJWE3HZ6gY8SepBj09jeYaXKm7e/v8zb39+WyLeBwp7SR4F9i+S7LC/PnYQe9X+dWHagnRCYc3mPLbHfiT207y6Sp5PCKyE+M53zAngJIbg4cHexzxflO5tQAXHgVzP4e/iPvDJnCJWRsudimW3lH58rprH+K6K/u9yVDXtPeH+f6Fx0QkXqiBLbOZYQwJ0wDmPTdL8fJSWluU0oRldTFsXownyK0dVtK//4XDGN9RWjlZSUFl1C9ZJqyqJ6SWE+1Uuq21b+8bliGuurXtKgad4LoNQ4ifJB+JN5732izDaWAJujfFngoCJ5yv7YTrPs++eV70Ml8lyRl2fDDPZ1AsVvBRwg9IR/knAb2tIafr5bc8G1xPsbJpTl+BL5Wii8heweIF4i71vy8v1NiTz5+/xqmfKvzgsSQ0DPVM8LQq+wR+VfV+H7+kheuV42ze98JaEyM/E4pwiVgKuAiyhTiSpxfK6YYjlekBc4hylSIQI+zXgF+agK27soryxvqdU5qqSkNLtJMbrqfSlGj+dRjFaMVlJSUpqVpHpJ1ftSvWQ8j+olqpcolUmaxFZq5fXRYxr451KZPNze9K/RU6O623tmzN1/Txi7DOC4Wd7Xz4HjCQE3XwdwEvB+wu1ZW8zsa2Z2UA12+4vo8QAzW1Eh753u/qtib7j7KOG2uJzPe5gFvZjb8pYPraKM5c6LrYTb7CBcbXFmFdsbY2ZLgVdFT7/q7s9WWOXLect/MJV95Xi4hfM44FpCL3pOAjgKeBtwNfD7aIKk06azn3KiCXG+S7gdD+Aid//NhDxGuBUU4GZ331Rhs18n/B3DNL8bEak7itHj+1KMLk4xusYUo0VESlK9ZHxfqpcUp3pJjale0vg0Br7MmJmtIoypBvBbd99WYZUfAX8XLdckIJrZEsIPzSsJ4+StIAS9YvauxT7Lcfd7gJPN7ChCj/nLCbdptedlayaMQ/dqM3uLu3+71PbM7HTgj4BjCGO+dRHGIytmHWGctVJ+XaH4W/OWf1MyV2G+pRW22Uu4ra6cW4B3RcvHAF+rkD/fCTDWIZkxs9dWyN+Ut/yCKeyngLvvBC4ws8uBNwKnAi8lnH8Ty/djM/uou39ouvvLZ2ZNwI2EMQwBPuLuXy2S9TBgWbTcX8V3A+GKjx5m8N2ISH1QjJ5MMXoSxWjFaBGROaF6yWSql0yieonqJVKEGvClFtbmLf+uivz5edaWzFUlMzsF+C/CpCjVWDLTfVYr6rHcBGBmccKP2gmEwHxGlK0d+Go0AUvB92dm3cB/M7XezEqfb2eF90eryevuo6GDFoDWCtt8zD3cY1XGo3nLe1XIO9H6vOV3RqlalSoQFUW99ldGCTPbj3AlxSsJk7vkvp/Lzexhd//STPdJmPTp5Gj5esJtnMWsz1t+Q5SqNePvRkTmnWJ0CYrRYxSjA8VoEZHZp3pJCaqXjFG9JFC9RAqoAV9qoStvebCK/AMl1p2y6Bay7xFunYIw0/pNwCOEmcpH8rL/B2HssVK9z7Mqup3svih93sw2AN8nlL0N+ADh1ql8NwCnR8v9hFueNhEmGxkijAUIoYf9TdFypc+XrfD+dPOWM1RFnvxzp3OK2++unKWk5hmsW5S7P0mY8OXrZvZh4AfAIdHbfwvMKAib2V8SxpuDcNvi+WUqOXX13YjInFOMroJidEWK0VVSjBYRKUv1kiqoXlKR6iVVUr1k4VADvtRCf95yqVvP8uX/wPaXzFWdv2Y8AH+UMCFK0R8jM7tqhvuqKXffaGYfAf5f9FLBOGdm9nLGA/BvgTOisdMmMbMTZq2gtdFeOUvBuTNQMldx+fkvcvcvTnH9WePuT5rZhcAvo5cOMLP9okA9ZWZ2NvCJ6OmzwGvcfbjMKvnfzUfc/W+ns18RaViK0dOgGD2JYnQVFKNFRCpSvWQaVC+ZRPWSKqhesrBoEluphefylquZVCU/z+YZ7jsXpLYBHy4TgLsYH8urntyctzzx1q/T85YvLxWAI/uVea8eHGB598yVcGDe8lTPi/yJZ2Z9nMJp+DWFwXCqt/kBYGZHAF8l/HYPEQJwpe+q3r8bEZlditHTpxg9TjG6AsVoEZGqqF4yfaqXjFO9pALVSxYeNeDLjEUTz+R6BI8ys5UVVskfk63YRCdjt15V8cO9Onp83N3L3bJ1OvV5vifzlif2HK/OW36s1AbMrBk4pZaFmgXdwIsq5Mn/DLdPcfs/BXIVsLqb/TyqHKbzXprqVQK5CZ++S7gKxYG3unulyX0A7gb6ouXTzKwe/w5EZJYoRs+IYvQ4xegyFKNFRKqjesmMqF4yTvWSMlQvWZh0MKRWboweE8Cfl8oU9WbnZgt34JtFsuX/QFW6rS43Ptr+pQJ2NAHMZRW2UxNm1hMFxWqdk7f8wIT38sd+O4DS3snkmcvr0aWl3ogqbn8cPR0ijPtWtagimFvnRDOb1UBsZjEzq/o7N7OTCDOzQxhb8fdT3F8L8C3Gr5b4sLvfWGaVMdH4iV+Jnu7H5LESRWThU4xGMboCxehAMVpEZPapXoLqJRWoXhKoXiJj1IAvtfIZIDeW1gfMbNJs1WbWCnyZ8VuAbnT3R4ps6/G85Uo9r7ne1pUUCf5m1gRcBbykwnZq5XjgMTN7f6WrCczs9RRWDiZOTpLfk/zh6Id44jZeDXx8uoWdY28xs3dMfNHMOgi3duUmTPlPd98zje1/CEhFy18zszPLZTaz/czsn6Le6alqBp4ws382s0PKZTSzw4Br8176prtXM2FTvi8AL42W/8vd/36K638MyH2nnzazt5bLbGarzOxvzOzIKe5HROqTYnSgGF2aYnSgGC0iMvtULwlULylN9ZJA9RIZo0lspSbc/Qkzez/w74Tz6gYz+zZhpvQ9hLHrLgL2j1Z5lvHe9IluBt4bLV9tZp8i3GaXiV571N0fjZY/A5wRLX/SwuzsPwR2Rvt8a/T4k+hxLsbx2hv4JPAPZvZz4FfAo4TvoYXQI34WIWDn3ApcPWE73yR8T+uAY4EHzOxqQg9sD/BK4NWEGdhvBCZVfOrIJkKZ/83MXkv4bHuAg4GLGe8dfhy4fDo7cPe7zOydhErXUuCm6Pu/KdpuijCW4SHAiYxXzK6czv4IV3hcClxqZvcAPwfuA3YARjhuLwdexfhv7RbgA1PZiZm9jvErDHYB342+w3J2uPttuSfu/oyZ/RHwHcI5eK2ZXRo9f4RQge4mHI/jgROAOOHvRkQanGJ0AcXoyRSjA8VoEZE5oHpJAdVLJlO9JFC9RAq5u5JSVQm4gHDrmgPXlMjzDsIftJdJ9wLry+wnDvyszPpXTMj/sQr7u43Qy/5E9PyJEvu9Im+dDdP8jl5EmESlXHnyUxb4ItBRYnvHE354S62/mxCMy5Yd2FDq+yuS95q8vCWPU5Q3l29jpfeBo4BnynyWR4H9y+xrYy5vhTK9mhDsqvn+dwArpnGcmwgBt9rj7IQgfWCJ7ZU8PhT+3VWbSh2P4wljIlazjX7giPn4rVFSUpp6QjG6mu9IMbrE+yhGK0YrKSkp1TChekk135HqJSXeR/US1UuUJiVdgS815e7/bmbfA94NvAJYD7QTerXvBq4HvuRhbK1S28iY2RnA+4DXEHo9lxCCc7H8l5nZT4E/A44j9AbuAB4k3F51jbunSwxzV1MeenLXReU4hfCjdzDh1r8OYJTQe/wQ4Uf5q+7+YJnt/crMXkjoeT0L2IdQyXka+B7wr+7+lJkdO3ufqjbcfZOZHU24QuK1hJ5zI/TiXg/8i7sPldlEtfv5rpk9j3AFxSuBownj/MWBXkKwvwP4EfAjd0+W2laZfaSAw83sIMJVHCcAL4g+0xLCFR99hCse7iBc5bDRo0g4X6Lz6fnAmwhjKB5DqKC2Ml7eu4EfA9/zqd+uJyJ1TDFaMboUxWjFaBGRuaZ6ieolpaheonqJTGbzfE6IyAJmZrkfmFvdfcN8lkVERETGKUaLiIhIvVC9RKQ8TWIrIiIiIiIiIiIiIlKH1IAvIiIiIiIiIiIiIlKH1IAvIiIiIiIiIiIiIlKH1IAvIiIiIiIiIiIiIlKH1IAvIiIiIiIiIiIiIlKHzN0r5xIRERERERERERERkTmlK/BFREREREREREREROqQGvBFREREREREREREROqQGvBFREREREREREREROqQGvBFREREREREREREROqQGvBFREREREREREREROqQGvBFREREREREREREROrQ/wdWi8SjrbmhXwAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], - "source": [ - "with open('data/mean_xor_nxor.pickle','rb') as f:\n", - " mean_error = pickle.load(f)\n", - "\n", - "n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int)\n", - "n_nxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int)\n", - "\n", - "n1s = n_xor\n", - "n2s = n_nxor\n", - "\n", - "ns = np.concatenate((n1s, n2s + n1s[-1]))\n", - "ls=['-', '--']\n", - "algorithms = ['XOR Forest', 'N-XOR Forest', 'Lifelong Forest', 'Naive Forest']\n", - "\n", - "\n", - "TASK1='XOR'\n", - "TASK2='N-XOR'\n", - "\n", - "fontsize=30\n", - "labelsize=28\n", - "\n", - "colors = sns.color_palette(\"Set1\", n_colors = 2)\n", - "\n", - "fig = plt.figure(constrained_layout=True,figsize=(21,14))\n", - "gs = fig.add_gridspec(14, 21)\n", - "ax1 = fig.add_subplot(gs[7:,:6])\n", - "ax1.plot(n1s, mean_error[0,:len(n1s)], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[1], c=colors[1], ls=ls[1], lw=3)\n", - "ax1.plot(ns, mean_error[1], label=algorithms[2], c=colors[0], ls=ls[np.sum(1 > 1).astype(int)], lw=3)\n", - "ax1.plot(ns, mean_error[4], label=algorithms[3], c='g', ls=ls[np.sum(1 > 1).astype(int)], lw=3)\n", - "\n", - "ax1.set_ylabel('Generalization Error (%s)'%(TASK1), fontsize=fontsize)\n", - "ax1.legend(loc='upper right', fontsize=20, frameon=False)\n", - "#ax1.set_ylim(0.09, 0.21)\n", - "ax1.set_xlabel('Total Sample Size', fontsize=fontsize)\n", - "ax1.tick_params(labelsize=labelsize)\n", - "#ax1.set_yticks([0.5,0.15, 0.25])\n", - "ax1.set_xticks([250,750,1500])\n", - "ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle=\"dashed\")\n", - "ax1.set_title('XOR', fontsize=30)\n", - "\n", - "right_side = ax1.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax1.spines[\"top\"]\n", - "top_side.set_visible(False)\n", - "\n", - "ax1.text(400, np.mean(ax1.get_ylim()), \"%s\"%(TASK1), fontsize=26)\n", - "ax1.text(900, np.mean(ax1.get_ylim()), \"%s\"%(TASK2), fontsize=26)\n", - "\n", - "#####################################\n", - "with open('data/mean_xor_nxor.pickle','rb') as f:\n", - " mean_error = pickle.load(f)\n", - "\n", - "algorithms = ['XOR Forest', 'N-XOR Forest', 'Lifelong Forest', 'Naive Forest']\n", - "\n", - "TASK1='XOR'\n", - "TASK2='N-XOR'\n", - "\n", - "ax1 = fig.add_subplot(gs[7:,7:13])\n", - "ax1.plot(n1s, mean_error[0,:len(n1s)], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[1], c=colors[1], ls=ls[1], lw=3)\n", - "\n", - "ax1.plot(ns[len(n1s):], mean_error[3, len(n1s):], label=algorithms[2], c=colors[0], ls=ls[1], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_error[5, len(n1s):], label=algorithms[3], c='g', ls=ls[1], lw=3)\n", - "\n", - "ax1.set_ylabel('Generalization Error (%s)'%(TASK2), fontsize=fontsize)\n", - "ax1.legend(loc='upper right', fontsize=18, frameon=False)\n", - "ax1.set_xlabel('Total Sample Size', fontsize=fontsize)\n", - "ax1.tick_params(labelsize=labelsize)\n", - "ax1.set_xticks([250,750,1500])\n", - "ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle=\"dashed\")\n", - "\n", - "\n", - "right_side = ax1.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax1.spines[\"top\"]\n", - "top_side.set_visible(False)\n", - "\n", - "ax1.text(400, np.mean(ax1.get_ylim()), \"%s\"%(TASK1), fontsize=26)\n", - "ax1.text(900, np.mean(ax1.get_ylim()), \"%s\"%(TASK2), fontsize=26)\n", - "\n", - "ax1.set_title('N-XOR', fontsize=30)\n", - "\n", - "#####################################\n", - "with open('data/mean_te_xor_nxor.pickle','rb') as f:\n", - " mean_te = pickle.load(f)\n", - "\n", - "algorithms = ['Lifelong BTE', 'Lifelong FTE', 'Naive BTE', 'Naive FTE']\n", - "\n", - "TASK1='XOR'\n", - "TASK2='N-XOR'\n", - "\n", - "ax1 = fig.add_subplot(gs[7:,14:])\n", - "\n", - "ax1.plot(ns, mean_te[0], label=algorithms[0], c=colors[0], ls=ls[0], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_te[1, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3)\n", - "ax1.plot(ns, mean_te[2], label=algorithms[2], c='g', ls=ls[0], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_te[3, len(n1s):], label=algorithms[3], c='g', ls=ls[1], lw=3)\n", - "\n", - "ax1.set_ylabel('Forward/Backward \\n Transfer Efficiency (FTE/BTE)', fontsize=fontsize)\n", - "ax1.legend(loc='upper right', fontsize=20, frameon=False)\n", - "ax1.set_xlabel('Total Sample Size', fontsize=fontsize)\n", - "ax1.tick_params(labelsize=labelsize)\n", - "#ax1.set_yticks([0,.5,1,1.5])\n", - "ax1.set_xticks([250,750,1500])\n", - "ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle=\"dashed\")\n", - "right_side = ax1.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax1.spines[\"top\"]\n", - "top_side.set_visible(False)\n", - "ax1.hlines(1, 50,1500, colors='gray', linestyles='dashed',linewidth=1.5)\n", - "\n", - "ax1.text(400, np.mean(ax1.get_ylim()), \"%s\"%(TASK1), fontsize=26)\n", - "ax1.text(900, np.mean(ax1.get_ylim()), \"%s\"%(TASK2), fontsize=26)\n", - "\n", - "colors = sns.color_palette('Dark2', n_colors=2)\n", - "\n", - "X, Y = generate_gaussian_parity(750, angle_params=0)\n", - "Z, W = generate_gaussian_parity(750, angle_params=np.pi/2)\n", - "\n", - "ax = fig.add_subplot(gs[:6,4:10])\n", - "clr = [colors[i] for i in Y]\n", - "ax.scatter(X[:, 0], X[:, 1], c=clr, s=50)\n", - "\n", - "ax.set_xticks([])\n", - "ax.set_yticks([])\n", - "ax.set_title('Gaussian XOR', fontsize=30)\n", - "\n", - "plt.tight_layout()\n", - "ax.axis('off')\n", - "\n", - "colors = sns.color_palette('Dark2', n_colors=2)\n", - "\n", - "ax = fig.add_subplot(gs[:6,11:16])\n", - "clr = [colors[i] for i in W]\n", - "ax.scatter(Z[:, 0], Z[:, 1], c=clr, s=50)\n", - "\n", - "ax.set_xticks([])\n", - "ax.set_yticks([])\n", - "ax.set_title('Gaussian N-XOR', fontsize=30)\n", - "ax.axis('off')" - ] - }, - { - "source": [ - "# Run experiment for XOR R-XOR tasks" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mc_rep = 1000\n", - "n_test = 1000\n", - "n_trees = 10\n", - "n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int)\n", - "n_rxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int)\n", - "\n", - "mean_error = np.zeros((6, len(n_xor)+len(n_rxor)))\n", - "std_error = np.zeros((6, len(n_xor)+len(n_rxor)))\n", - "\n", - "mean_te = np.zeros((4, len(n_xor)+len(n_rxor)))\n", - "std_te = np.zeros((4, len(n_xor)+len(n_rxor)))\n", - "\n", - "for i,n1 in enumerate(n_xor):\n", - " print('starting to compute %s xor\\n'%n1)\n", - " error = np.array(\n", - " Parallel(n_jobs=-1,verbose=1)(\n", - " delayed(experiment)(\n", - " n1,0,task2_angle=np.pi/4,\n", - " max_depth=ceil(log2(750))\n", - " ) for _ in range(mc_rep)\n", - " )\n", - " )\n", - " mean_error[:,i] = np.mean(error,axis=0)\n", - " std_error[:,i] = np.std(error,ddof=1,axis=0)\n", - " mean_te[0,i] = np.mean(error[:,0])/np.mean(error[:,1])\n", - " mean_te[1,i] = np.mean(error[:,2])/np.mean(error[:,3])\n", - " mean_te[2,i] = np.mean(error[:,0])/np.mean(error[:,4])\n", - " mean_te[3,i] = np.mean(error[:,2])/np.mean(error[:,5])\n", - "\n", - " if n1==n_xor[-1]:\n", - " for j,n2 in enumerate(n_rxor):\n", - " print('starting to compute %s rxor\\n'%n2)\n", - " \n", - " error = np.array(\n", - " Parallel(n_jobs=-1,verbose=1)(\n", - " delayed(experiment)(\n", - " n1,n2,task2_angle=np.pi/4,\n", - " max_depth=ceil(log2(750))\n", - " ) for _ in range(mc_rep)\n", - " )\n", - " )\n", - " mean_error[:,i+j+1] = np.mean(error,axis=0)\n", - " std_error[:,i+j+1] = np.std(error,ddof=1,axis=0)\n", - " mean_te[0,i+j+1] = np.mean(error[:,0])/np.mean(error[:,1])\n", - " mean_te[1,i+j+1] = np.mean(error[:,2])/np.mean(error[:,3])\n", - " mean_te[2,i+j+1] = np.mean(error[:,0])/np.mean(error[:,4])\n", - " mean_te[3,i+j+1] = np.mean(error[:,2])/np.mean(error[:,5])\n", - "\n", - "with open('./data/mean_xor_rxor.pickle','wb') as f:\n", - " pickle.dump(mean_error,f)\n", - " \n", - "with open('./data/std_xor_rxor.pickle','wb') as f:\n", - " pickle.dump(std_error,f)\n", - " \n", - "with open('./data/mean_te_xor_rxor.pickle','wb') as f:\n", - " pickle.dump(mean_te,f)" - ] - }, - { - "source": [ - "# Plot XOR R-XOR results" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "(-1.4143048908575178, 1.492347055819553, -1.4394562314726773, 1.42490879760884)" - }, - "metadata": {}, - "execution_count": 7 - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABfAAAAP4CAYAAACSud0gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5wkRfnH8U9tXyLnPEShRQFRggqSJYoEJaNADxIkg4gMSUFAR1CyKAJOk5MEBSRnBCQo+iM2GYfMIZk7uN76/fH0uHOzEzff7vf9es1rZ7urq2vmFrrr6aqnnPceEREREREREREREREZWbqGuwEiIiIiIiIiIiIiItKbAvgiIiIiIiIiIiIiIiOQAvgiIiIiIiIiIiIiIiOQAvgiIiIiIiIiIiIiIiOQAvgiIiIiIiIiIiIiIiOQAvgiIiIiIiIiIiIiIiOQAvgiIiIjkHNuHeecz15HD3d7REREZODoOi8iIiLtUgBfRET6zDk3n3NuT+fcJc65J51zbznnPnPOveece8E591fn3LHOuVWGu60ycjjnflkVtLiozWNC59zH2THvOecWbVJ2NefcCc65h5xzrzrnpjrnJjvnnnDOneuc28o5F7R53riqrbWvqc65N5xz92SfaZl2vwMRkRmBrvPSV865O5tcPz/Jrs+3OeeOdM4tMgDn072FiIiMWs57P9xtEBGRGYxzblbgGOCHwMxtHpYAxwEXe+/TwWrbaOGcWwe4I/v1GO/90cPXmoHlnJsI/AP4YrZpC+/9X5qU7wLuBVbLNu3uvT+nTrkQOBXYuI1mPAUc6L2/qUVbY2CXNuoDmAYc570/ps3yIiIjkq7zg280X+fBAvjA2m0W/xi7Jp/dj/Pp3kJEREYtBfBFRKQjzrmlgWuA5ao2/xu4DXgGmAxMAuYHVgbWARasKvsV7/2jQ9JYGbGcc18F7gMC4HVgOe/9Ow3K/hg4Mfv1Zu/9RnXKrA1cDcyVbfoIuB64B3gTmANYAdgKWDgr0w38yHt/apN2xvR0sk8Hbq/aPQFYAtgW+1uvOLBZnSIiI5mu8zIQagL4RwGPVe2eBITAjsDns20e+K73/pp+nFP3FiIiMiopgC8iIm1zzs0LPAwsnm16DNjXe39Xk2O6gC2AnwBfRx17yTjnfoX9XQBc5L3/fp0yywL/xDr77wPLe+//U1PmC8BDwCzZpuuBPbz3r9apbyIWSDiiavPO3vsLGrQxpqeTnffex3XKOCwIcHC26T1gEe/9R/XqFBEZqXSdl4FSE8Bf13t/Z50y44ELgO2yTc967/uVMkb3FiIiMhopB76IiHTiPHo69X8DVm/WqQfw3nd7768GVgf2Az4Z3CbKDORn2HRzgO855zar3pnlko2xDjbAwXU62OOAy+npYF+FTZvv1cEG8N5P9d4fCfyoavPvnHNL9fVDeBsNcRjwWrZpDmCtvtYnIjKMdJ2XIeO9/wzYG/g027R0FjjvD91biIjIqKMAvoiItMU5tzrwrezX94EdvPcftHu8N2d4759uUP8459xGzrnfOOfudc696Zz71Dn3gXMuyRb8atlxcc69mC0C9uJAlHXOLeyc+7lz7n7n3DvZ4n3/dc49ky0wdpJzbs0mx6/jnDvPOfe0c+7D7DO97px7zDn3F+fcj+st3pYdV1nQ7OgGdTvn3JrOueOdc7dXLar2kbPFBS+t7bg2qOfoqnOtk237unPuIufcS1mdbzrnrnPOtZMDti3e+ylAHptuDnCWc26uqiIHA1/L3t9cLzctsD2wfPb+NeAH7eRe9t6fDNyY/ToLUOiw+bX1fQY8ULUp7E99IiJDTdd5XecH+jrfjizFzeNVm/p1/dS9hYiIjEbjhrsBIiIywziw6v25taOVBsAtWB7dWuOBZbLXLs6587ApzJ/WKTugnHObApcCs9bsmjN7LQ2sAeya/V59bBdwFrBbnaoXyF7LAZsBOab/ftv1RyCqs72SP3UJYDvn3I3Adt7799up1Dl3BPBzpn/QPx+wKbCpc+7n3vuf9aG9vXjvH3DO/QY4BFgIOA3YydkIvJ9nxT4Adm9Qxf5V70/23r/bwel/Rs+idDs75w713v+3g+NrTa16P6lhKRGRkUnX+R66zg/Qdb5NA3r91L2FiIiMNgrgi4hIS845B3yzatOFg3CamYAPsUXyHgFeBKZgHa/lgO9ho5l2Ad6lbx3htmWj5ao79ddjwYdXsQ7v/MCKwAbYtOZa+9HTqX8X+87+ieUwnRnrdH8NWLcfzZwJ69jdBTwIPIctsDYfNkprJ2BurCN5PrBlG3XuAewAvIJNMX8cCxRsjOWodcBPnXN3ee9vb1RJh36KBTiWBb7vnLsSmzY+Mdt/sPf+5dqDnHNzMv0Cb3VzzTbivX/QOfc0toDeRGBN4C+dN/9/qhd87NVeEZGRStd5QNf5wbzON+Qspc3nqzYN1PVT9xYiIjJqKIAvIiLt+ALWQQT4GPj3IJzjCOA+733d3LnOucOBa7CRcPs550713r8wCO2o2IGeTv2h3vsTGrTLZW2qVRnV9R7wNe990uD42YG+5kj9LfDDRiPDshF2JWAbYAvn3Nqtchljn/sW4Ds1C6Wd55x7EDgp+/3HwIB07L33U5xzuwL3YkGTy7ERmQC3eO/PbnDoavSMHnzBe/96H05/Pz2Bg9XpYyfbOfdtYIXs124s0CIiMqPQdV7X+UG7zrewF1BJcfMBtnByv+neQkRERhPlwBcRkXYsXPX+Ze/9tIE+gff+tkad+mz/ZGxUHtj163sD3YYaS1e9b9TJq+T8vafJ8Xc16tRnx7/vvX+0Lw303t/TbFp31jH/ATZaD2ykXiuTsWn4H9XZdyo9o7/Wc7bI24Dw3t8PnJz9Wulgf0D91AQVuar3dXMut6H6uF45iptxzo13zoXOuSOxwEDFFd775/rYHhGR4aDrfAO6zg8859xE59wKzrlfA6dU7Tqzk3UXWtG9hYiIjBYK4IuISDvmqXrfMg+oc25a1WJpta87+9oI7/3zQGUk1NealR0AH1e9X65hqdbHL+OcG9+05CDKOsL/l/3aznd2fqNcrd77bmwaP9i08M/1v4XTub7m9zPqTW+vMnfV+07y01arPm6ehqVMqfpvGfgU66Qfi6U5ABvp1yinrojISKXrfN+P13W+tTtqrp9TsFkeBwNBVuZPwFEDdL5qurcQEZEZngL4IiIyYjjnZnfO7eWcu9Y596Jz7sPawACwYFY816yuAXBL1furnHMHOec6OWfl+C8AtzrnNnPOzdTsgL7IRrHt5Jz7k3PuGefc+8657prv7OtZ8Xba/0CL/a9UvZ+rYakOOecmAb+r2Zx3zg3YOQbZFGyhwXUGcvSgiMhoout850bLdb6Jd4DNvPfbeO8/G8iKdW8hIiKjhXLgi4hIOyZXvZ+zjfLfZfqHxPMDZzU7wDm3LnAxPR33VmZvs1yfeO9vcM5dDOyILRZ3EnCSc+4Z4D7gbuA67/2bDao4FMuZuzCwVvaa6px7GPgbllf29v50Vp1zKwBXAsu0eUg739nbLfZPrXo/qc3ztuNYevLFvoV95wtiU+t3aXDMO1Xv2/m7rKf6uMkNS5nT6ckH3EXPv+1W2HdxBDZy8cU+tkVEZLjoOq/rfMVgXOePoie3/TjsQcPGwEbYiPcjnXP3ee/fqT3QObcSsFiTuu/13jf6TLq3EBGRUUEBfBERacerVe8Xc86Na5Yf13s/3WJdzrklmlXunFsGm+JcGbn2NHAD8AzWkZpSVfwPWAcsYPB9H+tUHUTP9PplstcuQOqcuxw42Hv/WvWB3vsXnXNfwTqt38c6cxOBb2SvnwBvOud+AZzmvfedNMw5NzdwKxY0AfgPcB3wFNZJnQJU6jwua387M++6O2nHQHDOfR34Ufbrq8BXscDJUsDOzrlLvfc31Dm0XPU+7OPpq497pWEp8w/v/TU1285wzq2BjcRcBrjJObey9/7DPrZHRGQ46Dqv6/xgutd7f2fNtlOcc9sAl2Gpf65xzq3rvU9ryu1P42A7wLpAbd26txARkVFFAXwREWnHk1gHe25gZmAF4J8DWP9h9HTqjweOatTRdc41XGiuD5p2dLM2nAuc65xbChtptzqwHtahCoAdgDWcc6t679+oOf5NYD/n3I+AVbJj18iOnx3rlJ+Cdbr36LDt+9LTqT8P2K1RsMU5d0SHdQ+ZbHp7iZ5/iz29968453YDbgMccJZzbrk608cfwAIRXcBSzrkFav8N2rBa1fu/df4JwHt/r3PuUGzxvxD4FbBPX+oSERkmus7rOj/kvPdXOOdWwx6grIkF3E/sb726txARkdFGOfBFRKSlrIN7W9Wm7w3wKdbPfr4J/LRJp342pl9crJ7K1O8JzQo551wbdf2P9/557/353vsfeu9DYGV6ghuLAoc0OfYz7/393vvfeO+/g40s3LWqrbtn0+Q7UfnOpgEHNhspCSzeYd1D6efAstn7C7331wF47++gJx3DotTp0GeL8D1Sten7nZzYObdq1bmnAvd0cnyN3wJJ9n4P59yyzQqLiIwkus7rOj+MjgYqi+oe4ZybbtFX733kvXdNXnfWqVP3FiIiMqoogC8iIu06per9bs65RQaw7gWyny9475tN7V6f1teud7Of8zrnxjcptzwwS5vt68V7/w9gp6pNa3Rw7Kfe+xKW97TiGx02ofKdTfbev9uoUDa9f74O6x4Szrmv0TO9/Q3ggJoiPwFezt7vkeVPrnVa1fuDnHNzdNCEo6ven9/se2wlm/J/fPbrOCx4ICIyI9F1voqu80PDe/8+PX97c2BrC/SZ7i1ERGQ0UgBfRETa4r2/D/hr9uscwCXOuVkHqPqPs59LZSPmenHOBcDhbdT1RPZzPDYdu5H9229eQy9Wve9LWrr+HF/5zubPRiw28tMO6x0SzrmJ2PT2So7jvWoXr8umte9eOQQ4xzk3c01VlwKPZ+8XAc7O/lZanX9/4FvZrx8BxY4/RG8XAy9l77d2zi3XrLCIyEii63xdL1a913V+8JwBVPK77+2c69MDCd1biIjIaKUAvoiIdGIXejoRawL3OefWauO4VqPOHsp+zgccWLszG2F3NpZftpUbq94fm3XmauvbDditWSXOuZ865zZwzjW7Vu5d9f5fVccu5Jz7tXNuySb1z8z0i7L9q1HZBirfmcMWr6ut3znnjgW27LDeofJz4AvZ+0u991fXK+S9vxnrjIMtPPeLmv3TgG3pCXRsA1zlnFuoXn3OuYnOuWOYfqTpXt775/v0KXq35deVUwE/62+dIiJDTNf56ek6PwSyIHsltc0sNElX1ILuLUREZFTSIrYiItI27/3bzrn1gT8DX8QWubvLOfcv4HYsT+c7WAdjnqzMRsDSVdW8Uqfq04ENsvcnOefWAW4CJmOLyO2c/bwj+5lr0sxrgGezc64OPOScOxd4FVgQ6+iuh+Uk/RywcIN61gOOAV53zt0EPAq8jj38XhjYnJ6Rf1OBk6qOnQgcDBzsnHsoO9eT2LT/OYDPAztio7rI9t/b5DPVcyaWXzcA9nfOfRm4Kmvjoln9X8FGKn6C5fIdEZxzX8W+H4C3gP1aHPIj7O9oYWyxwMuzkaIAeO+fcM59C/u3nxP7t/mmc+5a7Ht9C1tMcAVgK3q+927gYO/9BQPywcy52GjI+bCRcst77x8bwPpFRAaNrvO6zg+jk7D7gQnAPs65E733b7V7sO4tRERkVPPe66WXXnrppVdHL2BWrKP1EeDbfD2OLQTmGtT5ixbH34t1XF7Mfn+xSftWxgIMjep6oFVdWBChnc/1FrBhzbGLd/C93A7MU+f861SVObrB59wLSJvU/QQW4Lizsq1BPUdXHbNOi3/7tss2OH5i9rdQqWObNo/brOqYJ4FJdcp8HgsItfO9PwVs0sZ546pjojbbenjVMVcM93+veumll16dvtB1Xtf5Pl7nq+q5s9N6gD9UHXNiB+fSvYVeeumll16j+qUUOiIi0jHv/Yfe+x8BS2CdyyuwUXmTgWnAe8ALwA3Y6LZVvffLee8v9N77BnUeDmwCXA+8DXwGvIZ1fHfHOn9tjcTy3j+CjYg6HRulNwX4L3A/sA+wZht1bQ58FzgVCyq8nrXp0+z9bcCPgWW8TcWuPv9LWId6Hyx36f9l30mKTcd+BrgE2Mx7v573fnI7n6vO5/wdlrbgiqr2vQnch40sW8V7/2xf6h5ER2MjNgGu9N5f0c5B3vtrgYuyX5dl+kXiKmWe9t5vhH0nvwYewRaw+wz7938K6zRvDSzvvb+hrx+ihd8C72fvt3LOrTBI5xERGRS6zus6P0xOwL5DsFz487d53NHo3kJEREYx1+D+SkREREREREREREREhpFG4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEAK4IuIiIiIiIiIiIiIjEDjhrsBIiIyduVKhdmAeYE3yvnix8PdnnbkSoW1gb2AZYFXgBi4spwvdg9nu0RERGTsSKJgKWBfYC1gKnA1cHYYp+8Na8NERERkwDnv/XC3QURExphcqbAAcCKwPTAe+AQ4Dzi0nC++P5xtayZXKhwOHA90Y7PYKj8vAXYq54vpMDZPRERExoAkCtYEbgImAQ7w2c9ngTXDOH19GJsnIiIiA0wBfBERGVK5UmEO4CHgc0yfys0DDwNrlvPFqcPRtmZypcKKwKNNiuxczhcvGKr2jFRJFIwDlgKmAS+EcaobDRERkQGSXWdfBBaid0rcbuDSME6/N9TtEhERkcGjHPgiIjLU9gCWofc1yAGrAtsMeYvasyvWMa6nG9htCNsy4iRR4JIo2At4CXgaeA54IomCLYa3ZSIiIqPKBsAi1O/LdwHbJlEwx9A2SURERAaTAvgiIjLUtsZG29eTAlsNYVs6sSiN290FLD6EbRmJDgHOxEYEVoTA1UkUfGd4miQiIjLqLNpi/zhggaFoiIiIiAwNBfBFRGSozYSNtq/HZftHohdofN3sxkacj0lJFMwOHJ39Wv1v24U99DghiYJG/+YiIiLSvhda7J8KvDYUDREREZGhoQC+iIgMtbtpPpL9niFsSyfOabKvCzhrqBoyAq1H4wcvXcDSwLJD1xwREZFR63YsiF8vrZ8HLg7j9IOhbZKIiIgMpnHD3QARERlzTsPyxY9n+gfJKfABcPZQNyhXKqwPHAqsAUwBrgB+Wc4X/zfKrZwvPpkrFfYFzsA6yF1Y57kL+F12zFg1YYDKiIiISBNhnKZJFGwD3ArMid2TVO5L/g38eLDbkETBzMD2wPrAYsAnwFPYvdA9WsBeRERkYDnvdW0VEZGhlQXMLwbmq9r8MrBVOV98eIjbsgsQ0xOMB+sI/xdYvZwvPl1T/svAnsDnsSnqJeC2cr44Zi+oSRQsgv37NZrZNxlYJIzTqUPXKhERkdEriYIFgD2AtbC0OVcBl4Rx+skgn3dJ4A4ar/1zJbBDGKefDWY7RERExhIF8EVEZFjkSoUJwCZADssff0s5X0yHuA2zYUH4memdl78buK6cL24xlG2aUSVRcC6wa4Pdh4ZxesJQtkdEREQGVraezYPASjRPx3tMGKdHD0mjRERExgAF8EVEZMzKlQo7Ahc1KdINzFPOF98doibNsJIomISlEtqZnk79p8CJwFGaTi8iIjJjS6JgFeChNopOBhYM43TaIDdJRERkTFAOfBERGcvmarG/C5gDUAC/hTBOpwD5JAqOxqbzTwNuCeP07WFtmIiICJBEwVpAAVt4PQX+DBwfxunjw9qwGUu7C9LPk73eGMS2iIiIjBkK4IuIyFj27xb7/4ul2JFMEgUzAdsCqwEfY7lu76uMsA/j9CXgguFroYiIyPSSKNgKuBxb4ybINm8HbJFEwdphnA7p+jszsDfbLDcN+GAwGyIiIjKWNMtbJyIiMtrdC/wLS5VTzxnlfPHTIWzPiJZEQQg8jS36uztwIPYdXp5EwfhhbJqIiEhdSRRMwFK8OXqC92B94UnAacPRrhnU7cCrNL5vItt3RRinHw9Nk0REREY/5cAXEZExLVcqLAHcAiyNdTpd9roc+H45X/xs+Fo3ciRR0AU8DizD9AGQin4tWJdEwZeACFgIeBY4N4zTF/tan4iICEASBRsDN7QotuRYuuZkD933BX4ILA68DJwFnB7GadOBC0kUbAhcC4zH7peqeeB14OthnL480O0WEREZqxTAFxGRMS9XKkwAtgTWAD7B0sI8VM4XdZHMJFGwPvago5HJwEJhnHb8wCOJgqOAn2Md/27sAUEK7BzG6cV9aG6l3hwwP/BiGKfv9LUeERGZcSVRsAPQ6lqyUhin/xzAczqAkbiAexIFAXA1sBl23XVVP/8KbFFv8dkkCmbPykzFFqzfDlgRmBmbzfA+9gC+jM3WK4Vx+vxgfx4REZGxQAF8ERERaSmJgoOAk1oUWySM01c7rHcj4MY6uyrB/GXDOH22wzqXBc4Avplt+gy4CDgwjNP3OqlLRERmbEkULAc81qTIJ8ACYZz2O2d7EgVLA0cB2wATgb8Dvwrj9M8d1uOwa1gELIgFxM8K47TV2j3t1L0tcFmTIjuGcXpJVfkNgWOAr2ebUnpm4k0DzgUeBX6LBfIr+7uBfcI4/X1/2ywiIjLWKQe+iIiItGNyi/0pNvquU/tkx9Zy2H3KHp1UlkTBolhe/nWrNo8HdgFuTqJgXB/aKCIiM6gwTh8HbqNx3vZzBih4/3ngQeD7wEzYNexrwDVJFOzXQT0Oy9l/C7ADsB6wF/BoEgV79redwPdo/F10Z/srbdkSSz/01aoy1Wn0xgF70rPGQPX+LuDMJApWGYA2i4iIjGkK4IuIiEg7rgE+xkbG1+oGrgrj9MM+1Lsc9XPqk51r2Q7rOwiYm973OA4LQGzeYX0iIjLj+x5QGb3u6bmWXQv8ZIDOUQTmYPrrT+X9iUkUzN1mPdtiQfHK8a7qdWb2oKA/5qFxHKAr219JtXMKPQ/UW6nNhw/2Pe/dhzaKiIhIFQXwRUREpKUwTt/HRsvD9CP3PPA2cGgfq36NxiMBAd7osL4tqR9EABvp33YAP4mCIImCTZMo+FUSBccmUbByh20REZERIIzTN4BVgG8DJwMnAt/A8r1P6W/9SRTMhl1fGvWvJwJbtFndD2l8XXTADzprXS//blJ/Nz0POlbCFrhtdE1tRxfwxX4cLyIiItiUNxERkUGVKxW6sEXOPi7ni82CtTKChXEaJ1HwEvBjYE1sRP5lwIlhnJb7WG2MBVHq6cr2d6LVvU1b9z5JFCyE5eb/Ej2L+x2ZRMFl2OK6n3bYLhERGUZhnKbA9dlroM1K68Fxc7ZZ19JN6uoGlmq3UQ2ciY3wr1zbKiqzEn6b/Zyln+cBa++bA1CPiIjImKYAvoiIDJpcqTAJOAIbTTYv8H6uVPgjcHQ5X5yhFhPNlQrzAHlgdSxwfSVwbTlfnDasDRtiYZzeAdwxgFWeB3wX2ATr6HdV/TwtjNO/dVjfrVi++3rBj4D2234ZsHz2vjrAsR3wPHB4h+0SEZHR601sxtj8NB6x/s8263oJWJj617EuoK8PzAEI4/SxJAp2BkrYGjGVRWdTYNeqhXL/DXwKTOjH6bqAC/pxvIiIiKAUOiIiMkhypcI4LLfskVjwHmB24ADgzlypMBAju4ZErlRYCUiwKfebA9sDVwG35EqFmYezbTO6ME4/w9Le7I0FN14H7sG+4wP7UOVJwGf0Tg/QDbwIXNKqgiQKVsJmGDS6T9oniYJJfWibiIiMQtno/pOpH7yvpKW5q83qzqHx9ccBf+y4gTXCOL0IWAxLf/cHoAAsFsbpBVVl3sn2teOZ7Gd3zc8rsfslERER6QeNwBcRkcGyJbB+ne0O+DKwK3D6kLaoD7IHEVdjC9PB9AuurgMcCxw8xM0aVbJ0NL/LXv2t67EkCr6FjezPVe16GNgujNOP26jmyy32z47lBX66b60UEZFR6NfA54Dds98rKWqeATYP47TeIvD1XIDNStuW3jPTDqsaId8vYZy+DpzQotiPsUVtd2iw/yPgVOBoIMJS8yyJzSI4Czg3e7ghIiIi/eC8b/c+QkREpH25UuEK4DtMH/Cu8MD95XyxUe7zESNXKmwKXNekyAfAvOV8UTnRR5AkCgLsAcsCwFNhnP6jg2O3Av7UothCWfBDRETGiCQKJgLTmgWlkyhYHtgKW/vnPuD6ME6nZfuWwNK8LYbdC90D3BrG6Ss1dXQB22BB8YWBJ4HfhXHa7ij+AZVEwReAjbEHErdgAwEnAf8XxumHw9EmERGRsUQBfBERGRS5UuFGYEMa54J9vJwvLt9g34iRKxUOwtKyNHMnlnv97HK+qMXaZnBJFMwMvAbMRu+/327g7jBO1x3yhomIyLBIomAHLN3MisA0LDXMz8I4bXsmVhIF+wCn0Ts9jgcuBH7Y5iyxfkmiYE5grawdd2epckRERGQEUw58EREZLA/ROHjfDTwwhG3pj9faKLM2cBzwVK5U+Mogt0cGWRZA2Q/7+60eZdmNLWB80HC0S0REhl4SBYcAFwMrZJvGYaPjH0yi4Itt1vEN4Azq978dsBODvNhrEgVdSRQcg93X/BlLD/haEgUnZLPWREREZIRSAF9ERAbLWcAn9F5M1Gev04a8RX3zF+Bden+OapUHFXMAf8qVCrq+zuDCOD0f2AhLb5ACU4BLga+GcfrocLZNRESGRhIF8wPHZ79WX9u7gFmr9rWyL83vIwC+m0TBcp21sCOHAT/FUt9UTAAOwdbzqSsL/H8piYKNkig4NImCM5MoOCqJgsUHsa0iIiJSRSl0RERk0ORKhXWxaeZzVW3+GInJqL8AACAASURBVNilnC+2yjE+YuRKhc2xz9FFew+/1y/ni7cNbqtkqCRR4DpYfFBEREaJJAr2wAYkNNINzB7G6Uct6nkcaGe0/oFhnJ7aQRPbUpUabvYGRaZga7u8W3PcZsDJ2OK8FZXFebuBg8I4nVEGZIiIiMywNEJQREQGTTlfvAPIATsDxwC7Awu1Ct7nSoWlc6XCmrlSYZEhaGZL5XzxL8AqwPnAy20cstTgtkiGkoL3IiJjVqOAd0UXMEsb9bxN6xH4AEu2UaYvVqL5Z5kEPJFEwa1JFGybRIFLomBD4Jo6barMOuwCTk2iYO2Bb66IiIhU0wh8EREZMXKlwnLAH4DVs03dWAqbH5bzxTeGrWFVcqXCnFhHvFm+2G+V88UbhqhJIiIiMgiSKFgHuKPBbg+UgSXCOG0anE+i4AfAOW2ccirwlTBOn+ykna0kUbAacF8bRbuxwPw5wJewwQvNBv11A1eHcbp1vxspIiIiDSmALyIiI0KuVMgB/wLmZPrOYjfwFLByOV+cMhxtq5UrFS4BtqV3p7YbeB1YvJwvThvyhg2xJArmAVbE0iI9FMZp2uIQERGRGUYSBQ74BxbMrhfIbivlTRIFE4C/At9sUbQb+BMWbB8H3BHG6T86bPNs2BouswB/D+P0qez8ZWC+Tupq03NhnC49CPWKiIhIZtxwN0BERCRzAJYr39Vs78Lyxm4HnDfUjWrgR8BXsVQ5lVywHhs5t8NICt7nSoWJ2He7B7AI8BzwO+D35XyxTwH3JAomAScBP8AWwAMoJ1FwQBinV/W/1SIiIsMvjFOfRMHmWPB9+ZrdpwGnt1nPp0kUbArsj6UUnKlB0S5sgMC2lQ1JFNwAbBfG6Qf1DkiiYCZge+A7wLLAEsD4qv3XATsBRwG/p+e+pZmU5jMNK7qByW2UExERkX7QCHwRERkRcqXCk1jHs54UuLKcL243hE1qKkulszvwXSx37F3A6eV88blhbViVXKlQPeKvetG5LuAyYMdyvthOTt7pJFFwCRYsqFa5odgkjNOb+txoERGRESaJgi5sVPvXgY+Aq8I4fbaPdZ0P7Eh7AXKw6+uVYZxuU6euBYG7gWVaHH8XsCuwMfYAoZ2R+B9j9zet1s3bL4zTM9qor5ckCsYBmwFbYA8d7gQubrUosIiIyFijEfgiIjJStOogjqiF18v54rvAidlrpPo+PdP1qxedA5vRcAFwfScVJlHwRXoH7yv1dwM/A2a4AH4SBQEWAEmxdAAdP9gQEZHRKbsm3JC9eslmpk0E3q+38HkSBXMCuwBrAPPTfvAe7Pq6VRIFS4Vx+nzNvj/QPHhfOX4d4HnaH1kP8AiwJs1H7N9Le7n9e0miYHbgRmC1rF1gDzaOTKJgvTBOR8yACBERkeE2ooIhIiIypt1EzyjuWgFw6xC2ZbTYCQuq15NiAf5ObdRkXxewWhIFc/Sh3mGTRMFuwIvAk0ACPJ1EwbZNDxIRkTEviYLlkyi4BhuV/y7wVBIFu2a58ytlVsCuLadgaW6+0YdTOSx1X/W5F8VGr3eikwcHf8NS5f23ZnsKvAQcCWwUxmlf1yc6CZvRUGlXpW054PLq71BERGSs0wh8EREZKU4B8sDM9F7E9iXgwuFo1FDIlQoOG5W3NvAp8JdyvvjUAFQ9L40f1ncB8/ShznY61DNMpzuJgv2BU5n+4dHngMuSKBgXxunFw9MyEREZybLA/H1Mf9+yNHAusChwTJZ652pg7mx/JwH0WrVpZT7Xj7pa8cCsYZz+MYmCi7D7k5mBB8M4fbW/lWcP+nei/v1CF7ASsArwUH/PJSIiMhpoBL6IiIwI5XzxeWA94OmaXfcC65bzxVGZDzVXKsyN5aa9GzgW+BXwZK5U+GOuVOjvg/ZHaTwCH+DffaizWXqcbqxz/26zCpIomCeJgsWz3LfDJomCmbHvHKYPIlQWJS5mqXVERERqHU/vQQeV90dl+em/iQXam11LUiyY/Rj1r9keeA+4rWb7a31oc7sc2cj7ME6nhnF6cxin1wCvJVGwYxIF9yVR8N8kCp5MouAn2UK6nVgcmNCiTKN1kURERMYcjcAXERmBshHZqwM7AHMA/wDOK+eL7wxrwwZB9llXxTpzLwHLYaOuFgKeKeeLTw5j84bCRdjo+1p5YAqwdz/qPgP4Hr3z13osYHBWpxWGcfp4EgWXA7UpZirnOLrRsUkUrAScQE9e/jeSKPgN8Jthyjm/FjB7g30OG0G5Ivbfn4iICABJFMwCfJvGM84CLF1OOwPmHHAcsDuWY7+y2DxV7w8J4/Tj6oPCOH06iYJnsVH/g6HeDLRTgP2r2jUHNvBgsyQKNuggnc5bbZR5o826RERERj2NwBcRGWFypUIAlLCR53thQfyTgBdypcLqw9m2gZYrFVYA/gX8Hbg8+/lvYEo5X/zLaA/e50qFLwIb0zgAsFeuVPhHrlRYqS/1l/PFv2N/Q5XgeGWRuM+AHcr54jN9qRdbiO8PWT0VrwLbhXHaaIG/FYF7gHWrNs+PBfRP6WM7+qvV6L92y4iIyNgyE63Txc0CvN5GXV3YIIaPsJmI91TtewzYJozTsxscuy3NZ9r11a/COJ0ulV8SBV/DgvfQE0eofAdrAD9st/IwTl/DZvTVa3s3dk9xeycNFhERGc0UwBcRGXn2wQKkYP+frky7nhW4NlcqzDwsrRpguVJhAeAObMR9tS8Ad+RKhQWHvlVDbpU2yqwI3JkrFfqU67acL54FLIktNnc28BNgsXK++Ke+1AcQxumUME73BBYBNsQW5FsijNMrmhx2DDCJ6e89Kh3/fZMo6NPnS6JgXBIFCydRMFsfDr+f6R9C1HqfvqUZEhGR0W0y8ALTr59S60HgeuCdFuUq5grj9O4wTtfBZofNDXw5jNOG1+swTv+JLW77YnvNbosH4jrbd6LxwwIP7NbheS4BptVs6862RWGc1u4TEREZs5RCR0Rk5NmP3ilPwAKfc2OjreIhbtNg2JP6i6gG2fY9saDvaPZBG2W6sIc3BwH79uUk5XzxP1iu3gEVxulbwC2tyiVRMBHYjMYDBxywJfCbds+d5c8/FDgAmA/oTqLgWuDQME5r11GoK4zTt5IoOIvG3+tvalMWiIiIhHHqkyg4ETizzu5uLPXaPVm5CFvIttWaKv8Ljodx2s79QaXsI8CSSRQsg+WND4Cr6N+C8rsDB9dsm4/GDyIcsFwSBYeGcfqrVpUnUbA38Ft6PxD4EPh2GKf39D5KRERk7NIIfBGRESRLn7M0jTtdHhuhPhp8k+Yj0r7ZZN+IkisVJuVKhfVypcLG2aK07boZC+K3GpnngM373MDhN47W9xydLoB3DpYzeL7s9y7sIcF9SRQs1UE9B2NrAVQHET7DUvsc12GbRERk7Pg98Et6B6H/CWwRxqkHCOP0Wiyd3aAK4/QZ4DpgTpoPEPgp8EqT/R5Yps72x2n9EKKYRMGWzQpki/uemv1ae28wG7B1i3OIiIiMOQrgi4iMIOV8MQX+26SIA94couYMmlypsCLWOWz2oGKGmDqdKxX2wjrCt2GLz72aKxVOypUK41sdW84XPwJ+hH0P7QTxZ0hhnH4E/B/N8/Te2259SRR8hZ40U9W6sMDF4R207dMwTn8ILAZ8H9gRWCSM00OrF9ZNomB8EgXbJlFwQRIFlyRRsEe2iKGIiIxBYZz6ME4PB5bAcsMfhq3zsmoYp6/WFL+5jSqTAWjWYdg6SrPW2fcp8DPs4fRzNL8mv1Zn27nAVJrfr6TYfU0z29M4E4AD8kkUzLD3PCIiIoNBKXREREaeGDiQ+gHbFMsZOsPKlQpbAH+i+Sguh40iqxwzDvgKMBF4tJwvfjiojWxTrlSIyKbPd/lu1nj7Gb7x9jMTJ3SnB709cdZVkijYLIzT95rVUc4Xz8mVCm9jCxUv2aCYB/46kG0fBr+g/t9uN/AIcFcHdX2X+mmmwIL429JhLt4wTl8BLqq3L4mCubBUQSvTsxDw9sDhSRSsG8bpC52cS0RERo8wTv8DnN6izEtJFFwPbELvQXTdwK1hnD7Xn3YkUTA/PakHa8/hsZQ+P8/K/hFYq0FVXdhDgOmEcfpKEgXb0DwdUIBdK5uZv8X+2bA4RbM1akRERMYUBfBFREae44CNsVQ5lSBlinWKDirni7WjugZVrlSYAxvtvC7WmfoLcEU5X5zah7pmBs7DOoeNRld1Ay8Df8yO2RFLZ7JItv+jXKlwCvCzbMbCsMiVCl3A0YCfadqn7lf/dwXLv/8qafaxAvya3bhnkyhYJ4zTx5vVVc4Xr8mVCjdgC6YuzfQd725gCh3khx+Jwji9NImChbB0AxOrdt0PbFVJNdCm2Wg+I6HTdDytnAqslL2vDlosClwKfG2AzyciIqPPbsAdWJ76yv1LADwL7DoA9W9B85Ht6yVRMEc2sOBCLDXfd7H7jC567jVPAEii4Ews2P4EcE4Ypy+HcXptEgW/xdZranQdfj87fhLwbWBBbHbBbWGcpll9jXjgxTBOFbwXERGp4rzvpL8sIiJDIQuaH4Cl9JgTeAg4uZwv3jrA55mAPSiYBjxZzhe7a/Z/HutsLsT0nc1HgW+W88V3Ojzf9rSeQdAN7FzOFy/KlQpbA1dQf7T1qeV88cBOzj+Qsu/mKYADnrmFzV99tFcDPXhnndYvtBOgzpUKC2Gj3jaq2vwksGs5X3xggJo+rLLR7JthQfgHwzh9qA913AOs0WB3N3BvGKdrZ2W7gOWA8cDjYZx29OApiYJ5gNdpPuhhpTBO/9lJvSIiMvZkQe1tsZH4DrgRuCyM008GoO6DsNl8zSwUxunrWfkAu8/cFchh9zS/x9YgOgC7nnrsvu8zYIcwTq9MomBF7D6wHo8NOLgbG7AxV9W+54HvAM8ALwHzUD+l70FhnJ7S4nOIiIiMKQrgi4iMQblSwWGdsyOAebPNLwGHlfPFS6rKPIoFP2unSnvgwnK+uHOH522nc1kZcb4YcB+Nc+WnwKLlfLFentZBlysVQuDpSemnXH3fb5nY3Thl/y+W/da1ty6w3MzAq1iA/s5yvtjwApwrFT6HjdB7A3ikWdmxJomCL9B89B7ApmGc/jWb6v8relITvYONLDyh3RH/SRSsDDzcotgO2QyDWYAdgHWwYMefgevCOJ0h1nMQEZEZVxIFq2H3TfV4oAwsUb2+S506Gg208Nh1bakslc4ZwD70jN6vlHkReyBwS7a9OkBfWecpzF43YoNUUuw+rwu4AMhnI/VFREQkoxQ6IiJj02HA8TXbFgMuzpUKZEH8rwJfanC8A7bPlQoHlPPFZovu1nqmjTJdwMzAQVgHr5EA2AA4v4PzD6RngefnmfrhkhO7pzVdbG1SOu3b2VsP7AScmisVDmoUmC/ni89hC8xJbxu2UebvSRRsDVzO9IvtzQ0UscX9jmrzfO0sGv16EgWfA27H/juqBB4i4G9JFGwSxukHbZ5PRERGmGy0+kLAx2GcdjT7cLAkUZADfoANtHgbC34/gN2/1Y5sd8CvmwXvM3szfVC++vgJQB5L9bgftjj9gdiAg4+xhwe/xa59tcF7sPu2eYFdwjg9JYmCpYCdgVWA97AHB/d1mFJPRERkTFAAX0RkjMnS8xxZZ5fDgp2/zJUKl2Ej35sZjwUrOwng3wj8B1iY5ovYplgu+FaaBs4HUzlf7M6VCke+N37mi1McAY37m5MnzFJpZ+XnAVhqoj8PcjNHo3Y69h7Ltd9oodtDkig4JYzTya0qCuP0P0kU3I6Nqq+38OB/gHuAB7EUBDD93/bqWDqBPdpot4iIjCBJFDgsSH0IFsAnuyb8JIzTR7Lfu7CUOBG2xstNwAVhnL7fZv0zA1M7ma2VRMFmWIrBifSMYN8LOBe7Vn21qng38GtaLLSb+QL109qQnWflJAoOzM57Nzbr7HLsnnH97DWtRR1rAKeEcfpfbI0ZERERaaHRhVVEREavdWi8yKcDFsdGc7VKTeOxFC9tK+eL07D8p++1KNqFjXB/mcYB225sxHNbcqXCwrlSYYls8dkBUc4XL/lw/KRd/j73UlO668SJu4F3x8/EQ3MvWbsrRQHdvrqpyb5ubL2IebEHQI0e8EzEcvy2a28s/U7132I38CkWsFkZW+S23t+WA3ZOomD2Ds4nIiIjw6+x1H8LVm1bB7g3iYKvZDnt/w1cB2yNrfFyBvByEgXLN6o0iQKXRMHe2MzED4GPkig4P4mCJVo1KImCBbCg+YRsU0DP9ecHWKB+bWy25QHAkmGcHtrmyPbXsOtbPQGwJXAyNpvtPuyau1RNuVaDBPud719ERGSsUQBfRGTsaWf21TjgTiyAXq8j1w38tZwvvt7pycv54iNYftRmHLAmNsK/URD23HK++J9W58uVChvmSoVHgFeAF4AXcqXCHlmO/34r54vnL/nx28ulrustT0+EtxtIXRe/XHZTpnX1mmwQ0HqGg9QRxunTwIUNdndhf7ft/o13cs4vY4GcZ7Ecv3/EFq+9E0sf0MxE7MGYiIjMILJg+kHZr9X3DF1Y8PxY4Hps0EOtOYBbs9H59ZyMpZupBL8nAN/DUsAt1qJpETCJxvdH+4VxencYp8UwTk8L4/TlFvVVu5DOYgTjaD6jslYAXNlBeREREUEpdERExqK/YdObG10D3gaeKOeLaa5U2AlLe1PbUXwDy3/aVxtQP8dqhcemWNfzKfAH4OBWJ8mVChsBf63ZvChwFjAXtsBpW7KA/7pYDnYP3ADcU84X/dq/f+f5JAqWw76TrYCZ/jHX4lPP/Ny64YuzzFfvM6bYwxHpm92wf4tFarZ74MdYEP81bMRkvQBHNzb1v21hnL4C/CR71WonT/5bnZxPRESG3eY0DpJ3Ad9qsh9gAeye4cbqjUkULIuNjIfeDwbmxdIc7lFzjANmB6YAO7Zo95eyY8YDXWGcTs1+/3pW75JY+rdzwjj937Uwy/O/UYu6++subLaCiIiIdMB5rzViRETGmlypcAawT4PdB5fzxZOqym4OnElPsHQqFgA/pJwvftrH8/8RW7isk1FbFfuX88WmeVxzpcK3gP2xNCmNHlRMARYs54ut0vmQKxXmBP6CzQqoXDgdcBuwZTlf/LDOMatiedEbuQJbR+A94FLg5nK+2GpxuTEhW9huPexBx81Z8LyybxK2AO3hDQ5PsUX8LsZGN9ZzThinuw9ge8cDL2HBmnp58m8O43STgTqfiIgMviQKDsVSxfTHCWGcHlpT71HAz5sc8xk2uv8NLD3b+tjggwk0H/xQffyNwKZZ2QexND3rVZWp1FMM4/SwbEHcM7EUQIPhY+Bs4IgwTj8apHOIiIiMWhqBLyIyNh2EBaD3pCeIPgX4BTatG4BcqbAscBG2wFrFRCw4viCwXR/Pfz+Q7+OxhVyp8FA5X3yg3s5cqXAEcBytO7mTsJFxVzSoZx7sc26HpfKprBtQPVpuPSzXbVR7fDlffChXKhwD/KyqLSn2fU8DtqFn4bldgCtzpcIO5XzxsyZtHtWSKJiIza7YiZ7vuTuJgjOAH2EB8tuBzzepJgC+gY1ivBjYApgl25cC52D/rgMmjNPPkijIYw95xtHzd+ex3PkDej4RERkSf2uyrxub6VU7E6xWvUECs9F4kXWwh/uNAvztpLcZT0/wHmDVOueq7CskUfAkliJuvjbq7otubPDHaQrei4iI9I1G4IuIjGG5UmFBLFXNNOCO2tHouVLhQmAHGncYVy3niw/34byzAAkWkK0ehd+sQ1utG9i+nC9OF3zPlQoh8HQHTfkIG619Sjlf/N+U7lypsBDWcV+yjTZNAxYp54t106jkSoVvAj8EQqyzvyb28KDed/oHbGr5w+V8sdUiwqNOEgVn0Xhx32OBr2LplzrJz3s59hBqAnBvGKcdr9vQriQKvoSldvomNgLySuDk6hkEIiIyY8jS1vwN+Br1rzsHA79pUc08YZy+U1PvNti1aSSoPIhYiMFdH88DZ4dxuucgnkNERGTUUgBfREQaypUKH9Mz8ryWB35RzheP7GPdX8BGLC9dtfkj4D4sSNuMBz4AFirnix9X1XkcllqlkwVqK6PiDy3niydk9cTYKPB2O7PrlvPFO1sVypUKuwLnttmmC4B9qj/fUEqiYHZsKv2cwKPAfWGcDtpNQxIFCwJlGqdV+hCYtY/VbxjG6S19PFZERMaoJArmwx7Grlm1+VPgp9hD5e82OfySME575atPomACNthgUfqWSnCkqMwu/CeWd7/VZ3knjNN5Br1VIiIio9BgPmUXEZEZ3/gW+yf2teJyvvgklgplYyw9ys7YCLC/t3F4ZTG32lytC9NZ8B56Opy/zJUKi+dKhUk0n3VQz7ttlluGnhz6rdoUAed30IYBk0TB7sDrwIVYiqB7gYeTKFhsEE/7NZp3/vsavAc4uh/H9kkSBfMkUbBHEgWHJVGwWRIFSlsoIjKDCeP0rTBO18KC9fti6f8WBv5M8+D9R9hAgHp1footFvvigDZ26D0B7BDG6UrYjMpLsaB+I32+ZxQRERnr1JkUEZFm7gHWpn4w2wF396fybNHWm7IXALlSYV3aT6VTm6+1P0HeLmBHbIT8hDaP6cZSAf2rzfKv0dkDhq1ypcLy5XzxsQ6O6ZckCjbBUvnUPmj4MnBTEgUrhHE6bRBOPWUQ6qxolaP4f5IoWBpYDpiMzTroeGHhJAr2BE5l+mDFC0kUbBbG6eOd1iciIgMviYJZsXVulgZewUbMT65XNozTh4CHqo7dqkX1swA5bIHzevUlSRQsC2yC3XcMRP75O4BVsBz7g6UbWxR3Y+D9ysy8ME4nJ1FwDbB9k+PuHMR2iYiIjGoagS8iIs38Egs41wZzu4HHgL8Owjlnov0g95M1v8/dj/N2YwufvpO92ik/Ddi7nC+2m1rmEiw3eiepaNbvoOxAKNCzuG61LmBZ4NuDdN67qb/YH9j3VcaC6n3xarOdSRSsnETB8UkUPAU8A1yDPbx6LomCjr7/JAo2AH5P74dAiwG3JFEwc++jRERkKGX/b38FW9i8AJwOvJJEwffbrOLT/pYJ43RaGKfXYgvIDoR1GdzgPdi9wNlhnL5XJ63e1cCz9B6FXyl3wiC3TUREZNRSAF9ERBoq54u3ALtg+earPQBsVM4X00E47T20DnCn2Mj3O2q2By2O/YTG07u7gCfK+eI04HdttPNvwDfK+WJtGxoq54tvAZUF3Nod2d3xCPB++gaNU9l4bNHjARfG6SfAYVXnqejGHiYsSP0HNB57KNLMsfU2JlEwSxIF1wIPY2snfL6myGLA9UkUfKVF/dUOqWpztQBLEbVdB3WJiMgAS6IgB1xL71l7E4DzkihYpY1qbsQe4tfTDTwcxmnTxeiTKFguiYJdgJeBR7LNQ7lA3YN9OOZeGqT3y1IDrY/lxK/2PvC9ME77NWtTRERkLFMAX0REmirnixdggcetgd2AVcr54jfK+WLTUc39cDowleaB6zeALbMUPNXupfHofZ/tb3Tt+wDL3woW8L2+yfm7sWnq/21Spq5yvljCguRXAM9jeXKbddhv7PQc/dQslY3DHoIMijBOf4flDH6+avOT2HfURf1/239hi+e90qDaP9H4O/wtzWcUdGHpBg9tUqbW12n8N5Ziuf5FRGT47AFMovf/qyvXmP1bVRDG6evAidmvtQ+doeeBdC9JFMybRMFN2EzGGJudFwJXAS9g1+GBenjfaKDFK9gsy0544PnqNHpJFExMomCHJAp+lUTB4djD6lWB1bDveWtgoTBOL61bo4iIiLRFOfBFRKSlcr74MXDlEJ3ruVyp8C2sQ7tA1a6PgLuwheMuLueLH9Y5/PfAAVju2eqOeTfWIb4Z2KDBqT/LylHOF6fmSoXNgfOAetPpu7BUP0dhi812pJwv3g/cD5ArFTagJ8BcG6A+r5wvJp3W309/woLojYLQHf8dJFGwArAPlkf/HeAi4LJ6ufTDOL0wiYKLsdzBOeBgLCd9I8thueaXBI7L2j4bljbneOCCOtP8SaJgQer/29bqwnL9tusjGqcw6Mr2i4jI8FkZu97Xu851YQvWtuMILLXbT4D5s23/BxwSxumt9Q5IosBho/9rH+bOii2Ku3kYp9cmUbAdPYMK+qPRjLpFgC8CzwFLNClX7zjgf9f2G7JtlbWLjsOuvT8N4/SBvjVZREREaimALyIiQypXKiyJBdk3wTrQ1wGnlfPF/1TKlPPFO3KlwqJZmUWxEWk3Z+ltGirni6/kSoUNsdHtuapdb2ALq51O40773MA2ZFPDy/lid65UWIjmC+rukisVri/ni1c0/9T15UqF2YGFgQuwIHHlgcUULI1PoS/19tNxwBbA7PT+ni4I4/TRTipLomBH7POR1deN/bvumUTBBmGcTq09JozT7iQKvgOcVKcNtcZj0/X3CeP0UNofLf8V2g9YdDIS8lLs77ve34wDLu+gLhERGXjv0Xjmm6fN2XXZw+HfJFFwGvA57Nr9Ur2HxlXWxmZq1XLYteZwLMB/FTZrcFDS1mGfc1vsocFt2BpAze53Ksc8DzbyHht8ULlvcVU/jwSeBi4c8FaLiIiMUc77oUyzJyIiY1muVFgZy1s/Kz2dvUpnee1yvvjYAJ1nHLAhNir7ZXpy1dZbnLXCA2eW88V9q+q5Dgs2NwsiTwVy5Xzx7Q7buAO2eF71oqavY9Pury7ni40WdB10SRRsDhwDrIh9X5OB04Bf1Bs1X3XcKsAOwBxYUP0m4HEsyF7ve38R2DSM0ydq6lkLm23RCQ+sEMbp4+0UTqJgDWy9hVa6sQcXUZv1LgQ8hKWdqvzdVIIiFwE7tQjuDIskCsZhsyT2ApYCXgP+AJyUrU8gIjIqJFGwGfCXJkX2D+P09EE47wTgYmCrFkUPBObE1vpZHfgBNutvoD0bxukySRTMhaVIPB67XjezahinD2cP5y9qUKYb7WA4jwAAIABJREFU+HcYp52sHyMiIiJNaAS+iIgMqFypsCy2iFkK3FjOF1/Itjss1+ssTB/MdVhH9Q9YR7XfspH6f63Ttveyc9XjgD1zpcJU4NCsjquATVucbiKWtuXkdtuXKxW+jo1Mqw1qzwf8Grim3boGUpZW5mJg3arN72Cj2y9rclwXcCa2QK/HOu8/wPLlT2hyyiWAu5Mo+HIYp+Wq7fs2KN/KHtjo93bcjwWpF6TxQ51K6qUTKhuyAMwK2Of8vzBOp1tAN4zT15IoWA17OLNBVrfPznfECA3ed2Epq7amZ4bKothsjA2SKNio3kwJEZEZ1PXYKPfN6D3q/D1sbZX/Z++8w92mzj/+sZVFEjYBCiJhCsremzLLKmFvWpDgR1llkyLKHgW1QNkUypBYLaO0UKDsPVr2LiDKrCAJEGZ2Ivv3xyvl+jqWLPv6JiG8n+fJc23p6OhIdnx03vF9O0poG4OQYIIiEfUX1rz+GBnnA3S2fl0FeALACuKvQtt4mebG+4utIH4heb0a2RH7ZWCV0DZKs+KcpyiKoijfR7SIraIoitIRTN+dw/TdW5Cio5cgBt33TN/9UxIRvzqwItmas+uZvrtsLw/zevILxvYBjgEuMH13EWAY8HWBfg9OHBRFOSb5W3+MAcwP7NtCXx0htA0DiZjfuG7XvMCfQ9v4SWgbQ0LbWDe0jSVrjpsXOA0x3oNcUypNM6DAqecDDq/btlaLwwf5XJdq1ii0jbmSCP9dkPHlfW6vAptaQfyf0DZKoW0cjhT+ewF4Efg4tI0DGxy3KWK8T6V3ykhBv+dC21ii6AXNQLZFjPfQ9f8zvS8bMxO+j4qiKL2FFcQV5DfvKqafA+YEHg5tY6t2+g5tY2hoGxeHthGFtvFZaBs3J9lpp9OeHM6iiAzdXXSusG0l+XdRzbb+BY57NrSNgaFt2EjARd78+Z0a7xVFURSlc2gEvqIoitIpLkP0VGspAQciUdxPFejjR4huam/xWySSbXHyF56HIunkA8g3+KdYSNbBgwXHsQHZTvQY0ce9uGBfnWJbYOUG21Nd3rSosAEQ2sZzwBeIVFHW80QRp0YJ2DG0jceS88yDSCy1wydZOxKJmLOAI2guRfAkcJAVxG/VbDsGyY6oZWHgT6FtlK0gvjI5z5xI/YJaRwbJ+wWA3zH9/5OZzT5k14aoIMV+r5qhI1IUReldpiAG9frfvvT1laFtLJkY+wsR2saywNOIYzqd/3ZDHMaT2xyngTwbDQYiYCjNteqb8R2wrxXEr9Vsexa5J3lR+Gcj2QFDyHcmVMmW11EURVEUpQ00Al9RFEXpMUmx1/1ymhwOfFqgq9witT0lcrzPEOP4dU2alumKRiuySK4g2u9FGZezrwSMM313XtN3VzZ9d8EW+u0Jm5LtrDCQYru1Bum1EaN/J4IBlkEkj+5DisAu0EYfZeDanP0XIQVui+gIrwVMK6oc2sZA4JSc9mcm0joAB9O9rkH9GHdOjPyzEvOS/T0vI8YoRVGU2YlVgB+TnRU4DFinxT4vZPrf03LyL2teSGkWLLA5Im1WoWfGe4A1rCCurwEwAZHryWMYkiUI2XaEKuJMP7P94SmKoiiKUo8a8BVFUZROsBb5c8pAxCD+GPlRW7cnzoBeIzHiewWatrJAriKFW4tyc86+MlJ89zNEwmWk6bt3mL47tIX+22FK8yZt08ww0Y4xolL39xwriJ9t1DC0jcUQw3pRBgBmzfv1gbly2g9BJKKgudyM0aSvmcFrOfsqwCszaiCKoii9SWgbG4e28SAihdaMeQv01zf5txCwNdkOgWZ8V6BNqWBfzTi19k1oGyWkqG9TGbom5/8OuBJYJ6kHUwptY7lEei+r/pCiKIqiKAVQA76iKIrSCSYUaDMeMW5+kdNmQUTipLeZhBSq6xQG8HIL7S8CPqCxM+M7YDO6ItvLiOzPU6bvzt+gfaf4Bz2P6mtEBSkE3Akt3CqSpXEm8Cgit3Q3sK0VxL/JOe6ntPbMUwE+r3lvZDWsoU9oG3MBKzRpNxZxzsxKXInc1/rPKJVpuGSGj0hRFKXDhLaxE/AIMsc2+12vAm/k9LVh4giYhMjj3NnmsKrJv7yC751mtfRFaBvDgNeRe9ITJllBPJcVxIdYQfxpaBsbIc7ft5Ai7qNC27gstI0iWXCKoiiKotShGviKoihKJ3gC0blvJLVRBd4HXo8cr2L67mNI8bgsg+pOwAnpG9N3y4i+/IbIQvmOyPHebHegpu9uB/yVYgXbilABJgJXFz0gcrwxpu9ugGjy752MZQzwDGKsr6eMpM4fnByD6bsrIPdpB2Q+fxDwIsd7ps3reAYpktfo/D3hAuBxOuMceBrR4n8D8KwgHl/wuFbOXQHusoJ4TM22fyOfcVZR3m+Bl8iXokl52gri3sx2aBkriN8LbWN35N4OQOowGMi9ONgK4udm5vgURVF6SlIH5TLkN7rZ73QVuN0K4oaSMqFtbI04j2v7aqX4eq3ufnp8kaLvnaJvaBuDEcfDg8DSHehzWlBEaBurJ/3W6un3R+oLmaFt7KgFbhVFURSlNTQCX1EURekxkeNNAh7O2F0CLowcL402L5Mfjb2Y6bsDAUzfXRj4D3A/cDJShPQN03evMX23ZSd0EsF+K9lF2iYh0fGFi9YhEdXDI8cb1cpYIscbGTne/oj0zoJIgdhKo3MPmjqRoePGVOeePH4XANN31wKeQ3T3ByML/58BT5i+u30r40hJFtO7I9dfJKOiCBWkiPFiwNdt9lFFJF5+g0S3X4Y4BEaGtnFCkvrfjIcpngEwGjiqdoMVxN8gjogsfpc4E0bTPXK/YduC45ihWEF8B/I5HY0U4XWBoVYQF3ZMKYqizMJshBSDzZsz0nniX8AvGzUIbaMMXMr0cjatrKs/RrISZ5YRe1kkG/ICpAZNTx3sVeDGmvcnIc9Zje7J9rTm7FAURVEUBY3AVxRFUTqA6btDgB0zdlcQCZNLk/ePIhH4WQwELjJ99wjgTRpH9e8PfASc0eJQf052EdMq8GHkeEeZvvs+XYb8+gVoKivyBHADcHPkeGNbHMc0EufH5wCm73ZzLMw9eTyHvvcom37+Nn2qlVJMabXwX5fd3GejY5adWjYGML3xoAJcafruvZHjtRzlbQXxROCo0DZOBv6GFLYtIh+TRRlxMJyAZCgc10YfJeBD4Oy67XMl28okWQm1hLYxP7Ab4hx5GzHIrJ9znqmIlMyZVhCPbrD/5ORcR9GVvTERMcifA2AF8dTQNi6mcfG+CiJT8FjOGGYqVhB/gRRhVBRFmd0oUqfmL0AAPGwFcZYjfzWKacXnUaF5Udt2+QgpNtuMNCI+faYpwnXAfnR/NkqzLM+BaXr625Hv0BiOBCEoiqIoilIQNeAriqIonWBHsqPay8B2pu8OTgzdNyDG0IVz+tsPiUhvZLxP+bXpu+siurFPAn+KHG9kbYMkgv8QpLBcukhtZJQn2bcEQOR4F5u++waix78eYoROF9sfIwbjqyPH63T03GPAtgAD4slc8OrNDB0/ZtpgDap8MmCe3aaWjayFcRm5rxsDDxU9aWgbawPHIgb7SYjE0OuIdFEWE5EIPjOnTTqmXYFFkv7XIPszqKcKvItETmZxQmgbF1lBPM2JEtrG/sDldJdJmkC+oaIP8r27EYmk74YVxDHghrbxe0TOqQo8kUTn1+IhcgT71VxDCfgvsIPKBiiKoswUXiV/DpgE/MoK4q+a9FOkCPkYIK9mTREDeyuG9VrmQoz4C5IdsFBL0XPcAzhIDYGjgZWQDMQ7gBGJAzil2fzek8AARVEURflBohI6iqIoSidotqAtA4MAIsf7Dji1Sfu+iCRMHoOArZDCa6cBb5m+u2a60/Td5REj9CnA2sA6yd+8uW/awj1yvEcix9sxcryFIscbhKTeLw4sGTneVb1gvAe4FonGj386+j8sXmO8Txnbp3+RuXveoicMbWNHRP9+V2AIYpA/Eik4PJlsOaEdgKGIs+A+8qUA+llB/C1iiD8U0bJ/H8nG+CtiBEhJ+5kIXIMYCvKuZxA1kfVJ4byrmb4g4ACaGyoGAjcmEgkNsYL4SyuI/2EF8V0NjPdYQTzVCmIbidI8C/gDsDOwghXEHzU5v6IoitILWEH8AWJszpqrri1gvAd5rsjLcKsgc1seRs44Ur5rsO3bJseAzJfD6HJgt50hmFBFMhP2TBzQdyCydlUkq2E/4N7QNtaCaXJ8jyK1VLIoHGCgKIqiKIqgBnxFURSlEzyfs68KRHTXBn+7QJ9F5qgyXUbZOYHbTN9NI7sC8iP4G7GQ6bu3mL47zfhr+m5/03f3QjRdfwWsY/puJwqyTkfkeGOQKPV3Nvji3YaW80UnfE3fytRmXb1e5HyhbQxAjOT1Wr4lxAjwMhKVCF2L8SrwayuIH7CCuGoF8ROI9EzWPakgGRJYQTwBqWkwDFgSudZdgRDYA3GyzIFkX8xjBfGBFNPOrz33Mck568dT5DMrI9IIeRH/hbCC+BUriE+2gvg4K4j/bgVx0w9NURRF6VUOAJ5qsP0uJAutKUmk+XU5TW4Cri/QVd6c+QxSr+cDYCQy5l2Sf68WGSddc/rgJu0aORIqwDjE4b64FcR7W0E8NnFu3wP8gu6Z/KsBj4a28ePk/VnI9dX3XUXk7Jo5OBRFURRFqUMldBRFUZRO8CTwErAq0xveS8D5NUVsQSKwP0Gi2htpzH9NC1HkCWUkQn4z03dH0n6RtN2R6PATTN9dEngQMTansi/HAZ+bvnsacG3keBPbPE9DIsd70/TdFZf9btQLJVi9fv/AeBKbfvY2Dyy0ApSmW/9XgIcixyviIAHYhmwnRxm5h8shRecsYBRwvRXE79W1vRt4CymMV/t5VpP3HkBoG8sh0fr10fGrAucDP7aCeBLwWc2+l5DMiKzvw3jE2JGyLj1Pz18LKZRbmNA2hiA1FpYA/gfcYAVxS4WNFUVRlN7DCuKvQtvYGNgE2ByZM+8Gnm9R3uxIxNE8vG77/YjRewoiozMfrcvglBDpvvXokv37EVLEvdXnoiK8BfwDGfdcyLx9P3CsFcRv1bXdCpGQq6eMON9/DThWED8e2sZuSNH5WrnEfwD7q5RccUzfXR3J4huAOHLujhxPAwIURVF+gJSqVZ0/FUVRlJ5j+u6iwD+BlWs2V4GLgaMjx6uavrsWYgzuixheT03a1Btc29V+BTgIMaD+s83jQdLUFwaeRRbNWdkAzwGbt1LE1vTd+RBZmH2QxfJzwAWR4z1Y2y60jdOokRqqAncsshq3LLY2nw2YC6rV1IBfpctQ/gqwVeR4tQbwTELb+CUSPZ+HZQXxuwX6MoHbEZmilLGIpvB1SZsrgf8j+34eYgXxFQ36PhY4L+OY06wgPr2mbYho0PckS+JhK4jz9P/rx7crop3fny5HzxTgwPTaFUVRlNmL0DbWRBzhJcTo/VxqnA5tYx9kXiha82Vm8VMriB9KMvJM4Os6PftphLZxKVJXKOt6vrSCeP6a9n2BnyBSO69YQfx+Z4c++2L6bh/ARwIDUoNNCclg3TJyvP/NrLEpiqIoMwc14CuKoigdw/TdMlL4dD3EQP+3yPHeM323P5JWvkvSNDXQv4NE4m/WwWHsjUi/1EeOtcovkIK7zfhd5HhukQ5N310AiRZfpmZzjDgwfhU53mXpxtA2foTIzcwFlK9ccmNuWWxtStUq1a7I+woQr/DNJ/+0P3z6y1W//vhdg+oj1BgR8ghtY0MSeZsMxgELWkE8vsj1hbZRQgz4qyJR8/dYQTyuZv97SDZDI2Lgb1YQ717X30HAiUxfLHcq8Gckmi+uOeZ0pO5BT4iBOawgztM5Ts+3LPAG8hnWOg1Sx8qaVhC/3MPxKIqiKN8zQtvYFjgZyQzrLdL5r53Ms3usIN4Ops23ayEOiTKiU/+UFcTV0DYMYFskm+7HZDvIv7aCuDeyBH5wJFmejepFVZBn3LV6qRaToiiKMouiEjqKoihKx0hkch5I/tVyNl3Ge+ha/C2DGIk7yZ+ANRDD9AZMHylWAd4EVmrSz9CC5zvQ9N0TCi6kTkWiw2tJF90Xmr57e+R4owCsIB4Z2sYWwK2j+s+15K2mKALVGO8xKnH52PCB0taj39ihrs+HQ9vYpVGR1TqeRvTys7IMripqvE/GXEWyFp7NaJJnEDeQFPFafo0YDBrd2zJSaHfB0DZ2soI4lTL6C/AbevaMYyAyP00N+Eg0Yr3xHrr0fw9Dsg4URVGUDmL67rxI7ZSpwNOR402YyUPqhhXE/wT+GdrG6sCLvXSankjGXQsQ2sYcwM1IhmTKKYiu/b7Jvg3Iz46sIFkITQltY3nEEfAZ8LQVxI1K/vxgMX23L3B4xu4y8oy7Ht3lAxVFUZTZnFk5nU9RFEWZDTB9dxBwcMbuMg103nvIYMQw/Uuk+BvIojNdIEaIzv03NDYMgxi1Pyh4vvmY3vA8HUnh2/3IXvz2QQq5TsMK4heBZX633DaXVafXu8f58Gm2Hv1Go/42Q1Kvc0kM7rsgWRAgkXzpfXoIMYR3kjvJvucAm4S2cVBoG0+FtjGeRDufxvcsfYbZGimYl3I0PdfAf682c6AJK5P9mZaR4n6KoihKhzB9t4/pu+chc/y9SK2akabvHjFzR5bJy0jgwKxiqK4i9+7u5P0FdDfep2wCPAGsn7zPk6aLgd/Xbghto19oG3Mn0f2EtrFoaBuPIvfir0nf74W20ckszNmBRciuT5Sy6owYiKIoijLroAZ8RVEUpbdZChg4g8+5ALAlsCJwDLK4fxA4Clg5KfKaFd0EEp1fRrIDmkXWfwYUKWTbF5izSZsh9RusIK68Os/QT+q3D4gns+OnL2X1UwJ2Cm1jqWaDSvTtlwMOQCSDrkKM4ltZQdyxaMZEX/cFRFopizmBK5DIsjla6P6g0DbmCG2jjEgf9UT/HmScRfmKbKNMBSlkqCiKonSO84BjkbojKXMDF5m+e9DMGVI2ibP8MCRTYFYw4sfATlYQTw5tYz7AyWhXQgqzF5lTX7OC+CWA0DaGhbZxA1IH52vgw6SWzcOIJn4tQ5EshWZZkU0JbaNvaBtbhraxV2gbK/S0v5nItzR/9vx6RgxEURRFmXVQCR1FURSltykiQzIZMXDXLxJ7Usx278jxLkYiyy5osP/viNxOo+j5KnA6suAOmpznj0XkcyLHm2z67gfA4mRfU5Zu/7/rN5jjv2Jgc4n2tYD3mjVKZHKuTf41JbSNYUgR3iGITv/NVhB/V9emhCzUd0SyLNYABhXpn9YDDAYjEWsjac3wn0UrmvV/BnbO2FdGaj8oiqIoHcD03YWQubkRVeAU03eviRxv6gwcVlOsIH48qTtzMvAzZm4g3a1WEKdSd8sjknE9ZY3EUT8EeA4JpEivcTGyC9GXkee/EYgsXluEtrE98ky3UM22R4F9rCAemXngLEjkeF+ZvnsvEkxR/z2pAhOAu2b4wBRFUZSZihrwFUVRZiNM310FiaQ2gfeBq5No80703Qcx2jpAWmD18sjxHmxy6KZN9k8EjgMupauga8oU2l9YNjMWb0q29E0JyRx4AZHcqS+gmlIFrmlhTJcAf2iwPQa+BG7POO4xRD93NZLF3ASj0G0Z28LYChHaxghE2qaMRBKWgd+HtjHcCuKnkjb9gduA4fTMCVOUKvJMMwH4GDEW9OScD7XQ9g7gH4j8QHqt6d+HEQO/oiiK0hk2JnsNW0KcucshxcVnKawgfh7YPrSNtcmuFVOEGLnWdp0At4e2cTBi7C5c56YAZaTo/BC6z8HN5uMykjXZFqFtrAv8rcF5NgYeCG1jNSuIZymHTgFGIHUH5qTrc06fuY6MHO+7rAMVRVGU2ROV0FEURZlNMH33ROAVJDJte0Q65j+m7x7Sgb77IHqlAbARYCHG2QdM3z25yeHbkJ8yPipyvMuAbekuXZIaZduhSnMZlCIW8FXINt6DLBbr08HzuBi4PnldQRbhIOnS20WO11CKJ4nwH07NNX0yxzy8N2gI1cZp1lUkvboVQ3RTQtvYFtG4TZ8f0r9zAfckqfggmvTDk9e9bbxPz/Fmct6LenDOKnBvUnugEFYQx8CuiJzDfxGJhI+AE4CfWUHzNAlFURSlMEUkaIoUlZ+ZfNrmcVXkeeE7eraOvxX4I3AaMqfX1r+pP9/kjH21VIDnkmy+PWlvDo5D2xga2sbRoW2cHNrGVoksXhGOT/7Wty8jUorD+Z4ROd5/kCzKGxA5xxh4Etg2cryrZ+bYFEVRlJmDRuAriqLMBpi+uwldhTzrFzCXmb77TOR4r/bgFA6wQ13/aaT8Gabv/iOn/2YLuW+Sv/fRtZA0kuN6Yoi9tEmbf9EVzdSIr5GI+WYUXkRHjhebvmsDVwJ7IYbvF4HrI8fL1TONHG+k6bvrIsXk1qFUGju1VP6sJAtxg+kjtI6xgriINn8rHJ+xvYxcy76hbVxJdtHi3sRAiu5eA1yHFAxuRm12QAW4GZhOPzm0jb7I5/VzJLLwFeDS1NCfGOn/QOPsCkVRFKVzPIoYlRs54atIFlZHMg97CyuIo9A2HgC2YPpniDS6ngb7SjSvpQNSmH7RnP31hd7TaP7aZ6LUaD8COAOZ4/MKtq8e2kaUtGuVtKjuB3S/5jdC2/iZFcQfNzl+C7KL11eAzRDZxOkwffcnwJGIzN+XwI3AFZHjdTIzoS0ix3sXsJN/iqIoyg8cNeAriqLMHhxCvjH6IODQHvT/fzn9VxED/1EZxz6I6L1mcW/yd30kUqqnTAaOADIrvAJEjvep6bvXItfWiG+R4mp5VIETTd+9ChiFGI/Pz1v4JdH0zyT/WiI59unkHzgeoW1sjOj1/zRp9jJwphXEd7bafx6Jpv36OU0qwKpIxsLgHpwq73tchAOQiPhmBvwq8Dji+JoTeNEK4v/VN0rkgO5C7m86tpWB/ULbONAK4lYklBRFUZQeEDneGNN3/wC4dbtSh+wpkePF0x85y3Eo8BSwcM22KiIrOAI4F5ECrCTbDeALYD6az5F5xvtGpP29DSybvH8MeZZ4LLSNuxCpw52S8/evOz7NmGz1vCmTEAN6Pcsj2X2rWEGclwWQJ49Tytpv+u6hwGV0BY4shkgV7m367qYqU6MoiqLMSqgBX1EUZfbgx+Qv6Kwe9r9oTv9VYHfTdxcH7gFuqjNgB8jCb5EGfcTAP5PXy/ZwjJOQRWU/4ArgLNN3zwAuzSkyewuwFbJoS5kCXI04RZpRApZBrmsoEqW2jem7m0eONwHA9N1VkUXo58CjnS6sZwXxv4AtQ9uYAyhbQTyu3b5C2zARZ0s/4DEriF+v2b0B+c8NZSRr4St6pns/ERhIzwz55wMfAsNyxlFCnCiDgaetIP48o90RdDlHaqWDqsCVoW3cZwXxJ22OU1EURWmdE5GaJ8fRFZE+GjgxcrzrM4/qEIlDezfgcCTw4DPkWefionOwFcTvhbaxKmLI3wGZXx9K+ng/tI2/IwEGayEBBbcgOu+9JYEbA68DKwGlRB4uHesHiDzjYQChbSwB/JqubLueSuV9gTxn1veTSuBsjgSDZHEHUgC30b0pIXVqumH6ronIGkJX9H56/BrI9TWTiFQURVGUGYZq4CuKoswefEK2RmmamtwTwpz+y0gE2XDgT8BLpu9OiyiLHO8b4Jc0XuCVgL+YvjsYWXz3hPqIsAWQxdkFjRqbvrsv8ADiWKhlTItjSefS9PrWAw40fXeo6bv/QiLib0rO9ZHpu1u10HcuoW3MHdrGOaFtjEY0cZ8PbeOQFnRj037KoW2ch2i3X4Hct9dC27g7tI00HX6dAl3dYwXxF0hWRRGd4ka8hhgtrkD07L/Jb96QYUgR3TyjwhREcucO4JPQNi5JpHLq+SWN9ZRLyKJ/3zbGpyiKorRJ5HiVyPHOAH4EbAisCwyNHO/aGTQEDzGorw/MgzjyzwYeDW1jUNFOrCAebQXxqVYQr2oF8YpWEB9lBfH7yb5RVhCfhWSU3QFsTe/WlCkB31pBXKk13meM+wMkcKTdeb4ek/xrW7vJ8R5SjLfReB5Esgnq2Yds2R2QbD5FURRFmWXQCHxFUZTZgwBZ3DWinOzvCVcAm+bsr9WrXwYpjrZTzf49aRyVXUairvYBrkWisBbo4VjrOdL03csSLVEATN+dG7kmmH4BtyBdev/tUEGMukcAS9TtWxi4y/TdtSPHe6UH5yC0jTmBJxA5l5RlgcuBNRJ5l6KF/EYgRVjr2Rb57uyMFFFrxr+Sv8ciBpV5aC1YoAJ8l8jSXAMQ2sYKSPRdq4aL24DdEWN+I/rWvf4V8lw0zQGSpOznGRZiumdvZJIYdfZCHDzjkaLQT7TwGSmKoig1RI43jlRSrkOEtmEhzyHvNsrMCm1jFSQ6G6Z34K+FROV7Bc7TDzgQkSBcGHgLqa1yZ02bRRHn//L0XF6uGWWkDkxRikj5NKMCvAcsSb4xPVfKxgrid0Lb+AlS+yiV+puEPFcelzHPLkz+PV0w75yKoiiKMqPRCHxFUZTZg9voWnilEUhpBNXlwCMd6D8tClshP+qqDGxv+m5tZPumZM85MbAJsBRd6cydZte69zsBc9DYMFsGVunBuVI5naWY/prLyCL1uB70n3I43Y33af8gkWPrFekkMSJkjacE7JQYNO6k6zvViCetIB4LYAXx20gK+p8Qp8w4JLr/NaRobxZl5LtWyz9p3Xj/FRKZmWW8z+LA0DYeQ6LzJ4e28U+ktkHW991Aiu7lEtrG8sC7wFWINv+hSETgX5P7ryiKosxEQttYPbSN54B3EKfAyNA2bghtY+66pr+gcVYWyXa7wLn6I3PbpYjm+qLIc9IdoW38tqbpX4Dlkte9tW5Pr+V2pEBwUV6heAR+Vr9l4DSkwGxWXxVEOigXK4hftoJ4A2BxYHVgISuID7WCOKsmUUj2Pa0A/21KA6EYAAAgAElEQVR2TkVRFEWZkagBX1EUZTYgcrwK8HPEOPg08DFiINwd+FWOBnzR/qtIRPlPkIjsl5scUkYWUSmTm7TdAYk+O4POpWTXUp/SPqRJ+57MjxUkwjrL2F0GtuhB/yl5RoQKsHfBfpakedbDelYQj0QKvpJx3o1C20j3YwXxh1YQH4JkYwxCItVXRBbWjagihYdvrNt+LWL8b+V7cR6S1dHqd8kANqLL0bIl4ozJKt48GbgeILSNpULbOD20jStD2zg2tI0hyXYD0d9No/mMmv52RrScFUVRZglM3x1s+m69JF2vkMi3bRnaxtWhbdwc2sbRoW3MNyPOXTcOCylqXltI1UDmkXuT3/GUIWTPLSWKZREeiGSWQdd8kJ7jN6FtrJZE+m9E76/XRyHz0F4tZoRdglxv3jEV5Hl0OHAd3e/bN8ChVhD/GTgJibKv1B0LcJYVxFHRQVlB/FFizG8mv/dnYCyNP8syUtxWURRFUWYZVEJHURRlNiFyvBgxJvZKAbfEiP8k8KTpu2sDzzY55GrTd88DfCSyawTZOvgDat73xmK1fqxv9sI5UspIIbg8aZVOFLKdl+zI9GqyvwgTWmhzOlJk9pyMdieGtvFvK4jvBghtY0u6isA1+lwnIJkQ45DvyUlWEHcbjxXE3ySp8XcgkYp5VIFzEfmCRzLO2YzaYwxkcT8WKXYbJ9uqyfZ9rSAeHdrGccDvkc8jbXNWaBu7IZ/1UjnnOyy0jS+QYoBLI/UXrgbO70lBYkVRlCySOjUHItriYxE990GAizhaK6bv3g2cEjneq70xhiT76DZge+T3tArsAZwc2saWVhC/0BvnzWAEUjy9fs4oIdlsWwP3JNveJFvuJQbeKHC+/cmWb6kgwRi9ff3fIEEeD7Yj5WYF8fOhbZwOnJrRpILcjwOTucwObeMkpJ7OBOCxNDo+kcBZB3nG2BW5v+8i86rf6tiKEDneN6bv7gzcDdRnwk0CeuV7ryiKoijtogZ8RVEUpR2eRyLmlyXbSLosomO+OvBbZEE6JKN9EYmUe+hKNx+PpJsX0ap/B0lVr+V+4H1EYiVPd7UoqdG2AhyT9L1dRtsqki7eU15CIsQbjd+owium784BTEoyNLL4GMmoWIVsI/v9AFYQV5Oito3qGYDch18hC2KAQ+i6N/VUkIX5GcBXVhDnZWlMoKtgXp5RvgT4VhBXQtt4h85EL5YR4/2xiLbufIgU0B8To8MWiNMgJb3WfojO/e+b9D8/Ih2VXpuJGDG2Dm1j83qHhqIoSk8wfXdDpND4YLqij/dM/qbvy8gctoXpuxtFjvdSLwzlBMR4n54vZW7gztA2FreCeEovnLcR25Mvp7IdXQb8AJF96d/gGAOJTG/GwjnnA8lgvL9APz1hTkQab83QNgYjxeOHIRlvV1tBnBukkWQIjKD780D6eiKSefY7K4infXeSSPqG0fRWEL8D7JkUk+8PjJsBNWK+oXs9nJS+wD2m7y4dOd7oXh6DoiiKohRCDfiKoihKy0SOVzV99xdIlPOcZGvJAxyGLHg3AC5AFsIlRH6kmf73mcAY4LGaKMD7AEzf/ZDmBvyPgK2T7ITa8cem724PPIQspLOMzM34DjgFKdw7ErghcryPTN81gKeQa669NxVkwXh+G+eq50Jgm/qNVahMLZWn7rHuwUcixuNxpu9eB5wWOd50BfkSo/xxSKG8WgN5+vrkulT0ZZN9DR0HwI9D2yghxvufZbQDuS9LAd8CO4e2sRjiTIiR4r8jgTsSXf196Z6lkceGwNtIkeIDCx5ThJetIP5Dg+1H0Pj7U0aMECsV7L++GOJ6iEGliDFIURSlKabvDkAcyAOTTY3qtNS+HgD8DvhpJ8eRFAo/LGN3GVgEMarf3snz5tBs/p92X6wg/iy0jZ0RXfY5kN//MvLbfTY5eu1J1sFPga+BhWhsxC8j1z4a+Bxx8hZ1RI9DPtsiQRFl5BnsRmBVZF5PJXH+L7SNk60gPivn+LOR668dW3rePsARVhC3bPxOnDYzynFzJI0DElLH/QHIdSqKoijKTEc18BVFUZRumL7bx/Td3UzfvdX03btN3z0pSbfvRuR4LyJFVC8iXxKmAuwTOd57keNtjyxal0eMk80YD1yVkcL/GBLllcVkYNXI8T5stDNyvDcRyZIDEdmh12ldM31O4M7I8Q6LHO+syPE+SvqOgW2RDITayPLHgQ2zxpRHaBv9Q9v4eaITfBuiXe/WjLkCMKncJx6x8u79vu43KC0iPAgxpj9j+m5DbWEriB9B9Hj/VbP5fcC2grje2TCabONABdHTPR3Rj20U2ZaSLpo/QQr1/R4pxHxb8voG4NPEULIM+QV0a5mQXNPLiIGomvwrenwjppIti7AK+XIKpWRMjSIJqxnbQe7lz1sYo6IoSjN2RDTai64By0gUfqd16eemeS2a5Zrs7yT3kz3/lxFn/zSsIL4PiVb/NTJXnQesZAXxiVlR46FtDEeiz+9GMsqaZZP9kq56Q0Ui0WPgYeT56qNkW7NnmjJivE9fl2rGdWZoGxs2Oii0jTmRAIKsa+iDfNdmddYl+xpiYK0ZOBZFURRFyUUj8BVFUZRpmL47EEkT34SuqLKfAaeavnsucGbkeLWSHqORxV/efNJNjz2JAv/c9N1vaS6Jcg7gmr67NxKpvT5iDL0zcryPTd+9GFlAN+KiyPG+zumbyPHGIXrjV5u+uyYiDdQqFvBBg76/Aw40fXcEElH+ReR4/2ujf0LbWADJdliJLkP0rsgifSOkuPBCL84zdMopK+w0YkKfftDdyF5CnBVHkqFXawXx48CGoW3Mj0TljcowRFyHOAQaUUZkY7I08uvbbkb+5z8YuBW4imIZEpMQaQgArCD+Y2gbbyE6/AshDqF2FuT3WEE8XfZCwheI7E2WNNRoRN8+oPv3vZqMtx/ZGSzztzFWRVGULJZu87jBwJcdHMdYxAGfl1k1qoPna8bvkTm1D91/yyuIXOAd9Qckc8K59dsbEdrGmkjmQ6vBc6lEW9ZzTi0GErm/CnB8sm0dYGPkOa3Vc1eAg5BswnqKRPkPavF8M4NvyZYELCX7FUVRFGWWQCPwFUVRlFpOQ4z3IIvB2nToE4DnTd9doKb9r2raZ2EgmuHdiBzvE4oVJ5sTiVh7Eknlvxj4IHEonIhIjNRGV8eIVv5vCvRdO54XEK1+KBbtlpJrZIgc7+vI8V5u13ifcDlSWBDkfhoAFRg6pu+gYLONR1xoBfHRI1bZY+CEPv3yIu6aRnRbQTzGCuKRWVGEiS5uGpWf3vf0nPcjskJFjO2vJO2aRSGWgAUplh1xhhXEXwKEtlEKbeNMJCJxM2AFxHjfTiT+1qFtbJCx7zqyr6EM3GgF8fXI/5O7ga+QKMzzkc81T3f55Yx9iqIo7fBpi+2riJxZq8flksik3EB2ZtIExBk8Q7CC+FUka+7jul0PA1t0QIv/VLo/UxWljNRfaYWhSFbbuOTYL2m/oPuSGfs+R+5V3rNSrob+LMJfyP5MykhxZ0VRFEWZJVADvqIoigKA6bt9kZTtPJZHJHNS9id/AVdFIu2uy9h/GHAt+cbZNK27fttxwGGR4x0BLIYYp38OLBY53uGR4+XJ+jQkcryTkIyDh2hu6K0gjonpnBOdJLSNhYBdaLDILENp/injlllq7OhPTN9dD0gLzGYxV4eGNSIZ02OIcWA8IhW0UrK9GQ5d8jLNKCMRhcck7xt9Vz5GIgVrI//3B06icZHBLLLuXX/EcdSIq4Cn646v1Ox7CsAK4iesIN7BCuL5rCBezAriEUgdg0k0vqZyzjkVRVHa4a/I73VRJ3UJ+EM782kBTkKk2qD7b2cV+GVd7ZVexwrih5G6LBsBOwHLWUG8pRXEPcoECG1jEOIcaJc+tGb4T9ueBWyKRPG3QwXoH9rGA6FtPBnahhfaxlAAK4grSNZCo3FVEOP9M22ed0ZyBfAm3f8/pK/vJqm5pCiKoiizAqVqtbeLuyuKoijfB0zfXRCR+2jGVGChyPG+NH33a0TLNq/ttpHjPdjk3EOBfyIOgqIL1SoSFTisvkhtTzF9dyvgLrI13KtIdNumSeR+s/42QWRnlkU03wPg9sjxmkaVh7axLt216afjtOW3rzwxZNmxiAE7S74mBu6NHG94Xf8GIo8w1grilu5jaBsnA2fQXAqpnnuA+ZD0/mbHVYHXrCBeNbSNTZCsj1WR4sZ/Q4ocjgbGp+NPiui+hWjnFx3XN+R/lwGWtoL4vfqNoW0MROSJDkCKIodIFkiQGDoyCW1jW8SoNgdd9zEGjrSC+LKCY1cURSmE6bu70RV5XKZLQmQC8juUUkUy3I4uMle1Q2gb8yG/6Xsh89C/gAusIM6d875PhLbxS+DKmXT6W4Dd6FnQXjovVRHnzzZWED+ZzLPnIA792v5fAIb31PHR25i+uzqwAfLdXwnYE/kOjkZq+PwucrzJ2T0oiqIoyoxFDfiKoigKAKbv9keM0kXkT1aJHO8103efA9Ygf3E4EdEJn4BEOv0xcrwHGpz/TmC7Jn01HHoix9M2pu/2QwqubYUs5nZEjLmNxjIByRq4IHK86Yy5Dfo+CTiTrkVw+vcmYN9mhpHQNhangcZ+LYevujdvzr0oiNb7MQ3GnhpoNo8c75Gk37mQYrMHIDJFXwF/QmRoxje7rtA2lgT+S+uSAOl4PgIWL9j+FiuI96w7f3+kiO+hiMTOWESS6VQkG2BsG+NqxtpWELdTJyGXxIj1c8ThMBK4wQrinkguKYqiZGL67mqI03E9ROf7L0jG0BqIUXMCcEfkeO9ndqIUIik6v+tMOv0TwIZ0Luu+AnwGDE1lhULbWAzJWBiIOGCeyJLg621M310IyezcDnmWfQC4JHK8j2vazIfU1tm85tCpwNlIvYFxkeOpgURRFEWZ5dAitoqiKAoAkeNNMn13Is0Lj1Xo0n2/DIkmz2MAUuQTJD19R9N3T40c74y6drchBdhapamxOY8k8+AhugrEplGJWcwBnBU5XtPossRIcmbytlz3dx+k4OpNeX1YQfxhaBuPI2n93cYVU2LUgLn5z1yLkIx9JcQJcRdStDVlKnB4jfF+DqQo7up0GeDnRQrfrR/axhZWEDeLPNuLfOP9FLIzGEqI8f59sjV2a1mh9k2SNfB3YJuazYORSM5NkYjD3iCrkG2PSHT7VS5HUZQZQuR4LwN2g12PJf9mW0LbGAIcjhjV5wAeR6L+X+2lU7ZjDG41qy2LsbTnZM+ijGSZbQP8AyBxNs/0+cv03WWQWkm1zz4rAQeavrt55HgvJttuReri1NIHOAUYHTne5b0+WEVRFEVpAzXgK4qiKLV8ikQBZ1EF7ooc77Pk/fVIBN9ByIIzLTqaRbogPd303X9EjvcKgOm7cwIW+UbfRmOJgD1M3/1z5HjfJn3NgUSV/wKYH3gJWVy+CAwHfoRInDyQSO9cRZeBuEj2AUgx1LsKtNuf7IV4Bfg/mhjwEw4GnpxUMhboU40xkoOnlA285balWiqB3PdvI8d73vTdYUhE3I8Ro/MtkePVGp/3QyItG7ER8HVoG48C5wFvI4b+cYjWe9/k/Yp0RfY3ojbbIIuXKGbAXzG0jX41ToVt6W68Tykl42rVmFAFvkacGFlUgC1D2xgH3GcF8ZgWz6EoiqL0EkkWYT9gbFYEdWgbJqLNvljN5qHA3qFt7GwF8d29MLTnaN2p3KmI+X8DW9JeAd08hnWwr5YwfbeEyBHOC7wTOd6Xya4rgSF1zUtIhuH1pu+uCKxG98j7WqrA8abvXtFbklGKoiiK0hNUQkdRFEWZhum7pyESJFl8BqxVl45cQlK090WisptF8IMYQy+NHO9I03c3R6Kp52xjyKmB+Fskev8FJJp+XaaXrBmPpHinfIjIr9xD6wvbqcCekePdntfI9N076ErlbsQHkePlGrCT+7u/UYmPj8vGMn0qMeuOeY+lx47mgYVX5NM5utmct4gc7+HaDaFtLIAU/N0HKWL7PCI5swL5RoL6+wcSzWfQXSc569gPkEV+XrDA/UjGQDMmA3OkevKhbdyI6NVm3df6z7oIxyHZEs2uLR3POcDpM0sqQFEU5YdKMi8ORyTjVkQcy3Mic/lbgBc53vX1x4W2cTONNeEriBN3USuIJ3ZqnKFtLIg4+9fuVJ8tsgqwHHAjco9iuq59FBLQ0A47WkF8Z8+H1xqm764PXI5cF8hcfD1wASLRmMfaSN2dS5qdpqeyjM0wfXdRJIBjBURi8obI8Wabug+KoihK76AR+IqiKEotlyCG+GFMv8ANgfUjx+sWeZxEuj0JPGn67nCKGfCrwCKm7y6CLG4HtDnedIyDk34uR4z3tfvSv/UG3cWAm2kvKq0PcKPpu4/V3486PiDbSF4BmmroI7qsblw2KgBTywZPDbF4aoiV7k+j4P+KyOJMI7SNhRBN2iVqNm9CsUyD+vsHcp+LUEbkksYnr7PuwdM0N+BXgNvqisGmhposBpKfHVDLJOAs4A9I8brrk2PznBv9EEdXr0nfhLYxFPgJkpXyYCKzoyiK8oPC9N35kayrgcC/I8d7FbgIkcFpxLLAdabvLhY53m/TjUndl11p/NteRgqrb4sUR+8xSZHXO4E1O9Ffi1SReeM14LXQNp4CHGBpJNMyRmrmtMt8PR9ia5i+uzLwMDL/pvRDDOGrNDyorguktkMzirRpm+Q5+TagP12yjYeYvnsZInWoQQGKoihKQzqVnqcoiqLMBiTG6PWB6xDDJoiR8rfAyk2M1WnbIpSRAqgHIhHPPU3tLiNG3YMorjdrIBHp7TIA2LtJm6tz9pWBK/IONn13SUSXPm3fiE+BE4C9Gyz8TmX6QrFFZYI6wQC6ovjr+TtwIWLkz/vMvkGK7dbyPM2fYfK+U2cgMkJ7Aj+ygvgsK4irVhDfiBjN70Skh6KcPqqAG9pGR4MhQtsYENqGjzh/bkCcTJ+GtnF6YhBSFEX5QWD67vHAJ4hj9QrgFdN3nyXbeA9dc8OpSY2blPlpPv+1G5HeiA2RgIJ21ttTenjuh5D5DQAriD+1gvi3VhA7yLzr9qDvCvKsNaM5ETHYN7qfa9H82e894G4kg7IRFeCxGkmejpMU2b2VLqlIg67rOQwpZq8oiqIoDVEDvqIoitKNyPFGRY63PzAPUgxsocjxToocb1KTQ0EW2s2oJv+uRrTUO6U1GiMG+Rlp5Fw8b2fkeG8CRyRvK3V/L6N5pN9u5F/PRGCxyPG8yPG6LfgTY+++TY7v7UivcnKOb2q2TUSi1ve2gvg7RMYIGn8PXgXuAHYPbaNWauhqRM6n1fFXEMfR+VYQX28F8S1WEH9V28AK4qesIN7ZCuIFyY9QLCHGniVy2rTD5UhxydpntP5Igb2jO3wuRVGUWRLTd23AQ37/aikqR9MX2LHm/Siklkse7xTsuwjrF2jTaA6rAn8CbmnxfF8A1yBZez7ZhupdKF5rqBFl8msl9RbDybZd1D9n1FIBno0c77XI8UYj9yc9prbNFCQYojfZj67AhnoqwK96+fyKoijK9xg14CuKoigNiRxvYuR4n0WOl7UIbMQrBdpUgQMix3sP0ZztFKWkvxlZfKyZMYDI8S5FCqddhUjc/AXYgmKp0s0yBAaQHVHYj+ZyRj2N8qsl676nDgQLiZJbyAriI1OdYSuIrwN2Rgr9jUci3/+OGCNWQRa8ZwH/DW3j1OSYUYjUwWTymUJ3x8nfgI2sIP624DU16x+6MlV6TFJgcb+cJm5oG/1y9iuKonzvSTTuf0PP5/M5k/4W3GzjEYc8M/9S/82YdGPEuftI491t0UyKpYrMMemQ0mt9FTgJkbwpOleBOMcPQO7bn4GRoW0c0KDd/C302YgKxYI1ChHaRp/QNnYNbeOW0DbuCm3jpET+r548u0UJCTqpJb2vo+ge2X4aEjjwcc22J4BNIsf7d2ujb5llke9aI8pIvQJFURRFaYgWsVUURVE6gum7ywF/RDTWs7gXOCZyvLeTY7ZOtnWKc4ERHeyvGW8Dy/eWZqnpuzsDWYVy08X/OOANpH7B7bVjCW3jPSRCPCsK/xjgywrY5QafW0yJuFSiX7WpDWUSEtGXtcD+0gri6YwGiSbxJYgUUSpF8waS2TAHjZ0TB1hBfG1y/PnJNTSiihhk1gcWAeZGIts3QhwFtwGX10fg141vfsRQUR8BCmLEeA1YvVOFbEPb2BNx8OSxshXEr3fifIqiKLMipu8OAT7rQFcbIb//NwD9BsSTK2e/fnt51W8iqlApyTxhII7jzTv52xraxjDgfbKjrf+JzF+/AtZDsspuA66zgnh80sdRSIHWdkjrwGxrBfG056zQNoYD/2izz5T/IEbvSYjk3GPtzIOhbQwE7kGeP1I9+DLwHbCVFcTTCruavnsX4rhvJQDxEuDkyPGmi843fbeMZNFNLCAP2RFM3z0bkS9q9ExWBcLI8dSIryiKojREi9gqiqIoPSbRan8GMZLWky4iAyTyvtYa/ABioN6F4kVH66kgC7rLkfTnRRGDcHqecl27TrIcsvB8tMP9ptyFaKEPZXpjdgmJsu+PaO3+BDgHib5LuRjRu81iDyuI11366mPmPv7tezfZ+IuQClClhEGVL/oPxlt2G8577TaMfLWaG5BCco2o0MBYENpGOdn+E7p/7ivmnQj4Y2gbD1tB/BEiE5BlwC8BgRXEX4S2sS4SfZ/qzVaR6H4ntA0naRsiUf/LJfvftoJ4TGgbZyMa/LXfz/S7dU6njPcJRSL+i7RRFEX5PtPTzKYK8CIwBniMZO6faPQrH7fKHqw35r3qRp+HpbW/+uDheaZMuBu43griTmYEYgXxR6FtXAAcy/TzxyTgFCuI3wWOzOnmIsSwfQqwQItDKCXnOjW0jQpSo+gFJGgi67kCRGLmDsRYflpG38sDP0au60jg/tA2drKCuNUCsKfRFTxQO5ZBwN9C2xhmBXE6550NbEPxZ7kKsEAj4z1A8izasUyCglxHtkxPCbh2Bo5FURRF+Z6hEfiKoihKjzF99ypgf7IXVccAFzaKVDd9tw9wFBKFNgz4CnEGrIMsWOOk33TxOwqJrF4amA+Jgr8YWfisj6SQrwIMBkYCTyIRYifSXQ+3U7iIUXU4UjPg62T8fuR4/+lp56bvWkik3lIFD1k5crzXYVqE+5fkFO6bWiqvseVPjr2NanWJFb79pLTx5yH9K1N4Y26Tx4Ysy5RyH8544+9sOOa/IJ/NQLoi0r9F5G3+gNzndelujK8gaf1rWkH8Vu15Q9v4KeLAaYe7rSAenvRzFvLZxsl1poaS54FN6Ur3n5v8RX81GescyfsIMZoESHG5E5BIzlpiRKrgcCuIs/R3CxPaxtzI93tAxvjeBZbrsNNAURRlhpBI4ywMxJHj5UbYm777CdP/5hblJWA7xKF9GI2DAyrANZHj/bLNczQlqUVzJJIZmF7LQ4BrBfGLLfTTD4nEP7RZ2ya8ixSgHQU8iAQ8VJD7kxqQf2kFcZw42SOKF/a91ArivOLC3UgKwH9B48CPlDeQZ6pHgSs223jE6kgx40ULnublyPFWLzqmGYHpuyciz02pIyL9+xSwZeR4rTpBFEVRlB8IasBXFEX5gWP67gDEaPl1u1Iwpu9+TfYirAqcGzne8QX6MSLHi5PXg5FI+g0QyZO/Ao9kjdH03d/SpZlbSs5bBn4dOd65SZsXED36TkbifwYsmLHvMuCIuqyDhiSGjbWQCPDRwMNp/YHEybEdsAay+F6A7BTs8yPHGwEQ2sZKiMxLJp/3G3zgHusdclVem2W+G33tlS9dfxlS42Aw4lypAP+qSfWfJ7nePem6v58CthXED9b3GdrGHxDDRjufRRVYxAriUYmBZCekWPCKiEEgAC6xgnhcaBu7Abe2eY4SYsy4KrSNFRGd/v51Y64iDpufWEHc4/oLoW38Bvgt00dsloCdrSC+o6fnUBRFmdGYvrsXcCqiAw4SIX9i5Hj3J/sNYGtETmYC4kBttebHLcCVwGOR41VN330cyfLK4vnI8YoWxW0J03cXAH4GDBw0ddKzdz198WhgfJ5sWx6JQ/4ZJPo9nRtazVysIMVt1wXeAnZD5vOxwK1WEL9Uc76lkGCJokxAatx8V6RxaBvTZJKqwDPzL80di6zKR4MWYL7J49hm1OtsO/K1at9qJb2+r4HNN9t4xGtI1uG8SJ2An5EjUxQ53vAWrmGGYPruNkjQyirIPbgOuDJyvIkzdWCKoijKLI0a8BVFUWZTEk36LZO390WOF9btXxpJSd4ZiVz+GDgfuLSIwbmmnzKyIMxaRFYQw+7JSPTYRkn7+4DrI8cbW/RcOWNoFs29duR4z5u+uw6STt8/Z7xFqdJlWM0zQh8ZOd7FeR0lEkS3AbWRYiOB/SLHe7Cu7ZfIwrURMXBj5Hg2QGgbi9AkRXy80W/4dhse+Vca67wXvobQNvoCNyPfJ1Hike/V18DWVhA/W9f+QuBw2nem/AZJ8V8OcRRcC1xhBXE36YXQNo4kX0aoGZ8DJvAn4Bdkj3cbK4jv68F5gGkRm4ch15dGPr6NRGze2dP+FUVRZjSm7x6M1MiplT9JnzN2QBzN9yLG6Xa5MnK8g+vOeweSHZdl4H0wcryte3DO6Uic8S4iD1PrgHgY2KMneuuhbcyLODb2R4rc/w+RITyqhW4qwF+tIN6jru8yktU41griiaFtLAm8l+7/qu9A7v7Ryrw+t0nfSsyGY95l89Fv0a/arSZr4RotSVbBN8CAaxbfkJuGrUe5WqFSKlOqVqiWyqz+1Yec8/rt9JU6PHEynmlZaKbvbgncn3OaXRB5vP0RyaCPgKsjx3sr5xhFURRFmSXptBawoiiKMpMxfXeA6bt/RqKrLkr+vWP67g2m7/ZP2iwJPIssblJ5lcWStq0aO39KvjG8jKQ7j6FLw3Q4YtR/zfTdxbWpB/EAACAASURBVFo8XyMOossYUE8FSFPkn0PSlHtqvK813DeTZTkmWdA3xPTdQUh6+Kp1uxYC7jZ9d6Wk3fKm795Efrq5gRSXI7SNjZB7nKWZXgU+HxhPfgApnJp1/2LEudCMEYjxHuSepN+rOYE7Q9tYM7SNpRMDNUj6fk+eQ85GJJMWQCLvLwTuSYwCtbQSQdiIIUiEf5YRCOTe/ayH5wHACuKqFcSXIsaG5YFlgOXVeK8oyvcR03cHAl7ytvY3NH19PlIPpd3inZ8jMmqHNdh3E9m/22XgxjbPmYeDzE/1c9FmwO15zwPNsIL4KyuIjwbmAQZYQTw0ed/KdZQR5zcgUjahbZyAOPs/B74LbeMmZO5/F6iGgxdkv7UOwF9iI16cd3H+Pf+SnLvsNhy22j5816eb739KaBtOaBvHh7YxPJHJybqWycD17w5esHrTsPUAqJTko6omf1+ad3Hu+dEq6SEGYCFZmSkPIhkXJOOFrmeZG4ElgdcRB8eOwNHAm6bvFpb6URRFUZRZBS1iqyiKMvtxAbBXg+0/RzTMj0DS2Oeh+8I2XVQebvruZZHjvQNg+u6iiK788kiq7/WR471Qc9xGBca0c8b2YcA1dGUKdMP03b6IdMwqydhvjRxvZIOmy5C9SC8hiziQtOstCow3j6lIFP/fEQN5HiXkGudCIs0asTdirK2njMzTx5q+ezHwBCJ1lGdEngQEoW3shxR4rdBY/z6NkP8/K4gn47unINIFC9FdtqUM/Cbjnk8jMcr/isbp/EbS7/PJ+9dC2zgaycB4Eck6aNegUa77uznyXf1jTZv7kewSk/YdBjcjn3uRsXQEK4inIk44RVGU7zObku14LiNG2VaIkQy1tZE58X+R403JaPs3RHN+C7rmp/TvA4jkTsdIjPMn0HguLAEbI1J5z/XkPEkEem22mYNEpx+ORNEXIpm7r0Wyy9K0/D6IFN5mwOkV+OPpy+/A+D7ij6iWUrl8eH/wglyx5CaMCO+vIJHuL9FVRwbgo9A2treCOEvK78Q7F1ltt1K1Oq/0251StcK9C6/Ijp++XLt5GBKIQSKTdAiS3XAQUivoI+Aq4MO0XTLg2mehi03ffSZyvMJ1CBRFURRlZqMR+IqiKLMRpu8OQQyYWRxk+u58wO7kzwG7Jv3tgCwKT0+2HQY8b/rueTVRZFkL5yKUgZ+avrtE/Q7Td5dHor/+hjgcLgT+Z/rucQ36+Ziu6Kt6qkBk+u78iPOiJ9pxFeCeyPF+moyrSF9TEW3YLDYhe+xlxPBwEfnGe5DF/M6PPH7uZKTIGzQ23k9GnA/rW0H8D4DI8f4HrIkYvr9KxvwssEvkeL/POWfKIETupYghfkXEqL4e4jS4q8AxRakAdu2GxBC+E10OlNR50Sp5QQ9lxEikKIqidKdRUe5WqdI1T34B/CxyvJGR472fZbw3fXd9xPGdOu0ryb8PEYmb7XMM/+2yALA0+XPhhh0+J1YQT7WC+DRkHl4S0bbPogLcnbxeCzHeQ/cxlxHH+/LXD1vfGznHPNOi42uplko8tNDyjDP6TURqG9R/1ibwYGgbc2aM+4sHF1r+UTIyAKulMmP6Da7f/FHtm6Qu0pvAucDWkeNtEjneTcDBWf0m2w/O2KcoiqIosyQaga8oijJ7sRrQN2d/PyTiudmCerDpuz9CotPS/mqNwccihvy+wIFtjrWWU0zfvQr4VxJRNQCJjlu4rp0BnGv67n8jx6st5nkNEqnfiDIS4f4prRfEa0SU/D2U5gbrCnBb5HhZMjbQ3AES03zBHwDHR473Wfj4uQdQ9/m+MO8wbl5s7VS7tt9Eo++3lVL5i6imTeR4nyAOmkYyBJmEtmEi36mJ9efNILUCnGEF8WbADqFtLIEY9tdCFtVDWhlDXd/13xmsIH4ptA0LiVLcACk6vF6b56jVcE7fv05nHRGKoiizC88y/e9mLc3mjgpwCeLEfh74S+R44/JOaPru2sAjdH8eSp9h7o4c73cFxt0Ok5o3yXXot02iYb8JkvE4ByIftxTdn1MqyDNHev27kV0ItwTsef3iG5yUd94p5T6MHDDP60uP+2xNpg8aMJD5dh+6Agvqj3+DarVhlma5WmHY+GklA+Lkmp5ONyS1ngKkEG+67Ulkrl+WfPmkZTP2KYqiKMosiUbgK4qizF6ML9DmOyTNOa9Q7b+RBVB/sou/nQHcACzS4hgbYSOLsodM350bifZflGz5l/oo/DuBP+f0vwmdMd6XgWtN390JKcqbRxXR/T+xSbs7aXydaR+PFBjXI5HjfZa8XrB2x30LrcCvV96dV+YZypRyH8b36U+F0n7AC8nity1C25gz0cn9KLmGVqIsy8CmaVSeFcQfWEF8lxXEpyCf+yaIg6RVUmP6dFhB/IUVxOdaQbwjYsT/ro3+Yfro/fuBLZNIf0VRFKWGyPEiRIs+i8vIdmRXgDsjxzsqcryDIse7upnxPuEsxHjf6PnlV6bvLl6gj5Z55PFzV15y7GeflqqZSV4VesHZG9rGACSq/n4kqGIfJBNgEt2f9d4FtrKC+JXk/UDyM9IG0hW00BCjErPwxG/WIfs5JibHYb7OmPduKVOl0T2rlMrs+Mk0+Zxvgb1qCtguhGRYrFV32AbA40imRt5z7oqm7x6V1GhQFEVRlFkejcBXFEWZvfg3og27MNNHVFWRImUvINFXjbRfK0iE0z1IgduYxouyMqI7nxW51S6bItH0n5AdsVcG1jZ99xqkgO5UxICcpTFfhFau4xgkLTzr3oDI1FwPnBU53kf1O0PbWBZZdI793byLP3T8yrs9gyxw6yPlxgC/RaLkBuWM6dWa19N008cbfbl4mS2gWu2e/l4qlRFN4nOR4qwtkejm3o5IE/Tk85/u/llBPAVZfD8e2sYuyHei0feg0WdWBi4tcN4S3XV6W8EAngTOA/5jBfF0RXKT+7MY4gD7QI37iqL8wDkY+c3dtWZbBZFtOx4YhcxHtfN+BXG0/qZZ54kR9ufIfNYfeTbIogRsD1zc0hXkkPzmnwsce2x4f+WoVfciplw776bz1XmJQ6PTnA5sk7yunS/7IpJBByHPE6+kBvCEZ8l2lsfIM+UDSAbjwnV9U6pW2Pjzdxgc5yYelIBMp8s5b/xtv8cWsPjtj7cjpkyZKlVEPmePj59lqbGjP31mvqVe/9/A+UacfNa/ax30Wdl6ZSQQ4MH/Z++8wyWnyj/+mckWtoKUhYXQIQhKl14WFqVJb1JUEsBGRylBlCI/IFJVpChgAgqCCNKrLh1BFHDpkU5ggaUsZdmamd8fb7J37mySycydu+yy7+d57rN7k5OTk0zu5Jy3fN/m8TaxEFIz6tum724ZOV6nTn1FURRFmSNU6vkRAoqiKMo8iOm7ewN/ZvaFcAXRvr8eOBGJDG925D6HaMu+YvruWYhUTpaBttuG++a+L0CkXIrOUZSS399MId8AHANXRY73XdN3l0WyC5YFXt/0vfD6Xzxz42n0lvv5+KMBQ3626yaHroFo0Q5Ott8BHBE5Xmj67jmI46CZGnB/5HhbphtC2xgIvAyM/sdiXzZOW63QPl8HFo4cb1KL6+1FaBsbAQ+3c0wTNeBpK4jXbHGexYCbgA2bdv0D2BwxTjQ+B58gafpnWkH8XkG/AxEnS1843gpiL6PvrYEzkcLLIIapXwK/bjKcKIqizFckWV9jEcf7HZHjvd6w71uIMX9t5Pv5r8ApkeOFLfochRSWX5WeiOtWc4NjI8c7q5NryCK0jZ2QQAIAnhu+BM+PXIKvffgao6Z9zPuDhsfPjlzyllU/nrDXlhe/39d3T/O5BwPvAiMLmm2N3JulkLpGD1tBXA9tYwgSlb8EvR3q6RxvWyuI7zR9dwxwO/X6ECoVKvU69UqF0VM+5Pwn/szCM1omRYxFPtNRwPNWEM8KNAhtYyKw6NuDR3L76NV5begiLDx9Mtu8/TSrfPoOv11xLNeb64I8M4dFjncxgOm7/2T2uUEjM5GAlC/Ter54RuR4LR1FiqIoivJ5ogZ8RVGULyCm7+6IRGStnWx6DDg5crzbTN/9KRLVncXpkeOdkPSxOjC+3webzY+Bcwv296cDoQypQyTPufEr4Gng98iiOKZeNyrUOSq8u77D2+MrTe0rwG5jxxwzDjH2T4wcb0LawPTdwYhTZld60t0rSOT9tpHjvd04gNA21gLuvnHJtRb99cpFgYgALJeVJVBEaBsnIs9XX9jDCuLrSpyrghjrN0fkAG60gviFRHv/MsQw0fg81IFXgI2sIH43o8u0338jfx+dOoHqwIpWEL/S0OfXEQkDGvpNx3ZqIhGkKIqi5JDU1okjxyuSP2lsfw0S2d/Od/mGkeM92sn4sght41ZgG5qyytIv/4YX1G3Azt3MygptYxmaCrtm8CHwpYbfnwX2soL4mdA2vozI+qzUsH8acIQVxL9LN5i+u+K2bz/14P+GjVpiUC1ms/dCdpgwvlX0PYjMjYkU1025FwlYmIAY2jOpAdcsvT6XrDAGem7jlpHj3Wv67sOIAb/VXHBCcj3LFbSZGDneKADTdyswqziuoiiKosw1qAFfURTlC4zpu4sA9cjxPkh+H4osZvIitaYCo9OIbNN3f4FovadyMWkU08OI8bMTGZKrgb1btDkAkZj5Eb2Ns92Muu/PCP40CwIaF5f1OhXgosevwPq0l225hqS2r5vXYbKoXB/YGdHzvxe4PXK8OKt9aBsj/7bk2iedv/LXsyL3qdZrbP32M58eHd7xn6osrkMkev3mVpHioW2cCxxV1Ib8+xsDB1tB/PsWx2eddylgYcRAvyyid5/nRLnACuLDCvraHYnwzBr3NMo92z+zgniWMyy0jf8Aa5F93TOAJYsyAxRFUZTymL67GJLlVPZdXkck2sZ200Ab2saLMyvVFR9cdGUmDhrOnm/+p6j5PlYQX93Fc49ADPR5kn4we9BDDHwAfNkK4g9C2zAQZ/jqyfbrrSD+IONcdyLSeWXu90TgL8BBzF6PIJVrXBN4AZGcyzTEn2Vtw+2j12gc9y2R4+1i+u7PkVpMZXgI2DjvHAmbAccjjpgacDsig/hYyXMoiqIoSr+iBnxFUZT5CNN3N0X0u4vYLnK8OxqO2Qk4DPgKkqbtA78DTgLcnD7uQjRoGwPQqog0zmGIJusyBWPwkUXfIYiheHnEufAIUuB0buC/yOIzvcbUYH0OMAIZ/2yL3Eq9zvofvIz7/O0sOHNK8+4RVhB/2q0BJkb/x4E1GsdSrdc44blb2HLiCzSMO3XSnGMFcXOR4F6EtnEy8vkX8RliBG9cMH8EjLGC+L/Zh+Seb03g18CYZNM08gsUpnwCLFjkjAht40jAo0e2COR+7Y3UiiiSJACJejwbuBypKfBGi/bftYL4jy3aKIqidB3Td1cEDkfqisxA5PQujhzv/Tk4hgWQ+jqrIQbeq5szyNrsbx2g0FrexJ3AvmlQQ7d44sAh9/30q7tt/tRCS/N/T1/PBu+/jJFdG7YG3G4F8Q5ZOzsltI2/IPe13aCEY6wgPruN8+wPBCWa1pBAg0uA/QvG9V1gNCIz19RBhSnGQPbc6EdMNQY17poQOd6SiXTSU8CiBf2nTCa/jlAdmdsuisxX0r7i5Dq2jRxvXIv+FUVRFKXfUQO+oijKfITpu2W0y78ROd7fS/RlIMbqQ+mJ/IqBCxEJnNWQwmkWEvUfAPdEjlc3ffdmeuvAN/NO5HhLJOdJC45OA74KPNlqbE2MR4zJ61EcoVaWGmLcHQscAThIIbVnkaJ41yBOkk2KOjFqMdu+/TSHvDSOBWozQRaRQ60gntqFMc7C9N3lEIfKysnYK1u982zlhOdvLTpsUyuIH8rbGdrGd5AivUXsD6yDRPXFiJb9b5HP4kgkfX5BxGB+nhXEd2R1EtqGhdzvYbRvnBjYSqogtI2FkayGBRFD0IPAIohOcCsDfuq8mYA8C39p0f57VhBfWmLciqIoXSNx3t9Jj1M1/e56A9gkcrxWzsdujGF9RKplVMPmmcCPI8c7v8M+l0AKrBZFVteBo4G7Isd7upPzNJPUUXGAA4ElXx+y8JDLltt0kQcWs/j1k39m9Y/fLDr8USuIi7TbOxnPssA/ES37shmLNeAOK4i/2cZ5BiHP0RYFzerAW1YQm6FtvAksmdMuBq5Egh2uQSQCazWoVKAyrTqAE766G098adnmvp9HJPyOQTJB67Se29WBT8mfR0xC3vfN+2pIjYBV8zI2TN9dCikEnOr83wRcGjneRy3GpCiKoiht0Vy8UFEURfli8x8k6i2NNGrmY0oWJ02kW440fddDFi4VYFyDdvt4JII+i7cpXlzOGluyaPoMwPTdF+mJFC9Lmns9DbgHSf9uh+ZiwDOAoyLHmwycnvz0wvTdibRYPMdVg1tHr8EHg4Zx2jN/qwF3ddt4DxA53qum734F2AXYFJhy+It/HwusmzO+GiJhlGvARxwCMymeR1yOFEU+xAriewBC2/gS8nytRo8BaStg69A2fmwF8XkZ/RxP+8b7GvBis/E+kQnYCdgz6fNR4DIriP2mdgfQ2ngPPc/paMR4Pw2JOswzJrXKflEURekqibP9KmABer6b0n+XQhzPu/bzGBZECrM3f68OAH5j+u4LkePd1WafGwAX0VoDvYJonHfLeD8A+BvwTZL3/FJTPuSU527iL598jVeGLcpXPn4z74VVQ7L3uooVxK+FtrEukrG4F+KouR+RxLHIv0dtFdS1gnh6aBvb02NAz6KCRN6DzNeKqFlBPCO0jT0Q6Zp9Phw0bIWbR6+5ya2j1+T9wcOz+n4DkWJsRwaxggQNXI38HTQWO76XfIdEFVgFybacLXjE9N11gX8gAQAg85rNgUNM390scrxCT46iKIqitIMa8BVFUeYjIsebnuiGXkx2IdhfRI73WZt9vo0YBwoxfbcKbIAsdP6NRF1lUUMKvWWxPZ1H0Q9GjPdlF30vI1HVxyPaqTFwK3KPWqXs/xExmBdTqfDPRVfi+RFLxF/+5O2TS4ypIyLHmwFcm/wQ3nfW8xTfg9FF/VlB/E5oG2eTL6GUsgpwR2gbm1pB/BjwU2DVZF/67KWf59mhbVxrBXEEs4rXLg7s1mKsWVSRQsKzCG1jCBIZ93Xks6wgxnw3tI1trCD+Z0PzTemsRkKR8f46K4hfaLM/RVGUvrIlojGeRRXYyfTdxSLHm9iPY/gOvYuoNlJDDM+lDfim734VccgPbtU2YWDZvkuwP2K8h+Qdkcrl7BX9m9NX2Z5vThhPjXrzCySN4L6w0xOHtjEaifb+BnLfbgV+ZwXxe1YQTwCOTX7S9kU68VXgxnbHYAXxFODY0DaeQwrJpxKJ6TvzIeCspPlNyXiz3osGcEvSZ6o5f3uSdfknYF9mL1D/Ij1BGO2+ny8ETkSc92sjkn6PI5KHW7Q4dqHmDcmc9s/J8SnpWJcFzkfmL4qiKIrSFdSAryiKMp8ROd7vTN+tIYu6JZLNE4FTEYmTrmP67nbI4mm5ZFMNWTyNYPbCZtMRXfEsFszZ3g5lFn33AN+MHG8KcIvpu4OAWuR4hXIsDdyAFEjdgxKG4PNW/sYV9xwePFqy727wArAS2c6QCpIy3ooTkLTzYxDJmSyqyFzjZ4hMzQHkG7irwL6hbZyFSBP8FFixxDiyuAj4XRJxvzCih/8zehb+jdc9DPhbaBvLWEGcRiNOhWwB4xak19acnfBX5JoURVHmNEu12F9FnKX9acBfl/zsuSqwfqJp/kN66ufcBlySo9F/PGK8L2vEPS+ROjktcrxay9YJpu8ORKQAv4c4QV7+gfm1kXtG/65VM85do8LqH0f4y23Cga8+CPSyQFeAu5HsxLYJbWN1JFp84WRTHdgIOCS0jc2sIH4p47ALge8jMjaN460j+vEdF9O1gtgPbeNppK7ROkgh3T8BlzdkE54DfJvZ53p1xHh+E4Dpu8sgsoPTgb8j2vj/SfpeDpkv+sgzehqdsSRwJqK3fwESyPKdEsfNBJ7J2L4JIk2YRRXY2fTdUZHjvdvBWBVFURRlNlQDX1EUZT7F9N0BiLxMBXgqcrzMVGrTd1dHFjmpzvvl7SxIEt39B+hdHAxkAfcBvY2/LwAHRY73YE5f7Rasa4c6kgq9dzeK+iX39yDEILFmi+YnRY6XFyXXdULb2BaJdsuiDqxuBXHWgjWrr8FIpNn3CprFwFBEYiaPOrLYn4gssLMyRMrwS8RY7yKL/1HIAjwtqpfHnlYQ/xUgtI29kci6TkgzSFLJigetIC7jEFEURek6JYrXzwBGRY43qUvnWxCZM2yEyN9dB2yH1MvJM7i/iRjkF01+T7//3wI2ixzv5aZzfEzvyOeynBk53nFlGibv8L8h9XpSR3wNqH7j7WdwX7htthdUTIVHF16eVT59h4Wmf5ZXyPYHVhD/PrSNpYCfINH8yyDvyTsBL8lYm0WSkTZbQfqEGjJ3ehyJFJ+OFFi/H6k5sCQik7RjcuwMRHP+iOTYGVYQTy5zTzohtI01EGP5RsmmGJGcO2TsmGOmJvu+3XBdUxGJnl8mNZMGAjOT/58MnNSFYc1MzlfGAeRHjndA80bTd/dDHBZFrB05Xrt1mxRFURQlE43AVxRFmU9Joskfz9ufpDGfikRa15GFngGcYvrubpHjZRYdzeAEZjfek2xbBNgHia56DzHO53qWI8d73PTdB5HIp06MuynNxuEaMAU4uBvGe5h1fy8GLjZ9dxwwhvzF4p3dOGdZrCC+I7SN05DPJo1GTO/Hj8oa75O+poW2USZys1UqeQUxOpzd8HtZ0s/zEWTh/0dg74b9ZeY7jZF01yEFATdscxwp060g7tQBoCiK0k0eQuqRWMweAV8Hru6i8X51JIJ6FD1SZQchdW+KjKVVeiLLoed7dwngGtN3L0cyqW6KHO9DOpfSO8r03XNKBiHsjRjv0/HN+vfuJb7C2InPscEHr/Q6oEpdJjbTc+3hNeDI0DamA5cy+3XsCuwU2saOTYXd10p+sqgi0nRfpvf76kjEsL+1FcS7hLaxGHI/I8Sh8gBSj4bQNu4GfmYF8b/yBt4pVhCPBzYObWMl5Ll40Qpiuf+++0fEeN/IAsAZyLzwokQCMOWJLg2rrPH+LiQQIIvXWhxbQxxTiqIoitIV2tWOUxRFUeYfdkUMvCCLwnShORi4Pkl3LyRxAmxD/vumjkSn1xDD7Uxguum7fzV9Ny9qfS+gL8Xo6khUXyMfI5FwL/ah3yLS6Pos58SdQNcXza2wgvhnwPrA7xEd3V8DX7WC+HcddHd3wb4aYtDZlNayNJMpr2n8PlKnIAYmIIb7ryPatnsXHJfHrGfCCuIZyHN7EeLYAXk2b0eelSKq5NdwUBRFmaMkheD3QiROQL6TU8ftU4iht88kxXJvpCerzqDn3b9E5kHyTngdqbuSNU+oAl9DsrwCYILpu0cihtXSUjgNDEQkesrw3bxzVOs17h61Wq9tdbmW+hRj0LsFL7rU2H4Z+RJ2VeCSRAIuZZkS481yNq8M3BDaRsUK4olWED8F2MCViME/ZSvg/tA2NsrooytYQfyiFcQPp8Z703eXB/bLaV4HTkiyIBq5ldaG8zIUzUkfAU5H5izbRo6X5415CHie/EK9k4EbTd+93vTdvTKuRVEURVHaQg34iqIoSh6Hkb14rQJDKKfpPZjiSLkKEgF2O7JYqiDR0rsCj5i+u37zAZHjTUAi0fJ08ltRQTTqU8NsDIxEouUvSwqTdZXI8e5FItAbo7FqSPr1HomBZY5jBfFjVhD/yArinawgPsoK4mc77Oo+JF2/+TrS5+c0JK2/iI9pr+DbIsBuVhAPQKQBJiEGFydjHEXUkIX29Y0brSD+xAriQxBJhxWAha0g3h55Xs9HDPpZfYV0Lr+jKIrSdSLHexox2B4L3IFoj9vABpHjfdCl02wNLE970fEhUu+kLIOB84DH6O2IaIey41ucnLVyjQofDRpKcv4YqFegVoH9x058/pwWaVszindTBUxkTpTySk7bVlQRp/bGAKFtLIQYp9N9je0GIhrxc4rNyc9wqyC1G5Zv3JhkNm6DSDP1F+nfyZ+A40zfzQwqSOZteyOZAlmMQGSDdkYki243fXeB7g9XURRFmV9QT7CiKIqSx+rkO3pjktRrgGRRcgCie7sIIs1zPmKIbyVBMjb5t3kxOQj4FcnCs4lhiLZ8uzrpNWThtz89kd6Ni3kHiYa/uI0+e5E4AIYBkxuL5UWOd6Ppu7cgsiwjgf9GjtecCTBPYgVxPbSNnYBLkMK96WfyFnCwFcQPhLYBcFROF3WkcO4OOfuzqAGHhraxLL0jKssY79Pnppb8f38riD9pbhTaxiCkgOH3gaVD23gFico/CvgdIoGwYUOftwPft4K4P40LiqIobZPIw52V/PQHX27dZDZWRhyk7XIY4vC9iNZFehupIYVgM0myBjcENkMM7dlF6CsVXhu68H1IQdolEUfEpVYQvxzaxjKIBEzW/KmOZEK0zGCkQVLICuLxoW08hhQD7iTIYC0kYnw7RKImiyqwaWgbS1hB/HZWg9A2hgPbAwsCj1tB3JeaRK0cGZltIsd7wfTdlRHJxbzMjiJSaaes+1hBrq0CLIt8jluZvrt9k5RPOpb/mr77TURyL4/0PF9HavOc3MGYe5HUBYjbKcisKIqizPuoAV9RFEXJ411kAZllIK8imvWYvjsUSWffhJ7F7orAtyguWgpitF05Z18V2Mj03WUix3u9ad9uwPAS1wC99fs/Q4yueZIBNaTQXtsGfNN3hyHFU7+P3LdJpu9eAvwicrxPASLHi5FF9DxJaBtDkGt7zwriXp+tFcQfAXslxos1kai0h6wgTtPLH0SiPndq6raGaBuv2uZwKkhk26IZ2/OIkWfuM+T5eRj4tRXEsxWZC21jACIHsS09Bv/VgAuQegb7WEG8UWgbqyAGi0IQ0AAAIABJREFUnJetIO5Gar+iKMq8SOni9g1UEYm5Tyn/Tgcx3O6HGFk3Rd5LNuIELjJw+xnzCQBM310EKVq7WZkBvDd45JixY465IXK8wxu3W0H8emgbP0cyzxodAKlc0IvAli3GCbNLBX4byXZbgh5HddkAhlQ+aViJtpltQts4CAmqGNaw7UGkAPzbDdsMJDBjRSTr8E4riLMy8O5CMvOyisvXkLoNme/UyPHeMn13OeANZA7QTiDHYcl1DCDfiN/479eRWk1XmL47AlgO+CByvDSjcos2zv1D03dP6TTr0vTdbwHHIVkV003f/StwSuR4YSf9KYqiKPMWKqGjKIqi5HE5xenNf0z+/xPEeA9Nhd5orWdeFLWUsmDGtnYi7irAM0jU9LLI2PKilqrAKm30DYDpu4MQWQKXnqi5hYBjgL/P62nToW0sGtrGpYgRIAImh7YxJbSNKLSNs0PbmBUFZwXx61YQ32wF8f0NxnusIE51mM9GjDUpdwM/Boa2Oaw6sBjlF+51xIlzqBXE61pBvIoVxE6W8T5hH8R4T8M50ud6L5JsASuIX7CC+B413iuKMp9zI+KM7YR2jPcp30L08RdGHMDPU7y2vR44pHmj6btrmr57PPAovWVrynCO6bsrNW+0gvh0JBvtESSQYSJiNN4A8FuMswbcYQXx/wBC21g3tI3zEembq4FfAv9A3p0TKZYRqiMO61uS3x9tcT3vIk6GXoS2sQOSYdf8nt4YuD20jWrSbm0grMFdEwcNv2jSwCE3Aa+HtrFVc5+R471HtmRPDXnnukWG7sjxpiFOm3allC5DMhEaax7Vyc/eqwHfNX33fOAdJOsiMn13nOm7X6W9Z3dx8jMgCjF99xjk80/rQw1CJHz+ZfpuJ9kviqIoyjyGRuAriqLMhyQFYm2kcNwLwGUZUWnnI5Hu69NbcqQKnBU5Xmr4PIj2pWxSHkd0y/OYCryasf2lNs+zKpI2/93k/0WL54lt9g2yiMpb+G8A7Av8oYN+P3dC2xiBRP2tSs9nbCQ/SyHG931C29jQCuI3ivpKovaPCW3jRGBpYJIVxO+GtrFFB0NrNwihghTTfapk+++QJ58g27+NZBQoiqLM90SO96npuwchRsZO5gPtUkeM2CMats1E1repQbeS/JwaOd6JjQcnjvUrgD37MIYqMM703VWbi51aQXwdcF3zAaFtXINkD2yX0+d4ROaP0DZORTL7Urm3avKvYwXxFaFtbILcg8HM/q5K319HWEH8cTKmp0LbuBuJKs/6jM5Nirg3czzZ78MqIs+zdWgb/6nD328ZveZCVy2zAe8sILEXq3305uIHvfLAbdjGGlYQv9B0/IlItt6xiEMeRI7ouMjxbqEFkePdZvruFsg9+gY9n3ceU4CZkeONS4zeayPBFqeSLdeYXuPGSKHfRsYgmYXHthpnAx8g89q2MH13FJLRkY6ncWwjEOdOOzWEFEVRlHkQjcBXFEWZzzB99xTgSeAIJELsROAl03f3bmwXOd5nSBr08Uik0iREciRN4U1Zgs4W69OA3yOLz7zoqQWAR03fbY64vzEZT1kGIs6C8+itl57FZW30m/It8q+hhhj451UORKRjirIxlgC8sh1aQTzFCuLQCuJUcuFR2vs8oVz2RjNbAf8MbWOxli3FmJA3T6oyu3SPoijKfE3keH9BipNOadW2C1SYPfrZQAzcNyNZcRcD6zQb7xPOpm/G+5SlgTtM390p0SYvxArimcAuwNGIpNt0JLvtAcQI+7XEsb09YpgGeecY9Bio/dA2VraC+CHECH0pUnPmU0Q3Pk76284K4kubhrB3sq+ROvAbMuojJJI4G1NsN9gMOPCqZTZY+Dxr6+q7g0fO2vHcyNEcs8aeg+4atdpsc4TI8eqR452NFO1dHbCA1SLHK+0cjxzvwcjxtkUi0legOBr/PpJI++Tcj0eONw74N8X1c4ZkbEuN5+shgTBlsgAu61A+Z1dkHptFFdg5kbNUFEVRvsBU6vWOJNgURVGUeRDTd7cHbs3YVUcWfFbkeK+02eeziOxMu07h5yLHW8303cWSMa2X064OvAysGzneRw3n3RRZjHXDGZ1mEDwBjIkcry0ZANN376dYN/fRyPE2LNg/1xLaxkPARrR20swAFrSCuCPDTWgbRwHnlmxeByYg0gntpqPXkSjDo1uM53Ikyj6vEOH5VhAf0ea5FUVRvnAkxV9XR3TP10WissfQmTROX6kBN0WOt2teA9N3v4S8Q1rJ/LXLZOCQyPEu72tHoW3cgsi4GRm768DZVhC3E/3d2HcFyQ7cDAmmuMkK4ldz2laRqPEi58RJ7w0atul+G3z/GzOqsyf4V+o1lp/83pSXh48ahsz1VkXkaP7R0GwQIl23ESL7cx1wX7sGb9N3X0F06vP4DXBkY79JNP7TyPu+ca5TJrv0A+SZvwX4Ssb+xj4mAb9DaiOVLnafyOdkyQ01MipyvE4ySBVFUZR5BI3AVxRFmb84BDHUN1NBFonf66DPC2n/fVIDXksKgg1E0rnzDL8VxCjwjum7+6QbI8d7EFmAvt/2iHszEVm4HQds3q7xPuEx8qO36rTWnZ2bGUq5DIuBwMiWrfL5FXA4SXHkFlSQwrFXJL+3o39bQeRxWnEX+cb7Oh0UOlYURZlbMH13VdN3A9N33zd9d5Lpu1ebvrtOB/1sjMi+/BfRmT8B2J4evfSJFEc3d5sqYgQu4nTKG+/bGfswIDB9d982jsljVbKN9yBjarteT4oVxHUriB+xgvgsK4h/k2e8T9rWgBsofs/+bdyoVRfKMt4D1CtVXh4+agiS/fkoEAC3IxkD05AshA8Qnf39gYOBe4DrkxpDpTB9d22Kjfcg84ydGjdEjvc84jxIi+2m11rmsx8QOd6rwBrANsBPkefrz8i8tnH+tBAy17y9TLZGA/8u2FdHivn2dS6sKIqizOWoAV9RFGX+4qvkLwhrQCeFsC5CFiogzoFaw//zqCISJZOAN4HXyE5RbmQQ8CfTd9dPN0SO929Ex38vYFzbIxfOjBxvjcjxzowc79PWzTO5EFn4NS9wa0hk+oUd9js38CDlFrHv0YcFZGJQOB/R1d+A4gVryn1ILYe2skaALxXtDG3DRpwDWdddB85ACiYqiqLMc5i+ux7yHfsdJJNpQURO5p+m77aSmWvs5ytIFPVqTbsq9Kwzy0iWdZvJeTtM3x0D/LBkP+k7vF0HxKmm7/Z1nf0WxUbzt/vYfzucghijs8ZzhRXET704fNT4Ev18ten3QfQYuFNDvUHPs7ML8PM2xlnGAVUDftC8MXK8axE5pB8DFwDHUC74YlxyfC1yvLsixzsjcrwTEJmivHnt5oiEZVnuRZxkWfe/ApwbOV47gQyKoijKPIga8BVFUeYv3iZ/QVhBUprbInK8GCnIti1wFXAbEn20GvAfshe+MxHd1vQ9tFCJU6WLvKOazj8jcrxrI8fbCol8aiwQVuRESOkk4r4XkeO9hCw0mx0AnwG7R47XXLhtXuJ8sp0TzVyQaPv2CSuIp1tB/C/KSeM8bwXx5cDKSEHZsgvY3NT10DZMRE84rxheFYkwfTi0jQVLnk9RFGVu4mLkO7a5IOYA4JI2jM8uYngtat9pkfu+cFXBvnakz+5C6ue0a8BfAVipzWOa8SmuwxL0sf/SWEH8DCK3c1/D5g+BXyB1cnhyoWV+k9tBj2RvJ7aHg9uIVv+odROq5Hw2keNNjBzvvMjxDkfqIX2tRH950jZ7U1wb6Vsl+k7HVQd2JDtw4HxEFkhRFEX5gpOd56YoiqJ8UfkDsH7OvirQkW5rsri4M/mZhem7Y+lZ4A1HjOWvIFFYnSzkeqXGJ4u6nZG05WHJvws0tY/pHQ3YyEwkNbzPRI53R1Jsd3ckhft14No+RPXPFVhBHIa2sSOSZbFI0+4acl+vA07r8qlfRPRk8ww/71lB/HgyxnpoG4ci0Xdmib6LCubuT36WSiMbAs+FtrFWQzFeRVGUuRrTd1chP1K5CiyLFC19sER3O9D6XZ5+h6fvi7LUEFmetRuOTf/9G2JU343eDoI68Crw64J+1y1x7uuQd0ENiebvxAHRV6fFFUhgwI70XHeMvJ/OsYK4k0LuHWMF8RPA2NA2Fkfk8l63gnhauv/JH14wfrnLjrl9ZqW6HZWmS2/+vT0WRorGT2jcmDiZdkCi2T9B5p93IIEURbUXYiTrsxXfoVj3H+D/IsfL+xxGkP+8V5L9vUj+NjdDgibuiBxv1twicrzXTd9dAwmW2RB5Lq+LHO9/LcaoKIqifEFQA76iKMr8hY8seLdm9gXheZHjPdLNk0WO9zFwpOm7RyMp+h8B79J5BlidJMrd9N1RwN2I7mjM7MXHoCeKukJv40H6/5Mjx2s76yCPxFjf5+J13SS0jWGIQeYDK4g7Srm3gvju0DaWQhbLKyJp5sORz+Ja4AEriLutcXwJYrzIo1cKvBXEb4S2sQ5wGFLrYeGc4+rAA6FtLIzUfNgeeT7uRorLLUvP30QrRgMecECJtoqiKHMDi5Zo0+yszaOsZfZtIKJcRHMj9wBHIpI3X0GMuJcDf0He4ccBhwKLI9l3VwI/ixzvPdN3TSQKehHgKeD6yPGmIlrry7Q475WR4002fXc4nRniXwP6ZFi1gnhmaBu7AQ7yjlkKeAGR5OtK4EGH43qHnGzNmVVjbyT74ZtdPu2Vpu+eFDneAwCm7x6IRJ0PbWhzMlJv4UYkKzQPA8mya4VF8VygBixg+u5/k//fBFzYMKd8BFiT7PluBfhX+ovpu8OQjIpGWZ0Zpu+eCfw8LbibZLzemvwoiqIo8xlqwFcURZmPiBxvuum7OyKGywOQQqDPIwvCv3b7fKbvLoAYYVdEtO6vo1jrvoYs8vMW1xV69PYvpUdPtcjYmi6eHkSiCg0gBLzI8eYqY3s3CW1jCCJl9H2SRW5oG/8AjkjS4dsiibS7ro9jqiYF8VqywyaHP/KDl++dtuOE8YNTb0saZnnl0htw2Qqbvx/NPsaJwImhbVwJPEO+U+c6RE92KXqkETYDfoZEb5Yx3qfsG9rGoVYQ58ryKIqizEWESPZZ0Tqw7DvidqQGTSun/CXAScB6wKbAOSX6riJ65MsAe6VGzAZi4P9M3z0dCRD4NHK8GQCm7x6L1CppHNfbpu9uD/wJWKvFuV8BccqbvvsE+YbYPE7qVJM8tI0tEanADYCPEYP49lYQf9hJf90icWaMAN5NDMmzkQRt7GD67utINly3pJPGAPeavrsTEkBwUU67xRDj/WdIwMjohn3pVOIKJPCgFW9TPBeoAD9J/q0jz9QPTN/dLImK/y1wUNK28dmpIRH2Fzds85ldE38gItf3PnBeifEqiqIoX3Aq9Xq3A+YURVEUBUzf3RwxlDZG+00GXkIi6fIWRv9CNHWzFtgvI+nvC9F+4dJvI06KQchC/wv7Agxto4JEaG3XtKuGpJqvawXxS3NoLAsjhnEbKR4bIpqtF+YZ80PbqD60yIq3rf3h69sMrc0AYEalygsjluDS5Tdn/EJLx8DNkePtWnDefZBIzYH0RNHVkGjNPYAt6F4toKWtIG72JyiKosyVmL57OSIR0mxgrQF3RY7X/O7I62dNpNDnQPK/T58AxkSO90nDcX8Htiw4pplNI8d7qOSYdkEkdpqJkej7ryCR7HnFzGvARZHjHZr0txvlndeTgOMjx7u4ZcsMQtv4AWLYbfZb/w/YJHFSz1FM310Z+CUiV1hFsih/BZyZZ8g3ffcjRGanm9QRacKFEIdNK94H9kECViwkOOQPwA1lnCum7y6LzDnzntG82g7vIBkjNyOZCH+it1zOh8CekeP9IznPiohkYN453gWWTp1TiqIoyvyLRuAriqIoXcf03SWRYrbN0fZD6dG/z1v8fI1i3dCpwKodDOulyPGmAdNatpz3GcPsxnuQ+zoCkR34fn8PIrSNhYCHgFXo+axXQgz4a4e2cVCj9E5oG6sCWwE7b/L+S19v7Muo1/jqx2/xpemTQYzxGxad2wriP4e2cR+iY7wCsngPkmMv7PvVwZTqQF4avtiUX6y20+j3fPetTiMuFUVR5jCnI9Hwq9JTaLMKPI18Z5Yicrz/mr67LRJh31gYdBqSzRQAv82oBXMw8m4oI+dTR5yupQz4SNR+lt6+gURo74xI8eQZ8CvAlxt+vwWJgt+3xXkvAH6SzDPaJrSNUci7EXrG3vjePAlxQPcLpu8ujWRMDgX+CTyA1PN5BDGap2NaDHl+9jJ990GkTsHVTZ/xM0gGQbec5CD3Ytk22i8CDI8cb68Oz/cGoquf58zKyy5YHHEg3YU8a0sitZGWRgJPro8cb0pD+00LxlBJ+lsBcTopiqIo8zFqwFcURVF6kejGHgyMRdLsbwIuiRyvnfTt7yFFZZtJU40fQAz1WXI6RQu+5ZEI/oPbGEsNWUw+2sYx8zo7k18wsIosJvvVgB/axnBE5ujLTbvSMR2Q7P9naBtDkWj55hTyXgfVgANffYD7FlulTqUyK5oztI0BwNeRhfKLJJr8VhC/hcgoNI5rTBuXMR1Jo+8l6RRTIVhuE64z12WqMWgIkjXyium7R0eOd30b/SuKoswxTN8dgjgwv0vPd/FMxEj7KySzaWY7fUaOd6/puxbiEFgEeDZyvMIioZHjhabvrgX8A3HwFlEBDjV9dx/EkH4mIpGyDvId/VhTdPK65M8j4uS4CHk3ZbWrk2i8m747FDHiFhlZU17t1HifcAD5RVMrgB3axuFlZejKYvpuBTHIH0vv+/EY8j5dqGl7arheC6lBVB1Qi8898tSvH3bwS/dckTjlzwc2yjhdDQnCOAM4tZvXkcMeZGdjlMEj33hfhq2Bn0aOdyLFtZHKPDPzQ+CJoiiK0oJuesUVRVGUeRzTd7+GGLuPR6KnNkZSp59IDPtl2YCeqL5mqsgifyk6W5SMTsZUNhppIvCtL7JkTgaDWuzPMxJ0hdA29kMiHHcvaFZD0ttBDEq5xvuUKmBOmcSSUydVkLT0VC/4NUSL+TLgPuB/oW18Naeb18tcQ8IgYH3EYTTLQPTblcbWr1x2I6YavW7zcsBfTd/tdvE+RVGUbuEjcmaNa8BBwObA0HaN9ymR49Ujx/tX5Hi3tzLeNxzzJpKpV+bdPACJRD4SkWF7Bylw+xAQmb7bWEj844J+DGCJ5N+8dXAVyRwA+CnljPcA+yZyKJ3itNg/DBjch/7zOBhwmf1+fA0pAlxkL6gC1CqVEXeNWi34zBj0dFJM/mrg7KRNHXGcgBjvd0GcRZMp99k3UkccTmUZ3brJ7Ji+OwqpQ5A3hrL8yPTdVvaWO8mfC9eQDIdSf1OKoijKFxs14CuKoigAJIuMq4DhDZvTSKulkYJcZfmU/EVOHVlgz6CzxWgFidh7lXwnQcq1wKqR4z3XwXnmZe4j/x1fQwwf/UJoG5sDfyQ7A6OROrBgaBtLIVrMpRlYi18Bzg9tYxXEcL9EU5MVgSdD2/h209iGAtsjOsVlmApMsoL4IuRv4GdvDPnSPTctuXZW6nyaXXJaEtGoKIoy12D67irAt3J214GLTd+91/TdcxPd8znBH2iv0GkFkYFboGHbYsBlpu+m3/dXUmxk3RWRasvjj8Dfk+/xdjLV1gQeNH03T5onl9A2lkd02ot4C3kndY1k3ncs2ferQsnPplap8vGgody72CqrAuPG3XeWGTneMUiU/rnIPT0GWC5yvLsTuZ20AGw7GQX/QTL3yvI/03fXN323jFRTI98gX6kgvSdlxr0ovefUs5Fkt56S/Nr4OaT9HzufBaAoiqIoOagBX1EURUnZBFiZfNmVHU3fbTaU5vEX8ovUVoBrkOirCbQfgZWyDT1a+s3ESd8HtCn980XhBiRKsXmBmd6rM/vx3EeTX9+gEQMpbrg+JecjNeCjAQt8Mr06YMPkcz0CiR7NOt4A/hjaxh4AoW0siERr/pZyBfDqwJ+sIJ4GYAXxO1YQn7b/+gddVa/kXloVMeKU/TtRFEWZU2xZsK+CGBrHIFHuz5i+u1N/DyhyvKeRmix9IXWe/iIxSP8SybTqdG7x78RgOghxDpSlinz3P9vBvVutRJsbG2vGdIlFEYm4PjudK/UaLw9btIIUrz0UpEZC5HhHR47nRI53duR4s4rwRo73O8SZ8niyqYYU682jjmQEHIlkSJS5F99H5BPfNn33T204V8rMSYoyPVI+Rea6rfCAHwFvNmx7Etg2cry7ShyvKIqizAeoAV9RFEVJWbrF/iqiMV6GG4BxGdvrwFPApckC+bf0feFYAaY0bXsJ2CqjcN58gRXE0xFN+Meadn0I7GUFcdligJ0whtbzixrwEaIL2/zZZVJPOl1w5tQjHzv44neTzVvQ+vk5M7SNKvALxLhOzjH1pn9DRD6hmTzHVCM6v1IUZW4jbt0EkO9HA/iz6bsL9eN4AIgc70zgQTo3uIOMeXmk2OuHwMt0NreI6anbMh14t6BtHksAN5q+WyQh18x7Jdr8rmhnaBuDQ9v4UWgbD4e28WJoG9clEnNFTKFv930WdSqMnDkV5L5vXeaYyPFuiBxvPaRw7pDk3zxmAG9HjjctcjwHybS7suTwDKQI8d2m7w4EMH13sOm7e5u+65m+65q+u3xD+3vJj7CvI8/FSFrfu1six2v5d5dIUF2MSPGtCJiR460bOd7drY5VFEVR5h90gakoiqKkvNpifw0p/NaSREd3B6Qw2gfJ5snABcCYBsP6WcB1Df2nC51PkCJ1ZaghToF9kYjsrZk/ZXN6YQXxG1YQb4gUFnSQwrZLWkF8XfGRfaaMQX4SsL0VxB8icj+TaLEQrojB/zAriP/QsHl6q+MQo84aSIHAVgadt5GsgOOADawgnpjRJssxlVJDDP9vtTiPoijKnOYOysuVVBFj6j6m7w4wfXdn03dPNH33MNN3O9IVb0G3nMoVJKq7leE6DwMYavpuNQkyuLgPYzmnhP55ymNI4EHW51MDxic/mYS2sQDy+V6I1CBaEXnnjwttI0/LncjxPqG95yKfSoWx786adpV1FqXjmIIUF16qoNkg5JrSY15BijE3yjsWzQcqSIHja03fPR14BfgzIiF0BvCS6bunmL5biRzvDaSmTl4/kxr+X0RZuT4AIseLI8d7OakPoSiKoii9qNTrKqmmKIqiQKL3+jSiL98cZVwDro8cb88O+jUQzdpPswrkJefdEtHmHYksZANgYUTvdAStF0lTI8cb0u7Y5iaShf4GwCjg+cjxyhbp7QqJPvxCwEQriGdktTF9d8mkzauR42U6WELb+A2SPp/3mZ0B/J8VxJ81HHM48OuMtjXgNCQ68wEriHs5B0LbOJEe7dgiHKR4YxH15GdtK4hzDSUApu/+CdiPeh1zyocMqs3kjaEL12dUB1SAfSPH+3OJMSmKosxRTN89n0TepAR1RKN+LOIITYmB4yPHO6uL41oBcX6WyXDKoo7I5qyABAXsRN8C1Z5N+ngLKbS7BeWk4ZpZK3K8/5ZpGNrGFogxfSA9Y68hBU7HWkH8SMGxxyLSQVnUgZWtIH4pa6fpu2shDpQFKL5ndUTiZhj1uhjaKxUq9Rr1SpWB8UwG12aywQcvs+XE5y+2zwl/lNeR6bsLIAVmP4gc76Nk28nASQXnB/h55Hj/l9HfasD+iOTRDrQnfdTMfpHjXWX67iDgPESGJ9XD/xiZc5xTop8Y+EvkePv2YSyKoiiKMgs14CuKosxBTN9dDNHwHI0shP4SOV4Zfcw5gum7qyMFThehx6BZRRbWm0eO984cHs+KyGJpH4oXlu9EjjfP6o6bvrspYmBeqWHzOOC7/R2JlRSR/SWwF2I4+AiJOjzZCuKpyfjWAn6FyOOAZFNcDJwQOd60pv5MxPGyKLN/ZjcAuzXq+CbyNg8AG2cMbzqwrhXET+eMfVHgv5STdqpljCerze+tIM41PIAYH3Z468kbdn/zP9ss+5kkmHwyYHD9qQXNGzd+/6XdrSDuezSjoihKl0kc6iciOuIjSxwyCXGiZxnWd48c7/o+jKWCOAe+iXw3L4QYYTvlQCTy/FjyC5CWpQa8hsjp1BEn8EW07xTYMHK8R8s2Dm1jTWT82yfnvQk40wriZ1scFyLzhzwHwy+sIM41jpu+uwbwf8COLYa4P3DboHjGz4bEMw6dPGCwMbOSlCKqyK2p1GvUqUyjUtk6crz7m84zJDnP95GaCzVkXvATYDdaG8b3jhzvmqY+l0YM7bvSd3WBGvBk5HjrNvQ/CtgQcaQ8kLQpJf0HnBg53ql9HJOiKIqiAGrAVxRFmWOYvusgRs9BDZsnAbtGjnfv5zKoDJLFyveQqPiZyALyis9TTz5ZXOZFsdWBcyLHO2YODqlrmL67KlLErbkYa1rQba3I8ab2x7lD21gM+DdgMvvC9y5gu7FjjrGQrIihGW1uAHZLpAYa+10BkUfaJTnmQ8T4cUqiz9/YdjskwjGLGnCVFcTfKbiGZRC92uXz2iSUjZ683wriMUUNQtvYBrgt6bDa1Pk5VhAfXeI8iqIonwum7w4FvoIYprMclnXk/T8wp4saIrv3PiJ78gIi33Jd8/sg5/wjkLnFFvTInvSlHs7LwIuU1F5vg70jx7vG9N2tgL93cPzwORGkEdrGx4ijJYsY8K0g/l6rfpKaB3ch0nvNPIjUFpoOMP6AwaP3X+/A8L3Bw4fXK7PZzdP5y6rp85BkGd7O7J9RDdGU3w14uGB404ARkePNyhA0fXdRZP60FN2TBq4BA4qeY9N37wE2LzhnHQlAWAG5tuWR8b9R5u9DURRFUbJQDXxFUZQ5gOm7GyF6ms2L4ZHArf2kKdsRkeO9GzneaZHjfT1yvG0jx7vw8y4GGzneeODc5NfG6OY6snDPSx2fF/gJsxvvSX5fBWhbtqgNDgeWyTg3yCJ7G6SQa5bxHsRAv0HzRitI/3tUAAAgAElEQVSIX7aCeHfgS0n/S1hBfEKz8T5hO/L1d6u0iAi0gvh1YFXgKlrr37aiRrligqcnHc66Jw2dHxnaxlzz96woitJM5HifRY73GHA0ElUMPd/DteTnboq/m1dANMWXRIyZ11JOWgTgN/RkdFXoezH75em+8b5GT2ZY2Zo8jbw8BzMsXyT/szIQY3pLIsebhGRFnIk43kHqGHnAtqnxHmD7zY4aPXGBkVnGe+iZv6zdsG1rsj+jKrA4EkH/h4z9KYc1Gu8TDgaWprs2jU9KGNlT6b68ez4dkYXcHZF2CpGMjsdN3+32c6ooiqLMJ6gBX1EUZc5wBNkRwGmhuAPn+IjmPY5GCpE+gyyaPkCMABtFjlfG6Dq3sg357+MY+Ho/nnuvgn01YA+K09LriBE/EyuIP06K6WYZ7lMKDTdTqwOGmb5bVNgOK4inWUG8H2LE6UuR3irwx6IGiXF+HfLviYE4JQhtY0BoG3uFtnFdaBt3h7ZxRmgby/ZhfIqiKF0jqWXyDWQOMg7JyLoEMbw+Tuu1Yro/ldg5yvTdLDm0WSRR09+m70b7RrrZV2OfqeH+MeBNWhdNb+Twro8onwvI/qzqSOT35WU7ihzv08jxjkNk8EYCi0WOd3yGM2KREt0tAmD67lgkQyOPChKs8EfEcdRoqH8bkWu6pPGARA7qgBJjaIc6cGWrRknW7C7AGw2ba4gj5WTEubUWMkdtlHdcA7hdjfiKoihKJ/RVH1BRFEUpx3rkL4RrSBSbUsxgpKDcScBjkeNFn/N4ukUrvfT+1FMfWrCvnuzPk1BI2wwq2F+Gu8gpqlijwj8XWdEAHjR9d93I8T4o6sgK4tdC23gKiXor4kZgZ3p08dN/r0FkHYoouh+z2oS2sQBwC7AV4oipIs6YI0Pb2NkK4rtK9KMoitKvJHVM/kBT9LPpu3XgZ212V0N00oukUFZhzq9BO5HpqSBZBUSON9P03R8DV9O7nkpWbZUY+EnkeLd2Pty28ZFsgQPomTNUERmkfawgbrt+UeR4NeCTgibPUVxbpgY8Z/puWmy+lfPDRGowNR7/EPDNyPF6jSMpMHsD0E2HeB1x0sxWJDeLyPFuNn33VuBriHzR+MjxJibjWwTJXoTez1w63/il6bt3q5yOoiiK0g4aga8oijJn+IjixcvHc2og8yKm7x6IGO/vAK4HXjN99wrTd4c1tBlp+u7Rpu8+YvruU6bvXmz67mqf15jb4Gbynw0D6E8jwIMUp90/jOjLF8ko3NfHMdwGPF5vugc1KsSVCn9eeoMKsBzwg5L9FekU14D7kcyCQ4Cnkb/N8cAPgf1KFKCNgFco/nu+FzgeMd6D3Mt0ET8IuDa0jWEZxymKoswVRI73ND1R0+0YGmcrKG/67iDTd4cnv37YvL+fiZEaOp04wzdP/xM53l8QSbcnG/b/F9Fu3xepcXQzIvc3PinSO0dI3lsHIfI3lyPO4zMAywriv/XHOZMgiuvJfjbqwN+QZyGVm2l1P5qdOlVgM2CS6bsHN+07iiTTrYv4wAaR400oe0DkeLXI8f4VOd4/UuN9wrbkBzdUkeh8s/OhKoqiKPMjGoGvKIoyZ7iS3lqgjVQR/e65FtN3TWRxuBqSIvzLyPE+mkPn3gO4tGlzFfgOMAzYPUnJfwD4Mj1SRV8BHNN3d40cL69I6tzAOYicwAh6O9briKHgxn4897mIjE6zvFOMSBRdATyFSCw0t6kBzyKGgo6xgjgObWPrp0cu9dRXPn5zdHoDJiwwknOtbXhxxOIk594VMUi04mFECmLLpvGmRoZTrSCeiRimilL688ZbC23jVPK1ev+K6N3+MGd/FZEl2BMI2j2/oijKHOQw4HnEYJoW4pyI6N5nBYJVgOcTGZ01kHf0GGB7wDB991nke3x8sr+/qSfjXJPOZHbOM333scjxHgJIoupvTeYcRI73XiLlchGQFondETgGeMz03R0ix3u3rxdRBiuI60gE+z2t2naRHyBR8OvRO/L/38D3kWj2oih9aF1gvgpckHwOj5m+uwKSidlt9iSpb9MFymQmDu7SuRRFUZT5hEq9rplbiqIo/U0SefYgsohMSRct1wN7JunKcx2m7x6JGHqbjaEnRI5XxqDal3NXkIX+auQvAFcHjkRSx5sXgTUkwnqpyPGm9Nc4+4rpu2si0XsbJptqiCH44Mjx3u/Pc4e2sQdijB7RsPlVYGcriMcn49sbMXZ/qaHNA8DekeO91Y1xmL576+JTP9p2ucnvVz8euADPjxhNvdLr43wqcrxSBp/QNhZEdJz3oOeZeAc4zAria7sx3tA2jgJORQxUIH8TVyFGizqtix6eagXxid0Yi6IoSn+SvIuHAVMRh26WU7ye/DyHONCzSI25qcG7v4PJPkXeAX3JeLohcrxd83aavvtz4BcZu2rA/ZHjbdmHc38umL67GeAism8xEkhweuR4T2W0NZCI822TTXcAd0SOF5u+ezPivCky4E+jnDH7IUTS6Tpg4ZKXEtNTn6EMzwLr97X4sOm7KyOO/CzqwARg2cjxZvblPIqiKMr8hRrwFUVR5hCm7y6ILD4ORAyhEfBb4NzI8WYUHft5YfruFhRHc+0WOV6/pGcn518MaBW9djRwGsULwL0jx7umawPrJ0zftYBRwIuR4709p86byLnsDCyORFveZQVx3DS2BYCtkWf3v5HjPTlbR33A9N3jAC9ndx34beR4bRUFTArGro1IVD1gBXFX/85C2xiByOQMAR62gvi1ZHsFeJ/eDo9mfmAF8e+7OR5FUZQ5gem7pwAnIkbqNMq9hkTnj6K1TOsMYAfgz5Q3xrbLccCPEAm2vvBh5HiZY0y02CdQfA3bRo53Zx/HMMcwfXcXeorBN2r9TwO2jBzv0Tb6+jWSxZEVYV9DJIhuA04o0V2rSP4sbkCKzbZDWhPiuGbt/XYwffdaJIggi8Mjxzu/074VRVGU+ROV0FEURZlDJJIzx5i+eywwYG412jfx8xb7z0Z0TvuLuHUTBtE6emupLoylK4S2sSQS7f6qFcTTGvdFjheSH7XVb1hBPJkWMk6R402ldYHXvnAZIjuwEL0j5lLDwW/a7TAxqL/WldFl9/8JYiBo3l4PbeNS5HqaqSNRrHO9Q0lRFCWLyPFOMn33b4ADjAb+hxiyyxolBwLLJD8/RGTkFkYy7tZDnMl94TFgUfpuvAcoyt5bhtYOiFsSKb/Z5OaS7MwdgcWQ8W6U9BkCvwNunZOFTk3fHYhkA1aYvfjqYOQ9vEEbXV4C5Dneq0jmwsuUM+C3a7wfh0gtvoHMK8oyGHkm1zJ9d0wf5up28m+jEX8aIiH12w77VBRFUeZjNAJfURRFycX03Q9pvfAZkhh3+2sM/wTWJ3vxVgdWRfRWh2fsT9klcrz+1JJvSWgb6yN695smmz5EjB2pJvt8j+m7ayDSQSs3bH4T2C9yvL4Wy22L0DbWQ7JlTOAl4BIriJ9u4/gRiAHha/REDqbRqntbQfzXrg9aURSljyT67ocgdUcGI99jv04czEXHnQ8cTHlDaxA5npPRz1703cFZQ6L8u6Ez/j6SPfn7ZqlD03cXB1ply9URw+0yjYVOTd/dFzHSZ81dUumXsyPHy3IE9wum734DuKtFs5Uix3upjT4PQwz/NcQpkGZsnA8cETle3fTdPyDOoG7y96TP/wELdNhHn7M3EzmdTZFn4M7+lkVUFEVRvrhoBL6iKIpSxBRaG/CXQDTT+4ufA3eSnT59aeR4L5i+eymig99MDVlctyxim8iejARmWEHcSr+8LULbWAu4j96Fzb6ESBCYiKG4XwltYwgik7M08Apwc3MGwOdN5HjjTd/9MlL0cEVEZurvc1onNrSNRnkIEKPDYaFtHG4FcanIOSuIPwltY3Ngf2AfYEHgX8D5VhDPpiOsKIryeWP67rKI1nhj1toqwAGm724XOd69BYdPpb1CsfubvntThgzfDYiUm0X7UdcpacR4K1oVUAV5V18ErG/67oGNEfGR471j+u59wGYFY60gBuTvIk78VGP+jwXnTrPQjjZ998bI8R4scS3doEj2rXQb03eHAD9GasKMRjLhIsSI/SbgA/c23MvvAW9RLhK/LGOBe+nceB8jTqxeBvwkS2Eb5G/kJWBco2MnkRs8AjgImR+/CFwAXD231rpSFEVR5g00Al9RFEXJxfTdXyELkSLOjRzvJ/08jm8C59ETmT0Zid76eeR4M5M09DuATZBFVwVZTH8MbBM53iNF/Ye2sS/wU6TwXj3p6+dWEP+nG+MPbeMGJE0+b4G/mhXEz3XjXDnn3xaRyGlceE8E9rSCeI5Gtjdi+u6XkAXuhMjxJn1e42gktI1WEYhrW0HcVf1/RVGUuQHTd/PeVTV6Cm9mStuZvrsxYvxvhxpwJnBS5HjTG/paCrgSceamTABOBp5Aat/s1ea5sjgWke3ZEpk/bEhxgNvDwP2Is2Iy4mxYKNk2pOC4GLgscrwfAJi+eyPwTVoXWK0Bl0eOd0DLK+kCpu+ugjhP8pgGLJ5IQub1MRgJuhhDj4MkDcC4Dtgrz5Cd1AG6DXHgp8xAJJc65X1E5qgd5xLImG+OHG+Whr7pu1shz2WjxNPLwO6R4z3Z4tp9oJcDSFEURVHaodOoBkVRFGX+4ARkwVbEvv09iMjxbgVWOeOpvx5y40O/+fc/7jurPu6+s74z7r6z/i+0jUUjx/sUWYDvgyyo70Qi91dpZby/8TDzPODKmhjvQRZc2wAPJbI3fSK0jQFIsb6id+7OfT1Pwfkt5J4s2LRrEeC20DaW7q9z52H67mjTd69BnAjPAu+avntFIt3wefNDeiLvm6khEYWKoihfKJKi8XmO5ioScbxVQRf/pKf4aVmqgAtc0bgxcrw3I8fbAlgDea9vjUjQ/D5yvMeQDKm+GkLrwJ+SArNPAOvQOjt942S8JwNnIfIsByDG/8kFxxmIAyJl80q9bmw74SlGTyn0XVeYgzV8Isd7gZ6MxywuKzLeJ3yHHsdLajRPn6ndgb0Lzh9GjrcSsIRRizc89enrt95+wvg7Fp/6UaefdYxo4OcZ74v6rSbHArOcG7ci9QoaWRb4RzJ/OZr8a3eQeaqiKIqidIRK6CiKoii5RI432fTdvyALsjyKtOe7xrj7zvoxUjQ31YYdDhwH7BHaxsZREL8LXJ38tMT03cqi0z751Z8+fffwVJC1gSoS8XUmsEUfh27QOsquGzq9eRyKSPc0L2CrwFDEYH1Covl+LPANYCZwI/BLK4i7WlTX9N0FgQeA5em57QORIobrmL67fuR4HUsYhbZRRdLxD0UyNt4FLgXOSYr1tqJItqECrNTp2BRFUeZiRtE6uGvJvB2Jlvm+iHH7YGZ3GhfxLdN3zwJeQBzao4BnEB3zBYBtgY1M370T+FcinfcbWmcI5lEDbogcb4Lpu7tTct6Qw48QQ+/pwGk5beqIZI5EmdfrgwfVZnLfYquwQDydSr1GvZJ56+uIBMuc5DtIFuI69Bi4K8DtiIG6Fd8mW/Iw5UrTdw9HMijvzmow7r6zlkUK4K6+yfsv8cAiK3PSV3eBeh0qs9niZ1Js0wiROdBqGfumIPOvvDnaj0zfPTdyvFeQYrxZcykDifA/FjiqYBw15N6MSzeYvjsS2A9YF8kYvTpyvH8V9KEoiqLMx6gBX1EURWnFveQb8GOgMMK9G4S2YSLGdJh9obUCEo13aJvd7rzmpDcOH1TPVAMAWXyOCW1jlCXOgY6wgnhaaBv/QoqZ5i1o7++0/xJsRHH02YahbWyPGOyr9IzRBvYMbWOMFcRPdHE8B9E7PT6lgmRB7Ics3NsmqWNwGTL21IBgAqcA24e2saUVxFNadBMhC/28oslvdTI2RVGUuZwImE7vWi3NFBqTExmcn5q+ewpSuPNvwIiS5/eR797Gd/xkYFjD76cAd5q+uwdiTF4C+BY9BcINesvo5fE8YpytAGeUHF8RRyHO3e2RaPz0/ZMGHBwbOd5Lpu+uRSK3M80QVZipxoA84z1JH7/vwvhKEzneRNN310OcJmMRA/nNwMON8i/JvdsOqfOyOOJ8uRjJ7mvlCFoPuMP03Z2SDMtZhLaxMmLkniVJdM3S6xU5OYrsGQZSoylPbmloi3EaSFbJOsi9yJtL1ZB5ctFY6si9AcD03XURR8miyHNSBY4yffcy4Puql68oiqI0oxI6iqIoSiuuRgrBZlm6DZKibP3MtyiOiv5uYrxth4OHxtPLLJCGtW7SktOR8Tena9eARxEnSX/xGfnp8PVk/6X0Nt6T/P//2TvzeDvG+4+/z5lssktCRMbOIPZdLQlBqbWWqtp6xr7W1ugU/aGoUUqrai0z9ha105ZYglpqCSrCscckIYgksidz5vfHdyb33HNnznLvuQnyfb9e95V7Z5555jnnTM7zPN/l8+0F1FW0tQH2JTttvQT8OONcPYxAjPfQ8lqS52Ir6pO/8ch+1vLATe0dnKIoyreVWBrlDtK/n0NE7qwujfvAducFtvsEsDFS6LMeNqCtgz5t/v0hcHVc3PwwRMpmPBKxfwlwMtX3uPOAvQPbnYJkaa1VpW29LIcYYndBsgLGIoVbHwF2CWz3srjdlUCv8ijyKJeXyHIgF5Xin0UfwS8C232jCeNriMB2S4HtPhrY7i8D23UC2/1PhfE+jzjLHwEOQObeo4BXEadLrbVV8vlcHjsCyjkDMd4v+gzf6TukmpOjGhMRJ35HjOEbm55zA1LMOYsIcSZVwwDegkV1Ah5GIveTc8n7cCSNB6QoiqIoSwEaga8oiqJUJbDd2abn7IJs1FYuO7UAOC2w3X8thmHU0kbvg2yAFlaeKBaMdZANZm/EWP6Q5YcLgbXf7jskc0cYVx+bQpkGanux/PCBYsE4FnF2lEsOPQX8zPLDzixqdhcwPONcHjF67Fnl/DbFgrGq5YcfN2k83cmOYsvRMTmhaqn7JeBw4E81+rgHKVJ3CG2jKP+IyP+0wfScZZCN92HIpnwscGVgu881/CoURVEWM6bnrIVkiqV9P38F/KTRApyB7X5oes76yPfu0Rl9N0oOOMT0nI8RPfryAqcbIkVF34x/T6M74uj9DbXl7RphZmC7cxAj/ZWVJ03PWRnYPvXK2KC/xdSPAVh2wayv/r3CBiMD232zieNrJgcjmu7QMt8m/26BfEZJEdcs8ohk3XrEhu2Y3amYw7uHC5jTpV1Lg4WIHFNHnrsc4pyoRj3PUUhLduF+ZBv8I8QJ1OYZUhRFUZZu1ICvKIqi1CSw3bdMz1kT2ANYH9nM3xPY7heLaQhvVTlXAt6PjfIUC0ZPJHrra8TgevJn3fty39BNea3/ykS53LxZ1xz/F3r0m/JB78Hm2P4r5Tea9mkbi2+827s86bejWH54fbFg3IGkpfcFXrH8cHFszn0k8nwD2m5iXwT+V0cfA5E09GbwNKL3mrahzgFjOtD3ALKj+/OUpa9nYflhqVgwDkccVkchTqv3EGmAh9KcLabn9EK0mremxei/OvAT03NOCGz3mna8FkVRlMVC/B32JDAk5XQJMd6/3Z6+A9udCxxres4TwN+pbdithzxigE9j9RrXRsB+pudsgxhR5yI6++2lBIyJI/qrMaDGeXae8jY7TxlfAh678dePfFuN9wDHku0szyHSMLtQn62hF4DpOZsDv1pm21NMIyqx7Vfv8bMJ/2XlOVMZOeUdHh2yIVFb/ftarALMpDmOoywiJPNgNaqvMc4LbPfj+Pf1q7TLAaubntMtlqRSFEVRFEAN+IqiKEqdBLa7ALg//lnc/AOJXl+OthvGPPCnYsFYHykgt2d87Ctg4Pg+K/DLDQ9kjrFI1rc7udzpRNE0crn8+cP25oK37meDGRMXdVgCPuvR7+8rzp1+aTNfhOWHM5EI78WG5YezigVjB+BCJOqwJ/ANkv7+G2SDW4351C+BUA9XIUX/WqXII2/7dDqm9/smItGTRohExdfE8sMScGf8Uw+/RIz30DYa8c+m5zwU2G5QZ1+KoiiLm4MRqZEsjqaDtVoC270rlg65CnFiLylyiNb+OqRL2zVCCZkjz6yj7YfUcBasNutL4jH9pQNjqkksObgsEFp+OL0dXaxOtkxRCVljrAL8Cin+Wo3lTM/ZDXgQMOZ06ZYDeGzweoxZbm2ueP1vHDLhRZ4btBYzuvZoj5ROWvHaZnI/ko1wKlLAuZIIqQ9QXuC4VvDLLCTLVVEURVEWoRr4iqIoyrceyw/nIob5r+NDIS2b7usQw8ILtBjvAQaWgIvW3ZN5RldJUU9+hH7AlBlde3LKxj8rnbzxz7hhteGlv6yxIydvcsjVO1w79aDYkAuA6TkDTM/Z1PScoZ37apuP5YdfW354IrJhHwwMtPzwNMsPZ1p+OA6R8snSiL3Z8sNpzRpLYLufIBrGlQbtj4CdA9v9vAPd34AYSNJei0HnpaQfRbYRyECkfRRFUb6tDCe9zg3InDqyGTcJbPdWJMp/P+AIYBtEk35JUFknpVFKiI75DwLbfaVW48B2Z5BRQyUXldhw2qesMeuLCDhl5IhRn5iec4bpOReannOg6TnVCgs3RLFg7A+8gQQ5TCsWjOeKBWPHBruZQPaaIQ9MCGx3EvXVjFkWmbsNymwTUS7P/HwX/rjWLqwwbwZXjb2NLad+tKheQEw9EnX1fr5pr2dmHdddENePuAipIQGyHkj6+xDJXu1les7JpueMBg4ie80QATc3KlelKIqifP/RCHxFURTlO4Hlh68UC8ZqiDb5pki09p2WH75WLBj3IZHlrRzTb/UbyqRllk3vMJfLIRH9Z5DL7Teunzl0XD9zPFIc7+Gkmek5/REpnoOJtXbjDdiJge0Wm/wyOxXLD+cjuv6VHAo8DgyLZHucywNTu/Z886vuvX9pNXkcge0+b3rO6ohRaCXEeD8msN2OFJrD8sOJxYKxH5KxsQwt2vUl4HTLD5/q2MgzGUy2kaAErNhJ91UURWkGtaQ6miblEdjubOC+5G/Tc25F6od0psxJPUTAJKAeJ/0OwAvtkDgZBayJOLFLMtvm8gPnzZp+8vtP+MBVI0eMOgApgFu+nploes7uHdXELxaMI5Gi9eVz7Q+A0cWCsYflh/XWNLqelqyzSnK0GO4/QSLJu2a0BVnTpWZ/lHJ53u07hAnL9CdYZgDv9lmhPAgDROpuuzrHXEkU/+SR5/FspADybsj7EyKfVbXrJyKZf8RFlQ8xPeePwP7ImvQ5JEJ/WeAVpBBupYRUsk5J+Ag4v52vSVEURfkek4side4qiqIo312KBaMHEiXVpojYk8utw4XD9qp6/cgp4/c5Z/zDayIG3/8AYxKdc9NzugLP01azvQRMBTYObHci3wO2vPrYNYbNmPTcejMmrVAiFz0/cM3otWVXyUe53DPAHoHt1hOJ9q2gWDAGIMVkLWAycKvlh5901v1Mzxkf3ysrs/EXge3+ubPuryiK0hFMz9kLkTBJIwL+ENjuqE66d38kC2xjmqOPX0nS56z4714Z7RJN91pjGA+sVytC2vScVZFMvw/K50/Tc3LACGAfxLD9FPBgYLsLTM/Zn3SZvRCRXVk9LpTbMMWCsQzioOhH29dXQmRe1kur81KJ6TkGUuz9p7S8b8m/ZwS2e3lZ25sQ+b52f67LzpvJ1917V453LPL+pdX3qYdxSB2gv8f/9gU+j/t8hRaJpWr8PbDdg2rdyPScO5D3qrK/EpKBsgCYAdyG/F/7sv6XoSiKoiwtaAS+oiiK0nRMz+mD6IIfCSyPbAyvAm6oN8ra9JxBvRfMXefctx/cY7NpnxwIrAp8hkR+XWr54ey4aTdSjPcAQ+ZWV37JRVF00vtP3E/rzd8rxYKxp+WHnyN66punXJoURD2F+rRvv/VMWmbZ2ycts+zyowevB/J+JO/J9kj9gWObfU/Tc/ohhgwDeK5ZRZEtP5wK/KkZfdXJX4A0A32yOb9tMY5FURSlUR5FpOiGVxwvAV8iWWidQmC700zP+QHidD0Y6I5ENu+BONYrSRzog+q8RQ74MVJY9XFgW9INs/VK6nRPjPem5/RApPsGA0XgCWALZP7ZKm4/2/Sca4GzAtudF1/7dPxTyemkF4c1kIK7PwFuqTG+LHYE+mecywPrIkbr8bU6Cmw3ND3nYMTZUEBkkZIMxucrmp+GFG3don3DJvq6e+8crSPmP0R05zuSkfBb4DXgEuTZyCPP+nPUr5t/oOk5Zwe2m1knyPScZYEDyX7mlgH2DGz3yQbGriiKoiyFqAFfURRFaSqm5/RCIso2Kzs8DLgW2NL0nKOqRa7FRt0riaKDZ3bt0WXURgey7oxJnFZ8nDVnTRmCFAnbuVgwdrb8cB5SLK2IpDq32iCt881nrD5zCh/3GkSpovBZLooY/sW7uf4L2gSzbQrcWywY2zFi1F60TW9e1AVi4F9iBnzTc7oApY5Kz5iesyktxoZKcsDPTc85M9Z57TBxBOJZSMp6YqBZYHrONcAv44LJ3yWuQWQIDqZFmiCPRNUdENju11kXKoqiLGlig+wewO8Rw2gPxFj6KHBaYLsTTc/JA2sh82ExlgzpMHG/v0QMvQPKTqXNaxFS52R2yrlqDAxsd15sSN8+o996o7i7AZieszfgI/IoCZ8iQQvlkjE9EcP8KsABNfrejOrFYTen/Qb8nnW0ycpOaEO87riH9IyB8nbTTc85CXip3r4r+DfwO2S91R14FriXKsWA6yBCnAAvIM9c8p4PQpw99T4POUSCsJrkzRAygkzKWKWOeymKoihLOWrAVxRFUZrN8bQ23kPL5ugIZMP7bNqFcVr2P4GtY416AN7tswKnbHwQ1796S26oRNVvh0R9XWf5YVQsGJcAN1b2l4PS2eMf/uaMjX7ab1q3XuSiEjlEV3Wl2V/xi/efSBtGHimstwW158klMo+anrMv4ABbIobve4HzA9utGTmXQT48YKsAACAASURBVK1os+5IBsQb7ey/ktOACyuOdQV+gWycT826MDb+b43ILUwDHomLAy4xYuPXocizfQhi0HkTuD6w3U+X5NgURVHqIZZ5OcH0nDOR2iRfJllRpucchBTpXD1uPsn0nN8i33Ed1WP9I6I9XkmaIftjxCCaqplehcnxv3ciBvzjEIN4o9IrJWC06TkbI7VWKg2zZpU+9zc9Z/MaBW9nIvNtGjlEZqW9vEx1w/RM6oi+rxfTc9YDfg3sTXUN/FpsB7wZ2G7lunG+6TljkM+zltRNJYlO/0DS3496n4sQcdhU4zOyA0ESOk3iT1EURfn+oAZ8RVEUpdkcTvYmsYQYOFMN+MDuSCRz64tyeeYa3bhrpS047b3Hk8MF4Lr4dw8xOPyG1puk11eb/dVe175264VPLrdO4fVlV87loxLbfvk+O00ZT49S1QDCrZBMgix90xIwuloHnUEcyfZnWqITuyJp9bubnrNtYLv/a0e39UjXNEWT1fSc7kj0fRYnmJ5zUZqcjuk5JhJ5V56KP9v0nFMC2/1rM8bXXmIj1uPxj6IoyneS2JC/yJBres4hiAxYuaF+CJJV1xO4or33Mj1nFeDEBi5JIpXrNdiWEF3zx0G+p03POQG4C1lDrIC81mcQg3ytvhYClwPnkL6PrmX43RvRV8/idsSZkWVU/luN/jOx/PCTYsH4G/CzjCZ/Hjli1Fw8Z09gP1rqAt3SqJPc9JwtEImgHtT/WWWtG3vHY762rP8uiPH9QkT+Jk12qBYbNNg+DYMaTo/AdqeannM36TI6JcR4/3QTxqIoiqJ8z1EDvqIoitJsBpC9iY1onW5eyZ5kbMSiXI7nBq1VbsDfpFgwull+OD8uunZ+sWBcj6Q/9wb+Czxj+WFEwdj/oODl3EHBy428jm+Q1PCzkai68jGVEHmUdhsu2kNc7O/S+M/y8eSR1HcX0Q1ulCeRKLHlSd9gPt3EYr3rIxvvLLoiEXf3lR+MszP+jWj0lrMMcIPpOZMC2320SWNUFEVZ6om/d13aGleT3883Pef6wHZnxe03ATYBNkIMpMsCrwNXBbb7asot9qQxw2ujRtoFwOHlcj+xs/Wp+GcRpuc8j2R3Zd3jM8To/xayzmiUiNqR6BcjxvOhtLzHyZroz4HtvtWO+5ZzDLI+2qtiXDc66+9/MTLH7hTfM0ICGM4xPWenwHbHNXCfq2jMeA/Z68YSUiQ+qTnwf0gGxbLAfKTuwMq0rA2+Aa5EpKBWbOD+ldSS0SkhUk711Lg5FZFntCr6nQn8tKMyiIqiKMrSQaOLIEVRFEWpxWtIunAaBtWLjhm0jvJrRan1Xqo7stFdhOWHky0/vMbyw0stPxwTy+vkgD51jbyFecCDcSTiSOQ1lTMR+FFgu2832G9H2Zts3dc88KO4YFpDxJrzRyCfW/lGMgKmky5v0F7q0U1Oa7MHIvVTuXbJIWP+VQfHpSiKosSYnrMqUjS+mixMH2B703OGmp7zH2SuvBGRQ9sRkTo7HHjZ9Bw75fpuDQwpInttkcZcYJPAduvNlPsJkMzpScFUEOmZPYBVAtt9HCm83si4E3JUOA0qCWz3MyT77wZadP7fR6QJT2nHPVth+eFMyw/3Rj6X05HPaS3LD4/+78DVz0OM9yDzbJLNOAi4L65VUBPTc9ZE5P2aZWfIA5Pj+9+HyPIk65xuwM7IenArxEi+QmC75wBXd/C+H6YcK9HyDM4FfhzY7rRaHQW2+zlSv+AXyDPwHCJJNSyw3YYiSxRFUZSlF43AVxRFUZrNlbSO7kooIYbxNlr1ZYwGjkw7kYtKbPH1R+WHQmAXaqSUx0b8N4ANqb2hTCLdzrH8cCpAYLsfmJ6zJbIxXBuJwhsT2G4jhoRm0bfG+RwSXddw0dTAdv9pes7WSDHBnZHIxXuBPwS2+3Gj/VXhLSCgdYRhObOBMSnHtyc7Ii4PbGt6Tq5ePea4WPJpiHFpIBIl+qfAdu+t53pFUZTvK3GB1rupz1DdA3iMttlRCXniKG/TczYCrg5stxife7qBYeWoXQy0nCLwbr2NA9udFGcQ7I4Y6ecB9wMvV8wrI+rornKuKiHOjZrOhMB2JwHHmp5zHNA1sN35db6EurH88A3KatrEke3HZDQ3kOLFI6lPNnBA7SatKCGBAlnBByEiLbRb/FNJHlgN2D2w3fPKjl+NBCasnnJNrfF8AqyHPNNrIUEbiQTkAOB/gBfY7pR6Ow1s9xtE/vDPDY5HURRFUQA14CuKoihNJrDd0abnnA5chmysEqP4HGDfOMIsi3uBd5A040XG9lxUoktU4qeftgpUypERrV8sGAaSmr8fYlx4A4k4q6SEpGB3i+/3NnCx5Yd3VLymCHg1/lmSVGYClBMhWvaTq7SpSmC7rwEHt/f6Ou8Rmp5zFnAL6Qb532Xo7c5JaVtOCTEATK01hth4/ywi8ZCMYVtguOk551cYARRFUZYaTM8ZBPyd+gqPLgD6U7sQevLdfQrwC9Nzzgxs97LAdseanvMvYFfqLxxaLxsCRyFZBHURS+08GP9kUY9BfRqtDdKjgUMD2y2ZntMNeb0rItH185HAhZWQIr03BLb7YrzuaLrxPoPBiPO/GutQnwH/PVrWVfWwANG4vwjYjJY5OVk7nhQ7Vy4iuxhsBPwUOC85ENju16bnbAe8iEjs1Mt4YJ/Aducha8c3ys691EA/rTA9ZzNaCvo+DYxW6RxFURSlEXJRVFegmqIoirIUEMvN7AYci0QdfQrcBNxj+WFDG424ON2hSJG4d4Db60k1Nj1nReBWJNoLgOXnTufMd//FptMmVDbf3/LDVhHTxYLRC3gY2IGWVGcDmIUU3Cs3EkxGovjfB7pZfvhNva9vSWB6Tg7ZQG5GejbBWYHtXrx4R9U+TM85DNmwrxQf+hLR/70iLYre9JyNgbE1up0IbFcrY8D0nAuR2gZZrF0WIaooirLUEDvg/1Bn8/8hkeqb0rhkyvVIEdLpwM20T1e+GiVgXGC7GzazU9Nz1kMyydKIgEeAAxA5mv7A2MB2x8fX7oxopg9OGWt5wMPZge3+rpnjrobpOX0R53e1DIcDA9u9u87+riM7or+S0wLb/aPpOT2RteehiPPjVeDKwHafjfv8O7B/lTF+itReOBRYF5iCvNcW8pnUYg7wF+DMejP56iF22NyKFLEt5xUka+CLZt1LURRF+X6jEfiKoihKORcjWuJJlNM6SKTYrcWCUWjEiB/Y7ieIgbYh4vTxnUzPWfeIj5797QbTgwPWnz4RIz3YfkHKsd8hxntovdHrgUjL9KYlMmw54ETg1GYa74sFoyviCBmK6Kg+YflhhyV3AtuNTM/ZF/gnEj1ezg3A7zt6j3owPWdzWiLJnqIdkWSB7d5qes4dSJp6F+CtalIBge2+bnrOrcBhVbodghiFfljj9oUa5w8Bzq3RRlEU5fvIWmRHOlcyrM52aRyDRMj/KrDdfU3POQe4oJ19pZFHZO+aSmC740zPuRn4ecWppLj9uXH0dqui6qbnrIMEF6RlNuQr/r3I9JynAtt9oXkjzyaw3Rmm5/wDcTykFbKfgYy9Xk5HZG12qaNt73gMs4Er4p80XqCtEbx8jO8BE+L+kuf3/4BzgOsQ50A1lkEkBCdVGUN7uIj0cW+KSAPVWq8oiqIoCqAR+IqiKEpMsWBsixTWyuJAyw/rir5qFsWC8QHZ+qURcIflh4eWtV8GieTu2eCtrrf8sNbmri6KBWNH4A4k8yDhY+AAyw+bIsETF3P7IbAdEjV2bxLh15mYntMd2XDuHx9KUt0XSySZ6TldEP3Y42o0XTV2IGX1M4fsYsAhcF1guye2b5SKoijfXUzP+Q3w2ypNkgKvzSpSClJAdhBwTRP7jJCsrGOBfRDH/VPAXYHtzi1vGGe3rYcU5X07sN3p1To2Pacr4uQ9CegXH34BOD2w3RczrrkGcVrU876VgFsC200r/NspmJ6zEvIahlaMIwIOCGz3/gb7SzIGt6jR9NjAdhfJHJmeMxIp2rs28vn5SD2GfoiRvj+tnUbJ81guh1jJXojD5YA6hj4LKYQ7s462VTE9pxfwOdCrSrP1A9sd19F7KYqiKN9/NAJfURRFSTiClvTtSkrx+cVmwC8WjG7AKlWa5JCNXDlDaNx4D3BUsWBcYPlhkBwwPWdd4FSkYN0c4B6k+F5mgdhiwVgLibqr1H5dGXi8WDDWsfyw7qJnWcTR7v+KfxYnv6PFeA8tckSbIqnqu3bmzQPbXRjrJdcy4K+EFKHLYhywCenPuhGfVxRFWRq5BdESzzI052i+Xv1fEId0M0nG+AgthugCcKHpOfsEtjsWwPScXRDHcBKtPzeWgPlVHEnfhsB2FwDnxLrsqwMzAtv9tMZ4dqB+p0dSmLXTMT1nKGIw3wEJNngbeU3dkYLyVwS223DwQZwxeAUS0JDFAmRtlYwlycJIIujXQ7IZf4xI4+yCFBYu17SfFR87lHRCpPZCVadMGb2Ap03POSqw3dfrvCaLNahuvAdZi+iaQ1EURamJGvAVRVGUhKFkb8rzNFYErBlsRe3U/CnFgjEUMbKHwH/JdkJUI49sXm8DMD1nV6SIXVdaiuVuDBxpes52scxPGicjm97K9zGPaLoeTTtkhdKI6xUMAwYA71h+2NnR773JNpzngR+anrPuYsgEqGaYT2hTLMH0HAMxUpyASERkOapmIlkGiqIoSx2B7X5ies4piFG7I0yjrZM9i+WR+f5uJBq/WZjxv+Xf9ysBr5me8zxwL3AJrefsHojBd7DpOZcjsm3LIUbWm8rn/8B251C/8XUu6YXb0yghmu6dSiyHN5qWLIJkfO8DWwa2O7mDt7gLOBjYM+P8cYHtTo3HsgktEkrJ2i/53A5CHCx/QyL6t4r//gwx3l9DtuyTgWjj/7OBcW8K/Mf0nG07aMSvx2lQr2NBURRFWcppZuqjoiiK8t3mA0gXmkc2Ru8txrGAGMJrYSLG2tuRjd07QBHZ/DbKQlgkE3Mb4uRONtrJv6sAl1bpYwTZm/OIJkUYFgvGNsDrSCG9Z4BJxYJxc7Fg9G1G/xmsQe3shk078f4JbyDF7dI+4xLwr8B2Wxnw41T+22iJsqwMYEjqE8wC9q4ln6AoivJ9JrDdq8iOaK7GVGB9JCBgAI1liW0HPNuOe7aXbYDLEANv2p74ICQo4CREw/wC4EPTc7KM0bW4h/ozF/LAje28T13EUnx3IrJBCcn4Vgeu7Og9AtsNgX2RbMZJyFy7AHgN2CGw3ZvKmidZoFlsgjhb3gYmBLZ7WWC7t8VSN1+RbdeIkOeyXmcSyPvQg4yAC9NzNjI95wbTc14zPecJ03OOiteOrYil/F4g+3XNBwalXasoiqIolagBX1EURUm4nux5wUCKgC1OXgFS09djSkg6dfmYuyGFdyu1S5PNU5aDYj4ShQbwI0SLN+29yAMHmp7TJ+UciNRO1j0iqr+euigWjA2AJxAjSUIXJErwwWLB6Ky5vR6j9rROuvciAtuNkNf6VXwo0b8FiVhMq2XwY8QYA+mf64uIgWGVwHbHNG+0iqIo31kyi4pX4b+B7Y4LbHdS/F39FtlzYiXzgA1pcah+W8jRMm90Be42PWf5dvRzDSJRU81InZy7DJGv6Uy2B9Yke62zn+k5gzp6k8B2Fwa2+6fAdocGttslsN1uge1uljLXmtT3rAwAXjE9Z6LpOZ7pOeshQRxZzpEcIgu1sMGh54EfVb4HpucchDggjkCcCjsANwCjTc9JC3I4FXm20z73LsBNwKvtfKYURVGUpQg14CuKoigAWH74BpI2Di16scmG4xLLDxtJP27GeKYhurjtIYdEar1LS4T+KFrkcCq53PLDL+PfV6zRdxfEwJ/GvVSXIbq3Rt/18GvSC7XlkAyAkU24RxsC2/0YKUiXtglNItxGp5zrjLGMR+SDzgaeBp4ETgc2Tom+34jqGrwlIIoNDKn1DUzPyZmes7PpOdeZnnOr6TknmZ7TL61to5ie0930nBU0Ak9RlG8Z7XHIVkbQ15sNtwCROJlB9f3pZMR53VFt8vaSRyKzGy4uG0vFbIfIBCVOirlIlsIjSHbZ/UgQwZmxA6QzqSWLmKf2eqiZfEh9tokcsg5bETgcycjrBVwVn68M2BiLZBN8RuPZmTmgaHrOvgCm5wwEPFo7dZJ/twOcyg4C2/0vsDXwD9quP5Nr12XxB8koiqIo3zFUA19RFEVZhOWHVxYLxhjgGEQyZSJwk+WH/ylvVywY3RFN2KmWH87O6q9YMFZFIqI3RowBtwOPWn6YuokqFoyewO7AQCRyz0FkW46hZaNTAv6NbHKz6APcZ/lhq81UsWB8ihj2k+K405BIt4vLmr1fpV+QKPvPM85dj+jcr07rjWiEbCL/XqPvetiD6qniu9N5hvRTEIN5uQMhjH8/KavgX2cQ2O6XSFHd32W1MT2nG2IYqWYcz5PtkEn6uAvYhxbH1qHAuabn7BzY7huNjx5Mz+mPpOcXkGd8tuk5HnC2SvgoivIt4Glkrlue+qVf/lPx96PAmXVcdzEicbJ5jXs9gEiobIoYTDdCovaPrnN8zaCEZPo1TGC7E4GDYgfwcsDkwHZnNdJHsWCsTlyo3fLDj9szjpha9WRCRPZmcfFX4LQGr8kjWRH/QDLwpsfHugFTEGP7ZUg2SXvqI4HUB7jH9JxtEP39HlXaHgP8X+XBwHbfND3nbLLrO+SBfUzPMQPbDdoxRkVRFGUpQCPwFUVRlFZYfviG5YcnWn64m+WHR5Yb74sFo3exYPwJkS/5FPi6WDD8YsEYXNlPsWDsgWjS/wrYFdm4PATcXSwYPYsF46hiwRhdLBivFAvGdcWC8Utks3g3cC3wHKI/+3vE4F6If1amvuJ6C1Je298R4/rGwJbAipYfXlThUHgC+Ij0NP4I8J4cc+mctBvGWQPbI3r8Sbr2PGRjupPlh80wcFebu6Ma5ztEYLsvIcXj/oFsiENEg3+XwHbv7Kz7doC9qV6cGWRTP7bK+XMQ4z3Ie5sUyVsWeND0nIaDIUzPWQbJGjielroCPZECu0/G5xVFUZYYge0uQL6jImrL2pSQqPhnKo4/AzxV5bovEMfw10j9muE17nNcfJ+Rge0+G2v130y6PEpnRbDnyXbi10Vgu9MD232/EeN9sWCsUSwYTyL1ip4GPioWjMeLBWOV6ldm8hxS2yirnsw/Ykf5YiHOrDuR1rJ49ZBHZHU2QoztfRCn/eOB7Z4LzAbuQ2oZtIdkTTUKcZxUG9vguLZAGlaN++SAtRocm6IoirIUkYuizs7OUxRFUb4PFAtGV2Qjvm3FqRKS+rxFbMCmWDCWRaL3u5NuUP4IWI2WiKiIFnmbcmNrCdGMHVZu/C4WjF5IKn2aFn0U33tVyw/bpaVres4mSBT7AFqiro3Bc6YHf33V79IrnL8CIs1zLfAHyw/baAXHBWWXAz6z/LChCLtqFAvGPxBN96xN4l6WHz7crPtlEReGZTGk+bcb03POA86to+m2ge0+n3K9gRhqBla5du/Adh9qcFzHUD1d/ujAdv/aSJ+Koiidgek52yPSbTvREpW9Rnw6mbPfAXZNkTA7DvgjbbOgPgDOQmTltqExvfdkTt4p7uctZC2QNic+Q22nQHsYFhucFwvFgjEQeBNYgdavswQEwEbJ+ivj+gGIZvs2SBbhP4AHR44YtSEStJAUeE0+z/eA4YHtftbkl1IT03M2RJzZafVsGuVoRJapWvbjg8AQJLq+GlMR2b5rMs5HwKTAds20k6bnbA68XOMei/W5UhRFUb5bqISOoiiKUi/70dZ4D7KZXBPZbF0SHzsYqBZFvFrZtdBitK+MlM4jEfP7U6ZjbvnhrGLB+D/gClob/ZPff9Ve4z1AYLtjTc+xgCOB7fNRad4p741e70ef/W+dLlEpMVivhMi3bF8sGHtV3s/ywxnIxrHZuMBe8e+VMj2vITrCnU6jhvtYimZrJP38lVgPuLOpJ3rwhDTjfcwAqhvvQbRrGzLgAweQnc5fQrJV1ICvKMoSJ7DdZ6nQtjc9Z31kTdATKQL+BBXF403P2YN0Y2digL8vsN2FpuecRGPyJvm4/QVIFHm1eiRdGuy7hKwhqmVtTUSiuhcnx5CuR59HshJtZD3UhmLB2AR4HJnLknXKwcDTT465dI+RI0YNQ9ZvOyKZdQ8ANwe2+01TX0GdxHIzL9AcA/5VwGNUfwb2QtZqSWBJFvOQ7Mo/IOuYtDpEWcZ9EK3+txH5pcprS8CrarxXFEVRqqEGfEVRFKVeDkA2f0bKuQg4kBYD/pq0X2+0khIiS9OqEOnIEaMeHDZ94j6f9+i7fT6KjC2+/oj9Jr726eqzvjwzlsrpEIHtfoXI9/y+WDCORJwI0NbZ8CNgX+Cejt6zHiw/fLlYMPZE9PbLU+cfAo7siOOiszA9p4C8l8vFh+abnnMNUqivTfZCE7kbMWqkrXci4G+B7VbbcH+DGDS6VWkzpR3j6kn2/408LbI6iqIo3zoC233L9JzPgfOR2jY9gYmm51wFXBbY7kJE+z5tHZA4/fdB5s0NU9rUIo+sC6o5WCOgb4N919N2CDDG9Jz1A9udCYsy0ranJUvh4cB2X2vgvrXYnbYZigkRUhunjQG/WDAMRD4mibAvX7/tAFwY2O7pwHnxz7eFZZvUT3dkjVbtc80hTqC+Nfp6JLDdaabnHIQ8t13ja5Nn/N+I3n4qge1GpufYiLOrF60DT75BnDSKoiiKkoka8BVFUZR6WYbsqLQcrSPuJ9JcLfZW2vGxxM3Tb/cb2icZ06MrbBg9usKGy5HLBZ1QAexgsh0SIfAzYgN+sWDkgF1oKQT8CXAj8LDlh02Rm7H88LG4kN0PkCjxcZYfftiMvpuN6Tk/RQrJlb/2bojucS86sfhgYLufm55zGlIzodz5FCESSGfUuH6u6Tl/Q4rWVn72ESJFcG87hvYiImWQZYx5oZ5OTM/pDZQC213c0aCKoizFmJ6zLFKwdk1avsdWRIrRbhIbObchex1Qis/fgzhB16rSthrDqpyLELmfPoBJevBBe8gjzvPDgGtMzxmIZL6VS7Ccb3rO3cBhTSrunqd6VkDWuV1p7eiv5Khiwfg18v78CHmPRlt+OK5do2wej5KRUdAO6rV31CrUPAkgsN2HTM8ZhtRj2BQpnHsncUZJtQ4C2/1vvH49jRanzIPAHwPb/bjOcSqKoihLKWrAVxRFUerlP0iUVxolWqfY34Zs5A1qb4pqkaetkfQ6oHervnO5HBJtdZPpOes0WZt9ANUjpvuX/X0xUrg3MfhvgEQaXlssGCc00YhfQj6TuomjBNdCDBrvJtGDnUV8v9+S7fw4wvScCwPb/aSzxhDY7lWm57yPGOu3QiLdbkeiROuJnv81MILWRpCk6N8xge22RybpL0ixvm601TOeB1xd7WLTc3ZHtP23jP8eA5wb2G4jOtKKoijt5RTaFtxM5uMDESmROaTXqUnaJo7HW5Do9WaTRyTOfo6sGZpZILQE7GJ6DsDliKRKJT9BjL6nNuF+jyEOjzRyiEROGrVecx/Ewf6z8oNxrZ3DLT9cIs7hwHaLpueMA9ZbEvdPoYSsAwEIbPcDpKhtwwS2+z4y/yuKoihKQzQzOlJRFEX5fvNXYBotxsuEErAQ+FNywPLDzwCHdON9o5IjD1HmHDA9Zx0k0i1tDssDFrWLkTXKq7R93eWMBSgWjOGI8T4ZC7RE/R1HtgOk0zE9Z0fgDeBd4BXgM9Nzfm96TtdOvO1KyOdRzfmxc9kYVzA95zDTcwqm51SLGqyK6Tk/MD3ndtNz/md6zlPA5sCFwGqB7Q4NbPfMOo33BLY7CXmeLkIKJn6GSBJsH9ju7e0ZX2C7HyHPQmUdgKnAHtUi8UzP+RnwCPKaErYHnjQ950ftGY+iKEqDHEzrrKpySsBPEQmzrHkzR4vs3C1I0Xiq9NlehiJycxsiWVfN6j9C5rarSTfeJxxjek4taZZ6uBap6ZK2/vocuCHjusk1+i1RYbyP2Z8ajuTFwE7IfPttII88P4qiKIqyxMhFUbPXSYqiKMr3lWLB2ByJhl+p7PBU4DDLDx8ta9cH+F/cLs14+wWih55EZkeIE+B1xDCZQyKlrwV+Y/nhohR003NGAE/XGOrege02Wlg0k2LB2AgpEFtZ3K6ESLMMs/zw/WLBuAU4hOzipA9ZfvjjZo2rXkzP+QEwBnEmVI7ttsB2D+uk+65E7U3vUUgE4O+RSMXE4VGKj5/QiE6+6TnHI4aHtKj/BcDNwKmB7c6qt8/OwvSc7kgBvVWBj4GHqsktxIWAA2AQbZ1jJcTBsHaTs08URVFaYXrOZGCFjNMh8HfgHMRZ3J+W7+JEx90PbNcu6687cAIyH6xGa0m+ZjAKOIvmaauDzCf1OMC3DGz35Y7erFgwhiHOjs3KDr+ERMoX4zZDEQm/HPAkEjAxifRaAEkx4SxpoRKwsuWHEzs69vYSPxc/RZwM69F67bm4iJBneqXAdr8tDgVFURRlKUQldBRFUZS6sfzwlVh7fVdE+3Yiou0+t6Lp4VTXXR2ERFa9guigvwZcY/nhB8WCMRDZZAeWH84tFoxligVjVyTK7SVGjHqP2gVy32nHy8vE8sM3igXjMOAmRKYnMULMAw6y/PD9uGmWwwJadHOXBOeTbrwHONT0nIsD2327E+4bIJ/F2mRLKR2EGLAr9ejzwJGIkeT4em4WR+1fVXZ9JV0RA9HKpufstqQN3bGxvpHix9vRUgi4kjwil7AB8GYHh6YoilKNF4G9Sf+eNYCXA9v9KHYeX1LW9gskW++S8gvi78IrgCtMz+mHRI73oOMSfCDrhXPJdgrMQtYhSZ2UZH2Rtc4oIeuXFeu8f+9GBpuF5YdvA5sXC8aGwMrAx5YfvgWLitVegUizJGMuAT4yj/49PpYETOSo/RrySEDFxzpaHwAAIABJREFUEjPgx8/FLcAtpuf8BpHkaxbV1pHlzwDAUWq8VxRFUZY0asBXFEVRGsLyw4WIhEc1dqX65iiHRO89BbyFGB1HFAvGVMsPvwK+AigWjOMAF+iXXPjkmEvHn7jxwaPH9xuaRJmVUwKeDGz3vcZeVW0sP7yjWDAeQ6QDVgI+Au6w/HBaWbOPgOFkb/o/qDwYOyx+hTg9+iOZC1cAdzZDLz+OYNulRrO9gLdNz1kd2eyvhhjfbwpstyPOkPUR3dhqRpidkfcsi6NMz/lD/Ht3pPBbL+C/wL8C2y2XFPg59ckD/hDRE26ohsC3gHoMQU0xFimKolThCqS2S2IMTighRT1vBtEyB/aNC273Ab6oo9DndNNzjgJujfsvNzq3hzzZ34sR4iw4Mf5ZL/57PHAAbSP2I2T98xhSHD2TXBTRa+E85hpdfoysddqN6TldkHl6OCNGzUdk3MYFLU1+C5xccVkeOAKpRbA5kuE2HKk9cBeSyfhMjVu30cCPZfeGADMC253W9pJO43YkGCHrObgdkZNbuUY/JeQzjpDiveXP1l+Al5HC9QMRecSrAtsd26GRK4qiKEoTUAkdRVEUpekUC8aDiMZ3NWNqBMyldVTcXOBUyw+vKxaMQ5ENfNqF4Zkb/OTDVwesuhYSNQcSOfcOsFOsW77YKRaMrYEXqjT5oeWHj5e1Hwg8j2jpJiSOj4stPzyro2MyPacnEmFYjXOQDe0NyEY2GUMOOCOw3cvbcd8+wPvIJjgrRb9espxB44DdA9udEN/zOsQBUc/9Lg5st8Pv7+LE9JyhiCRR1v+rucAKge1OX3yjUhRlacT0nCMRubJuZYc/RyTs/tuE/rdCjM4/QNYLQ6lPsqY9LBPY7tz4vnsAD9PWaRAhTt/hSDbdh63ORxHk5M98VCIfRVz65l2UyM3ZZPqn/S0/rFsKrhzTc0zg38AwZC7MGaUwV8rl741yuYOfHHNpN2T+7pXRxQJgqOWHX5QfLBaMPFITZ3XazikRIo84NJEwjJ0IZyGOgkG0ODNGddDRXzem55yN1LNJsiWSz+htxLl/F3Fx9yo8hMg1fQHsh9S4mQHclWQimp6TA1jSWXqKoiiKUo4a8BVFUZQ2FAvGVsgmbRMkGv424OZyLfq43baAjURjvQfcYPnhuGLBSHTIGyXZjO2ORLetUaXhhF23P33Uwryxe3zN48Dd1TTEq1EsGL2RyPovKze6DfZzFlLwtDIN/xLLD52Ktr8HfklGRFlh8yPmTeg18HNEuucPge3ObM+YTM95CYnAyzL8HoI4Syo1/hO2D2z3uQbv2d5noBFKiBF/48B2S6bn/ArJ2KhFBPw+sF2nZstvGabn3IpEB6bxp8B2T12c41EUZenF9JyBwIHAYCRq/f72zsFV7tEP+BQxUNeTYdUoc4FeSTaX6TkvIEbgrHttHdjuS6bn3IbMnfSdP5tVZn/F//qvRC4qsdXUDzn8kxdY55tFqitnWH7YHkd4DnHyb5mPSvkfTxzLvhNfZejc6cwyuvFW36GvbfX1R/+HOByqsUd5naKEYsHYE3gg/rNceicPHGH5oVc2lrS5p4QYvzcPbLdNhmFnYHqOi8jq9UXm8rFIBuMVSEZfVoT+K8ABge1+ktJnVyQzbztgBC11Bv4J/K4ZDilFURRF6SgqoaMoiqK0olgwjgKupyV1vYSkJR9SLBi7WX44p1gwcsCliG55ImHyI+AXsezNrYhhejUaS3vPIZFV51DFeB83XPmxZy8PLD8sNNB/G4oFoxdi9D0SyQaIigXjn0gmQMNSPJYf/q5YMJ4AjkFe/6fAjZYfpqWqH07G+xMBO34xvvvNvbZbCTgP2NP0nB3aWXz1AiTqLC2i8ElEToaMsZSQaLWGDPhI1GQSJVcP7ZFIyCPySzsCTyCyDb9FojSr9ZUDRmedjI0mwxEJoK+Q4rJLvOhtzPGIrMMeFcfvQKSYFEVR2oXpOWsDeyJ7xKcQLfvMaK/Adr8CrunkYR2CyO90BiXgzjLj/TLA1mkN+yyYwxZTP2Ldbz47s1gwzmLEqGOQOeigvSa/kTvy4+dYmMuTiyIMWt6yeGI7BmjYgA9sNnT211vvNWksI794h0HzZy1acPUK57PF1x9tWoJr6/BqpDpVLD98uFgwdkPmzeR1vwWcb/nhvUk703M2I91xnEcM6Wcjcj2diuk5ZyLzXPI25ICNgTFItl8WXwLbpTmXTM/ZEZk/04oy7wXsbnrO7oHtZq4ZFEVRFGVxoAZ8RVEUZRHFgjEUuDb+M1/x73DEYH8hUpDujIrzCdcguqo7IIb8ESm3qmasNWiJfqqFVywYc+L7/blRg3uxYKyG6MCWa6bmgN2A/xQLxqaWHwZp11bD8sOXgJfqaNq/2snVZn6ZjAckgv4ExHHSEIHtPmx6zs+RCLUB8eEI0dE9AvgH2Z9HHtEFbpTZVfospwS82H/+rG1GfFGMei+cm/uw13K8NHB1Srm6gy23AJ4IbPcz03MOQzbjiQRQJREic/REWkem56yBvC8blB3+xvSc4wPbvb3eAXUWcRbGnqbnbIpEG5aARzupCLGiKEsBcQTydUhGXTmjTc85YAnLcq1D9Zo6ESKh8haS9fV2/JNV8Lv8us+RArflxypaRRw84SUO/+R5ukUhiOzKfk+OufR+4PCRI0ZdOGTu9FdDcj26RKU2l+eABbn8Gqbn7Ao8XlG3pSrHf/CUve/E1zCi0qLJrPxNiIsDmMA3iM5/5ZwXAV+TUe8lXgPthqy7nkci+a+y/PCbiqb7kr1uywM/oZMN+KbnDAF+V3bP8vsPaHtFKwYhtZSmmJ4zDFm/7hpfuzzV1z954F7TczaPazooiqIoyhJBDfiKoihKOYeSHTEdAUcjBvzjyI6uzgFHW354BrBDsWDsjTgFhpS1+QaJqMvaNM1CNF1XrTHeteI+NgSOLhaM3S0/bFUsLtalPwPJIpiDaKReAayLpEd3T+k3j2z4bisWjMeBF5FI9R7Az5CI74VIVPuDcWHfmpie0wv4MSI38O4TMDmX8RpzwIpzW9WHi5CI/ZoG/GLB6Ic4Bz5LZI8C273F9Jy74rH3AV4JbPfDeFxTyN6cJwXfGuUe4NgabSJg8u0vXf/44LnTt8qXPU+Te/Tj1+vvz4Re1YLqFjEj+SWw3btMz3k9vveOwNpAz7L73QcclRZVanpOD8Swb1ac6g3canpOENjumHoGVA3Tc5ZFsh4i4LnAdmfUuKQNge2+BrzW0bEoiqIgxUErjfcAOyESbvsv3uG0YgrVpXMmB7a7fvkB03PeQSKys66bB9yIyKNMTA4GtjvX9JzRwMjk2j0nv8FRHz+b1sc+wG2B7e7z7LHX/tEgSpVkKwETl1m2C/Av4AnTc/YObLdNcdhKigVjuf3JHQNRPZ7wuci8Xj6PJ7//2vLDuSn9D4/H1CNuFyHz0uHFgjG8QkpwmcrrK+hRe4gd5gCy16f1BAvMNz1nOFJPoBuNyTH1AV4xPWfLxaX3ryiKoiiVqAFfURRFKWco2ZFuOVqM8BbVDf1rJn9YfvhgsWA8jETir4YU4ZxBdoR6BPwdkQlZtcZ4c2X/dgPuKBaMlS0/XABQLBgHAnfGbZLXNApxVPSgdfG9tL5H0JJB8DZiyF2ZlsK5BeClYsHY1fLDqhGKpuccgBhCFkkBjOu74tz1Z2TX211+biu7bo7qKeIUC8bqwGWIYSEPTC8WjGuBcy0/nBcX6ftnyqU3I46JNPLALdXuC2B6ziDk/diAlroJDyLZGpWUgAC488aXbxo3ZO70Nv0Pnjs9uvTNu3KHbnU0C/JVlyshcG/5gThK7ox4XAawLeLQeDOw3Y+r9HUAUpywkqSw7ygkVb9dxGO5EDiNFsfRbNNzLgYu0oJ5iqIsbuJC5ydnnM4B+5mes8bi0jgvJx7bbKpn7d2UcuwaxGlfSYR8l68b2O5HGf2di2QQkoui/CETXsxaFOWAvYsFY9hguBI4I4IuuYpx5oGHVtw4+XMn4BLg5Lg47U+Rtc6bSP2A8kK3h+WJau7V45sZiJPlQiQ4AaTI7nmWH95WeU2xYHQF/obMQ+XrKBCn92XAz8su+Q9wOlHEejMmMeKLd+leWsD4vivy1HLrlOYZXRuV2GsPVTMWq1BCsjRnAB6NG+8TeiEZAPu1cxyKoiiK0iHUgK8oiqKU8wHV09STDW+AGNez2raySlt+WEL0dBdFxxcLxq3AYbTemJcQ46+LRPs3Qh7RMN0VeDjWtv8rbQuzJo6IRvXWh5X9Xu682BL4I+nRiwCYnrMF4pRodc/3ei3ffb0ZkzIHMs/oWv5nCLyedY9Y/uh5RDYg+Vz6IXqxw4oFYx/LD7MMxI8hRpAjaFt897547JmYnjMSMdb3iseZR4zUVyEGhROQFPcFSAaEE9huAFAcc+kzpDiN8pBbbv5MRnzxbjR68HpZUjg5pMbA0abnXBPY7peVjQLbDZHNez1smzaWliExvM5+srgAqIzS7Bkfnw/8voP9K4qiNMraiHO6Gpsj64PFhuk52yIFVtMc18n3/1jSs9L+hhjwj6e1XnoEHFHFeE9gu8/Hcjd/Wm7eN+sPnlepJtOG4ZYfXlssGIUc3BpPsrkSOQwinhm0Fg+0GPABjoyz3s6j9VwzMdZafzP+e3XqqyNTAl62/PDeYsG4DwkyyAET4rVXGrvSOiuynBxwULFgnFQmpfNgl1I42XnnkSEjv3iXEpIXsNfkNznio2fzt6yy7Z0ZfTWTzPVPDfJIVt0FyHvaXvLA3qbn9Kwng2JxYnrOWkhmbHkAxaMaFKAoivL9Qg34iqIoSjm3ARcjUVmVRswcMLhYMPZEUs+zjJl50iPiKjkCeAf4BSIpk0RSO5YfTigWjNFIMdtGSeRP9iK78F2jxvtq5JACv2dYfjg1o81pafcds/w6uX0np+9JS8BTy69TfshAovyyGEW2luteSCbB02kXBrYbmZ5zdHz+OCSD4lOkmPFNsRG8Fabn9AaOQiL3Ny+7b7mx4SQkim8wIkk0PbDdORVdbUmGIyiCaP3pE+eMHrxez5TTyf1WRQrw/Z/pOScFtntdWl91Mpfqz0YbGQJYVPR2J2A7RJrhgUpNetNz+tPyHKTxa9Nz/pzy/iiKonQmM+ttE2vlr4U4HD/oLAOh6TnLIdlivTKaTECi7P8S1wVpRTynnYg4jJM56B3gusB23611/8B2nzQ9Z8Mtpn60LZCqn1PGPADLD+8oFozXx/cZcuW8fJedvunag9GDh/GfgWuRI6LnwnnMMboR5XLLIHNWJSsA/zY9Z/V4HviU+orA54kzGmMn/SeVDeL5+lBkjpr781W2mXvYJ89XC0PvhgQDJAb8Sw/69KUhI794d9ENk3IBA+fPik5/77FRxYJxo+WHbdYK7cH0nAHAiog80lfx4X8iWQWr0ngE/erAWU0YmoE8k98aA77pOT9B6v4kz0oJOAj4m+k5h6at3xRFUZTvJrkoUsesoiiK0kKxYOyDbHrT5GUk8ErSy3+BFC5LIpaTSLGLLD+s2/BeLBgGEmE30/LD2WXHc4hcyXY0ZnDf1fLDx4oF4xfAnxq4rqNsbvnhq2knTM+ZAKzU5kQUcf64B6Ltv3qv1esrkWNqt54ct+nh4dTuvQ3kPXcC282M0C4WjInIhjeNEnC15YdZMgkNYXrOQOSzWY/q0gYlYGxgu5tn9VUsGF+RXYAuWpjLX/LD4Wc8j7y2wYhWczV2Cmz3yRptUjE9Z3uyo/Uj4JrAdk+suGYwUviv8jXeCBybbJ5Nz/kR8GiNIWwb2O7zDQ9cURSlncQOyNeB9WlrGI2A6cj37wlIRldSHHY8MCqw3Udq9L8iUo8kQoqNf17HmM5EpGaqMR6Jvvc7M9K4WDBeQr7f04zGC4GhI0eMSuaxGcAuSH0c+i6Yg/3xc+z62Vv0KC3k6649OW7Tw/iie58Sucwq7XZgu36xYKyIGOMNaq+BpgGDLT+cX3nC9Jx1kBo+Q5B1Wg7Ib/L1J1z01r30KKWW8JkHDLL8cKbpOT/IR6Xn737havovmFNtILtbfpgm0Vc38Xz6J1r07kPgH8ApcZH6tZE5evmO3KedRMBEYJVGChF3JqbnrIA8I11Jf0ZODGz36sU7KkVRFKWzaI/+m6IoivI9xvLDB8iWr8kjm4RfIZHXhyGG3CLwCPCjRoz38f1Cyw+nlBvv4+MRop9+L0mol5AVoRwiEj/vFguGjaSRVyPRwm0WU6qcS4/WyuW4YNhepTGDrHFI4V6AcEE+f+9vh+193tTuva9H0uzXrGa8j6lWZC6qcT4V03OWNz3nRNNzzjM95yem5yROnYtokRSqZljI06LHm8WdtP58y8l1iUp/C2z3oTiyfvsqbYnPpUa5m56zmuk5+5qeMzKOIk3jOUQyKK3fqaQblO4CNk05fiRwdtnf9UTBfSuMAoqiLD3Exu9Tke+f8u+gEvL9fgbwa0QXfbmy82sDD8bOyTaYntPF9Jy/IJHktwG3A4HpOZfH9UCqsRm1vzPXRrL90qLZm4lD2/VCBDAn3/WykSNGnQR8jqwBZgAHAlN7LZxXunLsHew16fVFRvL+C2YzrVtPqhjvS8hrx/LDSdQuBJ/QH3EctML0nEQGLzF4G8T7/7H9V+bG1bZPm08j4DbLD5PMhsP7LphTWra68R7Eod9u4iyBZ5DAkOT5MBBj/rOm5/SNsycy5QrrpL3Onhxw+bfFeB9zOBJsk/bRlBAJKUVRFOV7gkroKIqiKGlsQHZkdR7YJU6Vvi3+6RQsP5wGHFAsGKsCGyORgD0Ro2mlrMo3wKtIinX55jjrddyNFHtNNj9JJsFspMBtvU7uEvC05YefVmlzF/CbNkejiEM/ecEY/mVx3bL7Gd1L4apXvn7nyfEGvl6eAfYkPeXeQIzTdWN6zvFIJFy5sXuS6Tn7IZIE9WRFREAbXfoKLgb2i2BwLn4Pkg9ico9+D464duobZW3XqXHfHLB1xevoD9xPSzFigGmm57wej+0lwAts96tYduFZYN+UficiRvzyvjelui7+KabnuHFhwucRGYosrekvgNeq9KUoitIpBLb7lOk5I5AMp53jw68jxvHnke+/SpJaKZeYnvOvlCj4S5Co/XK6IE7W2VSXyJtO7TkmmTPPMj3nhsB2J9Ro3y4sP3yqWDB+iNQo2Sw+/PnCXP73e2x3yg60LtTeDTgE+HLXyf9j5TmtVfVyQM+F85neLXMLnkOcAMm9byoWjE+Bf1P7/UirFTACmTdT7pTjkSEb5o766Fm6lxZGyHydRwrqjiprufxso1u0MJenS1TVdv1VtZN1UACslON5RNavgMgIbtWBe5SQtWK/Gu3m0VJoPuHPLN6sznqoVichT8c0/xVFUZRvGRqBryiKoqRRK8JoseqvWX74seWH9yNR6vciBvZKJiORWmna/SCbnOR1PYoYoTdANoT/RfTfj0c2vLNpG4kIki5fGYU3DdF6r8aVSJpzq/d1j8/e5PAJL5BrO+aNgYdiGaF6uYyWIn3lhEjR4aqFaMsxPWdn4GpaG+9BJGweJf39TyMH+NUaWH448ZEVNthjzCBr1oI4KPGL7n24eo0do0O3PHov03MOK2s+mdrP3iLjh+k5vRCHzoiKNv0RGaj9EAmGyabnvGF6zh3I+5jGhsAvK45tltawjAHEmSCxTvOFVdr+X2zoVxRFWewEtvt8YLu7IBrffQPb3Syw3QeQgqdZWUt5ZB5tlfEWa5ifmHqFcKrpOVk1akCK0Na7T80jc38mpuf0MT3nQtNzJpmes8D0nHGm5xwfR6jXxPLDJy0/3ByRwrOAlX44/Iy3yOX2TmmeB5aPcrnpaZPVTlPehmwJ2xzy2svv/Tjw1zqGOS7lWLrxPmau0Y0vu/X+BnHw/wupa/MDyw+/Lms2fr7R1Riz3NqUUnwI8SuZS3r2WiP8mOz5PYrPg8zd7SWPBFO8UuNebyO1gy5CtPP3QYzkD5uec73pOR1xIjSTiWTXSYiQtZ+iKIryPUEj8BVFUZQ0HgHOzDhXItZ3XQKch8xdaZvualItCxEd1enAPcATlh+WgPcQ6YBWFAvG1kgk4o+RzdG7gItESJ+BpKovRDasl9eIview3S9Nz9kGiTY/COhGFE078qNnowj659pG1uURWZbMwrOVWH74XLFgHIIUni03jLwL7Gv5YSPFUU8nParLQIzSc6nPiB8BNYvK/mHt3Y4HehulkO6lhcw2ukEul7wnN5uecyAS/XYTsEWN7u4o+/0uYNkqbZPnqCtioN+A7CjHCJHFOa/s2Iz0pq34puz33yPFH8+mJVryc+DcDhbfVRRFaQqB7VZKvmUZ78uprJmzBW0jmMvpBWxCds2RpxCn80+pXmcloW/WidiR+zStpc7WQZzUW5iec2S9GvqWH7YYRKV4aJIw1obnB63Z5+QP2pZjOXjCf3l2kMUX3fvAomluUT9XBbb7v5TuTkYk5NIM8iXg5YwaPNWk/chHJfotmNMbeNXyw6wi638FfnXDasONjadNyA2YP6ssKiKHIXbwE0eOGNUTzxkGTAps9+Nq980gSwqG+HjyjC2gvmeikhKyBry57N+se90b2O7DiMH+NOABWgdgHG16zgWB7f5fg2NoNjcja5K0ZzBHfY4fRVEU5TuCRuAriqIoaTwLPJZyvIRsnn63eIcDxYLRHdiN9s1dXYCbLD881vLDx2PjfSaWH46z/PAARKanj+WHw4BbEf3fGYgD49eAU8t4nxDY7qTAdn+OGJSHXvn6HWv1XzBn2RTjfTkNRXlZfvg3pFDdQUhWwEhgfcsPi430g8jQZEV1hUhUez3kqBGlHuvRHwbkwrzB7C7dy40aSR97IBICQ+N/s/gA+GPc73LI89IIteR5VowLPib8E8nWSDP+lICnyws2BrYbBbZ7BfI6tkEi+q8BusbF+xRFUb5tPEP1aOWJtJ0T6skmymwTG9QPRaRc6pljX0k7GEfYn0DbOiXJOsIG9q+j/zR6UiUjbGaX7pUZewAMWDCLq8fexgbTgxdpqY/zfjzOX6T1ZfnhPGQuTaTwyjX5P0B099N4BPiaqG3Ify4qse2X79E7nJdD5uBUYmP8wVN69F143KaH84+hm0VfdevFLKMbn/Yc8P7bfYb8ZOSIUfsg0d7/AT4yPecJ03PWzOozg6frPP8AjRvvQYz2uwe2OwNxDo2l7edXAiYg8zKm52wGXB6fy5f9APwmzlZcYsSyUUmmS6ni39FI9qeiKIryPSGXMp8riqIo30GKBWMFJJr8J0h09BgkOjx1Y1tHf70QY2hSJAtEG/VEyw8b0lNvBsWCsQxZxWDrYwfLD8d04N73ALvTsjnKI5vunS0//KSdfc6kukPiZMsPr2q0745ies4nZBcBLiFR9RshRuha7BfYbmZqfaxR/3XW+RQ+AVapODYP8JBI9ilxvzv8P3vnHSY3dfXhd0a2MQYMNqYYBJgmOiH0mhB67z0UCQihJCQkAUSAUEIRoQRSgI8mmV4CIZSEHiCUEHoH0UEUA6aDq2a+P47k1c5KmpndWdfzPo8f70pX915Js3PvPfec30G8ODvNHpHjTZEjMn33YGSxn/XErCV92iByvB5ekaZ4Kd4GLJ45PBk4KjHwK4qiTDeYvnsVsFfB6UMjx7ugofxgxLA/PKd8HYk8WiRyvMkttn8Q+dFcNWQcXj5yvDhTfjvgaGCd5FAzg+8DwMGR473SSn+SNn5OsYG0Nmzit/++8dHzf5S0nW2/hoz9S4ZzLvDFIt99tvXstUnLIHlQ/p7k/skltI0qsjGf5u+5H7gpMfAX9XOHSr1+E9Qr9Up1inzP8Inf8penr2LBCV8BTLKCuDGKorGeRYD9EQmhDxHv7zeRyMSl6D6XqSX3s3I6JjfD9N2FEBmgoTl1fYO84/cT6aUnctpsxi6R492YaW8YYpzfC3mWNSRfzi8jx3svKfN/iKxQXjs14O+R45XKN00NTN9dG3HaWBnJRXAFcEXkeJOmaccURVGUjqIGfEVRlJmA0DYWQxLNLZQ5XEMWyrsk+vG9rXteYBnEyPqKFcTTbOAIbeMxYHWKF215YdV1ZEGzsBXEvdIYD23jHCTxXiM1ZPG6Zm+eS2gbNyM6q0WLw0WtIM5LHtivmL57OuCWFFkXSRi8OxKiXbTwnwQsHDneJyVtVRFjwPwtdq/xHdeBx4F1UwNOUud6FMsz9JY68EjkeOtnD5q+uwMSkbEmEqHwD+CkyPGea6wgMWy9DixIfpTD9pHj3dLhfiuKovQa03dnBy5GjJ3p9+94JMmtlydBk9nczH5npz/bkeMVSZjktV9Bcoi4dB8vxyJ5WR4Frooc76skAfv5lMjb5FBD5jirRI7Xkm646btzI9/lw+j+XZ4mhF3/vgfOXBy4lO6Scx8j8nxfI9F8ozLnxgMHW0Hc8rNphbOPWfXEZ+c2T3h2nkUZVJvMDz95lV2iJxk+6VuQe3/SCuI1263X9N2fAheWFDnxvgfOPBkwkXnC21YQx0WFE4/3axHjfMobwJ6R4z2eKbcAsnmyM/LsW3nXZwEvA3enBvqkrrmRqLiPI8f7tKE/9yAbJkUbQM9Fjve9Ju0qiqIoSkdQA76iKMpMQGgbNyAJORsXMKnm58JtaqD3G6FtGIjMyzgriMe2ee12iHE0z4j7KqIPm13IpeUOsIL4siQp7HAgLvNya2hzCLLgnqOk2FpWEP+vST3zI/cdpfcd2saKiOFhSE6fT7GC+PhW+thpTN8dgST2HUVPw8sVwH6pwSbRhz0npxqAcyPHK9LVzbb3OyTnQF/YGpF9OhLRCx5J73Rym/FF5Hi5uvqm7w4C4qwnaE6ZvZFnmEcNeDhyvB9kyleQjYFFkeiDx1vVa1YURekkpu+OQjZHJwB3I+PigcCKdHn+PpoZH2xEozuNmnoTOC5yvGt62f5iSMLabehNR0cRAAAgAElEQVRKZprma/kS2JPiRPfNqANnRY5XlP8nrz+rIHOSbMTad8BBkeNdBRDaxjxJn0cCIeLlPRAx/o8gfyP3VeCPiPTfFC/qZP60D/LMF0OM2/8HXFvmRJDMY95Ccq/ktbeXFcRtvxPTd29Bxt5c4/kPPnn1jRNfuuUbJGIPJCrjVODCov4mG/AbIPOPd4AHI8fLlT00fXdexHHlQ8Qrf1Gaj/lpFOHhzSJATN+9HPgxxU4W/4ocb5sm7SmKoihKR1ADvqIoygxOaBtzA59R7n20qxXEf5tKXcolMZ7/DEmOayaHHwCOtoL4sTbq2R8xGM+dOXwbIvWzMfB7uhK9hcAJVhBfG9rGbsDvgBWScw8Bx1tBfH+T9pZFvLbKOMAK4ssKrjcRT7HtkXcUAzcAh1tB/ElixD+FLk/8N5Bkpxd3MtohtI05kaS4A4FHrCAuDWtPPNxORowFsyP6tucBf2yQKqggXpHHIRsRINrG5wNHtiKRkBi+r0O8EntDDfgrkqNgD/rHcJ8yETESfFpmqC/C9N0/IZq1RX+vEyLHG5yU/R6SlHf5zPnngb0ix3uh3bYVRVE6hem7WyHJ4Qcj41oF+V67EJHVSY34VcSjug68UWSMbaPdHREjfSOpdNnsfag+jBxvmZK250SixT6OHO+b5NgAYEtgOUQaKEQ098cDt0eO91GPRmyjSBKokVuBnawgnpzI51yNRL6ljgrp5sXFwE+bGPG/j+SQmY+uMbKOzD9O6M18w/Td2ynITbTm2Dc57YUbqeY7VRxrBXFHcyklkXA3JW00tpfHHyLHOzq5dhlgSeAD4NnMZ3dDyqX4do4cL++zqCiKoigdRw34iqIoMzihbSxO86SiP7OC+K9Toz9FhLZxGiIzkl1QpUlxf9DMg72hrtmBTRCt1CesIH41c64CLJK08a4VxPXMYrlxIVlHNjcKF2CJ5/yYovMJO1hB/I+ca4chidLyvMI+R4z6DyV9nB0xhHzRYcN9Bfg14gWZRhFMRp7HEVnvvjxM3zWA2YBxZZ7fiS7tD5CEwQ83hqI3I9kI2ATxoN+0nWuR93oT4uVYVqaORBa8gGgjL448k/RzUaOnXnEjdeQzOwjxDvwrsqnRqpbzqcjfQVEbn0WON6/puyPp0gPOekzGyGdnhVa1hRVFUTpJEqX1LjI25G1G7h85nt9PbT+ARAEUJVrvC29GjrdkTpvzAmci3tiDkI2Cq5C8JWOTMnMD1yDG/JQYOAOJOpgyfoa2cRnidNDKPdhWEI9OnBCuKym3uRXEd+WdCG1jBHARskmejj2fAof0xbmjMAKvXueSJwJGffdpvZoz1k2qVGuHrrrPnm/MOf8NnYwoM313CySaL5UDKjPgjwPWQMbwH2aOP4tIPD2TzEvORiQU082SdL4wGvmc92lDSlEURVFaZcC07oCiKIrSZz5EEnzNWVKmmQd5vxLaxkJIQjnovpiqIh7hpyHG25ZI5IBuLThXRwwLadtDkIV32l5Kaqj9W2gbv0QWY+Mbk8FZQfxxaBt3IkblRkNFHTGm3lnQ1Z/QM+FqyjBEo/2R0DZ2toL4I2RB2WkOoev+UwbQ5QV+aNnFiZd50+TBkeN9Ddzeyz6SLOLvTjRnz0ESMqcG9axHXR5VupLQFZV7H5GZmhd4OXK8dxPP0B0QQ8p8yN/JBcAByHPLo0KX5v+iSLTEmqbv7taiIeIG4LcF5+qIhyXAwchnpBEDkV04CPGcVBRFmdrsS7Gnew2JtusXAz4ix1Jk+I5LzoEY3mcrOFdHZNi6YfruHMhYvRxd85fZAAf57l8rcrzvkO/uLRouN5Dv+zF0T3j7Ha1FidWSdkYD+1E8xtUAO6//oW0MSI6v0tDmCOC60Da2sIL47kTqZxDwSRtOBD7wGySny5R+LTj+y3iJ7z41KLjHgfVa1fzus+vemHP+1eiaG/aZyPHuAO5INlw2pnzDY3bgHnrm31kJ+LfpuytHjvee6bu/RrzwDwKWRuaXlwB/U+O9oiiKMjVpJ3O7oiiKMh1iBfF4JHw6jxjRUr2/P9pOvLtb4QyKx5wqsHGyeOwPNka8mIuoINIwXwDfhrZxQ2gbjSH0RyD6utnFWurR/dPkHeSxWwv9Wxu4rY1n2TLJwv24kiIHJZsr0w2R49UT3fwfApcjUkeTkGedR+pV/1lJGZAkdY8DdwBvm757IzAscrybIsfbIXK89SLHOzByvCeRpIitkL6zXWgxaiByvGcQT8i07yk14CPAS34v29CqI59rRVGUacEyyPwij2pyvr/4nOLv+ipiLC8yrHpI5FTj+RoiefPHnGtsRMascYyuINr/+5q+uyKwVU4Zkr4enUSzpdxAa+vwKqKdD6L1XjaPWrDg3HbA9wv6VgVuCW3jYeS5jgFeDW1j3xb6RuR4XwydNG4joxY/kT0+JJ74VrNrN/r4Zead8M1Rpu+u00pb7ZBERbQSodZt4yGhikg0Hp7UVY8c79bI8baNHG/ZyPE2ixzvejXeK4qiKFMb9cBXFEWZOTgOWBkx6qWGZQP4BNjRCuKOLTRC2xiOeJTZwPDQNl5BPMsuymsntI0FgL1aqHpwaBtLA7sCcyHG1lusIG5JmqSENZsXmYKBeGlvGtrGWqk0jxXEL4e2sRqi378z4n33b8T7+tHQNioFHmvzttBmFVgN2Ai4t42+tsIydC3+8zAQ2ZtrO9xun4kc70HgQdN3r0DkEoo2OP4F7I1sltglVTZGX+wILJZ4TzYaoj5ss7s1JHlirnxBDocALyEbQ4shXqHXAsdHjvd+UmYy5eH/ff27UBRF6S1jKPZ0r9Oa8bS3XI7ks8mjgniqn4MY3bPfoZchOXICxFs+azh+C0nOHubUuRPlnu/p+SIqiPF90aQdEI/+G5H5RBkxIqUGEiG2ckk/Xs05DhIVUDaWDKb7s1gSGB3axnxWEJ9d1LHQNtYEfnezSAZVvjUGPffUsEU/rlP9cL1Pw3uQyL/58tqtA+uPfZ3VvniHM5fZ0kXkBHNJcsEsi3ymHmwj98yjiEzQvDl9qCPj7iDyn2cFua8jyxpI8vcchnjnm4ic5QXAxb3JkaMoiqIoZagHvqIoygxKaBuDQ9uYL7QNwwri74DNga2RkObrECOhZQVxx+RzEi/5h4Bf0bUoWgZZsJxfcNmeNB9v3kQWSiFwKpIU9UbgldA2lupjt0e1Wb6KbCCclD1oBfFbVhAfYgXx/FYQz43IlxyFeO1NCG3jltA21mqoK88YUMT6bfazFVpZQParIdj03blN3+1VdEUicbMb5Z+fkYix5l1kgd/qormCbJxslXPuKcRo0urGV53uSZVLiRyvFjneeYgG/1Bgzsjx7Mjx3ssUu41ig0slOa8oijItuJxiL/gKIjHSX5yD5DHJkn5Xnxs53p2IoXt7xIh8ErBy5HgHRI4XR473duR46yJSPLsiY68VOd7DBe0NodzzfXZak7+bUibZ8N8TOAHxfC/CQDTaQeZZRf2oUJ4Ut1mEX6O0IcApoW3kjmuhbWwI/AcxcleByhzxxJU3+PT1TX7wabi3IZI/g4vaTfULZ4sn86vwzs1D2xjYWMb03cVM330EeAbZ4L4PeMv03Y2a3AsAkeNNQOR5Uhm+lFSa7wXKo/ZKZYRM3x0I3IJ8HpdBZCxXRN7TlYl+vqIoiqJ0DE1iqyiKMoMR2sZiiGb8bkgk1UeIB/yZHfBWb9b2iciCs4g1rSB+vOGa0+laRBVxF7BZzvEa8DqwvBXEvfJmCm3DRzzy2l1MTQaG5CV5DW1jI8TzewBdi91a8m8bK4jvTMptiHjqt8LRVhD/oc0+lhLaRhV4DTEU593/BGAhK4g/62S7AKbvboIYTtZNDj0NnBg53i05ZYchmyE2MBzRq5+MeKcPaixfwnvIOymLOshSAy6MHO+wnD6tgRgM5qC1z87xkeN1TJM+eSbPIF59WaNNDXgb+H7keF91qj1FUZR2MH33aESSJtWdT728/wtsnOjC91fb8yCb/jbiTPAiMg+6vMNJUSvAK4BVUux0xIj7PvnjVQ14LNk06EFoGwaS8+Q85DnGJEZx4DgriE/NlD0KkSSs0z0q4FAriC9MylSRzYt9EX33cfRecm1PK4inROiFtjFH8uNjSE6Ass31GBgXU5nDoN5sDN3RCuKb019M350dMbCPouf4NwlYPXK8xk2cXEzf3QOZi6Tv8CXgeCQHQNmmx+mR4xXlq8H0XZvyPA+PAz+LHO9/rfRTURRFUZqhEjqKoigzEKFtLIwsjuena1GzAGLQXw5ZsPUn+1Acil1DpHIebzj+akH5LD8iP0S9iiy6Pg5t42rgLCuI32mzzw9TLq1SxABkMd7NgJ9o1V9Ad+M9mZ8vCG1jKSuIa1YQ3x/axn2IPE4zfhjaxgZI2PclVhD3WYLACuJaaBu/RbzX8t7bmf1kvN8G+EfD4e8B/zB9d9/I8a7IlE2jOpbPlF28l00vghjxd0U+N58iRp2ipIXZPi+EyBkMBZ5ENpW+hyTT3QORAiiiBlzayz7nEjne56bvro981lJt5TrieX+oGu8VRZmWRI53hum7zwA/R74rP0U88y+MHK8/ErJn2/4CODb515/8iHLj/UTggsjxPjV99/eIRE92rK0hhuxuiVoTo/1g4LvEOeGvoW38E0mgvhSyGeBbQfxCUn4UknDdQJLaroxI8rwJXJrK/SX1XomMWemcqi8SikOSejcGTqS9SEEDmPPOBVYYvdWYF/ZrUnaJht9/lnMM5H4GAr9GnkNTIse71vTd65D5QR2IIserJ8mJj0zaadwk+Bz4S5Oq96FYWglgdeA/pu9uFjneA630VVEURVHKUA98RVGUGYjQNv6ELGyKDOI9POA73P5YxEM6j3TRMwcwFgmhPhNYBTGG9giRbpN6Uv/67cgCJR5jIbLRUaTZ20iqJ7tCqm2fhHj/CFgV8bgrYx0riP+bXDcESVqaJyWUXejHyc9VJGHupp16l6Ft7JX0edHk0OeIfv8fOpkfAabI3oSIET7vfscCC0eONzEpfzLiDddJ9ooc7xrTdw9GDOBlbIO80xPp3t+Xga0ix3vb9N2LEWNB0efn28jx5uxjnwsxfXdhxBP/vcjxPuivdhRFUZQuTN+9EPgJxUba9yPHM5OylaTsMXRJ9z0EHBM53kMAoW2MQLzB90PmSh8ghuKzCqL9Ksg86ld0n/c9DmxrBfGYhvIH0Fn5ohWApYGbkt/bld+t1eCvtUr1kAH1Wpnj4JXAvlYQ103f3RxJJF/W1pTn3heSsfViRAoo5VHgwMjxXmpy7XPASk2aqCGRBKt0MjJEURRFmTVRDXxFUZQZiz0oNt7XEVmd/uQpijXGq4hxfzCwMJLo9jkkMWurhvMyKsA8SJh5y1hB/C0SPv56G5dVEeN2arzfBvHsvpPmxnuSfqbtf2cF8d6Il9cxwLOZcuMzPxt0jctzATeFttGRSDkriK9O2l8FWAORzfE6bbxPWBlJgleUGG4E3b34DumHPmyY/P9Lyr0P30DkF06mZ3+XAf5l+q6BbHiUzZk+7V03WyNyvPcjx3tMjfeKoihTlTkp10KfMkZHjlePHO8iZPwzgfkix9sgY7xPo80OQYz3IHJvpwHXJMb6Rg5HvM0bz60G/D3nmp9SPua1E9l3O+LIcB5dzgXtUq3C2AH1ml8vf457AycmXvHX0zxqsyNykcnYuhWy4bIRsGzkeOs2M94nPEfz6IYqMidapk8dVRRFURRUQkdRFGVGY0jJuTpdi8L+4o/AJiXnGxddi7RRd1kockoV2DS0jZFWEH/YrMJEC3ZxxFC+PLJAWw7xAn8CkVa5iu5eVDXEoDs6qWMt4GZa19Cv0zPBHon0jwd4oW3Mi2x2PFVQRxUxAGwJ3Npiu6UkYfrPNi1Ygum7CyAGgk2R53Q7cEnkeFkZnrLPaEr2c1oU0dEXJiaG92aL5luREPoi+aZlkXdwdVKuiMt72U9FURRl+uUx4McF52rAI6FtmEiE1tLAh/fBaCuI8wzAh9NzTErnFTsj85N70xOJHM6R5MvfVYF1gLUQWcWUURTPo2Lg7qSuvQrKZDkT2ShYrIWyZVwLfFqB9eguldfI0fNO+OajsbPNObRJfXVkTtYxIsd7B2hXnvEvFH82Gml2T4qiKIrSFPXAVxRFmbH4L8UeP1W6L+Q6jhXE/6TL4ElJX9qhhoSDf9ZGffM2KxDaho14WL8OvIUkuRtqBfGfrSC+2gri0Ari5xGv9E0RLd3DgUWtID4p9b5Hkqu2431WSeorxAriscB3iHdfGUu12Ga/Y/ruCsjGxEnIQnwDJJnec6bvjsoUfYHukQWN1BCNeUzfnY3+mYvcnLTzdZNyY4AVm/RhrcjxnqEr8qPxM/oSksBQURRFmbm4HImwaow8rAOVk168+WlEh/5kxCh+JPBiknumkWZG8wMbfl8AiWYscx5Ys+H3tymfI36ByPk1ow5sTfM5ShFpH860gvjVZM7TLEfTbAuP+3zDFur+gulgzI0c77/AYZRHFoDMh17p/x4piqIoMzvqga8oijJjcSYiB9PokRUDHyKhx/2KFcRnhbZxPbIYHYFIsqxH72Vy3gZ2QRaXv0vqLUs6Op4CT6lE6ubXiGdaYx3LADeGtrG3FcRXpQcTGZl7kn95bEJ7RuY6cHxoG6ObSNR8jiTAG1RSZrqQTEm0fa8AhiWHsp+9kYjG/2YAkeN9Zfru+Yhmbx414EjTd3+L3P9kOjsf+TdwX5Kk7nLgUIqTLl+DbEiUvYOvTd8djGwAvYR4OA5GNpwuBc5IEioCkJTdHdgiafdO4Nr+TurYLqbvmsDByEbMeODvwOWR4303TTumKIoynRA53pem726KRGtlNdcnrDn2zWM3+PS1M+ia+2TnQKeGtvGEFcR3ZY7N36S51Rp+b+W7+JuG3y9CNN3zSPMItRJNWEeS9w6itejIlFpS/4uIkX105tyEZhfPN+Hrz5oUmQxsEDneuy32p1+JHO9803f/iWj2L1dQ7CJNOq8oiqJ0AvXAVxRFmYGwgvhOxOjWuBB6C0l6Wub53Ml+vJtoqP8G+Bu9N95/BLhIWPWXVhDvD8yOyNsUeTX5VhD38KwObeMIZJH9A/I3ANJF6+WhbZyaJKVthSLN/yIqiGxPbth5aBtDQttYBLm/q8m/zzQh8C1ttt1frAJ8n/z3XAU2bfDCP4buC/csAxBt+r8j93kDzT3YWmEykrxvm0yyuN8jG0TZ+tP3+dskbP4Gij0W68jC/AHEMLIsIhFUQTYzno8c73MA03cN03eXAp4GAmBXZGPqMuAZ03cXaqzc9N2K6burm767h+m7P0wSAPc7pu+ujWxGHIv8vWyCJPt9zPTdptEtiqIoswpJBNYSwI7Id+aBwEjvhRtHIGNinkE8Bn7WcKxZRNiIht+HAD0S22aYBDwf2kZ2vuMjY1oeqR57K1SB7ZGoxHbGpRowwgrila0gDjKRjCB6+mMoHu/jdca+cQ6yKVE0Jv8xcrwX2+hPvxM53tvAusg8oZG/IVGciqIoitJnKvW6JkRXFEWZ0QhtYxiimToceB64K9E4nxZ9mQfxiO+rxucERFP0BMRreb2cMt8gGq7vAXcAd1pBXAttY2RyrJ2NhGusIO4R0h7axopIEtRJiPH2JMCmdQ38lEWtIH4vU+9wRHJmH2SDYTxwHZLQdUm6oipqyOJ/RyuIb2+zzX7B9N3taa45exhwQcZ4jum7VyIRFUXPbmMgQnSGh9K6oeAKZLNmW8RQPhgxSJ8JjE687wcmxwcjC+i9kzaeBM6JHO/mpI9LAf8D5s60n3ocnpn0/TclfbkO+ATYD0k+nEcNuDtyvC3SA6bvLo1oA6+aKfcWsE/keA83fwS9w/TdAUk7C9HzedeBIHK8/furfUVRlJmB0DZuBraheN7xlhXES2TK3wFsXlLl+1YQm5nypyAbBs34li6pwKcQr/njCsrm6el3mm5RjllC2/g58KeC6y60gvgQ03e3A26ka3MkHY//B2wcOV5j1MF0QRKpuD4yr5kM3B453tPTtleKoijKzIQa8BVFUZQ+k0jXdCTZKmLMXatJmXQR+l9gK8TA3htN1NWtIH4ytI0Kojf7f8B2mfM1xGNsZBt1ptrrnwNfIl72oxGJnhXovnhOE95ei2zIzAE8CPzJCuIeiXCnFabvroJ4ljfjYuDgyPFqyXUfIc81jxpwfuR4Pzd9d1ngFGAHWtuEOReRqVmAnkb38xFD/e7AQMQD/4/AX9J+NZIY03+PvIMBSO6EsxCv+7HAPC30qRWWjBzvTdN3hwIvAwvS3YheQzZ2vhc53usdarMbpu9uiWxMFTEBmC9yvGbeooqiKG2TyIztjCSPH4tIjL1XftWUawcgY/RGyEb3rYhkWify8eQS2sbcyHiyCDKeXG8F8dehbVwEHED+xnMN+J8VxOskHvJrIbJqxxQ0UweuBF4D1kbkc1ZDovlaJZ0XpYv7IkP9O8CiJef7yk+sIL4k70Qy1zoKkUtME95PRsbaIzb64ZF14GzgELqk9WrIe94jcrypEmWqKIqiKNMjqoGvKIqidII7kQXnkGYFW6CZ8R66Fp5rARcii952qQM7h7axFeI9nmdorlJsvM/zZKsn1wxFPLrrwPeAXyAez41UECPGn6wgbtS/nZ54FvFc/z7lXvI/Qbzk0sV7WS6DOjCb6bvDER32hYB3ES9CA/hhybXfo7vxnszPh9Jds3cxJAGtRU9JAwAix3sN2MP03UGIx/7XiRf/nHTOeA+wNJLw0Cb/81BFJKR+Afy8g+1myZV2yjAbotWsBnxFUTqK6bvfRzYQF6RrDPVM3z02cjyvybULIhF4K9IlsXI4cJ/pu9v3h2d2aBs7IRFf2bnNH0Pb2B1JcPuTgkurQBDaxkHAqXTJ4+QZ12tIPpgdkaSxtUwd7VBp+L+IhRDnguzY1szo3w6FEWSJpM4ZoW2cD/wIsUU8YgXxRwD47nn0HPtSOZ/DEOO+oiiKosySqAe+oiiK0hFC2/gr4jXV3+HZjdRI5FvavK6OGFOz8jXtcgeSMHfuhnrz6io7HgIbW0H8fi/6UEhoG4OQRfrnVhBP0dJNQr03QOR8RiAJ5y5ONOFzMX13OUTjdb6SJmuILvwqSZLUO5D8BkXP9klEQibv/ERkcd9JXfgVIsd7qdXCpu8ehsg6dYrvRY73nOm7f0e8SIvu7dXI8ZbtYLtTMH13K6BMmmkiMEI98BVF6SSm786BbNAOJz/SaqfI8f5ecv09iNE373vz4sjxDupIRxNC21gBeIaeOvc1RGJveeDXdN80Tsf5e5Ak6Ze20NTLyKbpMKZefroYua83kOS8ZZvt7XCHFcRb9uZC03fnRyT1ivITjQUWjhyvaTJcRVEURZkZ0SS2iqIoSq8IbaMS2sZsSUg0iOZqKvtSz/zf3zvFVSSs/QPaSzhbQYz36c/tUkOSso0E1gBOb1JX2fFlgHdD2/hVL/rRg9A2hoe2cQHwBSIBNDa0jXNC25gzMd5fgBjj90d05I8FXjN9d8eiOiPHexmRAHqspOkqsIzpuwch76RRMigl1fn/fsF5EB3fJ0ra6g27tVoweU6/7FC7NSSK4fnk98mU/10MTDZA+oO7gPfJTxJYB65R472iKP3AnsgGcJ7xPgYKx79kA3ljiteu+5m+O6zPPezOz8hPUltFxqdDkjJ7A48iBuYXkHFjOySfT2HC1uS6NYDfAvMyddfl6TtYks4Z70Ei8HrLehQb70Ge0Yp9qF9RFEVRZmjUgK8oijKLEtrGgNA2dgpt49zQNv4Q2sa6GWN82XVDQ9v4A7JYHQ9EoW0ciyRSWwcJaX8EeA74iv434AN8DGyd9AlkcZxtt7EPNcS43Rfd3CpiCN0c8cQb3oe60vrODm1j675UEtrGnIhx/qeIHAtIctUjgDtniyc5ybm0zXQhbwDXJDIFuUSO9wnwryZd+BbJJVCmZf9p0nazecg44BY68xmqU5xkNo/ZgKU61O4k4D4g9aq/lfLnswTwrum7t5q+u3AH+jCFyPEmI3rO4+i+0QbwCuUJexVFUXrLqhRvshuI5nsRKzWpexCd+b7OsjrlG++rW0Fct4L4KiuI17eCeIQVxCtbQXweojFfpjNvIM/iY2Te1F+049TQV+qIzn9vaaWvk/tQv6IoiqLM0KgGvqIoyixIaBsm4om7HGLErgBHAjeHtrGHFcS5IcqhbQwB/o0sxFNGIglI1wG2t4L4z8CfQ9vYAwkh72/qSCLbUxHD557IwvsrJDnsysCfEW3ZlMcRY//mfWhzMhJ1MLSXdeSReiGWSZw0Y3+KvdTWnT2etOAEY2BWIz6lihitbWCKFnGScHAXJN/At8jmTBlD6a5Bn6UOXIV42s3fpB4Qg8xQOiPLVAHeN313WyRM/5nI8co2BiYiG1SDe9leHTGSD0Ge6xHAEabvXoUk4W2lv1sBD5i++/1OesVHjvew6bsrIB6kGyCJa28Cgv7QkVYURUF018s2bb8qOTe25Fw7ZdrhS4rHshrl/W2FdM7SX3yIfLeP6sc2slQo96Bvxv0U51KqI+P2CznnFEVRFGWWQA34iqIosybXI7It0H1xugNijD+y4LoD6W68hy7j6tbA1qFt3IUYfI+i99ry7VABfg98YwXxucAloW38N+nnIsB1wN8QY+g8iKbt40n/tmqjnazGbR1ZqHZ6HDWQzYe+sBvFz702zhi4KMVGlBhJ9gqA6bsWkjRwUbo2eirI5kXRvZct4OuI5n6rIftfIGHzrfIpXckCs8RIn7MJ8N42ffffwDvA3yLHezF7QeR4NdN3r0Y2NNqNWJwM3Ev+BtGPad1TtIpIHOwL/LXNPpSS5DtwO1mnoihKCddQ/J1TB64sufa/wOfIGN44ttWA/0WO92afe9id6xDZnjyqiINAEa8hY0uZF/6oXvesNVUQ24QAACAASURBVEb28fqycT6POjJf6BWR431l+u4pwGk59VaA30aONzUjChRFURRlukIldBRFUWYxQttYDfGWLxoDDk487RuvG4kkiy2SnYmBY4BPgCsQL/BWjPcx4sneV/4Q2sZ6oW3cg2iNjwZuRrzQdrKC+HoriC+ygvh/VhDXkSRzE2guz/IFcDAie/I8ovH6Af23OfFluxeEtrF0aBtHhbZxArAgJWH/c08aV3bPVeR5YfquAdwGLJw5l9bbbFFfVH8d+AzxtGtFvuh8xIu9VVxkYyZvkd+4sTAKcIATgRdM3z3f9N3Gv4kTgI8ol2NqPDcO2B7YtKSfq9O6fFMN2KbFsoqiKNMlkeM9R1dS8Oz3Xx3JmfKHvOtM3x2J5EMZRr7x/jtkbtJprkA2DvL4N+IYkIsVxDXgdxSPxXX6tg6vIRFi/cUDQGFOnBxqwNf0Pem7h0SrfZo59h6wz30PnPnP0DZOD23j/dA2vg1t49HQNnZrRfpRURRFUWYG1ICvKIoy6/G9JufnRLzGAEgS1V6ELKIsiscOA1ibLqmaVhZVNWQRfAbwNOXG9GaG9oHAQ/T0mBsKjA5tY4o3dGgbhyOG+NlK+llH9N7XQCRtVkR0eNcCzJLr+kqZF2I3QtuohrbxFyBEnuGJdCXmzaOy6hfvPEq5ru/o5OfNgKUp12ovbKfguIFI6JxN8/f5LpJst9WQ+TpicD8HeT8/B44HLk3abTbnOYSGpLWR40XI+/8rsvEwCTHo7IzkF1gf2dj5Ftno8YFVaK7v30p/UiptlFUURZmeORzZEA+T379GNmrXiRzv44JrfDKRYQ1EwOqR4z3V0V4CVhCPRzZiPbrkeT5GIv62toJ4UpPrLwcOQpwaUlKje9n8YQzNN3i/Bc5rUqaIVnLKvGMF8W1Igt08Pm/4/TVgYyuI3+tlnwCIHK8eOd65iOPAqogE4hL3PXDmPxH5PhdYCJHZWROJkjipL20qiqIoyoxCpV6fGrkFFUVRlOmF0DZ2RPSuyxhpBfFHSXkfkRHpNDXE23xtK4jD0DZGAJcA29F9cZt6urcbzt3Y1kNWEP8wtI0NgAdzytSTchsi2rYfW0H8UZIv4FXydVk7SR14E1jLCuKWtHxD2zgKMdy3Qg0Y9/zQhVf+xff3uhS5z1QWKEaMym7keGcAmL57NBkt/Db5CIkESN9d2s71wJ6JPM2zyOK8iIsjxzvI9N12cymsmJXDMX33X8hmRDMjeB1JSrxY5Hh9SW6M6bs/QpLWljGZ1hL5AhwVOd6ZfemToijK9EQS5VUry0Vi+u6SwOsl1dSR7+w+GY6bkXh5zwZMSCL42rl2EGJsXgLZvM6TecvyOhIhVjbfeQKZL13YTl8yFGn7p9xvBfGPAELbWAaRcVsEceT4KxKptzpyT+8Bj7b7XNohtI0zkOi6IiwriF/rr/YVRVEUZXpANfAVRVFmPe5AvIXnJj8c/f6M8X4UsF8/9CEGbgBOsII4BLCC+FNgh9A2FkOS644HlkX0wt9HPJ1foHX99CxVYIPQNqrAz8hfvKaezttaQXw0QGgbAxCv/v423n+NeL6f3IbxfgCS8LYlKZ9x1YHjnhq22IHO2a+++Qvf3QI4AHm38wHPAX+JHO+ezCWftXkPWRYE/gOshjy7KuK5eAdd3n9lz7RGl37v9YgkzR60dq+N51s1KlQQz/1h9D0Z4sPI/c6X05+UrPG+6L5ixHvz0j72Zwqm784OEDleO9JEiqIoHaVFPfMiz/uUChIp1q8G/MQ43SvJGiuIJwIPhbZxFjK+NKNZjpQa8A2wbW/6k1BmvK8hHv4AWEH8KnBsTrnHk39Tg2bz0B8jEYiKoiiKMtOiBnxFUZRZDCuIx4W2cQgiZVKjSyIlXRRmZUQ2pHNSMZMRr7IvgIlF4edWEL+DJH8D0UqfQmgbpyDh671tv454whUtXuuIVE7KtsBivWyvFcYCWwJP9MJ7bSSwQFmBu+ZfftJbc8438MPBc9cemXepOSZXjauP990lI8c7FZEtOL/k8huBP5O/YVJDpGTWLbi2jsjLZO9pBHAZEv5+KuJluDj5Ej0V4C2Ykkx2b0TG6GBgvZI2PwReaTj+T+QZt0KM6CkXYvpuBdgA8Tx8H7iv0RAVOd5E03d/CVxNsadjmhD5O0QqyECSKi+TKfMM8OPI8fqymZL2e1NEk3n95PcHgRMjx/t3X+tWFEXpJ8Z0qMw0JbSNFRH5vU5QRZLFntKh+vLqv6Gf6u4tZRsfNWD41OqIoiiKokwrVEJHURRlFiW0jQ2RkOQfIclcbwJORwyrP0Y81Veiuff5aRTrpGYZB+wK/CtJ8NabPleSfu7Q5qU14BZgDsqTi9aAq6wg3jdp7xxkQ6OvmxipEbfR07qGPO+VEi+9lgltYxhNvOS9Zbas37Xginl93z5yvFuatWH67iGIkT+V2AG5h4+RBH+/aafPCZMQT/d1gb+XlFstT9fY9N1zkCR3efwkcrxLGsrPhRjCR9Hc6/DGyPF2M313GCIZsDKi9Xt15HhPmb67EmLYyBrZ3wP2ihzvoZy+boNsVpRJBUHyPpLNgdUQqYK3Isd7psl1LWH67k50GWTSZ5D+DW4fOd5tnWhHURSlkyTfiS8g0XiN39814JnI8VYruHY2JFfJl2UyPVOD0Da2RpLC95U68DxwNJKjpxP1NUoWPg78wAriCc0uDm1jMCJRNy/wnBXET5aUXRqZW84HvIjMtb5spZOhbTxJV36ZPA6ygvjipOx8wC+A3ZA538PAOVYQFyUkVhRFUZQZAjXgK4qiKN1IkqIeRnON1JRLEMmbIs/oRm4C9miWAC7pywBggBXE4xPjPYj0z4uITEsr/ashGxTPIEl2mxnjN7eC+K6k/dORhXInohDKnuceVhBf126FoW3chSTt7VZvHZhUMdhlnUP5ZuDgxsti4MHI8TZKDySyKosAX2QTCZq+W0U2Zw5BvP3HIUb3x5HF9P7t9jnhIORzcx6SbDaP+4AtIsfr9jlJdJNPRRbo6c19DhwfOd5f8yoyfdcELqLYEz+NPjkR2Zw4H0l+HCPPtgJcDOyIeAJmowZSaYUVI8d7M6ft9RAZpjL2jRzviiZleoXpuwOQiJaR5MsLvQ0s1Vfdf0VRlP7A9N21gHsRY3xWduwbYMPGjV7Td5dAvNN3RaLN30OSm/9pWnzPJfl9zk/60xfqSLTWccj856U+1gcyds6FPKdvkCi546wg/rrZhaFt7Ipo8Ge93/8L7GoFcdRQ9nfvzj78pFsX+h5vDxlRn3vSd5VNPn75uzU+e2ur5YLJD7TQ1j7A5Tmn0lxKi1pB/E1oGwsBjwKLNpQB2Ks38yxFURRFmV5QCR1FURRlCqFtrIMY76E14zjAgYhXVasG/J2Aw5Fkbnl9qCB6q79BjPWEtjEBGbMqwANI5MDPaS0k/VFk0XtlC2UvR0LTU24G3Baua0bWg72RNHFubxaWRyLeZVnDRq0C1YuX+EHtm4GD896hgRjfMX13ECJJdAiyiMf03XsQD/e3kKiFjZI+1oE5gX2Sf31hjsjx6qbvPkyxAX8jYE8aFu2JXI1r+q4HrIFIIz0aOV6hPnHkeBGwlem7iyKe+CsgiZnXACYin6uhiJEnS/ad/aSg+gry/Ecj0joAmL67GvCH5D6a8UQLZXrLWohsUR4VRMZo1X7ug6IoSq+IHO8x03e/j4xL2yBj0a3AOY2bpqbvLoYYkeela0w0gT8ievqHTq1+A4S2MTeygdtMy78ZNeBqK4gPS5LiHtDnzgnDSPb8gR9bQdw0Mg8gtI0NgGvpuSm8JnB3aBsrp04aoW3seM/8y53kLbsVdSleqVDnvgWWH7LxmJfu/ulBQ0eue9FXzfLOXIlEhB6Z9DeVf/wS2MoK4m+Sch7yvrOk0Y+XhLZxe6asoiiKosxQqAFfURRlFiK0DQPRIv/GCuJvc4rsS+ue9ympbvwXwDwtlj+MAgM+os2/Z8OxrA77j5J/ByKG5wuRRWOqQ24gSWEPRRLyRqFttLJoPxo4q0GL/n/A34BdcspPAo5J2jsRMeLmUUvKFhnwQYzIbWMF8bOhbaydtL9D0sZzl4za4P0bzdW3KrisDnyWSBNcg2yoZNkI2RR4li6DdDufh1Z4Lfl/L4o/b7XkfJ7XHZHjfUH3zZamRI73LvAu8CBwgSnJfP9F64luy1jf9N1tI8e71fTdVRGjzaAm19SBuyLHe7kD7RcxV4fKKIqiTBMix3sNGdObjeXH0d14D11G5kNM3/1L5Hid8FxvlUPpLrnWG9IN9PND2zgTiWAb2teOZaggc4fLQ9tYyAri0jwwCUdlrs1SReSOtkfmTrw/eJ6jzlhmS+pUqFekeGLI594Flh84JJ74l3V7zvm6kczLjgptYzQyLxgGPIfI8HwNENrG7Eiy+7z5RAVxQNiB1pw5FEVRFGW6Qw34iqIoswCJ4f4oRHZkASAObeNmwLWC+PVM0RG0b8ysIwbA84ATWihfAUaFtnE+sqB6DLjSCuIvQ9tYgyYLuQz/h9zLOsDmwO7IovZx4FIriD/OlC30zs5wWaM2vxXE9dA2fozo1B9K16L5XuCXVhC/ENrGQGBvxDssjypiEP8RxclMb26hf7lYQfwCsEvSjwFWEI+7WgzIWxdcUkG8xdeip/E+7c9QMt7k/cDNpu/+CdnwKdocqFKeuK4THEv7G1ZlHIF4hp6CGO+b1fsYEr3SnzxDeQTIRMQQoiiKMqNTZMBN2Q3Z8J5a7EFPnfl2GYd43J8MbNKJTuVQRSIed0CSrzejaD4DMqb+kMSAf/cCK6wSV6pQ6fkIKvUaTwwb1fI9WUH8IjJu5zE3MLBJFQu02paiKIqiTG902qNOURRFmT65FEk2O3/yu4HoeT8a2saoTLkXKfcUz6OKyOe8BHzU4jUV4KeIJ9VfgNdD21gFkTVpFQO5p2WRMOpfW0G8kxXEpzcY70GSxxVp7teAB60g/jTvpBXEE60gPgZZ+FnAAlYQb5IYzkE2EoqM93XkmR6GRAXk6e/eBdxfcH3LWEE8yQricQCJJvCfk1ONbT6HbLbsSGc8z3vDAOBXSNRCUR/qwNP91YFEG359OjsXWs303TmALZrU+wLyN3kW8rnoNyLH+whJOFzEZZHjNZMvUBRFma5JosqKIuFAxpQ5plJ3Uuaid8b7NC/LQUj+knH0n/E+y1ItlivLYVQhE1X43pBhk6sFOffqlSpjB83RqQiwsYimfxmvdKgtRVEURZnqqAFfURRlJie0jVWB/ZJfswvJKpJ87JjMsUuRhVe7ht2VEQ33IiN1HlW6NguGIZ7L87XZ7n6Igfxh4MPQNi4JbaPHAj0x6J+a/Jq9txqioX5M4zU5dYy3gvi17OZAaBvLAE7JZZ8Dm1hB/CqyyXF/5tw4xMi+Q4NsT6f4RdK3Z5Ekvh8gGx4/iBzvK8RDfFpnsl8J8Q5v7Ec9+ZeblLZD1OmSXWqVZtICXyDPtZnBZkXEo/JvwFuJXn5/8jPk76uRG5GNFEVRlBmayPHqSC6PojlIBZHFm5o8QutzoiwxkodmUSRScWfaH69S2ml/wRbL3VRSb4VMVOGkivFULcf7HsQDf8HxXw5IEuL2iURz/4KC0zGSsP2OvrajKIqiKNMKldBRFEWZ+dmZ4hDuKiI981MAK4jfSxZS1wGDkUVPNbn2dmAz8kOUU0P80r3so4EkHsvT5S8jq40/EDGKLhraxuY5RvGTgTFIUtrFkmP/AX5rBfEj7XcZEB3+MoaTeFgnod8bh7YxMjn+Tn8mU0uMGUHyL4//AL/sr/ZbZDAiu3RM8nMqZzMRsCPHe76/Go4cLzZ99zZgW8odGtK/nReRPAm3lZS9EjHiv4r8LbTiKLEAcJfpu0smuv4dJ3K8b4HtEm3+zZB7uiNyvGf7oz1FUZRpxB+QjclGYiT/Sa/l6nrJuYgsYOMcrJmszkBkg3slRL6vt0nGz0YcHUa0WH5Mi+VOR+aWc9FznLsNyQEDwNcDB/8CeJp6vYeMTr1SZdsPn60C14a28YkVxPe32H4RJwOrAFvRlTvAAD4DtreCuLebIIqiKIoyzVEPfEVRlJmfIZR7WncLObeC+BZgFGJUvQI4A1gOMXTuhYR1F9EbT7MsX1Memt0Km5Kj324Fcd0K4guBJZDNghFWEG/YW+N9IvnzixaKdpMksoL4QyuIX+xP432L3AK8TN/fWV+5B3kfhyPGjl8CZuR4106Ftk9GPm95z+BjxBj/NnASsF7keLfT5eGX/ZuqAyFwdrJxcjqtz7EMZENnv2YF+0rkeE9FjudFjneGGu8VRZnZiBzvJuDXSGRdljeAzSLH6+v8oi2sIH4CmTeNazj1Ca1HwM2DRG21K28I4qzXznWvtlIoyZ20Pt2jCr8F/gjsmnWguP2Iq5+Za/L4o6lUqNRlqE3/X3Psm2z3wTMV5Fm4bfSzqF8TkLnq5sBliDPKz4GlrSDWXC+KoijKDE2lXqBJpyiKoswchLaxO1BkDK0B/7GCeMMmdVSQhVkrBusyJtDda74/qANnWkF8dG8rMH13S0R2ZKVqvfbJep++/vRvwjuenWvyhKeAR5LktncimrRlidyetYJ41d72o5OYvjsc2dwYCPwncrx3TN81ERmXtTrQRIzI9axCa8brOmIkX2RqG1WymL67LvLZXjM59A1ipD8ucryJOeWrwE+Qv4XlEJmk0YhE01LArsim2bzA9oikTjNi4PrI8fbq080oiqIomL47P+IhPg+SyPuuyPGmmfd1aBtDk/6MRDZ7x5Mva1bGl4icTjsG+Y+QKK9msm51ZM7yGvAAcJ4VxC+XXRDaxs6Ig8eSyaGxSATEmXmygOcfteJV/x2+5F5vzTGCeSZ9x2ZjXmSTMS9hdO1jTLKCuJXxUlEURVFmSdSAryiKMpMT2sYgxNN6MfIXfltbQfzPnOuqiLb9IGBhRPO0L9SRBKor0bqBt4ZIlyyKLMRbbedsK4iP7E0nTd/9HeJxHQNGpV6jXqmyyufv4D1/I4Pq8VNIst1WvLm+Az4Frkr6NNWThSaJ/Y4HfkvX5kkdkXs5CNlUWR15158DOwE/pnuIfx14D/GUz3t3NeDvyf870dzAkNZ9QOR4l/XmvvpKksR2PWBuZOOhkvz8eiI500odlcjx6kldoxFPy1S/vwp8iOQ5+Bo4EliEfENKDbg0cryD+nRTiqIoylQhtI1lgd8AWyPf6/9EjNelhu/k2jVoX4//v8hY3Y4E7iTyZQ/zSMflWnLdtlYQ351XMLSNnRCpojwpoFOsID4+55rTEC/7os2E8VYQlyUhVhRFUZRZGjXgK4qizAKEtrEkIpmyfObweOBXVhD3SPoV2sZuiCdVqhU/GTHKNvPiKqOGJMndLFMvlGvB1hHv6KMQb/clEEPyTxGN06KNgC2sIL6z3Q6avrsiUKi7ftjr97Lz+0/VgHeAxZtU13hfrwPrWkH8Sbv96gum7/4CkabJY3TkeHZDeQPxLv8FsnHyHSKldAJwMHAiXVr1JD9/DawNrIZsDDTjPeC3keO1UraUZINiM2AfJAnyi8D/RY5XKAVg+u72wPnAQsmhOrJBdWBvdOhN3z0WOCXnVJqIcFngd8m/IjaJHO/edttWFEVRpi6hbawF3IfkbsmOhROAja0gfrTJ9RXgFSRqq1W5tWa6+b0lr94a4nywiBXE3SLRWuj7RGChRoeF0DbWQZL65lEDrreCeM/2u68oiqIoswaqga8oijILYAXxG4jn+6aIPuwByAIrz3i/E6Ibumjm8AD6vnCsAncB6yCSPp8gHt8fUqzDXkG825ZGws4vtIL4NuA0ujz0s9QRr7Zcr7EW2I8CXdpKvca/FlwpvY/Fk76X7YI3Pq8lgeN62a9eYfruQCSXQVE/9zF9N7uZQuR4ceR45yB5EIYAc0WOd3DkeGMQzfj9kXcBYqD+G7B25HivADcAT5W0R1LHqA4Z7wcC9wJ3IN7vmyIa+i+ZvpsrR2P67g8QY/3IzOEKEjlwS7Ih0E4fDERjN++eDcTIsRlwHqLD3KidDxK9cF877SqKoihTn8SAfQndjfckP88GXJKUKSSRmDmI4hwsefSH8b6o3iowP7BlzrklAYtiO8IgZCxu5L/AP3KOpxsfpzbtqaIoiqLMwrQTgqcoiqLMwFhBXEMSht5TVCZZdJ5Gdw/rTlAD3kQWaU8jmqwpzRalSyESQAAvhLZxpBXEd4S2sT3wf4i8T8otiHb9nqFtmIj38z+SxGatsGDS1x4SMPVKlbGD5pzyK/ASIsHSKhVkg6CveQTaYWm6P+tGqkjC33caTyTJWMflHPNN3w2AOYCJWZ34yPEmmr67MXAOsDddofsTgIeA0yLHKzRUJwb5TZH3EAIPJ23mlZ0Hkb5JN5oaP0ejTd99MHK8qOH4cQXlK8iz+CHdE/MV9XUhZDNsN8qfMcCKkeP9y/Td9YDfI9ECg5FNrL8AXtF9KoqiKNMVKyNJZfOoIpGOqyBznUKsIH4gtI01EVmZ6dXzfKGcY63YD3qUSXIH7QF4yOZFKpfzP+BwK4hf6HUvFUVRFGUWQA34iqIoSpbFgWX6od4XEE/wm+lpHJ+bciN+tvzywO2hbWxlBfHtoW0sBqyP6OM/jyQVfSGpM+WT0DZ2sYL4wWyloW1UchKthTn9A6Bar7Hod5+lv1YQA/a5iEG+Vc+4uUPbMKwgnlrJ9HokYS0qk3ieb4To36eJ/y6JHO+DxgsSY/M3eZUlEjT7m757BKKZPyZyvE+bdcL03U2ByxHjfcqLpu/uGjneyw1lt0KkeoYVVFdB5jgOYjBPr6sm91i2ObUpTQz4pu8uDjyKeCi28u7HAiRRDAeZvnsY8vn5KnK8Vr0vFUVRlGnPfK2WCW1jFLAGIkV3nxXE3TbFrSB+LrSN85k2Bvw0irEsZ83rBcc+ofg51JBEuD2wgng88MvQNo5HPPm/sIL47aLGE6eSrYFDECm69xEpxiun4jxKURRFUaYL1ICvKIqiZGmWfBS69FKb6bHWkYXegcB/EB11g57G02yi1GbG0CqyOPRC27gLkUH5PmKwHwn8Kece5gX+GdrGslYQR6Ft7IBo6q8Z2sZ4RC7oFCuI3wIuQxK+9pAMqlWqbP9BN4e6lRAd/j8BOyLeZEOQZLF51IHXpvKi8w1Eq7Yo3H0CcHciA3M5IkNTQ/q6I+Cavrt95HhtSxJFjvcl8GXeOdN3Z0fyGXwVOd57pu+uANxKz2R7ywL3mb67TOR4XyXX7oTI9jT7rMSIgSBLK17urRjUz0aMF836UEeecbcE0JHjTQLa1tpXFEVRpjmv0jx3TxTaxrVIhFZa7svQNn5jBfElacHQNnZFJAWnBRVko35V8jXw30Yk6qaQGNTT8a+IwAri98oatoL466TtZqSJb2NkbjcKiZTbLrSN3a0gntxCHYqiKIoyU6BJbBVFUWZCQtsYjEiLfGUF8UdtXGcgsjMm+YvTGqI3Ph9inH8E+HNJlftZQXx5UvcHdNcdzxIDH5ecz+Ms4Fe0LvXzHtLf3emZhPVzYG0riF83fXcX4Grq9YFV6tQR+Zydoic57I37Gh/K7lYQX5/+EtrG7IgczXDyN0N+ZgXxX1u9wU5g+u52SORDna57To0Pv4sc7/em7x6OaLQ3UkM8BxdODegttllFnvNPkITFbyJyR/9ANPAPA+ZKij+CJMvbhuJ3+fPI8f6S1PtGUmcrnu+nRo7XLe+A6bv/aNLW2pHjPVZUoem7w5L+NvvcpZ+xgyLHuzinngUBG4l4GQNcHjneS03qVBRFUaYxoW38HdiOnuNADbgNGf+3ovs4lY67u1hBfGNoG3MBHyDRWEXjWQ2JkhtIaw4W7VBDjPcXAWsi87AKck+fAbsgc5kacL8VxJ+HtvGTpHwRlwGHlskWhrYxCMk5syYSyXedFcQv5pRbC9HNL8K2gnh0yXlFURRFmalQA76iKMpMRGgbA4HfIUk1UxmZ+4FfWUFcqseaqeNAoIfBMeFSK4gPzJSdHXgRkd5p5F/AdqmHVGgbbyOG1zxqgI9ooy6NLOxObKW/HaIG3GgF8W4Apu8uNnLcF+7S34w5eO5J49hszIus8FUPJRmAna0g7uZdHdrGGsgmx3BkQVxFFsUXAwcnuQimKokR30MkhgA+Ak4H/hw5Xt303RDJNVBkRDge2VzZNilzB3B2kri2sa0q8i73pcuInf7/JuJ5n6WW1FnUdgw8BnwLfA+RrWmFOmBFjtdNAsD03d2Aa8g3wD8FrBs5Xg/jg+m7w5EEvpsDmzRpewIiIXBWXvSC6bvbIgl/Z6P7Z+SEyPFOblK3oiiKMg0JbWMEcDeidZ9G1RnAc0gi9aJcL3VEUs1Prs1L9prlXuAkJIprBH3LT5RuIKR1HGYF8fmJQX1nJOpuMLKpPgo4gK5o/QnAmYjhfdmSPuxrBfEV6S+Jx/4ayLgfIdI7dyJzwey9XIA4ONQy116IOAHktVUDHrKC+Iet376iKIqizNioAV9RFGUmIrSNKxEN8yw1JBnpWnleTg3XD0C8rn6L6M2nHl+TgUuAX2Y9q0LbOA84PKeqOvCgFcQbZsqegyxsiwy121pBfFtSdmlEjz6PetKfPDmevhADc6UataFtVJEog1EFfR4PLGgFcQ+ZmNA2hiJJXFdFZGSusYL4iQ72tW0SjfslgEHAa5HjTc6cS43IRaTPO30ONWRBv2nkeA83tLMjDZIxHaJdw8URkeOdmz1g+u5mdEn1FH0OxwDbZ73wTd9dGTGktGpA2TByvB4awKbvzgecgWjzF3EC8CTwSOR4nzdpR1EURZkGJA4T2wFb0rWxfTPiQHF2h5pZ0AriMaFtDEPyueyOjEPt8DTwb8TwPj/idHG+FcT/yysc2sZZSIL2dqkDZ1lBfFRSz/LIZvnKmTKTKJ67/dIK4imRgKFtNIuWe9MK4kaZOUFEqgAAIABJREFUPEVRFEWZaVEDvqIoykxCaBurIAu1PGrA9VYQFyZKS2R3bgM2prtX9GRgHyuIr20oPyciezN7SbdWtoL4+aS8iXg4z0vPBdmDwEZZffjQNq4Hdi2puz+YzwriKQlXQ9vYDdHIz9O7Pd4K4lOScoMQD/WvrCCe4Yyupu9+SPfksa1QA14DlkuS2qZ13YJIB3Q63L9dls5635u+OwiRURpBuQG+BnwFLBk53mdJRMEriJ5+M8N9jOgjr5h9Jkn78yJyAEvSmvzPBCRJ8rGR42myPkVRlBmA0DaKJOna5QtkTjI5tI0tkPlZKnHTKrtYQXxjq4VD2xiJyCjO1lZPuzjGCmIvtI15gZdoPt6m1IF3gcWtIK4nfUllEvPGyxi40wrirXvZT0VRFEWZ4eik56KiKIoybdm+5FwV2CkJZy7iGMR4n5avZH6+KDHYZ1mCcuM9ZDyvrCCOgPWQ8OnUuDkBuBDYGlgktI1TQtu4IbSNPyML4Gvpnnh0AhIdMK5Ju+1SB95HdF+nkOjb744saFM+AY4ATg1tY0BoGycCHyIJ38aGtnF7aBvLMWNxeS+uqSL67Ws0HF+YaW+8B9ij4fctEO/DZnOfKjAPok8PsCEi61R2XWpg/wjYqdF4n/ArymWKGpkNOBo4pcXyiqIoyjQgtI0hoW3sH9rGaGSe05FqE+N9BfgT7Rvvv0KkDJs3ZBvzhrZxETKPaWa8L/L+qyEe9yDyO62MtykVRFZnrsyxS5K28tozkLmjoiiKoswyqAFfURRl5qHZoqtQNiRZIB5ccF0VWVTt1nC8FU/zbmWsIH7NCuKtEG/1FRHvskOQMOnXgGMRHdZDgYeQxeRSiJ767kg4+emIV3wnteQrwLl5+vSJEX9pYAVEg920gvjcxEssQCRPhmfq2QJ4JLSNpdI6QtuYLbSNPUPbOC+0jdND21itg33vBGVJ6ZqxQMPvr9L+u+l0XoA6PWUG2kmQHCN5GEA+f824BdHqXSZyvFcLyuzdRvtZjjJ9d6VeXqsoiqL0I6FtLIF4m1+KSBju0qGqlw9tYzjiCNFsE7me8/OxVhB/16yRxDnjAeBARGKvGe83tJeO38dbQfxO8vOPaH9cn0TGOcMK4leQcTU14tcydZ6BRCQoiqIoyizDgOZFFEVRlBmE/yBe9HnUgIdLEqjORvPkoN2Sj1pB/F5oGw8B69JzYZkmarsnryIriMcgWuOEtrE4cAVdXttZ720XeLQhKVoV8ZRvxZM5T/om79xFwDlFlSTP7aXssdA2VqdnvgGQZzEU2YxwEkP+3YiWfipN5Ia2cQWwf5rkdxrzNhJZMF8vrm1MZHshUCjVlEOdzjsUVID9TN89P3K8NJfC62UX5Fz/dfJzbvbiDDFwQAt69UPbaD9LFbjX9N3lIscb28s6FEVRlA6TOD/cACySHGqMPpuEOE/0hjmR8eeOFsq+i3iwg0QMnmwF8ejGQqFtWMi8ZTiScPcaxFt+hRbaqCPzttURjfy9gbkRacQ/WkGczX3T7rwmlXmclD1oBfFloW08DByEbGJ8APhWED+WU4eiKIqizNSoAV9RFGXm4U7gGcRbK2sQTQ2kpyeJ0PZAFptvAddZQfwVIk3zGV2e5Hm8m3PscES/fkimzXST4GAriCe20O8D6J4gNUsM/AzxcE45DZEjacZ/gHWSulNvsSpiYL4HWBv4FvibFcQvtFBfIztSvEFQBXYJbeOApO+LZo6n7IMYv09rt2HTd5cA9gMWQgzToyPH+6jdelIix4tN3z2PfLmWonusAfdGjvfa/7N332GyVNXCxt+aEjggghFEWgxIgfGCgoFgwCwGMCekGkVFDASVFvWK+qENJkyA6LULEyooCKIiKogCgqioiFIoQZqcs4Sa/v7Y1U6fPp0m9znz/p5nnjPTVb1rT4CqWrX2Wl1jnVpp1PZj9O/rZuA9hBIBMw1y93Jf4KRKo/aoZrV+N6GJ3+WEn9kwE4RVHhD+u7qS3uUAJoEfNqv1GyqN2oOBPZhquvdz4IvNar39383ZwPY9xhjFg4C3MYO/FUnSvNmK0Ky+n0lCT5hjGS27vdsahEa5g5IRJoFty33uBVzanaxRPmj4OCGxoP2eCaBO6A0zaHw6tu9XJmC8v/zo53jCuXDYeO25XAN8qNeOSVacz8ya6kqStEqxhI4krSLKG7YXAqd1bboV2JWQzXUZcAghU/9w4LI8jXcoy8F8tc/Qk4Rlzd/r3pBkxZ8IN7DfImQs/4eQLfbMaTRO24z+S61j4L/15PM0fhCjBe+PJJThOY7wEGACuJZQP/8dSVb8IMmK9yVZsT/wtzyNn1iWuNk+T+NR67cvG2H79uX8e51vW8C7p3E8ACqN2nsI5Yb+F6gSbsAvqTRqs122fyBhJUR7bu3fyaVMrT4omKr3njNVJ345zWr9k4TsvF6/1xZwbvneHYENmtX6EcCfR5xnv/q7vWwEnF5p1JY1q/VJ+peJ6vZD4JcAZfD/jYRMyvb3057DpcDelUYtIWQzfgjYnPAQbR/gL5VGrR3c+Swzv+5qEX5WkqTx8Zgh29cgnCf2LL+eSbm4iMHB9SOTrGgmWXFZkhWX9Flp+RqmgvcwdS66L/D4IeMDNIFdkqxojDjnbxESFLrnMklYnXk24VriZsK151ZJVlw84tiSJC1JUas1nftgSdLKIE/jJxKywm4kNDF7JPAnlm9OC+Fm6h7CTeirgQNY8UauAF4zjYD8dOf6JWB3egc3J4E/JFnx5HLf1xAa2w7yPMIN8xmEjO7OlQETwLuSrPhSOd4jy/E6G7H+G0iTrDi5z3zXBV5FaPjb3Si1rSCsAPgx8Okh831wmdE2VKVRezqhVm23VnnMTZvV+oWjjDXgGFsCryCsqjgdOIapAPIOhL+Pk4CjmtX6nUPGej7wFaaW9reAHwFv6S4HU2nU3lruOx8+1KzWDyiPcwbwFHoHLO4i9DX4MfDHZrV+Wcf8NiOsFHgm4UHVD4BDm9X6dZVG7RRgO3qXkjoPeHyzWm9VGrU9CX8PnQ9triY069tvyPdwTrNa32Lod9pHpVFbA9gYuB24pE+jXUnSiPI0fhFwwpDdNkiy4so8jXcgZK0/jZAU8SvCNcqzyv0GBdEnCSvIKl2v/4RwfXZrOZ8HEDL9r+oM5OdpfCah9M1MHiIfBrwzyYpi6J4d8jReH/gi4XpignA+/AmwR0etfEmSNCID+JK0BORp/BVCg7J+meDHE5Zp99p2IbDpdG/epjG3LYHfD9hl9yQrDiv3fT3w7SFDPgb4JPASen+/dxIamt5FCK5WuvabJGRbv56QZX5e+0Y4T+NXEQK8aw04fntp+HcJGfiDegsUwLpJVtw25HsCoNKofZ+pm+Fex/1Us1rfd5SxFkqlUZsgBCzuB5zbrNYv7rPfWoTfx8N6bZ+FFnBZs1p/aHmcRxEegjyEqUz6iFBCqv23AeHv4HvA25vV+s39Bi/LGf1ryBy2ItQJfgChIfTLCE12zwN+0KzW/1Np1I4m/G77fQ8ZcDQhiPPnUQPw5c+/RlgR0C6RdQ6wT7Na/9UoY0iSpuRp/EDCSsZdCP9f72US+HmSFS/s8f4IiJOsuKe8BtqH0Px2UHnbywnXcY8jXAP8IsmKP5TjbUu47tm23PdfwCeSrPh6uf0/hNUA0zFJeFj9XODMmV4D5mm8HqFs4+VJVlwxkzEkSZIBfElaEvI0Pht40oBdbgHuTf/srBcnWTEsy2zG8jSuA/sSAtoxU9nyJwIvbdfSz9P4IYTs+n4B7MsJzdiu77NPW5XQWO7wEaZ3UTm3C4A/MHw5+x2Em977DRl3EvhhkhWvGmEOAFQatfOBZMB4P21W64Pqzo6tSqO2OSHjf80em28iBL5nU4Imbge9K43a/QiBkBeU285nqrxOd/+IXwHP7RcwrzRq2xJWWwxyArAF4aFBQVjV8IFmtf7fxrqVRu0BwN8JwaDOObSDJp1Z++cA1Wa1fs6Q41Jp1A4mrBzoNEn43p7drNZ7reiQJPVQBu/PIKxo6nct0CKUitkmyYq8472PAD5CKGmzjFB67SDgO4Q+MHsMGfNOwkq1o4HTkqxo5Wn8DMKquJipc0c7kWDfJCsOytP4SmD9aX6r9zD1QOFSwgrNw8uSi5IkaYFZA1+Sloab6F97dZLhwdGnzfmMlvcBQlPYkwl1+v9IKKvz3+A9QJIVl9M/6B4BH2X5hrr93JewbH2UjLKHA98HPtNxnF5OIGTtHw+sO2TMFuEhQ22E43e6msE1dK8bsG3cfZL+GYLrMrvg/aWdAfhmtX5Ds1r/VLNaf3azWn8OsEm5qfsYEaFU0jYDxr94hDnswFRmfwy8HPhdpVF7RMecriP8Tf69x/y7/+aeAJxcadQeOuig5fZ39djULqX18RHmLkmasi+Dg/eXAwcDT+wK3j8SOIvQwL7dQ+dxhHrxHyIE8O+k/zk+Kt/3HsJD49+UJXMOYvngfXtfgI/laXw/4IhpfH93Ec47neNVCKV0bCYrSdIiMYAvSUvDd+n///wJQqbVILfP7XSWl2RFK8mKY5OseG6SFZUkK7ZKsuKwzuB9h3cT6qre3fHazcCeSVZ8lRDkvorBzU7/xPDvuS0qx9qW/j/DyXK/4wjB2UHn19sIGXRbJlkxrPRKt28OGHuCqSa0K5VKo/YQQjb8oJ9bv9/nJKHpbL+HMRFwWKVRe2ilUdut0qjtXtazbx87Bp4z5NjP67ehWa03Wf5vsZ/OYM8EYYVGZ1NBmtX63wgNBbcmNM79HCEDsntuE4SHGr2C85126PHezjG2qzRq9++zXZK0ojcxOEv+60lW7J1kxaVd2z5GKGPW+f/k9uf7E66zdgBuHXEeWxMy8Z9M///PrwG8kBDkzxmtCXx7tVevBwIH5ml8SZ7Gx+Zp/OwR5zkjZZkhSZJUGlRnT5K06vgGkBJu+Nramb2/AK4hLOnudxM4Lw1sZyLJiruBd+dp/HHgqYRssd8kWXF7ub3I0/hgQkZ3t0ngr8CphNr0O4942IjQGK5XNjTl67cQMvuHnVs/nGTF50Y8breM8HvavmMu7XJDRwC/rDRqawKvI/QAuBfwSyBrVus3zvCY86rSqC0jPPgYpt/N/AQhc/FIph5Udf5cfk7IHryYjr/vsub8LoSMx36/17ZhQY/fMtWIcFQThN/lWzpfLFcKnAGcUWnUXs3U99EtIgRm3j/gGKuPMI/VRpqtJAkGr7CLgB3yNP5aZ6PWPI1XA17N4Aeqr0yy4vN5Gh8AHDjCPCJCU/Vh1kqy4ro8jbcBvk44bwy6TokHbJsANgI2BF6Wp/E+SVZ8doQ5jKRcpfAhws9qWdl898AkK0a5RpAkaZVmBr4kLQFJVtxJyCI+gBCsh5Cl/hFCoHd/QgC6c+l2O2j55SQrzl+YmQ6Wp3GUp/Hz8zQ+ilCyZmegaAfvO3wK+FrH1+3v5QLgZWUN12OBsxktI62tX5A3JjQ8vYZQ/36Q7hIpI2tW63cRMvTeB+S0WrdMtCbPXVbctTuwK6Ex6u+B/yP8Xl9EyOI+r9Ko9audP1SlUVun0qg9q9KobVdp1KbbCG+YnRncn6HtzPLfya5/vwKc2qzWjyZkr3+ZEFD/CaGk0ZnAO1jxmueVwGHNar0Afsbg0kQ/GTK3Xg+LYPjf1pqVRm3Yg4NBYwwbf1B9+0lCRubVQ8aQJE35M4PPF5sD5+Zp/NSO19Zg+MPS9oOBs6c5n5sZfC44rcxm/xThumDQSsJRzwftIP+ny6D7rOVpnBCuX3Yh9GSKCUkaP8rT+J1zcQxJklZmNrGVpCWmvJFbrbs8TZ7GmwGfAF5GuMG7DPgscHCSFYNuVhdEOe/PAnsylZXc/vfAJCtWqCefp/HjgFcQ6uKfDpyQZMU9HdvvC3yekLE+6Oa6RXjgcTUhSNwddD2JkNX2GuDbA8a5EEiSrBil9n5f5c9iF0It3s0IP4fjd3raHstuWn2t57LiDXpBaJb3pH7NWHspy8t8FNiL8DOEUGf/Q81q/bDZfA8dx/glIXt9UCD7EkLz3rcTMtY3JASfvwx8e0CD2TWBK+ifMTlJ6HFQIazKmGDFn91PgR2G/dwqjdoehLrHnZmNNxJWZfQ79u+a1Xrf+vqVRu1thLrD/XyyWa3vN2ReJxD+Nnv9fHduVuvfGvR+SdKUPI1fS1jxNcgkYdXXJklWTJbn7JzBtfNfnGTFCeW+fwYey2jJdkcQrge6tZjqzfNsQvP0fu4mfE8fBf45YI69fDTJiv2nsX9PeRr/ANiR3t/zncBDkqy4frbHkSRpZWUJHUlaYsrs8xVqyydZ8Q/g5Xka35uQ/XTtOATuOzyPELyHqRu89r/75mn8syQrTul8Q5IV5wLn9hswyYobgV3yNN6LEMh9LyGY363d8PM7hNUKuxIa/15DCLB+oizd8176lzwBOGS2wfvSfsD/YyoLcOKG1dZ6yS2rLet33BjYgpDpPp3svk8Ssv07PQA4tNKo3d2s1v9vGmP1c1+GBwsuL1cffKH8GNWjGVzuYAJ4arNaP6rSqL0I+BLhQQGEgMYRwJ6jPPRoVutfLsvyvIawEuI8QkPjc4BH0ruO/UFDhv0W4W+y+/2TwA3lfId5HdAg9GZoux3Yz+C9JE3b94DHAB8esM8E4f/bzwVOTLKilafxZ4BDe+w7CfyLsBKMct83ELLRh614uwfYg5BcsDfLl7+5iNC752bC+axfqbhJ4EdJVuwCkKfxLcA6Q47bVjDVoH3G8jRem6nkkV7WIAT3vz7bY0mStLIygC9JWk6SFbcRGq2Om7fQPzg+WW4/ZSYDl1ld1+dpXCWUEnozUzfCtxOy0g4tH37smafxPoSHHLe2H3KUWXObM7i53fozmV+nPI3XJzxEgI6fxVXL1pmYjIYm623MiAH8SqP2QKYemHRrAR+tNGpZWYJmNn4PPHHIPqM2HO52x6j7NKv1k8rmtpsTgv7nNqv1a6dzsGa1fhVdDxgqjdrzCYH8x3S8fBfwvma1/qMh491WadSeCXyVkEXf9jtgt2a1fvkIc7oZeEWlUduEUI7gduDnzWr9luHfkSSpU3kd8L95Gp9F+H/7IAfnafyEsnfPVwjn4Pd27XMh8MKuh/tvZ7QeJn8sr9neX/b+eTHh2mQX4H869hu0wnAC2DFP44MIiQpfBfYZ4dgQrpPyEfcdpF0yZ5B+q9kkSVoSDOBLklYWD2dwA7iN2l/kabw6odRNC/hLZ9mcQcpeAW/L03h/YBtCoPXkJCtu6dqvIGS1db7WytP4NmDtPsNH3e+ZoZfR4/z9gDtvHeW9lwFUGrUNCOV33kCY7++BTzer9c5Gcc+g/01/RChj82gGrHAY0ZeA3RhcKuDE6Q5aadQmCD/vf9I7Ax7Cw5pftb8oM+3/NN1jDdKs1i+sNGqPJzQe3pxQVueYZrV+3Yjvvwx4UaVRexgh+HNZs1qfdk+KZrV+AaEHhCRp9s4gZKAPCjxvRui3cmQZ+H9fnsaHATVgE0Lm/SeTrPhX+w1lw9uU0crYfL79SZIVlwOH52mcsnzwfhT3Iqy2ey6wE2Hl1oMZfF6eJFwjfWOax+rlWuBKQpJDv+/7nDk4jiRJKy0D+JKknsqM8tcTMsESQvD3a8BXy2yyhbbWkO0Xl3Nu12xvB9KvyNP4w0lWjFzuJcmKK4CjZzDH7xCC0f1uQDfI03hP4HvlMWai5wOCB911K1tefxF/uN/DaK2YiT9JyPI7vdKobUjI4N6wY57bANtVGrV9mtX6Z2c4L+C/gfPXEMoMbQicDxzarNZ/3mv/ZrV+bqVRezOhzEuveV8LHD6N40eEv9l9gYd1jdX+wbRLCXygWa13N0Cec81qfRL4Rfkx0zEuIfQCkCQtgvIaYyvgCcD1hB4pLx7wlknC+fDI8v0bAN9natXZM4BqnsafA95bBvnXYfj1Tgv4G/CDHttew+BSfoNsTjhPvYtQdu3VhAf5/wGWleO2CA8t7gFenWTFNTM4znLKEoQHA/UemycJJelOnu1xJElamc3kxC5JWsWVN6mHEGpwbw2sR8jo+jJwbJkhNpNxN8vT+Bt5Gt+cp/EdeRr/OE/j7UZ432rAQ4fs9kdCRtyHWT7IvQHwtTyNd5vJnKfp44Rmt529Azo/fwfwOeDSsgzPTJzZb8OeF5zUWvfuOwqWb1DfIpRN2bkMJH8UeAjLP2RoXw8cVGnUHlx+/mt69EroGPMy4O+dL5ZNb79NeJCxPSFD/6XAiZVG7WP95t2s1jNCUOTirk1nA89oVuvTCRB8hPC3u1HHa5Ms//1eALyxWa1/eRrjSpKWqDyNH0p4+H0moczMDxgcvIdw3rlP+f4I+BEhSN69z97ACXkan0io8z7swfLZwLPLVYPd7sPs7vE3Br5L6O+zDuH6b23gmeXcjiNc62ySZMWwEkLT8WmgM9GifSHzL+Cl5cMNSZKWrKjV8lwoSVpensbPoqO0SA+7JlnRK2N60JhbAKcSMsvaN5ft4Park6zolUnWfm8FuHTIIU4GnjVg+1XAQ2e6eiBP47WAVxDKsTSBo5KsWKEkTnmTvz9hCfqahCX2E/TOyn/pdG+AyyDA74At6XGT/q97P+gDu22ZLmOq1M5JwBeb1fpFZYD9VkImXT/vaVbrXwCoNGqfYsV6vW1v6W5iW2nU3gh8c8DYT25W678fsJ1Ko/Y4Qub8Jc1qfVrleSqN2nqEBwu9VhhOEn5urwKuGKUxrSRJZRLBXwllb6YbHK8nWfGBPI23AX47ZN9W+dHvGJOEMmwP6Q7e52m8OfAiwkOFpzJaCZ5+JoHTk6wYmmAx1/I0fjyh7NBahKSM40YtgyhJ0qrMEjqSpF7exOCGsSm9S54M8gWWD95Tft4CDsvT+PgkK/plfN80YD5t2w45/vrAFsBZo013Sp7GzwGOYvkmal/I0/iNSVYc07lvkhWXAm8uM/7fQmhc10tBaBQ3rQB+WWt/x/J9T+rYNAl8ZuPbrjmwDE7vX859dWCn/Nef+thx8eqrv3Tb9wwK3gPcv+PzGnAnoSRRe0n/dcCHu4P3pTcz+O9mV0K9/b7KoP1M6+q/mP7XNhOE1SR3Nqv1VqVReyjh+3st4UHL74CDmtX6z2Z4bEnSqmlHYNNpvqddI/6w8usnj/CeiBUD751JAHeUc4nyNH4T8BJCs9uNWDGzfzYmgG3zNH7QXJTImY4kK/5KeFgiSZI6GMCXJPWy3oBtE4TmZiPL03gj+gfYI+CBwHOAn/TaIcmKW/I0PpZw49odHG4RgszDAtMwg/NeOffjCTfJndYEvp+n8RZJVqwQcE6yYrLMiOvX5C4mlI2ZtiQrrsjTeCtC/dynEZbbH5Nkxb+75n5/Qj3bLYDi3sVdPPiOG7lq2bq0or7Jef+9cW5W6wXwoUqjdhAh4/8e4Mxmtd5r2T6EMkeDHrJsOPy7m5U1R9hn70qjthOhr0Pn7+UZwLMqjdruzWr9sN5vlSQtQdsx/bryNwOvSrKi3btkJmVt7iTU2V+TULrncEI9+jMJdfgHrfCbCw/K0/glhASI84Hje61izNP40YQH/duXcz4G+GKSFVfN07wkSVpyDOBLknr5B/DCPtsKpp8hfb852Of9hJvoBzJ1s9q+eT2AUJN1kFuBP40wj25vp/fDgag89ruAt/V5780Mvmm/ZQbzAUImPnBK+dHPl5nKyosj4JWX/YEvPerZvfYtgCsI9W2X06zWb2ZwSaW2HHg4vR9YRIRatvPp9AHbWoQHEPv12d7+PR1cadS+36zWr5/TmUmSVlZ3MXqQvAX8GdgmyYrOWvYP67P/IGsA70qyotl+IU/jbwOPL7/sda6dCy3CaruzWf7B+OV5Gr8syYqzO+bzbOAEQrPb9nn0McCueRpvk2TFRfM0R0mSlhSb2EqSevkKU7VYu8WEwPB0XEhY+j3IXwZtTLLiX4Qs8EMJN5a3Eeq7Pwf4BCE4PKiu+YFJVgybQy9bDRh3glBrtp/v0/+mv0Vo+Dov8jRej1Dvfbnj73jZH3nJ5eeUM2i1mOpDcDXwwma1PqMeAaWvMDig8NVZjD1Us1r/E2HFQa/fV8RoiQtrADvN5bwkSSu1Yxg9gB8Bn+wK3kO4VpmuO4H/PkzO0/iBwGumMZeZioAHsGLywoOBn5er+8jT+F7AN1g+eN+2PnDwPM9TkqQlwwx8SVIvTeCzwN6EG7nOZdofSLKibzZ2nsYTwEsJdfQfBJxHCLp/FXh3j7dMAqeWdU8HKkvE7FF+dB93L+DY8svum9sfEbL0Z+KWco69AtOThPr8/VxIaOq6MyGo3J5Xi9CU96AZzmkUj6THnCeAvS44iZdefg6f2+S5x5637oaXE+rSf79Zrc/kAUen44DPEZbSTxK+3/b3vUezWj9vluOP4tWEByedwZJ7ynmsNuIY9x++iyRpiTidcB3xsgH7tEvsHAv8oMf26d53t4DvdD0I2Ij5y7pvu5uwmu7RrBiUnyCsltyFcK5/NvCQPuNMAC/O03i9JCuunqe5SpK0ZBjAlyQtJ0/j3YE6sE75Ugv4N+Hm9atJVvQNwuZpHAPfIQRR2zezWwO7Ae8gLLPegans/gngb8DrZzvvJCuOz9P4hYRSOu1mcZcA/5tkxTdmMfT36J+RPQEc2f1insZPBA5kKoh8A+Hn8QDCSoRvAvvPc33YgWNvfNs1fOmc73wmyYrThg1UadTWJzTMvR04vVmt92w2XDbP3bvSqB0DVAk39hcAhzer9QVpStes1m8Anltp1LYAtiH8vH9dzmNUNtCTJAH/bR7/GsL1xduB+5Sb/k64DtiAcL1xOHBYkhVFj2F+DjyKwavyOh96nw+8P0/jCuF67ELmZvX8BcDLCQ1w7wWcTCj31z5fngD8YcCxCuAp5ecbDDnWBKGnkgF8SZJmKQqr5yVJgjyNPwx8rM/m7yVZ8doh738roYxKt3a7Gnn3AAAgAElEQVSplkcBFUKG/mqE+u0nJFlxz0zn3GceDyBkqV1T1oqfzVj3Itx4P6vH5j8AT+/MkMvTeAvgNEIplvYNcPuG/DPA+5OsmOweaD7kaXwq4aa8+0Z8ErgISAbNpdKorQl8AUiZeuh/NbBPs1r/1pxPeJ5UGrUJwgONBw7ZtSCUYnp0s1pfkN/RqCqNWkRoEjwJXFY+LJEkLaA8jdck/L/4xulkludp/ChCbfxlLH9OngSuBI4nNKW/DTiq3Pf/la9B6OOzevkxG69MsqLXCoHOuZ4HbEbvhw2TQJZkxZvzNN6acL3Tz53A+klWDFqpKEmSRmANfEkSAHkav4v+wXuA1+RpvOmQYd7OVE31ThEhoF5NsuK3SVa8P8mKvZKs+NFcB+8Bkqy4LsmKq2cbvC/HuoewauAA4Nry5ZsIJYa271Hn9v+xfPAepm6C96L/cvP5sDtwI8vXhJ8k3FRXR3iQkAFvYfkVew8Cvllp1AaVEhgrZTD+kBF2vQx4yRgG799AKGlwCaH00l9Xpp+/JK0qkqy4I8mKfLplYZKs+CfwXEImfaffA+8lZPXfXG6/GfgJU5nuAGszu+D91YwQvC99j/4rBSYIZeoAziCsWOu14qAFfMvgvSRJc8MAviSJMjD/+RF23X7I9oczeNn1w0ef1fgob9g/RGjKdh/g/klW7JNkxc2d++VpfG/ghfT/GUwAO87rZDskWfE3YAtCrdoLCQHg/wOemGTFbwa9t9KoPYZQCqlbRHgI8NEyK3xl8XVCPwYI828HHO4CjgbeCCTNaj1fhLn1VWnU3gZ8C9i44+VHA8dWGrVXLc6sJEnTlWTF6cCmwLaEJvObE1Yifgd4bfn664CvEYL1c3Gv/ifCSrwNRgzeA3wR+Ce9EzKOB06CUFqIcJ1wTbmtYOrc+ntgnxnOWZIkdbEGviQJYNcR9xuWLX8JsC69bzrjcvtKq8xYv3XALmvQP2utba25m9FwZePffZj+jfRzBmybAP6H0Oz1us4NlUZtS0LW/sMIv++vNav1s6d57DlVadTeS+jr0G7+N0Go5/8VoN6s1seyPm9Zwqheftn5dzVByG78VKVR+2GzWu+V/ShJGjPldcRpAHkaPxvYt9w00fXvbB6Qt8v2nQi8vMdKwWFzvD5P420IKwp3JpT9uZawku2AztV7SVb8I0/jzcr9nkl4KH4scEySFXfP4nuQJEkdDOBL0iqqbCi7WpIV/xlh94cRMq3iAftMAj8bMs7h9C9V0gIaI8xlZXYDoUHcxvTPnDt94aYzK6OUH1pun0qj9kHCDX9n1t7bKo3aB5vV+ifmcnKjqjRqOwGf6rFpDUIG5Afm+HgTwCMJwZN/zbIcz7bAfftsiwj/3f4P8MdZHEOSNECexusArySUwPsncOyI11bD7EY4X85Fpn2LkGRxNKHU2vHAaTMtJViWCHprnsZ7EFYe3tSnOS9lmZwvlR+SJGkeWEJHklYxeRpvnKfxtwgZxnfkafy3PI3TPI0HZXNdzPBzwpeTrLh0yD7dtV07tTPCVlnljfIn6f2znAR+x+CGb+Nk0MOaSeCsZrV+ffuFSqO2LSF4D+H7b38AHFBp1LaZl1kO9156lwGICQ2VXzFXB6o0aq8l1Kq/oPz3wkqjtssshlw2wj5rzGJ8SdIAeRq/EriCUH7u48CRwKV5Gm83B8M/grm9H/9QkhWvT7Ji37Lf0Fz0Abo7yYrr+wXvJUnSwjCAL0mrkDyNNwbOJNRQbTc724yQ+f7RAW/9+pChf0RowDrM7vQOlkII3u82whgruwz4ENC9dPwM4GVzcUO9EJrV+gXAET02tR/EfKTr9bfR/3c/WW5fDFvR/3pnEnjyXByk0qi9iRDYeWTHyxsBWaVRe/sMhz2LwWWrbiU0EJQkzbE8jTcHvgus2bXp/sBP8jTeYJaHuIT+582Z+GSexk+bw/EkSdKYsISOJK1aPgbcj+UDlu3PP5in8Vd7ZdEnWZHnafxO4MtMLecuCFnKRwJv7Kx5OsDj6R8sbRGab05LnsbrEWr0bwXcAnwPOHHE+cy7PI03BHYiLDE/C/hVkhUH5Gl8OPAy4N6EzPuzVpbgfYe3AtcTHsy0s8EvAfZuVuvdGfqPYnDz3o37bJtvtxL+m+glIvxNzUqlUVsNOJAVV5m0Pz+g0qhlzWp9WiUXmtX6VZVG7WtAvwcAn29W64N6MkiSZu7dhP+Pd68enADWJvR7+fgsxv8aoZRbP7czet+ciHAO+kqexicB/wC+m2TFrM5xeRpvCXwQeGF5jJ8Bn0iy4szZjCtJkqbHAL4krSLyNL4X4UZwUBD1VcBne21MsuKQPI1/B7yDkLV/FSGb/IRpBMuvAh4+YA7XjDgOAGUTtZ8SguPt5du7AMflafyqJCvums54c6ksSfQR4MMs//3+JU/jF5cPSr62KJObI81q/S5g70qj9jHgCYRgwh/71HVv0r+W7yRw2bxNdLAjCQ8gepVviggPhGbricCDB2y/P7A18KsZjL0nIfvzTUx9D5OEh23dqyAkSXNnawav4HrqLMc/CfgcYYVjrzKDE8DfCddko5QgnCAkUjy2/PxTeRrvmGTFKTOZXJ7G2xOuwe7F1M/hxcCLyuucE6c53trAS4AHAucCp6yEiQ2SJC0KA/iStOpYHVhtyD7rDNqYZMUfCRllM3UE0G/59gTwjVEHytN4GXAMIYMdlm+w+1JgX2aX+TZbVXoHUB8H/DhP4y3GZZXAbDWr9RuBU4fs9nVCk79eJhhepmm+fIKwQmJ9pgIQ7UDJoc1q/dw5OMbqw3cZaZ8VNKv1O4G00qh9FNieEDT6ebNaX6wHIpK0VNxM//49LWa5givJilaexvsA5wGH99hlDWawcpGpc919CNcjj0iyYroJFMsIdf87g/edYx+ap/GjRr3OydP4jcChhJULbeeVDxgumM7cJElaigzgS9Kq4w7gfGAT+meM/X6e59AgBHGfw1Q2dvvfQ4HfTmOsnYAH9dnWAt6Rp/H/W4zsrTL7/v30zjifIGSrP5uQXTdtlUYtImT2JcCVwC+b1fqgWujj4GfAYYRyL92/+0OAaWXqzZVmtX5ZpVF7CuFhz2sJAZGLCVmPX56jw5wD3MbUw6ZudxHKK81Ys1q/iBBMkSQtjO8Syvf1EpfbZ6UM4m9B7wcFo2TdDzJBOC/tSijzNlSexqsB+wPvof85bYLQgHcrQt+lYWM+g94JHJsBv8jTeNMkK6ZVYk6SpKXGJraStIooA9mfpn8Jk/MJQdb5nMNdhOXVewJ/A64j3Ny9EdhjmsH2TQdsiwglS/rdXM63tQnzG3QenVFz1EqjtinwZ+B0QgmjnwGXVBq1Z89kvIXSrNZbhPJLOxHm/I/y352Ad5bbF2tulzar9ZTwe1sb2LhZrX+xTymgmYx/C3DwgF0OaVbr18/FsSRJC+arhFIvvc5fJwHHz9FxnsT83ZcXwBbT2D8D9mO066t+/WW6vZf+JYI2Al496uQkSVqqzMCXpFXL/wGPBGosf6N0AfCiJCuKnu+aQ0lW3Al8vvyYjSuGbL+VUJO9nRG/NSGofhVw0jzXx7+TqSa//dw23UErjdo6wMmEci+dHgycUGnUntis1s+b7rgLpQzSH1t+jJ1yFcN8rWT4CKHZ4LuYur6aBL5CWK0hSVqJJFlxS57GTwc+BqSEB8DXElabHTDba6o8jZ8PvBP4nwG7DSrh02J44D8CbhxxPpsDrx9lX8L5bdQSdE+n/zwLYFumUWJRkqSlyAC+JK1Cygz3/fI0PpxQyuY+hLI5P12I4P0c+z4hq3kNVrx5bQFZkhWTeRpvAvyA0Lit7eo8jdMkK3467CB5Gt+HcMO6BXATcGSSFecMek+SFXflaXwM8HL6r3j4wbBj9/AmYIMer08Q+hvsCbx1BuMuikqjtgHwZmBz4AbgO8Api5mNP1+a1XpBaPh7EKF8UgScbK16SVp5JVlxA/CuPI33IgTwb56L/jZ5Gu8HHMDwZICI0Ej2hV2vX0DoB3QHoSfP/n3ePwF8e8RpvWzE/VrAUUlWNEfc/w7692CKyu2SJGmAqNVa5e6hJUmriLLp2RHllxNMZaL9HdiOkAn/D0KGeucN8CThpnirJCv+PGD8JxHKvDyw3H+iHP9Q4J2DbtLzNN6MUB5obVZsjvrJJCv2m873ClBp1I4ilJzpdzN/UbNaf+R0x10MlUbtOcBxwJqEn21E+Dl9E6iWAW9JkpaUPI0fTWhcO0j7euKXhOD9wwmJGWsTrj1OaCdmlIkIvyX03+l+/xFAdZQShnkaH0AonzPMb4CXJFlx0wj7kqfxF4E96F/T/+lJVvxmlLEkSVqqzMCXJI2tJCu+lafxBYTM86dSZsgDhyZZcXOexm8DNuzx1nZAfW9gl15j52m8DDgBuH/5UmfQfHfgL4Rl8v3m9o88jZ9KaI66Y/n+fwGfItTNnYlhZX/unOG486rSqK1FKN10U7Nav7TSqK0LHENYPQHL/2x3Bv7A7EssSZK0MtqF/qVx2q4gJBN8OsmKuwkZ95/ss+/6wEHAC4DnE5IScuBLwCHT6D90Kv0D+C3gMsJKwVOm2dPoIEKd+wey4qrFYwgPHyRJ0gAG8CVJYy3JijOB13W/XmawvZ6Qbd+rjM0EsP2AoV/BirXm2yYJDw36BvDLuf0deGX5MGAZcNM0b2q7/YjB9WdnUpZn3lQatdUJJQB2p2x4V2nUTiNk56094K0frzRqX1gVS+lIkjTEgwnXGf1W292QZEWv5ITl5Gm8HqHpbGd5nX8DL0iy4uczmNdJwB8JZe86r6vaDxvemmTFydMdNMmKS/M03poQyN+xHPsG4BDgY7O8bpIkaUkwgC9JWqnkafxwQrOz7UbYfVDG+uPpnwE3AWyap3E8Su+AJCv+A/xnhPkMcwxwFrBV17wmgauBL87BMebSt4BXdb32NOApQ953H8KKijPmY1LjoNKoRYSfxeOB64CfNKv12xd3VpKkMZDTP3g/CZw/dIA0vhdwIsuXzQGoAD/O0/hpSVb8YTqTKvsKvYiw0vFZHZtuAd4zSl+hAWP/C3hFnsbrAOsCVyVZMWzVoSRJKg3rWi9J0tjI03ht4BRgmxF2bzE4Y/06Bi9fv4VwI71gmtX63cDzgAZTDx9awE+AbZrV+lULOZ9BKo3aVqwYvIdwbTGoIV/by+d2RuOj0qg9DDgbOI2wiuMo4IpKozZodYUkaWnICCXzel1jTABfHmGMF7Nipnz7/TGw70wmlmTFVUlWbF+OvSthteIGSVZkMxmvx/g3J1lxqcF7SZKmxwx8SdKiy9N4NWA9QgmaWwfsujPwsBGGnASuAQ4esM+RQJ3eD7NbwBGLsay7Wa3fBLy50qjtDTwUuLpZrV+90PMYwUsHbBv0YATCz3fNOZzL2CjLCv2C0BOg032Ab1Uatcub1fopCz4xSdJYSLLi8jyNXwd8l3AN0tno/RDg2wB5GkfAtsAbgAcQevP8X5IVlwPPYXAJwefPco5/Bv48mzEkSdLcMYAvSVo0eRqvDnwI2IPQTLbI0/gHwL5JVlzc4y3PJdzoDsrwbhGa0+6VZMUV/XZKsqKZp/EHgAN7jHkRoTntoikD+Tct5hz6qTRqE8CmsxgiYtVtWrcT8Kger0eEv7P3EVaRSJKWqCQrfpin8SbAbsCjgWuBbyRZcRpAnsYTwFeAtzCVqf9KYL88jXcinE8GWdAVhJIkaX4ZwJckLYoys+xIli+lEhNuUJ+ep/GWSVZc1vW2YRnx/wS2TrLimlHmkGTFQXka/wPYG9gSuBn4JvCpJCuuHWWMpabSqK0NHA88c8BuBfBX4H9YMRt/kvCA5IfzMb8xsC39syJj4BkLOx1J0jhKsuISQhJDL7sSgvew/PlkGaE84C7Au/u8dxI4bi7mKEmSxoMBfEnSYtmO3nXQJ4D1gX0IgfVOP+nznrajRw3etyVZcRze6E7HpxkcvG8RfofvAx5CqOW7dsf2vwI7Nav1VbX+7Z0MLiG0qn7fkqS5s8+AbWsRSuydSriW6m56/x/C6kJJkrSKsImtJGmxvIL+S7wj4DU9Xj8SOL/H+yYJTWm/NGez0woqjdq6QDpkt1uANzar9V80q/VvABsAryOUSXo6sEWzWr9oXie6uI6hfwC/RWhoK0nSIJsM2f484CXAEcA9Ha+fAzwryYrz5mtikiRp4ZmBL0laLGsxuCTOWt0vJFlxe57GzyTUhX0JU4HSM4C39ii5o7n1CGCNIfu8u1mtf6f9RbNav5XQqG+pOJ0QxN+p6/VJQk8DsyIlSbO1fpIVNwPVPI3fByTA9UlW/GO6A5UlDXcE3gk8BrgKaABfSbLiP3M4Z0mSNENm4EuSFssZ9G9GOwn8pteGJCuuTLLiZcBGhHrimyRZsa3ZZgtilL4AfRsHLwXNar1FWHFwIKGnAoQHVScCWzer9QsXa26SpJXG7UO2//dckmTFtUlWnD6T4H3pE4S+NM8EHgw8HjgY+GmexstmOKYkSZpDZuBLkhbLd4GPEUqsdD5QbhEy6z8z6M1JVjSB5rzNTitoVuvNSqP2a0LN3e4kgEngauDkBZ/YGKk0ahGwefnlN4C/Az9sVutXLt6sJEkrmWOBnYdsn7U8jbcAauWXE13/PhN4K/CFuTiWJEmaOTPwJUmLIsmK24HnAP/s2nQ7sEuSFb9e+FlpBO8kZJZ39iGYLD/e3KzW716UWY2BSqO2GuHB1O+A9wPvIDTx/XWlUdtoMecmSVqp1AnNaLtLDU4SegHNVT+VXejfj2gS2HWOjiNJkmbBAL4kadGUy70fTWjGthch22yDJCu+uagTU1/Nav1c4EmEPgRXAdcDRwNPbVbrP1nMuY2BjwCvLj+PmLrOehTwwzI7X5KkgcqygM+no1RO6RRg+yQr7pyjQ61P/35EE4SSOpIkaZFFrdag/oGSJEkaptKorQFcCdx3wG7bNKv10xdoSpKklVyexhPAUwmB9r931rkvy9+8FrgP8Hvge+XqxumM/1PgBX02F8Cvk6x49kzmLkmS5o418CVJ0iqtzHzfEngMcA3wi2a1ftccH2ZDBgfvAZ4AGMCXJI0kyYpJus4bZVD/MGA3QvZ8C9gd+ESexs9PsuIvo4xdPgDoF7wHiIEvzWTekiRpbllCR5IkrbIqjdojCJmJZwEZcAJwaaVR22GOD3UT/csQtN0wx8eUJC09+xOC97B8ubYHASfkabzaiOO8lf717wEuYI6a5UqSpNkxgC9JklZJlUZtTeCXwBZdmx4IHFtp1J44V8dqVuvXAT+ldzCkBdwK/HiujidJWlryNF4nT+OjgQ/32SUGKsBLRxzykYQHAP3cnWSF9XYlSRoDBvAlSdKq6tXAI1jxemei/HjvHB/vvcDNLB/EL8p/39ms1m+b4+NJkpaOo4CXj7Df40cc7zL6rxybBC4ZcRxJkjTPDOBLkqRV1TOZCqB3mwCeM5cHa1brfyfU2m8QSurcCZwMPK9ZrR8xl8eSJC0deRpvBTyPwRnzbdePOOzX6R8PmCi3S5KkMWATW0mStKq6i8HBjrluZEuzWv8X8JbyQ5KkufCsEfcrgO+PsmOSFb/N0/hAYN/yfTEh834COAL44QzmKUmS5oEZ+JIkaVX1I/pf67SAoxdwLpIkzdQ9I+73viQrruy3MU/j9fI03iRP42UASVbUgBcSerScB/wceBWwa5IVgxrcSpKkBRS1WvalkSQtjPKGcQtC8PSPSVbMeQa01FZp1CYITWyf2bVpErgBeGKzWv/3Qs9LkqTpyNN4U+AfA3a5AXhTkhU9m6Xnafw44HNMlY67GTgE+Ej7WixP4/sCewJvBNYBzgIOTrLiF3PyTUiSpBkzgC9Jmnd5GkfA3sAHgfuVL18L7A8ckmSFJyPNi0qjtjZwEFAFlpUvnwS8q1mtn79oE5MkaRryNP464VzWabL8eGaSFaf1eV8C/B5YmxVXpR1NaPh+f+A0YFNCkkXEVFmddyZZ8eU5+jYkSdIMGMCXJM27PI33Bep9Nr8ryYovLeR8tPRUGrX7ABsB1zWr9b7lBSRJGkd5Gq8GfAx4JyEYD/BXYM8kK3414H0ZsDP9S8o9BXgD8C569425B3jooNI8kiRpfhnAlyTNqzyN7w1cydTNZrdrgUqSFXcu3KwkSZJWPuV1VQLcBlwwbBVjnsa30P8arAUcCLyDUDann72TrPjcDKYrSZLmwL0WewKSpFXe1vS/cQR4IPAk4PSFmc7SUmnUtgJ2BTYELgS+2qzW/7a4s9J8qzRq9wN2BO4L/Bk4uVmtm7UhSSu5JCtuA/7U/rosU7gV4XrrDuC4JCuu6HjL6gOGawFrMjh4D7DezGYrSZLmQr9ldJIkzZVRzjW9lmxrliqN2v6EJnRvBXYA3g38tdKo7bGY89L8qjRquwOXA18HPkto5PvXSqP2yEWdmCRpTuVp/ADgFOBMQpPaw4BL8zQ+oAzsA5xKqGffywTwa+AiQjC/n/PmZMKSJGlGDOBLkubbGYSMsH5uBP64QHNZMiqN2nOAj5RfTpQfUfnxpUqj9oTFmpvmT6VR2wE4BFija9OjgZ9XGrXVFn5WkqR5chSwXddrMbAfoSwOhB5EE6wYoJ8E/g4cD3yB3skUk4RSh0fP0XwlSdIMGMCXJM2rJCtuBj49YJd6khWDAvyamd3pn3E3CbxtAeeihfN+wu+3OxAzAWwMvGzBZyRJmnN5Gj8JeBa9A+8tYN88jSeSrPgl8Cbglq59fg88L8mKe4AvAt8sX59k6vrhFuAlXqdJkrS4DOBLkhbC/sDHWT4T/zbgg8BBizGhJWBTQhZeLxGwyQLORQvnafS/vmsRaiRLklZ+g/5/HgEPBTYASLLiW+XnrwR2A54MPC3Jima5vQB2AbYFDgWOBPYCHpFkxe/m6xuQJEmjsYmtJGneJVkxCfxvnsafIdxwtoDfJllx6+LObJXWJJRN6RXMbRFqpGvVcwcwqEzO7Qs1EUnSvBrl/+f/TZxIsuJ24Af9dkyyogWcVn5IkqQxYgBfkrRgkqy4CfjpYs9jiWgAz++zbaLcrlXPUUCV3g9uIqxjLEmriuOBe+h9Tz8JnJJkxfULOyVJkjQfLKEjSdKq6SjgO+Xnk+W/7Zq2nwdOXfAZaSEcANzA1O8cphoXZs1q/ZyFn5Ikaa4lWXE1oTwhLN+gdhK4G/jAgk9KkiTNCwP4kiStgprV+iSwM/BGQrD+QuAXwE7AXs1qvTXg7VpJNav1iwh18I9l6oHNNcB+wFsWa16SpHnxceCtwEUdr/0K2C7JirMWZ0qSJGmuRa2W9++SJEmrmkqjtjawNnBNs1ovhu0vSVo55WkcAesB/ynLFUqSpFWIAXxJkiRJkiRJksaQJXQkSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvAlSZIkSZIkSRpDBvClVVgURRNRFP02iqJW+bHbiO97U8d7zoqiKO6xTxxF0U5RFH0tiqK/RVF0bRRFd0ZRdEUURWdHUfSpKIq2mcZcL+44ZvfHbVEUXRpF0U+jKNoriqIHTOfnIEnSXBhwnmpFUXRLFEUXRVH0oyiKdoui6N6zPMiNtBcAACAASURBVNa8ncPL/TyPS5IkSSuBqNVqLfYcJM2jKIoS4BxgTeBm4HGtVuvSAfs/BPgbcF/gLuCJrVbrb137PB/4HPDoEaZwIvDuVquVD5nnxcDDRhgP4Hqg2mq1jhtxf0mSZi2KoulcOP8beG2r1TpjFseb83N4uZ/ncUmSJGklYQBfWgKiKNoH+HT55YmtVusFA/Y9Hnhx+eV+rVbrk13b9wQ+w9QKniuAHwJ/AW4E1gO2KcdYu9znBmDHVqt16oDjXszUjf/bgKs7Nt8beCywM1ApX7sL2K7Vap3Vb0xJkuZSVwB/p67N6wBbEM5V7QzzG4HNW63WJbM45pydw8t9PI9LkiRJKxED+NISEEXRBPBb4GnlS7u1Wq2v9dgvBRrll2cDT221WkXH9jcBR3S8pQ58tNVq/afHWBsAXwFeUr50G7Blq9X6R585XszUjf8jWq3WxT32WRs4AXh6+dIvWq3Wc3uNJ0nSXOsM4LdarajPPusBvwY2K1/6WqvVGqn8TZ/x5uQcXu7jeVySJElayRjAl5aIKIo2JSzDX0ZYhv/YVqvV7Ni+IXAufZbdR1G0MfBnQhYdwN6tVutzQ44ZA98HXl6+9Ndy3Ht67HsxQ278y/0eW84T4B7g/q1W65ZB85AkaS6MEsAv99sB+HH55dWtVmv9WR53Vufwch/P45IkSdJKyCa20hLRarXOB/63/HId4KtduxxOuPGHkI3XXTP3A0zd9P902E1/ecwCeDNwZfnS44FXT3Pq3WP+jbCUH+BewCNnM54kSfPgNx2frxdF0bqzGWwOzuHgeVySJElaKRnAl5aWzwK/Kz9/QRRFbwaIomhX4EXl638ADup8UxRF9wPe2PHSR0Y9YKvVupHQKK/tPdOccy93dny+bA7GkyRpLt3Z9fVcnKtmdA4v9/E8LkmSJK2kDOBLS0iZSVcF2rVuPxNF0VMJQQEIy+7THkvjnw6sUX7+j1ar9ftpHvobHZ9vGUXRffvuOUQURQ8kNNhr+/dMx5IkaZ48tuPzO1m+oeuMzOIcDp7HJUmSpJWWAXxpiSmbz7Uz79YFTi3/BfhYq9U6t8fbtu74/IwZHPNK4OLyywngqdMdo0ONqf93XczUsn5JksbFBzo+/11rjppOzfAcDp7HJUmSpJWWAXxpafoMcGb5+Wrlv38ADuyzf6Xj8/NneMzO9204nTdGUbRWFEVbRVH0dWCfjk0HzlVQRJKk2Yii6D5RFD09iqLjgFd2bKrP8aGmew4Hz+OSJEnSSuteiz0BSQuv1WoVURSdCDyl4+X9+iy7B7h/x+c3zvCwne97wJB9L4qiaNh4B7darcNmOBdJkmYliqJRAs97t1qtn83lcWdwDgfP45IkSdJKywx8aQmKomgz4P1dL++9GHOZgYuBbVut1l6LPRFJkvr4E/D4Vqv1uaF7TtNKfg4Hz+OSJEnStJiBLy0xURTFQAYsK1+6BngQ8PwoiqqtVqvR423Xd3w+08Z1ne+7bsi+b2Oq4d/qwEbAKwg1dx8O7BtF0atbrdZ/er9dkqR5t1PH52sSzk9vIDSw3QJ4ZxRF72i1WpPdb4yi6HnAWv0G/v/s3Xl8TFcbwPHfSchCNGlQqipRSr2IfS9Cqa0qVVRLK7YWraVVtTex001rpy8Se5Xa+yL2tdWmWpRuKtHayWIJEsl5/7gzI5NMVkkmief7+cwnM/eee+4zsdw7z5zzHK31elvbM3kNB7mOCyGEEEIIkWdJAl+Ih89Q7k+7/xZjob0fMerofqaU2qq1vpDkmH8TPa+QyfMmPu5cGm23a63Dkmz7RCk1FPgEaA8sxEiUCCGEEDnOVpJdKTUV+AIYiJHEjgBG2Th8AeCVSvcp1Z/JzDUc5DouhBBCCCFEniUldIR4iJim3Y8zvYwG3tRaHwMmmbZ5AHNtHHoo0fMGmThvCaCs6WUCcDijfQBorT8F1plevqaU6pyZfoQQQojsYFqQ9V2MpDoYI83rpXJIuj3ANRzkOi6EEEIIIUSeJQl8IR4SSikHYBH3p90P1VqbR9BNBo6ZnndQSnVNcvg+4K7peSWlVK0Mnv6NRM9/0FpHZ/D4xN4HzAv1TVVKOT1AX0IIIUSW0lrHc78mvQPGiPOkbby11iqlR9L2D3gNB7mOCyGEEEIIkWdJAl+Ih8d73B91t11rvdC8Q2sdB/Tk/gfqmUqp4on2RwLLEvUVmN6TKqXcgSGJNs3IWNjWtNZ/A0tNL58C+jxIf0IIIURW01rvB3abXj6rlGr7gF1m+hpuaiPXcSGEEEIIIfIoSeAL8RBQSlUEJphe3gD6Jm2jtf4J+Nj0shgwM0mTKcAt0/MXlFKD0nFeR+BLoJRp03FgdYaCt20axhR+gJEyek8IIUQuNCXR84DMdpJF13BzPHIdF0IIIYQQIo+RBL4Q+Zxp2v1i7k+7H6a1PptC83HAKdPzV5RSHcw7tNangbcTtf1CKTVRKeWCDaZ6uWsBc33bW8ArWut7ttpnhNb6d+7X0C2NjN4TQgiRy2itQ4BQ08u6mRmFn1XXcFM8ch0XQgghhBAiD1LGWltCiPxKKTWU+/V3dwEtdCr/8JVS9YGDGF/wXQAqm6bem/cPAT7l/heA5zE+4B/HWFSvGNAIeBFwM7WJAvy01ntTOW8Y4GV6WVZrHZbG+6rF/UUC/wXKa63vpnKIEEII8UCUUpbrp61a9TbavwysMb38QWtdN4Pny9JruKmNXMeFEEIIIYTIQySBL0Q+ppSqAPwMuGKMnKuqtT6TjuM+5f4CfMFaa/8k+1sD04Fn0hFGCDDQNNoutXOGkYEP/qZjtgMtTS/f0VrPTkc8QgghRKZkIoHvAJwEKpo2vaC13pLOc2XLNdzURq7jQgghhBBC5BGSwBcinzIlDfZhjKID48P3rHQe6wocA8qbNrXRWm9N0sYR6AC8ANQHSgBFgAiM0Xy7gW+01gfTec4wMv7BvxnGiESQ0XtCCCGyWUYT+KZjegKLTC/TNQo/u6/hpnZyHRdCCCGEECIPkAS+EEIIIYQQQgghhBBCCJELySK2QgghhBBCCCGEEEIIIUQuJAl8IYQQQgghhBBCCCGEECIXKmDvAIQQQgghhBBCCGF/Sqk6QD3AB2Ndi0cxFtO+jbFGRjjGOhvfa61/tFecQgghxMNEauDnE0qpcACttVdabYUQQgiR9eRaLIQQIi9SSjUHXsdY1NozA4deAzYBy7TWu7MjtrxK7gmEEEJkJUng5xNKqSh3d3f3qKgoe4cihBC5ibJ3AOLhIddiIYSwSa7FuZBSqgDQCxgCVDRvzkRX5oTC78B0YLHW+l4GY/EA6gB1TY86wOOm3Xu11r6ZiCvpOQoCzYGWQH2M9+wBxGDMKtgLzNdan3jQc5nOJ/cEQgjx8Mj2ex0poSOEyBarV68GoEuXLnaORAghhHg4ybVYCGGLUqobMAGjRI456XAPOA58B3wPnAIiMUbZXwfcMUbnewKVMMrs1AOqYuQVngHmASOUUmO11isyENJRwPuB3lQqlFLFMd5PURu7H8F4D1WBAUqpqVrr0dkVixD5gdxfCJHzJIEvhMgWMTEx9g5BCCGEeKjJtVgIkZRS6gDQgPuJ+0PAcuArrXVEKodGmB4AR4BgU3+eQBegO9AQKAssVUr111o3Tm9YiZ5fAn7AKOeTVZy5n7w/AWwADgMXgcIYI/OHYHxJMUoplaC1HpuF5xciX5H7CyFyniTwhRBCCCGEEEKIh0NDjNH2S4ApWuvTD9KZKek/D5inlHoKGIVRT79hBrqZBZwBjmit/wFQSmVlrV8N7AACtNaHbOzfp5RajvFlRjGMWQSLtNZnsjAGIYQQItMkgS+EEEIIAJRSpTCm0z8KuAK3MUbbhWutL9gzNiGEEEJkiYXAJK11WFZ3rLX+G+ijlJqEkchP73GfZHUsSfo/h1H7PrU2fyqlxgMzMPIkfhg1/YUQQgi7kwS+EEII8ZBSSnkDLwKtMBaN80yl7TWMKfPbgI1a6/AcCFEIIYQQWUhr3TcHznEGyPbzZIPdiZ6Xt1sUQgghRBKSwBdCZIuyZcvaOwQhhA1KKUegMzAAaJR4VxqHFgPamB7TlVIHgTnAGq11fHbEKoR4MHItFkKIDHFK9FzubYRIgdxfCJHzJIEvhMgWTZs2tXcIQohETIn7XsAYoLR5c6ImYcApIBK4BlzHWMzN0/SohFFex3zcs6bHNKXURGCxJPKFyF3kWiyEEBmS+D/NU3aLQohcTu4vhMh5ksAXQggh8jmlVEvgC6Ai95P2F4CvMKaLf6e1vpKOfh4D6gHNgFeAx4EywHzgXaXUYK31jqx/B0IIIYQQ2UcpVRgYYnp5F9iQRvuoNLp0z4q4hBBCCJAEvhAimyxfvhyAbt262TkSIQRG3XqAe8AqYAmwS2udkJFOtNaXgU3AJqXUUOA54A2MZH4lYCtybyFEriHXYiGELUqpz0xPF2qtf02hTRnT08ta6zup9OULfAZorXWtLA00Z32CMSgBYJbW+rw9gxEiN5P7CyFynnzIFkJki7i4OHuHIIS4Lx4IAiZprcOyokOttQZ2ADuUUh9ilOZ5PSv6FkJkDbkWCyFSMATQwB7AZgIfo7ReAtAR2JhKX+5AdVN/eZJSqhfQz/TyV2BsWsdorT3S6DMKGYUv8im5vxAi50kCXwghhMj/ns6qxL0tpr77mGrhCyGEECJ/SGuB+zxPKdUGmGd6eRXoqLW+bceQhBBCiGQc7B2AEEIIIbJXdibv7XEeIYQQQogHpZRqAqwFCgLRQCut9R/2jUoIIYRIThL4QgghhBBCCCGEeGgopeoCmwFX4BbQTmv9k32jEkIIIWyTEjpCiGxRoUIFe4cghMhmSqnKKS1+J4SwP7kWCyFEckqpasBWoAhwF/DTWh+0b1RC5B1yfyFEzpMEvhAiWzRs2NDeIQghsolS6j9AIPASxrRzIUQuJNdiIYSwppSqBIQAjwJxQGet9Q77RiVE3iL3F0LkPEngCyGEECJdTB96A4BOPAQL2wkhhBAi/1BKlQN2AMWBeKC71nqTfaMSQggh0iYJfCFEtggKCgLA39/frnGIvCsuPo6CjjK4OzsopVyBJkAFwAU4CxzRWp9JoX0FYDz3E/fm5H109kcrhMgsuRYLIR4GSilvwHwPs1dr7WujzZPATqAUoIHeWuvVORSiEPmK3F8IkfNkEVshhBC5zqWblyg/szwzvp/BvYR79g4nX1FKDQTOAd8CnwNTgRXAH0qp5UqpwonaFlJKzQSOA50x7hsUcAUYDXjlcPhCiBwwatQolFIsWrQo2T6tNb6+vjg7O3PixAnL9oSEBIKDg2nevDlFixbF2dmZMmXK8Prrr/Pzzz/bPI+3tzdKKcvDyckJLy8vevfuzdmzZ9Mdr7+/v1U/iR/PPPNMxn8BOWzPnj0EBgYSFRVl71CEsAulVHWllH/iR6LdJZPuU0qVzGD/RTFG3pvvW2YDoUqpKqk8ymbNuxNCZET8+QvcmDGTuJOn7B2KELnKA4/AV0qVwrgQPoqxgvttIAII11pfeND+hRBCPHzeD3mfs9FnGbx1MPvP7ufrzl/bO6R8QSn1IUYJHEheAscR6Ao8oZRqBpTBWOCtQqK24cAnwEKt9Z3sj1gI8SA0mjtxd/j96u9ULFYx3ccFBgayadMm3nvvPZ5//nlKly5t2ff555+zd+9epkyZQpUqVQC4desWL730EiEhIdSrV48RI0bg6enJH3/8weLFi1m5ciUzZ86kf//+yc5VunRppkyZAsDNmzfZv38/ixcv5n//+x/Hjx+naNGi6Y577ty5uLm5WW1zd3dP9/H2smfPHsaNG4e/vz8eHh72DkcIe/Dj/v1JUhWBxUm2NQMuZqD/qhj3M2bvmB6p2Qv4ZuAcQggbtNbcO30axyeewMHVNdW2Cdevc8XvJeLPnePG7DmU2Lsbx5IZ+r4uxymlaNq0KXv27LHafvHiRYYPH87OnTu5cOECCQkJREZGZuo6n9I5xMMlwyPwlVLeSqlBSqktSqkrwD/AAWATsNr08yDwr1LqslJqs1JqoFJKRukJ8RBYuHAhSik+++yzFNu0a9cOpRRz5syx2h4TE8P06dNp0qQJxYoVw8nJiccff5z27dvz9ddfo7W22Z+vr2+yEXdubm5Ur16dcePGcfPmzQy9h8DAwBRH8iml8Pb2zlB/uYVSCl9fX3uHkaY9YXtYdmyZ5XXfmn3tGE3+oZQqD4wxvwQuAOuAVRgj7M3bGwPdgW0YH5oV8AfQAyivtZ4tyXshcr+1J9dyIPwAR84fYdzecRk61snJieDgYG7dukXv3r0t23///XdGjx5NvXr1GDZsmGV7v379CAkJYdSoUXz33XcMGzaM3r17M23aNE6ePEnlypV5++232bEj+TqR7u7udO/ene7du9OvXz+WL1/OkCFDuHDhgmWKfnp16tTJ0pf50b59+wz1kZobN25kWV9C5BITlVK7bD3S08bUboK9ghdC5G46IYGod9/jctNmXG7ZivirV1NtHz1+AvHnzhnH3rzJ9Wkf5USYyZg/9z8If39/li5dStOmTRkzZgwBAQG4uLhkUYR5z549e2zmVgoVKkTlypUZMWIEERERlvZp5WRSytGEhYWlq31YWJh9fhEPIF0j8JVSjhhT5wcAjRLvSuPQYkAb02O6UuogMAdYo7WOz3i4Qojcrnfv3mzcuJGNGzeyc+fOZHXx5s6dy7fffkubNm0YMGCAZfuvv/5K+/btOXPmDF5eXrz88ssULVqUs2fPsmXLFjZv3kzLli1ZvXp1it9a9+jRA29vb7TWnD9/nvXr1xMYGMjGjRs5fPgwTk5OGXovTZs2tZnwltFx2Sc2PpYBW+7/vehSuQvPl3vejhHlK70wrvsa+BQYqbW21CdSSr0AfIVRE38exqy6O8BwYLbWOiHHIxZCZFqpIqVIwPhne+zSsQwfX7NmTUaOHMmECRNYsGABvXv35o033kBrTXBwMI6Ojkbfx46xbNky6tWrx8SJE5P1U6xYMVasWEHVqlUZMWIEP/74Y5rnfu6555g+fTp//vlnhuNOzb179/j0008JDg7m77//pnDhwjRp0oTx48dTtWpVS7uwsDDKli1LQEAAlSpV4qOPPuLkyZO88sorli8VduzYwUcffcSRI0e4c+cOFSpUYMCAAfTr18/qnIcOHWLChAkcPXqUqKgoihYtSrVq1fjwww+pX78+/v7+BAcHA1C27P2KHQEBAQQGBmbp+xfChsqp7NPpaJMltNaBQOADHB9GKrkJrfWe1PYLIbLHjY8/IebrNQDEnzlDRL8BFFu1AlUgeSryzq7dxKxcZbUtZvXXFO7pj5OPT47EmxmnTp2iUKFCVttiY2MJCQmhRYsWLF++3E6R5U5eXl6WHJHWmqtXr7J161amTZvGunXrCA0Nxc3NzWYe5ueff2bDhg1Uq1YNPz8/q31JczTu7u4MGTIkxTjyYk4n1QS+KXHfC2PEnnnubOILXxhwCogErgHXAXfA0/SoxP06cwp41vSYppSaCCyWRL4Q+c+XX37J/v37WbNmDWPGjKFiRWPa/h9//MH7779P0aJFrerqXrx4kZYtW3LhwgVGjhzJ+PHjKZDooh4REcFrr73Gtm3b6NKlC1u3bsXBIfkEIn9/f6v/6KdOnYqPjw8//fQTK1eupEePHhl6H76+vvLhOYdNPzydU1eNeoduTm589nzKMzlEhj1r+hmqtR6WdKfWerNSagrGYrWuQDzQQmt9KAdjFEJkkSqPVeFXfgXg92u/Exsfi5Njxr7IHjt2LBs3buT999/n559/5siRI3z66aeW6zrA2rVrAejTp0+Ko9UqV65MgwYNOHToEOHh4Xh5pT4x9/Tp0wB4enpmKN7EI7fM3N3dKVjQWBC9W7durF69mpYtW9K/f38uXrzI7NmzadCgAfv376dGjRpWx65fv54ZM2bQv39/+vXrxyOPPALAggUL6NevH/Xr12f06NEULlyYkJAQ+vfvz+nTp/n4448BY8ZCy5YtKVmyJIMHD6ZEiRJcunSJAwcO8Msvv1C/fn3eeustrl+/zrp165g+fTrFihUDwCcXJytEviEJbSFEplSunPb3ejFrv+HGjJlW22IPH+b6pMm4B3xotT0hKorIRDP7cHKC2FhcO3bEsXjxLIk5u9haa+fixYskJCRQqlQpO0SUu3l7eyfLscTGxtKwYUNCQ0NZs2aNJa+TNIkfFBTEhg0bqF69epp5Gg8Pj3yXy0kxga+Uagl8wf3p82BMt/8K2A18p7W+ktYJlFKPAfUw6tS9AjyOUVd3PvCuUmqw1jr5fFohRJ712GOPsXjxYvz8/OjevTuHDx8GoHv37sTExLB06VJKJqplN2bMGC5cuEDXrl2ZPHlysv48PT1Zu3YtPj4+hISEsHLlSrp165ZmHEWLFsXPz485c+bwww8/ZDiBn16hoaFMnjyZ/fv3Ex0dTcmSJWnXrh1jx47l8ccft2prHml3+vRptmzZwpdffsmff/5JvXr1LDXtIiIi+Pjjj1m/fj1hYWE4OTlRu3Zthg8fzvPPW49Gj42NZd68eQQFBXHmzBnu3r3LY489RrVq1Rg4cCAtWrQgKCiInj17ArB3716rBEtuGuEXHhXO+H3jLa/H+47niUeesGNE+U4FjNF0q1Np8xVGAl8DayV5L0T61A/YZu8QbHJgAt87tIYE+O3qb/iUyFhSuGDBggQHB1OnTh3mzp3Ls88+m2w0k3kh25o1a6baV61atTh06BDHjx+3SuDHx8dz1TSl/ubNmxw4cIDAwEAKFChA165dMxRv4i8WzP73v//RunVrQkJCWL16NV26dGHVqlWWa2GXLl2oVasWgwYNYv/+/VbH/vrrrxw7doxKlSpZtl24cIFBgwbRtWtXVqxYYdk+YMAABg8ezGeffUb//v156qmn2LZtGzExMaxcuZK6devajLlBgwb4+Piwbt06/Pz88myZPpHnNLN3AEKIvKtOnTpptnGqWYMCTz3Fvb//xvHxx4m/YCyReXPBlxSsXo1CHTpY2kYFjCPh4iUAHIoVo+jiRZY+cruk9em9vb0JDw8HIDg42DLLrkePHlalAVeuXMmCBQs4evQod+7coWzZsnTr1o1hw4bh7OycrnNHR0czdepUvvnmG8LDw3F1daVu3boMGzaMFi1aWLXds2cPzZo1IyAgAD8/P0aPHs3BgweJjY2lTp06TJkyhYYNGyY7x4ULFxg1ahRbtmzhxo0bVKxYkXfffRcvLy9Lfw+aT3BycqJp06aEhoZy5UqaaeaHVmoj8M2fRO5h1MddAuzK6BR6rfVljLr4m5RSQ4HngDcwkvmVMBbIe+DFdIUQuUvbtm3x9/cnKCiI8eONpOwPP/yAv78/HTt2tLS7ffs2y5YZ9c4//PBDm30BFC5cmKFDh/L222+zYMGCdCXwEzOPvstqmzdv5uWXX0ZrTadOnfDy8iI0NJS5c+eyYcMGDhw4YDUl3mzw4MHs37+fdu3a0bZtW0spgvDwcHx9fQkLC6Nx48a0bt2aW7dusXnzZlq3bs38+fPp2/d+TXh/f39WrlxJlSpVeOONN3B1deX8+fMcOHCArVu30qJFC6pXr05AQADjxo2zmrIG5Kqa+IO3DiYmLgYAnxI+DKw30M4R5TvmeYJhqbQ5k+j5vuwLRQiRUwpSkDjiOHbpWIYT+GCMYHd2diYuLo62bdsmmwF3/fp1S7vUmEevR0dHW23/7bffKJ5kdF358uVZtmxZhkehr1271nIeM/Oo+nXr1gEwevRoqy+yq1WrRvv27Vm/fj1XrlyxiqVdu3ZWyXuANWvWcPfuXXr37m354sGsffv2zJgxgx07dvDmm29aficbNmzAx8fnoa59K3IXrfVee8cghMi74uLigNQ/YxcoW5biG9dzfdpHPDJqJJGDh3BnewgAUUOHUfDpChT8TyVub9/O7TVrLMd5TJ2cJxL3KRkyZAhhYWF88cUXVqVeqlevbmnTq1cvFi9eTOnSpXn55Zfx8PDgu+++Y+zYsezcuZOQkBCrigS2REVF0ahRI06ePEmdOnUYMmQIV69eZfXq1Tz//PPMnTuXt956K9lxP/74Ix999BENGjSgT58+nD17lrVr1/Lcc8/x888/Ww2GuHz5Mg0aNCA8PJwmTZrQsGFDLl68yIABA5INLHwQcXFx7N1rXJZq166dZf3mN6n9jYgHgoBJpppyD0wbK1DuAHYopT7EKM3zelb0LURul1tH59ny3bhWD9zH8uXLqVu3Lnv37rWMqvf29mbGjBlW7X788Ufu3r1LqVKlkn1ITqply5ZGfN99R3x8vCXpnZIrV65YPrA/++yzqba1Zc+ePTa/Tfb398fb25ubN2/So0cP7t27x549e2jcuLGlzbRp0xgxYgRvvfUW27dvT9bHTz/9xNGjR5Ml93v06EF4eDgrV660GnkYFRWFr68vgwYN4sUXX6REiRJER0ezatUqatWqxffff5/s93Ht2jXAuFkwL+hra8pabrDp901s+H2D5fXcdnMp4CDf7WYxJ4yR9bEpNdBa30uU2DqfE0EJIbJXN7oRRBDHLx1Pu3ESWmt69uxJbGwslSpVYuLEiXTp0oVy5cpZ2qSUmE8qpUS/t7c3X375JWBMOZ87dy7Hjh1L84OrLU2aNLGUoEnqzJkzODg42LzXqFy5MuvXr+fMmTNWCfwKFSoka3vqlFHmLenItsQuXTJGEXbt2pVly5YxefJkpk+fTv369WnVqhVdu3ZNs4yQEEIIkZuce+LJTB97a+kyq9f69m0ut7SdAI7o82amz2P2xLl/HriPzEqcwLdV6iUoKIjFixfz0ksvsXz5clxdXS37AgMDGTduHLNnz2bw4MGpnmf48OGcPHmSN998k3nz5lkGJwwfPpzatWszaNAgWrVqlWxm35YtW1i8eLHVpEn7ZQAAIABJREFUoL758+fTr18/vvjiC+bMmWPZPnLkSMLDw/nggw+YNm2a1XtMaWZhWsLCwiy/E601165dY9u2bZw9e5YRI0bQrFnWTBCLiopKMe9RsmTJZGsW5QWp3Rk/nVWJe1tMffcx1cIXQuRDrq6ufPjhh5byLXPnzqVIkSJWbS6YptI9+WTaNwTmNrGxsVy7do3HHnvMan9QUBB79uyxLGK7bt06rl27RpcuXXjppZcyHP/evXst3wQn5uvri7e3Nxs2bCAiIoJXX33VKnkPMHToUObNm0dISAhnz56lTJkyVvs/+OCDZMn7X375hb1799KpU6dkZQM8PDwYN24cfn5+rF27lgEDBqCUQmuNs7OzzTUBihYtmuH3bA8xcTEM2jrI8rp3jd40fDL59D2R42TRWiHSKSu++M4OH8/+mJOmQeLHL2c8gT9z5kz27NnDpEmT6NChAzVr1qRXr17s2bPH8kGxSpUqfPPNN/z000+pltH56aefAKwWiwVjhl3iZHinTp2oX78+r7zyCidPnkxWii4nJV2UDowPmwBLlixJMbannnoKAGdnZ0JCQjhy5Ajbtm1j3759fPjhhwQGBrJixYpM3ZsIkRWUUmcwrvNvSTlbIYTIOV988QUFChRg0aJFVsl7MNYemjVrFsuXL081gR8bG8uyZctwc3NjypQpVjMLn376aQYNGsTEiRNZsmRJsioHjRo1skregzEj4J133uHIkSNW51i5ciXu7u6MGTPGqn21atV44403+O9//5vRt094eDjjxo1Ltr1169Z0SFRW6UFFR0fbPA8Y8eerBH52Ju/tcR4hRM6LjY1l+vTpltdff/01rVu3zrbzmevLJdazZ0+rBXMzIq16buZkRPPmzZPtK1CgAE2aNCEsLIyjR48mS+Db+sbavFZAdHS0zfOa68GZR/898sgjtG/fnk2bNlG9enVefvllGjduTL169WwmHXKrSfsmERYVBoCnqydTW0y1b0BCCJFPFHYqbHl+7NKxDB37559/MnLkSOrUqcPw4cNxdHQkMDCQUaNGMXPmTAYNMr547dixI+PHj2fhwoX07t3b5kK2J0+e5NChQ9SsWTPNkecuLi5Mnz6d5s2bExAQwIIFCzIUd0qeeuopEhISOHXqVLLSPCdPngSwWfIuqaeffhqAYsWKpToKP7G6detarvv//PMPNWrUYMyYMZYEfkqL/wqRjbwwZuXlnRtGIYTI42JiYvjll18oVqwYn3/+uc02zs7Ols/7Kfn999+JiYmhUaNGeHp6JtvfvHlzJk6cyNGjR5Pts1WipmDBgpQoUYLIyEirc9y+fZvatWsnG4QJRoWDzCTwE68XAEbVgEOHDjFo0CCaNGnC+vXradu2bYb7TcrLy4uwsLAH7ic3kfoEQuSQ3Do6LzutXr2a3377jcGDB7N3714WLVqEn58f7du3t7QxL2b7zz9pT3Mzt3FycrI5unz37t34+voSFxfHqVOnePfdd1m8eDFPPfVUsm+Ns4K5XEBKI/DM26OiopLtS7yIr5m55E1ISAghISEpnvfmzZuW51999RXTpk1jxYoVBAQEAEbyo1OnTnzyySeUKFEine/GPv735/+YevB+wn5ai2kUK2S7/IHIMs2VUh5pN0tfO631kiyISQiRDVwLuqIwksPnbpwj4nYEnq7JP+gllZCQgL+/P/Hx8QQHB1tKtH3wwQd88803jBw5knbt2lGuXDmqVavGq6++ysqVKy1TvxOLiIige/fuAEydmr4vaJs1a0aTJk0ICgpi5MiR6Uqsp8W8qP2UKVNYsWKFJWl+4sQJNm7cyLPPPpusFr8tXbp0YdSoUQQEBODr65ts9Fx0dDQuLi44Oztz9erVZCV9SpcuTfHixYmIiLBsc3NzA4zflSxiK4QQIjdKXJbGvBireSR3zLp1RL5zf0Z18U0bU61jn3DjBg42ksK23Nm7l2uvGfcRKEWhbt24s2MHCRcvWrXzXPglrkkGC0YFBOL6Qjuc07Hobk6IjIxEa82VK1dSHB2eHg+Sh/DwsP3xrkCBAsTHxyc7R0r5hKzKMxQtWpT27dvj6upKy5Yteffdd7MkgZ8f5XgCXylVWWv9a06fVwiRs06cOMGuXbuoWrUq06ZN488//6R27dr07duXEydOWD7Q1qlTB2dnZ86fP8+pU6dSrYO/Y4cxw7d+/fqp1r8vWLAgPj4+bNq0if/85z8EBATQrl07y0J2WcVcx/dikpsHM3N5IFsL+9kabWdu98UXX1hGNqbF1dWVwMBAAgMD+eeff9i3bx9BQUEsW7aMsLAw9u/fn65+7OG3q7/RdW1XEkxrozcu05heNXrZOaqHQlqrA+t0tjO3lQS+ELmUQlG4YGEw1prj+KXjNPVumuZxn376KYcOHWLatGlW12VHR0eCgoKSldKZP38+ly5dYvz48YSEhNCxY0c8PT35448/WLx4MVevXmX27NmWtWzSY+zYsbRs2ZKJEyeycOHCDL/3pFq2bEmXLl1YtWoVkZGRvPDCC1y8eJHZs2fj4uKSbI2elJQuXZq5c+fSp08fKlWqxOuvv46XlxdXrlzh+PHjrF+/npMnT+Lt7c3EiRPZvn07L7zwAmXLlkVrzaZNm/jtt9/44IMPLH3Wr18fMOrWduvWDRcXF6pUqUKVKlUe+H0LIYQQ2eleeDhRI0ZZXrt27EjBGtVTOYJ0J+8BXJo2xfm557i7cydoTcyyZckbFSyIU916Vpv03bvcWraMmOUrKL71fxQsXy75cTnM/Hm/Ro0altn8D9JPZvIQ6WVe48i8rk9SKW3PrHr1jD+/P/74g+jo6AeKPb9KXjQ5myil/qOUWg38nFPnFELYR0REBEuWLKFAgQIsW7YMZ2dnqlSpwoQJE7h06RL9+/e3tHV1deW1114DYOLElJfEuH37Np999hkAb76ZvoVtChUqxLRp00hISLD6oJxVzF8IJJ4CZnbv3j1L8jy1msCJmT/AZzbp/uSTT9KtWze2bdtG+fLlOXDggGVUP4CDg4PVt+r2FHk7khdXvsj1u8aihqUfKc3qzqtxUDl2WXpYqWx4CCFyqerVq5NQMoEiTkVo+GRDyxemqTl16hRjx46lfv36DB06NNn+ypUrExgYyL59+5g5cyYARYoUYfv27SxatAgnJycmT55Mv379WL58Oc8//zyhoaFW1/70aNGiBfXr12fJkiWcPn06Q8emZPny5UydOpXw8HCGDh3KnDlzaNq0KYcPH87Ql/w9e/Zk37591KhRg/nz5zNgwABmzpzJhQsXmDBhgmWWnZ+fH1WrVmX16tW89957jBkzhoiICL788kur2QiNGjVi2rRpnD59mr59+/Lqq6+yZs2aLHnPQgghRFarXr061atXR8fFEfH2QLRphrijtxceUyZleWk49w/HQJLF7R08PSns34NiG9ZT6sxpHD0ftdp/98BBuHMXffs2ke8MRN+9m6UxZYabmxuVK1fm119/tZqJl1EVK1akUKFC/PLLLzZH2e/evRtIfx7ClmeeeQZXV1eOHTvGjRs3ku0/cOBApvu2JXH5noQEWYrNJq11tj6ASsAq4B4QD8Rn9zkfxgcQ5e7uroXIDTp37qwB/dFHH1ltj4+P140bN9aAXrp0qWX7uXPndIkSJTSgx4wZo+Pi4qyOi4iI0G3bttWAbtGihY6Pj7fa37RpUw3o3bt3J4slISFBV61aNcX9tgQEBGhABwQEpNruxo0b2tPTUzs6OurDhw9b7fv4448t8SbWo0cPDegzZ87Y7LNx48bawcFBL1y40Ob+Y8eO6UuXLmmttb58+bI+duxYsjbXr1/XJUuW1AUKFNDXr1+3bC9evLj28vJK9T3lhLj4ON1ySUtNIJpAtOtEVx16PjS7Tmf3/59zywNYnB0Pe7+v3PSQa7HIjW7cvaETEhLsHYZ4uNn9/2d5JLteJZg+m79o71jy60PuCcTDIGrKVP1vqdLGo4y3vnv0aLad69aatfpS6zb62jsD9e2du3RCbGyq7e/88KP+1/spS3xR4yek+1wYs4zT3bZp06ZW286cOaMB3aNHj2TtFy5cqAHdoUMHHRkZmWx/RESEDg21/mxs6xx9+/bVgH7nnXestv/111/a3d1dFyxYUP/999+W7bt37041x+Hl5ZUsV+Dv768B/cEHH1ht//nnn7WTk1O6ciZJz5/0fZgNHjxYA9rHxyfFPhYvXpzi79XM/Lu3Q94j268r6S6ho5RyBZoAFQAX4CxwRGt9JoX2FYDxQCesR+lFp/ecQoi8Z+nSpXz99dc8++yzyUbbOTg4EBwcjI+PDwMHDsTX15fSpUtTqlQptm/fzosvvsjEiRNZtmwZrVu3xtPTk7Nnz7JlyxYiIyNp0aIFX3/9NQ4O6R+lrZRi/PjxvPTSS4waNYpDhw5l2Xt1c3Nj0aJFdO7cmaZNm9K5c2fKlClDaGgo27dvp2TJksyfPz9Dfa5YsYLmzZvTu3dvZsyYQb169fDw8ODff//l2LFjnDhxgsOHD/PYY49x7tw5atSoQdWqVfHx8eHJJ5/k+vXrbN68mYsXLzJo0CCrBWeee+45Vq1aRfv27alZsyYFCxakSZMmNGnSJMt+J+kxbPswQv6+X+M/yC+Imo9nfnSASB+tdU97xyCEyFkxMTE44IBykskyQgghhMgaMTEx3P3+CDGzZlu2PTL8A5yqp14650EUerkjhV7umO72zrVr4T56FNEBgQDcnDcf5yaNcWmadilBM3ONf1vmzJlDoUIZXwe8V69ehIaGMmfOHMqVK0erVq0oU6YMERERnDlzhn379tGzZ0/mzZuXaj9Tp05l//79zJo1ix9++IFmzZpx9epVVq9ezY0bN5g1a9YDryE0depUdu3axUcffcT3339Pw4YNuXDhAqtXr6Zt27asX78+Q7kZgLCwMAIDAy2vIyIiOHToEKGhobi6ujJr1qwHitksKirK6jxJ+fv757l1h9KVwFdKDQTGAUmLECWYyuK8qbW+ZWpbCJgGvGnq3/yJ4QrwOTAbIUS+dPbsWQYOHMgjjzxChw4dWLNmTbKLXtmyZZk+fTp9+/alV69ebNu2DaUUPj4+/Prrr8yfP59vvvmGr776ips3b+Lp6UnDhg1544036Ny5c6am4/n5+VGrVi0OHz7Mpk2brBbRfVAdOnTg4MGDTJ48mW3bthEdHU3JkiXp168fY8eOpVSpUhnqr3Tp0oSGhjJz5kzWrl3L8uXLiY+Pp2TJkvznP/9h4MCBVK1aFQBvb2/GjRvHnj172L17N1evXsXT05OKFSsydepUunbtatX3F198gVKKnTt38u2335KQkEBAQECOJvAXHV3E599/bnk9tslYulTukmPnF0KIh8nq1auB1D+ACiEeao8ppcpkVWda67NZ1ZcQIvf6asUK4n75hXbGbBOcGzfGrd9bdo4qucK9e3Fn717u7jJKykQOfpfHdmzHMckC8ykJDg5Ocd/nn3+eqQQ+wOzZs2nTpg3z5s1jx44dREVF4enpSZkyZRg2bBjdu3dPsw9PT08OHz7MlClT+Oabb/jss89wdXWlbt26DBs2jOeffz5TsSVWokQJDh06xKhRo/j222/5/vvvqVixInPmzKFw4cKsX7/eUis/vcLDw60W8HVycuKJJ56gd+/eDBs2jIoVKz5w3GAswpvaQsG+vr55LoGvtNapN1DqQyDA/NJGEw3sB5oBZYCtGKP0zW3DgU+AhVrrO1kQs7BBKRXl7u7ubqv+lRD2kHRleiFOXTlFtXnViEswVlN86ZmXWNNlTXbXvZdhpyLHyLVY5DZyLRa5hFyLcxmlVAL3F63PKlprne4Z/vmd3BOI/EprzX9HjSIhIpIXNm/BwdPTSIqXKGHv0GyKv3qVyy2eJ+HKFQCcn3uOosGLs7xO/8Nm9OjRTJ48ma1bt9KqVSt7h5MbZPtfqFSzJkqp8sCYRMFcANZh1LQ/nmh7Y6A7sA2oaNr2B9ADKK+1ni3JeyGEeLjN+3GeJXnvU8KHJS8tkUVrBQBKqdJKqWlKqZNKqZtKqSil1FGl1IdKqUfT7iFT53RQSh1WSmnzIzvOI0Ru8FfEXyw/tpzhIcP57t/v7B2OECL3kIXthRAZEvtjKAkR9xccfXT6Z7k2eQ/gWKwYj37+meX13Z07ubU4yH4B5THnz59Ptu348ePMmDEDT09PmmagJJF4MGl9Q97L1EYDnwIjtdb3zDuVUi8AX2HUxJ8HuAJ3gOHAbK21LB0shBCC2PhYlh9fbnn92fOf4ebkZseIhJlSyh3ji/iGwBNAUdOua8A54CCwX2t9PZvO3xpYCXgk2VXd9HhTKdVBax2axad+G6ifxX0KkSvN/H4mM47MAKCIcxHql5a/+kIIwChzG2PvIIQQeYdzndoUPHiAe3+dpnDvXri0eM7eIaXJxdcXtzf7cnPBlwBET5yEU53aOJlK04qU1a5dm/Lly1OlShUKFy7Mn3/+yZYtW0hISGD+/Pm4uLjYO8SHRloJ/GdNP0O11sOS7tRab1ZKTcFYrNYVYyX7FlrrrFslUgghRJ635Y8tXLt9DYAnH3mSZmWb2TkioZTyBkYAbwDOaTS/q5QKBqZprcOyMAYfYA1QGCOBMA3YiXF/0gEYhPGlwmalVC2tdfIhIJk775PAJIwBCleB4lnRrxC5lU8JH8vz45ePp9JSCPGQ6au13mjvIIQQeYuDhwcFq/ng/vrr9g4l3R4ZMZy7hw4Td+IE3L2LvnHT3iHlCW+99Rbr169n5cqV3LhxAw8PD1q1asX777+Pr6+vvcN7qKSVwK+A8eF2dSptvsJI4GtgrSTvhRBgfFMrhFnwL/cXAHqj2htSOsfOlFLdgLkYifP0THl3wVicvptSqp/WekUWhfK5KYZ4oI3Wel+ifXuVUj8BS4GSwESMmYFZYQ5QBPgv8DQgcz9FvmS+Fsc8en+A7fFLksAXQgghROaZ7y9UHhp9rZydeXT2LK60boPrS344N2yQanutNXHHjnF7w0bu/fMvbj390zwmPwoICCAgICDthiLbpZXAN09nD0ulzZlEz/el2EoI8VCpUqWKvUMQucSVW1fY8ucWy+s3qr1hx2iEUmoQMN380vTzd+Cw6ad5tTUPjC/yGwDPmNq6AUuVUkW11jMfMI5agHkqRlCS5D0AWutlSqmeQHPgDaXUCK315Qc87yvACxhlA4YD3zxIf0LkZuZr8a3YWygUGs0f1/7gzr07uBTIOx+6hRBCCJF75NXP+gXLl6PYV6soUO6pZPvifj1JgXJPcS88nNsbNhKzYSPxYWGW/Xe+/ZbCffvgPmJ4nvriQuQfaSXwnTBG1sem1EBrfS/R6s1ZMrVdCJH3RUdHA+Du7m7nSIS9rTi+gnsJxvIpDZ9sSIWiFewc0cNLKfU8YF7FSQFbgQCt9Q9pHFcHCATamI77TCn1u9Z6+wOE0zHR84WptFuEkcB3BF7EGDWfKaYFcb8wvRyqtY5IdA8jRL6T+Fr81KNPcTryNPE6nlNXTlHj8Rp2jk4IIYQQeVFe/qzvVKtmsm0JkZFcfa0b+u5d9I0bKR5768v/4lS1KoVe7phiGyGyS1bXMJBFa4UQAKxbt45169bZOwyRCwT9EmR53qNaD/sF8pBTSjlglKwxX/vf01q3TSt5D6C1/kFr3Q4YgvHFviMw3dRnZpnX2YkBUotht41jMusToASwW2u99AH7EiLXS3wtljr4QgghhMgK+e2zfvTESSRcvZosea+KFKFQ5044N/MFwLl5M1w7vmSHCIVIewS+EEIIkWm/XPyFny/+DIBLARe6VO5i54gean4YpXA0MElr/XlGO9Baz1BKFQXGmvrqAGT27v0/pp9/aq3vpXLO80qpGxg16/+TUru0KKWaYdTQvwv0y2w/QuRVVR+ryrrfjH+uUgdfCCGEEMJQ0McHtXkL+uZNlIsLLi1b4NrhRVyaNUO5uKC1JmbFSlxaPEfS2bvxFy7g+PjjdopcPEzSm8BvrpTySLtZ+tpprZek87xCCCHysMSL1/o944eHS3ouJSKbtDX9PA9MeIB+JmEkwkth1JLPcAJfKeUMFDO9/Dcdh/yDkbx/MqPnMp3PBVhgejlFa/1HJvuJSqNJ3ptHLB4aVUtUtTw/dvmYHSMRQgghhMg93Hq8gWv7F4g78StONWvg4OZmtV8pReFuryU7LuHGDS75NqdgxYq49e2DS5vWqALWaVZ95w5xf/2FUx5dN0DkHulN4A9MY79OZztzW0ngCyFEPhcXH8fy48str/2r+dsvGAHGYrQaWKu1jstsJ1rrWKXUWmAQUD+T3RRJ9PxmOtqb27il2iplAUB54A9gaib7ECJPsyqhIyPwhXjYLcG4Jzhr70CEECI3cPT0xLFJ4wwdE/PVavTNm8SGhhIRGopjqVIU7tUTF9+m3P3ue+7s2k3soUPg6MjjJ46hnJyyKXrxMEhP7VqVDQ8hhBD53Na/tnL51mUAShUpRYunWtg5oodeCdPPrMjcmfsokWqrlLkmeh6bjvZ3bRyXLkopH+B908v+Wuu7qbVPjdbaI7UHEJ3ZvoXIbuUeLYdrAeOf0IWbF7gaczXFtnv27EEpZfVwc3OjZs2aTJ8+nXv3Uqx6ZXHixAmcnZ3x9fVFa51s/8KFC1FKMXr0aKvtx44do0ePHnh5eeHs7IynpyfNmjVj8eLFxMfHJ+snMDDQKk4HBwc8PT157rnn2LhxY5pxpvaeEz++++67dPdlD1FRUQQGBrJnzx57hyLyAK21v9a6p9b6Z3vHIoQQeVX81atQsOD91+fPc33iJC63eJ7oMWO5u2sX+s4d9K1bxB6xXvIrISaGm4uD0LHp+SgkRNoj8IPT2C+EEDY1aNDA3iEIO0tcPud1n9dxdHC0YzSC+6PXsyLJfD1Jnxl1O9Hz9AxFcbZxXJpMi+z+F+N+Z6nWeldGjhcir0t8LXZ0cKRHtR44F3Cm6mNVcXJM+5/eq6++Stu2bdFac/HiRZYsWcJ7773HqVOnWLBgQarHVqlShYCAAEaPHs3MmTMZNGiQZV94eDjvvfceVatWJSAgwLJ97ty5DBw4kEcffRR/f3+eeeYZIiMjWbt2Lb169WLlypWsW7eOwoULJzvf+PHjKVu2LPfu3eP06dPMnz+fDh06sHz5cl57Lfm097Tec1Lly5dPdx/2EBUVxbhx4wDw9fW1bzAiXzKVv6uLUULvFnBKa33avlEJIexBPusb3EcMx62nP7eWLOXWkqUkRETYbFegXDkSYm5Zbbs5ew43Pv+CmwsX4R7wIa4tZbCbSF2qCXytdc+cCkQIkb9UrFjR3iEIO7oWc42Nv98f+dijWg87RiNMrgElgceyoK/ipp+271LTdiPR8/R8CWBuk55yO4kNBupgxDk0g8cKkeclvRbPfWFuho6vWbMm3bt3t7weMGAAzzzzDP/973+ZNGkSxYsXT+VoGD58OOvXr2fkyJG0bduW8uXLo7WmV69e3L59m+DgYJxM08lDQkJ4++23qVq1Kjt37qRYsWKWft5//33GjBnDpEmT6N+/P0uWJK/G2aZNG2rXrm153alTJ6pXr86UKVMylMBP+p6z2o0bNyhSpEjaDYXIIUqpikBTjHVczgL7tdbnE+1XwEiM2WzuSY79EXhba/1jzkUshLA3+ax/n2OJEjwy7H2KDHyHmPXruRW8hPh/z1GwRg1cmvvi0qwZBby8rI65d+4cN+bNAyD+zBki/HtSuHcv3AMDUA7pKZQiHkbyN0MIkS2uXr3K1aspT88X+duqE6uISzDKrNd9oi6Vileyc0QCOGf6mbHijrY9a/qZngVokzGVsTH/B1E6HYeY2/yTwVONMP3cDTynlOqa9EGiLzQSbe+YwfMIkStl9bW4cOHC1K9fH601p0+nPfDW0dGR4OBg4uPj6dmzJwkJCcyaNYtdu3YxZswYatSoYWk7YoTxz3XFihVWyXuzCRMmUK9ePZYuXcrx42lXAqtWrRrFihXjzz//zMA7TJ99+/bRsmVL3N3dcXV1pWbNmixcuDBZO19fX7y9vfn777/p1KkTnp6ePPLII5b9Fy5coH///pQpUwYnJydKlSrFm2++yeXLl636iYiI4N1336VcuXK4uLhQtGhRatWqxccffwwY5X/Kli0LwLhx4yxlf7y9vbP8vYv8QynlpJRaBpwE5mKsEbMC+EspNSZR02BgAkbyPmlp3DrAXqVUk5yMXQhhX/JZ/z6lFL6+vigXFwp37cpj//uWx4//wr2PpvL27t14N2qEo6MjSimioqIAcCxeHPfhw1GJ7gluLVxE5DsDbZbUMZ9DPNwkgf+Qi4q8xt+nT3Hs2BEuXMhoXkQI25RSFC9enOLFi6OUwtHREU9PT3x9fQkKCrJZC9eWixcvUrx4cdzc3Pjrr79stvn6669RStGgQYNktXF37NjBK6+8QpkyZXBxccHDw4M6deowbtw4IiMjbfYXFBSUrO6ts7MzXl5edOvWjV9++SVDv4uwsLBUa+oqpfJkvVp/f3+UUoSFhSXbl6ATmP3D7PttZfHa3GI3xoftdkqpkpntxHRse4zF73Y/QDwnTT+fVkqlOCNQKVUKMN/dnkypXQrMpXdeBlam8Ej87ZJ526IMnkeIXGnz5s1s3rw5S/s0J+49PT3T1b5SpUpMmDCBAwcOMHjwYEaMGEHNmjUZNWqUpc2ZM2f46aefaNiwIZUrV7bZj1KK3r17A/DNN9+ked7IyEgiIiLSHadZTEyMJTFhfty4cX/S0KZNm2jevDmnTp1i6NChTJ48mYIFC9KnT59k9fwBbt68SdOmTSlQoACTJk0iMDAQgLNnz1K7dm3WrFnDa6+9xuzZs3n99ddZtWoVjRo1Ijr6frWzzp07M2vWLNq2bcvMmTMJCAigbt26lvuHSpUqMX36dABeeuklli5dytKlS/n8888z9N7FQ2cp8BoBRoCGAAAgAElEQVTJk/IuwDilVHelVGegO/fXsfsdOGT6ab6hdwWClVIZXqdGCJE3Zcf9RW5i/pz+IPz9/Vm6dClNmzZlzJgxBAQE4OLiYvTv5ITbm30pcWAfLm3bWI65vWEj197wJ+FmypOO7507x72/z6Q7p5JbpLXWkDm3kFablHIpvr6+abY134PlVWnVwBf5nP+4pmx49FcAhuiOTA9ca+eIRH7SoUMHqlevTlxcHH/99Rfr1q1j7969/Pjjj8yaNSvN40uWLMn8+fN5+eWXef311zlw4ACOjvfrqJ87d4633noLNzc3li1bZtl39+5d+vTpw7Jly3B1daVNmzZUqFCBmzdvsmvXLgIDA5k1axZr166lSRPbA4aqVauGn58fANevX+fgwYOsWLGCtWvXsnPnTho1apSh34W7uztDhgyxuS+/jZDb8NsGTl09BUARpyK8WvVVO0ckTNYBw4DCwHyllJ/O4J2fqab8PFMf2tRnZh0AmgCFMEbwHU6hnW+SY4TIlb7c/RcL96SvHHSHWqUZ+aJ1onrKxl/ZEJq+SS29fcvRt5l1Tfahy3/i4B9XrNoUTHpgIgk6AUXqH1DNyWxzDfx58+Zx9OhR6tatS4UKFdIVK8DQoUNZt24ds2bNwsnJieDgYAoUuP8x5MSJE4BRviY1tWrVArA5Aj86OpqrV69aauCPGTOGhISEDJfDCQgIsKrLD/DKK6+watUq4uPjeeedd3Bzc+PIkSOUKlUKgLfffptmzZoxdepU/P39efrppy3HXrt2jdGjRzNx4kSrPgcOHEhcXBxHjx6ldOn7E5E6d+5M/fr1mT59OoGBgURHR7Nr1y769+/PzJkzbcZcokQJ/Pz8ePfdd/Hx8cnWEkAif1BKNQY6Y1zLE4CNwG9AMcDP9PNtIM50yC6gj9Y6LFEfZTHWmWkGlAG6Aotz5h0IIUTucOrUKQoVKmS1LTY2lpCQEFq0aMHy5ctTPNaxaFE8580leuyH3Ao2ygPe3b+fq11eoeiSYBwTz0jUmiudOhN7+DsACpQvT6FOL+PasSMFnihl1a++dw9VwDrdq+/cQd+7h4NbZpcwyxpeXl74+/vb3Ofh4ZHsHgywrPFja1/SXEqPHj1SzK/k9VkMmUrgK6XcMabgNwSeAIqadl3DmKJ/EKN23nXbPYjcoqDD/QXM7t67Y8dIRH7k5+dn9Z/zwYMHadKkCXPmzGHo0KGW6d6p6dixIz169CA4OJjJkyczduxYALTW+Pv7ExkZyYIFCyhXrpzlmP79+7Ns2TJq1qzJ+vXrefLJJy37tNbMnj2bwYMH065dO44cOUKlSsnLu1SvXj3ZN7T9+vVj/vz5jBkzht27Mzbw2MPDI89/45seWmumHJhieT2gzgA8XDzsGJEw01p/p5TaBrQCXgC+Ukr1Se+1WilVBPgSeBHjA/92rfV3DxDSN4B5CG5vUk7g9zL9jMdIMKSb1jrNv3xKqT0YtX/RWj/YUBsh8oCPD37M1tNbCT0fyv6e+6laomqKbW0lszt27Mjs2bNTOMI2BwcHy0j48uXLJ7vuXr9u/Dfk7u6e7NjEzOVnEo9ON2vRwnrxN2dnZ4YPH54scZ6WN998k86dO1ttK1nSmLQUGhrK2bNneffddy3JewAnJyc++OAD/Pz82LBhA++//77V8UlfR0dHs3nzZnr27ImLi4tVGQJvb2/Kly/P9u3bCQwMxNXVFWdnZ77//nvCwsLy3Zf+wm5eN/2MB1pprS03tkqpUcB+jC/XNXAe6KC1tlqBUWt9RinVASPx/zjG7DxJ4AshHirPPPNMsm0XL14kISHB6l4hJcrREfdJE3EoXpwbn3wKQNwvx7ji15FiK5ZRoEwZU0OFQ+H7yfd7f/3F9anTuD7tI5wbNqRQ507o2FhuLV+OS/PmPPK+9fJfUWPGEvvDj3gu/JKC5a0HgeQkb2/vVPMitvaZE/jpyaf4+/vn+UR9SjJUQkcp5a2UmgdcADYAwzGm1LUxPbqbtm0ELiql5iqlvLMyYJG1EifwY+MlgS+yV6NGjXjmmWfQWhMaGpru42bMmIGXlxfjx4/nxx9/tGzbsWMH7du3p2/fvpa2Bw4cYPHixTz66KNs3rzZKnkPxnS4d955h2HDhnHz5k0GDRqU7jjMU/d/+OGHdB+TUdHR0YwcOZKKFSvi4uLCo48+SqtWrdixY0eytuZpaIGBgRw5coR27drh6emZrLTNypUradasGR4eHri4uFCpUiUmTpzI3bt3k/W5f/9+2rdvT+nSpXF2dqZkyZLUr1/fctEE43cYHBz8f/bOPD6m6wvg35tIJLEkltgriaWqWmInlsSulobSltoqVVVaUn4oimiptYpqLEViq6WllKpaSu2UktZS1UooorbEEku2+/vjzUxmMjPJJJksuN/P537ylnPPPe+F3PfOO/ccAHx8fExy7f4c+TO/XtHuT37H/AQ3sLzqQJFrDAb0+aO6AKeFEEOFEFYL2wohPIUQHwCn0KL1AGJ1ujKNlPIYsFu3+6YuGjD12D2AFrrdZVLKa6nOewshpK7tTt1foVCYc/DSQX6O/Jnbj25z9EradSf79+/P9u3b2bJlC1OnTqVo0aJcunTJsAQc4MGDB1y9etWkPXjwwERPWFgYP/zwA76+vpw+fZpp06aZnE/LMW9MWo7+L7/8ku3bt7Nx40aCg4NJSEggJibGJNLfFipXrkzLli1N2gsvvABoqX4Ai2l+9MfOnz9vctzT0xMPD9NviWfPniU5OZnFixcbUg4at7Nnz/Lff/8B2seBWbNmcfLkSXx8fKhWrRrvv/8+O3fuzNB1KRSpqI/mnF9n7LwHkFLeBCag+QocgFWpnfdGsvfQUs8JoEa2WqxQKBR5kNT56b29vfHSFa1dunSp4V05ddS58Tu6q6sr9RcuYEHDBjzSrYxMiozk1sD3TFLlFOjVE/LlQ+gi/u8kJzP5diz116+j6GuvUrZXT177eSc/LliATEw09Itb+TU7wsMptWc3H9ZvwKEvvqB9+/Z4eHjg5uaGv78/Bw4csHh90dHR9O3blxIlSuDq6oqvry9Lly418UUocgabn2h1L9Hz0JbN2xKh5gL0B3oIIQZIKb/OnImK7MTZyIGfkGReLEOhyC6cnNJa2G9K4cKFWbp0Kc2bN6dnz56sWLGCDz/8kBIlSrBo0SIT2a+++gqAt99+m9KlS1vVOXLkSGbNmsWOHTuIjIy0aTVAZmzPCLGxsTRq1IjTp09Tt25dgoODuXHjBmvXrqV169bMmzePd955x6zfwYMHmTx5Mo0bNyYoKIgbN27g7Kz93w4KCiIsLIxy5crRpUsXPDw8OHToEGPHjmXnzp1s377d4NzYunUr7du3p3Dhwrz88suULVuWW7ducebMGUJDQw1RmOPHj2fDhg1EREQwZMgQg2PCw8ODT/d9arDrrZpvUapgplOtK7IBKeU5XYHWzWipa0oD04HpQohItJy2sTpxD+BZoIKRCgHcBzpJKe1RGXIIWi7dAsBWIcQUYCfa80mg7jzAVeAjixoUijzC280qmaW1yQijXq5mllYnI3zWwzz9THi4edapOmXq8N2fWvaro1eO0rdmX6s69c5sgJdeeonGjRvTuHFjBgwYwOrVqwFYs2YNffua6ggLCzO8qP7777988MEHvPDCCxw8eJDWrVszYcIEAgMDef755wEMDvLffvstzWvUn3/xRfNVA/Xq1aNOnToAvPzyy5QsWZJRo0ZRs2ZNBgwYkKbe7CT1snrA8DLes2dP+vTpY7Gfq2tKOvEBAwYQGBjIDz/8wC+//MK3337L3LlzDal9FIpMoAvp5Bcr542P/56OLv15zyxZpFAoFE8AwcHBREVFMXv2bJO0vL6+vgYZa+/on6z7ll+qV2fZnXs4ublR5PPPTFId5m8WQKlfDyMKFuTquvV0fm8QZ+/dpYaTE2+5FuJWchKbHzyg+9/nuDFhAoM++QQA4eaK0PkHIuLiCB0yhHo+PrwVFMS/ly6xbt06WrRowYkTJ6hSpYphvGvXrtGwYUMuXLhA06ZN8fPz4+rVqwwcOJDWrVvnxO1UGGGTA18IMRj4XL+r+3kWbbm7pZf9hsBzOtmCwHIhRDEppeXEjYpcw9nROAJfOfCzm7yWH9eWPlkhdX75PXv28Oeff+Ls7Ey9evUypMvf35+hQ4cyY8YMGjduzKNHj1i7di0lSpgGDu/bpzkrUi+lT02RIkWoXbs2Bw4cYP/+/TY58BcuXAhA48aNM2Q7aM55S1+nfX19DZP6yJEjOX36NP3792f+/PmGyXrkyJHUqVOHwYMH06ZNG7Pl89u2bWP+/Plmzv3w8HDCwsLo3LkzK1euNHEGhISEMGHCBEM6IdA+fiQnJ7N7925q1DANojJe3h8SEkJUVBQREREEBwcb7Dl86TAfLP4AAEfhyPBGwzN8nxTZj5TyFyFEPWAtYPxHxkfXUmP80f4U8JqU8oydbPldCNEVLXrPA/hY14y5jLZ0/4o9xlQoniYs1XmpXbq2YftodNoR+Knx8/OjV69eLFu2jMGDB+Pn50ebNm3Yvn27iZxxhPpbb71FXFwcS5cuxcXFhSVLllCjRg3efPNNDh48iKOjIz4+Pvj6+nLgwAHOnDljMbWdlJLFixcDWqHW9Bg2bBiLFy/mo48+4o033jBE+WeFChW075mnTp0yO3f69GkTmbSoVKkSQgji4+PTfV7RU7p0afr160e/fv1ISkqiV69erFq1imHDhlG3bt0sF9tTPHUU0v28ZuW88fH0Uu3pqzwXyJJFCoUiz3Pns5ncnfk5rXT7l8eMtSrr1uMNikybanIsZsRI7q+0Lba30NAPKDxsqMmxm3368tDCyvS0+uQ0xg58S2l5bXlH/zY4mPd79sLJqKYOaOl2HHX+jwn79nL2zh3e7tmTGQ0a8vDHrSAEI+vXw3/aVIZOm0b7t97C29sbt86d8Yi9DUF92fnoITM9ivDaw3icTv+Jc906NO7ZkyHLlvH5p58yLzzc8EwxatQoLly4wIgRI5g6NeV3GRwcnGF/jp6oqCiLfpGAgAC7pL4JDw83FLZNzYABAwxpER9H0nXgCyFaAzP1u8BWYLyUMs0cEkKIukAIWmodAcwUQpyVUm7LksUp+ssB76Pl2isPJAKRaAX1vpBSxqTR3Rb9zwD10HL/1QNqA/on/wlSypBM6KwF9AFaotUOcAb+A/4GdgFfGxcGygmc86UsgU6QyoGvsC/LlmmFWIyL2EopmTFjRprR8dYICQkhNDSU+/fv8/rrr9OxY0czmejoaACz1DmW0MtcuWLuFzxx4oRhYrlz5w579+7l6NGjlClThs8++yzDtt++fdskDY2ePn360KlTJ+Lj41mxYgUFCxZk8uTJJi/ilStXZvDgwUycOJFly5Yxbtw4Ex2+vr4WI/Nnz55Nvnz5WLJkicmDAcDYsWOZO3cuK1euNDjw9aSWBShuXEDHCsa577u/2B1vD+90+yhyBynlGSGEL9AdbS6tjfW0esnAMWAOsFpKmWRnW7YKIV5ES8nTAW1OTyJlTp+T1TldoXhaseRMrl0mxYEfcTWChKQEnBxtX1k2duxYVq5cybhx49ixYwelS5e2OqfPnz+f7du3M3bsWEOB2kqVKvHpp58SHBzMtGnTGDVqFACTJ0+mXbt29OjRg+3bt1OsWDETXSEhIRw6dIhevXpRvXr1dO10cnJi9OjRBAUFMWfOHD76KOuLeGrVqkX58uUJCwtjxIgRhpfAhIQEpk+fjhCCwMDAdPUUK1aMdu3asX79eg4dOkSDBg1MzkspuXHjBp6enty/fx8wjeR3dHSkevXqrFq1ilu3bgFQUFeUTr+vUKSDA1oKnURLJ6WUyUbPoukVvE/vvEKhUCh02PKOvmb/foZ9/rkVDZj4DqbMnk3hokUpPGggACWAwY8emvkO8vl4A1DP05PXnPIDkPDHHyT88QcvS8kw4OCaNRAebhhj1apVuLu7mz1D1ahRg969e5tlQ7CFCxcuWPSLgH2KzOpT/VqiU6dOT64DXwjhAMwiZYIfKqWcZYtinYO/vVH0viPwuRDiRSllclaMFkK0JSVazxhfXesvhAjU5dfNjH4vICorNqbS54x2DwZg7iDx1rWWaGkJbLq/9sLEgZ+sHPgK+5L6D7MQgsWLF5sttZ81axaxsbEmxzp16mSyzAxg2rRphhfZ3bt3c+PGDZscy5khIiKCiIgIk2Ply5dn7969lNcXkskAXl5eJnnpU3P27Fnu379Po0aNDIX+jGnevDkTJ07k+PHjZucsff2+f/8+ERERFC9enFmzLP9ZyZ8/P2fOpARS9+jRg/Xr11O/fn1ef/11mjVrRqNGjShXrly613fq2ik2nt1o2P+w0Yfp9lHkLjpH/Apgha44fUOgHKD/B3gLuAQcklLGWtZiN1suASN0LSP9orAtrV9aOgKy0l+hyMtcvXoVwORlpbhbcbw9vImKjeJR0iNOXT+FbylfayrMqFSpEt26dWPlypXs3buXJk3MylcAWr744cOHU6NGDUMBej2DBw9m3bp1Jql02rZty5w5cxgyZAhVq1alb9++VKlShZiYGNavX8+BAwdo1aoV8+bNs9nWXr168fHHHzNz5kwGDx6c5Sh8R0dH5s6dS+fOnalbty79+/enUKFCrFmzhkOHDjF69Ggqp4qWs8a8efNo3LgxTZs2pXfv3tSsWZPk5GTOnz/Pxo0b6d27NyEhIfz111/4+/vTuXNnXnjhBYoUKcKZM2eYN28ePj4+hvtfrFgxKlWqxOrVq6lYsSIlS5akQIECFoMdFAqFQqFQ5DyZeUe3RFZ8Bw26d6dQeS/uzpoNyZpr1kkIijs4ctvBwRBIePbsWR48eEDt554jYcxY7jcPwLluXRxLlUI4OtK4ceNMOfD9/f2tRsjbg127dj2xRWyRUlptwCtokXdJwMdpyaajZ4KRns6Z1aPTVR24h/ZBIQ4YBzQC/NFWCiTqzkUDZTI5hrdOh9TZfQ4tD6D+WEgGdDmhFfzV992DVhugMVATaKu7hghgSBbuS6y7u7vMKB9+0kMSgiQE+dLgyhnur1BYQv/vPSwsTEop5b179+T27dtl+fLlpbOzs9y5c6eJvJeXlzT6P2LSV8+hQ4dkvnz5pI+Pjxw3bpwEZJcuXczG9vHxkYDctm1bunb6+flJQC5fvtxwLCwsTAKyT58+Ukopk5OT5dWrV+WkSZOkEEJWr15dxsXF2XwvIiMjJSC9vLzSlNu7d68EZNeuXS2eP3PmjARkQECA4diuXbskIMeNG2cmf+nSJbN7aq0Zs3nzZtmsWTPp5ORkOF+7dm2z+9mnTx8JyMjISCmllD3X9zT8LQlcFWjDnckxMj3fPGkNKGtnfc7Ap7l9XXmpZXYuViiyi7CwMLP5VEopu67tavib/dWxr8zO6+eX6dOnW9R7+vRp6eDgYDInGZOcnCz9/f2lk5OTPHHihEWZc+fOSTc3N1m3bl2ZmJhoOP7bb7/Jnj17ynLlykknJyfp4eEh/f395ZIlS0zk9IwfP14C8tdff7U4zvz58yUgQ0JCLJ639ZqN2b17t2zZsqUsVKiQzJ8/v/T19ZWLFi0yk/P3909z/r9+/br83//+JytXrizz588v3d3d5QsvvCAHDx4sT506JaWU8saNGzI4OFjWqFFDuru7SxcXF1mxYkU5ZMgQeeXKFRN9hw8fln5+ftLNzc2mZ48cJNf/PqtmNl/p381fzoqMTi5QL5vb15WXmnomUDzJWHu+eFKw9J6clqy/v7/JMb0PQO9T0JPZd/TUY2TFdzB+/HgppZSJl6/I+z/+KO/M/VLe+mCofMbVTT5j9DdLP0bgiy/KS2XKpTQvHxnt11iu9veXgPzwpXbywe7dMvn+/TTvk3781PfKFmz5ffjr7Nm1a1eG9duJbJ9X0kuh00738wrwSTqyaTEJCALKoC2P/y4Lumah5ddLAl6SUu4xOveLEOI3YDlQCpioGzej3EUrlncEOCqljBFCBKCluckoo4GX0f7BBUsp51iQ2Qp8rIvUz1GcnVy0OwnEy4ScHl7xlFCgQAFatmzJpk2bqFWrFn369OHs2bOG5eBpRaYDxMXF0atXL5KTk1m+fDkNGzZk165drFu3jhUrVtCzZ0+DbOPGjYmMjGTHjh20atXKqs6YmBiOHdMW6TRq1MiqnBCCkiVLMnr0aGJiYpgxYwYfffQRM2fOtNonM7i7uwMp0ZKp0acG0sulttGavpo1a6ZbFNCY9u3b0759e+Li4jh8+DCbN29m3rx5dOjQgePHjxsKDhoTGRPJqj9WGfZHNR5l83iKHOWkEGKolDIsq4qEEA2AJUAVtHlOoVA8RtQuXZtvT38LaIVs+9XqZ3I+ICBA74CySNWqVUlKsp5NSwiRbnRVpUqViIuLMztes2ZNli9fnmZfY0JCQizmUtXzzjvvWEwzl5r0rtkYf39//P3905VL7x4UL16c6dOnM336dKsyxYoV4/M0ltEbU69ePfbv32+TrEKhUCgUipwls+/o1vRkxnegx7FMaVzLpKRAdFi/zuS8ftXif5cugatRiZOEBJKiooi+rz3DPdq7l5sRv4NLfgoPHkyhIYMzfkFWsPW57GnBWr5bPQ3RHM/rpMy8d1dKGQ+sQ1vm3iAdcasIIWoDzXS74amc9/qxVgA/63Z7CyFKpJZJDynlTSnlJCnldpmFvLtCCG9SHBsLrDjvjcfN8Rw2Ls4pObcSLKdAVCjsRvXq1Xn77be5dOmSzS+joBWiO3fuHCNGjKBRo0Y4ODiwdOlSChYsyPvvv8+lSymFffv105wQixYt4r///rOqc8aMGTx69IiWLVvaVMAWYNy4cXh6ejJ37lwiIyNttt8WqlSpgpubGxEREWbphEBbCgYYcginR8GCBalWrRqnTp3KVD7cAgUK0Lx5c2bOnMno0aOJj4/nxx9/NJx3dHQEICkpiRkHZpCkS4ve3Kc59cvVz/B4ihzBHVgkhNgihCibGQVCCBchxExgL1qxeoVC8RhSp0wdw/bRKxkrZKtQKJ4oFgohzltqtsjo5BbklvEKhULxOJHVd3Q99vYdWOK5557D1dWVM4mJ8N4gnOvXw8EoffGR+FTuy4ePcPD0NNNze+Ik7nw2kwfbtgMg793j4Y6d3FsSRuz4EG72DeK/5i24UrWaWd+EEye44lMx09fwpJGeA7+k7ucfdhhLr6NkmlJp84rR9uI05JbofjqiRb/nFv3RUgwko61CyHM4O6cUxFIOfEVO8NFHH5E/f35mzJhBTEz638e2bNnCggUL8PX1Ncmp7+Pjw8yZM4mNjSUoKMjwdbZp06b06tWLW7du0aFDBxPnvp758+czdepUChYsyOzZs222vVChQowcOZKEhIQ0o/0yg7OzMz169ODu3btmuYL/+ecf5syZg5OTE7169bJZ59ChQ4mPjycoKMjixB4TE2Py5X/Pnj0kJpr/HdB/CDEuoKcvLnji7AkWH0/5czy6sQrGzsM8RPuQ3gYtGr9vOvImCCH80ebyIWjzK8BKu1qoUChyhNqlUwrZ/v7f7zxKfJSL1igUilzEE/Cy0qQNMl668wqFQqGwgYy+o1siO3wHlsZ4/fXXuX33LnNiY/Bcv47SEccp/defRH/5BesSNAe+s28N8lWqBED+VKsTZVIS9xZ+xd2Zn3Nv4UIA4v/4g5t93uT22HHELVrMw23bSTz7F/LOHXMjHBwgISWWPEm3suBpJb0UOgV1P2/bYSz9b6NgmlJp01j38z7waxpyxqluGgMZr6xgH17X/TwutQJ9CC3XRUm0NED/SSnv5ZJtALgaReAnCuXAV2Q/ZcuWZcCAAcyePZtp06YxefJkq7I3btwgKCgIFxcXVqxYgbOzaZapt99+m40bN/LDDz/w5Zdf8t577wGwcOFCEhMTWbVqFVWqVOGll16icuXKxMXFsWvXLk6ePEmxYsVYt26dxZQwaTFw4EBmzJjBihUr+PDDD6latWrGb4IVpkyZwt69e5k7dy6//vorzZo148aNG6xdu5a7d+8yd+5cm1cLAAQFBXHs2DFCQ0OpWLEibdq0oXz58ty6dYvIyEj27NlD3759mT9/PqAVFbx8+TKNGjXC29sbZ2dnjh07xs8//4yXlxfdunUz6G7RogXTp0+n39v9eOTzCJyhfMnyNPdpbrf7obA7vkA42ko4fTT+q0B//RxlCSFEAWA62kdpoWtXgAFSys3ZbbRCobA/RVyLULFIRf6J+QdHB0f+ifmH5z0zNh8qFIrHniwVgVcoFIonnTfffNPqudDQUJMAN1vJ6Du6NeztO7A2xs8//8y0adM4fPgwfn5+REdHs3btWtq1b8+GDRtwa9WKkuPGkRQdjWPp0ib9k2/ehDRSLqZGSmmSHlimivK/3jGQYsuW4vS8dR9MeHi41RSGvr6+dOrUyWZ78hxpJcgHLqNlSB+Y1WT7wEC0SPQrWdBxHS0S4IQNsnd0skfsUSwACCADRWzRIhH08kvQIvHH6u6pcYHcY0AfQGTRvkwVyVmybLqhiJnv4CIZ7q9QWEL/b/zixYsWz1+9elW6ublJNzc3efXqVat6OnfuLAE5c+ZMqzLR0dGyWLFi0s3NTZ49e9bk3E8//SS7du0qy5YtK52dnWXhwoVlrVq15Pjx4+XNmzct6ktdxNYSc+bMkYB85ZVXrMrosbWIrZ6YmBg5YsQIWalSJens7Czd3d1ly5Yt5U8//WQmm7oQjTU2bdok27dvLz09PaWTk5MsWbKkrFu3rhwzZow8c+aMQW7NmjWyW7duslKlSrJAgQKyUKFCslq1anL06NHy2rVrZnonTpkoHTwdJI7a79uzjKdN15jDZHsxmcepob2s/w/tQ7i+OF0sEGRFvg0QpZNL1rXFgHtuX0tebJmdixWK7OLixYtW5+Kd53fKE9EnZMy7KwQAACAASURBVHxifA5bpXgKyfW/z6qZzVdpRdRnuuX2deWlpp4JFE8yaT1fPAkY+eystpiYGIOsrUVsjbH1Hd3aGFLa13fg5eVl0Wdx6dIl2bt3b1m8eHHp4uIia9SoIcPDw+U333wjAfn5559bvcak27fl3bAweXvKVPl911clIP2KFJHXX+smbw0fIe98MVfGbfxePjpxQibevCWTk5PNdNxbvdpwzy+VKScvP/ucfLB7t5mcvohtWi2t34cdyPZ5RUhpvSiAEOIIUBtYK6XsblXQBoQQXwPd0IrC1stE//xoy/8BfpBSdkhH/hTwPHBVSlk6LVkbxw8gJbJ/gpQyJB15f2C3bvdLoBZaTQFrrAO6y0zWGhBCxLq7u7tbWoKTFqu/CaX76UEAVIspzMlZ9lhsoVAongam7JvCqJ1awdoqxapwetBpHER6mdlyHBVdZgEhxHNo0fj6+VgC24C3pZSXhBDuaEXje+u7ABd157fnsLmPDZmdixUKheIJR83FiqcO9UygUCieZMaMGcOnn37K1q1badOmTbaO9XDPXm71fwd59652IF8+PKZOpoBRhoA8QLY/66TnadmlM6K9EKJUZgfR9e2I5iDYlY64NQoZbduSdkYvk5WUPVmhqNH2W2jO+xNAazSb3IFA4JxOpgvwqTVlQojYtJpOX4ZxdUm5PQnC9qUtCkV6/Pvvv/z777+5bYYim3iQ8IBZh2YZ9kc2GpkXnfcKK0gp/wT8gA+BR2hzfWu03PgTgdNoznv9g8h84AXlvFcoHi/UXKxQKBQKhcLeqOeLp4crV66YHfvjjz+YM2cORYsWxT9V3vvswKVpEzy/W4djmTLagcREYocN58G2bdk+dl4iPW/Ld7qfBYAFwjgZkY0IIRzQXvwLpNKZUVyNtuOtSqWgr8blmqZU9lHAaNsF+BNoIqXcLqWMk1LekVJ+j5aj/6pObogQomxOGunqkmJmvINy4Cvsx86dO9m5c2dum6HIJsJPhPNfnFbctlzhcvSo3iOXLVJkFCllspRyGtoKsSNozvrCwCigtG7/PNBCSjlQ5nLNFoVCkXHUXKxQKCwhhPheCPGWEKJkbtuiUCgeP9TzxdNDnTp1aNq0KQMHDmT48OF06tSJWrVqcf/+fb744gtcXFxyxA6nqlXx3LQRp2rVAMjfLACX5k9X/b00HfhSykPAT2gv8R2ANUKIwrYqF0IUAr4GXka3PF+nMzM8MNp2tiqVQn4L/XKSh6n2x1pyfkgpr5ESee8EvGJJmZTSI61GJgsNuxVIWdiQ4JCcGRUKheIpIzE5kekHphv2hzUchrOjLX+WFXkRKeUZYDKQgDZX67mG9uF5d27YpVAosh8pJVGxUaw7vY6o2KjcNkehUOQcHYCFwGUhxCEhxGghxAu5bZRCoVAo8hbvvPMOd+/eZdWqVXz++efs27ePNm3asHPnTt54440ctcWxVCmKr/+WAv3eouj8eYh8+XJ0/NzGlnwHg4EY3XYX4LQQYqgQooS1DkIITyHEB8Ap4FXd4Vidrsxy12jblrQ4epncihg0tleifQixxlaj7brZY45lCrgapdBRDnyFQmEDa0+tJTI2EoCirkXpV6tfLlukyCxCCHchxFJgPZAP7YO9QJu3PIHDQoiXctFEhUKRjfTf1B+f2T50/aYrP/z1Q26bo1Aoco7Dup8OaPVwPgEihBD/CCFmCSGaCyEcc888hUKhUOQFxo8fz/Hjx4mJiSExMZEbN26wefNmAgICcsUeh4IF8ZgQgkPB3MqWnnuk68CXUp5Diwq/rztUGpgORAsh/hZC/CCEWKlrPwghzqGlhJkBlEVzBNwHOul0ZQop5SPghm63nA1d9DK5lZjrotF2rJTyrlVJU1nPbLLHIgUKpCyoiHewXtBYoVAoQIvWnLJvimF/cL3BFHR++ibPJwEhRHu0D+09SXHafwY0R6vPItDm0s1CiHAhhEdu2apQKLKH5z2fN2wfjT6ai5YoFIqcRErZEO29/m1gE9rqcQH4AO8D24HrQoivhRDdMrIKX6FQKBQKhf2xqeKglPIXtC/zp0mJztNP8G2BbrrWFqiQSuYUUFdKudcO9p7W/awshLC6VkIIUQYtj69xn5zmHCm5+tOLXjA+n6OJ6AsVSql9m+CoIvAVCkXabDm3hT+u/QFAAacCvFfvvVy2SJFRhBAeQohlwPek5Lr/E2gspRyuS5lTA82Zn6w73wttBd7LuWO1QqHIDuqUqWPYPnblWC5aolAochop5TUp5WIpZSBQDAgEFqOl0BOAB/A6sBLNmb9dCPG+EMIr14xWKBQKheIpxeaEQVLKM0IIX6A72lf52lj/AJAMHAPmAKullPZySu8DmgJuaKlmDlqRC0jVJ8eRUiYKIQ4C/kBhIYSnlPK6FfGKRtuXs9+6FAoVTHHgqwh8hT1p27ZtbpugyAam7E+Jvu9fuz/F3IrlojWKjCKE6AAsAEqhvZwno62YG6db6QYYVr0NF0KsA8KAKro+3wkhVgGDpZS3ctp+hUKRMdKbi2uWrolAIJGcun6K+wn3cXNyyyHrFApFXkFK+RAtEn8TgBCiPlodu5eBami12lqgrdKbJYQ4iRYI8L2U8tdcMVqhUOQa6l1foch5bIrA1yOlTJJSrpBS1kf7St8O6A98qGv9dceKSynrSylX2tF5D1qOXj1vpSEXpPuZhPZgkVt8Y7RtsTitji5G23uyyRaLuLoVMGwnOEJCQkJODq94gilVqhSlSpXKbTMUdmTfxX3su6h9E3VycGJow6G5bJEiIwghlgMbSXHe/wk0klKONHbeG6MrPO+L5uRP0vXrjhaNn9a8plAo8gDpzcUFnQvyXPHnAEiWyZy4eiJD+nfv3o0QgvDwcJPjN27coHfv3pQpUwYhRKbypAYEBODt7Z3hfgqFIutIKQ9LKcdIKV9ECzb7ANhNyrPAi8Bo4JAQ4rIQYoEQor0QIn+uGa1QKHIM9a6vUOQ8aTrwhRBlrZ2TUt6WUm6VUi6SUk7TtUW6Y7FW9DkLIT7NrLFSymNoDw4AbwohmlgYowdadADAMinltVTnvYUQUtd2p+5vZ8LR6gEAfGxpuaEQ4gXgf7rda5h+pMh2HB0dcU5M2b9793ZODq94gjl//jznz5/PbTMUdmTinomG7Z7Ve1KusC3lSBR5iB6kRN1PA2pKKQ+n3UWLxpdSjgAaozn9BVAC+EYIsSYb7VUoFFnElrnYOI3O0StaHny9Y37GjBmZGnfYsGGsWbOGAQMGsHz5csaMGZMpPY8TUVFRCCGsttWrV+e2iekSEhLChg0bctsMRR5DShkppZwtpWyONv/3BNYCd9GeCUoD/dAC524IIb4TQryZW/YqFIrsR73rKxQ5T3opdE4KIYZKKcOyOpAQogGwBG0Z/ugsqBoCHAAKAFuFEFOAnWjXEqg7D5rj/KMs2NsWLUpRz3NG276pH0qklOGpdUgp44QQ76FF4pcADgshpgL70fLeNwOG664FYJCU8kFmbc4szskOxKPlv7937w5FixbPaRMUTyB79miLSSpUqJDLlijswZHLR/jpn58AcBAOfNj4w1y2SJFJTgFBmVnuLqU8rEul9wkwFG0e62pn+xQKhR2xZS6uU6YOy39fDqQ48G2ladOmPHjwACcnJ5Pj27dvp02bNowbNy6DFj/+tGrVit69e5sdb9iwYS5YkzEmTJhAnz596NSpU26bosij6AL1vga+1tWkC0BLs9MR8EJ7rw3U7YfnjpUKhSK7Ue/6CkXOk54D3x1YJIR4FXhbSpnh/OxCCBfgU7S8+Y5AlhKtSyl/F0J0BVahFdb5WNeMuQwESimvZGGoD9Hy11siUNeMCbckKKVcJ4R4F5gNlARmWhCLR3Pef5s5U7OGc7IwbN+Lu5MbJigUijzOJ3s+MWx3e6EbzxZ7NhetUWSSKUCIlDI+XUkr6PqONMqN/1w6XRQKRR7HpJBtdMYK2To4OODi4mJ2/OrVqxQtWjTLtj2OPPvss/Ts2TPb9Os/mOTLZ3MpM4UiW5BSJgI7dG2wEKI6mjM/EKiVm7YpFAqFQvGkkV4O/Idoy+LaoEXj982IciGEP/AHWlS8o+7wyowamRop5Va0vHvTgTNAHHAHiABCgBd16XbyBFLKBWg5hOcCfwH30Ww+g1bo9zkp5aLcss8pKeWfQVzc3dwyQ6FQ5FGORx9n81+bARAIxjR58lMhPIlIKUdnxXmfStcRoCYw1R76FApF7uFbyhcHoT0Lnrl+hnvx92zumzoHfkhICEIIpJQsXbrUkD7GOEf+jh07aN26NR4eHri4uFC9enXmz59v85h79uyhVatWuLu74+rqSq1atVi8eLGZnD6H/pUrV+jevTtFihTBzc2NNm3a8Ndff5nJR0VF0aVLFwoXLkzhwoUJDAwkMjISb2/vTOXwT4vff/+dzp07U6xYMVxcXHj++eeZNm0aSUmmpcPefPNNhBBcv36doKAgSpYsSYECBbh06RIAt2/fZuTIkVSqVIn8+fPj6elJ9+7dzdIaPHz4kJCQEKpUqYKbmxseHh68+OKLDB8+3HDtQmgBPca/N/0xhcIWpJS/SyknSinrAirPokKhUCgUdiS90A1ftMjyBphG4/eXUl6y1kkIUQDNud4f7QOAAK4AA6SUm+1gN7rxR+haRvpF6exJTy4gU4ZZ1/cn2iqEPIdzcooD//595cBXKBSmTNybkvu+y/NdeN7z+Vy0RpFTCCGKAi8ASCnNCqzrPgZkJSWeQqHIA7g5uVHNsxp/XPsDicxwGh1jXnnlFSpVqkSvXr1o0qQJ/fv3B8DPzw+AhQsXMmDAABo0aMCYMWMoUKAA27dv59133+Wff/5h+vTpaerftGkTnTt3plSpUgwbNoxChQqxevVq+vXrx/nz55k0aZKJfFxcHE2bNqVBgwZ8+umnREZGMnv2bAIDAzl58iSOjlp80c2bN2nSpAn//fcfAwYMoGrVquzdu5dmzZoRFxeXoXvw8OFDbty4YXLMyckJd3d3AI4ePYq/vz9OTk4MGjSIUqVKsWnTJkaOHElERAQrV5rHOrVq1YpSpUoxduxY4uLiKFiwILdv38bPz4+LFy8SFBREtWrViI6OJjQ0lPr163P06FG8vLTyW4MGDWLJkiX07t2boUOHkpiYyLlz5/j5558B8PT0ZPny5Wa/N4Uis0gpo3PbBoVCoVAoniiklGk2NGf3/9CixpPRKs/HouXQtSTfBojSySXr2mLAPb2xVMt8A2Ld3d1lZqjwgaskBEkIcsvWNZnSoVCkJiwsTIaFhaUrB0h/f3+z49HR0bJ3796ybNmy0sHBQQIyJiYmU7ZYG0ORPr9f/d3w94EQ5InoE7ltUkbJ9b/Pj2tDWwKfDCTmti2PS8vKXKx4/Lk94zN5qUw5m9qt4SPM+t8aPsLm/rdnfGbW/0bvN81kbJ2L39n0jnwx9EX5/pb35alrp+SuXbskIKdPn55mP71c6jEA2adPH5NjV65ckfnz55fdu3c30zN48GDp4OAg//nnH8Mxf39/6eXlZdhPTEyU5cuXl+7u7vLy5cuG448ePZJ+fn7SwcFB/vXXXyb9ATl16lSTsaZNmyYBuXXrVsOx4cOHS0CuWLHCRFZ/3JZniMjISImWKtSs1a9f3yDn5+cnHR0dZUREhOFYcnKyfPXVVyUgd+zYYTjep08fCcgePXpYvGcuLi7yxAnTeTkqKkoWKlTI5P4XKVJEvvTSS+leg6Xfm53I9b/PqpnNVzN1rVoaMuV1zSUdXQHAb8Cx3L6uvNTUM4HiScbW5wtF+uifVxSPPdk+r6SXQkf/r2gGWh67IzqHfmHgKyHEj0KIcgBCCHchRBiwBXhGJ3cRaCOlfEtKeTu9sRS5g5N0NGw/eGj7smmFwhpCCPr27UuHDh0yrePNN99k+fLl+Pv789FHHzF+/HiLeXafFvRpCtJqUVFRdh930t6UaMbAKoHUKFXDrvoDAgLUEv28j/oFKRSPKR06dLBpLv6y3Zf8/u7vzHlpTratsvr222959OgRb731Fjdu3DBpHTt2JDk5mR07dljtf+zYMUO0eZkyZQzHnZ2dGTFiBMnJyWzcuNGkj4ODA4MHDzY51rx5cwDOnTtnOLZp0yZKly5N9+7dTWT/97//Zfg6AwMD2b59u0n74osvALh27RoHDhzg5Zdfpnr16oY+QgjGjNHS03333XdmOlPbIaVk5cqVNG3alLJly5rcywIFCtCgQQO2bdtmkHd3d+fUqVOcPHkyw9ejeGIJRktzWzENmSjgPNA6HV3uaCv3fe1imUKhyPPY+nzxuKJ/v/by8uLhw4cWZby9vRFCkJiYmMPWZS/6dIjGzcHBAXd3d/z8/Pjyyy9Nrln/Pm9re/PNNwEIDw9PV9bb2zt3bkIexebqR1LKP4UQfmjR+BOA/GiT+UkhxFygL1AK7UVfAvOBEVJK5RHO4zhJoxz499WvS2E/ihcvnq7MmTNncHNzMzkWHx/P9u3badmypcWl5E8zXl5ehkkvNR4eHnYd688bf7L21FrD/timY+2qX6FQKBTZiy3zMICjg2P6QlnkzJkzALRs2dKqzH///Wf1XGRkJADVqlUzO6c/ljr3e5kyZcw+/hcrVgzQ0uYY665Xrx4ODqaxTSVKlMjw3FquXDmr15jWNVStWhUHBwezawCtMK4x169f5+bNm2zbtg1PT0+LYxlfy6xZs+jVqxcvvvgiFSpUoFmzZnTs2JGOHTuaXbNCkQr1EV+hUJhh6/PF487FixeZNWsWH374YbaNsWzZMu7fv59t+jOLv7+/oQZQYmIi//77L99//z3vvfceBw4cMPhp3nzzTbNaQRs2bCAiIoLAwEB8fU2/7aber1GjBp06dbJog739G487NjvwAaSUycA0IcQmIAyohxaNP4qUyf080E9KuduOdiqyEeMI/IePMpbnU6FIi7Nnz1KlSpU0ZZ577jmzY1evXiU5Odkkwk6h4e3tTUhISI6M9eneT5FIANpVbkftMrVzZFyFQqF4HCk8bCiFhw3NdP8i06ZSZFrm60IXWxpmduzs2bMA6c7FOYHUUkqwbNkySpcubVGmQoUKdh1Tn+M+LXseB1IHOuhtb9myJSNHjky3f2BgIFFRUWzZsoVffvmFHTt2sHjxYpo0acKOHTtwdnbOFrsVCoVC8WSSl54vsosiRYoghGDKlCn069cv2z5alC9fPlv0ZpWAgAAzv8PFixd5/vnn+frrr5k0aRLe3t4WgwujoqKIiIigU6dOVoMP9fj6+uaYf+NxJ1MhF1LKM8BkIAEwfvq9BjRRzvvHCyej7zgPH+W9L3+Kx5eDBw+mKyOEMPli6+3tbSi6tnTpUrOlVnpWrVpFs2bN8PDwwMXFhapVqzJx4kQePXpks323b99m1KhRVKlSBRcXF4oUKUKbNm0sLuHXp7AJCQnhxIkTtG/fHg8PD9zc3PD39+fAgQMWx4iOjqZv376UKFECV1dXfH19Wbp0qYm+7CA6OppBgwbh7e2Ns7Mznp6evPLKKxw7dsxMVr98LTw8nK1btxIQEEChwoVY/spyg8wov1GEhobSoEEDChcujJubGzVr1mTu3LkkJyeb6fz+++9p0aIFpUuXJn/+/JQpUwZ/f39CQ0MBbVIXQvDLL78AmCyVS/0FX6FQKBSZ4+DBgzbNxanJDud25cqVAS1qr2XLlhZbWg58/blTp06ZnTt9+rSJTEbx9vbm77//NpvPrl27RmxsbKZ0WsLHxwewfA1//vknycnJNl2Dp6cnHh4e3Llzx+q9TL0KoGjRovTs2ZOvvvqK8+fPM2LECPbu3WuWdkihUCgUivTI7PPF44Sbmxtjx47l9u3bTJgwweZ+4eHhdOnShQoVKuDq6krhwoVp1KgRK1assCifOqXs6tWrEULwwQcfWJR/9OgRRYoUoXTp0mbpe+zhI0mL8uXLGz7aXL9+3S46FbaTYQe+Ltf9UmA9WgS/ICVtjidwWAjxkl2tVGQrTjLFgf8o/kEuWqJQQHBwMEOGDAG05VTjx49n/PjxJsuqgoKCeOONN/j777/p0qULgwYNomjRoowdO5a2bdvalIcuNjYWPz8/pkyZgru7O8HBwXTp0oWDBw/SunVrFixYYLHf0aNH8fPz4+HDh/Tr148OHTqwb98+WrRoYYhE0HPt2jUaNmxIeHg4VatWJTg4mJo1azJw4EBmz56dhbuUNpGRkdSpU4fQ0FAqVqzIsGHDaNOmDT/88AN+fn5s3rzZYr9vv/2WDh06UKhQIbxbeoNuhX+L8i2YOGAigwYNIjY2ljfeeIP+/fuTnJzM+++/T58+fUz0LFy4kMDAQE6fPk3Hjh0ZNmwY7dq148GDB4SFaRGiHh4ejB8/3vCxRv97Hj9+fLpf6RUKhUJhf67FXWPSnkm0Wt6K0TtH213/a6+9Rv78+Rk/fjwPHpg/b96+fTvNF8xatWpRvnx5wsLCuHr1quF4QkIC06dPRwhBYGBgpmzr2LEj0dHRrFq1yuT4jBkzMqXPGiVKlMDPz49NmzaZ5KOXUjJ58mQAOnfunK4eBwcHevTowZEjR/j2228tyly7dg2ApKQks48QQghq1qwJwK1btwzHCxYsaLKvUCgUCsXTzKBBg6hYsSILFiwwqZ2TFu+++y4XLlygadOmBAcH061bNy5cuECvXr0YOzb9lLSdOnXC3d2dr7/+2qJfY+PGjcTGxtKjRw/y5Uvx5dnDR5Ie//77L2fPnqVQoUJP9OqLvEqGUugIIdoDC4DSaE77ZLTq9T+g5bx/FigHbBZCLAeCpZT2C1tRZAvOOBm2HyoHfrZxuewzuW2CzZS9/G+ujR0cHExUVBSzZ8+2uJwqPDycsLAwOnfuzMqVK3F1dTWcCwkJYcKECXz55ZeGjwDWGDlyJKdPn6Z///7Mnz/f8NV75MiR1KlTh8GDB9OmTRuzwik//PADYWFhJk7mBQsWMGDAAGbPnm2IMAcYNWoUFy5cYMSIEUydmpIWITg4mHr16mXwzmhERUVZjNoPCAgwRK4PGDCAK1euMHHiRENRPICBAwfStGlT+vTpw4ULFyhYsKCJji1btrBlyxaeqfUM1edXB1292mciniH8p3Dee+89Zs2aZUhJkJSURP/+/VmyZAldu3Y1OE4WLFiAs7MzERERlChRwmSMGzduAJoDPyQkhN27d3PhwgW1bE6hUChymfikeD7a9REATtHas+HOnTstFm8rXrw4AwYMyJD+cuXKMW/ePPr160fVqlXp1asXXl5eXL9+nT/++IMNGzZw+vRpqwXLHB0dmTt3Lp07d6Zu3br079+fQoUKsWbNGg4dOsTo0aMNUf4ZZeTIkXz99df07duXI0eO8Nxzz7F3714OHDhA8eLF7Vpsffbs2fj7+9OkSRMGDRpEqVKl2Lx5Mz/99BNvvPEGLVq0sEnPpEmT2L9/P6+99hqvvfYaDRo0wNnZmQsXLrBlyxZq165NeHg4d+/epXTp0rz88svUrFmTEiVKEBkZybx58yhSpAgdO3Y06GzQoAE7duxg6tSplC9fHiEE3bp1s9u1KxQKheLxRUwwnwv7TuibC5akjxxvn5WETk5OTJkyhVdffZWRI0eyfv36dPucPHmSihVN64PHx8fz0ksvMWXKFAYMGEDZsmWt9ndxceH1119n4cKFbN261axY8NKlSwFMgujs5SMxZvfu3YZ39MTERC5fvsz3339P/vz5+eqrryhcuLDNutLixIkTVn0BDRo0oG3btnYZ50nAJge+EMIDmAP00B8C/gSCpJSHdDI1gInAB2iR/b2A1kKIAVLK7+1tuMJ+5BMp/wziE5QDX5G3mT17Nvny5WPJkiUmExPA2LFjmTt3LitXrkxzcoqPj2fFihUULFiQyZMnm7yYV65cmcGDBzNx4kSWLVvGuHHjTPo2atTILEI8KCiI9957jyNHjpiMsWrVKtzd3fnoo49M5GvUqEHv3r1ZtGhRRi+fCxcuWF3CFxAQwKVLl9i2bRvly5dnxIgRJuf9/Pzo3r07K1asYP369fTu3dvkfGBgIG3btqXjqo4kSy2NQGuf1nw/53tKlSrF559/bpJP2NHRkc8++4ywsDBWrlxpEvmYL18+nJycSM3TUvDoCeEisDS3jVAoFDlDucLlqFS0En/f+puEpAQAtm7dytatW81kq1SpkmEHPkDfvn159tlnmTFjBgsWLCA2NpbixYtTpUoVPvnkE0qVKpVm/44dO7Jz504mTpzI9OnTiY+Pp2rVqixatIi33norw/boKV68OPv27WPYsGEsWbIEIQTNmjVj165d1K1b1+x5IyvUqVOHAwcOMH78eEJDQ4mLi6NChQpMnTqVYcOG2azH3d2d/fv389lnn7F27Vo2btxIvnz5KFeuHI0bN6Zfv36AlgIgODiYnTt3smPHDu7du2dw6I8aNcqk3lBoaCiDBg1i0qRJ3L17F0A58O2IEKJ3+lKZQ0q5LLt0KxQKxdNM165dadiwId999x379u2jcePGacqndt4DODs7M2jQIH7++Wd27txp9h6emj59+rBw4UKWLl1q4sC/evUqP/30EzVr1uTFF180HLeHjyQ1v/zyiyHdrZ58+fLRr1+/TAcjWiIiIoKIiAiL54YMGaIc+Eak68AXQnRAi7ovRUrU/QxgnJTSsM5Vtz1cCLEOrcBtFV2f74QQq4DBUkq1JjMP4iSMIvATlQNfkXe5f/8+ERERFC9enFmzZlmUyZ8/P2fOnElTz9mzZ7l//z6NGjWiaNGiZuebN2/OxIkTOX78uNm5OnXqmB1zcnKiZMmSxMTEmIzx4MED6tSpQ6FChcz6NG7cOFMOfH9/f3bv3m31vN7mJk2aWHSgN2/enBUrVnD8+HGzB4d69eqxO2o3m//SUuwIBO/6vEvnW52pXLkyEydOtDimq6uryT3v0aMHw4YN4/nnn6db0kCcPAAAIABJREFUt274+/vTqFEjPD09M3q5ilxESnkcSDOsRghRXEp5I4dMUigU2UyAVwB/3/obfODj3R8z1j/tpd4BAQEW8+WnlUO/UaNGNGrUKF1brM11/v7++Pv7Z7q/t7e3Rft8fHzMIutu3rzJzZs3bSowZ02vJWrUqMGGDRvSlQsPDyc8PNzqeX1+3rSW5Ds7OxvS86RH5cqV2bZtm02yikwRjmn9OHshgcfaga8LGKwL1NO1umir/gF+kVIG2Hm8esBAwF83zh3gFLASCJNSJtlzPIVC8Xjz2Wef4efnx//+9z8OHTqUpuzFixeZOnUqO3fu5OLFi2ZpAy9fvpzueH5+fjz77LNs2rSJmJgYihQpAsDKlStJSkoyCSi0l48kNePHjzdExicnJxMdHc2GDRsYNmwYGzZs4MiRIzzzTNazTPTp0yfNZx1FCmk68HVpcN7Q76JF3feVUh621kdKeUgI4Qt8ghaN7wh0B1oKIQZKKdNfc6LIUYwd+PEJ5sukFfYhN9PS5Ba25HHNCDExMUgpuX79eoYKyaTm9u3bAJQuXdrief1xS4XrPDw8LPbJly8fSUkpz/r6MUqWLGlR3trxrJKVaytRsgTDtw837Peu0RtPB83pfu7cuTTv+b179wzbQ4cOpXjx4oSGhjJnzhxmzZqFEAJ/f3+mT59u8SOI4vFCCFEMGAm8C5h/oVIoFHmCjM7DAd4BLDqufVzefWE3Y0k/V+uTwoMHD8yi1qZMmQJAq1atcsMkxZOJ/fIxPVkcB7xzYiAhxGg0X4VxPUBPIEDX+gohOkgpY8x7KxRPL8ZpafTvnO7u7rllTo7SsGFDunbtyrfffsuaNWt4/fXXLcqdP3+eevXqERMTQ5MmTWjdujXu7u44OjoSFRXF0qVLbS4o26dPH8aMGcPq1at59913AS19jpOTE2+88YZBzl4+krRwcHCgbNmyDBo0iOjoaCZNmsTEiROt1g1UZA/pReDrU+YkAZ8B442j7q2hkxlhFI3/HFAC+EYI8a2U0vK/dkWu4GzswE9UDnyF/bD3hK7XV7NmTX777bcs6zEugmdMdHS0iVxm0OeE+++//yyet3Y8q2Tl2o5eOcrRpKMA5HfMz8fNPubOv3cAzQlkS84/Pb1796Z3797ExsZy4MABvvvuO5YsWUKbNm34888/VTT+Y4rOcT8cGAS45bI5CoUiHTI6j/l7p0S2H/j3AI8SH5E/X357m5UnadeuHV5eXtSqVYvk5GR27tzJ5s2b8fPzo1OnTrltnuLJIL1k0YGA/h/bGWAn8DcQBxQAKgEtgKpoUfcbgCclVa3xh43/gF+BDlZkMz+IEEHAJN3uBeBTtI8HJYB3gI6AH1oWgeZS6nJKKhQKE54Wx70xkydPZuPGjYwaNcpqgMTMmTO5efOmWc08gFWrVhny19uCvujt0qVLeffddzl+/Dh//PEHgYGBJmlp7eUjsZX69esDmKQPVuQMtuTAP4WW6/7XjCqXUh42isYfihaN3zWjehTZi5ODs2E7Psm2r4EKhS2cPHmSF154wW76ChYsSLVq1Th16hS3bt2ymP7GFqpUqYKbmxsRERHExsaaRdXv2rULgFq1amXa1ueeew5XV1d+//137t69a5ZGZ9++fZnWnRY1a9Y06E9MTDSpTA9pX9u6M+u0UuTAkPpDKO9ensQCiXh4eHDo0CESEhIspuVJCw8PD9q1a0e7du1ITk5myZIl7Nmzhy5dugCYFMQ1zq+vyH6EEFXQfuMuaPnuT0op46zIFkGLuB+I5kQA7WU7MQdMVSgUmeTkyZMANs/F5QqXo2KRivwT8w8PEx9y5PIRmng1yU4T8wwdOnRg2bJlfPfddzx48IBy5coxbNgwxo8fr+YnhV2QUlr13AghhqM5768C/aSUW9KQfQlYpJPfL6WcmQWzJgohgrMoY48CR3OBSOCIlPJfACGEXdMN6dL0zNDtXgbqSymNI2p+EEJ8BfRDS63Tk8c8NZFCkV1k9PniSaBSpUoMHDiQ2bNn88UXX1iU+fvvvwEM77rGpM4nnx7PPPMMzZs3Z8eOHZw9e9Zi8Vqwn4/EVvRpg5OT1ffNnMYhnfNTgNqZcd7rkVLGSylHAo3QIgkUeQxnh5TIqvjk+Fy0RPGkcfToUbvrHDp0KPHx8QQFBVlMAxMTE5Pul2dnZ2d69OjB3bt3zfLG/vPPP8yZMwcnJyd69eqVaTudnZ15/fXXuX37tlnu+IiICJYty573gXLlytGqVSuioqLMcuAdPnyYr7/+miJFiliMGrgedx2Aoq5FGdVkFKClBnr//feJjo5m8ODBZjn8QIvqP336tGF/165dFvMAX7t2DdBy9uopVqwYoOUKVOQMQoiXhRBngdNo0XurgQPAZSHEJCGEo5GsEEIMA/5Bi7wviOa4TwC+QosCVCgUeZSjR49meC4O8A4wbO+O2m1fg/Iww4YNIyIigtu3bxMfH8/58+eZMWOGxTo2CoU9EUI0ACajRdr7p+W8B5BS/oiW6uU+MFWXzz2zVENzVltq0gYZf935LCGlnCGlXKd33mcTbwFFdNsfpnLe6/kAuK3bHm7hvEKhIHPPF08C48aNw8PDg0mTJpmkkNXj7e0NmNfh+emnnzJV/04fxb948WJWrVpF8eLFTYra6rGHj8QWHj16RGhoKKDVQVLkLGlG4EspR9trICnlESFETSDEXjoV9sHZaGl0QpJy4Cvsx6JFi6wWkQsNDTVx5NpKUFAQx44dIzQ0lIoVK9KmTRvKly/PrVu3iIyMZM+ePfTt25f58+enqWfKlCns3buXuXPn8uuvv9KsWTNu3LjB2rVruXv3LnPnzsXHxyfD9qUe4+eff2batGkcPnwYPz8/oqOjWbt2Le3atWPDhg04OKT3HTXjzJ8/n0aNGjF8+HC2bdtGnTp1+Pfff/nmm29wcHAgLCzMxCFxP+G+Sf8xTcbg4ZKyKmHs2LFEREQwf/58Nm3aRPPmzSlbtizXrl3j3Llz7N+/n0mTJvH8888DWrqdggUL0qBBA0NRv7179/Lrr79Su3ZtWrZsadDdokULvvnmG1555RXatWuHq6srXl5eWfp4orCOEKIfMB/NCZ86D29h4EOgItBNF3X/HdDESPYeWmH7mVLK6BwxWqFQ5CgB3gEsPr4YgF8u/PJU5cFXKHKJ99AC6xZLKc/Z0kFKeU4IsQR4X9cy8+D0tOXjf0X38y7wjSUBKeU9IcQ3aFH4LwghKkkp/84pAxUKRd6maNGijB49mhEjRlg8P3DgQMLCwnj11Vfp2rUrZcqU4eTJk2zdupXXXnuNNWvWZGi8zp07U7hwYWbNmkVCQgLvv/++xRXx9vKRGLN7925DEVspJdHR0fz4449cunSJChUqMGbMmAxdizVOnDhhGMcSaZ172rAlhY7dkFLGA3b7KKCwD86ORhH4UjnwFfZj//797N+/3+K5WbNmZcqBD/Dll1/y0ksvMX/+fHbs2EFsbCxFixalfPnyDB8+nJ49e6aro2jRohw8eJDJkyezfv16Zs6ciaurK/Xq1WP48OG0bt06U7YZU7JkSQ4cOMDo0aPZsmULhw8fpkqVKoSGhlKgQAE2bNhgyJVvTypUqMDRo0eZOHEiW7ZsYffu3RQuXJi2bdsyZswY6tatayK/5VxKoJe3hzeD6g4yOe/k5MSGDRtYsWIF4eHhbN68mXv37uHp6YmPjw+ffPIJPXr0MMhPmTKFn376id9++40tW7bg4uKCl5cXU6dO5d133zV56OjXrx8XLlxg9erVTJs2jcTERPz9/ZUDPxsQQpQBZpGy+i4eLU3eI6AKWlSaAF4VQiwDPgLq647F6PrOVUXdFIonG3+vpzcPvkKRSzRCi3bPaELhw2jO+8aZGLNZJvo8tgghnAD9SoVD6dT124XmwAft3ioH/v/Zu/M4m6v/geOvc2efYcYwGPvYCWP9EVlGFNEUWSKF9G3BNy1SKTIKqSSpFKWQpQUtJLuxRPIlWwmNGfs6zDBjzHp+f3zuvXNnn7mz3Jnxfva4j7t8zudz3jPh8/m87znvI4SwGjNmDHPmzCEiIiLDtsDAQLZs2cKECRP45ZdfSEpKonnz5qxcuZJy5crlOYHv6enJgAEDmD/fGFiRvnyOrYLIkdjaunVrmrI/np6e1KtXj2HDhvHSSy9lKENsrwMHDnDgwIEst0sCP5XKrMyBKHmUUlE+Pj4+mU2XycnYyQOYyXIAgq/dwc+z/iro8MRtaMGCBQAZFm8Rhtdff51p06axdu1aevTo4bA4zt04R73Z9YhLMkrjLHloCY80eySHvUqU2210WZaUUq9jrEmjge+AUZZkvFLKhFHf/gOMBP9VoIK57SwgRGt9wxFxlyT5ORcLURjsPRfXnV2XE9dOUMa1DL8/8TtNKuW7Qoa4vcm5OBtKqTjAFRimtV6ch/0sNdpvaa1L3cLyNjXwt2qtg/J5rCbAYfPbD7XWWdb0V0q1Avaa376ntc58qG3Ofco1gSi15F5fiAwK/VqnSEfgi+LJzdndugyhjMAXomCdO3eOqlWrpvns0KFDzJ49m/Lly9OlS5cs9iwa03dMtybvW/q3ZFDTQQ6NRxQqy2i7o8CjWutkywatdQrwsVIqAGPReUvyfqDWekURxymEcLCP7/sYP08/WlZpibNJbheEKGRRQCWMkfi5TuCTOvL+eoFHVPpUt3l9Joe2tnX4axRCLLky+5MRfB/xi6O6F7cZBQT5tGDSmO9xKoQZ4kKI/Mvyilwp9SEwLYvFXQqEUsofGK+1fq6w+hA5c3PxsCbwE3WiY4MRpcbAgQMdHUKx0KZNG+rVq0fTpk3x8vLi+PHj/PLLL6SkpDB37lzc3d0dFtuZ62eYu3eu9f2Uu6dgUgVfk18UG40xkvJLbZP36SzASOBrYJ0k74Uo2ew9F99X/74CjkQIkY09wP3AcKXUXK31/px2UEo1B4ZhX+kdlFLhQArwtNZ6Y173L4FsV6POuPJkWrbby2TVSCmV09B6n5yCyk5Y5HF2lLmUn0MIkSfbk9fT8KGW9HtjAe6dO1lH2dtq0qQJ//d//0ffvn1Zvnx5hjYtWrSgRYsW3Lx5k++++y7D/m3atKFp06ZER0fzww8/ZNjevn17GjZsyJUrV1i9enWG7Z07d6ZOnTpcuHCBtWvXZtjerVs3atSowenTp9m0aVOG7T179sTf358TJ06wbdu2DNvvv/9+/Pz8OHr0KLt27cqwvW/fvvj4+HD48OFMF/EdOHAgnp6e7N+/n/37M/5TPmTIEFxcXNizZw9//ZWx8oVlRsPOnTs5duxYmm0uLi7WsrVbt24lPDw8zXZPT0/rdd/GjRs5cybtd5Xe3t489JCxFMjatWu5cOFCmu0VKlQgODgYgFWrVhEZGZlmu7+/Pz179gRg5cqVXL+e9rvj6tWrW9e6++6777h5M+06e7Vr17YOXlyyZAmJiWlzjw0aNKBDhw4A2f7ZS0xMZMmSJRm22/tnryTNIskuU/MscEIpNVMpVaUgO1VKVVVKzQJOYCzaIxzI1cXD+jrJkskXIp88PT3trnFfmjz99NPcuHGDZcuW8cEHH7Bjxw569OjBpk2beOQRx5aqmbZ9GgnmhavbVWvHffUkYVPK+Zqfj2XTxnZbxqtiIUSJIudiIUqEeeZnV2CTUupRpVSmU/GVYQiwCbAsTpH7VQlT1QICgNvlHwgPm9c5TTm3rY/vkWUrIUqhPz2uEDn4EaJeHY9TfNZLRXh6euLk5FSEkQkhsqyBr5TaC7TE+FY/GeMiYTHwg9b6ZqY7ZdeRUp5AX+Ax4G7ACWOmzj6tdRu7ohdW+amx98Enr/LilXcAaB9ZmZ2zL+SwhxA5s3zj3KJFCwdHIjJzMuok9T+qT2KK8c33+kfXc0/dexwcVaGQurtmSqkUjHN6X631z7loN0BrvbKo4isNpN6tKG7kXCyKCTkX50AptQAYinH+BbgIbMVYQPUmRqK9HtAFqEzq73SR1nq4Hf3l6prAkQq4Bn5/4Hvz25Fa6yy/9FBKeWD8zgFWa62D7ewzX9cE/xzYQsTJQ3btK0RebLn2P96N+BqAXic8mLexAgBONWrg+/4M3O7qkGGfzK4vtNYkhYXhXK0aykO++8qNpDNnuDH7I1KuXsVn4gSca9VydEjCfg6tgd8GeBp4A/AH7jU/4pRSezCm6u3GqKV7FbiqtY5XSrkD5c2PhkA7jBXf25D6DbYCLgAhwOcF+yOJvPJw97K+TlRZVVUQIm8kaVC8Td0+1Zq871izI93rdHdwRKIYkilZQpRw+T0Xn79xnq0nt+Lj5iNldYQoXCOAWGCk+X1lIKsaWJYkwRxgTCHHVVrcsHmdZVmcTLbnVG6n0DRq3pVGzbvm3FCIfKp0fh/vzjMS+P/UcLF+nnz6NFcGPozX48Pxfm08JpsZfemvL5KvXOHaf8cQv307Jn9//L77Fpe6dYrwpyhZdGIiMZ9/wY2ZH6DjjPXokv4No+Kvv2Aqgi8/dHIy8aFbwdUVtw7tUTKbokTIsoSONnwG1AVexljsRWF8+98ZeAnjW+yD5m03lVIJGBcep4EDwHfAWKCTeT9l3vYiUEdrPU9nNQVAFBl3t9R/iBMlXyNEqXfi2gm+2v+V9f2bQW+SxUxtIYQQt6mVR1ZSdWZVBq8YzLs73y3w4w8fPlzOPUKYaa1TtNajMUbY/wwkYtw7p38kAj8CnbTW/zUvQi9yZlsMunqWrQy2C9eezrKVEKXEHRXvsK6DFu5yA9cP30WVS13CIfarBVzqfg/xu3dnun/87t1curcH8du3A5By4QKRQx4l+WKhLadZrOmUFFKuXSOrVGf87t1c6tGT61OnWZP3AEnHjxM9KaTQ40v4808uBz9A5NBhRA4azMWOnbkx51OSr14t9L6zjOnAAaKnTiNu1Wp0ipzWspLdCHwAtNZxwAyl1AcYi+s8BvQk83p5WR0vFqOW7tcY09Dk/0gx4m47At8kI/CFKO2mbJtCUorxZV1QQBBda8vonttM01wsvJbrdlrrjCtACSFKtNDQUPp17We8CYbfTL8RkxBDGdfUgalKKXr37p3pInMlRXZfILz99tu8+uqrRRhN3s2aNYty5cqVqAXYRPa01tuB7UopV6A5UBVjRHgMcA44oLXOqYa7yOgYxsxCZ+COHNo2snn9d6FFJEQx4e7sTsMKDTly5QgaTXj7urTetJGoV8Zza6OxxnXyyVNc6TcArydG4P3qK9Z9b8z5lOvT34HktHmk5NOniXx0KH4rvsfk7V2kPw9A4tGjxC76moQ//8Stc2fKDB+Gk79/ofaZcv06sYu+JuaL+aRcvowqWxbn+vVxqV8P5wb1ca5bj1tr13Lzm2/T7OdUrRrJZ88CcHPJUtzuugvPBx8o8PiSr17l+vR3uLl0Gdh8uZB86hTXp07j+oz38QgOpszwobi2bFng/Wcm4c8/uT5zFvGbN1s/c2keiM/ECbi1b18kMZQkOSbwLbTWycBPwE/mC4q7MMrjNMVYBKc8xkI68RgldSKAwxhldnbKhUbx5WmTwE+QEjpClGrHI4+z6MAi6/vJQZMdGI1wkLdy2G65osupnaVtrq8lhBAlUCgkBiYSGhHK/Q3uL7DDfv7553z2mT1rbxasFi1aMHbs2Ayftyyim9f8mDVrFgEBAZLAL+GUUkPNLy9ordcDmO+d9zguqtJFa52olPoD6ADcqZRyzSY/EWTzekehBydEMRBYOZAjV44AcPDiQdq2akv5BV9y8/vlRE8KQV+/DloT+8V8bm3aTEr/h0i+cJHrXy+2HsPk64vXEyO48cEsSE4m8e+/iRzxH/wWL0K5u+c6luTISBJ2/4HJ2xvnunUw+fvnasaeTkgg7te1xC5aRMLvqbMFEg8cJOazuUZy+qn/4NqsWR5+M5D4zz8k/vU3TjVr4HLHHZi8vNJsT46MJPaL+cQsWGj8nizx3LhB4r59JO7bl+lxlacnZV8aS5kRj3PtueeJ+8lYjiTqlVdxbdkC55o18xRnVnRyMjeXLiN6+jto2zU53NxQHu7oqGjjfXw8ccuXE7d8OaZKlTD5lsPk44PJ2wfl44PJxxunqlVxadQQl4aNMFXJ3f+XzCTs3cf1Dz4gfktohm2JBw5ypf9A3O+9B+/XX8OlXr3Un0Vrks+eJfHAQRIOHkRHR1Nu+tt2xVAS2XXTbT7ZbTE/RAnn4ZE6mipRyeQIIUqzt7a9RbI2vqjrXqc7nWt1dnBEwgGkZoUQIlf8G/hz4dgF+B3WdVhXoAl8FxcXXFxccm5YyKpVq8ajjz5aaMdPTEwkOTkZ9zwkL8RtZwHGF+KTgfVF3HclpVTBZIkArfWpgjpWIViJkcAvi7G+wOL0DZRSZUhde+Cw1vrfogtPCMcJrBzIt38ZI8MPXjwIGLPUvAYOwL1jR669/LI12ZocHk7ikX/S7O/aujW+n87BuVpVnKpVI+qFFwFI2LWLq2Oep/ynn+RYZz3x+HFiPv+CmytWwK146+fKywvnOnVwrlcX59q1UZ6exrGcnMDJhHJyJunMGW5++x0ply9ncfBE4lauJG7lSlzvbEeZ/zyBe/fuqGyuQxL/+Yfr78/k1ppfUz9UCqeAAFybNsGlSROSL13i5tJl6Fu30u7s5JRhVoIt9/t64jN5Ms7VqgJQbvrbJPy5n+RTp9A3bnB11H+p+MOKTOPTKSkknztHUlgYSWEnjOd/w0g6cYKUmBiUszO4OKOcXcDFGX0rnpQLF9Icw61bN8q9GYJT5crc/HkVsQsXknjgoHV7yqVLpFy6lGX8AMrHB5eGDXBp2BDX1q1x794Nk69vlu1T4uKI37SZ2CVLiN+2Pd3BFG4dOxK/5w/r//tb6zdwa9NmvB4ZjKl8eRIOHiTxwEFSbEv9ODvjEzIpT18QlWRKStCXDvlZ5X7nzo3cteEeAKrGuHL2vfgc9hAiZ4mJxgKpxeHmXBj+ufIPTeY0IcVcxey3Eb/RoUYHB0dV6CRZbaaUCiV1dH2B0VpLDSaz/JyLhSgM9p6LQ0ND6dq1K0++8iSfL/ocrkKdkDqEvRpmbZNZCZ3169czf/589uzZw/nz53Fzc6Nt27a8/vrrdOnSJU0fw4cPZ+HChdYasa+88grvvvsuBw4cIDAwME3b6Oho/P396dGjBz/++KP1840bN/Luu+/yxx9/cOvWLRo0aMCoUaN45plncvVz5rYMUEREBBMnTmT9+vVERUVRvXp1Hn74YSZMmICnzaJ+ISEhTJ48mcOHDzN//ny+++47zp8/z6ZNmwgKCiI+Pp7333+fJUuWEBYWhru7O506deLNN99MM+I/JSWF2bNn8+WXXxIeHo5SiipVqtCxY0c+++wzXFxcshz1Fh4eTkBAQK5+/iIk5+JsKKWiMcrkPKK1/jan9gXUZwoFf02gtdYFNitPKWWJb6vWOiiHtgFAeHbtlVLlgBOAL0ZN/NZa60vp2swDnjS/Haa1XoSd5JpAlCSrj60meFkwAF1qdSF0eGia7Vprbn7zLdEhk9ExMSSZk/HOycmUeepJvF8bnybZfOOTOVyfljoy2mvYUHymTslw7tJaE7/jN2LmzSN+cwGOD3Zywr1nT9w7d+LmihUk/JFxQpMq54N7t+543NcDty5drIv0Jp0I5/rMmcT9+FOaUjO54VynDmVGj8Szb19Srl0j8dhxkv79l6Rjx0g8fhzl4YHXsGF43NM9w74Jf/7J5T4PQZJR6rbMf0fjMz61lF/SiXBily3j5vfLs/6iIgdONWrg8+ZkPO69J2P/+/cTu2AhN39eBfF25ASdnHC7807ce/bAvUcPnKtVRcfFcSs0lLhVq7m1YSP65s20+5hMeDz4AGXHPItLgwYknT3L9XfeI27Filx3W3H1z0VW8icHhX6tI9PeBZ5eNiPwTTICXxQMSdwXP9N3TLcm73vW63k7JO+FjZxufoUQpU9+z8W1y9fGtYcrCQsSOPHTCcKfDqe2b+0s2y9YsICrV68ydOhQqlevztmzZ/niiy/o1q0bW7ZsoVOnTlnuO2zYMN59910WLVrEjBkz0mz77rvvuHXrFsOGDbN+Nm/ePJ555hnuvPNOXn/9dby8vNiwYQMjR44kLCyM9957L1c/Y2JiIleuXEnzmclkonz58gCcPHmStm3bEh0dzahRo6hfvz6hoaG8/fbb/Pbbb2zatAln57S3VEOGDMHDw4OxY8dak++JiYn07NmTnTt38thjj/Hf//6X6OhoPv/8c+666y62bdtGmzZtAJg6dSpvvPEGwcHBPPPMMzg5OREeHs7PP/9MfHw8Li4ufP3117zwwgv4+fnx+uuvW/uuWLFirn5uUaycBRoCjhhCWCy+XFFKtQBaZLHZXyk1PN1na7XWFzJrnBWtdZRSahzwBcZCtruVUtOA/UBF4GnAUnh6K5mM0BeitAqsnPrF+cGLB9Fap0m2K6XwGjwIt86diBo7DrZvR3l74ztzBh733ZfheGVGjST54iVi588HIHbhIpL+DUN5eUKKNhYqTUkm+ew5ko4fz7C/S5Mm4OZGUlgYOjo61z+Hyb8yXo8+itfgQdaa916PDiFh/35ivphP3KrV1gS5joombsUK4lasQLm749alM6qsN3E//JBh9Lxrhw6kXI0k6fi/mY6sd2nalLL/HY17r/usMw2c/P2NGDpnfe2Tpo+WLfF+9RWuT5kKQMwnc3Bt0wYdG0Ps4qUk7NqV699DBm5ulB09irKjRqI8PDLvv0ULXGe1oNz0t0mOjERHRZNyPZqU69dJiYomJSqKpBPhJB09SuLRo2nKBQGQnEz8b78R/9tvRE98A+fGjUg+dRodG5uxM5MJjz59KPvcGFzq1bV+7FytGuVnzyLhySeIfnMKCTt3ZthVeXvj2qwZLs0DcQ0MxLl21telpY2MwC8l8vMN/4mwI9RdbKzl4xNvImqa1MH0OvtyAAAgAElEQVQX+bdnj/Et9//93/85OBIBcDr6NHVm17EuXrtzxE7a17gtFoYpFjem4vYgo+1ubyGhIUzemrt1RZ5s9STzguel+eypVU/x+b7Pc7X/pC6TCAkKSfNZ8LJgVh9bnaZNb6/eQN7PxZYR+O+99x6bq2zm1zd+hZMw9YepvBb8GpD56PXY2Fi80tWGvXjxIk2aNKFt27asWbPG+nn6EfiWOM+ePcvp06dxsplq36lTJ44cOcK5c+dwdXXl/Pnz1K5dm4ceeoilS5em6e+5557j448/5vjx49SpUyfbnzOrUeyVK1fmgnm6+ZAhQ1i6dCm//PILvXr1srYZN24cM2bM4IsvvuCJJ54AUkfgd+nShY0bN6ZJ7H/wwQe8+OKLrF27lh49elg/v379Ok2bNqVOnTqEhoYC0KpVK27dusXff2e/fmZAQAABAQHW/YoxORdnQyk1C3gW+EJr/XQR9WkZgX8FuJlD81zTWtuVSVFKhQCT8rBLV611qM3+AeQwAt+m7evAm4ApiyY7gWCt9dUstueKXBOIkkRrje87vkTHG8ny0y+cprp39Szb7l6zBpOPD207dsz6mCkpXPvvs9ba7jlSCvce91LmqSdxbdsWpRRaa1IiI1PLxZw8CYmJ6ORkI5GenIxOTkY5OeHWqRPu995jlJDJQvK588QsXEjcyh9IPncux5Dcu3en7LixuDZtavxMcXEkHj1K4l9/k3j4MDohAY/7e+MWFGR3PXhbOiWFyMeGEh+6Ndt2qpwPLvUb4Fy3Ds716hnPderi5FcBnZRk/I6SkiAxCZ2UiFO1ahlq9+crTq1JOX+BxKP/kHjwEHEbN2VZ69+Wc926eDwQjGe/h3JMvGutid+0mbi1azGVLWtO2DfHKaAWypTVP98OJSPwReHz8kpdFTzRJF/oiILx119/AZLALy5m/T7LmrzvXKvz7ZK8F0KI21pBnIvvrXsvv97zK8yFue/NtSbwM2ObvI+JiSE+Ph4nJyfatWvH77//nmNfw4YN49lnn2XDhg307NkTMErC/Pbbb4wePRpXV1cAli9fTnx8PE888USG0fPBwcHMnj2bjRs38tRTT+XYZ7t27ZgyZUqaz9zc3ACjlM3PP/9My5Yt0yTvAcaPH8/MmTP54YcfrAl8i+effz7DqPzFixfTqFEjWrdunSHme+65h4ULFxIXF4eHhwc+Pj6EhYWxY8cOOmaTHBGlxhzgKeAxpdRMrfXRIuz7Sa11LrNrpYPWeqpSagMwGugC+AM3gL8wRt1/pbWWEW3itqKUIrByINtPGbXJD148mGUCXynFP5cvw+XL2SbwlcmE7wczSbl2LWPNc9t2Hh54DnqYMk+MyJDUVUrh5OeHk58fbu3a2fGTpeVUtQo+41/F+9VXSDx0iFu/riVu3TqSjh5L086tY0fKjnsJtzatM8Tq2qIFri2ymjCUP8pkwnfWB1y6p0fGMjkmE+7d7sbzkUdwv7trtl9UFDalFE5Vq+BUtQruXbtS9rkxJF+4wK31G4hbu5b433ZaZzo4BQTg+UAwHg8E49yoUa6/6FBK4d69G+7duxXmj1KiSAJfULasj/V1vJMk8EXJEhQUxNatW5HZRFm7FneNeftSR3q+3OFlB0YjhBCiJOlRtwdUAZrBqR2n2Ld/H61atMq0bVhYGK+//jrr1q0j/ajT3NywDR48mLFjx7Jo0SJrAn/RokVorRk6dKi13ZEjRwDo3j1jDVmLixcv5tgfgJ+fX5bHuXz5MjExMTRp0iTDtvLly1OlShVOnDiRYVuDBg0yfHbkyBHi4uKyLXFz5coVatSowbRp0+jTpw+dOnWiatWqBAUF0bt3b/r372/9EkOUHlrrY0qpp4H5wGal1FNa618cHVdR0lqHACH52D+CPIx+1Fr/Afxhb39ClEa2CfwDFw7Qq36vHPbImXJzo8KihcTv2IGOuwVOJlAmYwS1kwmcXXANbIbJxyfngxUgpRSugUYJFu9XXibpRDhx69aRcvUq7kFBuN1VdKVm0+cznCpWxHf2h0QOfxzi43GqXh3PwYPwenggTlWqFFlceeXk74/X0MfwGvoYKdHRJOzfj5NfRZzvaFwgsxOEJPAF4ObugdKgFSSbID4+3jrySAh7WP6BrlChAoMGDcI9k1XBAwICOHnyJImJiRlGqZVklunzWalVqxYRERFFFxDw6f8+JSYhBoAmFZtwX/2MdQpzopSiS5cuJWGavhBCOERIUEiGsjZ5MS94XoayOnmxavCqDJ8tWLDA7uNZNPJrRHXv6py5+wz8DaNfGM2uLRnrsMbExNC5c2diY2N5/vnnadasGWXLlsVkMvH222+zefPmHPuqUKECvXr14scff+TGjRuULVuWr7/+msaNG6eZRWC5yV20aBFVsriZzal8TmGyXdjWQmtNs2bNmDlzZpb7WZL77du3JywsjHXr1rFlyxa2bNnC0qVLmTJlCjt27LDW5xelg1LqDfPLUKA78LNS6iSwA6M+flxOx9Bav1loAQohbgtp6uBfOlhgx1UuLrh37VpgxysMznVqU3bkM9b3lnxGzZo1OXr0aJHnM9w7d6Jy6GZSrl3DpVmzIi0Zk5t8RkhICI8//niejmu5dstNMn/Lli0EBQXl6fi3g9KTNRN2c3JywjVZEe9s/IWKuRGNm1slB0clSoPIyEhmzZrFq6++mnNjOy1atIib6VczLwa6dOmS6UmnXLlyRRrHraRbfLj7Q+v7l+96GZMqljXjRCFSSn0ITNNa525Iqn19+APjtdbPFVYfQoiip5RiaOBQLta9yPnI86xZvCbTL3M3bdrEuXPn+PLLLzPc1E2YMCHX/Q0bNowff/yR77//noYNGxIWFsb06dPTtKlfvz6Q/ej5glCxYkXKli1rLUVk69q1a5w/f54WuZxGX79+fS5fvszdd9+NKRc34mXKlKFfv37069cPgDlz5jB69Gjmz5/PuHHjgNzdBIsSIQSjHj3mZwXUMj9ySxL4Qoh8Sb+QrYBTp045LJ/hXLMm1KxZaP3mJLt8RosWLZg0Ke2yJRERESxcuJBatWoxfPjwHI+ffn9bAQEBeYz29iAJfAGAa4oi3nzdGBN7nQp+ksAX+WOpgzt9+nT+85//4OfnVyj91HTgSS07QUFBhISEODoMFh1YxKXYSwBU967OoKaDHByRcJBngf8opeYC72mtzxfUgZVSVYGXMer3ugGSwBeilJnabSoAVzpcoe7PdXn55Yyl2CyLzqYvabd+/Xp2796d67569+6Nn58fixYtomHDhphMJh599NE0bQYOHMhrr73GpEmTCAoKwsPDI8326Oho3N3d8z2j1GQyERwczNKlS1m7dq21rA8Y1zcpKSn07ds3V8caOnQo48aNY+bMmbz00ksZtl+8eJHKlSsDRimd9NdNrVoZZYuuXk1dV7NMmTJp3osSLf23MXn5dkbqSAoh8q1ppabW10evHOVW0i3cnTOOPL9d+Pr6opSSfEYW0g9gCA0NZeHChQQEBOQqD1IcciUljQzDFAC4JqdeI8bEXHdgJKK0KFeuHFOmTCE6OjrbKVjpLViwgH79+lGnTh08PDzw9vbmrrvuYvHixZm2D0q34vs333yDUooXXngh0/bx8fH4+vpSpUoVkswLq1gsW7aMrl27Uq5cOdzd3WncuDFTpkwhPj4+1/Hn1d69e+nXrx+VKlXCzc2NWrVqMWrUKM6fz5hfHT58OEopTpw4wUcffURgYCAeHh5pvhm/evUq48ePp3Hjxnh4eDCy40hYCPwLL9z5Aq5OqbVzExISmD17Nq1atcLX1xdPT08CAgJ48MEH2bhxI2D8/7D8frdu3YpSyvqQk26J8ifggZFcP6mU+lUpNUQplbHOQy4opTzN+68FIjC+IHA39yOEKCaGDx+eq1FQueXn58e4cePYs2dPhm0dO3bE39+fsWPH8sYbbzBv3jxGjRpFv379aNasWa77cHFxYfDgwWzbto2lS5fSvXt3qlWrlqZN9erV+fTTT9m7dy+NGzdm4sSJfPHFF7z99ts88sgjVKlSJdPzqD2mTZtGxYoV6dOnDy+++CJz5sxh0KBBvPvuu3Tu3Jlhw4bl6jjPPfcc9957L+PGjaNXr17MmDGDefPmMWHCBNq3b8+gQalfsDdu3Jjg4GCmTJnCl19+ydSpU3n44YdxdXVN0+7OO+/k8OHDTJw4kaVLl/LNN98QGxtbID+3KFJd8/m4u+hDFkKUNmVcy1DXty4AyTqZI5ePZNm2oK8viiNPT08mTpwo+QxRbMgIfAGAa4oJSAYg9uYNxwYjSo3Ro0fz8ccfM3fuXMaMGWOd8p6dkSNH0qRJEzp37kyVKlWIjIxkzZo1PPbYYxw9epS33nor2/379OmDj48PS5cu5b333stQj+6nn34iKiqKsWPHptk2YsQIvvrqK6pXr06/fv0oV64cv//+OxMnTmTTpk1s2LChwGvbrV69mn79+qG1pn///tSqVYu9e/fy6aef8tNPP7Fjxw5q166dYb/nnnuO7du307t3b3r16mUd9Xjy5EmCgoKIiIigU6dO1P2/uvzy1y9wDFgCLu1doH3qcYYPH86yZcto2rQpQ4cOxcPDg3PnzrFjxw7Wrl1L9+7drdPjJk+enGE6nNSlK1HaAE8DbwD+wL3mR5xSag/GQm67gaPAVeCq1jpeKeUOlDc/GgLtgLbm41mGvCrgAkYJgM+L6OcRQjiIJYmdPkFerlw51q1bx8svv8xHH31EUlISrVu3Zs2aNcyfP59Dhw7luo9hw4bx0UcfERMTk2bxWluPP/44DRo0YMaMGcydO5eoqCj8/Pxo2LAhb731Fv7+/vn6OS1q1arF7t27eeONN1i8eDFRUVFUr16d8ePHM2HChFxfG7i4uPDLL78wZ84cvv76a+vU8apVq9K2bds0XwSMHTuWNWvWMHv2bKKjo6lUqRJ33nkn48ePp3nz5tZ2U6dO5erVq3zyySdERUWhtSY8PNw6C1KUDFrrrY6OQQghwCijE3YtDDDK6LSs0tLBETmW5DNEcaLST3MVJZNSKsrHx8cnKirKrv1rveTOqbLGt3JbuqwiKOj+ggxPAGpyyalTqifl798FpRQVK1bkxx9/5Ny5cwwYMIC+ffuycuVKa5usFn0JCwujbt26aY6XkJDAfffdx7Zt24iIiEgzEi/9qu0ATz/9NPPmzWPVqlXcf3/aP8u9e/dmzZo1HDx40DoicMGCBTz++OP07duXJUuWpJmKb1nEZdasWTz3XM6VQSzts6oZN3z4cAICAoiJiaFWrVpERUURGhpKp06drG3eeecdXn31Ve655x7Wr1+fZt+FCxdStWrVTJP7QUFB1hGLDz/8MO2+aMeec3sgDiotr8T1s9eJiIigcuXKREdH4+vrS6tWrdi9e7f1SwCLyMhIKlSoYH1fghexLTl/8YqAUsoDGI0xYr6G+eOs/sInA05ZbLP8Xk8Bs4DPtNa3CirOkiq/52IhCtrOnTsB6NChQ4EdMzE5kZPRJ6lXvl6BHVOUenIuLmaUUl+ZX36otd7v0GBKKbkmECVRSGgIk7cao81fvPNF3u/xfpbbc/JkqyeZFzwvzWdPrXqKz/flbrzPpC6TCAkKSfNZ8LJgVh9bnad97KGUolq1apw5c4bly5dLPsOGJZ+RXmhoKF27ds0xZ2CZbZBVDXx3d/dCXXOgEBX6tU6ev35RSp0wv1wlC9WVHi4pqdWUYuJkBL7Iv6SkJI4dO8bw4cNp3749P/zwAzt27KBjx47Z7pf+ZAfg6urK6NGj2bx5M5s2bcpyNJ7FsGHDmDdvHgsXLkxzwrtw4QLr1q2jZcuWaabzf/jhhzg7O/Pll19mqKM7ceJEPv74Y5YsWZKrE57F1q1b2bo144CqoKAgAgIC+Omnn7h69SqDBw9Ok7wHY+TdZ599xoYNGzh16lSGungvv/xyhuT9gQMH2Lp1K/3792fQoEGERoQayXvArYwb70x5h8cHP86KFSsYNWoUSim01ri5uWW6mJ5t8l6UHlrrOGCGUuoD4H7gMaAnkFkpnayuEWKBtcDXwGqtdUphxCqEyL9jx44BBZPAvxR7iSdXPcnm8M34uvty8vmTsoiqECXXD+bnAlsTRwhR8qVZyPaSLGQL0L9/f8ln2LDkM/Irq7JEPj4+JTWBX+jsmT9RA6N2vvxtLkVcdOogy1txMQ6MRJRG77//Ph06dOCll17i999/z7btqVOneOedd9i0aROnTp0iLi4uzfazZ8/m2F+HDh1o0KABq1at4tq1a/j6+gKwZMkSkpOT05SBuXnzJgcOHMDPz49Zs2Zlejw3NzeOHMm6BmBmJk2alG2N+H379gFw990Zy5Y6OzvTuXNnIiIi+PPPPzMk8Nu2bZthn127dgHGwn0hISEsPrjYKIQCNKnShD3njWS+5efw9vYmODiYVatW0aJFC/r160enTp1o164dnp52lUUXJYjWOhn4CfhJKeUK3IVRHqcpUAujZI4bEI/xJykCOIxRZmen1jrBAWELIRyovEd5tkZsJSYhhpiEGP658g+NKzZ2dFhCCPv8iDEDry/wc2YNlFKWDNNmrfWZogpMCOE4zSunlmk7eFFSfhaSzyh4Ug0m7+xJ4F8EqgCy0mkpYpvAv3lLFr8qDPktS1OStW/fnv79+7N8+XK+/fZbHn744UzbnThxgrZt23Lt2jU6derEvffei4+PD05OTkRERLBw4cJcL8AybNgwXn/9db755htGjhwJwMKFC3FxceGRRx6xtrt27Rpaay5fvpynxWnyKzo6GoAqVapkut3yeWbTbjOr6xsZGQnAhg0b2LBhQ5pt+8z/AcTEpH5B9+233/LOO++wdOlS6xQ2d3d3+vfvz4wZM6hcuXJefyxRApmT8VvMDyGEyJSzyZludbqx8ogxfXxd2DpJ4AtRSJRS5YFqgDdZl7Oz0lpvK4QwFpCa5JcEvhC3gdq+tfFy8SI2MZZLsZe4GHORymVS7wlDgkIICQphwYIFAHleyHZe8LwMZXXyYtXgVXbvmx+SzxDFQca6CTn72/wcUIBxCAdLMwI//qYDIxGl1dtvv42Liwvjx48nISHzwbszZ84kMjKS+fPnExoayuzZs3nrrbcICQmhR48eeervsccew2QysXDhQgD+/PNPDh06RK9evfDz87O28/HxAaBly5ZorbN9FCRLvxcuXMh0u2VxQEs7W5mVLLC0+/DDD+m+qLuxnGgIPLLikTQ/w1dffWXdx8PDg5CQEI4dO8apU6dYvHgxHTt2ZPHixfTv3z9/P6AQQohS594691pfrw9bn01LIUReKaW8lVITlVLHgMvAfmAbqV+yZ/XY7JiIhRCljUmZaFY5tTSLjMJPJfkM4Wj2JPCXYhTnH1TAsQgHctGpkzEkgS8KiouLi/V1vXr1GDVqFOHh4Xz00UeZtv/3338B6NevX4ZtmdVfy06NGjW4++672b17N0ePHrWe+IYNG5amXZkyZWjSpAl//fUXV69ezVMf+dGyZUuATBd4SUpKYvv27QC0atUqV8e78847AVi5biUbT2wEjAuwSV0yXxwmvRo1ajBkyBDWrVtHvXr12LFjh3VUP4DJZCI5OTlXxxJCCFE8uLi4pDkX51ePeqk3n6ERocQlxmXTWgiRW0qpRhgJ+xCgHsb9dl4eQghRIAIr2dTBzyKBX9DXFyWB5DOEo9mTwF8E/Aa0VErNKOB4hIO42FRTupUgN2Mi/zw9PRkyZEiaz9544w3KlSvH1KlT05RysbAshpI+qb1u3Tq++OKLPMdgmdI3f/58li1bhp+fX4ZV3AFefPFFEhISGDFiRKYla65du2atWV9Q+vTpQ/ny5Vm2bFmGOnqzZs0iPDyc7t27Z6h/n5U2bdrQqVMntv66FXO1HIY2H0qDCg2sbQ4dOsSlS5cAuHz5MocOHcpwnNjYWGJiYnB2dsbV1dX6eYUKFTh9+nRef0whhBAONGTIkAzn4vwIKBdAI79GAMQlxbE5XAb+CpFfSik3YBXGDHeFMep+unmzBr4FZgDfA1dsPl8OTAbeLMJwhRClXG4Wsi3o64uSQvIZwpHyXANfa52ilHoAWAy8oJTqBMwBtgNntda5K+gkihXbBH5CgozAF4WjfPnyvPbaa7z88suZbh81ahRfffUVAwYMoH///lStWpXDhw+zdu1aBg4cyLfffpun/vr27Yu3tzezZs0iMTGRZ599NtORAiNGjGDv3r3MmTOHunXr0qNHD2rWrMnVq1cJDw9n27ZtPP7443z22Wd2/dyZKVOmDF9++SUDBgygS5cuDBgwgJo1a7J3717Wr1+Pv78/c+fOzdMxR709iu0PbDeWIvsDbvW4xSs7X+HMmTMcPHiQw4cPs2vXLipVqsTZs2etq9cHBgZSo0YNrl+/zurVq7lw4QJjxoyhbNmy1mN369aNb775huDgYFq1aoWLiwudO3emc+fOBfY7EUIIUfzdX/9+/rnyDwCrj62md4PeDo5IiBJvBFAXIyn/stb6fQCl1Kvm7cu01j+bP3MBRgFvAz2BL7XWa4s+ZCFEaZUmgS8ldNKQfEbByW6B3D59+tCiRYuiC6aEyHMCXyllW0NBAW2AL22253QIrbW2Z/FcUYhcVOo/AnGJksAX+RcfH8/WrVvp0qVLms/HjBnDnDlziIiIyLBPYGAgW7ZsYcKECfzyyy8kJSXRvHlzVq5cSbly5fJ8wvP09GTAgAHMnz8fyDjdzNYnn3zCfffdx2effcbGjRuJioqifPny1KxZk3HjxvHoo4/mqe/cePDBB/ntt9+YNm0a69atIzo6Gn9/f5555hkmTpxI1apVc30srTUfHf0IngZ2g99JP1YtX0VycjL+/v7ccccdPPvsszRrZtQ0DAgIYPLkyYSGhrJlyxauXLlC+fLladiwIdOnT2fQoLRV0j788EOUUmzatIk1a9aQkpLCpEmTJIEvhBDFmGW6dvpzcX4ENwxmxi5jEu7q46uZo+fk5vpfCJG1B8zPxyzJ+6xorROBD5VSJ4CfgMVKqRZaa1lkVghRIGxr4P99+W8SkxNxcUqbNC6M64uSQvIZBSO7BXcDAgIkgZ8JldeFDJRSKfnsU2tts2KqnZRS1YFngWCgJpAEhAM/AB9pra/l8/g1gLbA/5mfWwPe5s2TtdYh+Ti2J3AYqG3+6KTWOsDuYI1jRvn4+PhkNl0mN+5/vjG/+BqjqV5SD/PeG9/kJxwh7F6ZXthn7b9ruW/JfQC4mFz4d8y/1PTJXfmdUk6ySqLI5PdcLERBK4xzcVJKEhXfq0jULePP+Z9P/0kLf7nJEtmSc3E2lFLngMrAW7b3mOb7bg3001r/mMl+PwO9gela69fz2Kfl2H0to/vtaSOyJtcEoiSrNasWp6JPAXB45GGaVGqSZrvc6wuRQaFf69gzEn4bxoncYZRSPYFlQLl0m1qYH08ppR7UWu+18/i1gIh8BZm9t0hN3hcLtiPw45NuOTASIUReaa2ZuGWi9f2TrZ6U5L0QQohC4Wxy5r5697Hs8DLAKKMjCXwh8qW8+flkus+TMdas88xiv1+A+82PPCXwhRAiO4GVA60J/IMXD2ZI4Aship49NfCDCiGOXFNKBWIs2OMF3ATeATZh/CwPAmOAasBqpVRrrfU5e7qxea2BMOAckO9aEUqp1sBzwC0gESib/R5Fw0WlLlaZmCzLGAhRkqw+tpr/nfsfAG5ObrzW6TUHRySEEKI0u7/B/aw4soK7a9/NHRXvcHQ4QpR0yYALcD3d5zcAH6BKFvtZhnbXyEffU5RSzxdAGzBm2nfLRyxCiGIisFIgq4+tBowE/uBmgx0ckRCiJNain4WRvE8G7tNab7PZtlUptQ/4GvAHpmAsCpRXN4AJwB/A/7TW15RSQcCW/ASulHIGvgCcgEnAkxSTBL6rU2oCPyFZRuALUVKk6BTeCH3D+n5km5FU867mwIiEEEKUdn0b9eWBhg9QxrWMo0MRojS4AAQAvuk+PwU0w5hhnpk65mePfPSd3bBanYs2FgoHz9IXQhScNAvZXpKFbIUoDkyODiAvzKPXu5rfLkiXvAdAa70Y2Gx+O1QpVSmv/WitI7XWU7XWG/JbSz+dsRgXYEeA9wrwuPnmanKzvk5ITnBgJKK08PT0xNMzqxm/oqCsD1vP/gv7AfBw9uCVjq84OCIhhBDFRWGdiz1cPCR5L0TBOWx+bpju8z0YifFgpVR52w1KKVfgCfPb03b2qwrwIYQoRWwT+AcuHMiwXe71hSh6JW0E/kM2r+dn0+5L4G6Mke4PYIx6dyilVF2MUfcAz2itE5QqPtc6rk6pCfzEFEngi/wbOHCgo0O4LXz2v8+sr59q/RT+ZfwdGI0QQojiRM7FQpQI24FgoFO6z7/BSNKXBTYqpV4DTgB1gTcwRuBr4Fc7+uyacxMhxO2qfoX6uDm5EZ8cz9kbZ4m8GUkFzwrW7XJ9IUTRy3cC35yY7gu0w6jPVxajBM05jBI0P2itw/Lbj1lH8/NNjBEJWbEtddORYpDAB+ZiTG/8KrOZA47m6mwzAj9FauALURKcuX6GVcdWWd+PbDPSgdGIkkgpdcL8cpXW+jmHBiOEKLG01mg0JlWiJvcKUVysAt4F2iilammtTwJorTcppTYA9wDNMRatTe+aed880VpvzUe8QohSztnkTJNKTdh3fh8Ahy4dIiggyLFBCXGbs/sqWylVQSn1LXAUYyHZh4D2QFPzcz/z50eVUt8opSpkebDcs6ySdVxrnZRVI/PCtTfS7eMwSqnhQDfgCjDOsdFkzjaBn6gTHRiJKC02btzIxo0bHR1GqTZ/33xSdAoAXQO60tAv/cxrIXJUA6gFSHFLIUqhwj4X7zi1g2fXPEud2XXYeELO+ULYQ2t9FBgOjAbS16QYAGwi87I1Z4HeWuuzRRasEOK2kaYO/sW0twpyr9lVvI4AACAASURBVC9E0bNrBL5SqhbGVL9q5FzzTmFceLRXSnXUWttVo08p5Qb4md+eycUupzGS9zXs6a+gmGvwv29++5LWOtLO40Tl0MTHnuNauDl7gDlvLwl8URDOnMnNX1Nhr6SUJD7f97n1/TNtnnFgNKIEu4gxe+66owMRQhS8wj4XL/97OR/v+RiA1cdWc2/dewu1PyFKK631oiw+vw7co5TqBHQHKpM6G/0HrfWtootSCHE7CayUdQJf7vWFKHp5HoGvlDIBPwPVMZLz54GJGCV0fAEX83Nb8+fnzO1qAKuU/YXfy9q8jslFe0sbR6+w9SFQHgjVWi90cCxZcnVxt75OzHpygxCimFhzfA1nbxgDrip5VaJPoz4OjkiUUH+bnwMcGYQQomQKbhBsfb362Gq01g6MRojSS2u9XWs9SWv9jNb6Ra31MkneCyEKU3Yj8IUQRc+eEjqPAc0wFsxZDTTSWk/VWu/RWkdrrZPNz//TWk8FGmHU9cO836N2xuph8zo3q6xaCrl7ZNuqECmlegGDMOLNV3FqrXW57B5AdH6O7+aa+mtKREbgC1Hc2S5eO6LFCFydXB0YjSjBlmJ8yT7I0YEIIUqeTrU6UdbVGGMTHhXO35f/zmEPIYSjKaWqlKZ+hBCFwzaBf/jSYZJTkh0YjRDCngR+P/NzODBAa30ju8Za6xhgIGBZKM/e5arjbF7nJlNlKeoel22rQqKUKgN8an77jtb6H0fEkVserl7W14nIP8xCFGcRURGs/Xet9f2TrZ90YDSihFsE/Aa0VErNcHQwQoiSxdXJlR71eljfrz622oHRCFEyKaXuUUoV5aCzMKXUB0op/8I4uFLKXyk1G/i3MI4vhCgaFb0q4l/G+GciLimOsGthDo5IiNubPQn8Vhij77/SWsfn1BjA3O5LjFF+Le3oE1IXpYXclcWxtMlNuZ3CMBWoiXHhMs1BMeSau1vqekmJSkroiPzz9vbG29vb0WGUSp/v/RyNUaagR90e1PGt4+CIREmltU4BHgB+BV5QSu1WSg1TStUxrz0jhCjBiuJcfH/9+62vVx1blU1LIUQW1gHXlFLblVJvKaXuLuRzsDswBiOR/7FSql1BHFQpdadS6lMgDGNBXvccdhFCFHNZldGRe30hip49i9haFpI9lsf9jpufK9jRJ1rreKXUFXP/1XOxi6WNXYvm5od59P1/zW83An2yKP1vGfbupZSylC+4prVeV8ghZuAhCXxRwB566CFHh1AqJSYnMv/P+db3snityA+llO2UKwW0wfjC3bI9p0NorbU91xJCiCJQFOfiXvV7oVBoNLvO7OLKzSv4efrlvKMQwpYr0MH8eA1IUEr9AWwxP3ZprXNTRjY3HgI+AGphlHkdqZQKwyirtwX4n9Y6NqeDmO952wBBwCNAXcsmjNn6LxZQvEIIBwmsFMj6sPWAkcDvf0d/QO71hXAEe266Y4Fy5kdeWNrftKNPi7+BzkB9pZSz1pmvtqqUqgp42+xT1JxJnd3wjPmRHT9gmfn1AYxRGEXK3d02gZ9S1N0LIXLpp6M/cTH2IgBVy1bl/gb357CHENlKn6G3d6F5IcRtqqJXRe6sfie7zuwiRaew+thqhrcY7uiwhChJngW6Al1IHezmBnQ0PyYC8Uqp30lN6O/WWtu1cJnW+kel1K8Yo+RfASoC9cz9TARSlFJHgKPAVfPjBsb9dXnzoyHGWneWe17L9cMlYDrwaW5n6wshiq/m/s2tr2UhWyEcy54EfgTQAugFfJ6H/XrZ7G+vHRgJfE/g/4BdWbQLSrePyIGHh00NfCU18EX+rV1r1Gjv2bOngyMpXWwXr/1Py//gbJLBzyJftoG5HpMQotQpqnNxn0Z92HXGuCz//u/vJYEvRB5orT8BPgFQSjXDSOYHYST0fc3N3M3vuwAhQJxSahdGMj9Ua70zj33GAzOVUnOAYRgDziyZOiegifmRHdsv/fcDc4CvJXEvROmRVQkdudcXoujZk/lZj1HH/gGlVD+t9YqcdlBKPQQ8iJEkyM/o8pUYUwoBniDrBP4I83My8HM++rOL1jqKXIxiVEpFYExdPKm1DijksLLl6V7W+jrRJCPwRf5duHDB0SGUOscjj7MpfBMAJmXiP63+4+CIREmntQ5ydAxCiMJTVOfiAXcM4JWNrwCwIWwDUbeiKOee18m6Qgit9SHgEDBbGXXsAklN6HcmdVa7J3C3+aGx774erfUtYC4wVynVFOgD3AO0NveRlVhgL7AB+FFr/Zc9/QshirdGfo1wNjmTlJJEeFQ41+Ov4+3mLff6QjiAPYvYfgLEmV8vU0pNU0plWuhSKVVBKfUWqeVhbpn3t4vWei8Qan47XCnVKZM+hwDdzG8Xaa0vpdseoJTS5kdo+v1vV56eqesCJ5pkBL4QxdHn+1InPfWu35saPjUcGI0QQghhqO1bm9ZVWgPQrHIzzlw/4+CIhCj5tOGA1nqW1roPRnmdNsB8wFJKVlFA5e+01oe11lO01l0wyuU0wEjmPwwMNT/fA9QHfLTWQVrrqZK8F6L0cnVypbFfY+v7w5cOOzAaIW5vef6mXmt9Rin1IvApxvS6V4CxSqkDGAvbxmIszlofo9SOM8ZFhQZe0FqfzWfMzwE7zX2sVUpNBzaZ+3nQvB3gAjDB3k6UUj0Bf5uPGtm8bqGUGm7bXmu9wN6+ioOyXj7W1wkmqaYgRHGTnJLM4oOLre+fav2UA6MRQggh0vqk1yf4efpRt3zdnBsLIXJNKVUXYxS+ZSS+5R610Nat0VqnAP+aH0KI21hg5UAOXToEGGV0OtTo4OCIhLg92TvVbq4xo4+ZgAfggjHNrnW6ppaLijiM5P08O+O07fugUqo/xqj+csCb5oets8CDWutz+ejqVYwag5l50PywtSAffTmcl5eU0BGiONsUvonzMecBqORViZ71pN6gKD2UUtUxFvELBmpijCwMB34APtJaX8vHsasBPTDWzmmJkfjww7h2iQQOAj9izNq7mY8fQ4jbWrvq7RwdghClglKqJqkJ+65Adcsmm2bRGOvYWBa1FUKIQhFYOZAlh5YAspCtEI5k9+qH5iT+WowR730xarmndxJYgXHzfdLevjLpe615gZ8xwP0YN/vJpN7sz87Pzf7tqExZb+vreCcZgS/yr0KFCo4OoVRZdGCR9fWQZkNk8VpRKMyj/PoC7YAqQFngBnAO+AP4QWsdVsB99iT1S3lbLcyPp5RSD5rL6NljMPBeFtuqmB89gFfNa/vY248QxY6ci4Uo/pRSVUmbsA+w3Wx+vgHsIDVh/6d5lLwQQhSqzBaylesLIYqe0rpgkrVKqYqkvdk/r7W+XCAHFzlSSkX5+Pj4REVF2bV/XNxNPN/1AsCUAsmTJYkvRHFxI/4GlWdUJi7JWH5k31P7aFmlpYOjKjEKbXp5aaKUqgDMAfqR/e9MA8uB0VrryALoN5DUsng3gXdIWxZvDEa5vgtAa3tm1imlxmIsfL8N2I8xS+8CxgzCWsAQjAQ+wDWgqb0z+PJ7LhZCiFJKzsXZUEqlYJxfIfV3FQv8RmrCfq/WWhYqK0HkmkCUFudunKPazGoAlHUtS/Sr0ZgrcgghUhX6X4o8D+FUSn1pfrlfaz3b8rk5WS8J+xLKw8MTUwqkmIxHXNxNPDw8HR2WEAJYeWSlNXnftFJTWvi3cHBEojRRStUCtgPVyPnCQwEDgPZKqY5a69P57H4WRvI+GbhPa73NZttWpdQ+4GuMsjdTgBF29PGh1vr9bLZ/rZR6HvgA8AVeAl60ox8hBHAs8hjf//U9Px79kfWPrsfXw9fRIQlRkuwE3gI2aa2TcmoshBCFrUqZKlTwqEBkXCQ3Em5wMvokAeUCHB2WELcdkx37DAeGISMpSh3XlNT/pTEx0Q6MRJQGq1atYtWqVY4Oo1RYdDC1fM7QwKEy4kEUGKWUCfgZo76uAs4DEzFK6Phi1In3BdqaPz9nblcDWKXy8YdRKdUao1QAwIJ0yXsAtNaLgc3mt0OVUpXy2k8uEyAfAzHm153y2ocQxZUjzsVDVg5hwpYJ/O/c//jp6E9F2rcQJZjlfNoe47y8VSk1RSnVXSnl4cC4hBC3OaVUhjI6cq8vRNGzJ4FvmTJ/tiADEY7nmmyTwL9x3YGRiNIgMjKSyMh8V9i47Z2KPsWWcGNtMpMyMSRwiIMjEqXMY0AzjKn7q4FGWuupWus9WutorXWy+fl/WuupQCPAcrXeDHg0H30/ZPN6fjbtLDP/nIAH8tFflsxJ/lvmt+6F0YcQjuCIc/HAOwZaX3//9/dF2rcQJVRfYDZw2PzeBSORPx5YB1xTSm1TSk1WSnVRSrk6KE4hxG3KNoF/4MIBudcXwgHsSeCHm5/9CjIQ4XiuKal/HGJjbzgwEiGExZKDS9DmsqjdanejatmqDo5IlDL9zM/hwACtdbb/+GutY4CBwAnzRwOzaZ6Tjubnm8CebNptyWSfAqWU6kbqdc0/hdGHELeL/nf0t77eELaBa3HXHBiNEMWf1vonrfXzWuvmQCWMUnVzgCMYI/NdMc5/EzBmpUUppTYppSYope5SSuW5LK4QQuRFmhH4lw46MBIhbl/2JPB/wLiQ6FXAsQgHS1NC56Yk8IVwNK112vI5zYc6MBpRSrXCGH3/ldY6Pjc7mNt9iXEtkJ/VlO8wPx/PrsyNeUFZy0npjqza5ZVSylsp1UQpFYJxbWPxYUH1IcTtqLZvbdpUbQNAYkqilNERIg+01pFa6xVa6/9qrZtirAEzCJgLHMc497oDQcBkjAXa5VsyIUShSl9CRwhR9OxJ4H8KnAF6K6UeyqmxKDlcUpysr2NjpYSOEI629/xe/rliDAb2cvGib6O+Do5IlEKWUefH8rjfcfNzBXs6VUq52fR9Jhe7WBbLrWFPfzb9zlBKaaWUBqIxyhVMAsoCScBorfWO/PQhhJAyOkIUFK31Ja31d1rrkVrrRkBdjLJzyeYmCvB0WIBCiNvCHRXvwKSM9OHxyOOk6BQHRyTE7SfPCXytdRTwIEYN/G+UUu8ppWoVeGSiyLnYlNC5eUtG4Iv88ff3x9/f39FhlGiLDvw/e/cdJ0V5P3D8870KRy+C4tHEoBQJKiiC4IFoMCYQ7LGi/myJxm5i1NjQaNSIxooabIhiTzQiig0Ru6Kigii9CBwcHHfH1e/vj5mb2+vbZ3fv+/b1vHZ255mZ767HPs9+55lnakbfHz3waNpktfExGpOiitzHjiFuV12/OMzjtgtY3tForfp12oZ5vObMAQap6n1NVRKRgqYK0CFG8RkTFr/aYptGx5joEJEMd5qcq0VkHrAYOAPnvjDGGBMXOZk5/KLzLwBQlPR26fZb35g4C3m+PBF5y10sAHKBS4BLRGQtTlK/pJldqKoeGupxTexlak0/sKSkqImaxjRvwoQJfoeQ1Moqy5j1zSzv+alDbPocExMrgKE40+I9FMJ21dPorQjzuK0DlsuCqF89vU/rJms173bgUXe5DTAAOA2YADwjImeralPz8RuTVPxqi/t26svwHsP5ZN0n3jQ6U4ZO8SUWY5KJiKQBw4CxbhlF7RH2ErC8HXif2veKMcaYmBjSfQhL8pcAULFHBRP2s9/7xsRTODe8yQP3joo1jwLs7pamSMA2JsFkas0I/J07wx1UaYyJhjnL5rC5eDMAue1zyeuT529AJlXNxZnHfqKIHK2qzze3gTt93iSc9vz1MI8beLI/K4j62Q1sFzJV3QBsCHjpI+BREbkKmAq8JyKTVHVuI9s3eaWCjcI3psaxA4/lk3XO+bCZX8+0BL4xjRCR/ahJ2I+m9tVmgQn7HdQk7N8BPlON3jwWInIOMNO9Yb0xxtQypPsQb1o8mwffmPgLZw58cDoSgaWh1xoqJoFlas35nJJSS+CbyLzwwgu88MILfoeRtJ746glv+eR9TiY9za6UNjFxLzVJ8VkicrOIdG2oooh0EZEbgepLQ3a624cjcJ62YKbFqa4Tk6SCqt4EfIxzY8CHRCScAQ7GJBw/2+ITBp+AuN3/N396k+Vbl/sShzFJ4FPgH8AROFPMVf92LsY50X4lcBDQSVV/raq3qeon0Uzeu+4H1ovIQyJyYJT3bYxJcoE3si1fXG6/9Y2Js5B/oKpquEl/k+ACE/g7LYFvIrR9u90IOVzrC9fz8vcve89P+eUpPkZjUpmqrhGRS3B+tKcDfwYuFZFFODe2LcKZauYXOFPtZFBzNd3Fqro2zOOWishmnBvZ5gaxSXWd1U3WiszLwAFAL/fxgxgey5i48LMt7tmhJxP2nMBry16jX6d+rN6+mr6d+voWjzEJrjph/wE1I+w/UdWKOMeRgzPH/hki8g0wHXhSVbfFOQ5jTIKplcAvKbff+8bEmY0wM57MgHshlZZZAt8Yv9z3yX2UV5UDcFDuQQzcZaDPEZlUpqoPigjAP3HmmM8E9ndLoOor6UpwkvfTIzz0t8AY4BciktFYkkJEegDtA7aJlU0By72xBL4xEbv2kGu5fOTlHNLnENLExgAZ04hrcBL2H6tquY9xXAaciXN/GIDBwN3AP0TkOeBhVZ3vV3DGGH/17tCb9tnt2V66nYqqCkorS5vfyBgTNSH3pEXk3275UywCMv7JJNNbLrEEvjG+KC4v5v5P7/eeX3LQJT5GY1oKVX0QGAhMA1bS8DR4K3GS/AOjkLwHZx5fcEb7DW+iXl4D28RC4H18bP5fY6LgwNwDGdt3rCXvjWmCqt6kqgt8Tt6jqv9U1UE48/A/gXPCXnBO7p8MvCMi34nIxSLSxcdQjTE+EJFao/CLyop8jMaYliec3vQU4DRsTvuUkxkw5W9Z+U4fIzGm5Xpi0RPkl+QDziiH3+39O58jMi2Fqq5U1UtUtS/QHWfKnNHuY3dV7auql6nqyigdMnDizDObqHeG+1gJ/CdKx65FRNKAowNe+joWxzHGGGPqEpEBzddqcvvLoxULgHsy4TSgB3A+8AU1J/P7A7cDa0RklogcGs1jG2MS25BuNQn8HWU23sWYeAongZ/vPoY1761JXJlSMwK/tKKkiZrGNC83N5fc3GCmtjbVqrSKaR9N855feOCFZKTZTGcmdhq7qk5VN6nqV+6P+K9UdVNj+wiXqn6GM2UAwBQRGd1AfCcB1cmBx1V1Y531fURE3fJOA9vniMgpboK+QSKSDtyBM1UAwHxVXRHq+zEmESViW1wV9ftuGpP0XheR3ZuvVp+IXAHcEuV4AFDV7ap6n6ruDwzDmQ+/ECeRnw0cB8wVkR9E5M8i0j0WcRhjEkf1CPzVrCY/M7+Z2saYaAonM7Qc6Ixz4zmTQgIT+GUVNp+Zicz48eP9DiHpzFk2h+83fw9Au6x2nLlfU4OSjYmKKTg3pF3k0/EvxJlrvg0wR0RuAebh9E8muesBNgBXh7H/LOBxYKo7f++HwBqcaQE6AfvifAb7uPW3A38M540Yk4gSpS0uKivi2W+f5eHPH+aIPY/gqjFX+R2SMYkkFycRPlpVtwS7kYhchpO815hF5lLVz4Fz3RvfHw+cBYxwV/cDbgZuEJFXgAdVdW6sYzLGxF91An8e8/hZfvY5GmNalnBG4L+Ic9b911GOxfgsMy3LW7YEvjHx98+F//SW/2+//6N9dvsmahsTFb5eVaeqXwHHAAU4c+HfACwA3gUuAdLd2H6jqusiOFQvd3+zcU4YfAG8hTPyvjp5/y0wVlVt+hxjouw/S/7D6S+fzoLVC3j4i4dtFL4xtVUCewOvikhOMBu4yftb3aeRtI8hUdViVZ0BTADuq37ZfcwEfge85s6Vf0K84jLGxMfgboO95e83f0+p5Y2MiZtwEvj344xeO1JEjopyPMZHWWnZ3nKZ3VHcRGj27NnMnj3b7zCSxlc/f8W85fMASJM0/nSg3SfcxMVy99G3q+pUdQ5OEv024DugCGck/CLgOmAfd7qdcPZdgDNC8FrgfzhJ+nycZMk293gzcU4iDHVHGBqTMhKlLZ48YDKdW3cGYEXBCub9NM/niIxJKOfhDJA7AHheRJq8Sl5ELsVJ3gtO8n5czCOsOfZIEfk3zsn183CS94LTrn5NzVz5ewEzReR5kYDLvI0xSa1ddjv26LQHx3EcR1UdxbebvvU7JGNajJAT+O6P4Uk4jfbTInKbiPSOemQm7rLSA0bgV1kC30SmuLiY4uJiv8NIGnd+eKe3fPSAo+nTsY9/wZiWJCGuqlPVNap6haoOVNW2qtpBVYeq6vWqurWJ7Vaoqrglr5E6H6nqDap6pKoOUtWuqpqhqh3d452sqs+rannM3qAxPkmUtrhVRitOGXKK9/yhzx/yMRpjEouqPowzTZwAhwOPNVbXTd7/g4Dkvar+EMv4RKSziFwkIt8A84HTcKa+E5yBfdcCvVX1lzg3ub0T2OGu/x1wQSzjM8bE17Aew8hx/3t7xdt+h2NMixFyAl9Eqi85L8CZo/YS4CcRWSUiC0XkrWaKDblJUFnprbzlssoyHyMxpmXZsGMDT339lPf84hEX+xiNaWHsqjpjTFyctd9Z3vJL37/EpqKo3xvbmKSlqjcD/8JJep8gInfVrePOP1+dvF+Pk7xfGquYRGSciMzCGbh3BzDAPbbiXNU2Eeirqjeq6nr3fSxT1UtxpgRa6tafEqsYjTHxd9geh3nLc3+0210YEy/h3MQ2j5p57qofBdjdLU2pbvBNAspMr5lCp1wtgW9MvNz3yX3eSbMRuSM4qOdBPkdkWgpVLRCRScDLOFfV3QXco6orfQ7NGJNiBnUbxEG5B7FwzULKq8p5bNFjXDbyMr/DMiZhqOqFIrILcAJwvohsVtUbwUve30aMk/cisitwOnAm0Lf6ZfdxA/AI8JCqrmrmvawTkX8CD+Dc5NYYkyIO2+MwFrAAgHdXvsvOip20ymjVzFbGmEiFk8CHmka8uddMEsnOaOWdXim3mQSMiYuS8hLu//R+7/klIy7xMRrT0rhX1YFzVV0uzlV1l4jIWpwRdyXN7EJV9dAYhmiMSSFn7XcWC9csBJxpdC4ecTHpaek+R2VMQjkV6AIcBlwnIj8DbYHb3fUbgENVdUm0DywiL+FMqVf9j7J68N2bOIn4l1W1MoRdVif5LbNnTArp3bE3rTNaU1JRws6Knby/6n3G7zHe77CMSXkhJ/BVNZwb35okkJWZDe7Ae0vgm0j17du3+UqGuz66i83FmwHo3aE3kwdM9jki08LkYVfVGZOyEq0tPm7QcVw450IKywpZmr+UJ756gilDp/gdljEJQ1UrRGQy8DYwHLiP2iPgx6nq9zE6/MSA5c3ADOBBVf0pzP0V4yTxqyINzBiTWNp1b8fitYsBZxodS+AbE3uWjDee7MzW3rIl8E2kDjnkEA455BC/w0hoq7at4sb3bvSeXz7ycjLSwr0wypiwSZ3S0GsNFWNMgku0trhNVhsuGnGR9/yqt66iqKzIx4iMSTyqWgwciTOHfBpOm7sRZ+R9rJL31d4DTgR2V9U/R5C8R1XfU9U+qrpH9MIzxiSC0WNG8x7vATYPvjHxYgl842mV1cZbLqfCx0iMaRkunXspxeXFAAzpPoRzhp3jc0SmpVHVtAiLzX1hjAnJFaOuoHub7gCsK1zH3R/d7XNExsSHiPQKtgA5wFnANmAHzo1gi5qoHw0DVTVPVZ9WtdFcxpjG5fXJIzMtE4BFPy9iw44NPkdkTOqzBL7xtMoKGIFvCXwToZkzZzJz5ky/w0hYb/z4Bs99+5z3/J4j7rHR98YYY6IqEdvitlltuXHsjWSlZ3HFyCv4w/A/+B2SMfGyAlgeQnkHaA+0AV5tol7Yo+QDxWF0vzEmRbz87Mucm32u9/yNH9/wMRpjWoYms0Ui0t5dLArxhjUN7as7cCCAqv4nkn2Z2GiVneMtl4sl8E1kystt4E5jyirLuOC1C7znpww5hdG9R/sYkWmpROTf7uKXqmrDYI1JMYnaFp+x7xkc3u9wenfs7XcoxsSbTUFnjEl65eXldM3uCiXO87k/zeWUX57ib1DGpLjmhnsW4Nx05iigwaR7wI//u1X1yyb2NQJ40d2fDTNNQLUT+BGdrzHGNOHOhXeyJH8JAO2z2/OPw/7hc0SmBZuCcyPaRT7HYYxpQdLT0i15b1qix/wOoCki0ht4y336J1V9NYhtfg3cA1QCo1U14nk0RCQXuAD4LdALqMC50uBF4F+qujUKx+gKnAMcAQzAudKhxD3Ou8ADqvptpMcxJpV1at3JyRjijMCv0irSxCb5MCZWgkmkNzdKYArOj/+XgKYS+MHuz/gkp1XAHPiWwDcmJlZvW80N793gPb8h7wZ2bburjxGZFi4f6Ays9TsQY4wxJpWp6ul+x9CME4G+wCZgTpDbvA60BroBJwO3RxKAiEwAZgEd66wa6pazRWSSqn4WwTEOBZ4ButRZ1Q4Y4pbzRORKVY3o/RiTytpltaNL6y7kl+Tzc9HPfP3z1/xy11/6HZYxKctOjxlPq9ZtvWVL4BsTG4E3rt2n2z788YA/+hyRaeGWu49dfY3CGNOirSxYyYnPn8jry173OxRjWrJxOAPzXgl2+ly33n9xBumNj+TgIjIEeA4neV8MXAscDOQBd+KM8t8deEVEeoR5jL44MwtUJ+9fBY4FDsAZ8X8vzoj/DOA2ETkuzLdjTItwWL/DvOW5P871MRJjUp9NZWM8Oa0DRuCnVfkYiUkF/fv39zuEhDPvp3k8++2z3vN7f32v3bjW+O1FYBjwa+ABn2MxxkRZMrTFL373Ir9//veUVpby9cavGb/HeNLT0v0Oy5iWaJD7+GmI231eZ/twTcO5YW8lcISqvhew7l0R+Rx4AtgVmAqcEcYxLgWq5439p6peWmf9KyIyD3jBfX4NMDuM4xiT0qr7F9paefqbpwFnHvzLR13uZ1jGpDQbgW88bdt08JYtgW8iNXLkSEaOHOl3GAnld6pq1AAAIABJREFU7+//3Vs+ecjJduNakwjuB9YAR4rIUX4HY4yJrmRoiw/qeZB3Mvubjd94iQBjTNxVj0rfGOJ2m93HsK/mE5H9gbHu00frJO8BUNUnqZmj/1QR6RbGoaq/EBW4vqEKqvoiNVMDDxaRdmEcx5iUVt2/CByBP3/lfO9Kc2NM9FkC33ja5NT0TcosgW9MVOUX5/POine85zeNu8m/YIxxqWoBMAlnDvynReQ29yZ2xhgTF7u23ZVLD6oZBPvQ5w/5GI0x8Sciu4jIPBF5S0QOa34LEJHD3PpviEjd+eLDtdN9bNNkrfqqR7RHMgdr4CCCR5qo92/3MR2YGMZxstzHfFXd3kS9ZQ1sY4ypI7d9LgN3GQhAaWUp762sd+7NGBMllsA3nrZt23vLZenqYyQmFTz66KM8+uijfoeRMP679L9UutOJjsgdQa8OvXyOyBgQkbeAO4ACnGn1LgF+EpFVIrLQTQ40Veb5+gaMMU1Klrb4nGHnkC7OtDnvrnyXpflLfY7ImLg6EWf0+X7A/CC3mY9zU9dxwO+jFMfP7mOod6Gsrr8pgmMf7D4WA580Ue/tBrYJxRL3sYuItG+iXj/3MV9V88M4jjEpLbB/8at+v/Jet3nwjYkdS+AbT9s2AQn8NEvgGxNNL3z3grd81N42U4lJGHnAITjz1lZ/8QvOTeIOcNc1VvLcYowxEenRrgdH9j/Se/7I500NwDUm5RyG0wa/qqo7m6sM4NZ7BafN/lUz1YP1obu/40WkVTAbiEhr4ASc+D+O4NgD3ccfVLWisUqqug4orLNNKKrv9yM489vXIyITgX3dp/eGcQxjWpTD+x3uLVsC35jYsQS+8bRtVzMHflm6UlkZyVWQxphqhaWFtTozkwdM9jEaY+qROqWh1xoqxhgTNWftd5a3/OiiRymvLPcxGmPiaoj7+FGI21WPVB/SZK3gPe8+7gY8GOQ2D7r1AZ4L56Aikk3N/PlrgthktfvYM9RjqeobODfABbhMRF4SkaNFZLiIHCkid1PzPv4H3BrqMYxpacb0HkNWujPT1OJNi1m7fa3PERmTmiyBbzzZ2dmku1Pfq0DpzhJ/AzImRcxZNofSylIAhnQfwp6d9/Q5ImMcqpoWYUn3+z0YY1LDhD0n0KNdDwA2Fm3klaWv+ByRMXFTfTPWdSFut8F93DUaQajqy8AX7tOTReQdEWlwmhoRGS0i7wIn4Yy+/1pVnw3z0IE3id0RRP3qOm3DOZiqXgMcCryBcx+g53CuHngFuABYAZwOTFTVRu/IKSIFTRWgQ2PbGpNKcjJzGN1rtPf8jZ/e8DEaY1JXsAn8wSIypqESTB233uAYxG+iLKuyZlBlYeE2HyMxJnW88L1Nn2OMMcY0JSMtg9OHnu49f/iLh32Mxpi4qp4yJjvE7apvrhrNq+KOw7kvDsBo4F0RyReRD0RkrvuYD7yDMwe9AFuAoyM4ZuuA5bIg6pc2sF3QRGRXnAR9Y3Po7wmcChwYzv6NaYlsGh1jYi8jyHo3NrFOg6hjkkRWlVDi/i8tKtqOMw2yMaEbNGiQ3yEkhJ0VO2uNIrTpc4wxxsRLsrXFZ+57JjfNvwlwrl5bvW01PTuEPEuGMclmE9ALGBDidtX1N0crEFX9UUQOwhmVXj0ArxO1k9mBJwy+Ao5V1R8jOGzgZd9ZjdaqUX2iI+TLxUVkADAXyAW2AlcA/wHW44yYPwQnrzEWeFtETlHV2Q3tS1U7NnMsG4VvUlbd/sXh/Q7nz2/+GXBG4FdpFWliE34YE03B/osKZi5cmy83BWRV1vxJbN9hI/BN+IYPH87w4cP9DsN3836ax44y50rffp36sU+3fXyOyBhjTEuRbG1x3059Gb/HeAAGdxvM+h3rfY7ImLj4BOe38nEiwWW8RCQdOB5nMN0XzVQPiaouBYYCJ+PMA7+d2r/ptwGvAr8H9lPVHyI8ZGHAcjDT4lTXCWa6nboex0nelwCjVfUeVV2lquWqullVnwdGAN/jnEyYISLdwziOMSmtbv9iSPchdGvjzAa2uXgzizYs8is0Y1JWcyPw36NmhL1pATKravqMxUXh9ImMcZSXOzefy8zM9DkSf73wXcD0OQOOQsTOZRp/iEh7d7FIVSO6S7n7Y/ZAAFX9T6SxGWNiIxnb4pvG3cTN425mWI9h1maaluK/wDFAP5wbrP41iG2muvUVeDnaAalqFfCUWxCRtkB7YLuqRvVHoqqWishmnBvZ5gaxSXWd1U3WqkNEfgkMc5/OVNXFjcSzXURuAp4AcoATgLtCOZYxqa5u/yJN0sjrk8fsxc4FKwtWL2Df3fb1LT5jUlGTCXxVzYtTHCZBBCbwi0oKm6hpTNNmzpwJwJQpU/wNxEcVVRW8vKTmN9VRA2z+e+OrAqAKOArncvF6ROTf7uLdqvplE/saAbzo7i/Y6fiMMXGWjG3xAbsf4HcIxsTbU8C1QF/gzyLSE7hGVVfUrSgivYGbcEa/K7ASeCzWAbpJ+1iO7voWGAP8QkQyVLWioUoi0gPnREL1NqEInKLos2bqBq7fO8TjGJPyGupfjOo5qlYC//wDzvcjNGNSlv3oNrVkak0Cv6TERuAbE4n5K+eTX5IPwG5td7OkhEkEzQ1nnYKTEHgJaCqBH+z+jDHGGNMEVa0UkROAd4FWwInACSLyDfAdTuK8LU4CejDONLiCMw3M8Y0lu5PM+zgJ/BxgOLCwkXp5dbYJReDn1NxlSYHrU+HzNSbmRvUc5S1/sPoDHyMxJjUl7V0lRCRXRG4VkW9FZIeIFIjIFyLyNxHpFIX99xSRo0XkFhF5S0S2iYi65bog99FaRCaLyL0i8pGIbBGRchHZKiKfuPvuE2ms0ZSl6d5y8c4iHyMxJvm9+P2L3vLkvSfbjXyMMcaYEKkqFVWWPzOpTVU/BX4FbMBJzqcDQ3DmuT/TfRzivi7AOuBwVf3El4Cj74WA5TObqHeG+1hJI1cTNuGngOXRzdQ9pJHtjDGNGNJ9CDmZOQCs2raKNdvX+ByRMaklKUfgi8gEYBZQ987vQ91ytohMUtXmLo1rbP+9gRURxjgEWEDDN+LpiDP/3jDgIhG5VFXvjeR40ZJZVZPA32kJfGPCVqVV9ea/N8YYY0xwtpZsZebXM3n484c5aZ+TuHzU5X6HZExMqer7IjIAOB9nFP7AulWAxcCTwP2quj1WsYjIMJwTCgOBTjhXBjRHVfXQcI6nqp+JyDs4I+yniMhjqjq/TkwnAdX7f1xVN9ZZ3wdY7j59t4HpgL8E1uDMoX+UiByuqnPrxiIifYGr3KdVODfsNcY0IzM9kwN3P5C3V7wNOKPwjxt0nM9RGZM6ki6B7ybGnwPaAMXArcA8nPcyCfgTsDvwiojsr6rrwjlMwLICP+KMchgTwj7aU5O8/xCn4f8Y2AR0Bn4N/BHIBu4RkZ2q+kgYsUZVZsCfxM7SYh8jMSa5fbruU9YWrgWgc+vOjOkdyteHMcYY07K9vORlLnjtAgCWFyznqAFH0a9zP5+jMia23KT8zcDN7lXlu+PePBZYq6pbY3l8EekFPE7zI9TrbYrzuzkSFwIf4PzOnyMit1D7d/6Fbr0NwNWh7lxVq0TkLzgnQNKBV0XkIZybCK8HOuCcQLgQ56QFwCOqujTcN2RMSzOq5ygvgb9g1QJL4BsTRUmXwAem4TTqlcARqvpewLp3ReRznDvG7wpMpeYyu1AU4nQKPgY+VdWtIpIHvB3CPqqAZ4EbVPWbBtbPE5HngLdwRjTcLiLPuDcI8k1mwBQ6JTYC30Rg6NChfofgq8DR9xP3mkhmenNTbRpjjDHRlcxt8XGDjuP6d69nRcEKtpdu55hnj+GDMz6gdWZrv0MzJi7cZH1ME/aBRKQjzjz8vfDhHjeq+pWIHEPNlfY3uCXQWmBSmIP0UNWZItINZxBgJnCeWxoyE+dqCGNMHY31L0b2HOktL1i9IF7hGNMiJNWEzCKyPzDWffponeQ9AKr6JE5SHOBUt4EOiarmq+pNqvpGuKMcVPUDVT2ukeR9dZ2FwH3u047AYeEcK5pqjcAvK/ExEpPshg4dmtSJg0ioaq0E/uS9J/sYjTHGmJYqmdvinMwcnj32WbLSswD4csOXXDjnwma2MsZE4Aqgt7u8HDgL6Ae0UtW0IEp6o3sOkqrOAfYBbsO5gW8RztUHi4DrgH3CnSY34Bh34kwNdBvwKc5JkkqcmwV/B8wADlHVk1W1LJJjGZOqGutfHNTzIMQ9//flhi8pKrNBocZES1Il8IHASaSbmm7m3+5jOjAxduFEReCo/j19i8KVEZDALyu3BL4JX3FxMcXFLXMapkU/L+KHLT8A0CazDYft4fu5OWOMMS1QsrfFw3oM485f3ek9f+jzh3h80eM+RmRMSqv+3bwKGK6qj6jq8ngnsVV1japeoaoDVbWtqnZQ1aGqen1Tg+tUdYWqilvymjnGMvcYw1W1s6pmqGo795hnNDRQ0BhTo7H+RcdWHRnUbRAAlVrJx2s/jndoxqSsZJtC52D3sRj4pIl6gUnxg4GHYxZR5LIClit9i8KVKTXTfJRaAt9EYPbs2QBMmTLF30B88NTXT3nLk/aeZJf7G2OM8UUqtMXnDTuP91e9z6xvZgFw7ivnst9u+zG422CfIzMmNkQkHRiCc7PV9jiD0pqkqtE4s9UHZx77+1V1SxT2Z4xJUU31L0bmjuSbjc5EFAtWL2Bs37H16hhjQpdsCfyB7uMPqlrRWCVVXScihUC7gG0S1SEBy9/5FoUrKzCBX7HTx0iMSU5VWuUlGQBOHHyij9EYY4wxyU1EmP7b6Xyx4Qu+3/w9JRUlHDP7GD456xPaZbfzOzxjosa9gey1wPFAKKM/FOfGs5Eqc4/7UxT2ZYxpoUb1GsX0z6cD8MHqD3yOxpjUkTQJfBHJBrq6T9cEsclqnOR9z5gFFSER2R043X26idBukhsTgSPwyyyBb0zI3l/1Pmu2O19RXVp34fB+h/sckTH1DBaRggjr2NBXY0zctM1qy3PHPscBDx9AcXkxS/KXcPYrZzPr6FnNb2xMEhCRUcB/gQ74cANZ14/AfkBnn45vjEkBo3qO8pYXrllIlVaRJsk2e7cxiSeZ/hUFDrHZEUT96jptYxBLxEREgOnUvK8bVLXRjLmIFDRVcDp7EctKy/aWyypLo7HLlLVu3To6duyIiPCb3/ym2fp///vfERFEhLlz5za4v5tvvpmDDz6YHj16kJ2dTbdu3Rg+fDhXXXUVS5cubfYYU6ZM8Y4RWLKysujevTvjxo1j2rRp7NgRzD+h1HLdddc1+NlkZGTQtWtXDj74YKZOncqmTZtC3ndRURF9+/ZFRDhq7FHeZFjHDjyWzPTMevVnzZrlHX/69OkN7rOgoIBp06Yxfvx4evbsSatWrejSpQu//OUvufjii/nss+bv3xXL92yS2o04J4wbKhpEnbeBG+IbsjENs7Y4uUTSLg3qNogHf/Og9/zpb56uNbIvsC0eOnQoFRWNXqwLWFtsEoeItAdeADpSM5r+XHe1Av8Czse56epXAa8/iTMY7IwohfIMzsmDX0Vpf8YkJOs7xNYenfagW5tuABTsLODbTd/G9fjx+t1vfQ0Td6qaFAVnJL265fEg6r/n1q2I0vHzAo5/XRT2d0PA/t4ApJn6Bc0U7dChg0bqlMtHKdehXIdOuXxMxPtLdffdd1/1/0N9+umnG633ww8/aKtWrRTQk046qd762267Tdu0aaMBfxP1SmZmpl522WVaUVHR6HFOO+20JvdRXfr27atLly6NymfQmBkzZuiMGTNieoxQXHvttUF9NrvssosuXLgw5P3/73//q9nPeOff0Hsr3qtXLz8/X7t166aAjh49WquqqurVefzxx7VLly5Nxikieuqpp+qOHTt8e89Jwvf2K1EKUIVzeqkqiqXS7/eVSAUoiEZbbEJjbXHjUrEtPvmFk3XQvYP0qa+e0orK2v8fAtviW265pdE4rC2OO9+/nxO5AFcEtNEnBLxe/drEOvUnAZtxprw5LYpx5ACLgQrgCL8/l2Qv1idIbNZ3iExz/YvJT0/28koPfvpg/ALT+P7ut76GCRD7diUeB4lKoM70OdV/eE8HUf8jt25hlI6fF3D86yLc11kB+/oB6BaF+KLSQTjzz2O9L9oTLz0w4v2luqqqKh05cqQC2r17d92yZUuD9caOHauAdunSRTdu3Fhr3Xnnned9oe6+++5655136uLFi3Xz5s26dOlSffjhh3XQoEFenYkTJ2pZWVmDxwls+AsLC72ybt06ffPNN3XMmDHe+n322UcrKyuj/plU+/rrr/Xrr7+O2f5DFdioLV682PtsNm7cqPPnz9fJkyd767t3766FhYUhH2PMke7nm4HudtVuWllV//OdMmWKApqdna3fffddvfW33HKLF0fHjh31xhtv1C+++EI3b96sP/30k86aNcv7mwN0xIgRum3bNt/ecxLwvf1KlAK8Q9Oj6sMqfr+vRCr2Y90f1hY3LhXb4u07tzfYvlY74YQTFNDWrVvrsmXLGqxjbXHc+f79nMjFbU+rgI/rvN5gAt9ddyBQDhQBe0cxlr7At0AJ8Fegg9+fT7IW6xMkNus7RKa5/sXtC2738kqnvnhqHCOLT7trfQ3TgNi3KxHvwJmG5xfAAcCYYEqYx8mu/oMDXgmi/mK37vqofFBRSuADJ7gdMcWZp793lOKLSgfhvL9O8L5oj71434j31xJ88803mpmZqYCeeeaZ9dY/8sgj3pflo48+WmvdAw884K0bM2ZMo1/IpaWleuKJJ3p1r7zyygbrBTb8DamsrNT999/fqzNnzpwQ323yCmzUli9f3mCdwIbtgQceCPkYkx+ZrLRytu+9X+966998801v/9ddd1299a+99pqKiAI6YMAAXbt2bYPHqaqq0ssvv9zb14knnthgvXi85yQQ84bUipXqYj/W/WNtcXKIR7v0888/a6dOnRTQ8ePH11tvbbEvfP9+TuQC/Oz+PvxrnderE/iTG9lupltnWpTieMstnwUcuwz4BmcQwFvNlHl+f5aJVKxPkPis7xA7H6z6wMsr9burX1yPbX2N5Q3WaQF9Db/Fvl0Je0Mnof0KUOw27sGWsKe0wbnRqwJfBlF3m1v343CP18D7jSiBD0x0O0HqdtT2itr/yCh1EC782++8L9pJFw2OeH8txdVXX63gXN70zjvveK9v2LDB+2I/9NBDa22Tn5/vXW7Xo0cPLSgoaPIY5eXlXqOdlpbW4Fnc5hp+VdVZs2Z5da6++uoQ32nwCgoKmn1P8RRMo7Zw4UKvzsknnxzS/gtLCzXnphxlYs0lao899pi3vri4WPv16+c10qWlpbW2Ly8v1549eyqgbdq00RUrVjR7zEmTJnnHev311+P+npNEzBtSK1aqi/1Y95e1xfW1tLa42sMPP2xtcWLx/fs5kQtQ6v5OPqWR109uZLszcBLt30YpjuqkfWBp6LWGik2rV//ztD5BErC+Q3ia61/sLN+p2Tdme7mlDYUb4hab9TWWN7iPFtDX8FvM25WwbmIrItcC84AjgFY4N7sJpYSr+u4XvxCRjCbi6wG0r7ONr0TkMGA2kAlsBQ5T1SX+RlVfVkbNTWzLtdzHSJLL1VdfTf/+/VFVzj77bEpLnRsAX3jhhWzdupXWrVvz4IMP1tpm+vTpFBUVATB16lQ6dGj6PsQZGRncfvvtAFRVVTFt2rSwYt1rr7285Y0bN4a1j2C8+OKLvPjiizHbfyxE8tn8Z8l/KC4vhn0h5xc5AFxyySVs3rwZgOuvv54ff/zRu4FNVlZWre2fe+45Vq9eDcCll15K7969mz3mP//5T5z7YTvL4YjX34MxxsSatcX1pXpbrKr874f/cc1b19R6/YwzzuCQQw4BrC02SaHMfdxZ5/VC93H3RrYraWZ9OBr63R7L3/fG+Mr6DuFprn+RnZHN8N2He88DbzqfCKLxWVpfw8RbyAl8EfkVcC01jfUq4AngFuD6IMoNEcT7vvuYAwxvol5eA9v4RkRGAy/hTANUCExQ1a/8japhWRmtvWVL4AcvOzvba9iXLl3K1KlTefXVV3nmmWcA+Nvf/ka/fv1qbfPCCy8A0KZNG44//vigjpOXl8cee+wBEPYPcnVGhADQqVOnsPaRqiL5bJ76+ilnQeCc684hOzub/Px8Lr74YhYtWsQdd9wBwNlnn83BBx9cb/vqvwdwOgPB2GOPPcjLywPgzTffZMeOHSHFDPb3YIxJHdYWp4ZgP5udFTs54OEDOPKpI5k6fypf//y1t676R7O1xSZJrHUfu9R5/Sf3sbHfvdXZmEYHtoVCVdMiLOnRiMOYeLK+Q+yMzB3pLSdaAj8an6X1NUy8hTMC/3z3sQq4BOirqqep6l9V9fpgSgTxvhCwfGYT9ar/FVQC/4ngeBETkQOAV3FOOhQDR6rqx37G1JRWWTnecoVW+BhJ8snLy/O+gG+99VbOOussAIYMGcJll11Wq25xcTFffPEFAMOGDSMnJ4dgVTcCGzduZNmyZSHHuWRJzYUfAwYMCHn7VBbuZ7O5eDOv//i69/yCIy7gqquuAuDJJ59k4sSJVFRUsNtuu3Hrrbc2uI8FCxYA0Lt376DOwlcbPXo0AJWVlXz44YdBb1fN/h6MManE2uLkF+xn0yqjFbntc73nN82/qdb6/v37W1tskkX1wK66//M/xBkw92sRqfUHKSIdgXNxpkNYHvMIjUlh1neIjVG9RnnLC1Yv8DGS+qL1WVpfw8RTOAn8A3A6Cs+o6jQNPI0TY6r6Gc4NdACmuCPbaxGRk4BD3aePq+rGOuv7iIi65Z2620eTiAwB5gDtcOYw/J2qzo/lMSPVKqtmBH4ZNgI/VLfffjvdunWjvLyc9evXk5aWxkMPPURGRu2BMWvWrKGiwjlBEuqX58CBA73lFStWhLRtVVWVd0a4S5cuHHvssSFtn+r+8Y9/AJCZmcmZZzZ1jrC25759jooq5//nQbkH0bdTX/785z97/69WrVoFwL/+9a8GL7EsKytj3bp1QHz/HiD892yMMYnK2uLkFkq7dPXoq73l2Ytn8/3m72utt7bYJIl3cRL1eXVef9J9zAbeE5HzRORwETkP50az3dz1L8UlSmNSmPUdom9kz5oR+J+t/4ydFXVnCfNPNNtd62uYeAkngV/9VzgnmoGE4EKgCEgH5ojINSIyUkTGiMgdwGNuvQ3A1Y3tpDkiMkFEplQXYELA6qGB69z1dbfvB7wBVF+bcj2wXkQGN1GiOX9hWLIDEvjlYiPwQ9WpUycmTKj5UznmmGM44IAD6tXbunWrt9yxY8eQjhFYf8uWLY3W27Fjh1fWr1/PvHnzGDt2LJ999hk5OTk8//zzIY0YSCXFxcXeZ7Np0yYWLFjA0UcfzUsvvUR6ejqPP/44ubm5ze/INfPrmd7yifucCEBWVhbHHHOM9/rw4cM5+uijG9w+Hn8P0X7PxhiTqKwtTg7RaJf277E/R+x5BACKcvP8m2utt7bYJInqK8YHi8ig6hfdq7afxEnu5wL3AK+5j33caquBO+IWqTEpyvoO0dc1pyv9u/QHoKyyjM/WfRb3GOLR7lpfw8RLOPPlbQB6UnOznbhS1a9E5BhgFtARZ079uvPqrwUmqeq6CA71F+CQRtZNckugR+s8H03NqAiAm93SlMeAKcGFFxutsmsagnIsgR+qTz75hCeffNJ7/tprr7F27Vp23z0252aaugCmXbt2Db4+bNgwXnrppZjFVO2ggw6K6f4jMWjQoAZf79u3L6+++mpIZ8NXFqzk/VXOrTbSJZ3jBh0HOGffq0dJAHz++ed88cUX7LvvvhFE3rSm/h6i+Z6NMSaRWVtcoyW0xdeMuYbXlr0GOPej+dshf2PPznsC1hab5KCqq0VkLNAK2F5n9Zk4V3KfQf2bxX4GnKCqW4kBd3DZoThT+3QCMlXVhm2alGR9h9AE278Y1XMUS/OXAs40OoHT6sRDPNpd62uYeAlnBH715FUN/1XEgarOAfYBbgO+wxmRvx1YBFwH7ONOt2NC1Cq7jbdcLpU+RpJ8KioqOOuss6iqqqJXr160bt2awsJCLrjggnp1A28aUlBQENJxAut37tw55Dg//fRTpk6dGvJ2odprr71q3ek8GSxfvpy//OUvlJfXnj6qpKSk1kiIwPLol4969Q7rdxjd2jjn7f7whz9QVFREx44d6d69O5WVlZx99tlUVVXVO66ffw+NvWdjjElG1hbX1hLa4n067cO4PuMAqNRKTn3xVMoqnXFG1habZKGq76rq66q6us7r5ap6FrAHTjL/r8BFwChVHa6qP0Y7FhHpJiJP4cytPwO4AjibBgaaich9IlImIlGPw5h4sb5D6ILtXwROo5NI8+CH87u/saS59TVMvISTwP8Xzhz4p4lI6+Yqx4qqrlHVK1R1oKq2VdUOqjrUvVFuo6MQVHWFqopb8pqolxdQr9nSwPaPhrK9W6ZE59MJX+tWgQn8+l84pnF33HEHixYtAuChhx7i2muvBZy7zP/3v/+tVTc3N9ebT+/772vP19qc7777zlvu27dvo/VU1SsbN27kueeeo39/5xK2Bx54gOnTp4d03FBt3ryZzZs3x/QY4Vq+fLn32eTn5/P6668zfPhwAP7zn/94/++qHXHEEbRr167Bcu8b93r1TvvlaQA888wzvPrqq4BzI6S77roLcDpd99xzT714srKy2G233YDY/T2E+p6NMSYZWVtcW0tpi8/vfz7pkg7AwjULueKNK6wtNilFVVeq6gxVvUVV71bVhbE4joj8AvgCOB7nan2h/sj/QPe49fqISF4sYjIm1qzvELpg+xejetaMuP9g9QdNjhyPhWj2NVauXFlv/9bXMHEV+OUQbAGuAqpw5uDrEM4+rES3AAUdOnTQSL362tPKdSjXoXtc3Dri/bWXerlZAAAgAElEQVQUy5Yt09atWyugJ510kqqqlpeX6z777KOA9uzZUwsLC2ttM2zYMAW0bdu2WlRUFPSx+vXrp4B269at3rrTTjtNcU6wNbjtunXrtFu3bgpohw4ddMuWLSG8y9DMmDFDZ8yYEbP9h+raa6/1Ppvly5fXW19YWKgDBgxQQNPT03Xp0qXeukMOOcTbtl650Pn3stvtu2lpRalu2bJFu3fvroAefPDBWlVVpaqqRxxxhALarl07Xb16db3jH3PMMd4+V65cGfT7GjdunBdz3b+xSN5zCvH9+9lKyynRaotNeKwtrq+ltMXLly/XW9+/1evD8me0Q5cO1hYnDt+/n60E1YZlAkvc3/lVONO7Hgb8wX1e2ch23wCVwC1+v4dEKtYnSA7WdwhPsP2LyqpK7XxrZ699/m7TdzGPLZZ9jUD2u9/UEfN2JeQR+CIyBpiPMwf9r4AfROR2ETlGRPLcm8k2WUI9pomfNjk1862Vp9kI/GCde+65lJSU0LlzZ+68804AMjIymD59OmlpaaxevZprrrmm1jaTJ08GnJvUPPvss0EdZ/78+fz444+1tg/Fbrvtxu233w7Atm3bas3V1tK1bduWBx54AIDKykquv/56b90777zT4BfoqEdGebepPmf/c8hKz+Lyyy/n559/Jisri+nTpyPiDFq67777yMnJafRyzMD/nzNmzAgq5hUrVvDOO+8AMH78eNq2bRu192yMMcnG2uLkF05brKr06dOHy0dezqS93FtUzYVt+dusLTYmNGcCv8BJAp2rqqep6hs495dryjs4o/QPjG14xkSf9R1iK03SOLjXwd7zd1a8418wrkj6GoHsd7+Ju1Az/rhn3wNK3efNlYp4nJloaYUoneH/+JP3vLOj3S/PjHh/LcFjjz3mne185JFH6q3/4x//6J3p/Oyzz7zXN23apDk5OQpobm6ubt++vcnjVFRU6PDhwxXQtLQ0/e67+mevmztzr6paWVmpAwcO9M7eFxQUhPBug5dso/6qTZgwwfv/tWzZskbrfb7uc+/fSuYNmbq+cL2+++67KiIK6DXXXFNvm9tuu82L4eWXX661rqysTHfffXdvNMeqVauafU9HHXWUt7/XX3895u85Sfn+/Wyl5ZRotcUmdNYWNyzV2+K6tpZs1R4X9FAEa4sTi+/fz8lcgBHANcD9wO04ifauMTjOXPe3/Zt1Xp9E0yPwz3PXr/X7s0qkYn2CxGd9h/CF0r+YtnCa97v52NnHxjYwjU+7a7/7TQNi366EvEHNJXXhlgYbfiuJ0UFY/O0X3pdr57+kR7y/VLdp0ybt2rWrApqXl9dgnW3btmmPHj0U0GHDhmllZaW37t577/W+aPPy8hpt/MvKyvSUU07x6l555ZUN1gum4VdVnTVrlldv6tSpQb7b0CRr0mDhwoVevf/7v/9rtN7pL53u/Vs58fkTdefOnbrXXnspoP3799edO3fW26a8vFyHDh3a6OWYr7zyinfsQYMG6fr16xs8dlVVlf7lL3/x6v7+97+Py3tOUr5/P1tpOcV+rPvD2uLGpXpbXNfOnTt1z/57WluceHz/fk60ArQCzgGeAl51k/NH16nTxU2qNzQorhA4P8oxrXf3fX6d15tL4B/nri/2+3NNpGJ9gsRmfYfIhNK/+GrDV97v5l3+sYtWVlU2v1EE4tHXsN/9pgGxb1dC3gCujbTE4421tBKtDsLKlT96X65t/5oW8f5S3cknn6yAZmdn65IlSxqt9/zzz3tflNOmTau17qyzzvLW5ebm6l133aXffvut5ufn67Jly/Tf//63Dh482KszceJELSsra/A4wTb8lZWVuvfeeyugu+yyS0hz9wUrWZMGqqqHH364ApqVlaVr1qypt35T0SbNvjHb+7eycPVCvfrqq739v/32243u++OPP9a0tDQF9KKLLqq3furUqd5+OnXqpDfddJN++eWXunnzZl2+fLk+88wzOmrUKK/OiBEjdNu2bTF/z0nM9+/nZCo4N7f/BXAAMCaY4nfMiVTsx7o/rC1uXCq3xQ2xtjhh+f79nEgF6AMspeHE/Bs4N4XNBr6k5or3BgfGAX+IYlyl7j7rnkhoLoF/PJbAb+hzsT5BArO+Q2RC6V9UVlVq13909X47f7Xhq5jGZn2N6L9nE5TYtyvxOIiVOPyPjFIHIT9/k/fFmnU1Ee8vlc2dO9f7krzhhhuarT9x4kSFhm9m8ve//927DK+xkpGRoZdccomWl5c3eoxgG35V1ZkzZ3p177zzzubfcIh+/PFH/fHHH6O+33CF0qgtWLDAq3vhhRfWW//3+X/3/p0Mmz5Mv/nmG83KylJAzzjjjGZj+dOf/qRQ/3LMajNmzNDOnTs3+fcgInrKKafojh074vKek5jv38/JUIA84BWguJGEgk2LF9znaD/W48za4qalcltc1+LFixttiz9Z+4luLdla6zVri+PK9+/nRClAOrCIppPy1wOXB7z2A84I/anu4w8B63YAu0Ypto3u8afUeb25BP6l7vrVfn++iVSsT5C4rO8QuVD7F8fOPtb7/Txt4bTmN4iAX32Nhlhfo0WJfbsSj4NYicP/yCh1EMrKyrwvVq5DKyoqIt5nKiouLtY99thDAR0wYICWlpY2u82qVau0bdu2Cujvfve7euvXrFmjN954o44cOVK7d++umZmZ2rVrV91vv/30yiuvbHJkQLVQGv7Kykrv0q/c3Nyg3kMyC6VRU1UdP368ApqTk6ObNm3yXi+vLNded/by/o3M+HyGd2Z8l1120fz8/Gb3vX37ds3NzVVA999//wb/nW3ZskXvuOMOHTdunPbo0UOzsrK0U6dOOnjwYL3wwgv1008/jdt7TnK+fz8nesG5Oi7wvjY2LV74n6X9WI8ja4uTT6zapaqqqgbb4kUbFulvn/qtch163dvX1drG2uK48v37OVEKcEJAon4lcAFwGPB7nNH31Qn7xW6dvwNpdfaRBtwasJ8roxTbR+7+7q3zenMJ/Nfc9a/5/fkmUrE+QWKyvoM/7vv4Pu/386RZk2J6rHj3NZpifY0WJebtiqjTuJgkJyIFHTp06FBQUBDxvjKvFSrSnOXCS7bRtl37iPdpWpY1W4p55YPFrN1aTO/c3fm/sXv6HVLUvPjdixw1+ygAuuZ0ZfXFq2mV0crnqEwTxO8AEpmI/Arnh3e1VcC7wFqcS+mbparXxyC0pBTNttiYaNiwYQMAu+66q8+R+OOJRU9w6kunAtAhuwMrLlpBx1YdfY6qRbK22CUizwJHAwXAYFVdF7BOcObDn4CTiFmkqvs1sa/PgV8Cb6nqYVGIbSrwV2ArsKeqbnVfnwS8iJNYTK+zzTCcxD/Apao6LdI4UoX1CUwqC7V/sWTzEva+d2/AaY/zr8gnPS29ma2MSSox7+tkRHNnIpIBtAMKVbUimvs28ZNdKVSkOSd2CndYAt+Ebn1BCd9+Oh+AhTuzUyqB/6+P/+Utn73f2Za8N8nufPexCrgMuEvtzL4xKWPOnDkATJkyxd9AfPL7fX7P1PlTWZq/lG2l27hz4Z1cP9bOORpf7YuTnH8yMHkPTnZcRG7DSeADPN/Mvp4HhgIDoxTbgzjT4XQEZonIZFUtaayyiAwAnsNJWmwD/h2lOIwxCS7U/kX/Lv3Zre1urN+xnm2l2/hyw5fs32P/GEZoTOpJi2RjEckSkTNE5BUR2YQzWm8zUCoiG93Xp4hIVlSiNXGRWVnzZ1FYuM3HSEyy6rtLW295+aYdpEo+8JuN3/D2ircBSJd0zht+ns8RGROxA3ASCc+o6jRL3htjUklGWgZ/G/M37/m0j6axtWSrjxEZQ3f38fNG1ge+/mMz+6pe3ymiiFyquhq4ASchfxjwnYj8GWeUPwAiMkZEThKRx4AvgF44/YhLVXV7NOIwxqQeEWFc33He87eWv+VjNMYkp7AT+CIyBlgKPAQcAXTBaeyrS1f39UeAJSIyOuJoTVxkVdVc+VFUZP0wE7oubbPISHP+jopLK9m4fafPEUXHPR/f4y1PHjCZ3Pa5PkZjTFR0cB/n+BqFMcbEyAmDT2CvLnsBsL10O3d+eKfPEZkWro372OC8KqoaOHqquJl9VY+Oz440qIDj/x24C+f3fC/gZpx75VSf4H8beBw4GagepHeDqtroe2NMk2ol8FdYAt+YUIWVwBeRw4C5QE9qEvY7gEXAAvdxR8C63sAbIjI+CjGbGMusqvmzKCrZ4WMkJlmJCK0ya+a0W76pyMdooiO/OJ/HFz3uPT9/+PlN1DYmaWxwH8t8jcIYY2IkPS2dvx0SMAr/w2lsKdniY0TGAM7UdQlJVS8GJgNfUXuAXt2yGJho98IxxgRjbJ+x3vL8lfMpryz3MRpjkk/ICXwRaQ88hXPGvfpGO6OBDqq6r6qOdh/bu6+/4m6ahTOXnk2onuACE/jFRYU+RmKSWausmgT+TxuT/0TQ9M+mU1LhDHQauutQxvQe43NExkTFAvdxkK9RGGNMDB0/6HgGdB0AQGFZIf9c+E+fIzImsanqy6o6FGeO/QuAO4CHgWnA5cABqrqPqr7SxG6MMcbTt1Nf+nTsA0BReRGfrPvE34CMSTLhjMD/A850OQpco6q/VdUFDc2b674+EbjafakzYJNGJ7hMrUm8luxM/pHTxh89Bx7AUu0FOPPgJ7OyyjLu+aRm+pyLR1yMSMxvMm5MPPwLpz0/TURa+x2MMSa6Dj30UA499FC/w/Bd3VH4d390N/nF+T5GZExyUNWvVPVeVb1cVc9W1UtU9Q5V/dTv2Iwx/gm3fxE4Cv/t5W9HMyRjUl44Cfwj3ccFqnpTMBuo6s3A+zgj9n8bxjFNHAWOwC/ZmdyJV+Ofgf37UkA7AJYn+Qj82Ytns65wHQC7tt2VEwaf4HNExkSHqn6IM7dtT+AFEenQzCbGmCTSs2dPevbs6XcYCeHYgccycJeBgI3CNwmhm4j0aqgEU8et182v4I0xLVu4/QubB9+Y8GWEsU1/nNF6s0PcbjZwsLu9SWBZWvNnUbKzuXsnGdOw1uUFdKSQAtqxfFMRqpqUo9ZVtdYN784ffj5Z6VlNbGFM8nBvSD8fmAX8HvhBRB4HPgQ2E8Qcvar6XkyDNMaEbfXq1QCWxMcZhX/tIddy/HPHA7Bs67Kk7ZuYlPBgE+s0iDrGGOObcPsXgSPwF6xawM6KnbTKaBXV2IxJVeEk8KtH521oslZ9P7uPNgd+gsskcAqd5B45bfzz+YfvMyB9KwsrB1JUWsGm7aV065B8jfP8VfP5fP3nALTKaMU5w87xOSJjouodahIFCnQFLg5heyW8voQxJg7mzZsHwJQpU/wNJEEcM/AYzt3/XE4behojckf4HY5p2Zo6c6RB1DHGGN+E27/Yvf3u9O/Sn6X5SymtLOXDNR+S1ycv+gEak4LC+dG9FedyvV7NVawj130sCOOYJo4yAkfgl5X4GIlJdq0z06HSWV6+aUdSJvADR9+fOuRUuuZ09TEaY2KiboLAEgbGmJSUJmnc/5v7/Q7DtGyrqEnQ+0JEfnIXVVX7NfB6uGrtzxhjGjKuzziW5i8F4K3lb1kC35gghZPA/w7oDpwIBDV5pDjXpp6E01n5NoxjmjjKDPizKCuzKXRM+Lq2y+aivL3ou0tbBuUm39Tay7Ys4+XvX/aeXzTiIh+jMSYmrvc7AGOM8duWki2kSRodW3X0OxST4lS1j98xAH3cx7onEvq4r4V7It/XExPGmOQwtu9YHvjsAQDeXmE3sjUmWOEk8P8L5AH7isgdqnppENvcCuyH06i/3Exd47PABP5OG4FvItC5bTYnHNTH7zDCdvdHd6Pub5EJe05gwC4DfI7ImOhSVUvgG2NatPWF6zn8ycPp2Kojr5/8OjmZOX6HZEysNXYVgO9XBxhjUl/giPsP13xIUVkRbbLa+BeQMUkinAT+A8BlwK7ARSJyIHAb8KaqFlVXEpEcYLxbd5T78npgekQRm5jLlExvuax8p4+RGOOfgp0F/PuLf3vPLxlxiY/RGGOMMSbaisuLGfPoGJZtWQbA0bOP5uUTXrab1ZuYEZE0VW32BvGx1NhVAAlydYAxJsV1a9ONwd0G883Gb6ioquD9Ve/zqz1/5XdYxiS8tFA3UNUS4GigOrN7EPACsE1E1ojIEhFZA2wHXsRJ3gtQAhztbm8SWGACv7TSEvgmPBMmTGDChAl+hxG2hz9/mKJy55zk4G6DGb/HeJ8jMsYYY0KT7G1xrOVk5vCHYX/wns9ZNodzXjkHVRuEbGJmk4g8ISLHiUg7v4MxxphwRNq/GNdnnLds0+gYE5yQE/gAqvohcDDOfPjiljSgB7Cn+5gWsG4xMFJVP4pCzCbGstJqRh2Vltv5FhOeXXfdlV133dV7vrOskvIKXwccBa2iqoK7P7rbe37RgRfh3MrDmJZDRDJEpJOIhHO1njEmAdRti019Fx90MdeMucZ7/uiXj3LbB7f5GJFJcZ1w7iU3CyeZP1dEzheRXj7HZYwxQYu0fzGub00C/63lb0UjJGNSXlgJfABV/QLYB5gEPIaTzC8AqtzH79zXJwJDVHVRxNGauMiUmgR+eWWpj5GYZPbTTz/x008/8a+5Szh62nuMvflNPl+5xe+wgvLhmg9ZvX01ALvk7MJJQ07yOSJjYk9EskTkDBF5RUQ2AaXAZqBURDa6r08REZtbwpgkUd0Wm6Zdn3c9pw893Xv+lzf/wkvfv+RjRCaF3Qp8jzPILQtnytm7gOUi8qWI3CAiw/wM0BhjmhNp/2JM7zGIe7/sz9Z/xqaiTdEKzZiUFXYCH0Ad/1XV01V1kKp2VtVM93GQ+/oratehJpXAeT/LKst8jMQks/fee4/33nuP7SXlrN1agiqs2FjU/IYJ4M2f3vSWJ+01iVYZrXyMxpjYE5ExwFLgIeAIoAs1V9EJ0NV9/RFgiYiM9ilUY0wIqtti0zQR4f4j72d0L+erTVFOeuEkvtzwpc+RmVSjqleq6iDgF8ClwLtAJU5bOwS4CvjInZr2ARE5Il4nzkUkXUROEZFTRWRgkNsMdOufHOv4jDGJI9L+RafWnRiROwKAKq2qde85Y0zDIkrgm9SUGZjAr7IEvolM313aesvLN+3wMZLgBSbwbe57k+pE5DBgLtCTmoT9DmARsMB93BGwrjfwhojYPw5jTMrIzsjmheNfoG/HvoBzg9vfzvot6wvX+xyZSUX6/+zdd5wV5fX48c/ZwsJSlt47Is2CoNhoIioqoqICigpKEjUx0eT31WgSjZrEJJrYosaYGLsoKqhYiIKwNlBEUelIL9JZOsuW8/vjmXv3smy5fe7unvfrdV93Zu7MPIdImJkzz3Me1RWq+qCqngE0B64CXgX24K61rYEfA28D20TkdREZJyJNEhjW+bgR9P8Fwn0IzPf2f1ZEbBZKY0zYrut7XXD58S8fp6i4yMdojEl9lsA3R6iVXtLbuMAS+CZGnZuXJPBXVoEE/u783cxZPye4Hlqfz5jqRkQaAC/hhvEL8A4wAMhR1RNUdYD33cDb/rZ3aC1gone8McZUC02zm/L2FW/TIMv907Z+93oueuUiDticUCaBVDVPVV9U1dFAM+Ac4DFgHe7aXA+4CJco3yQiH4vILSLSLc6hXOh9f6aq34cZ+wrgEy/OkXGOxxhTjY0+ZjRN6rh3kmt3reXtZW9XcoQxNZsl8M0RaqVnBZctgW9i1alZ3eDy6q17SfWKWh+t+YgidW//e7fsTbO6zXyOyJiE+imuXI4Cd6jqBar6aVml77ztI4DfeZsaAzckL1RjjEm8ns168sqlr5Am7jGpdkZtDhRaAt8kh6oWqOoHqvpzVe0InADcBXyNS5KnA6cDfwEWichSEblfRAaIiMTYfD/c/UCkM0oG9j85xvaNMTVI7Yza/LjPj4Prj819zMdojEl9GeX9ICJ3BpZV9Z6ytkcr9Hwm9dTKzHKVGIECLfA3GFPlNW9Qm+ysdPbnF7H7QCHb9x6iaf2syg/0yYyVM4LLZ3Y608dIjEmK873vT1X1T+EcoKr3isgwoD9wAW5CPmOMqTaGHTWMh855iK83fc0Tw584bH4oY5JJVb/BlbK7R0RaAyO8zxlAFq6W/q+8zw4ReUdVx0fZXAfve3mEx63wvjtG2a4xpoa6/sTrue+z+yjWYj5Y+QFLti2he9PufodlTEoqN4GPe9Mf6IF3Tznbo2UJ/BRWOzM7mMA/FHb5Q2MON3z4cMBNDNepWT0Wrt8FuDr4qZzAn77K6t+bGuVo3DV9UoTHTcIl8I+Oe0TGmLgJXItN5G7sdyPg7mOMSQWquhF4AnhCROriSu2MAM7DTTbfBFdLf3yUTQRu0PMjPC7wwJgdZbvGmComXvcXHRp24IKjL+DNpW8C8Pjcx3nk3Eficm5jqpvKSuiUd8cqMXxMisvKrBNcLtBCHyMxVVnTpk1p2rQpAJ1DJ7Ldkrp18Dft3cSCLQsAyEzLZED7AT5HZEzC5XjfmyI8brP3bTXwjUlhoddiExkRKTN5X1Bko1ON/1R1n6pO9nrbtwQGAn8n8t7zoXZ4360jPC6w/64Y2jbGVCHxvL8IvDAHeGb+M+zJ3xOX8xpT3VTUA/+MCLebaqJ2rZAEPpbAN9FZunQpAN26daNjaAI/hSeyDS2fc1q706hbq24FextTLewEmgPtIzyurfedF99wjDHxFHotNrFRVe779D5eWfgKH1/zsd0jmJShqsW4iWQ/AW6J4VTf4+4JhgGRdIE9x/teFUPbxpgqJJ73F2d2OpNuTbqxdPtS9hzawwvfvsANJ9k0W8aUVm4CX1VzI9luqo+s0AS+FPkYianKZs+eDbiLeufmJQ+5q7bu8yukSln5HFMDLQZaAFcAD4RzgDdJ3lhc6Z1FiQvNGBOr0Guxic24N8bx/LfPAzDhrQlMvGSildcx1c103AS554jIAFX9uLIDRGQQLuGvwPsJjs8YkyLieX8hItzY70Z+/t7PAXh07qNcf+L1do01ppSKeuCbGqpOVkmytdB64Js46BTSA3/vwdQceq6qh/XAtwS+qSGmAoOBE0Tk76r6/8I45q9AH9zD+psJjM0YY1LGwA4Dgwn8Vxa+Qt9Wfbnl9Fg6O5uaRkQGJurcqvpRHE7zJPBrXC38KSIyWlVnlLeziAwFXvZWDwH/ikMMxpga6Orjr+b2Gbez99BeFm1dxKzVszijkxX/MCZUxAl8EQkMs9+iqgcjOC4L18sPVV0babsmeWpnlcw/ZD3wTTy0yKnNkxP60alZPerXyfQ7nDIt37GcdbvXAdAgqwEntj7R54iMSYongP/D1c+9WUROBu4HpqtqcLiMiGQDQ719T/c2/4B72DfGmGrvR31+xLyN83hi3hMA3DbjNjo07MCoXqN8jsxUIbNwL7/jTYlDxzxV/UFE7gHuBRoB74vILOAt3Ii9vUA9oAdu8tzBuDnuFPijqq6LNQZjTM3UIKsBVx93NY9/+TjgeuFbAt+Yw0VzoV8NFAMjcRfzcA0G3vOOtZ7/Kaxe3Zzg8sE064FvYiciHNe+kd9hVGj6ypLyOYM7DiYjzf6ZMtWfqh4QkUuAGUBt4FRgMqAisgnYB9TFJfgD41gFOABcoqoHkh+1Mcb44+FzH+a7Ld/x6bpPKdZixk4eS52MOlzQ7QK/QzNVR0rXhFDVv4hIG+Bn3qbB3qcsgT/Lo6r6pwSHZoyp5n7W72fBBP4bS95g3a51tMtp53NUxqSOaDNUsdx4pPRNi4FWLTsEl3dnHvIxEmOSJzSBP7STlc8xNYeqzhGR/sDzQE9vswCtcb3qSl+3FwJXquo3yYvSGGP8Vyu9FlNGT2HgMwNZsm0JhcWFXPrqpbxzxTtWes+E4+5Kfj8RON9bzsNNSvs9JS/TjwL6Aw1x1+d3gHnxDlJVfy4iH3vxVlTgeglwp6q+Fu8YjDE1T89mPRnSaQgfrvqQYi3mX/P+xR+H/NHvsIxJGaIa2Sg+ESnG3TBcrKph98AXkXNwPfBVVdMjatRUSkTycnJycvLy8mI+1/ZtW2j6WAsAMovgwO8LSU+3/2QmMrt27QIgJyenkj39V1RcRJP7mrAr38W86KeL6NGsh89RmTixl8Zh8ianHY4bYdcPaAXUB/bgyuV8AbwOvKOR3jzUEPG8FhsTD1XpWlyVbNyzkYFPD2TFzhUAZGdmM23sNAZ0GOBzZCnLrsWVEJGxwFNAAa4O/X9U9YieVCJSC5gA/AWoBVyrqhMTFJMAfXEvDdoCDYDdwHrgY1WN+8uD6sTuCUx1lqj7iymLpzBy0kgAmmU3Y/2v1lMrvVZc2zAmQRJ+r5PMBP5oYCKwT1XrR9SoqVS8bxDq/i6N/Znu78a6CStp27ZTXM5rara8fYdYuXUvuw8UMLhHC7/DCfpiwxec/J+TAWhdvzXrf7neZr2vPuw/ZBUgIm2BnwMXAO2BQmAVMAX4h6rujOHcmcAQ4CzgFFxvwobAfmANkAv8S1UXxPJn8Nqyh3Vjaog1eWsY8PSA4Pw59WvVZ/rV0+nXpp/PkaUkuxZXQER6Al8C6cBgVZ0dxjGn4q5fh4ATVXVJYqM0kbJ7AmMiV1hcSKeHO7F+93oA3rniHc7rep7PURkTloTf66QluoEQI71vm9ymCmiYXzLR6KpVdj9oIrdgwQIWLCjJh23KO8Cw+2by06fn8qc3FlBYVOxjdIebsXJGcHlo56GWvDcmiURkGPAdcCtuYry6QA7QGzd8/zsR6RvluZvhRg9MA/4fbgLeprgSgg2AY4EbgW9ExOr3mmqn9LXYxE+Hhh2YcfUMWtZrCUCapFGsqXNvY6qUX+DmoXkhnOQ9gLff80A2cFMCYzPGmCMk6v4iIy2DMb3GBNdfXvBy3NswpqqqsAa+iFwIXFjOz78QkYsqOb/gHsR7A11wPfc/jjRIk3wNC7PYiBu1uXbD9z5HY6qiL7/8ElkSeKQAACAASURBVIBjjjkGgBY5tWlWP4ute/LZc7CQb9bm0bdTYz9DDJq+qqT+/ZmdzvQxEmNqFhE5DngNd6+wH/grbkLdDNz9xy+ANsDbItJXVTdG2EQW0MRbXgC8CcwGNnltDgFuxr0w+I2IFKvqHTH9oYxJIaWvxSa+ujbpyvSrpnPpq5fy4sgX6dOqj98hmappKO45OTfC43KBa7zjjTEmaRJ5fzHmmDH8bfbfADeZ7cHCg9TOqB33doypaiqbxLY3MB53QxFKgDMibEtwD+cPRHic8UGDomxc2WPYtG2tv8GYakFEGNi9Oa/PdYNwZi3enBIJ/P0F+/lk7SfBdUvgG5NUD+ES6UXAuar6UchvuSLyFa6HYUvgj8C1EZ5fgenA71X1szJ+/0hEXgQ+w/XMv01E/quqqyJsxxhTQ/Vq3osFNywgPc3mizJRa+19F0R4XGD/1hXuZYwxVUifVn04qvFRfL/je/Yc2sN7y9/j4h4X+x2WMb6rLIEfUFY9iUhqTOwCPgTuUdWlERxnfJIj9YHNAGzNi7TDozFlG9yzxWEJ/F8O605amr/laj5d+ymHitxokx5Ne9CmQRtf4zEmEUTkzsCyqt5T1vZohZ4vwpj6UtIZ4JlSyfvAuV8QkWtwPeWvFpHbVHVLBLFtwNW+r2if5SJyD/AI7r7oIuDBcNswxpiykvffbf6OA4UHrCa+Ccc+3IixE3FzxoXrRO97fySNichKb1FVtUsZ26N12PmMMSYaIsKYXmP448d/BODlhS9bAt8YKk/gPwQ8E7IuwEpcj7brgA8qOb4Y2BvL5HPlSeSEd9752wH9gJO87764erkAd6vqXRGe7yzgJ7gJ9JoD24H5wNOq+mossSZCw4yGweUd+zb7GImpTk7o0IgGdTLZfaCArbvzWbxxF73aNqz8wAR64bsXgstDO9sIZFNt3UXJaLp7ytkeragS+JTMjQPwVAX7/ReXwE8HRgD/ibK9iswMWT4qAec3xtQgC7cs5MznziS/KJ//Xfk/Tml7it8hmdT2De46N0FEHlbVSoc/i0h7YALuGv5NhO119L5LX/87etui7V0T6/2EMcYAroxOIIE/delU9h7aS71a9XyOyhh/VZjAV9VduN7zQd7kjgJsUdU1iQutfN6EdxOB0pm/3t7nJyJyoarOi/L8HYDVMQVZci4BHgNuKPVTK+9zroi8CYxW1fx4tBkPjWo3DS7vyN/uYySmOslIT2NAt2a8M9+N6shdvMXXBP6y7ct44duSBP6YY8ZUsLcxVZ5Q9sN1LMNgYnlY7+997wfmVrBfaHK9P4lJ4NcKWS5KwPmNMTVEsRYz+rXRbN2/FYCznz+b98a+x+ntT/c5MpPCnsEl8OvjysddpaqflLeziJwOPIfrXKbA0xG2t5ayr9/lbTfGmKTq1bwXxzQ/hgVbFnCg8ABTl07l8mMv9zssY3wVbgmdUJ2877CHsMdTEia8g8OTGQqsADYCA6M41z2UJO+/8+JdCnTATZzX34v738DVUZw/IRrXa443hy27ivL8DcZUSaNGjSpz++CeLYIJ/JmLN3PD0K6BF4NJd3fu3RRrMQBndzmb09qd5kscxiRBefPWRDqfTTz19L6Xq2pheTup6kYR2YNLbPQsb78YDQpZXpygNoxJuvKuxSZx0iSNiZdM5MznzmTr/q3sObSHc144h3fHvsvADtE8SpjqzisXdxWu5Ft7XBJ/Hu4Z93vcM282boTYEEpK5wB8oKovRthex0i2G2NMacm4vxjdazQLtiwAXBkdS+Cbmi7iBL5fve5DJHrCO3Czt/4O+AL4UlV3ishgDu8FWCkR6QL82ludD/RX1X3e+pdez/upwDDgKhH5t6p+HEW8cdeiUbtACXx2sa/inY0pQ3Z2dpnb+3VuQp1a6Rw4VMS67ftZtXUfnZsnfzjcoq2LmPhdSZnRuwffnfQYjEkWVc2NZHuiiUgWbtJYgPVhHLIOl7xvl4BY6uJeqAPkA2/Guw1j/FLetdgk1rEtjmXmuJkMeW4IW/ZtYV/BPs598VymXj6VIZ2G+B2eSU0XAa8C53nrfb1PWQI9X94F7C2dMSbpknF/MbrXaO6YeQcA076fRt7BPBrW9rf8rjF+SvM7gEiEO+EdbsJccBPeNY+0HVXdrqp/UtUPYqylfzOQ6S3/PCR5H2inELgeN1cAwK0xtBVXrZt3CC7vTotoXiRjAJg/fz7z588/YntWZjqndW0WXJ+1yJ85Fu7OvRv1Rgmf1/U8q09rTHLVD1neG8b+gX0S8bbvb7gejwCPVjRyT0TyKvoAOQmIz5iolXctNonXq3kvZo2bRct6LQHYX7Cf8186n/dXvO9zZCYVqeoBVR2OG5E9H5ekL+8zH7hSVYerasQPaiLylYjME5FBpba39z61Y/zjGGOquWTcX3Rt0pW+rdx7zENFh3hjyRsJbc+YVBdzAl9E0kXkBBG5QETGisjVlX1iaC6SCe+gZMK7pPNq31/krS4rr46hN6Ih8MJhqIikxMwcbduUzOG3s1bKlOY3VUhFF/XBPUreq81akvwE/nebv2PSwknBdet9b2qqaB/WRSQrcGyUTdcJWT4Uxv6BC1GdCveKkIhci3uRDrAQuCOe5zfGb5bA91ePZj3IHZ9Lm/ptADhYeJARE0fw7vJ3fY7MpCpVfUFV+wCdgdHAL3HXpl96651UtY+qvhRDM4F540q/dF4NrATOjuHcMRGRtiLyVxFZJCJ7vRfkX4vInSLSKM5tdRWRP4vIfBHZLiIHRWStiHwkIveIyDHxbM+Y6iRZ9xehc9S9vODlhLdnTCqLpgY+4B76gd/jbiQieaBW3KQ70UilCe8q0xFo6y1XVqJgJjAUqI2raTgrYVGFqUvn7sHlvKxCioqKSE9P9zEiU52c1rUZp3ZtyoBuzRnYPeJBMjG7K/eu4PKF3S7kxNYnlr+zMdXbatwosJHAWxEcNxh4zzs2mnuJAyHLtcrdq0RWGcfFRETOBZ7wVrcBI1W1wvOraoXjdq0XvjGmtKObHE3u+FyGPDeEtbvWkl+Uz8WvXMyrl73KiG6+9DMyKUZEApMj7FLVbwBUdTXuGp30cHxo0zUsMgyYCJS+1gZeOPxERC5U1XkxtiO4lyK/5ch7kHbeZwBukuCbMcb4ZlSvUdzywS0ATF85na37ttKsbrNKjjKmeoqqB76InI4bujceN6FORUP8yvpEK+wJ73B17EOPSbbQdhdVsu+Sco7zTbNmrahT4P5THUqHzZvCKVFsTHjq1s7gwSv7MvKkdjStn1X5AXH09Q9fM3nx5OD6XYPvSmr7xqSgWK7L0R67J2Q5nJFngX3CKbdTKS9Z8jquzN0u4BxVXRaPcxtjTGldGnchd3wuHRt2BFwpACulY0LMwnXoStYMjYGyrk0r3CuJROQ44DVc8n4/rqNgf1yHgQdx89+1Ad4WkdYxNvcYcDcuef8NLkk/CDgBN5HwrcBsSsrcGmN80j6nPae1Ow2AIi3i9cWv+xyRMf6JOIEvIg2AybiLa6A3fWD4uQL/AG4E7ge+Ddn+AnAN0U0qG+2Ed5CACe/C1DZkubJ414Us+xXvERodKulUuXLNUh8jMSZ+QnvfX9LjEnq37O1fMMbUUKqaj+v1DodfL8sT2GddhXuFQUT6AW/jRg/uA85X1a9iPa8xxlSkY8OO5I7PpUujLlzT+xoeOfcRv0MyqSNQx/6bJLW31vtOpSEgDwF1cYn6c1X1HlX9VFVzVfVXuI6DAC2BP0bbiIiMA27wVu8H+qjqw6r6karOV9Xpqnq/qp4G3Bb1n8YYEzdjepWU0Xll4Ss+RmKMv6IZ9n490AyXlL9SVV8GEJHAMPQZqhoYhv9rEbkQV69+jPfbs1HGmkoT3oUjknhDfy8zXm9YfkXiPmQ/p6A2GykAYN365fhYDtGYuPhy45e8tdT98ySI9b43JnqB4e2xzHK+CBgIdBWRjPJG1nk97RqEHBM1ETkemIa7RucDF6nqp7Gc0xhjwtU+pz2zJ8ymcZ3GpEnMU5GZ6uMHXM37ZNUrnQ70AC4QkQW4Fwehk579QkQuKvPIiqmqToj0IBHpC5zhrT6jqh+VceIXROQaYAhwtYjcpqpbImynHvCAtzpNVW+taH9VDWeOHmNMgl3W6zJu/t/NFGsxuatz2bhnI63rxzoQx5iqJ5oE/rne97xA8r4iqvqmiGwCPgEeF5HPVXVJZceVISUmvItAJPGG3jD5Fe8RGhTVIVDlYOPWtRXvbEwpY8eODWs/VWXpD3soKi6mV9sKy0vH7J7ce4LLo3qN4pjmNjeVMVEKTCofS4/4T3AJ/GzgJNxw9bIMLnVMVESkB/AB0AgoAC5T1enRns+YqiDca7FJnrJq96oqeQfzaFQnrnN0mqojF5fA74MbtZ5o9wNX4V7G9/A+AUJJMj0aESfwKbmnANfxrzz/xSXw03GjByKd5+4KoLG3/IcIjzXGhEjm/UXLei0Z3HEwH676EEV5deGr3HTKTUlr35hUEU0Cvyeu9/0b5fx+RM8BVf1cRCbh6vpdT3STwfg+4V2EIok3tAh4mfH6MXFeQ6kPuI4N23ZuiOepTQ2QmZlZ6T7z1+zkrsnfsinvIP26NOGRqxM3mez2/dt5d/m7wfXfD/p9wtoyJhV5I+IuLOfncHrbCW54e2+gC+5e4OMYQpoM/MZbnkD5CfxA6b0iIptoN0hEuuB6HDbzznOlqk6N5lzGVCXhXIuNv4q1mJveu4lpK6bx6bWf0rxuc79DMsn3T2AcMF5E/qqqmxPZmKquF5FTcYn8oUDtUrtEO7+NRnlcf+97PzC3gv1mljom0gT+aO97u6p+FtgoIk1xLzO2qWplo96NMST//mJMrzF8uOpDACYumGgJfFMjRZPADySSS/e6K/DOV7ec42bgEvjR1mHxdcK7KEQSb+jvfsV7hJyMkncG2/cn9D7SVENz57r775NOOqncfVo3rMOmvIMAzFu1g137D5GTHc77uchNXTaVIi0C4NS2p9KjWY9KjjCm2umNqyFb+gE7mt52gnvQfqCyHcujqvNEZBauh/14EXlWVQ97ISAiY4EzvdXnSg+XF5GOwCpvNVdVBx8RqEg73D1Ia9yffYKqToo2bmOqknCuxcZfP3rrRzw9/2kAhr0wjA/HfUjD2okdkWhSi3c9vAO4F5ghImNUdUGC21wKjBCRDNw8c7WBlbjr5HW4EWvJ0tP7Xl5eOT0AVd0oIntwZfB6lrdfWUQkDTfaD+BbERHgp7iOhUeF7LcYeBJ43EroGFO+ZN9fjOwxkp+++1MKiwv5fMPnzN0wl5Pa2L2NqVmiSeAf8o47WGr7Htyw9DblHBfoWV7e7xVS1XwR2Ya7wUjqhHdRCp24trJ4Qyeu9SveIzTKahpczju43cdITFW0cOFCoOKLevOc2vRqm8PC9bsoKlb+9+0PjDqlQ0LiCZ2xfmSPkRXsaUy1V1bPukh62+0CPgTu8RIAsbgJ+Az38n+aiPwFl2zPwI0WCHSv2QT8LtKTi0gTXM/7wD8sjwHzRKSi+ln7VHVVBb8bU2WEcy02/hrRbQTPfvMsxVrM15u+psdjPbh3yL2M6z3O6uTXECJyNbARN0fLMGC+iHyMG+W2gTBGlKvqc9G07SXMN3lxBDZvUdU10ZwvUiKShXu+h8Ofn8uzDpe8b1fZjqW0o2SOuh3AaxxeuiegB/AgMFJELlDVXeWd0I856oxJFcm+v2iS3YTLel7GxAUTAbj3k3uZMnpKUto2JlVEk8DfAHQFmpTavhLoS8mb7dK6xdBmQNInvItBaLuV9RDoXs5xvmpSrwXeHLbkFdpoQpMY5x7fmoXr3b3xq1+s5dJ+7UlLi3bkbtn25O/h/RXvB9ctgW9qqIeAZ0LWhch62xUDe1V1Z7wCUtVvReRSYCJuhN893ifUBuBCVd0YRRPHAkeHrN/ofSqSy+F1940xJmEu6n4RTw5/kh9N/REAm/Zu4tq3ruXRuY/y4DkPMrDDQJ8jNEnwDCWj4xRIwz3zhvsfX4GwE/gicpy3uEpVQ0eNP+t9J3Pys/ohy+GMRA/sE86I/FCNQ5bPx404WAXcgrv/KQROAf6Cy2cMwJXouSzCdowxCXJ7/9uDCfw3lrzBwi0L6dW8l89RGZM80XTr+Nb7Ll1/Yg4uGXCeiBzWhVZEGuJq3yslQ92jEZi8LjDhXXkGl3FMsq3GJR0ABlWy72DvOx/4MkHxRKx5o5KBA7skZSr7mGrmvONbU6+2e6+3bvt+Zn+/Le5tvLv8XQ4VuVGwvVv2pnOjznFvw5hUp6q7VHVNyGe195Pg9bar5LMunsn7kLim4RLt9wOLgX3AbuAb4C7gWFWdF+92jTEmVUzoM4FXLn2F1vVbB7d99cNXDHpmEJe9ehmr81b7F5xJFgn5lF4P5xOJ+cDXHFk+bzXuWX1/xNFHr07Icjgla/LLOC4coWV+awNbgdNV9XVV3a2q+1X1Q9xz+XfefpeKSLk5B1VtWNEHN2LRGBMnx7Y4lhHdRgTX//zJn32Mxpjki6Y3fC5wKUf2TnsB16stC/jIGwa/AjfR3f8Bzal48ttwJG3Cu1ipqorIFNz/JkeLSH9VPeJlgveyY4i3+oGqpkymvFXz9oE5bNmV5tdcwKa6y87K4IIT2jBxthupO2nOGk4/ullc2zisfE53631vTIhO3veWCvdKMFVdD9zqfSI5bjUVJC5UdVZFvxtjTKoY1WsU53U9j/s+vY/7P7ufg4WuWulri15jxsoZfHDVB/Rt3dfnKE2CXON3AJ7f457X5wPLktRm6ENmOBNhZZVxXDhKl/+9T1V/KL2Tqu4Xkd9SkkMYQ8UT6xpjkui3A37LW0vd/z0nLpjI3YPvpkvjLj5HZUxyRNMDP3AxO0ZEguNVVPULXBJfcDXfHwXe8747erutA/4ebbBeD7xZ3up4ERlQep9wJrwTEfU+s0ofH2cP44bjATwiIodN8OtNGvQEkO5tuj/B8USkXZvgfD7sysyvYE9jYnPZye0JVM35fMV2Vm2N33usAwUHeHf5u8H1S3peErdzG1PVhfSut7e0xhjjs3q16nHPGfew9MalXH7M5cHtOw/utJ6G1ZiqPhvrJ8Imi73vzHj/WaIQWsInnLI4gX0ifVjYU2r9vQr2nU7JM7xNIGJMCunXph9DOw8FoFiL+eunf/U5ImOSR1S18r1KHyQyCDf0bJGqrgvZngk8jusBX7rH2zxgjKquiD7cYM2+wIR3+3F16kpPeJeOm4ynb+mauSLSkZIyPrmqOricdoYBLUM2dQd+7S2/SamRBKr6TDnn+QMlE+9958W7DDeRzq+A/t5vz6vq1WWdIxwikpeTk5OTlxe/WvWbN22g5b9cGZ1ahbD/rkLS09MrOcqY6Px64tfkLnHv2y4+sR2/vqCyqSPC89bSt7jw5QsB6NakG4t/tjh0ki5T/dl/bJM0ibgWG2Nqro/WfMRFL1/E8S2P550r3iE7M9vvkKJl1+IUIiLbgEbALar6QMj2YlwP/ItVNWmj2EVkK24i229UtXcl++7CzXU3V1X7RdBGXVwSP/B3MUdVd1ew/w+4XMASVS1dOjjcNu2ewJgEmLV6Fmc86yqAZaZlsvKmlbRt0LaSo4xJuITf60Q1oayq5pazvQD4sYj8EVcWpgUuyT5XVcsrdxNp24me8C7gNsqvXX+h9wn1TDn73om7IbkeV+P3xTL2eRP4ceQhJlbTZi2pXSgczFAOZcCWLRtp1aqd32GZamrUKR2CCfz3vtnIDUO70qBO7B2DDiuf02OkJe+NqYCIpAPH4UbSNaBkhFi5VDXsifOMMcaEb2CHgXxy7Se0z2lflZP3JvUsxE3SeqOIfAzM957jAyLv4RebRbgJe7uKSIaqFpa1k4i0xt2bBI4Jm6ruE5HVlJQOrOz+JvB7USTtGGMSb1CHQZzW7jQ+W/cZBcUF/O2zv/HQsIf8DsuYhIsqgV8ZVV0DPJ2Ic3vnnyYixwK/AIYD7XEX11XAFOCRREy0Fw11QxxuEJHJwHW42e2bATtw9QX/q6qv+hhiudLT02mUn8EPGe5+btWqpZbAN2H77LPPADjttNPC2r9Px0Yc1aIe32/eS0FRMfPX7GRg9+YxxVBQVBCskQdwSQ8rn2NMWUSkPa727WgimxhOAUvgG5OiIr0Wm9TTs1nZIxLX715vPQ5NtF7GJfA7AHOA0A4uArwRZYcXVdVo8guf4BL42biSNeV1/Btc6phIfURJAr8L8GVZO4lIDq4DHriOgcaYUvy8vxARfjvgt5z/0vkAPDnvSX4z4Dc0rxtb7sCYVBdNDfyUoKrrVfVWVe2pqvVUNUdVe6vq3RUl71V1taqK9xlcwX6DQ/ar9BNGvB+o6qWq2lZVs1S1laqem6rJ+4Ccgqzg8tqN3/sYialqli1bxrJl4c9/JSKMG9iZq/p34vWbBsScvAc3vC7voBu22j6nPX1a9Yn5nMZUNyJyOu6F8njcw7NE+DHGpKhIr8Wmanhw9oMc/Y+jmfjdRL9DMQkkIvVFpI2ItK/sE+Gp/wW8S/nX80jvA2K9J5gcsjyhgv2u9b6LKJmXLxKhz90V9eq5mJI/y0dRtGNMtef3/cW5R53LCS1PAOBA4QEemmM98E31F/EbchG501vMAx5T1bCGlYlIN1zPPlS1dMkbk6JyirIJzBH0w+bVvsZiqr+zjmnFWce0itv5Diuf093K5xhTmog0wD04N8RNavc8bp6ZJ3C96x8FluJ66Z2DK6+juHJwM3wI2RhjarSnvnqKX73/KwCumHwFH6/9mAfPeZCsjKxKjjSpzitjdwVwFdAPqB/moUoEz/WqWiwiFwAXAefh5mbLwpWPVVx5mm3hRx4bVZ0nIrNwPezHi8izqvpx6D4iMhY401t9TlW3lPq9I5XPc/ce8A1wPHCTiExS1a9LnacN8CdvNZ8EVhUwxkRPRPjNgN9w2auXAfDY3Me49fRbaVi7oc+RGZM40Qxxu4uSungjRORSVQ1nZpbuIcdaAr+KyJH6gLs/2ppnIwhN1VFUXMQbS0rmmr6kp5XPMaYM1+PKuilwpaq+DCAiT3i/zwiZyO7XInIh8BQwxvvt2WQHbIwxNdmgjoPo2rgry3csB+CfX/6TuRvnMunSSXRq1KmSo02qEpFWuFKwJwU2JbI9r8zrFO8TiKHYW/xtMiex9dyE60BQF5gmIn/BdRTIwM09d5O33ybgd9E04L24uAGYiSsXmCsifwOmA4XAybh58Fp7h/w2xjn1jDEJNLLHSLo37c6SbUvYnb+bR794lN8NjOqfB2OqhFhK6AhwBjBHRLrGKR6TYnLSS95gbt+32cdIjInM7PWz2ez9nW1RtwWntj3V54iMSUnnet/zAsn7iqjqm8D5uHuAx0WkeyKDM8YYc7ijGh/Flz/5kkt7Xhrc9uXGL+nzZB+mLp3qY2QmWiKShisJ0w93fV2Nq1MP7gX7TOA1YC5QELL9feBZqsFcNKr6LXApbpR/Nq7D36dALvAr3KSyG4DhsSTVVXU2MArYhRvhcLfXzufAI7jkvQJ3qerfo23HGJN4aZLG7f1vD64/OOdB9uTv8TEiYxIrlgT+CtwNxtG4JP6Q+IRkUkmj2o2DyzsP7vAxElPVZGZmkpmZGfXxP+Qd4B/vL+WBdxdHdfzri0rK51zU/SLS09KjjsWYaqwn7kH1jXJ+P+L/OKr6OTAJ13vt+sSFZoyJVazXYpOaGmQ1YNKlk3h42MNkprn/vnkH8xjx8ghunnYz+wv2+xyhidDlQF/c9fghoKuqXhHy+8OqOkpVTwbaAg97+x4LPKqq18QpjjOAIbiEdtKp6jTcn+l+YDGwD9iNK3tzF3Csqs6LQztvAb2AvwILgT3AAVx+4z9Ab1W9O9Z2jKnOUuX+4vJjLqdTQzf6bMeBHfzji3/4HJExiSNu9FwEB7ihdQqMBE4Efuv9VADcpKpPlHPchbgheqqqlkmLMxHJy8nJycnLC6eaUfh+86er+HPhCwCctaMz7z+8Iq7nN6Ys67bvY/Q/PqFYIT1NmPTz/rRpnB328apKx4c7snbXWgDev/J9zupyVqLCNanNJj6ogIjk44anj1fV58vYPk5VXyjjuGtxD7lLVLVnsuJNdYm6FhtjTHk+X/85l716Get2rwtu69q4K09f+DSntz/dx8gOY9fiCojIFFyZmPVAZ1Ut9LYHnrsvLl3SRkR+gpuvZh0u4bwzuVGbytg9gTHJ8d+v/8uEt9z8143rNGbVTatokNXA56hMDZTwe51YeuCrqt4BXAkcBDKBx0TkEW8YoKkGmjdqG1zerXt9jMTUJO2a1KVPRzf6o6hYef6TVZUccbivfvgqmLxvWLshgzsOjneIxlQXh7zvg6W2B8aftinnuAOV/G6MMSYJTm57Ml9f9zXndz0/uG35juXc8sEtRNpRy/gm0Pv+hUDyvpQjnq1V9UngI1yP/BsSG17FRCRdRBqIiGXMjDFJd9VxV9G5UWfA64X/ufXCN9VTzIl2VX0JN9RuM+6Nw8+Ad+0CXj20bN4huLwr3YbjmvDl5uaSm5sb9fHXDOocXH57/ga27CqdXyzf28veDi4PP3o4men+D+8zJkUFZidvUmr7Su/7JMrWzfvOiHtExpi4ifVabKqGJtlNmHr5VJ4a8RQNshqQlZ7FUyOeQsQ6vlcRTb3v0j1WApPK1i7nuNdxz98XRdqgiHwlIvNEZFAF+1ztfdqWt49nOLATsHqrxtQQqXR/kZmeyR0D7wiu/33239l1cJePERmTGHHpKa+qc3Cztn+Lu4k4C5gtIp3icX7jn/atjwou78rM9zESU9WsWrWKVasi6zkfqk/HxhzX3k2iXFikvPBp+Od6e3lJAv+Coy+IOgZjaoBvve8epbbPwV3PzxORDqE/iEhDXO175chkgzEmhcR6LTZVh4hw7QnXsuCGBbw4xV58VQAAIABJREFU8kV6NCv9z7pJYYE3LaUT4IHRcC3KOW6z990xijZ7e5+cCvZ5Bnga6BPG+QQrlWRMjZFq9xdXHnclXRp1AWDnwZ088vkjPkdkTPzFrdSNqq4FTgem4i7e3YEvRGRgvNowydepU7fg8o6sQoqKinyMxtQkIsI1A0t64b85bz3b91b+EumHPT/w5cYvAchIy+DsLmcnLEZjqoFc3DV7cKntgbr3WcBHInKDiJwtIjcA84Dm3u/lTX5rjDHGB+1y2nFJz0uO2D5z1UzeXPKmDxGZMGzxvkuPYN/ofR9TznGBnvE28t0YU6NlpGUc1gv/gTkPkHfQ5p8w1Utca9Wr6j7cEL6/4RICTYD3RWRCPNsxydO8eWtqeZUY8zOUbVs3+RuQqVFOOaop3Vu7Z5L8wmImfra60mPeXf5ucHlA+wE0rN0wUeEZUx0EJsU7RkR6BTaq6he4JL7gEgSPAu953x293dYBf09apMYYY6KSuzqX8186n0tfvZQpi6f4HY450iLv+6hS27/GXYdHiEid0B/E1Ue6ylu1BzRjTI039rixdG3cFYC8g3k8POdhnyMyJr7iPtmsOrcCE3CT49UCngRuj3dbJvHS09NpnF9SP3zl6iU+RmNqmtK98F+fu45d+w9VcMTh5XOGHz08YbEZUx2o6jrgDOA8YHepnycAT3nLUuozDzhTVXcmKVRjjDFRKNZibv7fzRwoPEBhcSGjXhvF64te9zssc7hPcdfW00ptD/yHagpMFpHuIlJLRHoArwLH48rZzUhapMYYk6JK98J/cM6D1gvfVCtxT+AHqOrTuFr423A3JOVNhGdSXE5BVnB53YbvfYzEVCXZ2dlkZ2fHfJ4B3ZrTpXk9AA4cKuKVOWvK3fdg4UE+WPFBcN0S+MZUTlVzVfV/XjI/dHuBqv4Y6IxL5v8GuBk4XVVPUtUVPoRrjIlAvK7FpupKkzTevvztYK/EwuJCRr82mlcXvupzZCZEYPjoaSLSPGT7G8BXuGfps4GFwAFgAXCxt89B4L4kxWmMMUDq3l9cfuzlHN3kaAB25e/iwdkP+hyRMfGTsAQ+gKp+DJwCLMYmtamycopLRmxu3Lzav0BMlTJq1ChGjRoV83nS0oTxIb3wJ32+lr0HC8rcN3d1LvsK9gHQtXHX4MXbGBM9VV2jqk+r6l9U9RFVne13TMaY8MTrWmyqtjYN2jBr/Cy6NXFzWxVpEWNeH8PYyWP5YsMXPkdnVPUr4C7gAaBdyHYFLqTkWbr0Zx9wuaouTXLIxpgaLlXvLzLSMrhz4J3B9Yc+f4idB2zAsKkeokngnwEMwQ31q5SqrsQl8R8BngWei6JN46McrRdc3pq3sYI9jUmMIb1a0r5JNp2b1+PW4T2pnZle5n5vL7PyOcYYY4wxpbWu35qZ42bSvWl3wJXWeem7lzj5Pydz6lOn8vKClykoKruDhEk8Vb1HVW9X1Xmltm/AlcoZBzwPvI/rmf9boKuqvnXEyYwxpgYbc8yY4Avr3fm7eWD2Az5HZEx8ZER6gKrmRnHMHtywe1MFNcwomQR0+97NPkZiqpLp06cDMHTo0JjPlZ4m/GPciTSrX5u0tLIH86gqU5dNDa5bAt+YyolIoItKHvCYqhaFeVw3YDS4pEOCwjPGxCie12JT9bWq34qZ42Zy5eQrmbGqpGz6nPVzmLN+Dk+NeIprT7jWxwhNWVS1EJe8f97vWIwxBlL7/iI9LZ07B93J2MljAXhgzgNce8K1dGrUyefIjIlNQkvomOqhYe0mweWd+dt8jMRUJevXr2f9+vVxO1+LnDrlJu8BFm5dyJpdrj5+g6wG9G/fP25tG1ON3QX8HngQ+J+INKx496DuIccaY1JUvK/FpuprWa8l06+ezryfzOPq46+mVnotABrVbsSYY8b4HJ0xxpiqINXvL0b3Gs1xLY4DYH/Bfn7y9k9wVcmMqbosgW8q1SS7RXA5r9Bm8TapKbR8zjldzgk+kBpjwiK4EnlzRKSr38EYY4xJrD6t+vDsRc+y9ua13DXoLn59+q/Jzjx8QsJl25cxaeEkirXYpyhrBp+vu+FktCzrZYypUtLT0vn3Bf8mTVzKc/rK6Tz3jVXzNlVbuSV0RGRgYFlVPypre7RCz2dSX9NGbcDreL9L9/gbjDG4cjmfLd/GnoMFDDuuNWD1742J0QqgC3A0Lol/map+6HNMxhhjEqxFvRb8fnDZg6l+9+HveHXRq7x9+ducf/T5SY6sRlkqIhuBmcAsYKY3j1wyvCFS/ghX3Av+yvYxxpiU069NP246+SYenPMgAL/83y8ZdtQwWtRrUcmRxqSmimrgz8K9bddS+wW2R6v0+UyKa9O8QzCBvzv9gL/BmBpvU94Bbn9lPos37qZhdiYDuzVnf1Ees9fPBkAQzj3qXJ+jNKbK+T/gRNykeI2A90TkJlV9wt+wag5V5cChIjLS06iVYQMkjTH++uqHr3h10av0btmbc7vafVUStAKu8D6IyHq8ZD4uob8mgW2Xl53XMPYpvZ8xxqSMP5zxB95Y8gar8lax8+BOfjHtF7xy6St+h2VMVCp7QhTKvlhLjB9ThbRtc1RweVfmQR8jMVVJgwYNaNCgQdzP26ReFnn7CwDI21/A63PXMe37acHh3ae0PYVmdZvFvV1jqjlV1TuAK4GDQCbwmIg8IiKWTU6wP0z5jsF/ms6Qe2cw53uba8bET6Kuxab669SwE7f3v52/Dv1rsASBSZgHgK9xifDA83I73DX5KWCliKwUkf+KyFUi0jZO7Vb2bB7u87s93xtTw1SV+4u6teryr+H/Cq5PWjiJt5a+5WNExkSvop7wd0e43VRTnTt0Cy7vyCr0MRJTlYwcOTIh583MSGPcgE78ZeoiAF78dBX1O00N/n7B0RckpF1jagJVfUlEVgJTgBbAz4CjRWSUqu72N7rqLb/AvYTcue+Qz5GY6iRR12JT/TWq04h7z7zX7zBqBFX9PwARyQEG4uakGQwcT0lyvCMwzvsgIqvweucDs1R1Y4Rt2lsZY0zUqtL9xVldzmLc8eN49ptnAbjhnRsY1GEQObVzfI7MmMiUm8BX1TIT9eVtN9VXi5ZtqVUEh9LhYIaydesPNGvWyu+wTA12fu82PPPxSjblHWTH/gN8vPy94G9W/96Y2KjqHBE5GXgLOA44C5gtIsNVdZW/0VVPjeqWTLptCXxjjKmZVHUXMNX7ICKNODyhfywlCf3OQCfgWqxErTHGVOiBcx7gve/fY8u+LWzcs5Hbpt/GP4f/0++wjImIvXk3lUpPT6fRwczg+oqVS3yMxlQV06ZNY9q0aQk5d2ZGGuMHdAZgLwvZX+gmV26f055jmh+TkDaNqUlUdS1wOi6JIEB34It4TGRvjtSoblZweee+fB8jMdVNIq/FxpjEUtWdqvqmqt6sqr2BZsAlwLNAYFi0lag1xiRdVbu/aFynMf849x/B9SfmPcFHaz7yMSJjImcJfBOWhgUlvQPXb/jex0hMVbFp0yY2bdqUsPOf37sNLRvWZqfMCW4b3nU4IvYMY0w8qOo+4CLgb7jkQBPgfRGZ4Gtg1VDjetYD3yRGoq/FxpjEE5E6IjIU+H/ALbiJbtP9jcoYU5NVxfuLy3pexohuI4Lr1799PYXFViLaVB2WwDdhaVCcHVzesHm1f4EY48nMSOOq/h3YTsmb87M7n+djRMZUP+rcCkwADgG1gCeB230NrJppHFJCZ4cl8I0xpkYTkVoiMkhE7hKRj4CdwP+A24BTcBPNAywAHgGqTjFqY4zxiYjw+HmPU79WfQAWb1vM018/7XNUxoTPEvgmLDnUDS5vyVvvYyTGlKjf6HsKZDsAGZrDDxu7+ByRMdWTqj6Nq4W/Ddcb/yR/I6perAa+McbUXCKSISKni8jvRGQGkAd8CNwB9Me9PBdgCfA4cBnQXFWP98rrvOlX7MYYU5W0adCG2/rfFly/c9ad7Du0z8eIjAlfuZPdiMiHCWpTVfXMBJ3bJEjD9EbAagB27N3iayzGBExa9HJwuQmDeOmzdQw/oT1tG2dXcJQxJhqq+rGInIKri9/D73iqE0vgG2NMjZYH1PGWQ2tBLgNmep9ZqmoPYcYYE6ObT7mZx+Y+xsY9G9m0dxN/n/137hx0p99hGVOpimarH4yb0T6eJAHnNEnQKKtxcHnnwW0+RmKqiiZNmiT0/PmF+by26LXgejMGM6JPWxrUyazgKGNMKWd43wvC2VlVV3pJ/D8AOQmLqoZpmF2SwM/bd4iiYiU9zebzMLFL9LXYGBMX2ZQ8I3+G62U/U1V/8C8kY4wpX1W+v8jOzOYPZ/yBCW+5ab3u+/Q+rut7HS3qtfA5MmMqVlECH2xGe+NpXLcFFLnlvMKd/gZjqoQLLrggoed/d/m77MrfBUDb+h15bcy1dGtt+URjIqGquVEcswe4OQHh1FiZGWk0qJPB7gOFFCvsPlBwWK98Y6KV6GuxMSbuTgU6AzNFJNDz/nufYzLGmMNU9fuLcceP44HZD7Bw60L2Fezj7ty7efz8x/0Oy5gKlVsDX1XTEvRJT+Yf0MRHs4atg8u7dK+PkRjjvLTgpeDyuN5jLXlvjKnSGtXNCi5bGR1jjKlRfoUrT7cL14GuJTAG+BewVETWichzInKNiHTwMU5jjKkW0tPSue+s+4LrT857kqXblvoYkTGVs0lsTVhaN+8YXN6dvt+/QEyVMXXqVKZOnZqQc+/O383UpSXnvuLYKxLSjjHGJMvhdfDzfYzEVCeJvBYbY+JDVR9S1YuAJsCJwC3Ae8AeXEK/DTAW+A+wUkRWishTInKliLTxK25jTM1VHe4vzj3qXIZ0GgJAkRZx+4zbfY7ImIpVVkLHGADatuoMi91yXoYlFkzltm/fnrBzT148mfwi9/fw+BbH07NZz8Pb3pvPE9OXc82gzrRuZBPaGiMiAwPLqvpRWdujFXo+E73QBP4O64Fv4iSR12JjTHypqgJfeZ+/i0ga0Bc3X80ZQH+gLtARGO99EJHvVbVb8iM2xtRU1eH+QkS4b+h9nPjvEwGYsmQKn6z9hP7t+/scmTFlswS+CUunTt2DyzuzCnyMxBh46buS8jljjx172G/TF2ziz28tZF9+IbsOFHDf5SckOzxjUtEs3AR5yuHX/sD2aJU+n4nSYT3w91oC3xhjajpVLQbmep/7RCQDOAm4FhhHyfX3qHi0JyJXe4ubVPX9eJzTGGNSWd/Wfbni2CuC+YVbPriFz679DBGbDtSkHiuhY8LSqlV7Mr1JbA9kKtu3bfE3IFNjbdq7iRmrZgTXxxwz5rDfW+TUZl9+IQAfLdnCZ8u3JjU+Y1KYUPbk9BLjx8TB4SV0LIFvjDHGEZE2InIlrib+i7gEfjqxvYAvyzPA08ApcT6vMcakrD+e8Udqpbv78Dnr5zB58WSfIzKmbDH3mhORdOA4oC3QAHczUSFVfS7Wdk1ypaen0yg/gy3ZLjG6YtVimjRt7nNUpiZ6ZcErFGsxAAM7DKRdTrvDfj+2XUOGn9CGt7/eAMAD7y6m708bk5Vp82ebGu3uCLebJLMEvjHGGAARaU5J2ZwhQJfQn0vtvgiYGaem9wD1AJvJ0RhTY3Rq1IkbT7qRB+Y8AMCN791Ivzb9jsgzGOO3qBP4ItIe+D0wGqgTwaEKWAK/Cmp6qA5bsvcAsHDJXPqdNMjniEwqa9myZULO+9KC8svnBPx0aFdyF29mz8FC1u84wAufrmLC4LiMLjamSlLVMhP15W03ydfYEvgmARJ1LTbGxI+INAEGU5K07x76c6ndl+AS9rOAWaoaz6GmG4BuQO04ntMYUw1Vt/uL3w78Lc9+8yzbD2xn095NjHh5BJ9c8wl1a9X1OzRjgqJK4IvI6cBUIAcbPl9jtC1uziJcAn/Bys99jsakumHDhsX9nN/v+J4vNnwBQGZaJpf0uKTM/RrXy+K6M7vyt3fczMvPfbyKYce1pk1jm9DWGJOabBJbkwiJuBYbY+JuMyXP1KWfrZdxeMJ+cwLjeB+XwD8NeDaB7Rhjqrjqdn/RuE5jXhv1Gmc9fxaFxYXM3zSfq6ZcxWujXiNNrPK4SQ0R/00UkQbAZKAhJb3pr/d+VuAfwI3A/cC3IdtfAK7B1ewzVVDHup2DyyvylvgYiampQievHXbUMJpkNyl334tPbEf31g0AyC8s5oH37O+sMSZ1Na6XFVy2HvjGGFOjpFEyr8z3wL+BsUBrVe2uqjeo6isJTt4DPA7kA1eJSLcEt2WMMSllcMfB/PP8fwbXpyyZwh0f3uFjRMYcLppXSdcDzXBJ+StVdbyqPhny+wxVfVxVf62qvYGLgZ3AGABVtbf5VVT3Nn2Cy+uKN/oYiakKJk+ezOTJ8ZsARlV58bsXg+vllc8JSE8Tbjm/B4EJ5D9dtpWPltjky8aY1GQ18E0ixPtabIxJiKeAq4C2qnq0ql6nqhNVdVMyg1DVZcB1uFH6H4rI+cls3xhTdVTX+4sf9fkRvzzll8H1ez+5lxe+fcHHiIwpEU0JnXO973mq+nJlO6vqmyKyCfgEeFxEPldV6wpbBZ10whD44K8ArKmz2+doTKrbvTu+f0c+3/A5y7YvA6BerXpc0O2CSo/p1bYhF/Zpyxvz1gPwwHuL6de5CbVr2YS2xpjUUr92BulpQlGxsi+/kPyCIpt828Qs3tdiY0z8qeqP/Y4BQETu9BZnAUOBt0RkDe45fgNwoLJzqOo9CQvQGJMyqvP9xf1n3c/S7Ut5d/m7AEx4awJdGnXh1Han+hyZqemiSeD3xPW+f6Oc34942lTVz0VkEnA5rgf/zVG0a3x2Ut9BZL0n5Gco2+sUsnLFYjp36eF3WKaGePrrp4PLo3qOIjszvHr2NwztyszFm9m1v4BNeQeZvnATw09ok6gwjUlJIvJhgk6tqnpmgs5do4gIjevWYuuefADy9h+iRU4dn6MyxhiTaCKy0lucqqo3+RjKXbjnfLxvATp4n3BZAt8YU6Wlp6Uz8ZKJnPrUqSzauohDRYe46JWL+OJHX9ChYST/HBoTX9Ek8Bt63+tKbS/wzlfeNM0zcAn8s6No06SArKwsOuzNZlnDfQB88vn/LIFvkmJ/wX5eXlgy4Gd87/FhH5uTXYufDT2a/+au4OZzuzOoe/MERGhMyhtMyUN5vEgCzlmjNQpJ4O/cZwl8Y4ypIdrhStt+W9mOSVB6Et3S6xWxewJjTLXQIKsBUy+fysn/OZlt+7exZd8WLnv1Mj699lMy0zP9Ds/UUNEk8A95xx0stX0P0Agor2trYMiddX2twtoVNWMZLoG/YMUcn6MxNcWUxVPYne+G6R3V+Cj6t+8f0fHDT2jDWce2pE6taP7JM6baiOQh3PggtA7+DquDb4wxNcVmoBXgd02KM3xu3xhjUkbnRp2ZPGoyZz53JgXFBczdOJc/f/Jn7hx0Z+UHG5MA0WSzNgBdgSaltq8E+gInlXNcYCZ7y6BVYR2zOwGrAVix06YyMOVr27Zt3M719PyS8jnjjx+PSGR5yLQ0seS9qdFUNZpJ602SHZbA32sJfBO7eF6LjTEJswiXwO/oZxCqmutn+8aYqqOm3F8M6DCAP5zxB26bcRsA9+Tew3ldz+PE1if6HJmpiaJ5oA8M7StdO2UOrnffeSJyWGEoEWmIq32vwKoo2jyCiLQVkb+KyCIR2SsieSLytYjcKSKN4tGG104/EXlGRFaJyEER2SIiM0XkRyIS1uxyItJeRO4VkS9EZKeIFHrfc0XkzyLSPl7xJtrRrU8ILq8r2uBjJCbVDR06lKFDh8Z8njV5a/hwlSvfLQhXH391zOcE2HOggC27Sg8kMsYY/4Qm8HdaD3wTB/G6FhtjEuol3HP0GL8DMcaYcNSk+4v/O+3/OL3d6QAUaRFXTbmKAwWVzultTNxFk8DPxd1gDC61/QXvOwv4SERuEJGzReQGYB4QKDxd3uS3YRORYcB3wK24Fwl1gRygN3A38J2I9I1DO78BZgPjcD0isoBmuD/7v3F/zgpfFojIWGAxcDtudEJD3ES/DYETgduARSJyRazxJsOJxw0KLq+pnedjJKameO6b51CvpOZZXc6iXU67mM/5xYrtjH38M+547RuKiq1cpzEmNVgC3xhjaqTngE+BE0Tkb34HY4wxpkR6WjrPXvQsdTPddJ9Lti3h9hm3+xyVqYmiSeC/5X0fIyK9AhtV9QtcEl+AtsCjwHved0dvt3XA36MNFkBEjgNewyXA9wO/B/rjkuoPAkW4Ovtvi0jrGNq5FvgT7n+jNcB1QD9gODDV2+00YIqIlPm/o4ichrshy8aNPngOGOmdZyTwore9LvC8iJwabbzJcurJQ6lV5Ja3ZBeyfn1cBlSYamjSpElMmjQppnMUazHPfPNMcH388eNjCwrYsusgv3pxHlt2H+SbtXlM/Gx1zOc0xph4aFwvK7hsCXwTD/G4FhtjEkv/P3v3HV5FmT1w/HuSkARCCVV6772LDVAUQREsqLgiIKhrF9vquvuz1117QUVRFLFgQQVXLIAgSu8CSu8dElog9fz+mMnNTU9ubnLvTc7neeaZ9s7MCQRm5p33Pa9qGjAY5935bhFZKCIjRaSpiETlc3ixcnuSXygiw0TEP91gjTEhr6w9XzSr1oyXLnzJs/7KwleYuXlmACMyZVGhK/BVdQfOADcXkX2gnTHABHdZskxLgX6qGudztI6XcSq8U4GBqvq4qv6mqnNU9R5glFuuNvCkLxdwU/6kt37YBZyuquNVdbGqfqeqg4F33f19gOG5nOohMv6M71LVkao61T3PVFUdDtzj7g9zywe18uUr0PB4Bc/6vPnfBzAaE8wSEhJISEgo0jl+3fYrm+M2A1AlqgqXtr60yHHVqhLNqHOaetbfnrWBDXuPFfm8xhhTVJlb4CcGMBJTWvjjXmyMKV4ikgocBAbgvDd3B94DNgAJIpKaz5RSDDHdJCJ/4qS//R9Ow7P3cyj3LxH5UUTe83cMxpjgVRafL27oegMXt7jYsz7qm1HEn7KsFKbk+DSonVtZ/oNbme+9PVlVbwSa4lTmPwSMBc5S1R6quqkowbppcc51Vyeq6twcYvsImOWujhCRWlnLFMAYID01zoOqui+HMncDR9zl+3M5z5nu/JCqvpZLmVeAuCzlg1qDlBqe5VXr5wcwElPaebe+v6b9NZQvV94v5x3Vuylt6lYGIDlVeeyrVSSlpPnl3MaEMhEJF5EuInKJiFwrIiPymwIdc2mSaRBba4FvjDFlhXejt6zrBZ38E4hIRRH5CXgTaFGAaywAzgdGevfON8aY0kZEeHfwu1QvXx2AnUd3cuf3dwY4KlOWRBTHSVV1Gzl8ofeDy72WJ+RaymmxcB5Ornnv1vKFvc4x4POcCqjqcRH5HLgBJ51Qc1XdmKVY+pt4rnlmVFVFZBNOS4vI3MoFk0blGwPbAdh4aF1AYzGl1/Gk43y+JuOf3/VdrvfbuSPCw3jk8g6MfGs+iSlpbNx3nAm/bOSW81v67RrGhBJ3MPVHgKuBwnwpS08PZ/zAcuAbY0yZNBcIlkGZPgH6ucubgc9wGrbdnEv5WcBe4DScVLNrijtAY4wJlNoVa/P2oLcZ+vlQACatmsTgVoMZ2nZogCMzZUGhW+CLyHvuFIhPTWe78wRgcR7lZudwTIGISDmcHPUAC1Q1rz7s+V3nL3feJI/rCU6PBe/yQa1l7c6e5e0pO/IoaYzvPl/zOSeSTwDQpkYbetTt4dfzN65ZkVsvyKiwnzRvC7+sy6mzjTGlm4icBazASUFXgQC1+jPZK/BVg6U+xxhjTHFR1b6qem5RJn/EISIXARfjfEz4AGitqv8CfsgjdgV+wnkeKNR7tzHGhKIr2l7B8I4ZWbRvnHYjW+O3Bi4gU2b4kkJnFDCSwLy0t3XnG1Q111x/qrobp/W89zEF1ZKMnglr8yn7Zw6xeXvLnVcXkdtyOccdQDV3+Y0CRRhg3dr39ixvjy7qkAamtGrSpAlNmuT67Spf76/I6MRzfefrcb51+deVPRvSvanzzy9N4aHPVvD1EvsoZcoOEakMfIUzMHx6a/r0VnYKvAbcDvwXWOW1/SPgemB0ScZb2kWXC6dCVDgAKanK8VN+T2tsypii3ouNMWVKelq89cANeb1vZ7HSnbfxf0jGmGBU1p8vXhv4Gg2rNAQg/lQ8w74YRnJqcoCjMqWdLxX4h9z5Ln8Gkh8RiQLSk6/vLMAh6bVwDQp5qfpey/ldx7umL6frvAdMdJdfFZH3RWSIiHR35x/gDMqbXvaD3C4kIvF5TUCVfGL1mzN7XUCEmy58T0wye/ZYhafJrk+fPvTp08enYzcd3sSv238FIFzCua7Tdf4MzSMsTHj4sg7Ur+YMzJym8Oy0tbw3p0jDdRgTSm4GauJUyg9X1VGqOt5r/0xVHaeqD6hqZ+AynHFbhgGoaq73LeObapZGx/hRUe7Fxpgy5wzcj/mqmlqI4/a689P8H5IxJhiV9eeL2OhYPhv6GRFhTtvfhbsW8tDMhwIclSntfKnAT8/nXiPPUv5XyWv5eAHKp5epWIzX8d6f7Tqqmqqq1wNXAEtxei98jZP+52ucVg7LgCtUdYyqhsQomhUrVabB8WjP+m/zZwQwGlMaTV8/3bM8oPkAalesXWzXqlU5mvFjenoGtQWoW9U/g+UaEwIGuvOlqvppfoVV9Ruc7vUCjBOR1sUZXFlUNSbKs2wD2RpjjClBtdx51nHd8pN+swqJ8dyMMcYfetXvxdPnPe1Zf37+83y3/rsARmRKO18q8KfivLhf5OdY8uNdo1aQN9r03PWFrYkrzHW88+PneB0RaYVTUd8ll3N0AkaJSJ5dDlU1Nq8JOJJPrH7VIDnj+82Kv34vyUubEDF58mQmT57s07E/b/nZszyo5SB/hZSrahWjeGNUD3o1r84d/VsxoGPdYr+mMUGiLU5ru6+qnLzzAAAgAElEQVRz2R+edYOqLgSm4Nz3chvUzvjIBrI1/lSUe7ExJjBEpJmI3Ccin4vIPBFZ6c6nuNubFdOlT7nzcoU8rqY7t9yqxpQR9nzhuPfMe7moRUbV6IivR7DzaEEShhhTeL5U4L+Jk1rmYhG53M/x5OWk13JBvu6nN2E7mWepol0nyms523VE5BxgATAE2IPTAr+Oe9667vo+4BJggYiETB+kRtGNPMubDq4JYCQmWCUnJ5OcXPg8cClpKczZOsez3q9JP3+GlasKURG8cG03rj2rcbZ9m/cft8EkTWkV686z5kJL/8cbk8txM915f79HVMZZBb7xJ1/vxcaYkici1UXkM+Av4Dngcpy0Nu3d+RXu9r9E5FMRqe7nEHa788Lmsj/DnW/2YyzGmCBmzxeOMAnjg0s/oF6legAcPnmYa768hpQ0G8fK+F+hK/BVNR6nQnoX8KmI/FdEGuVzmD8c81ouSFqc9DIFSbfj63W892e6jpuz/xOcypF9wOmq+oGq7lXVZFXd4+YOPh04AFQGPnaPC3ota3XwLG9Lthz4xn8W71rMsSTnn2HDKg1pXq15iV07PCz7QLl74k8y6u35/P29RazZGV9isRhTQtJriE9l2Z5+L6yXy3En89lvfJS5Aj8xj5LGGGNKC/d9ejkwFOcdXfKYwoArgWUiUtjx3vIyxz3/1SJSoHoCETkN58OCArP9GIsxxoSEGhVq8OnQTwkXp+PyvO3zeHj2wwGOypRGha7AF5FZwAtAPBAB3ANsFpHtIjJfRGblM83M8wK5UNVE4KC7Wj+vslnKFLZ22bu/S37X8X5gynqdAWRUbLymqntyOoGq7gJedVfruscFvc7tenuWd0QdDmAkprT5eXNG+px+Tfohkr1SvSSN+2k9SSlprNoez5h3FvLIl6vYd6SwHXuMCVrpA9JnbcWX3oquRy7HtXLnEX6PqIyzFvjGGFO2uJXl3+K8ewpOz+3/w2noVRUnpU1VoKe7fbdbrgEwTfz3sPyhO28GPFWAuMsDH+Ok1EsFJvgpDmOMCSlnNzybx8993LP+zLxnLB++8TtfUuj0BfoA7XC+tIPzAFEP56GiTx5TX3fy1Vp33kJEcq00EJG6OC3avY8pqPVAen+XtvmU9R68L+t1vLseLs3nPN77Q2JAwLN79SfMHXJ3V0wShw7uD2xAptSYuSXjG19Jpc/JTVqaUqNSFBHhGe9FP6zaw3Vvzmfz/sJ27jEmKK1y51m7yy/AHe8may87EYnFyX2vZAxsb/ykmlcF/uHjVoFvjDFlwHVAB5z76nSgtao+paqLVfWIqqa68yWq+hTO++I099gOwHB/BKGqC3DGuBHgH27O/dPJkhNfROqJyPU4PQb6unG/qaqWQscYU2Y9ePaD9G+WkV106OdD+WnTTwGMyJQ2vlTgQ/ZufDlty2kqqnnuvAK5twqEzB8J5uVWKCeqmgwscld7iUheefDzuo530qv8BgLy3h8SybJiq1anwYloAFRg3vwZAY7IBJuWLVvSsmXLQh1zIukE83fO96z3axrYCvywMOGuAa355Laz6Numlmf70ZPJ3P3RUvYfyZp1xJiQk95dvm+W7R+58yhgrojcIiL9ReQWnI/O6f8gchv81vjIWuAbf/LlXmyMKXFXuPMtwJWqeiyvwqp6HLiKjN5yV/kxltHAQpxngyuA34HPcBvuiUgKsB14F2jhlpsJ3OvHGIwxQc6eL7ILkzAmXTaJhlUaAnAq5RSDPx1slfjGb3zJgR9WxCm8CPF+5bU8Jo9yo915Kk53RF+vU4lcHohEpKLXvj9UdWOWIt4tEM7J53reg9eGTMuFBknVPMsr1hXqO4kpA84880zOPPPMQh0zb/s8klKdCqt2NdtRu2Lt4git0BpUj+HZYV14bWR3KkQ6/4XtO3KKuz9ayrGTNniPCWnp98j2ItIufaOqLsKpxBecLv2vA9+788ZusR04KfWMH3lX4B+2CnxTRL7ci40xJa4rTgX5+27a2Hy55d7DuU938VcgqpqA8276Cs6A9lkb43nn50/GeQ64SFVDohGaMcY/7PkiZ7ViajF75GwaVHaybVslvvEnX1vgB4SqLgV+cVdHiUi2inERuRZIb7b7oaruz7K/sYioO/2S9XjXBCDOXX5GRGrlUOZFoIq7/N8c9s8CEtzlW0SkU04XEpHuOKkIAE64x4WERlEZWRU2HPgjgJGY0iKY0ufkpEfT6jxzdWfPYLeb9h/ngU+Xk5SSFuDIjPGNqu4AzgUuAo5m2T2GjHy2WXvULQX6qWocxq+sBb4xxpQ5Ndz5+kIet8GdZx3HpkhUNUlV78b5YD8W+BLnvr8JWAF8B/wDaK6q91vlvTHGZGhatSm/jPrFKvGN34VUBb7rLpyK7nBghoj8n4icKSK9ReQF4AO33F7g375cQFXjgfvd1frAQhG5UUR6iMhFIvINcKO7fw4ZqQayniN98J+KwG8i8pyI9BORzu78eWAuTkoggKdV9YgvMQdCi5rtPcvbErcFMBITjCZOnMjEiRMLdYx3Bf75Tc/3c0T+cXrzGvz70ozf/WVb43jsq9WkpWkeRxkTvFR1jqr+4Fbme29PVtUbgaY4lfkP4bzIn6WqPVR1UwDCLfWqVIgkfTjCoyeTSUm1D4TGd77ci40xJe6EO48t5HHp5RPyLJWFiFR2pzx7xqvqXlV9VVWvdO/7LVW1q6peoqrPq+rOQsZrjCkl7Pkib1aJb4pDyFXgq+oqYCgQj1Px/TjwG05F+j04Ffu7gEGqursI15mA8wEgDaf1wXic3PjfAYPdYr8Dl6tqbm/Xz+B0K1QgBqelws84A/78jJMrsLy7/3lVfdrXeAOhc5uzPcvbIw8FMBJTGhxKOMTyPcsBCJdw+jTuk88RgTOwU11uPb+FZ71SdARWfW9KK1Xdpqrvq+qz7ov8/PyPMr4KDxNiK2S0wo9PsDRdxhhTym115xcV8rj08lvzKpSDeOAwcLH3RhEZ4U71C3k+Y4wxWeRWif/KgldITClQtjRjMilyBb47Cv0IEXlGRN4SkQn5H1U0qjoD6ICTumYdTquFo8BK4FGgg5tup6jXeQo4A/gQ2AYkAgdxPhbcCPRW1cN5HK+qeh9OXsM3gFVunKnufJW7vauq3p/beYLV2WcMQNxay50xicTHWSW+8d3srbNRtxq8R70eVI6qHOCI8nbd2U0Y2rMhN53bnAcuaetJq2NMKBGR99zpzkDHYjJkTqNjD/jGGFPK/YiTnm6wiFyRX2EAEbkcGILTEOwHH66Z04PrROB9nHdXY4wxRZRTJf7YH8bS8vWWvL/8fVLSLAOZKbgIXw9088K/jNMaPr37neA8RIzJUnYccAOwQ1Wb+XpNb26XvX+4U2GO20rODyy5lV+E0/LeZ6q6Ari9KOcIRtVr1KLeiUh2VkwiLQzmLfiRQQOvCXRYJkTN3OyVPqdJcKbP8SYi3HtRa0Ss4t6EtFE49+2VAY7DeLGBbI0xpkx5A7gTiAY+cdOsvqiqB7MWFJHqOOns0t+BT7nHF0Z6x9E8U+gYY4wpuvRK/P6T+rMpzslAuv3IdkZ/O5rnfnuOJ859givaXkGYhFyCFFPCfPoNEZEWOGlgrsb5COA9Mn1OXnfLNRaRvr5c0wSnBonVPMsr1swNYCQm1GUawLZp8A1gm5OcKu9VlYPHrMWsCRnpXad2BTQKk0k1G8jWGGPKDLdh2j0479PhwAPALhFZJCIficjb7nwhsBtnTJpyOBXxd6tqYe/h6YPW1/XPT2CMMSYvTas25Y9b/+ClC1+iZoWanu1/HfqLq764ih7v9GD9ocKOY27KmkJX4ItIOWA6UAfnIWMScCF5tDBX1bXAWnd1QOHDNMGqUbkGnuV1e5cHMBITbNq1a0e7du0KVHb7ke1sOLwBgPIR5Tmj/hnFGVqxSUpJ47GvVjN6/AIOHD0V6HCMKYgt7rxGQKMwmWRKoXPcKvCN7wpzLzbGBI6qvg3cgtOiXnAq6LsB1+D0ZL8G6O5uF+AkcIuqjvfhcn+557hJRE4revTGmLLGni8KLzoimrG9xrLpzk08ce4TmVIGL9uzjPM+OI+t8VsDF6AJer60wB8DtMD54n+zqo5U1Z/Iv/XeLzgPCqf7cE0TpNrX6+lZXpP8VwAjMcGmR48e9OjRo0BlvdPnnNPoHKIiooorrGL1z89WMGPVHvYfPcX9nyznZJLltDNBbyrOvbmwA+eZYlTVWuAbPynMvdgYE1huJX5bnDS128jo5e49bQNeBNr6WHkP8LU7b4/T0n+XiGz22j9eRDb7MG3yMZ5MRKS+iDwnImtF5LiIxIvIchF5WESq+uMaOVwzTETmi4imT8VxHWNKC3u+8F2lqEr8u/e/2XLXFh446wGiI6IB2HVsFxdMuoC9x/cGOEITrHypwL/cnc8u5EPDGnfe0odrmiB12cAbPMvrqsRz6OD+AEZjgklycjLJyckFKpspfU6T0Eifk5MrT2/oGcz2z91Heeyr1aSl2fO/CWpvAjuBi90B8UwQsAp84y+FuRcbYwJPVbep6j2q2gQ4DegMnOPOT1PVJqp6n6puK8JlXgaW4XwQCMPpWd/Y3SdALXfdl6lIRGQAsBonx38bIAaogvPzPwasFpFuRb1ODm4DehXDeY0plez5ouiqla/Gs+c/y3d/+46ocKcB48bDG+k/qT+HTx4OcHQmGPlSgd8Bp/X91/kVzCI9z26xfDU3gdG2TWeaHHW+GCaFw1fTJwQ4IhMsJk+ezOTJk/Mtp6qlpgK/V/Ma3DOwtWf9l3X7eXbaGk4lpwYwKmNyp6rxwBCcXnSfish/RaRRgMMq86pVzOiFZIPYmqIo6L3YGBN8VPWAqq5S1d/c+QE/nfcUzkeB+4CZwHqclv3gvOcfcNcLO20vSlwi0hH4AogFEoBHgLOBvsBLQCpQD5guIn7L3y8iDYCnyPjZjTH5sOcL/zmvyXl8NvQzwsUZV3z1/tVcNPkijicdD3BkJthE+HBM+qilewp5XF6D3JoQ1iG1KVvcIQ5+XfsdN/LPAEdkQsnaA2s93cSqla9G59qdAxxR0VzRsyE7DiXw6QLnPejbZbtYvSOex67oSMs6lfM52piSJSKz3MV4oD7OIHr3iMgunEr9k/mcQlU1dL+6BSlrgW+MMaWTiLzoLk5Q1TV5Fi5GqnoSJxVPejyISJq7eKOqfhuAsF7GaXGfCgxU1ble++aIyDKc8fdqA08Co/103XFAJeBdnFTBffx0XmOMKZAhrYcw8dKJXDf1OgAW7lrIpZ9eyvS/Tfek2DHGlxb4R9x5pUIeV9+dH8qzlAk5PRr09SyvTlybe0FjcuDd+v7cxucSHhYewGj8444LW3F++9qe9S0HTjD6nQVMmreFVEupY4JLX5wX1XY4Lc/A+eBeD+jp7stt6utOxs+sAt/4m6VzMyZojAXuAprlVkBE3nOn0G7VUghuWpxz3dWJWSrvAVDVj4D0hgcjRKSWH657NTAIp+X9A0U9nzHG+Gp4x+G8PvB1z/rMLTMZ9sUwUtJsXD3j8KUCf4s7L+yIFee78z98uKYJYpcNGONZXlsljsOHDwYwGhNqZmyc4VkO5fQ53sLDhCeGduSBQW2JLud8kEhJVd74aT23T1zM8VOWL9AElawD5OW0LafJFBPvCvzDJxJRtcpX45uklDS2HTzBE1/b47cxIWQUMBJoWMLXvR6nVfuyEr4uZIyzB5BXTtb33Hk4MLgoF3QHxH3FXb1XVS3ptDEmoG7reRtPnfeUZ/2bv75h5NcjSU2zlLzGtwr8n3Be3IcVdBR4EekO9Mdp3feDD9c0Qaxdu6409sqDP3Wa5cE3BXPk1JFMLfAHthgYwGj8S0S4rEcDPrz5DNrWy0idEx0ZTkyUL9nLjPE/VQ0r4hT6XWaCUIXIcKIinEe0xOQ0TibZQ7spvD3xJ1mz6wiHjicyY9VuNu07FuiQjDFBTFU/cKedAbj82e48AVicR7nZORzjq+dxBgqeraqTinguY4zxi3+e/U/uP/N+z/rHqz/m5uk3k6ZpeRxlygJfKvDfBhJxBpf5RETK51VYRNrgDEYjwFEyvpqbUqRDalPP8tw10wMYiQkWnTt3pnPnvHv+/m/D/0hKddJDdK3TlcaxjUsgspLVsEYM48eczpg+zahWMZJ/D2mPiDVeNsbkTkQsjY4psjqx5Slfqym7tCaq8O4vmwIdkjGmFBCRdiJyk4jcKiJn+em0bd35BlXNNV+Equ4G0r9Gts2tXH5E5Fyc3gaJwM2+nseYsqog7/rGNyLCc+c/x83dMv5renf5u4ydMdZ65ZZxha7AV9UdwOM4FfIXAOtE5AGgU3oZEektIteKyAfAcpzuf4rTNe2oXyI3QaVn/d6e5VWJARuPyQSRgtzUv/rzK8/y5a0vz6NkaIsID+PG85rz+Z3nUL1SVKZ9aWnKySTLa2eMycwq8I0/jBpyLrtw0kTPXruP9XvsMdwYkzMRqSsiL7pTx1zKvAWsAt4EXgPmisjsgvbMz+WcUUANd7Ugrf93uPMGPl4vGhjvrj6jqut9OY8xZZlV4BcvEeGNi99gZKeRnm2vLXqNB39+0CrxyzBfWuCjqs/g5IsTnMr5p4FHyBgAbzbwITAcSH8DfVxVrfV9KXXphV558CvHER9nYxWXdQkJCSQkJOS6/2TySf634X+e9cvblN4K/HQ5pc55b84mxryzkB2HTgQgImNMsMqcB98q8I1vGsZG0KdFFc/6+NkbAxiNMSbIXYMzyO6NwOasO0XkTuAmso+J0xuYUoTrVvJaPl6A8ullKvp4vUeA5sB64Fkfz4GIxOc1AVXyPYkxISq/d31TdGESxoTBE7i63dWebf/5/T88PufxAEZlAsmnCnwAVb0buAznC3xeg9ytAQar6mNFjtYErfYdutMoPQ9+BHz1reXBL+umTJnClCm5P8v/sOkHEpKdm37rGq1pU7NNSYUWNOb+uZ93f9nE5v3HGT1+AUu32IcvE1giUk9ERojIMyLylojYf+YBYi3wjT9MmTKFxglrSM/cNu+vA6zZGR/YoIwxwSq9S/VsVc1UkS4iEcBD7moiTv7423Hy1Qtwnohc5ON1vVPyFuSGl5jDcQXi9iy4z129RVUT8ypvjMlZfu/6xj/Cw8KZdNkkhrQa4tn26JxH+c9v/wlgVCZQfK7AB1DVb1S1M9AZuAN4AXgXeBm4H+ipqh1U1ZKilwEdU5t4li0PvsnPV+vKRvqcvJxITCHSHajy2KkUxk5ayuy1+wIclSmLRKSWiHwMbAHeB/6B08puVA5lx4lIkoj4LaG2iNQXkedEZK2IHHdbry0XkYeL0i3f6/wNROQKEXlWRGaJyBERUXd61A8/gt9ZBb7xl/KR4fRrV9uz/o61wjfG5KwpTo/6hTnsOw+o5e6/WVX/oarjgHOBXW6Zv/l43ZNey5G5lsqQno/yZJ6lshCRMJy6ighgkqrOKszxWalqbF4TcKQo5zfGGIBy4eX4bOhn9G/W37PtgZ8f4J8//5PUtNQARmZKWpEq8NOp6ipVfUNV71fVm1T1HlV9QVWX+OP8JjR0z5QH/48ARmKCXVJqEtPWT/Osl4X0OTkZ2Kkub43uSU03L35yqvKvKSv4dmlB0n8a4x8i0gJnvJqrcV5q03vQ5eZ1t1xjEenrh+sPAFbjfDRoA8TgdDvvDDwGrBaRbkU4fyNgO/AF8ABOZUPlIoZd7KpVzBgvI+6ENRA0RXND32aEuf+qF2w8xMrtcYENyBhTkCTGJZ3oOD0P/dYc9p3nzo8Ck9M3qmoC8DHOc0N3H697zGu5IGlx0ssUJN2Ot7uAHsBh4N5CHmuMMQETFRHF1Kun0qdRH8+2Z397lgGTB3Aw4WAAIzMlyS8V+MYAXNp/tGd5jeXBN3n4ZesvxJ9yuvA3rNKQrnW6BjiiwGlbrwpvjzmdBtUrAJCm8PS3a5g0b0uAIzNlgYiUA6YDdXBevicBF+J0i8+Rqq4F1rqrA4p4/Y44FeuxQAJOXtqzgb7AS0AqUA+YLiJ1fb2M17ICG4G5Pp6rxFgLfONPjWtW5MKOGf+Exs+yVvjGBNjXIpKa0+Tul7zKZJlS/BRTNXeeU2Lrs3DuobNUNev1/nLn9Xy5qJvGJr0Gqn4BDkkvsyPPUtk96M5nA/1EZFjWCdxRvwGv7WWzpZExJqhUKFeBaddMY0DzjNevnzf/TLfx3Vi6e2kAIzMlxSrwjd907NiTRscy8uBPnf5+gCMywSpr+hyRvBr7ln51q5bn7dE9aVknYwyvN35az2s//GWjzJviNgZoQUaX+JGq+hMZ3eFz8wtO5cLpRbz+yzgt7lOBgar6uKr+pqpzVPUeMlL41Aae9PEax4B/A/2B6qraAudDQVCr5lWBv+/IqQBGYkqL0X2aEu42w1+65TB/WC58YwIttzHklIzW93mNNec9+UP61+JMg6+KSDQZrevn5XBceqqYqBz2FVR6w4AWbr79HLkf89N70a3NrVwu0uO7Avgkl8l7UK70be8V8jrGGFMsKkVVYvo10/m/3v/n2bb9yHbOeu8s3l9u9W+lXZEr8EUkTERaiEhPEeldkMkfgZvg1CGlsWd57uppuRc0pV737t3p3j17T9rUtFS+/vNrz/oVba8oybCCVrWKUYwb1YMujTPSfU/+fSvDx/0ewKhMGZDeqmy2qo4vxHFr3HlLXy/spsU5112dqKrZWsWr6kdAeo7aESJSK2uZ/KjqIVV9SlV/UtWQyRvStFZGFoF1u4+SmGw5Lk3hed+LG1SP4aLOdWlZpxIvXNuVdvWq5HO0MaaY5Ffp7u+K+YJK/3jfJcv288mo/M7pwTTWnRc2pY239A8DFXDS3OSmbw7HGGNKWG7v+qb4hYeF8/i5j/PtsG+pHOV8z0xMTWT0t6O5efrNHEs8ls8ZTKjyuQJfRPqKyHScG/WfwHyc7mj5TUUaLMYEt+71Mr7PrExcHcBITKC1b9+e9u3bZ9v++47f2XfCGaj1tJjTOKP+GSUdWtCqGF2Ol4d3o3frjDrKKhXKZSu378hJ7v5oKbvjcurhbEyhdMBp5fd1fgWzSM+RVpQBZr27pE/Io1x6y7dwYHARrhdSalaOplGNGACSUtKstbTxSdZ78T0DW/PB38/grJY1y3zvN2MCQVXDimEK91N4C3A+GgwXkWYAIhIO3OfujwdyGuMuvdX69iJc+yuv5TF5lEvP2ZoKfFuYC7iDy0peEzDHq3z69tg8TmtMmZTbu74pOZe0uoQlNy6hfa2Mv4e3l75Ni9daMH7peFLS/JVdzQQLnyrwReQRYCYwEIim4F37AtGSwJSgIf2v9yyvrRxvefDLsCNHjnDkyJFs273T51za+lLCw/z1zlE6RJUL5+mrOjGsVyMiI8KoVD5zBX5KahqPfLma+RsOct2b85m5Zm+AIjWlRHq+2z2FPM4f9/Kz3XkCsDiPcrNzOKZM6Nakmmd56ZbDAYzEhKqs9+LykRE5VtxbujZjDJCefyEWWCwiU4GVQG+cj/0fqWpO3cHOcff73HpLVZfipOcDGCUi52QtIyLXAv3c1Q9VdX+W/Y1FRN3pl6zHG2P8J7d3fVOyWlRvwYIxCxjWfphn274T+/j79L/T+a3OzNg4I4DR+Y+qsv/EfhbvWsyXa79k3/F9gQ4pIHLNL5cbEbmQzLljt+N8qd4FJPopLhOiOnfqRcNJUWyvlEhihPL1dxMZNfzeQIdlAmDq1KkAjBo1yrNNVfnqT6/8921sTKicRISHMXZga27v35KklLRM+9bsOsLqHU5L3BOJKfxrykoWdzvE2AGtiY60jyGm0I4A1YFK+RXMIn0AuaJ8pW3rzjfkMCCeh6ruFpFjODG2za1cadStSTW+WuyM0bdky2FuCnA8JvTkdC/OavWOeN6auYFnru5M5fLZe30ZY8oGVZ0jIhNwWsDHkrnX227giazHiEhjnJQ3CvxWxBDuwknREwPMEJFncRoNRgBD3P0Ae3HGtjHGBEhBni9MyYiJjOHjyz/m4hYX88+Z/2Tn0Z0ArDmwhoGTB9K/WX+ev+B5OpzWIcCR5i81LZXNcZtZvX81q/atYvX+1azZv4ZtR7ZxKiVjTLBvhn3D4FZlpmO2R6Er8IHb3XkaTne6V9Sa7RgvHVKasJ0/AZiz+ltGYRX4xrFszzK2H3F618ZGx9K3cd/ABhTkIsLDiAjP3FGqU8OqvD2mJ//3+Sr2xJ8E4OulO1m+LY6+bU6jcc0YGteIoWGNGGKifPkv3pQxW3Aq8HsAEwtx3Pnu/A9fLioiUUANd3VnAQ7ZgVN538CX6/mLiOSXx8avScW7Ns5ogb9m5xESElOoYP+uTSHpyVMk/vY7UWedmW3fyu1x3D1pKQlJqdz14RJeHdE9W88vY0yZchPOvf0GoDlOL7mfgAdU9WAO5W/zWv6hKBdW1VUiMhRn4NhY4HF38rYLGKKqu4tyLWOMKU1EhOEdh3N5m8t5af5LPPvbsxxPcoYl+XHTj3Te3Jm/d/s7T5z7BNUrVA9wtNntPLqTqz6/ihV7V3Ay5WS+5bfFbyuBqIKPLyl0euJ8Yf9MVV+2ynuTVY+6GT0eV56yPPgmg3f6nEtaXkJkeGQAowld7evHMumWM+jXrrZn27aDJ/jg18089tVqrh+/gH5Pz+SLhUVJRWrKiJ9w0uEME5EC5bMXke5Af5xnAV9f1r1b/Bdk0Lv0MhXzLFXKVI2JpNlpzo+cmqas2mF58E3BpR48SMrGjSStXEHc3fegSUnZyuw4lEBCkpMRY93uo9z54RL2Hcn/xckYUzqp4xVV7aCq5VW1uqoOU9XcakteAJoATVR1ix+uPwNnfJ7/AuuAE8BRnFQ+jwId3HQ7xhhjsqhQrgL/6v0vNtyxgZu63kSYOFW+aZrGm0vepMVrLRi3eFzQ5cevV6keEWEReVbeV4mqQodaHZ30GdAAACAASURBVBjUchD1K9fPtVxp5ksFfnrrstKRTMn43ZALR3uWV8XGsX69Tw00TSmjqny57kvPuqXPKZqK0eV48sqO/HNwO6LK5fxfee3Y6BKOyoSgt3HS38UCn4hI+bwKi0gb4AucSv+jZAwwW1je18leq5hdeoq+POMrbu4AeLlOOCmJ/Kq7Vx78JZttXBlTcFKhAmnx8aCQumsXCV98ma3MoC71ePCSjMxU63YfZcRb8/l9/YGSDNUYE6JUda+qblNVv7UaUdWdqvoPVW2rqhVVtYqqdlbVx1Q1Lo/jtnoNPNvXx2v39RrQ1hhjQlLtirV5+5K3WXXzKvo36+/ZHncqjtv+dxvdxndjztY5eZyheKVp5jTBIsLLA15GEGpXrM0FTS/gnl738P6Q91ly4xLiH4gn/sF4Vt2yimnXTOOyNpcFKPLA8qUCP33ExIK8cJsyqHOnXnSIc77zpIbBuMn/F+CITDBYtW8Vfx36C3C+DHvfSIxvRIQh3erz5V29eeTyDow8pyl929SiSc0YIsKFRjViAh2iCXKqugOne7oAFwDrROQBoFN6GRHpLSLXisgHwHKgIU7r+3tV9aiPl/ZuXlGQrjhRORxXJnRrktHNddlWG8jWFFxYhQqE16nrWT/26mtocnK2cpd2b8ADg9oSHubUVx1JSOaeyct47ce/SElNy1beGGOMMcYEv3a12jHj2hl8M+wbmlZt6tm+at8q+n7Ql2FfDCPuZK7fRf0u7mQcj895nNPfPZ3k1MzPpF1qd+HgPw6y5949/Hjdj7xw4QuM6jyKbnW7USXar1lKQ5YviVR/A4YB7fwciylF+lfrz2r9HICfjs4McDQmEM4444xM6x+t+sizPKTVECqUq1DSIZVaNSpFMbBT3UzbUlLTCJPMjYdOJqVQPtLyZ5vMVPUZEamFMzhcQ+Dp9F3ufLZX8fRfqsdV1dfW9wDHvJYLkhYnvUxB0u2UKl0aVSVMIE3hz91HOXYy2XKUmwI765JBxN97PwCpO3aQ8OWXxAwblq3cZT0a0KRWRf7vi5UcOOp0eJn821ZWbY/niaEdqR0b0M4vxhhjjAkiWd/1TfASEQa3Gkz/Zv15af5LPPnrkyQkJwDw2ZrPWLZnGd9e8y2ta7QulusnpSYxY+MMPlz5IdPWTyMp1WkL/uaSN7nz9DszxVmtfLXcTmPwrQX+azgv9SPz62pvyq7bhj9BpJNSlbWxx5j1y7eBDciUuFatWtGqVSvAGU384z8+9uwb3nF4oMIqMyLCwwgLy6jAP3Q8kTHvLGTCLxsDGJUJVqp6N3AZsAqnkj63aQ0wWFUfK+L1EoH0wfAKksQwvcyOolw3FFUqX45WdSoDTiX+8m0l10rGhL7WHTvSbvAlnvXcWuEDdG5UlUk3n8kZLWp4tq3eEc+It+bzm6XUMaZMEZHuIvIvEZksIv8TkVkFmKzVljFlhPe7vgkN0RHR/POcf/LX7X/xtw5/82zfcHgDp797OtPXT/fbtVSVRbsWccf/7qDuC3UZ8ukQvlz3pafyHmDqn1OxIVULp9BNMVV1gYg8AjwBfCUiw1TV7zlfTWhr0rQVp8fX5dfquwF4/7vnOK/v4ABHZUrSwYNO3VyNGjX4Zesv7D7m/C7UrFCTC5peEMjQypzDxxO59f3FbDt4gs37j5OYnMbZrWpSq3I0NSpFERHuy7dcU9qo6jfANyLSETgHaIwz7s1xYBcwR1WX+PGSa4HeQAsRiVDVHEdTEpG6QGWvY8qcrk2qsW63k61o2ZbD9G5dK8ARmVBx8OBB0oYMRt56G42PJ3XbdhKmfk3MVVfmWD42JpIX/taVj37bwtuzNpKaphw7lUxMlPXeMqYsEJGGwIc4zwGFOpSMnnvGmFLO+13fhJb6lesz+fLJDGk1hFFfj+JkykmOJh5l8CeDeeq8p3jw7AcR8W0YkFX7VvH6otf5bsN3nvqfrLrX7c7N3W5mVOdRPl+nrCr007iI9AZ+BT4BrgE2iMiHwAKc1nT5JstU1bmFva4JPYOaD+PXuBcBmMUSkpOTKVfOuv2XFdOnO19wR40axeTVkz3bh7UfRrlw+z0oSTFREdSuEs22gycA+HDeFj6ctwUAEagaE0m9qhUY0q0+AzvV9eRBNmWTqq7CaYlf3ObhVOBXAHoA83Mp1zfLMWVO9ybVmPzbVgCWbLGBbE3Bpd+LL7/xBo7993kAjr3yKhUuvwyJyPk1ICxMGHFOUzo1qsrDX6yib5tadG5UtcRiNsYEhojEAnNw0unZw6AxJlfe7/omNF3V7ipaVm/JkE+HsP3IdhTloVkPsWr/KiYMnuBTyuO9x/fyzrJ3sm1vULkBwzsO57qO19GmZht/hF8m+dLs8hecfLjDcL6y1wDuBj4DZrr78ppmFTVoExpuHvl/VEl0fsV2V0zikymvBzgiEwgnk0/yxdovPOuWPqfkRZUL57lrutC9Sfaccqpw+HgSq3fE8+TXf3Ddm78Td8LGKDcl4iuv5TF5lBvtzlOBMpmPrVPDqp4Paxv3Hbd/o6bQKo6+HqniDACWunUrJ7/+Jt9jOjWsyuRbz+SWfi2z7VuxLc5+D40pff4BNHKXtwA3As2AaFUNK8AUHrDIjTHGFFrn2p1ZfONizmmY0enq0z8+pdNbnbh7xt1MXTeVQwnZGw+t3LuS+3+8n9S01Ezb+zTqQ8VIZ+iyauWrMarzKGaNmMXWsVt5ut/TVnlfRL72h836Rd6+0JtsKleJpXdCK6ZFrQNgyuLxjLj27gBHZUratPXTOJbkjFfZvFpzetTtEeCIyqbocuE8/7eufL5oO6t3xHPg6CkOHEvk0PFEvFPPVSlfjtgK1kPCFD9VXSoiv+C0sB8lIh+o6q/eZUTkWqCfu/qhqu7Psr8xTiUDOCl++hZjyAFTISqCtvWqsHpHPADLtx7mvHa1AxyVCSVhlStT8cYbOPb8C4DTCr/8ZZci4XnXt1WMzn4/OHQ8kQc+XQ7APQNb079DHesCbUzpkJ7vdDvQQ1UPBzIYY4wxxa9WTC1+HvEzd31/F28tfQuAjYc38vLCl3l54csAtK/VnrMbnE218tWYu20u83Y4naLPaXQOg1tlpMqOiohi3EXjaFK1Cb3q9yIizFIw+pMvf5pFGrjOlC1Xnn4z09bfBcDcmPXExx0itmr1AEdlStJHqz7yLA/vMNxe8gMoOjKc685ukmlbSmoaB48l8t2KXUz+fSu3XdAy29/R1gPHaVA9xlLrlAEiEobT2q4qEF2QY4qYFu8u4HcgBpghIs/i9OaLAIa4+wH2Av/29SIiMgDwrvFu7bXcWURGeZdX1Ym+Xqu4dGtSzVOBv2SLVeCbwqs4+nqOj38HPXoUqVKFtAMHCK9d+N+j579bx5EEZyDcR75czY+r9/KPQW04rUp5f4dsjClZjXF62L9plffGGFN2RIZH8uagN+lQqwN3/XAXKWmZhyb7Y/8f/LH/j2zHvb7o9UwV+ADXdbquWGMty3wZxNYq8E2B/e2q23jowfvZWTGJY5FpvPXhEzx418uBDsuUkOS0ZL7f+L1n/dqO1wYwGpOTiPAwaseWZ0zf5gzr1ZiY6My3hcTkVP7+3iLKR4ZzabcGXNKlHtUrRQUoWlNcRKQvcB9wHlCYv2DF9958qOoqERmKM65OLPC4O3nbBQxR1ZxHQiqYB4E+uewb4k7eJhbhWsWie5NqTJy7GYClW6xexRReWJUqVHn0EcJPq0VUnz4+f1Af3LUe63YdYe+RUwD8tv4A17xxmNsvaMWl3eoTZh97jQlVSUB5YHOgAzHGGFPybu15Kwt2LWDSqkn5lm1ZvSX3nHFPCURl0vmSA9+YAgsPD+c86elZ/27TlABGY0pS7969SaiT4Pl626t+L5pXax7gqExeslbeA8xau48jCcnsjT/FWzM3MPjFOfxrygoWbjxIWprmcBYTakTkEZxW7wNxWt1LIaciUdUZQAfgv8A64ARwFFgJPAp0UNWlRb1OqGvfIJZy4c4f97aDJzhw9FSAIzKhoHfv3vTu3duzHnP1VUT37Vuk3nBntKjJ5NvOYmjPBp5tCYmp/Gf6Wm55fxFrdx0pUszGmIDZ5M6zD5pkjDFesj5fmNLjlQGvULti/j001x9az4ipI5iwbAJpmlYCkRlRtQqY0kBE4qtUqVIlPj4+0KFkM2fu/+g7+2IAyqXCnyPX0rSZDV5RFpz13ln8vuN3AF4f+Dq39bwtwBGZwpq6eAdvzdrgSZfgrXZsNIM612NQl3rUjg3a1AnWFDQPInIh8L3Xpu3AHJxW74kFOYf1zMtQ3PfiW99fxLKtcQA8ekUHBnSsWyzXMWWLJiejKSmElS/8/+MrtsXx9Dd/sP1QQqbt/drV5uZ+zWlQPcZfYZrQZvfiECAi9wH/Aaaq6hWBjifUBfP7uTHGJKcm8+rCV7m+y/VUK5/x3VZVWbBzAUcSj1AxsiKVIis586hK7Dy6k7t/uJu52zJnUO1RtwcTL51I25ptS/rHCCbF/qzjtwp8EYnCyZkbqarb/XJSU2DB/oDQfmwV1lQ9CsA9DOWFRz4PcESmuC1Zv4RLPrmEvewlXMLZc+8easbUDHRYxgeJyanMXrePqYt3sHJ79v9jROD0ZtUZ07c5HRrEBiDCPFmlQR5EZBpwMZCGk0LnFbUv+z4r7nvxe79sYvzsjQBc0rUe/xrSvliuY0qPvXv3AlA7l1z3aSdOcPimv0N4BNXfexeJKHxGrMTkVN6bs4mPfttKqlfPrGanVeSjW860sW8M2L04JIhIBWAx0Aq4RFW/z+cQk4dgfz83pijye74wwWH+jvm8vPBltsZvRVVJ0zTPdOjkIXYe3cn1na/nvSHvFficqsqUNVO4/6f72XF0h2d7VHgUT/d7mrG9xhImZTLZS7E/6xTpT1VE2ojIWyKyGUjAabGXLWeeiFwtIg+JyOiiXM+Ergtiz/cs/xj3YwAjMSXlu++/YwADABjQfIBV3oewqHLhDOhYl7fHnM7kW89kWK9GVC5fzrNfFRZsPMSxU9lb6c/7az+7Didk226CRk+cPPafqerLVnkf3Lo2yWgdY3nwTUHMmDGDGTNm5LhPT53i4FVXk/jLHBJnziT+gQfx5b+AqHLh3HJ+Sz657SzObXuaZ/uN5za3yntjQoiqJgCDgPXAV+77e5UAh2WMCUJ5PV+YwFt/aD0DPhrAme+dyZQ1U1i0axGLdy9m6Z6lLN+7nJX7VrLz6E4A3l/xPvO2zyvwuUWEq9tfzZ+3/8nDvR8mMjwSgMTURO798V7O/eBctsRtKZafq6zzuQJfRB4GVgE34oxYn1c+3GjgSeAtETkth/2mlLvt2seJcNNi/VH1KN3vqsF7H/yH1NTUwAZmioWqsu/4Ps/68I7DAxiN8admp1Vi7MDWTL+vL09e2YmezaqTXj/Tuk7lTGUTk1P59+eruOKVX7nq1V95+fs/WbjxIInJ9u8+iKS/mNsTeAhoV68K0eXCAdgdd5LVO6xVn/GdREcTdc45nvWETz/jyCOPkhYX59P5GtaI4ZmrO/PuDadz5ekN6dO6Vqb9qsqPq/eQnGJ5Uo0JRiIyC5gAnMQZ0P4J4ICI/CEiv4jIrHymmQH9AYwxxgAQHRHNrC2z8i1XoVwFnr/geXrV71Xoa1QoV4HHzn2MZTcto2udrp7tc7fNpeNbHXl32bs+NQwxufMphY6IPAb8G6eyPhVY5M7PBlRVw7OUjwYOABWAW1R1fBHjNlmEQhe9fnc2Zlb1bZm2dYirwo1t7uDWGx4lPDw85wNNyFmyewlvvPMGAF9EfsG++/ZRoVyFAEdlisvuuJMs23qYQV3qZdq+cNNB7vow+9ijURFhtG8QS9fGVenSuBrt6lUhqlyx/fu35p95EJGtQAPgb6r6WYDDCXklcS9+7KvVfL9yNwA9m1Xn1RHdi+1aJvRNnDgRgFGjRuW4X1WJv+deEqZ4pTaMiqL8xRcRc801RJ7Ry2+t6Oes28cDn66gbtXy3HRec/q3r0NYmP0XXUbYX3QIEJE0nF55mTbnsC3Hw8mhHqAsC4X3c2N8ld/zhSl+aZrG5rjNLN+znIqRFRnYYmCm/bdMv4Xxy8ZzbYdrGdNlDOXLlSdMwjyTIDSv1pyYyKKPV5ScmsyTc5/kqV+fIlUzGuv1a9KPf53zL/o27lsWemUGXw58EWkPrMAJbiVwtapuEJEhwFRyuXGLyNfAJTjd9P9W5MhNJqHwgLBnzw5GPXsuM2M3kZql70eb+EqMG/IxffsOCkxwxq/u+v4uji5yxjxI65TGB5d+EOCITCCs2BbHpHlbWLLlEInJube4jIwIo139Kvz3mi5UjC6XazkflfonhaIQkcnAMOApVX040PGEupK4F28/eIJhr88jPdX4W6N70rlR1WK7ngltBXnB1uRkDo25kcSZ2RvPhjdpQszwa6l4/SgkKsrnOFJS0xj+5u9sPXDCs61JzRiuO7sJ/TvUISK8TOZKLUvsXhwC3Ar8orAKfC+h8H5ujK+sAj8wjiUe48X5LzJzy0xW7F3BsaRjgFNR/vOInzOV3XNsD0cTj9KqRqsSi2/xrsWM+HoEfx78M9P2bnW6cd+Z9zG07VAiwgo/3lKICMoc+Le6x8UBF6rqhgIetwTnB+rgwzVNKVCnTgN+eGUjcy/8iUFxrSnnlUVjXewxrv7+Mub9bvnxQ11yajIf//GxZ31ExxEBjMYEUudGVXnh2q78+MB5vHJdN67u1ZCG1bP3xEhKSQOlOCrvTf5ew2lZN1JEygc6GJO/hjViGNCprmf9XXdQW2N8JeXKUX3CO8Q++wzlOmR+TE/dsoWjTzzJ4dvvKPJ1Bnetn2n8lC0HTvD41D8Y+sqvTFmwjVNJll7NmEBS1bAiTlZ5b4wxxeSnTT/R4c0OPDrnUX7d/qun8h5g+d7l2dLV1KlUp0Qr7wF61OvBspuWMfb0sYhXffbSPUu55straP5qc15Z8ArHk46XaFylhS8t8NcBLYGXVPU+r+35tcAfAUwEjqiqNRXzs1D8wr98+e88OelWpsesJMn9CFfnRDm+uWomPbqfk/fBJmhN+2sagz8dTAMaULNCTRbdu4jwMHueNxn2Hz3F8q2HWb41juXb4th28ATPDetMnzaZh0hZsPEg9atVoH61IqVfslZ/+RCRf+Hkuf0BGKaqRwIcUsgqqXvxzsMJXP3aPFLdZvhvjOpBN68Bbo1Jt2PHDgAaNGhQ4GOSVq8m4eNPSJj6NXrsGERFUfPzKUR265r/wfk4fiqZj37bypQF20jIUmEfW6Ecl3VvQO/WtWhdt3JZ6GpdlthfpilzQvH93JiC8uX5wvgm7mQc9/54L++veD/bvpoVatKlThe61O7CY30fIyrC996S/rbh0AZenP8iE1dO5FTKqUz7YqNjubHrjdzR8w4aVCk1v0NBmULnKBADDFfVT7y251eBfznwBZCiqpFFitpkE8oPCO998B9u3fggiRHO72KDY1FMHzGXjh17Bjgy44srP7+SL9Z+AcCDZz3IM+c/E+CITLA7eCyRqjGRhHvlQk5JTeOq1+bx4rVdaVyzYlFOb5UGeRCR3u7i34FrgIPAh8ACdznf7vSqOrfYAgwxJXkvfuqbP5i2bBcAXRpVZdz1PazC0/hVWkICx98eT0TTplQYMtiv5z56MpkvF23nswXbiE9IzrSvTmx5vhp7jv0+ly72l2nKnFB+PzfGBIdv/vyGW767hT3H93i2VStfjefOf46BzQdSt1LdoH9e2n9iP+MWj+P1Ra9z6OShTPvCJZyhbYcyttdYnwbSDTJBWYF/AogGrlHVKV7b86vAvx5nVPs4Va1epKid89UH7sDJq98QSAG2uDG8pqpxRb2Ge52eOGmD+gB1gKPAGmAy8L6qFri/r4h0BUYC5wP1gEhgH7ARmA18rKpbfYwzpB8Qxr3zKHfveIwk9zen8dFovr9xIa1bdwxsYKZQ4k7GUfuF2iSlJtGABnx02Uf07tg7/wONyWLWmr1MW76Ll4Z3K+qpgvuJJsByGLCuoIPVpVNVLbWJDAurJO/Fu+NOcuWrv3pa4b82sjs9mhb58cqUMsXVQi718GHCqxW918eppFSmLd/J5N+2sveI0zpraM8G3Hdx20zlJv+2hbW7jtKidiVnOq0SNStHBf1Lq/GwvyhT5oT6+7kxebEW+P6VmpbKjqM7aFSlUaZnm0s/vZRv/vrGs35l2yt5beBrnFbxtJxOE9QSkhP4YMUHvLjgRTYezp4CtFf9Xtzd624ub3N5qObJD8oK/M1AI+BBVf2v1/b8KvBfBu4E/lDVItXKisgA4BMgNpciu4Ahqrq0iNd5CCetQG5jBfwODMrvY4GIRAIvATfncS6Au1X1ZR9jDfkHhBfeeIAH9/+HFPdPqPmRCvx4+zKaNC3ZvF3Gd28veZubv7sZgDsi76Brna42sI3xycZ9x0hLU1rWqVzUU1mlQR5swDr/Kul78bPfruHrpTsB6NAglvFjelqFpsmkOAaZS9m8hf2XDKZcm9ZE9+5NZM8eRHbujERH+37O1DTm/rmfX/86wMWd69I9y8eo2z9YzJLNhzNta1i9AgM61WVAx7rUrWpDeAQ5+4/JlDml4f3cmNzYILaFl5yazNoDa9kctzljit/MpsOb2Bq/leS0ZPbeuzdT5fzuY7tpN64dUeFRvHnxm1zW5rIA/gT+kaZpfLf+O15a8BKzt87Otr9hlYbc0fMObuh6A7HRuVX5BqVif9bx5bPGIqAxMAj4b95FHSJSDrgSp1XfPB+u6X2ujjipeGKABOA5YCbOzzIE5yNBPWC6iHRT1d0+Xmc08JS7ug14GlgO1MJJNXAJcCYwVUTOU9UcK0Hcn/1zIL3v8a/AR8Ba4ARwGtATuILCtXosde697TmSXkrg3/GvkxYGG6skcP4bXXjroslc0C/0/6MqCz5c9aFn+bSY0PsqbIJH89MqBTqEsuKxQAdgfDeqd1Omr9hFSqqyekc8CzcdolfzGoEOy5RiqYfjODhiJBofT9L8BSTNX+DsiIwksmNHoi84n5hRIwmrWLjUZxHhYZzXrjbntaudbZ+qsnHvsWzbtx9KYPysjYyftZHOjaoyoGMd+rWrTaXyNiC6Mf4gIvVw3lPrA5WBfD/Yq+rjxR2XMcaEElXl49Ufc99P97H3+N48y248vDFTBX7dSnX5Ztg3tK/VnmrlS8d4V2ESxiWtLuGSVpewYu8KXl7wMp/88QlJqUkAbD+ynft/up/H5jzG6M6jufP0O2lWrRmpaamcSD7BiaQTmea96vciTPJqJ116+NIC/0rgM5zK5itV9St3e64t8EXkRWCse0xfVf3V54BFZgHnAqnAeVlz74rIcGCSu/q+qo724RqxwGagKk5r/m6qui9LmXeAG9zVkar6ITkQkUeAR3F+9rGq+moe141U1aTCxuseW2q+8D/83BiePPke6n6/qpAs3FdpNI898G5gAzN52nh4Iy1eawFARFgE4+qOo1x4OfsqbwLNWv2ZEhOIe/F/p6/ly8VON+Z29avw7g2nWyt84+HvFnJpx44RN/ZuTs34IdcyYdWrU2nsXcQMvxaJLPqwV6rK2l1H2LD3GBv3HWfjvmP8tecoJ5OyZ7GMjAhj3KgetG8QUi22ygL7TymEiEg34D9A38Iea73yMpSm93NjsrIW+AVzKuUUgz4exMwtM/MtW7tibSYMnsBFLS4qgciCy97jexm3eBxvLnmTgwkHM+0ThMjwSBJTE3M89tg/j1Exskhj5vlLULbA/wJYCXQCPhKR+4Aca1ZFpCnwOM7AeArMLGLlfTecynuAiTkNnKeqH7n59s8DRojIg6q6v5CXGoNTeQ9OqqB9OZS5G6dXQRXgfpxB/7LG2xh4yF19O6/Kezd2nyrvS5vHH5hA+H/CeebYuyRGKAnllMdPTWDp2N/48OFfqVbNWhcGo0krJ3mWL2pxEeVOWQs4Y4wpbiPPacq05btISkljzc4jzFyzj/PbZ2/FbIw/hFWqRPUJ75KybRuJCxeRtHgxSQsXkbJpk6dM2qFDHPm/hzk+/h2qvTWOyM6di3RNEaFd/Vja1c+olP9/9u47PI7q3v/4+7tFXZYtufeKMWCMMaEFG9MhoSWEFggtBG5CAjf15ibkJj9uGsm9CTekQkhMDaGEkmCqHZtmwAEXsLEB914lq0tbzu+PGVmrsir2SlppP6/nmWd3Z86cOdKMdM5+58w5tfUxXl69k2eXbeWtNXv2zwWREw62GHrNOaebWiIdZGafwhuqNkz7wQjXLE1GP00uItJcTiiHkrzGYQEH5Q3imOHHMH7A+BZLmgShe8TQgqHcdspt/OdJ/8mD7z7IHW/cwYpdKwBwuKTBe/DG1s+U312nA/jOOWdmnwHeAEqAO/GGmtk/LbKZ/RPvUbvxDauAzcDnDrK8n054f08b6f6EF8AP4g1d09mu2w3HqcAb/qYF51ylmT2K1wv/CDOb6JxrPhPDDXgT1cZpHI5HOuD737qLGc+ewpfnXceGQm9Ss2cGrOL4H47l7gsf4eRZmXdXMp3FXbzJ8DlXHXkVFW+1fNxdRERSa3BRDhfOGMkjb24E4CdPr+CQYYWMLsnv4ZJJXxYaM4bQmDHkX3IxALE9e6h9/gUqfnkHsa3e6JXxvXsJdtHkdjlZQc6cOowzpw5jT2UdL767jbnLtnLU6AFkhZo+Rv3aB7v41fOrmTqqP1NH9efI0QMYOzCfQEBBfZFEZjYEr1NaFt5Qr/+LN+fbc3jB+e8BS/HmwzsLb0hd/H3mdHNxRUR61I7KHSzbsYyaSA210dr9y6wxs5gyaMr+dL8865e8uOZFrp52NbedchuF2RoqNpnccC7XH309n5/+eV5c+yK/fOOXPP/R8zgchpGflU9eOI/8cD75Wfnkh/OJtz6aeZ/U6SF09u9oNgF4BJjur2oto4aWQC/4hwAAIABJREFU8WLgIufc5gM6WOMxFwKz8Ma+L3LORZOkG4439A3Avc65azpxjLCffwh40Tl3ZhtpPws86H+81jk3p9n2NXg3Md52zh3jrzO8ce/zgR3OucqOlq2dcvfJR/S2bdvElT+ZyfySDfvXFdQHuGvar7j8kpt6sGSS6JUNrzBrziwA+uf0Z/vXt1O625vbeehQ9QSVHqUIzQEws2y8J9GynHMbe7o8vUVP1cXlNRGu/v0itpXVADBxSAF/vP54crI0kkGm277dG2u1u+piV1tL1X33U/GrO8m/7lr6fe2rTbZH166DrDChkSO75PiRaJxwswD+fzy8hIXvN30YtzAnxJGjB3DMuGKOGV/MhMGFCuh3Lf1yewEz+394QXoHnOacW+Cvj/vrPuWcezoh/dHA48Bo4Fbn3E+6vdBprK9+PxeB7m9fpItILMLcD+dyz5J7mPvhXGKu5XB+d517F1+Y8YUm68pqy3rbhKxpoybifb/JCeWk+xOVaTmEDgDOuTVmdgxwIV7P+pl4PfIbVAIvA/cCj7kDvVPQ1GH+64fJgvd+2baaWQVQmLBPRx1C4+9lZTtpV7VSNgDMbBCNTyAsN7Ms4D+AfwOGNxTVzJYAvwLuS9HvqE8ZNmwUL/xyDf/xo8u5M/oo9UGozIpzw7KbCQZDXHLRjT1dRAHuW9bY+/6ywy8jO5SdcZW5SG9nZlOAW4Az8XrXgfeFPdQs3aXABGC7c+5P3VpIaVW/3DA/uXQaX/jjm0Rijo92VPLzZ1Zy64VHpHtDV7pYd9fFlpNDwQ1fIO+ySyHU8mvGvp/eTu2zz5Jz5hnknHYa4cmTCU0+pNOT3ibTPHhfVRflrTV7WqSrqI3y2ge7eO2DXQD0zwszY1wxFx83hqPGDGiRXiRDnIlX789vCN63xTn3jpmdiTe87m1m9pJzbnEXl1FE0kCmfddfvXs19yy5h/uW3ceOqtZG2G5UG61tsU7B+wOXG87t6SKkjQMO4IM3nA7exLVPAJhZPt6Y8JXOufKDL14jvzdgw+DnHenJvwkvqN7ZZ3cTuwS1d5xNCe+bHycxoF8NLABOaJbGgKPxHjk8z8wud85FWjuQmbV3676one29VjAY5H/+6xFOfOpPfOGNG9ibE6MyK87173yJQCDEZz71+Z4uYkaridTwyMpH9n++atpVAKxduxaA8ePHt7qfiKQPM/svvF53AdrvPZAD/BCImtkzSeaJkW526PAivv6JKfz0717fg2eWbuXI0QO4YEbX9HSW3qGn6uJAv34t1sW2bqP2uecgHqf2ueebTIQbHDmS0OTJhA+ZRGjCBELjx5E1ffpBT4Kbnx3iuW+dwupt5SzfWMa7m8pYvqmM0qqm006VVUeYt2IH50wb3iIPjaEvGWSi//pSku0tJrhyzn1oZvcDX8AbPlYBfJEMkGnf9X/y6k+4d9m9LdYfO+JYhhYMJSeUQ04oh9xQLocN6mwfYpGOOagAfnPOuSq88fK6QuJAUR0ZdqYhTWe79HTmOInbmx+nOOH95/ECHkuBb+GNJRgEZgP/A0wCLgJ+jDchrrTi0xdcR052PlcuvILSnBgVWXE+v/gGgsEQnzr/6v3pYrEYTzw9h0XLn+NTZ3yBk05MOgqSpMDTq5+mvM67XzexeCLHjzwegJdf9uaYzpRKXaS38h+ZvxUvcB8D3vJfT0qyy1+BXwN5wAXAXd1QTOmAC2aMZPnGMuYu88Yg/9+57zN5WD8OHd4ymCqZIZ3q4nhlBdknnkjdK6+02BbbvJnY5s3UzZu3f92wVSubBPBdNEps82aCY8Z0KqCeHQ5y5OgBHDna61nvnGPT3mreWbeXxWv38va6PZRVR8gOBThmXEmTfWsjMS779avkhIOEAkY4GCAUDBAOGsP65zJt9ACOGjOAUSV5CvJLX9DQIaz50Hn1eMH7ZJOrvIYXwD+5i8olImkmndoXqVIbreWFNS/wwZ4P+MaJ32iy7brp1+0P4A8vHM41067h2unXMrF4YmtZiXSJlAbwu1jicxP1SVM1apimuLPPW3TmOIlTITc/TmIDJwdvuJ2Zzca8f9rM3sB77HAocIuZ3eGc20Izzrk2n7nxe+j32V74DT5x9qXcG4/wuVevZl92nPLsONe+cR2RSC1l5Xt4dvnDLAqvYke+9yDD7+c+zm1LvsnXb7q9h0vedzWfvFZfYEV6DzM7Aviu/3EpcKnfm+4CkgTwnXO1ZjYPOA/vRrQC+GnCzPjWuYexens5a3ZUUh+N851HljLnxhPol9ui46RItwofcggDH36IyIcfUvvsc0RWrSKyejXRj9ZAtOnImIHBgwkUNp3kLbJyJbvO+SSBkhKyjp5O1vTphKcdSda0aQQGdHzYGzNjdEk+o0vyufCYUcTjjjU7K9m8t7rFvBHvrNvL9rKWj8J7SnlmqXezbEB+Fh8bX8L/u2hqk3bQ9rIa9tVEGD+ooMXwPiJpqAavU1rzGQH34T0JPzrJfg3ph3VRuUREutTTq5/my3O/zKbyTYQCIa4/+vomw97MHD2TLx7zRT456ZOcNfEsQoHeFEqVvqI3XXU1Ce878jxtdiv7pfo42Qnvmx+neWv/e61NWOuc22lmP8YbBz8MfBq4s4NlzUjnfeJK7os7rnr9GvZlx9mXHefS9/7N29jsNkd12PHNXT9jzXeXc+dt/yAY1IR+qbS9cjvPf9T4CPyVR17Zg6URkQPwJbxhc/YCZznndnVwv38B5wNTu6pgcmBysoL85JKjuOauRVTXxdhaWsO3/rKEn18+nUIF8SUNhCdNIjxp0v7Prr6e6Lp1RFatIrp2HdE1a7C8lh19699+B4D4nj3UvvgStS82jvIRHDOarGnTyDr6aLJnnkRo8uQOdygIBIxJQwuZNLSwxba31rYcP781pVX17NhX0+KYT/xrM/e+spaCnBCzJg/m1MOHcOyEgWQpmC/paSPeMLCDmq3/EC+Af2KS/Y7sykKJiHSVzeWbufnZm3li1RP710XjUZ7/6HkuPeLS/evMjN9+8rc9UUSR/doN4JvXEm34gl7jnPuwlTTzO3Cszc65qzpZvkQVCe87MixOQ5qODLdzoMdJ3N78OIn5OOB5knsu4f3H2jmmAOef+zn+HI9zzRvXUZ7dvJMIFNUFyI4F2JkXxRn8Lus5NnztMP76w8UUFGoogVT5y7t/2T/z+qwxsxg3YFwPl0hEOukUvDpqTieC99D4eL0GWE9Dowfm870Lp/Kff10KwNINpdz4p7e448oZDC7K6eHSiTRlWVmEJ08mPHlym+lcdTVWVITbt6/FttiGjdRs2EjN038HIPvUUxl4f8uxajvr5jMnc/Gxo6mPxonE4kTjjkgsTm0kxuqt5SzbWMbyjaVU1EaZNrrlUwDV9d6TBZW1UeYu28rcZVvJzw4xc/Igpo7qT05WkOxQkOxwgMNHFFFckN0iD5FutBQvgH9Es/Wv4QXvTzezo5xzSxs2mNlY4Ea8tsTq7immiMjBicVj/Gbxb/ju/O9SWd8YyhuUN4jPT/88Rw7RfUlJPx3pgX8F0NAC/greHfjmZuNV2m0ys2edc3/pcOkSOOfqzGw33t3/jgQMGtJsajNVS4kT17Z3nMSJa5sfJ3HswDLnXAXJJaZt3uNBkvjU+VfjXIzr37iB0pwYQ6vCnBA5lHOmXc4VF3+FzVvWc8lvZrKs2Jv/d27xB8y6dSyP37KIcePb/pIoHdN8+BwR6XVG+K9vd3K/hpZusvFwpYedctgQvnLmZO58wYunrN1ZyfV/fJM7PjeD8YM7Oz2QSM8rvOlLFHzx34iuWUP9O+8QWbac+mXLiKx8H+qbjnqZNbV5/BFqnpmLi0bIPv54gkOGdOiYgYAxojiv1W3HTRgIQDzuWLurkrysll+rBhVmM7Qoh+37Gh/MraqL8tzybTy3fFuTtL+88mhOmNT0a8CT/9pEXnaI0SV5DB+Qp6GwpKstwPvuf2qz9fcCX8ebw22Bmf0BWANMAK7Hm0POAY90W0lFRA7AYysfY3vlduYsncPb25p+/bl++vXcfsbtFOcWJ9lbpGeZc23H3c1sFXAIsMg59/EkaeJ4lXZ7z6qucM4d8OP2ZrYQmAVUA0XOuWiSdMOBhnHk73XOXdOJY4T9/EPAi865pDOgmtlngQf9j9c65+YkbAvhTeibBZQ755KOT29meTRO/vuMc+7cjpY3IY+yoqKiorKyss7u2utt3bKBNWtXcuKJZ7YYIqd8XxkX/9cxvFC8Zv+64togk6sGMiY8mkmDjuCoKSdxwrFnMHDgUMJhfTHqqOU7ljPt99MAyAnlsP3r2ynKabzMd+/eDcDAgQN7pHwiPk3K0AYzq8Kbp+Vy59wjCesvAJ4AnHOuxdhjZnYtcA9Q6pwrab49U6VjXfzssq388Mn3iMW99l5hToiff/ZojhrT8THDpffKhLrY1dURWbWK+iVLqXt9EXWvvUrJPX8k+/jjm6Tbec4niCx/F4DQhAmEj5xKaOxYQmPHEhw7ltC4sQSKi1M+l49zjtXbypm3YgfzV2xnS2nro3v+9tqPcfTY4ib7nXX7fMprGr/uFOaEGDYglxED8hjeP5dhA3K91/65jCrJIxRM26F5VBf3AmY2ENiOd74+7px7I2Hb7cA3ab3TngHLgeOdc8kmjcg46dgmEEmVdGxfOOf4YM8HLFi/gIUbFvLT03/K6KKmU3eMvWMsG/ZtaLJuysAp/OHcPzBzzMzuLK70PV3e1mmzB76ZzcAL3jvgZx3I7wbgxVbWnwTcDxxmZkc7597pbEF9r+IF8PPwhppZlCTd7Gb7dJhzLmJmb+E9Jni8mWU555JNZpv0OM65qJktAk4G+pnZoDaGJ5iQ8L7FBLbStuEjxjB8xJhWt/Ur6s/cX6zmi7eexd058wDYmxNjUc4OFrED6hbD0j97D4wC2VEjJ2ZkxwLkxIIMjfRjbGg0kwdP45jDZzN75nn0K2pzPuGMcf+y+/e/v/DQC5sE7yG9KnMRSWoHMMZfOmOa/6o6K82dM204xQVZ/OfDS6muj1FRG+Xm+/7FF06ZyGEj+jFmYAElBVmagLyPyoS62LKzvfHvp02j4JqrcbFYizTxffuIvLdi/+fomjVE16xpkc4KCgiOHEHJn+4hNKbx36KLRolu2EiwpBgrKurU34uZcejwIg4dXsSXTp/EB9sreHnVTvZU1FEXjVMXiVEXjTMgv+nUW7sq6poE7wEqaqNUbKvgg20tH+x9+msnNxkia2d5LXc+v5qCnDDF+VkUF2RRXJBNSUEWJQXZDMjPIjcrqL992c85t9vMJuF1QNvZbNt/mFk58G1aPn33N+AGBe9FMke6tC9qIjU8tfopnlz1JAs3LGR75fb9286eeDZXTWs6SsCA3AH7A/jZwWy+N+t7fPPj3yQr2JFpNkV6VntD6Fzgv253zj3Vgfx2Ouc2tLJ+g5l9Hy9QfS5woAH8vwHf8d9/nuQB/Ov81xjw9AEe50S8xwEvAR5onsDMCvxtAO855z5qJZ9H8QL44E1O+4ckx7so4f3LB1BeaUMwGOSun7zEuF/ews93/obSnJZf7BrUhRx1IQfEgSgb2cVb7ILat+HtPxFcDJP3FXLR0M/wrZvuyNjx9KPxKA+82/hn0drwOatXe8M2TG5nTFsR6VFvAWPx6uafd2QH/0m1i/Fu7nfqJrn0jOMmDOR31x3LVx94m72V9dRH4/zmxQ/2b8/PDjFmYD6ThhYye8pgPja+JJ178konZGJdbMEWDw3hYnEK//0W6hYt8ibDrW+9b46rrCS6ajWBoqadEmJbt7Jzlt+kD4cJlBQTGjGS0MQJhCZOJDRxIuGJEwmOHoWFkn+9MjMmD+vH5GHttx8DZlx10jjW7qpka2kNW0qrqYu0nPcJIBQ0Sgqbjp+/u6KOF9/b3mr6BtmhAEV5WYwozuV31x7bZFttJEZtfYyivLCC/BnEObeujW0/MrP/BU4AhuA9tf4v59zW7iqfiKSHnmxfxF2c1za+xr3L7uXRlY9SXlfearoF6xe0COBfNOUiThh5AsMKhvHZqZ9lQvGEVvcVSUftBfBn4H1BX5CCYz0P3AQc217CZJxzb5vZArye79eY2b3OuVcS05jZFcBp/sf7nHM7m20fCzQ0TBY652a3cqh7gO8CA4CfmNkLzfMBfgE0tO6TBT3mALcCQ4HbzOy55jc4zOwI4Bv+x514Nw+kC/znV/+Pr1T8Ny+/9izvvLeA1TuWs6FuPRuz9rI9t84P3LctFoCVAypYWfdn/vDD+7kweArfufG3jBkzsUXauro6srP75mRk89bO2393e0j+EM6YcEaLNIsWeffXMiloINILPY53M/okM/u0c64jddDtwDC89sEBzWsj3W/ysH788frjuOX+t9m0p7rJtqq6KCu37GPlln089fZm+uWGOXnKYE4/fCgzxhUrmN+LqS72BIsH0O/rXwPA1dRQ/+67RNeuJbpuPbH1G4iuX0903TpcVRVWWIg1C+DH9+xp/BCJEN++g/rtO6h/u9n0IcEgoYkTGDJ/XtP9a2pwZWUEhg7tcDB8YGE2XzrjkP2fnXPsraxnS2k1W0pr2FbWuOAgGGiab0VtpN1j1EXj7CyvJSvUskzvrN/L1x54h0GF2Tz99ZMVxBcA/F72/+zpcohIz+qp9sVD7z7ErfNvZV1Z6/ca++f0Z9aYWZw85mTOnNByNOxbZ93a1UUU6TLtBfCn+K+dndyuNSv910MPMp9bgNfxHt17zsx+CszD+1ku8LeDN37fAf11OufKzOybwB/xJrJ908x+jDfQyiDgRuB8P/lCWumh7+dTZWZfxuuJP9jP53bgNbxJgE7BG0uw4THEm5xzrQ+MKSlRUNiPT5x9KZ84+9IW2yKRCOX7Sikt3cW+ilJ27trK0pWv8P62JayrXcv67D1sLmjssbUzL8pdvMgDdx/C7ErvC9aeeCl7QpXszq6jLCfG+H25XDTgfL59068pLk6Px8xSIXHy2iumXkEo0JH5sEUkDT0GLMMbEucBM/sGXt3XgpmNB24DLscL3s9rfhNd0tvwAXn8+Ybj+ceSLXywvYINu6tYv6uKqrqmw3SU10T4+ztb+Ps7WyjKC3PMuGKmjylm+tgBjBtUQCCgQJ70XpabS/axx5J9bNM+Rc454qWlxHftahGsdpEIwbFjiO/eg6usJKlYrNURwutfe509V1+D9e9PeMqhhKdM8SbSDQbBDAsEIBDAsrIITT6E7OOOa1lu83rZlxRmc+To9uewGD+ogO9/eioVNRFKq+rZU1nHnsp6Sqvq2F3hvUZiXmH757UcOmCzf6Ovn3rgZwwzm++/fdk594OeLIuISGsMaxG8n1Q8ic8d+TnOm3weUwdPJRho+SSeSF/QXtStYSal5r3Pm2uYxLb15zo9DV1XDmpKZ+fccjP7DF6vv/54wYTbmiXbAlxwMI/zOefuMbOhft5jgbtaSfY68GnnXNKf2zn3uJl9Efg/vEcNf9FKsnq84P1jB1peOXjhcJiSgYMpGTh4/7pzzrqkSZqPPlzBT/90M0+5l9md6wU8qsOOuQNWt5rn2qIafh7/K/f8/DHOi53It6/7NYceemSnylVWuoeH//Zb5q94indYSXUoyuX5F/DT7zzUI5PulteV88T7T+z/3PyxNBHpPZxzzq9T3wBKgDuBHwHbGtKY2T/xbmaPb1gFbAY+172llVQoyAlz2Qlj939u6NW7dlclr3+wi/krd7BjX+MwxvuqI8xbsYN5K3YAUJQX5qjRAzh2QgmzpwxpMWyHSG9lZgSLiwkWt/yqkn3ssQx9zRsxzNXUENu9m+j6DUTXfET0w4+IfrSGyEcfEt++g+CwoS32j6xa5e1bVkb9ojeoX/RGizQNcs4+q0UAv/qxx6l77TUCQ4YQHDqE4JAhBAYOIjBgAIHiAQSKiloMHTSoXw7nTBue9DjOOWrqY5RV1xONt7zrUBuJkZsVZFRxXtI8pM9pGPr10R4thYhkLOcc7+58l4ffe5h56+bxyrWvNBmf/sJDL6Rfdj8CFuDSwy/l6mlXc/zI43WjWTJCewH8hhZbmxPSOOc60v22oWXYfNKbTnPOPWdmU4Gb8cbtHY033v064AngV8650hQc50dm9iLe0D8n4w2FUwGswOt1/2fnXPIB1Rvz+YOZLfTzORMvEOKAjXiT/t7R1niDkj4mTjqcP/5kHr/YV8btv72Fv+56lDVF7T80sTcnxr28wl8enMaMfUOotyiVgVoqQhHKs6LUhOIMqAtRUpdDcayAkkB/isIDWFO3lqVFO6kNucYBm4Bf8BgvfPMFfnbO3S1uMnS1x1c+Tk3U+5mPHHIk04ZOa2cPkQPjamqoX7GS7GNm9HRR+jTn3BozOx54BJiO99+mH4319iz/taFlvBi4yDm3o1sLKl0isVfvx8aX8JUzJ7Niyz7mrdjO/BU72FnetAm4rzrCwlU7WbhqJ/8z932OGj2AUw4bwuzDhjC4Xw7OOarqouyqqGN3RR0VtREmDSlkZHGevlxJn2C5uYRGjSI0ahTMPKnJNldbS7y6usU+rq4OKyzEVbScfLa54IgRLdbVvfkm1Y+0EVM1w4r6Eejfn8IvfYn8Kz7bZHP1U08R37GT4LBhBIYOJThsKMFBg8jLziYvu/WvcVfNHM/nThpHbaTdrzrSd+zCe9p8V08XREQyy7rSdfzlvb/w0LsPsWJX46Tz/1z3T86aeNb+z7nhXOZdNY8jBh9BTiintaxE+qz2Au9leD3ySlJwrIbuLPtSkBfOuc3At/ylM/utpzEI0ZH0b+FN8ndQnHOrgK8cbD6SHvoV9edH/3kvt8X+xN1zfsziD+dTlFvCiJJxjBlxKIdOnEZhv/787O5beKL+Rbble+OQ1odgUUnrMa/duVF251YClXgjQAEFycvw3oByzn/9Ui558Rfc+Z1/UFw8kOqqSha88gxvLHuBD3YuJ2BBxhVP5rDxx3DcjFOZOOnw/ftv3ryO5e+9xYfrlrNj70YOHTeDiz91A7m5bfe0Shw+p7XJa/uC6JatVN17L5FVqwlPOZTsk04i+2PHYDnd10hwzuEqK7H8fO/R+gwSr66m6v4HqPzd73G1tQx943UC/fv3dLH6ND+IfwxwIV7P+pk0rfsr8SZZvxd4zDnX/qQh0isFAsbUUf2ZOqo/N585mTU7K3hnfSlLN5SyZP1eyqobx9V2DpZsKGXJhlJ+8ewqhvbPoawq0mrAb/iAXI6bUMKxEwZyzLhiCnO7/wkyka5mOTkEW2kr9Pv61yj82leJbdlC5P1VRFetIl5RAfE4xGK4eBycw1VVtRjaByC2ve3JaHEOV7aPWNk+XE3LjiXVD/6Futdea1ne/PzGXvwDvJ78hV/+MuHDD/O2m5GbpWESM8iHeAH85I9uiIikyI7KHTy68lEeevchFm1e1GqaJ1Y90SSAD3DM8GO6o3giacfa+g5uZiuBycAvnXPfSJqwIwfyZqz/KrDaOTelvfTSOWZWVlRUVFRWVtbTRZFmamqq+d/ffJ2HtjzI+/3b73nVmjEVOcyIHcLJk8/j7bUL+UvOq0QSnpQeXplFYTSLdYWV1Lcx5FtRXYABdVnsyqmjKqvl335hfYDpFcM4bvBMLj77S3zsmJlNtm8o28DY/xsLQMACbP7qZoYVDmv1WPv2effqippNBNeWeE0NsY0biW7YSGzDBlxtLcFhwwiOHEFw5EiCQ4dioY59kYyXlhLduJFA//4EBg0ikNf+I+D1775L5R/uoubv/4Bo0zGhyckm+2PHkj3zJLKOO46sww/DcnM7/LN1VGzvXqofeZTqBx8iunYtgUGDyDllNjmnnkr2ybMI9OuX8mOmi3hVFVX33U/l737fZMLAwq99df/kgwdAXX4PkJnl4/XGr3TOlfd0eXqDvl4XO+dYv6uKxWv3sOD9HSzdUEorI2+0K2AwrH8u+Tkh8rMbl9xwkEDACJgRDOC/Gnn+9oKcEAX++5KCbEYU55EVyqwbnJ11IHWxpJ+6N98k+tEaYjt2ENu+g9j27cT37vHG7C8tw+1r7B/V/+c/I/+zlzfZf8es2UTXrOnQsUoevJ+c2bNTWXxQXdwrmNnNwB14Y+DP7uHi9Hp9vU0gme1g2hd/X/13fvnGL1m4YSHxVkajzgvnccHkC7j08Es5c8KZ5IZT/51bpAt0eVunvQD+Q8BlwDLn3PSDOpDZEuBI4FHn3GUHk5e0pAZC+ovFYjzx1J9YtW4pJUVDGFQygqFDRjFqxHgG9B/ImrUrWb1mORu3fsi2vevZXbWdwQXDueiMGznxxNOb5PXivCf45tPXsay4a8/3qIpsxtcPYkLeRI4YdRwflOzh96u9+S3Pnng2z17xLOAFdYjFvF5k/ivRKJaTkzTI7erqqF+yhLpXX6PujTeIrl1LfEc7020EAgSHDSPruGPJPfNMsk+ZTaCg8TEFF4lQ+88FVD/6KLUvvgSRxp6ilpvrBfJLSggUF3s9zQb0J1hcjBUWUjP3Wepff73jv5xQiPBhU8g66ijC06eTNWMGofHjkg4REa+qoubpv1Pz7HNYwAiNH09o3Djvdfw4ouvWU/Xgg9TMfRbq61vNg1CIrI8dQ/iIIwjk52N5ef6SCxbwv8h7X+bjpaW4ygpCo0cTnn4UWdOmEZo0qcUYua2JvP8+1Y89Tu1L84hXlEMkiotGIRLBRaNYMIj160egsBDrV0igXz9vGTSI4MCBBAYPJjhoEIFBA7FwFi4WhWgUF4tDLAqxuHeduLjX+zDuiKxYQeVddxPfu7dJWQJDh9Lvm18n/7IDrjYUNJBuk2l18Z7KOl5+fyfzV+7gnfV7ifnR/OxwgEGFOQwqzCYcCvDupjJq6lM/DIcZDC3KZVRJHqOK8xhSlEM05qiLxqmLxqiLxInE4pQUZDGqJJ+RxXmMKsmjOD/rgIbzqa6LsrfUe8lIAAAgAElEQVSqnr2VdZgZE4cUqHeypAUXjRIvLydeWkawpLjFU2uVd/+R6Pr1xLZvJ7Ztm3cDYPcer73WTMlDD5Bz8skt1h8k1cW9gJllA28DU4CvOud+1cNF6tUyrU0gmSXu4pz3l/M4fdzpXDXtKkryOj5ox51v3snNz93cZF0oEOKsCWfx2amf5fzJ51OQ1cZQBCLpqccD+DcAv8cbB/dk59yrB3QQs5nAQj+fLzrnWpsQVg6CGgiZJxKJ8L3br+F31Q9Tnt1453p4VZjxtQMZnzMBh2Nz7Sa2BPewKb+amnDj33tO1BhSnc3gaAEFLo/3c7axPT/S2qFa9euXh3Dh2nyvp3q85Z3zNeO9+S4nlZcTHDWK0KiRBEePxnJzqX/rLerffAtX2+b0Gu3LyiL74yeSc/rpxDZupPpvTxDflZphO7NOOIG8T11IZOVK6l55tUM914JjRpNz2mnknHYq2ccfj+XkUP/ee1Q/8CDVTzyJq6xMSdkOlOXlET5yKuHDDiM0ZgzB0aMJjRlNcPRoXGUlNU88SfVjjxNZsaL9zLpYcPhwCr58E/mXXYplH9QkmQoaSLfJ5Lq4vCbC3so6BhZmk58dahIgj0TjvLu5jLfW7OGtNbt5f2s5PTkIU352iAH5YaIxRyQWJxJzRONxYnFHVjBAdjhIVihAdihAOBSgqtYL3De/CREwGDuogEOH92PK8H5MGtqPWDxOZW2UitooVbVRKusimBn5WSFys4LkZYfIywoSCgaoi8aojXg3GmojMSLROIW5YYoLsijOz/ZfswgFD/wpg/feew+AI4444qB+Z9L3OOdw5eXejf+9fgeA8n1kn3giwSFDUn041cW9hJmNBf4GTPNffw0scs4l6V0iyWRym0D6vofnP8wPX/khK1hBdjCbzxz2GW6YcQMzR88k7uK8teUtnv3oWd7a8hZzr5hLwBrbMtsqtjHiF958LzPHzOSywy/j4sMvZmDewJ76cURSoccD+AOB9UAu8C7wcedcVacO4D2C/zowFagCxjrn9rS9l3SWGgiZ66MPV/Dkc3+muN9gTpv9acaMmdhqukgkwvJ332Tbjk0cdshRjBl7CMGE3tixWIx585/kqYV/YnHFYpb120V9ko6FBfXGkvuHkRtLHlT4x7mfBODcfzzT8R8mFCI4cgSh0aMJjh5DID+P2JatRLdsIbZlC/Gd7fTQb57d+PG42lpiu3cn79WeKBgk97xzKbjxBrKOPLLJpuiWrdS9+ip1ry8ismRJuwF9y80lOHIk0Q8/7FSZAcLTjyL/yivIPfdcoh98SO38+dTOn09k2fJO59VhZvRoRM0XHDmSwq98mbxLLsayslKRpYIG0m1UF3dMZW2EvVX1VNdFqaqLUlUXo6ouSk19jHjcEXOOeNwRd45Y3PnbI1TWRqms8wLj2/fVsn1fTTr82+py+4cOyglRmBPeP5zQ8P653HjapDb3nTNnDgDXXHNN1xdUJDnVxb2Ama3132YDw2iczD4G7AFaTrDQlHPOTeii4vU6ahNIX/bt//k2O6p2MIc5TdZPGDCB0tpS9tY0PlX99g1vc/Swo5uke3TFo3x89McZXqgpN6TP6NkAPjQZu94BrwKXO+e2dihzs2HAX4BZ/v4HPZa+tE4NBEm1vXt3M3/hU7y94p+s3rOcdfHNrCnYR30gzn+90Z+rVzZ7rC0YhGDQG6IlGOQfp5+Ki8U59+//SHqM4NgxZH/8JLI/fiJZR00jOGJEm2Pcu9paIqtXU/viS9Q+/wKRlStbpAkMGUzeZz5D3sWfITzJC2w453AVFcR37yG2e1fjUDMNPc5KSwkOHUre5ZcRGjGiQ7+feFkZ9cuXE1mylPp3llC3aBGuqu37m6EJE8j77OUEhw0jum4d0bXriK5dS3TdWiwQJPfcT5J3xRVkHXF4q/vHdu6k7tXXiO3cgauuwVVX46qqiFfXQDzmjfefMBmd5eYSXbWa+qVLqV+6tP0hihrkZJN71lnkXXQR4cOmQDjsnZdwGAsGcbGY12uvvJx4eYX3u91XRnzXbmK7dhHbuYv4rp3Ed+3GuTgWDEEwAMEQFgpCIAAB/1oJGAQCWE4OOaefRt5FF2HhlE5uqaBBAvO6RU/1P9Y451rcYTKz+R3IarNzrm/OYn0QVBd3r/ponC2l1WzaU82mPVXsqawnHAyQHQ6QHQqSHQoQCho7y2vZtKeajXuq2bS3iuq6AxvOJysUoDg/i+KCLGrqY6zfXdWjNxDGDy7goZs+3mYaBfAlTaguTjN+sN4BNzrnXvLXxWkM2u9P2olsnXOu/bEaM4TaBNKX3fPne9hZtZMnsp9g8dbFbab94Sk/5LuzvttNJRPpMWkRwM8H3sQbCw+gHPgj8CCw3Lmms06YWQAvOHAFcD3eBHgGrACOc85Vp/IHEI8aCNIdYrEYWzftIOoCjBlahAUCEAp5Adhm4wnPmTMHnOPKM88ktmkT0Y2biG3eTLy0lPDhh5F90kmERo48qPJEN22i9oUXqXvtNaygkLwLLyB71swOT3SbSq6ujro336J23jxq580ntm6dtyE7m9xPfoL8Kz5L1nHHHdC4y6kS27aN+mXLvBsHGzYS27iB6MaNxDZvgWiUrOOPI+8znyH3k5/oS5PlKmiQwMyuBO71P37FOffbVtK09gW+NVc65/6SyvL1dqqL059zjr1V9VTVRQkHA/5ihAIBAgHvpkBdNE69v9RFYuRlhyjOz6Igp+nQQNV1UT7YXsGqrft4f2s5G3dXkRMOtugp75yjuj5Gtf+UQXV9lEjMkRMOktNwsyEcJBw0ymsi7KmsZ29VHXsr6ymrrk96k+DI0f256/PHtfnzKoAvaUJ1cZpJqOs/5Zx72l+3no7V/0k558YdfOn6BrUJpC9LbF8s2baEu9+5mweWP0BFfQUAwwqGcc7Eczhn0jmcPv50+uf0byM3kT6h5wP4AGY2EXgJGE3TSr0a2Ag01Er9/TR5Dbv6rxuA05xza5EuoQaCpJtMDxpE164junkT4SOmEiwe0NPFaVPDBLXJJhzu5RQ0SGBmq4BD8MazbbXrbsKX+vZ+dyucc1PbSZNRVBdLqsXijsraCFV13rj6lbXesEOVtREKcsLMOnRwm/tnel0saUN1cZppLYAvqaU2gfRlrbUvKusreXPzm5TklTBtyLQe7bgm0gO6/ILvUDdV59xHZjYDuA84J2FTPnBos+TNCz0XuFrj3otIJgmNH0dofO/ohGShkPckhfRpfj1+CN4X9p91YJcbgBdbWX8ScD9wmJkd7Zx7J3WlFJFEwYBRlJdFUV5K5gQRERER6RIFWQWcNv60ni6GSJ/V4YiNH4D/pJmdCNwCnAYU0/pdhr3APOAO59yiVBRURHqXSy65pKeLICJNXeC/bnfOPdWB9DudcxtaWb/BzL4PTADOBRTAF0lTqotFREQk1dS+EOl+ne5y6Zx7HXgdwMymAMOBEn/zHmCrc+79lJVQRHqlvLy89hOJSHeagdf7fkEK8noeuAk4NgV5iUgXUV0sIiIiqab2hUj3O6gxE/xAvYL1ItLC0qVLATjqqKN6uCQi4muYjP7tFOS10n9tPoyeiKQR1cUiIiKSampfiHQ/DXosIl1ClbpI2in2X3e2k65hYrt4G2ka5rUpbiONiPQw1cUi0o7BZjY6VZk55zamKi8RSV9qX4h0PwXwRUREMkPDs661bSVyznWkbeD81/yDKpGIiIj0pD+kMC+H4gsiIiJdItDTBRAREZFuUea/lrSZqmMaet7vS0FeIiIi0jMsxYuIiIh0Ad0hFxERyQy78YL3k1KQ1yH+6542U4mIiEg62wVU93QhREREpG0K4IuIiGSGpXiTzp6WgrxOxXtUflkK8hIREZGe8QXn3NM9XQgRERFpmznn2k8lac/MyoqKiorKysraTyzSDSKRCADhcLiHSyIZTo9z+8zsBuD3eIH3k51zrx5gPjOBhX4+X3TO3ZW6UvZuqosl3aguljShujjNmFnDhPWfUgC/a6hNIH2Z2hciLXR5W0dj4ItIlwiHw6rQRdLL32h8TP7XZtbpCWj9fX7tf6wGHk9R2USkC6guFhERkVRT+0Kk+ymALyJdYvHixSxevLiniyEiPufcbuAPeL0DpgJzzWx4R/c3s2HAM/6+DviDc05j4IukMdXFIiIikmpqX4h0PwXwRaRLrFixghUrVvR0MUSkqf8CVvrvTwJWmNnPzewoM2vRJjCzgJlNM7OfASuAmf6mlX5eIpLGVBeLiIhIqql9IdL9NImtiIhIhnDOVZnZhcBLwGigH/A1f6k2s41Aw2Ct/f00ef7nhnH9NgAXOOeqEREREREREZEupQC+iIhIBnHOfWRmM4D7gHMSNuUDhzZL3nwynrnA1Ro6R0RERERERKR7KIAvIiKSYfwA/CfN7ETgFuA0oJiWAXuAvcA84A7n3KLuK6WIiIh0kfvw5rPZ2NMFERERkfaZc66nyyApYGZxwIqKinq6KCIA1NfXA5CVldXDJZFMtm/fvo3OuTE9XY7ewMymAMOBEn/VHmCrc+79nitV76K6WNKN6mJJB6qLJROpTSB9mdoXIk11R1tHAfw+wsyieJMSl/d0WbpYQwtoX4+WQjpC50p6WhHgnHOasF26hepiSUM6V9LTVBdLRsqgNkFbVAf1XTq30hek8jre19UBfA2h00c45zLiXJpZGYBzrn9Pl0XapnMlPa3hGhTpLqqLJd3oXElPU10smSpT2gRtUR3Ud+ncSl/Q265j9YQQEREREREREREREUlDCuCLiIiIiIiIiIiIiKQhBfBFRERERERERERERNKQAvgiIiIiIiIiIiIiImlIAXwRERERERERERERkTSkAL6IiIiIiIiIiIiISBpSAF9EREREREREREREJA2Zc66nyyAiIiIiIiIiIiIiIs2oB76IiIiIiIiIiIiISBpSAF9EREREREREREREJA0pgC8iIiIiIiIiIiIikoYUwBcRERERERERERERSUMK4EvKmdkMM7vVzJ4zs01mVmdmVWa2xsweMrOzO5DHbDNzHVzmdLBcZ5jZowll2mpmc83s4oP+oXspM1vQid9zw3JNszx0rqRVZtbfP5ffNbOn/PPYcC0s6MD+YztxbbWbn5/nsWY2x8zWmVmtme00s3+a2fVmFuzEz6ZrVNKa6uLeQ3WxdCXVxSLSFrUX+ia1LaS3UDul40IHspNIMma2EJjVyqYsYLy/XG5mzwBXOOf2dUOZDPgN8MVmm4b5yzlm9hRwqXOurqvL0wes6qqMda76nCXA2J4uRAMz+w7w3zS9eT0ImO0v15rZuc650jby0DUqaU91cUZQXSwdpbpYRFql9oI0o7aF9AS1UzpIAXxJtRH+6w7gMeBlYAPggGOAfwcmAZ8EnjazU5xz8XbyvA5Y3Mb2pH84vtto/MN5F7gdWA2M8ctzEnABcDdwVTt59TXXAvntpBkCvOS//8A590YbaXWuJJElvN+Bd22ce4B53Qo81cb2qjYLYnYd8CP/4wbgx3iNhcHAjcB5wInAE2Z2ahv/l3SNSm+gurh3UV0sXUl1sYgko/ZC36W2hfQWaqd0lHNOi5aULcA/gMuAUJLt+cBreI0CB1yZJN3shDSzD6I8E4B6P58lQH6z7SHg2YRjzezp32G6LcDXEn4/39G50tKJc/oN4CJgVMK6hvO3oAP7j01If81BlKM/sNfPZzMwpJU0dycc66ok+ega1dIrFtXFfW9RXazlIM6p6uI0OA9atKTjovZCZi9qW2hJh0XtlI5f7xoDX1LKOXeuc+5h51w0yfYq4N8SVnX1WGf/DoT991/xj59YnqhfnoY7Z9/q4vL0Rlf7r3Hg/i48js5VH+Oc+x/n3OPOuU09XJTPAwP89992zu1oJc1XgYbHgr+ZJB9do9IrqC7uk1QXywFRXaxrVCQZtRcyntoW0uPUTun49a4AvnQ759y7wB7/48SuOo4/7tSF/scPnHOvJinPBmC+//F0MyvoqjL1NmY2DTjS/zi/q/6p6lxJF/u0/1oBPNpaAudcZcK2I8ysyf8mXaPS16gu7j1UF0sfobpYpBdSe6FvUttCpIW0b6cogC89peGOVKwLjzEWGOm/X9hO2n/6rzl44/2J5+qE9/d24XHGonMlXcDMwsCx/sc3XNuTxPwz4f1JzbaNRdeo9D2qi3sH1cXSq6kuFun11F7oe9S2EPH1lnaKAvjS7cxsOtDP//h+B3b5kZmtN7M6Mys1s+Vm9mszm9rOfoclvF/ZTtrEGdcPS5oqg5hZCLjC/1gB/K0Du+lcSVf5ipl9aGa1ZlZuZqvM7B4za15pNncIjRO2H8y1pWtU+hTVxb2D6mJJM6qLRTKM2gt9j9oW0of16XaKAvjSE25NeP/XDqQ/EW+25iy8iSWmAjcBy83s//y7Za0ZmfB+czvHSHxkbFQHypQJzsabbRvgMedcdQf20bmSrnI03mO72UAhMBm4DnjFzP5qZoVJ9kvVtaVrVPoa1cW9g+piSSeqi0Uyj9oLfY/aFtJX9el2Sqj9JCKpY2aX0Ti21L+AJ9pIvh3vbvCrwFogAgwHzsL7I8wDbgaKgGta2T/xj7OynaIlbtd4a56rEt7PaSetzpV0lTLgSWAB8CFQDQwBZgM3AMXAJUCxmZ3TyiRcqbq2dI1Kn6G6uFdRXSzpQHWxSAZSe6HPUttC+pqMaKcogC/dxsyOBP7of6wGPuecc0mSLwZGO+cizda/A/zDzH4NvIR3h+tqM3vUOfdMs7S5Ce/r2yle4hhXuUlTZQgzGwCc739cB7zSRnKdK+kqW4ERSXqFPG9mvwKew5uA6XTgRuA3zdKl6trSNSp9guri3kN1saQJ1cUiGUjthb5JbQvpgzKmnaIhdKRbmNlYYC6QD8SBq51zq5Kld85VtVJRJG5fDVyZsOrmVpLVJLzPaqeI2Un2y1SX0vg7ua+NxprOlXQZ51x9W490Oue2ARfh9QSBrr22dI1Kr6e6uNdRXSw9TnWxSOZRe6FPU9tC+pRMaqcogC9dzsyGAS8CI/xVNzrnHjvYfJ1zC2mcSGeWmTW/nisS3rf3SEri9vYedckEDbPSO+C+g81M50q6inPuI7yeHwCH+P9vEqXq2tI1Kr2a6uJeSXWx9Aqqi0X6DrUX+jy1LSTj9JV2igL40qXMbCBeA2Civ+qrzrk/trFLZ63wX3OAkmbbEieNGEnbEieN2JQ0VQYws0OA4/2Przjn1qYoa50r6SorEt43v35SdW3pGpVeS3Vx76O6WHoh1cUivZzaC32b2haS4Xp9O0UBfOkyZlYEvAAc7q/6nnPujhQfJukjX8DKhPeHtZPPoUn2y0SJk9rcm8J8da6kq7R1bX0ANExSczDXlq5R6ZVUF/daqoult1FdLNKLqb2QEdS2kEzW69spCuBLlzCzAryJIqb7q253zv2wCw7V0MCoA/Y027Ye2OK/P7mdfGYn5POvVBSsNzIzAz7nf6wGHk1h9jpX0lUOT3i/NXGDP27jW/7H482srbHoZie8f7XZtvXoGpVeRnVx76S6WHop1cUivZTaC32f2hYivb+dogC+pJyZ5QJ/p/HxrDudc9/uguPMpPGu1qvOuXjidn9Clif8j4eY2UlJ8hkDnOp/fNE5l8njrZ0CjPbfP+Gcq2grcUfpXElXMbMJwBn+xzXOuS2tJPub/1oIXJIkn4KEbe/54+Ttp2tUehvVxb2a6mLpVVQXi/Reai9kDLUtJGP1lXaKAviSUv6dqsdpvJt0D3BLJ/MYYGantJNmMvBgwqrfJEn6fzQ+CvMrM8tvlk8I+D0Q9Ff9vDNl7YMSH6ub015inSvpSmb2Kb+3SLLtw/D+34T9VcmurXuAUv/9T8xscCtpfgEU+e+TXVu6RqVXUF3c66kulrShulik71J7IaOobSF9Uia1U8y7QSCSGmb2GHCR/3ER8G9APPke4Jx7r1keY4F1wHvAk8DbeI+4RIARwFnAdUCev8vDzrnL2yjTfwO3+h/fBX6KN8bVKOBrQMNdsfudc1e1zCEz+P9YtuPNhr0ZGNP8Dnor+4xF50qSMLOjgKOarf6z/7oa7/wmes45tz1hfwesxbsb/hbe5C61wGC8XiQ3AMV+8peBM5xz9UnK8nmgYRKu9cCPgaXAIOBG4Hx/20Lg1GTXvq5R6Q1UF/deqosl1VQX6xoVSUbthcygtoWkM7VTOnG9O+e0aEnZgjcxRKeWVvIY28F948CvgKx2ymTA79rJ60kgu6d/fz187q5K+H38uIP76Fxpaet8/qCT/w9mN9u/o/s9DPTrQHm+C8TayOc1oFjXqJbevqgu7r2L6mItXXBNqS7WokVLq4vaC5mxqG2hJZ0XtVM6/rtSD3xJKf/uV6c455o87uI/ync+3jh8HwNGAgOBXKAc+Ahvsoh7nHPvd6JsZ+DdNTse7w7aXry7aX9yzqVyEpdeyczm0TgO16HOudUd2EfnSpIysx8A3+/ELqc45xYk7H8ucAJwHDAG79oqACqADcDrwBzn3OJOlOlY4Ca8SWWG+nmtAB4A/uyci3UwH12jkrZUF/deqosl1VQXi0gyai9kBrUtJJ2pndJxCuCLiIiIiIiIiIiIiKQhTWIrIiIiIiIiIiIiIpKGFMAXEREREREREREREUlDCuCLiIiIiIiIiIiIiKQhBfBFRERERERERERERNKQAvgiIiIiIiIiIiIiImlIAXwRERERERERERERkTSkAL6IiIiIiIiIiIiISBpSAF9EREREREREREREJA0pgC8iIiIiIiIiIiIikoYUwBdJATP7gZk5f5nd0+WRpsxsQcP56emypJqZzU649n7Q0+UREekpqovTm+piERHpi9T+SG9qf0hfEerpAkjfYGZjgXUpyu5a59ycAyzHNcBYAOfcD1JUnm5nZjnAxcCFwHRgEJALVAFbgA+Bt4GXgdecc5EeKqocBDMz4DTgcuBYYCRQCNQCu4CPgKXA68A851x5DxVVRHoB1cWppbo4M6guFhE5OGp/pJbaH5lB7Q/pLAXwpa+5BjjZf/+DnivGgTOzk4D7gHGtbO7nL1OA8/11jwCXdk/pJFXMbATwADC7lc35/jIWON1ftxMY0h1lExE5SNegulh6AdXFIiJ9yjWo/SG9gNofciAUwJdU2Ql8qo3tpwJf8d//E/hVG2nfSVWhehszOw54Ae8OO3h32B8HlgP7gAK8f+TH4/2zzwaC3V1OOThmNgBYCEzwV1UBfwPexPtbygKGAzPwKu0Skpxn59wCwLq2xCLSS6guTgHVxZlBdbGISMqo/ZECan9kBrU/5EApgC8p4ZyrBp5Mtt3M+id83OicS5o2w/2Bxgp7DvBF51xtawnNrAD4DN6jVtK7fJ/GCvsd4Dzn3NbWEppZEK/iVs8KEWmT6uKUUV2cGVQXi4ikgNofKaP2R2ZQ+0MOiAL4ImnCzA4HpvkfNwE3tDWenXOuEq9il97nswnvr0hWYQM452LA8/4iIiJdSHVxRlFdLCIiaUHtj4yi9occkEBPF0AkkZmNMrOfmtk7ZrbXzOrMbIuZ/d3MrvHvQLa23wJ/VvGTE9a5VpYfNNsvZGZnmdn/mtmrZrbTzOrNrMLMPjCzOWY2q2t/6v0OTXi/KBWT0ZjZoWb2TTN72szWmlm1/zvdZmbPmdmX/Ely2sqjxczmZnaImf3GzD7089zqn6OPt7L/J83sH2a2ycxqzWyDmf3WzIa2c9yGYy7wPw8ys9vM7F0zK/eXt83s22aW21ZenWFmA83su2b2iplt96+HXf7nb/m9HQ4m/xK8iYgAdjrnVh1kfm3OPJ/k76CtZUEbxyows383sxf9c17n/50u9s/NoGT7ikjvobp4P9XFqos7mp/qYhGRg6T2x35qf6j90dH81P7IJM45LVq6fMGbUMb5y5wkaW4EqhPStbYsB8a2su+CdvZrWH7QbL9/dnC/OUBWGz/fDxLSzj7A39ElCXnMT8Hv/OoO/mwfAVPayGd24u8PuAhvnLbW8ooD1/r7hYE/tXHcbcDENo7bkG4BMB3Y3EZeHwLj2shr//XRgeu0vJ3f13bghIM4L4MT8qoDQgd5npucnzZ+jx1dFiQ5zjnAjnb2LQfOP9hrV4sWLV2zoLq4I78j1cVNj6u6uGP5NTk/bfweVRdr0aIl4xbU/ujI70jtj6bHVfujY/k1OT9t/B7V/ugDi4bQkbRgZjcCv09Y9XfgGaAMOAS4Fm8m9qnAq2Y23Tm3KyH9rcBA4IfA4f661ibSaX6HMxeoBOYBbwPrgVpgmJ/PFXgzgF/tl+XfD+gH7Jg1Ce8/7v+MSw4iv1y8f6RvAy8Dq4FSvJnrx+CNo3YI3vhrz5rZUc65snbynAF8G6gH7gD+hfckz9nA5XgTqNxtZq8CN+Odt+V4M6xvwJs5/QbgCGAoXmPopHaOWYQ3qcsIvEl9ngT2ApOBzwOjgYnAPP9nKG8nv1aZ2S3+zwRe4/Ex4HVgD961dTZwvv8zvGRmH3POrTyAQ+3Gm4SoCG+CmhuB3xxImTuorQmlGlyL97OBd503YWYXAX/FmzwnAjyN1xDagXc9nYLX6CwEnjCzM5xz8w+65CLSrVQXA6qLk1FdfHBUF4uIJKH2B6D2RzJqfxwctT/6kp6+g6AlMxbauOuON5N6w932KHBJK/vnAv9IyOPRJMdZ0JCmg+U6DchtY3sJ8IqfZ4wkd3ZJzV33AF6joiGffcCP8O44Bw4gv8OTlTfheN9ION73k6SbTdM7qx8Bo1tJ952ENG/j3YH/bfOyA3l4FXlD2mOTHLf5Hd2bWklTQNOeE3ceyHXB/2/v/oMuq+sCjr8/rQsEsUADMgbOEohBRq2OwNoqLgmpKEo6jQ7TkG39IdVUMA0zCeIOpWWTZDrjLyJhNBfFHTKGMEYSFArNYiVHK5Yflpg6UOjSGvLj0x/f75lCu4wAAAvqSURBVN17nue5555z73Offe7C+zXznefc537Pj3vuvefzmfs93+8XXkgJRgncOer11XqvpiQsCdyxjO/DhxrH/AQleRn7WRyzreb7s3WK9V9ev3eDOyGOXvT8s+tnMSmJ10kt2zmFEvCTMm7j2mnPj8ViWZmCsbjPsRiLF9YzFvfbVvP92TrF+sZii8XylC2Yf/Q5FvOPhfXMP/ptq/n+bJ1iffOPfais+gFYnh6F8UH78sZz7xyzjXXAN2u9J4HjR9QZe3Ge8tiPbRzfJS11tjbqbF7GvjYxuuvgI5SW88sp3dYOm+Hru3UQjFue37zoWDa21NufhV3O7gLWtNQ9t1HvrS11mvvcNub4j2wEld3AoZN+LiityFmP/6iO83VZ47h+dspzfgQl+Vn8Pj9GSRquALYwJulqeX+2TngcJzYC7fcZkUAB72GYUG/o2N6WxrGcO6vPqMVimU0xFvfel7F4WMdYbCy2WCyWZRXzj977Mv8Y1jH/MP+wLCpOYqt58Lr693HgXW2VsnSHel99GPTrDrRsmXkvZawzgFNXeF+3AxspAbrpIOAlwAWU7lzfiohrIuL4Gez27+vf4yLi8I66/5SZd4x6IjMfpXSjG/hgllnTR7mtsfyTPY5x3Ofi25RueVDuznhFj+3tERGHAa+qD7dl5gMdq3y0sfzzk+xrIEuXz1OBqymt7gPPADYAvwZcCdxbJ1R62TT7GadOoHM9pfsewJbM/OKiOkHpOgpwc2bu6NjsxynfY5jy3EhaNcbi4b6MxaMZi2fMWCxJ5h+NfZl/jGb+MWPmH/smx8DXqoqIZ1LGYAP4cmZ+p2OVm4Dfr8szCaARsY5yYTqLMq7e4ZQgOcrRs9jnOJl5F/DSiNhAaWE/jdKt68BGtf0o49adHRHnZuan2rYXEWcAbwROpowRdzBl/LJRjqKMy9bmCx2H/+3G8hdbay2sd1jHNr9L6YY3zt8Bv16XTwau6ajftAn2NGY+ERHndNRf21g+cYL9LJCZDwFvioiLgV8Efg54EeXzt/j4PhMRb8/MS6bdX1NErAW2U8Y8BLgsM7eNqPo84Efr8q4e5wbKHSKHsoxzI2nvMhYvZSxewlhsLJakmTL/WMr8YwnzD/MPVf6Ar9X2rMbyv/eo36zzrNZaPUXE6cDHKJOo9LFuufvsq7Zw7gCIiDWUi+AmSiA/s1Y7ENhWJ2xZcP4i4hDgE0zW+tn1+h7qeP7RPnUz89HSoAvAAR3bvCez9MkaY2dj+cc66i52TGP5/Fr66ko4OtVW/nfXQkSsp9x5cRZlMpjB+bk4Iv4tMz+y3H1SJol6aV2+ltLtc5RjGsuvr6WvZZ8bSXuNsbiFsXgPY3FhLJak2TH/aGH+sYf5R2H+IX/A16o7uLH8vz3qP9Ky7sRql7MbKF2toMzMfiNwN2Vm8/9rVP8QZayyttbqFVW7n32llg9GxGbgbyjH/sPARZSuVk2fBM6oy7soXaR2UCYn2U0ZOxBKi/wb6nLX63uy4/lp646zu0ed5mfnRybc/iHdVVrtt4x1R8rMr1MmiPl4RFwKfBo4oT79NmBZQTsifpcyPh2Ubo6/PCYpmqtzI2nFGIt7MBZ3Mhb3ZCyWJMD8oxfzj07mHz2Zf+zb/AFfq21XY7mtq1pT84K8q7VWP7/HMGC/nTKBysiLV0Rcscx9zVRm3hIRlwF/WP+1YFy0iDiNYcD+MnBmHWttiYjYtGIHOhsHdldZ8Nl5pLXWaM36WzLzwxOuv2Iy8+sR8SvAP9R/HRcR62tgn1hEvBp4Z334APDazPz+mFWa5+ayzHzbNPuVNPeMxVMwFi9hLO7BWCxJe5h/TMH8Ywnzjx7MP/Z9TmKr1fZfjeU+k7A063xzmfseBLXvAJeOCdgHMxz7a57c3Fhe3FXsjMbyxW0Bu1o/5rl5cFw0+ti1eE5jedLPRXOimhUf13AKX2Bh8Jy0WyAAEXESsI1y3d9NCdhd52rez42k2TAWT89YPGQs7mAslqQFzD+mZ/4xZP7RwfzjqcEf8LWq6kQ1gxbEDRFxRMcqzTHcRk2MsqerVo8L/ZH1732ZOa6L1xnM53flB43lxS3NRzaW72nbQETsB5w+y4NaAYcAL+io03wN/zjh9j8HDBK2uZstvSaTjzf+NeldBYMJoq6n3LWSwHmZ2TUZEMCdwPfq8ssiYh6/B5KWyVi8LMbiIWPxGMZiSVrI/GNZzD+GzD/GMP946vAN0DzYXv8+A/idtkq19Xswu3gC142o1rygdXXDG4yndmxbgK8TxrylYzszERGH1iDa12say19d9FxzrLjjaHc+S2c6n0cXtj1RE71fqg93U8aJ660mjoN1XhwRKxq4I+KHIqL3OY+Il1BmcocyFuO9E+5vf+CvGN5dcWlmbh+zyh51vMW/rA/Xs3RsRUlPHcZijMUdjMWFsViSZsf8A/OPDuYfhfnH05w/4GsevBcYjL11UUQsmd06Ig4APsqwy9D2zLx7xLbuayx3tdQOWmePYESyEBFrgSuAF3ZsZ1Y2AvdExAVddx9ExOtYmEwsnsyk2fJ8ab1wL97G2cAfTXuwe9m5EfHmxf+MiIMoXcEGE6z8RWY+PMX2LwEeq8vXRMQrxlWOiPUR8Se1NXtS+wH3R8S7IuKEcRUj4nnA1Y1/XZeZfSZ4avpz4EV1+WOZ+QcTrv8OYHBO3xMR542rHBHPjIi3RsRPT7gfSavLWFwYi9sZiwtjsSTNjvlHYf7RzvyjMP94mnMSW626zLw/Ii4APkD5TH4yIj5FmVn9YcpYd1uAY+sqDzBsfV/sZuC36vKVEfGnlG55T9T/7czMnXX5vcCZdfnyKLO5/y3wUN3nefXvZ+vfvTHu19HA5cAfR8TtwB3ATsp52J/Sgv5KSoAfuBW4ctF2rqOcp6OAU4CvRsSVlBbbQ4GzgLMpM7ZvB5YkSnNkB+WY3x8R51Be28PAc4FfZdiafB9w8TQ7yMx/jojzKUnaYcCN9fzfWLf7GGXswxOAFzNM5N49zf4od4RcCFwYEXcBtwNfAR4EgvK+nQa8iuF1+lvARZPsJCJ+geEdCf8NXF/P4TgPZuZtgweZ+Y2IeCPw15TP4NURcWF9fDcl4T6E8n5sBDYBayjfG0n7CGPxAsbipYzFhbFYkmbI/GMB84+lzD8K8w9BZlosK16AN1G6uiVwVUudN1MuADmm/AtwzJj9rAE+P2b9rYvqv6Njf7dRWuXvr4/vb9nv1sY6m6c8Ry+gTLoy7nia5Ungw8BBLdvbSLlQt63/P5TgPfbYgc1t529E3asadVvfp1p3UO+WrueBDcA3xryWncCxY/Z1y6BuxzGdTQmOfc7/g8DhU7zPaykBuu/7nJSg/pyW7bW+Pyz83vUtbe/HRsoYin22sQs4aTWuNRaLpb1gLO5zjozFLc9jLDYWWywWyxQF848+58j8o+V5zD/MPyxkpnfga35k5gci4gbgN4CXA8cAB1Jawe8ErgU+kmUsrrZtPBERZwK/DbyW0kq6jhLMR9V/S0R8DvhN4FRK6+GDwNco3bGuyszHW4bFm6ksLb9H1eM4nXKRfC6lq+BBwKOU1uZ/pVzEt2Xm18Zs746I+BlKS+0rgWdTkqL/BG4A3peZ/xERp6zcq5qNzNwREc+n3FFxDqWlPSitvtcCf5aZu8dsou9+ro+IH6fccXEW8HzKuIBrgO9SkoMvATcBN2XmD9q2NWYfjwE/FRHHU+762AScWF/TOsodIt+j3CHxJcpdEbdkjZyrpX6efgJ4A2XMxZMpCe0BDI/3TuAzwA05efc+SXPAWGwsbmMsNhZL0kox/zD/aGP+Yf6hIlb5cyBJI0XE4OJ0a2ZuXs1jkSTp6chYLEmS9jbzD2kpJ7GVJEmSJEmSJGkO+QO+JEmSJEmSJElzyB/wJUmSJEmSJEmaQ/6AL0mSJEmSJEnSHPIHfEmSJEmSJEmS5lBkZnctSZIkSZIkSZK0V3kHviRJkiRJkiRJc8gf8CVJkiRJkiRJmkP+gC9JkiRJkiRJ0hzyB3xJkiRJkiRJkuaQP+BLkiRJkiRJkjSH/AFfkiRJkiRJkqQ59P+lMEpJdefdAQAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], - "source": [ - "with open('data/mean_xor_rxor.pickle','rb') as f:\n", - " mean_error = pickle.load(f)\n", - "\n", - "n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int)\n", - "n_nxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int)\n", - "\n", - "n1s = n_xor\n", - "n2s = n_nxor\n", - "\n", - "ns = np.concatenate((n1s, n2s + n1s[-1]))\n", - "ls=['-', '--']\n", - "algorithms = ['XOR Forest', 'R-XOR Forest', 'Lifelong Forest', 'Naive Forest']\n", - "\n", - "\n", - "TASK1='XOR'\n", - "TASK2='R-XOR'\n", - "\n", - "fontsize=30\n", - "labelsize=28\n", - "\n", - "colors = sns.color_palette(\"Set1\", n_colors = 2)\n", - "\n", - "fig = plt.figure(constrained_layout=True,figsize=(21,14))\n", - "gs = fig.add_gridspec(14, 21)\n", - "ax1 = fig.add_subplot(gs[7:,:6])\n", - "ax1.plot(n1s, mean_error[0,:len(n1s)], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[1], c=colors[1], ls=ls[1], lw=3)\n", - "ax1.plot(ns, mean_error[1], label=algorithms[2], c=colors[0], ls=ls[np.sum(1 > 1).astype(int)], lw=3)\n", - "ax1.plot(ns, mean_error[4], label=algorithms[3], c='g', ls=ls[np.sum(1 > 1).astype(int)], lw=3)\n", - "\n", - "ax1.set_ylabel('Generalization Error (%s)'%(TASK1), fontsize=fontsize)\n", - "ax1.legend(loc='upper right', fontsize=20, frameon=False)\n", - "#ax1.set_ylim(0.09, 0.21)\n", - "ax1.set_xlabel('Total Sample Size', fontsize=fontsize)\n", - "ax1.tick_params(labelsize=labelsize)\n", - "#ax1.set_yticks([0.1,0.15, 0.2])\n", - "ax1.set_xticks([250,750,1500])\n", - "ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle=\"dashed\")\n", - "ax1.set_title('XOR', fontsize=30)\n", - "\n", - "right_side = ax1.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax1.spines[\"top\"]\n", - "top_side.set_visible(False)\n", - "\n", - "ax1.text(400, np.mean(ax1.get_ylim()), \"%s\"%(TASK1), fontsize=26)\n", - "ax1.text(900, np.mean(ax1.get_ylim()), \"%s\"%(TASK2), fontsize=26)\n", - "\n", - "#####################################\n", - "with open('data/mean_xor_rxor.pickle','rb') as f:\n", - " mean_error = pickle.load(f)\n", - "\n", - "algorithms = ['XOR Forest', 'R-XOR Forest', 'Lifelong Forest', 'Naive Forest']\n", - "\n", - "TASK1='XOR'\n", - "TASK2='R-XOR'\n", - "\n", - "ax1 = fig.add_subplot(gs[7:,7:13])\n", - "ax1.plot(n1s, mean_error[0,:len(n1s)], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[1], c=colors[1], ls=ls[1], lw=3)\n", - "\n", - "ax1.plot(ns[len(n1s):], mean_error[3, len(n1s):], label=algorithms[2], c=colors[0], ls=ls[1], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_error[5, len(n1s):], label=algorithms[3], c='g', ls=ls[1], lw=3)\n", - "\n", - "ax1.set_ylabel('Generalization Error (%s)'%(TASK2), fontsize=fontsize)\n", - "ax1.legend(loc='upper right', fontsize=18, frameon=False)\n", - "ax1.set_xlabel('Total Sample Size', fontsize=fontsize)\n", - "ax1.tick_params(labelsize=labelsize)\n", - "ax1.set_xticks([250,750,1500])\n", - "ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle=\"dashed\")\n", - "\n", - "\n", - "right_side = ax1.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax1.spines[\"top\"]\n", - "top_side.set_visible(False)\n", - "\n", - "ax1.text(400, np.mean(ax1.get_ylim()), \"%s\"%(TASK1), fontsize=26)\n", - "ax1.text(900, np.mean(ax1.get_ylim()), \"%s\"%(TASK2), fontsize=26)\n", - "\n", - "ax1.set_title('R-XOR', fontsize=30)\n", - "\n", - "#####################################\n", - "with open('data/mean_te_xor_rxor.pickle','rb') as f:\n", - " mean_te = pickle.load(f)\n", - "\n", - "algorithms = ['Lifelong BTE', 'Lifelong FTE', 'Naive BTE', 'Naive FTE']\n", - "\n", - "TASK1='XOR'\n", - "TASK2='R-XOR'\n", - "\n", - "ax1 = fig.add_subplot(gs[7:,14:])\n", - "\n", - "ax1.plot(ns, mean_te[0], label=algorithms[0], c=colors[0], ls=ls[0], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_te[1, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3)\n", - "ax1.plot(ns, mean_te[2], label=algorithms[2], c='g', ls=ls[0], lw=3)\n", - "ax1.plot(ns[len(n1s):], mean_te[3, len(n1s):], label=algorithms[3], c='g', ls=ls[1], lw=3)\n", - "\n", - "ax1.set_ylabel('Forward/Backward \\n Transfer Efficiency (FTE/BTE)', fontsize=fontsize)\n", - "ax1.legend(loc='upper right', fontsize=20, frameon=False)\n", - "ax1.set_xlabel('Total Sample Size', fontsize=fontsize)\n", - "ax1.tick_params(labelsize=labelsize)\n", - "#ax1.set_yticks([0,.5,1,1.5])\n", - "ax1.set_xticks([250,750,1500])\n", - "ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle=\"dashed\")\n", - "right_side = ax1.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax1.spines[\"top\"]\n", - "top_side.set_visible(False)\n", - "ax1.hlines(1, 50,1500, colors='gray', linestyles='dashed',linewidth=1.5)\n", - "\n", - "ax1.text(400, np.mean(ax1.get_ylim()), \"%s\"%(TASK1), fontsize=26)\n", - "ax1.text(900, np.mean(ax1.get_ylim()), \"%s\"%(TASK2), fontsize=26)\n", - "\n", - "colors = sns.color_palette('Dark2', n_colors=2)\n", - "\n", - "X, Y = generate_gaussian_parity(750, angle_params=0)\n", - "Z, W = generate_gaussian_parity(750, angle_params=np.pi/4)\n", - "\n", - "ax = fig.add_subplot(gs[:6,4:10])\n", - "clr = [colors[i] for i in Y]\n", - "ax.scatter(X[:, 0], X[:, 1], c=clr, s=50)\n", - "\n", - "ax.set_xticks([])\n", - "ax.set_yticks([])\n", - "ax.set_title('Gaussian XOR', fontsize=30)\n", - "\n", - "plt.tight_layout()\n", - "ax.axis('off')\n", - "\n", - "colors = sns.color_palette('Dark2', n_colors=2)\n", - "\n", - "ax = fig.add_subplot(gs[:6,11:16])\n", - "clr = [colors[i] for i in W]\n", - "ax.scatter(Z[:, 0], Z[:, 1], c=clr, s=50)\n", - "\n", - "ax.set_xticks([])\n", - "ax.set_yticks([])\n", - "ax.set_title('Gaussian R-XOR', fontsize=30)\n", - "ax.axis('off')" - ] - }, - { - "source": [ - "# Experiment for Backward Transfer Efficiency (BTE) vs. angle of rotation for the second task" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###main hyperparameters###\n", - "angle_sweep = range(0,90,1)\n", - "task1_sample = 100\n", - "task2_sample = 100\n", - "mc_rep = 10000\n", - "\n", - "mean_te = np.zeros(len(angle_sweep), dtype=float)\n", - "for ii,angle in enumerate(angle_sweep):\n", - " error = np.array(\n", - " Parallel(n_jobs=-1,verbose=1)(\n", - " delayed(experiment)(\n", - " task1_sample,task2_sample,\n", - " task2_angle=angle*np.pi/180, \n", - " max_depth=ceil(log2(task1_sample))\n", - " ) for _ in range(mc_rep)\n", - " )\n", - " )\n", - "\n", - " mean_te[ii] = np.mean(error[:,0])/np.mean(error[:,1])\n", - "\n", - "with open('./data/mean_angle_te.pickle','wb') as f:\n", - " pickle.dump(mean_te,f)\n" - ] - }, - { - "source": [ - "# Plot the result" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAH1CAYAAAB82m0HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXxcd3X//9fRbluyvMqrvO92Em/ZV2cPCUlISICGsEPLVtpCKVD4FigU2v5KS0lbCFtYQkIgCUkIhMTZnMXBSxI73vd9kxdJlmVrPb8/7mg0kuWRRprRnRm9n4/HPHTv3HvHh1jIR5/P+ZyPuTsiIiIi7eWEHYCIiIikJyUJIiIi0iElCSIiItIhJQkiIiLSISUJMcxsp5ntDDsOERGRdJAXdgBpprS0tLQU0JIPERHpK+xMFzSSICIiIh1SkiAiIiIdUpIgIiIiHVKSICIiIh1SkiAiIiIdUpIgIiIiHVKSICIiIh0KNUkws1Fm9m0ze97MjpuZm9kVXXz2M2b2iplVmNkpM9tsZv9lZsNSHLaIiEifEHYzpenAPwBbgNXARQk8Ox9YC/wWqI581seA681snrufTHKsIiIifUrYScJKYJi7HzGzW4FHu/qgu7+//Xtm9hrwMHAjQfIgIiIi3RRqkuDux5P8kS37LgxK8ueKiIj0OWGPJPRYpAYhD5gC/CvQCLwYalAiIiJZIKOTBDMrBipi3toDvMfdN5/h/spOPrI0WbGJiIhkuoxOEoCTwDVAEXAOcDswMNSIREREskRGJwnu3gQsjpz+3swWA6+Z2SF3/30H98etVYiMNGg0QUREhCxrpuTufwZ2A3eFHYuIiEimy6okIaIIjQaIiIj0WEYkCWY22cwmx5wXmVlJB/fdAgwn6L8gIiKSsY6eqOfrT6xj5c5jocUQek2CmX05cjgz8vVuM7sEqHT3eyLvPRv5OiHydSTwhpn9GlgPNAALgLsJeiV8N9Vxi4iIpMKJukZ+/PJ27l2yjZq6RtbsreLXf3kBZtbrsZi79/of2iYAszMFsNPdJ0Tu2QEQc14CfAtYBIwDCghqEZ4EvuHuFad/XJdiqSwtLS2trOxspaSIiEhy1Tc28+DyXfz3s1s4XFPX5toDH72ACycPTdUffcbsI/QkIZ0oSRARkTDsPlrL+36yjO2HT7R5f0pZMX9/3XSunTUilSMJZ/zg0KcbRERE+rp//N2aNgnCqNIi/vbqadw2fwx5ueGVDypJEBERCdHKnUdZsimYJc8x+MINM3jfhRMoys8NOTIlCSIiIqH6z2dadxK4de4YPnbZ5Dh3966MWAKZLWrrG1m/v5qT9U1hhyIiImlg2fajvLzlMAC5Ocanr5oackRtaSQhhQ4dP8XKHcdYvuMYK3ceZc2+apqanallxfz24xdR2i8/7BBFRCRE//nMpujxO+aNYeKwASFGczolCSnyrT+u5wcvbuvw2uZDNXzp0be45z3zQln3KiIi4Vu69QhLtx0BIqMIV04JOaLTabohRSYPK457/cnV+/n18t29FI2IiKQTd+c/F7eOIrxz/ljGD02vUQTQSELKLJwwmIK8HOaOHcTCCYM5d8IQ5o8bzLef2sADy3YB8NUn1rJg/GCmjjitw7SIiGSxpVuPsGz7UQDycoxPpeEoAqiZUhvJbKbk7tQ3NVOY13YJy8n6Jm75n5fZdLAGgBkjS/jdJy9Oi6UuIiKSeu7OHd9fyorIngzvOa+cb912dpghnXHeW9MNKWJmpyUIAP0Kcvnee+ZTmBf8p99w4DjffHJ9b4cnIiIhWbuvOpog5Ocan1yUnqMIoCQhFNNHlvCVm2ZFz3/x2k6eXX8wxIhERKS3/GZFaz3ajWeNYuzg/iFGE5+ShJDcdf44rps9Inr+r09toLlZUz8iItmsrrGJx1bti57fubA8xGg6pyQhJGbGt247mwEFwZTEpoM1PL1OowkiItls8bpDVNY2ADBmUD8umJSynR2TQklCiIYMKOC9F46Pnt/z/GZUSCoikr1+s7J1quH2BWPJyUnvXjlKEkL2kUsmUZQf/DWs2VvNC5FNPkREJLscqDoV3cgJ4I4FY0OMpmuUJIRseEkh7zlvXPT8e89qNEFEJBs98sYeWkrPLpg0hPIh6Vuw2EJJQhr42GWTKIjsF/76rkqWbj0SckQiIpJM7s5vV+6Jnt+xIL0LFlsoSUgDo0r78c6FrcNO33tuS4jRiIhIsr2+q5JtFScAKC7M44azRoYcUdcoSUgTH798MrmRApal246wYkfQrrOmrpHth09woOpUmOGJiEgP/HZl294I/QsyY1eEzIiyDygf0p9b547h4deD4agP/nQ5Te7U1jcBYAZfu3k277twQohRiohIok7WN/HEqv3R8zsWpn/BYguNJKSRTyyaTMvO0cfrGqMJAoA7fPXxtW0qY0VEJP09tXY/NXWNAEwaNoAF4weHHFHXKUlII5OHF/P+diMFBXk5lBQGAz7NDp/61etsq6gJIToREemOJ1e3jiLcvmAsZundGyGWdoGMkcxdILurudnZdrgGMIaXFDKwKI+K43XcfM8rHKgO6hImDR/Ao5+4mNJ++aHFKSIinTvV0MTcrz/NqYZmAF743BVMGDYg5KhOo10gM0VOjjGlrIQpZcWU9svHzCgbWMS971sQ3TlyW8UJ/vqBN2jSXg8iImntlS2HownC5OED0jFBiEtJQoY4e+wg/v2Oc6LnL26q4F+f2hBiRCIi0pnF6w9Fj6+eOSLOnelJSUIGufmc0Xxy0eTo+Q9f2sbeypMhRiQiImfi7jy3oXXjvquUJEiqffaa6cwbNwgIVjws33405IhERKQja/ZWc7C6DoBB/fOZH/nZnUmUJGSYnBzjsqnDo+crdx4LMRoRETmTxetbRxEWTS8jLzfz/snNvIiF+TFrbF/fpSRBRCQdPdtmqqEsxEi6T0lCBppb3jpkteHAcWrrG0OMRkRE2ttfdZI1e6sByMsxLps2vJMn0pOShAxU2i+fqWXFADQ1O6t2V4UckYiIxHo2ZlXD+ZOGMLAoM/vaKEnIUAs05SAikraejalHuGpG5q1qaKEkIUPNH9eaJLyhJEFEJG3U1jfyytYj0fNM7I/QQklChpo/vrUu4fVdlai9tohIenh582HqG4Mui9NGFDNuaP+QI+o+JQkZatKwYgYWBRs/HT1Rz84jtSFHJCIi0LYeIRMbKMVSkpChcnKMeeNUlyAikk6am53nNsa2Ys7MpY8tlCRksPlKEkRE0sqafVVUHA+6LA4ZUMDc8sGdPJHelCRksDZ1CTvD295aREQCz2+oiB5fMW04uTln3IU5IyhJyGBzywdhke+/DQeqOVGnpkoiImF6Pmaq4YoZmT3VAEoSMlpJUT7TykoAaHZYtUejCSIiYTlSUxf9OZxjcNnUYSFH1HMJJwlmNtjMppvZNDPL7MmWLBA75fDGLiUJIiJhWbK5gpbV6PPHDWZQ/4JwA0qCTpMEM8sxs3eY2a/MbC9wGFgHrAcOm9leM7vfzG41M41M9LI2Kxy0I6SISGhi6xEWZcFUA0DemS6YWS7wceALwGjgBLAc+ANwBDBgCDAFuBl4D7DfzP4F+L67N6U2dIF2nRd3B02VzDK7UEZEJNM0NTtLNscULU7PzA2d2jtjkkAwWjAWeBD4BbDE3Zs7ujEygnAFcDfwb8CngJlJjVQ6NGnYAEr75VN1soGjJ+rZcaSWicMGhB2WiEif8ubuSiprGwAoKylk1qiBIUeUHPGmB54EJrn7h939hTMlCADu3uzuz7n7B4HJwFPJDlQ6FjRVil0KqSkHEZHe9kLMqoZF08uyZkT3jEmCu/+dux880/U4zx1w97/tWViSiNgph9e2HYlzp4iIpELs0sdFM7JjqgGSvATSzEqS+XnSNRdNHho9fmL1Po6eqA8xGhGRvuVQ9SnW7K0GIC/HuHhK5i99bJGUJMHMis3sy8D2ZHyeJGbB+MHMHh3Mf51qaObnS3eEGo+ISF/ywqbWgsVzJwyhpCg/xGiSqytLIPMiSyA/b2YfMbNhMdcKzewLwA7g60BN6kKVMzEzPnbZpOj5z17dwcl6LS4REekNL2TpVAN0kiSY2RDgdeC3wLeBHwBbzGyhmZ0DrAX+BagEPkqwHFJCcONZoxgzqB8Ax2ob+O3K3SFHJCKS/Rqamnlp0+Ho+aLp2dEfoUVnIwlfAeYAjxEsa/wuUAT8H8EKhiLgQ8B0d/+xu2vzgJDk5ebwkUsnRs9/+NJ2mpo9xIhERLLfyp3HOB7ZN2fMoH5MKSsOOaLk6ixJuAl4wt1vc/f/dfe/Az4LLCDovHiWu9+nxknp4c6F5ZT2C+bCdh2t5ak1B0KOSEQku7Vf1ZAtSx9bdJYklANPt3uvpQfCd9xdi/LTyIDCPO6+YHz0/N4lW3HXaIKISKo8uz5m18dp2TXVAJ0nCQVA+0SgZRehXckPR3rq/RdNoCAv+GtdtaeK17YdDTkiEZHstOPwCbYcCur1i/JzsmrpY4ueLIE8YwdGCc/wkkJunz82en7vkq0hRiMikr0Wr2/tN3jJlGH0K8gNMZrUiLd3Q4vPmtm7Y87zAQe+aWaH293r7n5L0qKTbvnopRN5cPku3OH5jRXsOlLLuKH9ww5LRCSrxE41XDVzRIiRpE5XkoR5kVd7F3TwnibA08Ck4cVcPm04L2wMGnw8u+EgH7x4YidPiYhIV1XVNrBsR+t07lVZsjV0e3GnG9w9J8FX9o21ZKhrZrVmtc9tOBTnThERSdQLmw5Fl5mfM7aUsoFFIUeUGkndu0HSR2xDj9e2HaGmTi0sRESSpS9MNUCCSYKZ5ZvZLDO7MPI1expUZ5nRg/oxM7KfeUOT8/Lm9uUjIiLSHQ1NzW1aMV/d15MEM5tpZg8RLH98C3g58rXSzB4ys1kpjFG6KXaO7LkNCe/6LSIiHVi+4yjVp4LR2dGlRcwclb0bIHdlg6e3A8uBdwJHgN8Dv4p8PRJ5f3nkPkkji9okCRU0q02ziEiPtZ9qyLYui7E62+BpIvAgQTJwo7uPc/db3P3uyNdxwNsIWjQ/ELlf0sTc8kEMGVAAwOGaOtbsqwo5IhGRzObubfojXD0re6caoPORhL8HGoHL3f2PHd3g7k8BlwNNwOeSG570RG6OccW01m1LY7NfERFJ3NaKGnYeqQVgQEEuF0waEnJEqdVZknANcJ+774h3U+T6fcB1SYlKkubKmbFTDkoSRER6YnHML1uXTh1OYV52r/zvLEkYC6zq4metAkb3LBxJtkunDicvJ5gve2tvFYeqT4UckYhI5lq8ru9MNUDnScIpoKubYw8A6noWjiRbab98Fk4YHD2P3dZURES6bn/VSV7fFex5aAaLpg/v5InM11mSsI6gMLEr3gas71k4kgpXzWjNdlWXICLSPT96aTsti8TOnziEocWF4QbUCzpLEn4NXGNmH453k5l9ELiWYCWEpJnYpZAvbzlMXWNTiNGIiGSeYyfqeWDZruj5Ry+dFGI0vaezJOH7BLUG95rZA2Z2pZkNssCgyPmvgB9F7vt+qgOWxE0ePoDxkV0ga+ub+PO2o508ISIisX62dAe19cEvWDNGlnBllm7o1F5nGzzVA9cDrwDvAp4h6JnQGPn6DPBu4FXgbZH7Jc2YWZtvaK1yEBHpuhN1jdz36o7o+cevmJzVDZRiddpx0d0PuftlwC3AL4A3gK2Rr78AbnX3S939QEojlR65LKZfwuo9lSFGIiKSWR5cvpvK2gYAyof048azRoUcUe/Ji3fRzMrc/RCAuz8BPNHJ/Te5+++TGJ8kycyRA6PHmw/W4O59JhMWEemu+sZmfvTStuj5xy6bTF5u39lAubP/pWvN7I7OPsTMSs3s58BjyQlLkm3EwEJKioKc8HhdIwfUL0FEpFO/e2Mv+6uCn5fDigu5Y8HYkCPqXZ0lCUeBB83sQTPrsPekmd1EsFTyvcAPkxyfJImZMbWsteXF5oM1IUYjIpL+mpqd7y/ZGj3/8CUTKcrP7g6L7XWWJJwD3APcAawxs1taLkRGD35GMHrQAFzr7n+Vskilx6aNaN3OdNPB4yFGIiKS/p5ee4BtFScAKCnM464LxoUcUe/rbHXDKXf/DHAVQTfFR8zs52b2LoLRg7sJRg/muPvilEcrPTI1JknQSIKISHwPv743enz3heMZWJQfYjThiFu42MLdXzCzswj6INwVee0mGD1QcpAhpo1onW7YdEgjCSIiZ9LQ1MzSrYej5+/sY7UILRIp0bwQuAwwwAn2ahiaiqAkNWKnG7ZEVjiIiMjp3thVyYlI86Sxg/sxcdiAkCMKR6dJgpkNMLPvA08RJAhvAy4maKb0KzN7yMyGpTZMSYaykkIGxqxwaKnYFRGRtpZsqogeXzp1eJ9dMh43STCzRcBbwMeAXxLUHjzl7n8mKGr8LnAbwVLJ21MdrPSMmal4UUSkC17a3JokXD6t7/4e3NlIwmKgCLjF3d/v7lUtF9y9zt3/DlgEHAceMrMHUheqJIOKF0VE4jt2op7Ve4N/7nIMLpysJOFMHgRmR7otdsjdXwLOJihq7LTxUiwzG2Vm3zaz583suJm5mV3RhedyzOyDZvaEme02sxNmtsbMvmRm2b93Zw+0KV7USIKIyGle2XqYlpKtueWDKO3X91Y1tOhsCeRd7n6ssw9x91p3/yTBdtGJmA78AzAWWJ3Ac/2BnwDDCJKTvwGWAf8MPJlgDH1Km+mGQxpJEBFp76VNrasaLp06PM6d2a9LSyC7yt2fS/CRlcAwdz9iZrcCj3bxuXrgYnd/Nea9H5rZDuBrZnaFu7+QYCx9wtSYkYQtB49rDwcRkRju3qYe4bI+XI8AcUYSzGxadz/UzKZ35T53P+7uRxL9fHevb5cgtGhJMmYm+pl9xfDiwujQ2Yn6JvZphYOISNTWihPRn4slhXmcM3ZQyBGFK950w1oz+4mZzenqh5nZPDP7BbCm56F1y8jI18MdXTSzyngvoLT3Qg1HsMJBdQkiIh2JHUW4aMrQPrXjY0fi/a+/GTgfWGVmb5jZN8zsFjObY2ajzWyMmZ1lZreZ2b+Z2RpgBTAXuKk3gu/A54Eq4OmQ/vyM0HaFg5IEEZEWL21WPUKsM9YkuPsfzexp4E7gE8CXCDotttcyof0C8DXgYXdvTnKcnTKzLwFXA38Zu1QzlrvHHTfqK6MJ08piRxJUvCgiAlDX2MTSra0z4JcpSYhfuOjuTcADwANmNgK4HJgFDCdIGCoIphZedPcOh/h7Q2TDqW8AP3D3e8OKI1NM00iCiMhpXt9ZycmGoBXz+KH9GTe0f8gRha/Lqxvc/SDwUApj6RYzuwb4OfAE8MmQw8kIbaYbDtXQ3Ozk5GiFg4j0bbH1CJdO7durGlpkdEWGmZ1PsKJhOfDuyMiHdGJYcQGD+wcrHGrrm9hbeTLkiEREwqd6hNNlRJJgZpPNbHK792YSNE7aAbzd3fUvXReZWbvRBE05iEjfdqSmjjX7gnK23Bzjwsna5BiS3EypO8zsy5HDlt4Gd5vZJUClu98Tee/ZyNcJkWdKgD8Bg4F/B25s1xBotbsn0sGxz5k2ophl248CQfHilTNGhByRiEh4nt9YEW3FPH/cIAYW9d1WzLFCTxIIWinH+lDk607gHjo2FCiPHH+7g+tfI7E2z32OdoMUEWn13IaD0WP90tQq9CTB3TutmHP3Ce3Od9C69FK6YWpZa5KwRXs4iEgfVt/YzJKY/RqunlkWYjTpJSNqEiT5Yvdw2HwwWOEgItIXLdt+lJq6RgDKh/RjSkwvmb6uy0mCmb1X2zBnj2HFhQwZUADAyYYmdh+rDTkiEZFwPBsz1XDVjBHa9C5GIiMJPwf2m9n3zGxeqgKS3jNnTGtzyec3HAoxEhGRcLg7z65v/fl3laYa2kgkSXgXsAz4OLDCzFaa2V+Z2cDUhCapds2s1uKcP645EGIkIiLh2FpRw66jwUjqgIJczp+opY+xupwkuPtv3P16gmWIXyNYfvi/BKMLPzOzy1IToqTKdbNH0DKqtmzHUSqO14UbkIhIL1scM4pw2bThFOSpVC9Wwv813H2Pu3/d3ScB1wKPE2wC9byZbTSzz5uZxmsyQFlJEeeOHwKAOzy9TqMJItK3PBeTJFw5Q/90tdejlMndFwPfIdg3wYCpBH0LdpnZ/5iZSkTT3PVzRkaPn9KUg4j0IcdO1LNiZ9BUzgwWKUk4TbeSBDMbbGZ/bWargNeAm4BfApcB5xNsBPVXwA+TFaikRmySsHTrESpr60OMRkSk97y4qYKW1d9zywcxrFgL+NpLKEkws2vM7EFgH/BfBKMHfwOMdvf3ufvL7r7c3d8H/AvwtqRHLEk1elA/zikfBEBjs/PMuoOdPCEikh0Wr2/9eXf1THVZ7EgifRJ2AE8BbwceBC5297Pd/XvuXtnBI2uAkg7elzTztpjRBK1yEJG+oKGpmRc3tW4NrXqEjiUyklAF/DXBqMEH3X1pJ/c/AUzsdmTSa26YMyp6/PLmwxw/1RBiNCIiqbd8x1GOnwq6LI4Z1I8ZI/U7bUcSWQJ5jrv/j7tXdfH+Wnff2f3QpLeMG9qfWaOCdhf1Tc08p8ZKIpLl2q9qUJfFjiUy3TDPzD4Z5/onzWxucsKS3nZD7JTDW5pyEJHs9vKW1g2dNNVwZolMN/wTcGOc6zcA/69n4UhYbjirdcrhhU2HqK1vDDEaEZHUOVxTx4YDxwHIyzHOmzgk5IjSVyJJwrnAi3Guvwic17NwJCxTyoqZGtn57FRDMy9srOjkCRGRzPTatiPR47nlgxhQmBdiNOktkSRhGHA0zvXKyD2SoW7QKgcR6QNe2dKaJFw0Rf9sxZNIknAImB3n+hziJxGS5q6PWeXwwoZD1Dc2hxiNiEhqLN3aWo9w0WRt6BRPIknCYuAjZnZaomBms4APR+6RDDVzVAljBvUD4HhdI3/efqSTJ0REMsveypPsOBLs+liUn8O8cYNCjii9JZIkfANoApab2T1m9pHI6x5gBdAI/HMqgpTeYWZtto9W90URyTavxqxqOHfCEArzckOMJv0l0idhK3AVsA34BHBv5PUJYCtwtbtvTkWQ0nuund02SXD3EKMREUmupVtbR0gv1FRDpxIq6XT3FcCcSD+EqZG3N7n7qqRHJqE4b8IQSvvlU3Wygf1Vp1izt5qzxpaGHZaISI+5O6/E1CNcPFlFi53p1i6Q7v6mu/8m8lKCkEXycnPaNBZ5Zp1WOYhIdth2+AQHq+sAKCnKY84Y/QLUme5uFd3fzMrNbFz7V7IDlN4XW5fwtOoSRCRLxNYjXDBpKLk5asXcmS5PN5hZDvB54NPAyDi3qgokw102bTgFuTnUNzWz4cBxdh+tpXxI/7DDEhHpkVdj6hG09LFrEqlJ+DbwOWAt8DCg9XFZqrgwj4unDOX5SNfFZ9Yd5EOXaENPEclczc3O0phOixeriVKXJJIkvBd4yt3flqpgJH1cM2tkNEl4et0BJQkiktHW7a+msrYBgGHFBdE29BJfIjUJg4HHUhWIpJerZ7YWLy7fcYzK2voQoxER6Zm2Sx+HaWvoLkokSXgLGNXpXZIVygYWMbc86ETW1Ow8t+FQJ0+IiKSvtksfVY/QVYkkCV8D/srMylMVjKSX9o2VREQyUUNTM8u2t24tdJH6I3RZIjUJC4CdwDozexTYTtCmOZa7u1ozZ4lrZ43g357aCMCLmyo41dBEUb4Wr4hIZnlrbxW19cE/V2MG9WPcUK3W6qpEkoSvxhy/9wz3ONq/IWtMHl7MxGED2H74BLX1Tby+85i2VRWRjLNyx7Ho8fkTh4QYSeZJJElQeXsfY2ZcMGko2w+fAOCN3ZVKEkQk46zY2TrVsGDC4BAjyTxdThLcfWcqA5H0NG/cIB5YtguAN3ZVhhyNiEhi3J2VO1tHEhaO10hCIrrblnmKmV1sZmp8neXmx+y1/ubuY9oVUkQyyo4jtRyuCZZwDyzKU3+EBCWUJJjZTWa2FdgILCEoZsTMysxsi5m9MwUxSogmDStmYFEw4HS4pp7dR0+GHJGISNet2BEz1TB+MDnaryEhXU4SzOwK4FHgKMFyyOh/aXc/BGwF3p3k+CRkOTnG3HGtc3hv7D4W524RkfTSZqphgqYaEpXISML/A1YB5wP/08H1pcD8ZAQl6WVeeeuUg+oSRCSTrIhJEhaMV9FiohJJEs4F7nf35jNc30P83SElQ80bF5skaCRBRDJDZW09Ww7VAJCXY5wzdlAnT0h7iSQJOUBdnOvDADX4z0JzY0YS1u6r5lRD+x5aIiLpJ3aqYfaYUvoVqBlcohJJEtYDl8a5fhPBdIRkmUH9C5g0fAAAjc3O2n1VIUckItK55TFNlM7VVEO3JJIk/Bh4p5l9OOY5N7P+ZvbfwIXAvckOUNLDvPKY4kXVJYhIBlgZ00RpoZoodUuXkwR3/z/g18APgc0ELZgfAKqATwH3ufv9qQhSwjd/fOuUw+uqSxCRNFfX2MSqPa2jngvURKlbEmnLjLu/18weJti7YQbBMsg/Az9394dTEJ+kCY0kiEgmWbO3mvrGoM5+/ND+DC8pDDmizJRQkgDg7o8S9EuQPmTaiGL6F+RSW9/E/qpT7K86yajSfmGHJSLSodipBi197L5utWWWvicvN4ezx7Z24X5TowkiksZW7NB+DclwxpEEM3tf5PAX7u4x53G5+8+TEpmknXnjBvPatiA7f2N3JTecNSrkiERETtd+U6dzVbTYbfGmG+4jKE58kKD/Qct5vMbXDihJyFJtOy+qeFFE0tP2wyc4ciJo21PaL5/Jw7WpU3fFSxIWAbh7fey59F3zYvZwWL2nivrGZgryNGMlIumlfStmberUfWdMEtz9xXjn0vcMLymkfEg/dh89SV1jMxsOVHO22pyKSJpZuUP7NSSLfg2UhGgppIiku+WxTZSUJPRIIltFf83M1sS5/paZfTk5YUm6it3saenWIyFGIiJyuiM1dWyrOAFAQW4O55RrtLMnEhlJeAfwTJzrTwPv7Fk4ku4umDQ0evyndQfYcuh4iNGIiLQVW49w1thSivK1qVNPJJIkTAQ2xLm+MXKPZLGZowZy+bThAAETRMUAACAASURBVLjDfy7eHHJEIiKtVuzQfg3JlGhNQrxxm8GAUrY+4O+umRY9fnL1ftbtqw4xGhGRVm13flQTpZ5KJElYC9zS0QUzM+Bm4o80SJY4p3wQ18waET3/z8WbQoxGRCRwsr6JNXtjN3XSSEJPJbpV9AVmdp+ZDW95M3L8E+CCyD3SB8SOJjyz7iCrdmulg4iE683dlTQ2OwBTy4oZPKAg5IgyXyJbRf8Q+BXwPuCAme0xsz3AAeD9wEOR7aSlD5g5aiA3nt3alvk7z2g0QUTC1bYeQVMNyZBQTYK7vxd4N/B7oCryehy4093fk/zwJJ397dVTaWlk9uKmijb/BxUR6W3LtV9D0iXcTMndH3L3W9x9duT1Dnf/bSqCk/Q2payEW+eOiZ7/x9MaTRCRcDQ1O6+3SRI0kpAM6rgoPfLXV00lNzKcsHTbEdUmiEgoNhyopqauEYARAwsZO7hfyBFlB20VLT0yYdgAbjlnNI+8sReAR9/Yqw5nItLrVsQsfVw4YQjBojvpKW0VLT12+4Kx0SThiVX7+McbZ5Kfq0EqEek9y2Nqos7V0sekSWSr6CsJkgCRNi6YNJQRAws5WF3HkRP1vLzlMIuml4Udloj0Ee7eJknQyobkiZckjAeWtJy4+wspj0YyUm6OccvcMdy7ZBsAj72xV0mCiPSaPcdOcrC6DoDiwjxmjCwJOaLsEW9M+KfARS0nZtZkZn+R+pAkE90yd3T0+E9rD3IiUkAkIpJqK2K2hp43bhB5mu5Mmnj/JU8A/WPOVQUiZzRr1ECmjSgG4GRDE0+vOxByRCLSV8Tu17BQ+zUkVbzphrXAp82sAmj5G5hhZpfF+0B3XxLvumQnM+PWeWP4t6c2AvC7N/bxjnljQ45KRPqC2EZuaqKUXPGShC8BDwOPRM4d+MfIqyMWuUc7QfZRN58zOpokvLS5gorjdQwvKQw5KhHJZsdO1LPpYA0Q1EfNHacl2Ml0xiTB3Z83s0nAucAogiWQ9wJLeyc0yTRjB/fnvIlDWLb9KM0eLIf80CUTww5LRLLYE6v3RY/PGlNK/4J4v/tKouI1UxoHVLj7M5HzrwF/cPfHeys4yTzvmDeGZduDob/fvblXSYKIpIy788Cy3dHz2+aPiXO3dEe8wsXtwDtizncQFDOKnNHb5oyiIFJZvHpPFVsrakKOSESy1eo9VazfXw1AUX4Ot8xVkpBs8ZKEBiA/5vxyYERqw5FMV9o/n0UzhkfPfxfpxCgikmwPLt8VPX7bWaMo7Zcf527pjs5GEm42s9KY99RxUToVuzPkks2HQ4xERLLVibpGHn+ztR7hPeeNCzGa7BUvSfgewXTDUTNrIkgQfhlpqnSmlzroCOdPGho93rC/msam5hCjEZFs9MSqfZyobwJgSlkxC7VfQ0rEW93wv2a2DriGYHXD+4GXgW29FJtkqCEDChhVWsT+qlPUNTaz7fAJpo1Qm1QRSZ4HlrcWLL773HLt+pgicdeKRPZreAHAzD4A/MDdf5XyqCTjzR49kP1VpwBYs7dKSYKIJM36/dWs2l0JQEFuDrfNV+O2VEmkwfVE4HepCkSyy+zRraUsa/dVhxiJiGSbB5e1FixeO3sEQwYUhBhNdoubJJjZRWY2FMDdd7p7bZx7J5nZh5IdoGSm2aMHRo/X7qsKMRIRySanGpp4NGbVlAoWU6uzkYSXgOtaTsxsiJlVn2H/hguBHyYzOMlcs8e0HUlw18IYEem5P7y1n+pTQY38uCH9uTCmUFqSr7MkoX0liAHFdFLLIDK6tIhB/YM1y8dPNbL76MmQIxKRbPBgTMHiu84tJydHBYuppE23JSXMjDlt6hI05SAiPbPzyIlo2/fcHOOOBSpYTDUlCZIybesSVLwoIj3z25V7oseXTxtO2cCiEKPpG0JNEsxslJl928yeN7PjZuZmdkUXn73WzH5sZm9FGjntSG20kqhZMUnCGo0kiEgPNDc7D8ckCRpF6B3dTRKSVYU2HfgHYCywOsFn/yLyOg5og4A0pGWQIpIsr249wr5I75XB/fO5aqa2EuoNXSlA/KyZvTtynE+QIHzTzNo35e/O9lsrgWHufsTMbgUeTeDZLwEfdfcGM/sdMLcbf76k0MRhA+iXn8vJhiYqjtdx6Pgpyko0PCgiifvNytaCxVvmjqEgT7PlvaErScK8yCvWBWe4N6ERBnc/nsj97Z7d1/ldEqbcHGPW6IGs3HkMCEYTyqYrSRCRxFSdbOCpNQei5+/UVEOviZuKuXtOgq/c3gq8O8ysMt4LKO30QyQhbYoX96ouQUQS9/vV+6hrDDaKmzlqIHPG6Ed1b9F4jaSUVjiISE/9ZoUKFsPSp5oiufugeNc1mpB8Kl4UkZ7Ycug4b0Y2c8rPNW6d153yN+kujSRISk0dUUx+btARbdfRWqpONoQckYhkkthRhKtmaDOn3qYkQVKqMC+XqWWt20Sv02iCiHRRY1Mzj8Rs5nTHQk019DYlCZJy2hFSRLpj9d4qKo7XATCsuJDLpw0POaK+JyOSBDObbGaTw45Duic2SdBIgoh0VezPi4smDyUvNyP+ycoqXSpcNLN+wB3ARnf/czIDMLMvRw5nRr7ebWaXAJXufk/kvWcjXyfEPHc2cHPkdBpQGvNZS9x9STLjlO6bM0bFiyKSuPX7W39ezBw1MM6dkipdXd1QB/wQ+AyQ1CQB+Od25x+KfN0J3MOZze/g2ZbzrwFKEtLEzFEDMQN32FJRw6mGJory07qlhoikgQ0HWvvtzRhVEudOSZUujd24ezOwG0h6KufudobXhJh7JsSeR967L86zX012nNJ9AwrzmDh0AABNzc7yHUdDjkhE0l1zs7MhZiRhlkYSQpHIBM/PCKYCClMVjGSvi6cMix7fu2RbiJGISCbYc+wkJ+qbgGBDp7IS/dMThkSShFeBRuBNM/u0mV1vZpe1f6UoTslwH75kIjlBuwRe2nyY1Xsqww1IRNLaunb1CGYWYjR9VyIdF5+JOf4up2/mZJH3NNksp5kwbAA3nT2ax1cF+3L97/Nb+f7dC0KOSkTSlYoW00MiScIHUxaF9AmfWDQ5miQ8tfYAmw8eZ+oIFSOJyOk2HGhNEmaM1M+JsHQ5SXD3n6UyEMl+M0YO5OqZI1i8/iAA//fCVr7zrrkhRyUi6Wj9/taVDRpJCI86U0iv+sSi1p5Yj63ax+6jtSFGIyLpqKaukV2Rnw25OcbUEcUhR9R3JZQkmFm5mf3EzPaYWb2ZXRl5f3jk/XNTE6Zki/njBnPR5KFAsBzyB0u2hhyRiKSbjTFTDZOHD6AwT6VuYelykmBmE4EVwO3AWmIKFN29AlgIfCTZAUr2+dSiKdHjh1bs4VD1qRCjEZF0s05TDWkjkZGEbwLNwBzgLoLVDLH+AFySpLgki104eShzywcBUN/YzI9f2R5yRCKSTmKbKM0YqSQhTIkkCVcD/+vuuzl9+SMEbZS1j6d0ysz4xBWttQl/WnMgxGhEJN20Xf6olQ1hSiRJGAjsj3O9gMSWVEofdvn04RTlB99+O47Usr/qZMgRiUg6aG52Nsbs2aB2zOFKJEnYDcyOc/0CYEvPwpG+ojAvlwXjB0fP/7xN+zmICOw+VhttxzxkQAHD1Y45VIkkCY8AHzKzOTHvOYCZ3U6wlfRDSYxNstwFE4dGj1/bdiTESEQkXbSfalA75nAlWri4h2Cr6F8SJAhfMLOlBMnBKuA/kh6hZK0LJitJEJG2YpsoqWgxfF1OEty9GrgQ+BHBckcDrgGmA/8LLHJ3rWWTLjt7bGmbuoQDVfr2EenrtGdDejljkhDZ1XF47HvuXu3un3H34cAIYCQw1N0/HUkiRLqsMC+X+eNi6hK2azRBpK/bcCC2R4JWNoQt3kjC8wQjBQCY2TYzu7nl3N0r3P2Qu3e0HFKkSy6YpCkHEQkcP9UQbcecl2NMKVM75rDFSxLqgNiy0gmA/sYkqdomCVrhINKXxS59nDy8WO2Y00C8vgabgPeb2evAsch7Q81sXLwPdPddyQpOst855aUU5uVQ19jM9sMnOFB1ipGlRWGHJSIhWK+phrQTbyThG8BFwOvAdoLVDP8VOY73Eumy0/olqC5BpE861dDE02tbu6/OUNFiWjjjSIK7/9bMVgFXAKOAfwJ+B6zundCkr7hg0lBe3RokB69tO8Itc8eEHJGI9KatFTV88v7X2xQtxhY1S3jitlF2983AZgAz+yrwsLv/qhfikj5EdQkifddjb+7li4+8RW2kyyLAu88t57yJQ0KMSlp0ea8Fd0+k8ZJIl6kuQaRv+tYf1vODJdui5wV5OXz17bN5z3nlIUYlsbr8D7+ZDTWzme3em2hm3zOz+83suuSHJ32B6hJE+p51+6rbJAgThw3gd5+4mL84f5xaMaeRREYHvgv8rOXEzIqBl4BPAu8BnjSzy5IbnvQV6pcg0res2Nk6tbhg/GAe/9TFzBqtYsV0k0iScCHwh5jzdwGjgbdFvq4HPp+80KQviU0StCOkSPZbvacqenzDnJGUFOWHGI2cSSJJwgiC7aJb3ACscPen3P0AcB8wL4mxSR/SUpcAsO3wCXZHuq6JSHZ6KyZJOHvsoBAjkXgSSRIagH4x55cDL8acVwJDEemGwrxczp3QWs382YdW0dDUHGJEIpIqJ+ub2HwoWO5oBrM1zZC2EkkSNgG3W+BmYAjwbMz1ckDjxNJtn7pyCjmReqVlO47y73/aGG5AIpIS6/ZX0RzZ9Wfy8GIGFHZ5oZ30skSShP8hGD04BvwW2EbbJOFS4K3khSZ9zQWThvLZa6dHz+9dso2n1hyI84SIZKLYeoSzx5SGGIl0pstJgrv/HHg/QWLwS+AGd2+AYHkkMAh4KBVBSt/x8csnc9WMsuj53/9mFdsPnwgxIhFJtth6hLPGKklIZwk1SHL3X7j77e7+IXffEvP+EXdf4O4/Tn6I0pfk5BjfuXMuYwcH5S/H6xr5+C9XcjKmG5uIZLbVe2OLFpUkpDN1UZS0U9o/n/+7awEFucG354YDx/mPp1WfIJINauoa2VpRA0COwaxRShLSWUJJgpmNM7NvmtlDZvasmT3X7vVs558i0rmzxpbyTzfPip7/UbUJIllh7d4qPFK0OG1ECf0KcsMNSOLqckmpmd0APAoUADWA2uJJSt25sJyvP7GOusZm9laepOJ4HcNLCsMOS0R64K2YqYazVLSY9hIZSfgWcBg4z90HuvvEjl4pilP6oPzcHObE/BB5c3dliNGISDK0WdmgeoS0l0iSMAP4L3dfkapgRNqbW97aie3N3cdCjEREkqHNSII6Laa9RJKECqA+VYGIdKRtkqCRBJFMVnWyIbqkOS/HmDGyJOSIpDOJJAm/AG5PVSAiHYlNElbvrqK5pU2biGSctTGjCNNHllCUr6LFdJdIknAfUGBmj5nZlWY2MbLaoc0rRXFKHzV2cD+GFRcAQc+ElqVTIpJ51B8h8yTSMHsD4IABN8W5T6mhJI2ZMbd8EIvXHwLgjd2VTB2hIUqRTNR2ZYPqETJBIknC1wmSBJFe1SZJ2FXJnQvLQ45IRLrjLa1syDhdThLc/aspjEPkjOaWD44eq3hRJDNV1taz62gtAAW5OUzTiGBGUFtmSXtnl5dikS2kNx6opra+MdyARCRhsVMNM0aVUJCnf34yQcKbeJtZLkHPhMF0kGS4+5IkxCUSNbAonynDi9l8qIZmD4Ysz580NOywRCQBsU2U1GkxcySUJJjZPwBfAAbGuU2Fi5J0c8sHsflQsLLhzd2VShJEMszqPa1ThapHyBxdHu8xsw8TtGZ+E/gywSqH/wL+HTgKrAA+lIIYRZg7Tk2VRDKVu/P6rtgkQSsbMkUik0IfB15z90XAvZH3nnT3LwBnAxPQKIKkiDovimSuPceCDdoASgrzVLSYQRJJEmYCv4kctyyFzAVw9/0EicNnkheaSKvpI0roF+nOtr/qFAerT4UckYh01eu7WvddmTtuELk5FmI0kohEkoQm4ETkuOVr7MTwDmBqEmISOU1ebk6bYqc3dmk0QSRTrNzZmiQsGD84zp2SbhJJEnYBEwHcvQ7YDVwac/1cgtoEkZRQXYJIZlKSkLkSWd2wBLgR+GLk/DfA35hZP4Jk473AT5IbnkgrbRstknlO1DWyfn81AGZt/38s6S+RJOG7wCoz6+fuJ4F/AqYB749cf5pgeaRISsT+cHlrTxVNza65TZE0t2p3JS2bt04fUUJJUX64AUlCEmnLvBHYGHN+ArjZzEqBJnfX9nySUqNKiygrKeTQ8TpO1Dex6eBxZo6K17JDRMIWO9UwX1MNGadLNQlmVmxmPzGzO9pfc/cqJQjSG8yMhRNaf8g8uXp/iNGISFesjFnZsGCckoRM06UkIZIEvJv4nRZFUu7mc8ZEj3+7cg9NzdqYVCRdNTc7r6toMaMlsrphHUHDJJHQXDWzjGHFBQAcqD7Fkk0VIUckImey7XAN1aeCDdmGDihg/ND+IUckiUokSfg34ONmNi1VwYh0Jj83h9vmj42e/3r57hCjEZF42tcjmKnQONMksrphBkFvhLfM7PfAZqC23T3u7v+crOBEOnLnwnLuXbINgMXrD3K4po5hxYUhRyUi7ak/QuaLmySY2TbgM+7+BPDVmEvvOMMjDihJkJSaUlbMgvGDWbnzGI3NzqOv7+Wjl00KOywRaUdJQubrbCRhAtCyE8fE1IYi0nV3Lhwb/QH00IrdfOTSiRrKFEkjx07Us7Ui6OCfn2tt2qpL5uhyTYK77+zKK5XBirS48ezR9C8INnzafKiGN9SmWSStvBHTFXX26FKK8rVJcCZKpHBRJG0UF+Zx09mjoucPqYBRJK1oqiE7dKVwcaiZjevqB7r7rh7EI9Jl7zq3nIdW7AHgiVX7+MpNsxhQmEgtrogkw9ET9dz3ynYcmDduEHPLBytJyBJd+Yn6X5FXV3gXP1Okx+aPG8zk4QPYWnGCE/VNPPnWfu5cWB52WCJ9zj89vpYnVu0743UlCZmrK/+gvwxsS3UgIokyM951bjn/8ocNADy8co+SBJFeVt/YzLPrD57x+phB/RgxsKgXI5Jk6kqS8AN3/1XKIxHphlvnjeFbf9yAOyzfcZQjNXUMVc8EkV7z5u5KauubABjUP58JQwewdl8VDU1By3Ql7plNUwOS0cpKilg4fjDLdxyj2YPmSu86t8slNCLSQ69sORw9vn72SL59+9mcamhi3f5qAM7W0seMptUNkvGumz0yevyntWce9hSR5ItNEi6eMgyAovxc5o8bzPxxg8nL1T8zmUx/e5LxYpOElzcfpqauMcRoRPqO46ca2vQouWjy0BCjkVToLElYBCzujUBEuqt8SH9mjgp2Ma9vauaFjYdCjkikb1i2/Wh0u/ZZowaqHigLxU0S3P1Fd9dPXEl7184aET3WlINI73g5ZqrhkqnDQoxEUkXTDZIVYqccnt9wiLrGphCjEekbYusRNNWQnZQkSFaYOaqE8iH9AKipa+TVrUdCjkgkux2qPsWmgzVAsIHTeROHhByRpIKSBMkKZsZ1s1pHE55eeyDEaESyX2wiPn/cYPoXaEV9NlKSIFnjujmtScIz6w5GC6pEJPna1CNMUT1CtlKSIFlj/rjBDCsuAOBwTT1v7DrWyRMi0h3u3rY/gooWs9YZx4fM7H3d+UB3/3n3wxHpvtwc45pZI3hgWbBt9J/WHmDhBM2TiiTbtsMn2F91CoCSwjx1Vcxi8SaR7iPY1dFi3osdv7UO3gNQkiChuXbWyJgk4SBfettMzKyTp0QkEbGjCBdMHqquilksXpKwqN15PvCvwFDg+8C6yPuzgb8EDgP/kOwARRJx0ZShFBfmUVPXyK6jtby1t4qzxw4KOyyRrPLyZtUj9BVnTP8ijZSiL+AyoAg4y92/7e6PR17fAs4G+gOX9k7YIh0rzMvlqpll0fPvPLMpxGhEsk9Ts7N0W+vKhouVJGS1RMaIPgD81N2Pt7/g7tXAT4EPJikukW77xBVTaJlheGFjBa9uPRz/ARHpkqZm52tPrOX4qWB/lBEDC5k8fEDIUUkqJZIkDAdy41zPBcriXD+NmY0ys2+b2fNmdtzM3MyuSOD5mWb2lJnVmNlRM/uZmSmt7eOmjyzh9vljo+ff/uMGmrUcUqRHTjU08ekHXufnS3dG37t17hjV/GS5RJKEDcBHzWxw+wtmNgT4KLA+wT9/OkEdw1hgdSIPmtlYYAkwGfgS8P8BbweeNrP8BOOQLPN310yjMC/49l69p4on39ofckQimavqZAPv/8ky/vBWa5Oym84exd9dOy3EqKQ3JNIi66vAI8BGM/sJsDHy/gyCaYYhwDsT/PNXAsPc/YiZ3Qo8msCzXwL6AXPdfS+AmS0DngHuBn6SYCySRUYP6scHLp7AD17cBsC//2kj180eSUGeqrBFEnGo+hTv+8kyNhxonWn+4MUT+MqNs8jJ0ShCtuvyT0x3f4wgCTgFfB74ceT195H33uXuv0vkD3f34+7e3Sb7twOPtyQIkc9bDGwC7uzmZ0oW+cTlUyjtFwwq7TpaywPLdoUckUjm+eIjb7VJEL54wwz+301KEPqKhJptu/ujZvYYsACYFHl7G7DS3ZuTHdyZmNkYgvqHFR1cXgZce4bnKjv56KR3BLnvvvtOe2/27Nmce+65NDQ0cP/99592fe7cucydO5fa2loeeuih064vXLiQOXPmUFVVxaOPnj74cuGFFzJ9+nQOHz7M73//+9OuX3bZZUyaNIkDBw7w1FNPnXb9qquuory8nN27d/Pss8+edv36669n5MiRbNu2jSVLlpx2/aabbmLYsGFs3LiRpUuXnnb9He94B6WlpaxZs4YVK07/K7zzzjvp378/b775Jm+++eZp1++66y7y8/NZvnw5a9euPe36Bz7wAQDWvrmc84qP8czJYgD+9cm3aNzyCh9+310AvPjii2zfvr3Ns/379+fOO4Mcc/HixezZs6fN9YEDB3LbbbcB8NRTT3HgQNs9IoYOHcrb3/52AJ544gmOHGmbA48cOZLrr78egEceeYTq6uo218eOHcvVV18NwEMPPURtbW2b6xMnTuTyyy8H4P7776ehoaHN9WnTpnHRRRcB+t4L83vv1VdfZdOmtitr8vPzueuuzPreq6jL5dntQUMyA/7jznO4bf5Yfe+F/L137rnnnnY9Vbo0kmBmxWa21cz+xt2b3X25u/868lremwlCxKjI144mmvcDZWYWr8hS+ojzBp+kNC/YNrq2KYdf7izmmXUHaWzq7W9Zkcyz7Fi/6PG8slxuiykIlr7B3LtW9R35Lfxz7v6jlATSWpOwyN1f6OTeSwmKFm9390faXfs68BWgxN1rEoyhsrS0tLSysrMBB8kkD6/cw2d/s6rNeyMGFnLnwnLuOn88I0uLQopMJH1VnWzgwm89S219kGT/6qPnc9FkLR7LUmecO0qkius1YGHPY0mKk5GvhR1cK2p3j/Rxt84bw3vOG9fmvYPVdXzvuS28/Z6X2X209gxPivRdDy3fHU0QZows4cJJQ0OOSMKQSJLwBeBOM/ughb8wtmWaYVQH10YBh9y9qRfjkTSWm2N867azeOFzV/BXl0+O7hQJUHG8jnuXbAsxOpH009jUzH2v7oief+CiCeqH0EclkiR8BzgG/Ag4ZGavmdlz7V6nV3ukQGRFQwUdj2ycB5xe9SF93oRhA/jCDTNY+sWr+Matc6Lv/3blHipr60OMTCS9LF5/kL2VwWDs4P753DpvTMgRSVgSSRImRe7fBdQAI4CJ7V6Tzvh0D5jZZDOb3O7th4GbIysdWu67CpgG/CYVcUh2yM/N4a7zxzFz1EAATjY08SstjxSJ+skrO6LH7zlvHEX5qgPvq7q8BNLdJ6QiADP7cuRwZuTr3WZ2CVDp7vdE3msZoYiN4V+AO4Dnzex7QDFBz4ZVaLtq6YSZ8eFLJvK5SEHjz17dwUcumaRmS9Lnrd1XxbLtR4Fgqu7uC8eHHJGEKR1+Iv5z5PUXkfMPRc4/F+8hd98NXA5sB75N0ODpSeAad9fYsXTq7eeMYnhJUPt6sLqOP6h1swg/jRlFuGHOSEaV9jvzzZL1Qk8S3N3O8JoQc8+EjkYy3H2tu1/n7gPcfbC73+3uFb0Zv2Suwrxc3ndB629JP3p5G11dEiySjQ5Vn+LxN/dFzz948cQQo5F0kFCSEKkNuMfMlpvZFjPb1u61NVWBiqTCXReMj24EtWZvdXSYVaQv+uYf1lMfaTR2zthS5o8bFHJEErYuJwlmdhbwOvARoICgSPEEQV+CCUATQVGjSMYYMqCgTRe5H728Pc7dItnr5c2HeSxmFOHvr5uhZY+S0EjC14F64Bzgqsh7n3H30cBfAoOATyY3PJHU+/AlE6LHi9cfZMfhE+EFIxKCUw1NfOWxNdHzW+aO5pKp6q4oiSUJlwD3uvtGoGXi1gDc/YfAHwkKCEUyypSyEq6YPhwAd/jpKxpNkL7l/17YyvZIclxSlMc/3jizkyekr0gkSSgBWmoOWlYPDIi5/gpBIiGScT4UU6D17IZDIUYi0ru2VdTwfy+0lpN9/voZlJVoPxMJJJIkHARGArj7cYJ6hGkx1wcD6rghGemCSUPJywnmX/ccO0lNXWPIEYmknrvzlcfWtBYrlg/iL9rtcyJ9WyJJwpu0bYP8IvAZM7vMzK4APkXQyEgk4xTk5TBpeOvA2KaDx0OMRqR3PL5qH69sOQJAjsE3b51Dbo6KFaVVIknCr4BhZtbSWeMrQCnwPEFHxEHAl5IbnkjvmTaiJHq86YCSBMl+sdMMH7x4InPGlIYYjaSjRNoy/xr4dcz5G2Y2G3gHwfLHP7q7ttOTjDV9RAm/j2wwulEjCZLldh+tZUMkGS7Iy+EzV08NOSJJR11OEjoSaY3830mKRSRU00bGjCQoSZAs9/S6g9Hj+BpYpAAAIABJREFUiycPZWBRfojRSLpKpJnS35vZfFN3DclSM2KShI2abpAs98y6A9Hja2aNDDESSWeJ1CT8K7AcOGJmj5rZpyPTDSJZoXxwf4ryg/9LHK6p53BNXcgRiaRGZW09y3cci55fPbMsxGgknSWSJMwC/pqgUPES4LvAajPbb2YPmNlHzWxyKoIU6Q05Oda2eFFTDpKlnttwiKbmoCfe3PJBlA1UXwTpWJeTBHff4O7/4+63u/twYD7Bds7LgRuA7wMbUxOmSO/QCgfpC56JqUe4ZtaIECORdNeTraIPAhXAUeA4QYvmpmQEJRKWNnUJGkmQLHSqoYkXN1VEz69VkiBxdHl1g5kNAhYRbO50FUG3RQfeIOih8BzwUgpiFOk1sSMJKl6UbLR06xFq64Pf5yYM7c+UsuKQI5J0lsgSyMMEowXrgWeALwIvuHtlKgITCcP0Nssga3B3bZcrWeXpdlMN+v6WeBKZbsghGDk4CdRGXir/lqxSVlJIab9gvXhNXSP7qk6FHJFI8jQ3O4vXxyYJWvoo8SWSJIwG3g+sBu4EngKOmdmLZvZPZnapmfWoOZNI2MyszWjCxgPVIUYjklyr9lRScTz43W7IgAIWjB8cckSS7hJZ3XDA3e939w+7+yRgMvBJYC/wl8ALwLE4HyGSEaa3qUuoCTESke5rbna2Hz7B7qO1uAfLHWNXNVw5o0ybOUmnevKbf0G7lwH9kxGUSJjUnlmywT3Pb+E7z2wCYHhJIfPHDWL1nqrodS19lK5IZHXDeODKyGsRMIogMagi2Db6uchLJKPFLoPcoBUOkoGam52fvrI9el5xvI4/rW0dRSjMy+HSqcPCCE0yTCIjCdtpLVx8mWBjp+eA1929OQWxiYRiWllrkrD1UA2NTc3k5fakpYhI71q3v5pjtQ1nvH7ljDL6F6iETDqXyHfJVwmSgtfcvTE14YiEr7R/PiMHFnGg+hT1Tc3sOFKrteSSUV7afDh6/PZzRvOpRVN4fdcxXt95jBwzPnvdtBCjk0ySSJLwXXevineDmc1x9zU9jEkkdNNGlnCgOlj+uOngcSUJklFe3tLaUfGyqcOYPrKE6SNLeM9540KMSjJRImOoj5tZwZkumtksYHHPQxIJn+oSJFOdamhqs8PjpVOHhxiNZLpEkoR5wP0dXTCz6cCzBA2WRDKeNnqSTLV8x1HqG4MysSllxYws1Q6P0n2JJAl3ALeY2fdi3zSzKQS1Cg0EKx9EMt50bRktGerlmHqES6ZoBYP0TCLNlP4EfBT4pJl9EcDMJtK67HGRu+9IeoQiIZhSVkxLS/sdR05wqkEbnEpmeElJgiRRQmtg3P1nZjYa+IaZOfAxgkZKl7v71lQEKBKGfgW5TBg64P9v777j4yjOx49/HnXLluUu94J7xbgCpjixaYaEFqopJiRACAkhAb78gFASQg0EQmihmRaawWCDAWOKDRgw2Lj33rslS7IkW9L8/pi50+q8arZ0e5Ke9+t1r9PNzt49t9q7e3Z2doY1O3MpNjDi/s9p2jCJJg0SyUhP4dqRXenbNj3oMJUqZWdOAYu32KHEE+KEo7s2DzgiVdtV+UJZY8x9ItIOuBfYAYw0xiyr9siUCljvNmms2ZkLwK7c/ezK3R9e9uPa3Uz904mkpyYGFZ5SB5m5alf476M6NqFRso6FoA5PmXuQiNxRzno7gWxgBnCeZ6pRY4z5e/WFp1RwrjmxKws37WX97oP7427bW8BdkxfxrwsGBhCZUv6+XlFy6eNx3fSqBnX4JDTxx0ELRA5lFEVjjIk/vJCCIyKZ6enp6ZmZmUGHomJI/oEisvIOkLnvAD+s3c3t75UMBfL0JYM4tV+bAKNTyjLGMOL+z8PTm7/zu2MY3KlZwFGpWqLMmb7Ka4vqUgOBKFXrpCTGk5IYT0bjFHq2TmPO+j28O2cTALdNXMiQzs1o0Sg54ChVfbIzp4AJszcyoH06x3a1nRNX78wNJwhpyQkc2b5JkCGqOqLMJMEYsy6agShVW9z5i77MXLmLrXvz2ZW7n9snLuSpSwYROu22cc8+MvcdoGfrNBJ1zgdVA254c274KoZfDW7PHb/owzcrS65qOLprc51vRFWLqswC2Qxob4yZX8byAcAGY8wev+VK1RXpDRJ58FcDuOyFWQB8vGgrj3y6nOz8QmYs38Fq19nxkqM7cs9Z/YMMVdVBq3fklLrMccLsjcxcuZMmqSUD4uoMj6q6VCXVfBAYX87yF4H7DisapWqJE3q0ZOzwknHwH/98JeNnrg0nCABvzNpA5r79fqsrdcgmzN54UNnmrPzwpY8AI3R8BFVNqpIk/AyYXM7yScDowwtHqdrj1jG96dCsQZnLC4sNUxdvi2JEqq4rLCrmnTklScJlx3SiacRluG3TUziiRcNoh6bqqKokCW2B9eUs3+jqKFUvNExO4Kmxg+nTpjF92jTm6hOO4NUrh/OXk0qm4f1owZYAI1R1zYwVO9i2twCAFo2S+OsZfZh6w4mM7p0RrjOmfxs8l6UrdViqMtJGLtCpnOWdgILDC0ep2qVfu3SmXH98qbJOzVN5+NPlAHy9cidZeQdIb6CDLqnD99YPJa0I5wxqT2J8HC3Tknn2ssF8uWwHG/fs49zB7QOMUNU1VWlJ+B64XETSIhe4ssuAWdUVmFK1VYdmqfRvZ4dsPlBk+GyJnnJQh29XTgHTPPvS+UNKkgER4We9WnHpMZ1JTdJRFlX1qUqS8E+gPTBTRH4lIt3c7VfATLfsoZoIUqna5rT+rcN/T1mwNcBIVF0x8adNFBbbwe8GdWxCt1YHHa8pVe2qMgvkF8C1QHfgTWCZu73pyq4zxkyriSCVqm1O84zCOGPFDrLzDwQYjartjDG89eOG8OPzh3QIMBpVn1R1FshnROQD4HygmyteDkwwxmyq7uCUqq26tGhI7zaNWbJlL/sLi/l86XbOHNgu6LBULTV/YxbLt+UA0CAxnjOO1D7iKjoOZRbITcC/aiAWpeqUMf1as8Rdu/7Rgq2aJKhD5m1FOH1AG53dUUWNjtupVA0ZM6DklMMXy7aTW1AYYDSqtsrbX8SkuZvDj/VUg4qmKqWjItIUuBIYDjTl4CTDGGNGVVNsStVqXVs2omdGGsu2ZVNQWMwXy7ZzxoC2GGOYvzGLtbtyGd07g4Z6VKjK8f7cTWS7BLNLi4YM7dw04IhUfVKVuRs6Ad9gB0zKAhoDuylJFnZix1JQSjmn9W/Nsm3ZALz302b27S/ilW/XsWBTFgDDuzTjjauO1sFvlK+iYsN/Z6wOP75oWAfdV1RUVeV0wz1AE2AU9moGAS7AJgv3AdnA8WWurVQ9NKZ/ySmHaUu2cfOE+eEEAeD7Nbv5ctmOIEJTtcCni7eG5wNJS0ngomEdK1hDqepVlSRhFPCsuxTSuDIxxuwzxtwGLAAeqO4AlarNurdqRNeW5Y+j/+i05Rhjyq2j6h9jDE9NL2lFuPToTqSl6MidKrqqkiQ0Bxa6v0MXfXtnt/kUOKk6glKqrhCRUkd/HZulcuuYXnz8p+NJSrAfv3kbs7Q1QR3ku9W7mbchE4CkhDjGjegcbECqXqpKj6kdQDP3dzaQD3T2LE+idNKglAKuGNGFLi0a0iApnqO7NCcuzp5TvnhYR8bPXAvY1oSRPVvq+WYV9vT0VeG/zx3UnlZpKQFGo+qrqrQkLAKOBHsJA3aehmtFpKOIdAauApZWd4BK1XbxccKo3hkc27VFOEEA+N3IrqVbE5Zra4KyFm/ey3S3P4jAVSccEXBEqr6qSpLwPnCMiIRaC/6G7cC4Bljl/v579YanVN2V0TiFiz2nIh6dtkL7JigAnplR0opwWr/WdGlRfr8WpWpKVeZueNIY09UYk+cefw4cAzwGPAKcYIyZVDNhKlU3lWpN2JCprQmKDbv38cH8LeHH15zYNcBoVH13WCMuGmN+NMb82RhzkzFmZnUFpVR9oa0JKtJzX62myM32eGzX5gxo3yTgiFR9psMyKxWwa04s3ZrwzcpdAUekgrIlK4/XfyiZp0FbEVTQKkwSRKSDiFwvIr8TkVaesv+JyFYRyRWR6SKiAykpdQhap6dwgWc8/snzNpdTW9Vl//5sJfsLiwE4skMTju/eIuCIVH1XbpIgIr2wgyQ9AjwBzBeRHsCXwIVAMlCMHWnxUxEZXKPRKlVHnXVUyQyRUxdvpbCoOMBoVBDW7crlbc9sjzed3FMviVWBq6gl4Wbs+Ad/As4HMoF3gFTgaGNMU2NMGnAKdoClW2owVqXqrKM6NCGjcTIAe/YdYNaa3QFHpKLtsWkrKHR9EYZ3acaIbs0DjkipipOEE7FDMT9ujJkA3AD0BR42xswKVTLGfAo8i87doNQhiYsTTu3bOvz4o4VbA4xGRduKbdlMnLsp/PimU7QVQcWGipKEtsB8z+MF7n6xT92F2KGblVKH4NR+JZNBfbJoK8XFepVDffHIp8sJXdQysmdLhnRuVv4KSkVJRUlCMpDneRz6O9+nbkElnk8pVYahnZvSrGESANuzC/hpw56AI1LRsHBTVqmWo7+c1DPAaJQqTX/UlYoRCfFxnNwnI/z4owV6yqE+eHjqsvDfp/ZtTf/26QFGo1RplZngaYyIhE6WpmKniT5PRAZG1NMrG5Q6TKf2a80b7jr5jxZu5bbTe+u56Tpq0eYsHvx4Wak5Gv58co+Ao1KqtMokCRe7m9fVZdTVk6hKHYZju7YgLSWB7PxCNmXmsXDTXj2yrGPW7crl4anLmRQxHsbZA9vRIyMtoKiU8ldRkvCzqEShlAIgKSGOk3pn8O5Ptqf7Rwu3hJOEffsLeXfOJpqmJnH6gDblPY2KUa98u5a7Jy8OX+oIECd2Kui7z+wbXGBKlaHcJMEYMz1agSilrFP7tQ4nCR8v3MpNp/Rk9ro93Pj2PNbu2gdAcsIQRnv6L6jYN2P5Du6YtAjv1Bwn98ngxlN6aguCilmVOd2glIqiE3q0JDUpnn37i1i9M5e/vD2PiT9tKvXj8sYPGzRJqEU27N7HH9/4Kfw/7Nu2MX8/qx+DOjYNNjClKqBXNygVY1IS4/lZr1bhx+/OKZ0gAExfvp2sfQeiHJkqT25BIR/O38KqHTmlyvMPFHHNq7PJdP+vjMbJjL9imCYIqlbQJEGpGOQdfTHk+O4t6OmapQ8UGT5etCXaYalyXP/GXH7/vzmMeng6V7/yI/M3ZmKM4baJC1m0eS8AifHCk2MH0zItOeBolaocTRKUikE/79WK5m5gpdSkeP5xdj9e/vUwzhvSPlzn/bn+s0XuyC7QVoYo25VTwGdLt4Uff7JoG7/8zzec8fjXvDNnY7j8jl/0ZXAnbUFQtYf2SVAqBjVMTuCNq47m65U7OalPBu2bpgJwxoC2/GPKEoyBb1fvYvvefFo1TgmvN23xNq793xyS4+N459pjtUNclHyxbMdBp4SAcAsC2CsYLhneMYpRKXX4tCVBqRjVPSONK0Z0CScIAK3TUxjexY7rbwx8ML/klENOQSG3TlzA/sJisgsKeerLVVGPub6atrikFWHs8I6cObAtcZ4xsPq2bcw/zu6nA2OpWkeTBKVqmV8e2S78t3dAnsc/W8H27ILw4ykLtuhphygoKCziqxU7wo+vGNGZxy48ii9uHMlvjuvCRcM68OK4oaQkxgcYpVKHRpMEpWqZ0/q1JsEdps7dkMm6Xbms3J7DC9+sKVWvoLCY9zzTD6ua8d3q3eTuLwKgU/NUurZs5P5uyO1n9OG+cwaUOiWkVG2iSYJStUzThkmc2KNl+PHkeZu5e/IiDhTZk+KpSSVHrK/PWo/xO1muqs1nS0pONYzqlaGnFFSdokmCUrXQLwe2Df/99PTVfLViJ2CH+H1h3FBSEu1He+nWbOZvzAokxvrAGMNnS7aHH4/u06qc2krVPpokKFULje6dEU4EcgoKw+Vjh3fi6COaM6Z/ydwOoVklVfVbsiWbTZl5AKSlJDC0c7OAI1KqemmSoFQt1DA5gdG9Sw/L3DQ1kb+4qYYvGlZyqd2kuZvI9SQSqvp4TzWM7NmKxHj9SlV1i+7RStVSZw5sV+rxTaf0okmqHYBpSKemdG3ZEIDc/UV8OF9HZzwcuQWFTJq3mS1ZeaXKpy31nGroracaVN0TaJIgIski8oCIbBaRPBH5TkRGVXLdy0Rkvojki8gWEfm3iDSq6ZiVihUn9GhBt1Z2lx/auSkXDO0QXiYiXDi0pDXhjR/WRz2+uiJvfxEX/Pdb/vj6T5z8yAy+dv0/tmfnM29DJgDxccLIHpokqLon6JaE8cANwKvA9UAx8JGIHFPeSiJyPfASsBX4M/AicCXwvmjXYlVPJCfE8/pvj+b5y4fwypXDiY8rveufM6gdifG2bM76TJZvyw4izFrNGMNNE+axcJMdOTG7oJBxL87i7R838Lmnw+LQzk1JT00MKkylaowEdXmUiAwDvgduMMY86spSgIXAZmPMCWWslwxsA2YDo417AyJyBjAZONsY894hxpSZnp6enpmZeSirKxVzfv/aHD5cYE81XDGiM3f+om/AEdUuT3yxkoc+Wea7rEWjZHbm2MGrbj+9N785/ohohqZUdSrz4DrIloRfAQeA50IFxph84HngOBFpU8Z6fYF04E3jyXCMMR8AOcAFNRaxUrWM9xTE/75fH24eVxWbtngb/5xakiCcM6gdvVqXzIURShAARkV0IlWqrggySTgKWGqMyYkon4XNagaWsV5ojtU8n2V5wKDqCU+p2u+4bi3CP2wFhcVc9cqPbN+bH3BUsW/Ftmz+9Obc8KRNw7s044FzB/D2NcdwfPcWpep2bdmQLi0aBhClUjUvyCShDeDX5TpU1tZnGcAKwAAjvIUi0hNoWc56iEhmeTdsC4VSdUZcnPDUJYNpnGInfN22t4CrXplN/oGictcrKCzisyXb+HbVrmiEGTNW7cjhmemrGPfiD+HxJ9o1acCTYweRGB9HWkoiL4wbygVDSlpozj6qXVlPp1StF+RU0Q2AAp/yfM/ygxhjdorIW8CVIrIMeB9oBzyOPX3hu55S9VWXFg15YuwgLn9hFsXGzvdw28SF/PO8AQcNIbxqRw5vzFrPhNkb2eMmh3rusiGM7lN3m9O3ZuXzwjdrmLZ4G6t35pZa1iAxnmcvG0LzRsnhssT4OO4/tz8n9clgZ04B5w5uH+2QlYqaIJOEPEpOHXileJaX5WpsMvCIu4G9QmIVUOYllMaYJuUFpK0Jqq46vntLbj+9D3/7YDEA78zZSIu0JLq1bMTu3P3syt3PvA2ZfL9m90HrvjhzTZ1NEhZuymLci7PYmbP/oGUNEuN59MKB9Gnb+KBlIlJnt4lSXkEmCVuwpxwihco2+ywDwBiTBZwpIh2BzsA6Y8w6EZmJPR2hlIpwxYjOLN26l7d+3AjAM9NXV2q9b1buYsPufXRollqT4UXd1yt2cvUrP4ZncASbGJzQowWjemcwqlerUi0IStVHQSYJc4HrRaRRROfF4e5+XkVPYIxZD6wHEJEmwGDgX9UdqFJ1gYjw97P6sWpHLrPX7fGtEx8n/LxXKy4e3pEXvl4TnjhqwuyN3HBSj2iGW6Pen7uJG9+eF545s3FKAg+cO4Cf9WpFSmJ8BWsrVX8EmSRMAG4EfgOExklIBq4AvjHGbHZlHYFUY8zSCp7vPuxgTM/UWMRK1XLJCfH899LB3DtlKduz82neMInmjZJp1jCJlmnJnNC9Ja3T7Rm/fQVFpZKE60d1Jy6u9o9V9txXq7nnwyXhx23SU3jp18PokZFWzlpK1U+BJQnGmO9F5G3gQTcmwirgcqATMM5T9WXgRDyDPYjIbUBv7GBMhcBZwMnA1caYNVF5A0rVUs0bJfPw+UdWWG90n1Y0SU0kc98BNmXmMXPVLo6LuPyvtpkwe2OpBKF7q0a89OthtG2i/Z2V8hP0sMyXAY+5+38DicAYY8w3Faw3H+gB3As8iO3seJox5r81GKtS9UpyQjxneSaReuvH2j3l9KodOfz1vYXhx0M7N+Xta47RBEGpcgQ2LHMs0mGZlSpt8ea9jPn3VwAkJcTxw62ja+UcBfkHijj7yZks2WLnYDiiZUMmX3ccDZODPOOqVMyIyWGZlVIxrk/bxvRrZy8B3F9YzKR5mwKO6NDcN2VJOEFISojjPxcN0gRBqUrQJEEpVa7zPaMLhi6fLEtRsWHNzlwKi4prOqxKm7poKy99uy78+PbTe/uOfaCUOpim0kqpcv3yyLbc8+ES9hcWs2BTFos37/X9kZ25cid3TlrEiu05tGiUzLmD2nHekPZ0a2WvGtibf4Avlm7n44VbWbg5i9P6teHPJ/WosUsOjTGs3J7DTRPmh8tO7pPBpUd3qpHXU6ou0j4JHtonQSl/f3j9JybPs+ObndavNX8c1Z2eGWnExQmbM/P4x5QlfDjfbyoWGNSxCY0bJDJz5S72R7Qw9GqdxmMXHkXP1qUvPzxQVMzGPXl0bJZKfBUuu5y5ciczVuxk0eYsFm7KCg8tDdA2PYUp1x9Pk9SkSj+fUvVEmR8yTRI8NElQyt9XK3Zw6fOzSpU1SU3kqA5N+G71bvIqmDCqPEkJcdw2pjcXDevIzFU7+XD+FqYu3kZW3gGGdm7KS78eRmpS+Y2euQWF/PX9hbw7x7/PRJzAm1cfw9DOzQ45TqXqME0SKkOTBKX8FRcbTnvsK5Ztyy633lkD23Lzqb3s8M8/bOSzpdvCoxoC9GvXmFP7tiYlMZ6HPllGQWFJy0JyQlypxyEn9cng6UsGl9misHjzXq57fQ6rd+QetCwtOYG+7Rpz7chunNCjZWXfrlL1jSYJlaFJglJly9p3gPfnbeK71bv4fvVuduWWTIrUq3Uad/+yL8OPaF5qnV05BXy6eBsHig0je7QsNf/Dyu3Z/OH1ueGrDsrzm+O6cPsZfUqVGWN47fv1/O2Dxez3JBe/OLItp/ZtTb92jenQNLVOjBKpVA3TJKEyNElQqnJCnQLnrN9D84bJjOzZkoT4ql8sVVBYxD8/WcazX9mBUts1acCY/q0Z078NUxZsCZcD/P3Mvlx6TGeMMcxYsZMnv1hZatbK1KR47jmrH+cM0qmblaoiTRIqQ5MEpYKxekcO+QeK6d0mDRH7fVVcbLj2tTl8vGgrYPsV/HFUd6Yu2sbiiNaHXq3TeGLsILq2bBT12JWqAzRJqAxNEpSKLXn7i7jwv98yb2OW7/L4OOGS4R35f2N66+yNSh06TRIqQ5MEpWLP9ux8zn5iJpsy88JlKYlxXDi0I1ce16VUPwel1CHRJKEyNElQKjat2JbNNa/OJqegkAuGdODyYzvTvFFy0GEpVVdoklAZmiQopZSqh3SCJ6WUUkpVjSYJSimllPKlSYJSSimlfGmSoJRSSilfmiQopZRSypcmCUoppZTypUmCUkoppXxpkqCUUkopX5okKKWUUsqXJglKKaWU8qVJglJKKaV8aZKglFJKKV+aJCillFLKlyYJSimllPKlSYJSSimlfGmSoJRSSilfYowJOoaYISLFgKSnpwcdilJKKRUVWVlZ640xnfyWJUQ7mBhXDMRlZWXtrabnC2UbWdX0fNGgMUeHxhw9tTFujTk6NOYKaEtCDRKRTABjTJOgY6ksjTk6NOboqY1xa8zRoTFXTPskKKWUUsqXJglKKaWU8qVJglJKKaV8aZKglFJKKV+aJCillFLKlyYJSimllPKlSYJSSimlfOk4CUoppZTypS0JSimllPKlSYJSSimlfGmSoJRSSilfmiQopZRSypcmCUoppZTypUlCDRCRZBF5QEQ2i0ieiHwnIqOCjitERNqIyP0i8oWIZIuIEZGRZdT9pYjMEZF8EVkvIneKSFSnGBeRoSLyhIgsFpFcF8cbItLNp+6xIvK1iOwTka0i8piIpEYzXhfHEBGZKCLr3D6wVUQ+FpFjYzVmPyJys9s/5vosCzxuERnp4vO79Yq1eCPiGSoiH4rIHhHJEZF5IjIuok7gnz9PLOPL2dZGRNp56sbEthaR7iLypohsdN8di0XkFhFJjqgXE/G6WI4Wkc/cPpElIu+JSNcy6tb4/hHIzlYPjAfOBR4FVgLjgI9E5ERjzLcBxhXSE/g/bGzzgYN+uABE5DTgPeBz4A9Af+AOoIV7HC3/B4wA3sbG2xq4DvhJRIYZY5a4eAcCnwGLgD8D7YEbgSOAX0QxXoCu2M/Xs8AWoAkwFpghIqcZYz6NwZhLEZHWwO1Ars+yWIv7UWB2RNnm0B+xFq/7bL0PfAn8FTgA9AA6RNSJhc9fyDPAtIgyAZ4G1hpjNkHsbGuXtMwCsoD/ALuB44H7gL7ApbEUr4tlKDAdWAvciT2Qvxb4SkSOMsZs89SNzv5hjNFbNd6AYYAB/uQpS8H+IM8IOj4XTxrQ3P19lot3pE+9Rdgv3nhP2T1AEdA9ivEeCyRFlHUH8oHxnrIpwEagkafsN+79/TwGtnsqsBX4oDbEjE12P8f+kM2NWBYTcQMj3WueVUG9mIjXvW46sA14rIJ6MfH5qyDG49w2vDXWtjX24MIAfSPKJ2CTssRYite97kfATqCpp6wNkA08GsT+oacbqt+vsDvgc6ECY0w+8DxwnIi0CSowTzzZxphd5dURkT5AH+AZY0yRZ9GT2Oz23BoMsRRjzExjzP6IshXYD0lvABFpDJwEvGyMyfFUfRnIAc6PUrhlMsbsA3ZgWxViOmYRGQZcgj2yilwWk3GLSJpfU2sMxnsxdh+4w8WXJiLirRBLn78KXIz9Mf0fxNy2buzut0WUb8V+RxfFWLxgW0ynGmP2hAqMMVuwrQvhWKK5f2iSUP2OApZG7HBgm70EGBj9kA7JUe7+R2+hMWYzNus+6qA1osh9qWZgs26wTW0JHBzvfmAuAcXrfgBaiEhPEbkX6Idt2oTYjVmAx4GXjDEH9UUgNuN+BdgL5InIVBHEpB8bAAASNElEQVTp71kWa/GOBpYCY0RkAzbu3WL7CcW7OjH9+QMQkUTsD9dMY8xaVxxL23q6u39eRI4UkQ4iMhZ7+vcBY0xxjMULkAzk+ZTvA9p4DjKjtn9oklD92mDPQUcKlbWNYiyHI7QzlvVegn4fY4F2wFvucazG+yK29WAp8Bfs+dt73bJYjfky7FHK7WUsj6W492Obj68HzgTuxp7y+1pEerg6sRQvQDds34PxlPRfmohtHn/Y1Ym1mP2cAjQHXvOUxUzcxpip2P4eJ2F/8NcDr2IThLtdtZiJ11kGHCMi4d9mEUkChruHoXiiFrd2XKx+DYACn/J8z/LaIBRnWe8lyF7hvYAngK+xR5BQcbxBbfe7sR2+2mM7SiUDidg4Yy5mEUkD7gfud82cfmImbmPMTGCmp2iSiEzGHmHdiU0mYyZepxHQFLjFGPOAK3tXRBoB14rIPcTw58/jYmyz/Vuesljb1muwfWomAruA04G7RWSHMeZpYi/eJ4GngGdF5GHsgfztlCQFDSLua3z/0CSh+uVhfwgipXiW1wahOMt6L4G8D9fj/kNgD3CeazKEGI3XGLMAWAAgIq9if7zGY/uuxGLMt2OPzh8pp04sxh1mjJknItOA0GXHsRZv6PVejyh/DTgP2xISazGX4hKaM4FPIvo3xUzcInIhNkHv4ZrhwSZjccA/ReRNYiheAGPM0yLSAbgJ+LUr/hF4ELgN208Cohi3nm6oflsoyfq8QmWbfZbFotBRZFnvJervQ0TSsb1/04FTjDFbPYtjLt5IxpgD2MvezhGRBsRYzO5855+wrTQZItJZRDpjv3SS3OOmxFjcZdgANHN/x1q8oXgiO9SFHteGbXwW9mj1tYjyWIr7WmC2J0EImQQ0BI4ktuIFwBhzG7a/1fHAAGPMUOxvtQFWuWpRi1uThOo3F+jlMm2v0DmleVGO51CFOqwN8RaKSFts07lfh7YaIyIpwGTsteRnGGOWRVRZCBRycLxJ2M6iUY23HA2wHVjTiL2YM4Ak4AFsM23oNhx7Fcka7HnzWIvbzxHYviAQe/GGxnNoF1He3t3vIMY+fz7GYo9qJ0WUx9K2zgDifcoT3X0CsRVvmDFmjzHma9cSCbaz6yxjTLZ7HL39I5rXgNaHG/YLNXKchGRgBfB10PH5xFveOAlLsE1d3utw/469DrdHFGOMxx6BHwDGlFPvI+wRpPd65yvd+xsd5e3a0qesMXaQlPUxGnO62x8ibwuxCcJZQJ9YiruM7Xyc20dfiNHtPNi97j88ZQJ8jP3hbezKYuLz57fN3Wfx5TKWx8S2xh5U5ANdI8onYhODVrEUbznv4wIXy4UR5VHZPwJ983X1hu3Isx97RHYV8I17PCLo2Dwx3u5ur7kd8Hn3+DpPnTOAYuwoa78FHnM74JNRjvVRF+Mk7LX73ttZnnqD3JfCj8A12IFF8oApAWzfz7GDtNyOHZjlbmzv6mLg/FiMuZz38iUHD6YUE3G77fwBcKv7rP3bxbUN6Bhr8XriecntC88Cv3PvwQA3eerExOfPJ/brXKynlLE8JrY1cAI2GdjqPofXus+kAZ6KtXhdLD93/++bsYnKc+49vOpTNyr7R2A7Wl2+Yc/hPoQ9b5SPHSMh8Iw0IkZTxm1tRL2zgJ/c+9jgfuwSohzrl1WI9zhsUpbnfij+DTQMYPv+2sW9HXvUtQN7ZHOiT92YiLmC7T/XpzzwuIE/At9je64fADYBL+BJEGIpXk8sSdijvvXYA4ilwNU+9QL//PnE9K3bfvHl1ImJbY3tBDrFfRfvx15ieEtk7DEUb3dgqvu+yMd2ev4jEFdG/RrfP8S9kFJKKaVUKdpxUSmllFK+NElQSimllC9NEpRSSinlS5MEpZRSSvnSJEEppZRSvjRJUEoppZQvTRKUUkop5UuTBKUqwU1uZETkroDjaCEiL4vIZhfPl0HGU5NEZKR7j+NiIJYUEVkrIv8IOpbaSEQauH32zqBjUVWjSYKqFUSkqYjkuR+NS4OOJ0APY8dyfxq4FCjzR8uT2HhveSKySETuFpFDnnPe/YDfJSJNDvU53PMMdM/T+XCeJwr+DDQB/uktjNi2xSKSLSKrRWSiiFzhZvus94wxecD9wE1utlFVS2iSoGqLsdiJstZQMs96fXQS8Ikx5m/GmFeNMZ9WYp1PsQnFpdg5DvYAdwDvHUYcI4E7sT+ch2Oge57OPstmYGfNfOUwX+OwuB/6m4AXjTF7fKrMxW7by4C/AP/DzvD4ArBARI6MVqwx7nnsUOp/DjoQVXkJQQegVCVdCXyBnQ3yURE5whizOuCYgtAa2F3FdZYbY14NPRCRfwPfASeJyGBjzOyyVw2OMaYYOyZ90C7GJkMvl7F8k3f7OreLyHnYCdQ+EpG+ZSQYNU5E0kzJFMOBMcbkisi7wDgRud0YUxB0TKpi2pKgYp6IDMIecb6EPUorpIzWBNfsO15EjhGR6SKSKyK7ROQ5EWnkU/9EEfnWNcNvFZHHRKRvVfofiMgFIvK1a2reJyLfi8ivqvD+GorIfSKySkQKXBwvi0gnT527RMRgpxS+3NPEPa6yrxNijCnCTtoEdkIZbyydReQVEdnmYlklIvd6T02IyHjs0T/AGk8sd7nlbUXkYRGZKyJ7RCRfRBaLyP+JSLz3PQEvuodfeJ5nvFvu2yehMtsrcn3X9L/I1V8nIjdXYZOdB2w1xvxUhXUwxrwNPAi0AX4fEZuIyO9EZLbbZ3JE5AsR+Vnk84hIqog8IiJb3H76nYiMcvu5iaj7pdi+E0eIyAQR2Q3s9SxvIyJPich6Edkvtp/Af0Wklc/rpovIAyKy0m23HSLyuogcEVEvxe2fy9x7yRSRBSLykM9m+QhoARz0PlVs0pYEVRtcCeQA77ijkQ+wP5R3uKPNSAOxU+++iE0qRrrnKMZOJwyAiByHnXFtD/Z8aSZwPjCisoGJyD3AbcDHwF/da5wNvC0i1xljnqhg/UTgE/eaE7B9Drpjpw8+WUSGGGM2Au8CK7FN718B/3VPMbOysUbo6u7DrRLuR3YWkA48CazAbrv/B4wQkVHGmELgGaCxe583ADvdU8x39wOAc4CJwCogETgVu42PAK529d7F/oBeBdwLLHHlq8oKugrby+saIAPb3J2JnWL8ARHZaIz5XznbCJfUjMBOSX0onsPuH6djpyAOeQW4yL2HF7Gn0sYCn4rIOcaYSZ66bwNjsKeHpgFdsNt2TRmv2QiYjp3V8DaglXsvHbEzOCZht8UqoBt22/3MbbssVzcdu291xJ42WYT9X10LfO/qrnOv9wQ2aX8ZeAT7u9IdO+1xpG/d/UjsZ0bFumhPhak3vVXlhp12ew8w3lN2Jvbc5mk+9Q32h3p4RPmH2KmEG3nKZmGbs4/wlCViv1wNcJenvLNP2SBXdq9PHO9hj+DSKnh/v3XP8WBE+emu/BWf9ze+vOf0ifk57NFbC6AXtj+CwU4tm+yp/5orHxPxPA+58is9ZXe5ss4+r9sA7AyzEeWvYOe7b+MpG+eeZ6RP/ZFu2bhD2V6e9TcD6Z7yVOxUvN9WYht2cc/xSBnLDfBBBc+xF9jleXy2W++qiHoJwI/YH//QDL1jXN1nI+qGyk1E+Zeu/B6fON7HTl3ePqJ8CLZ1zrtvP4adNvnIiLqd3Pvxfh53A1Mqs0+6+geAyZWtr7dgb3q6QcW6c7Dng1/ylE3BfsmX1YHxW2PM9xFln2O/hDsDiEgGMBR433j6NhhjDmC/ICtjLPYL+SWxlyaGb8AkIA04poLnOBub1NznLTTGfIjtEHemiBzu5/RK7PbagT1avxvbv2OUceeF3Wv8EvjJGDMlYv37KGkhqZAxJs+4XwMRSRKRZm6bfII9xTnkMN7LoWyvF407QnZ192H7ZHSnYi3dfVX7gXjtxba8hFwCZAPvRewzTYDJ2H00FNsv3P0j3id0/6MllC3yKox04Azsfpkf8bprsa1UJ7u6gt23ZwCbIurmYrfdyZ6nzwL6iki/ijaEsxvXuqFin55uULEu9AO3UUS6ecqnAueJSAtjzM6Idfw6NO5y983dfRd3v8ynrl+Zn97YPgJLy6mTUcFzdAE2G/9ObYuwp05aYI8AD9X7wH+AeOyPz81AB8Dbcawltpl6UeTKxpjdIrIFe6qgQiKSANyC7e3fDbuNvJpWMX6vQ9leZe0PzX3KI4XO+Ue+h6pojKdfAHa/SQO2lbNOBrAc+36LsT/ikZa554q0wxiTGVHWE5ugXelufkLbqSV225yM/ez58Z7m+xO2lWiBiKzGJqCTsa0FfqcDhZLtqmKcJgkqZolIF2wHJ8F+Yfq5BHg0oqyovKethtC8z2WA08p5zYN+dAOw0Rgzzf39iYh8hO0/8IaIHBs66q9GjwB/AN7EjuOwHdvEPAh4gOh3mC5vf6hI6Eey2aGsLHb8hzRKzsWD3W92YK+aKMvCiMdV+R/t8wvF3b9K6VY5r7yIutOw/69yGWPed+9zDHAiMBqbiHwlIqONMfsjVmlK2cmHijGaJKhYdgX2C+u32A5nke7BnnKITBIqY6277+mzzK/Mzwpsh7z1xpjymn7Lsxo4VUSa+Bz99cEegUa2lBwWY8wqEfkntm/CRdjOnTuwTeB9I+uLSFNsp7W53qcp5yUuBWYYYy6MeJ5uPnWrmqBEe3ttcM9ZmVMTfn7j7j/0lK0AegDfGWNyKlh/LTap6s7Bpxcqu5+CbYkwQJInYSzLDuznrXEl6gK2tQmbgLzqTlfcj22xOhPb8RIIJ00JHJwEqRilfRJUTHLnlccBC4wxzxljJkTegNeB/iIytKrPb4zZiu0kdqb3ki7Xe/76Sj5NaJCfe8VzaZ/nuSo61QC2g2Mctnneu+5pwFHApDKabA/Xv7A/fneKSLx7jcnAUSJyakTdW1yMEz1loR83vyPsIiJabESkIfZKiEjlPY+fqG4vYy8X/QoYXtV1xY6TcDO246T3KpeXse/hvjLW8+43k939DRF1xuB/qsGXMWYXti/POSJytM9rioi0dHWLsZ1Yh0kZl/KGLpkUkXiJGHXTtUyFLheN/L+GXnt6ZWNXwdKWBBWrTsaeN3++nDrvYHvZXwn8cAivcSN2NMKZIvIktgPW+dhLxKCCo1xjzA9ir/W/C5grIm9jfxDaAIOxza9JZT6BNR64HPg/d5Q1A3se/1rsOetbq/aWKscYkykij2MvkbsYm/Dcih3R8T23PVYCJ2CHgZ5B6Wbq79z9AyLyGvYqkYXGmIXYy/quFpE3sU3WGdgWn10c7Afs+e3bXItFLrDGp+NpyHiiv73eBk4XkWHGmFk+y9uJyCXu7wbYywZPBoZht+E53lYPY8wEEXkRuE7sGCAfYFs/2mM7unajpP/HFGyHz9+6joOhSyCvwp4yGlCF9/E74Gtghoi8jP0hj3OvdSY2ebnL1b0Ne+nnWyLyFvb/vR97dcMYYDY2iU8DtojIJPd82118v8NelRRKckLGuPf6RRXiVkEK+vIKvenN74b9YjZA/wrqLcM2jTZwj30vEaSMS+2w13J/h/2R24q9smG4q3uzp15nIi6B9Cw7HftFvhvbGXADdtCYayr5XhtijypXY7+It2N/tDv51D2USyD/U8by5thTDCuAeFfWxb32dhfLauwYBqk+69/slh/wbhvsJYYPAevcdl2BPfIfRcQlja7+5cBi93rh94fPJZBV2V5lre+WjSfi8sFytmMKNsF5vIz/h/eWg72E8T1sYtSgnOe9FNtKsddtp7XYsSMu8Hm/j2KToDzge7ffTgD2RdT9Elhbzmu2cP+b5e41M4EF2P2+T0TdVOzYHwvc62ZjT3k8i7vEGJsE34e9nHgXdv9fix1bobvP+8gBHqrO7wq91ewtdC2uUsoRkXOxX8AXGWPeCDoeFTwRuQU7qFQXY8+/B05EFgCJxpheQcdSGSJyPbYja3djzJag41GVo30SVL3lzsOmRJQlYiegKaRk6GKlHsU2n98Y7RcWn5kkReR0oB/2dFnMc+/hFmwrgiYItYi2JKh6yyUI67CdtJZhm98vwJ7nfcAYc0s5qysVFSJyH7ZT5hfYfjMDsacy9gIDzcHDUCtVbbTjoqrPDmAvTTsT29lQsMnC740xTwYZmFIeX2E7Ed6EnVdjN7bT7l81QVA1TVsSlFJKKeVL+yQopZRSypcmCUoppZTypUmCUkoppXxpkqCUUkopX5okKKWUUsrX/wdgUeC8r8vrsAAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], - "source": [ - "with open('./data/mean_angle_te.pickle','rb') as f:\n", - " te = pickle.load(f)\n", - "angle_sweep = range(0,90,1)\n", - "\n", - "sns.set_context(\"talk\")\n", - "fig, ax = plt.subplots(1,1, figsize=(8,8))\n", - "ax.plot(angle_sweep,te,linewidth = 3)\n", - "ax.set_xticks(range(0,91,10))\n", - "ax.set_xlabel('Angle of Rotation (Degrees)')\n", - "ax.set_ylabel('Backward Transfer Efficiency (XOR)')\n", - "ax.hlines(1, 0,90, colors='gray', linestyles='dashed',linewidth=1.5)\n", - "\n", - "right_side = ax.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax.spines[\"top\"]\n", - "top_side.set_visible(False)\n" - ] - }, - { - "source": [ - "# Experiment for Backward Transfer Efficiency (BTE) vs. number of training samples for the second task" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 6.0s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 8.0s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 10.6s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 13.5s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.5s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.6s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 8.6s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.6s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.6s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 8.3s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.5s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.4s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 8.4s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.6s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.5s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 8.2s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.5s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.6s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.3s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 8.5s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.6s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.6s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 8.7s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.6s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.7s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.7s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 8.8s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.6s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.8s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.7s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 9.0s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.7s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.8s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 5.9s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 9.2s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.7s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 2.9s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 6.1s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 9.4s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.7s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 3.0s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 6.3s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 9.6s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.7s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 3.0s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 6.4s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 9.9s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.8s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 3.2s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 6.7s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 10.4s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.7s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 3.3s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 7.0s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 10.9s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.8s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 3.6s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 7.4s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 11.5s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.0s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 3.7s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 8.0s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 12.4s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 0.9s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 4.0s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 8.4s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 13.2s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.0s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 4.3s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 9.1s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 14.1s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.1s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 4.4s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 9.6s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 15.1s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.2s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 4.8s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 10.4s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 16.2s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.4s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 5.1s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 11.4s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 17.7s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.5s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 5.7s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 12.4s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 19.3s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.7s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 6.2s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 13.8s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 21.3s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 1.9s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 6.9s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 15.3s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 23.7s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 2.3s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 7.7s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 17.3s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 26.8s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 2.6s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 8.8s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 19.8s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 30.6s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 3.1s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 10.1s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 22.9s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 35.4s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 3.6s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 11.8s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 26.7s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 41.1s finished\n[Parallel(n_jobs=-1)]: Using backend LokyBackend with 96 concurrent workers.\n[Parallel(n_jobs=-1)]: Done 8 tasks | elapsed: 4.2s\n[Parallel(n_jobs=-1)]: Done 258 tasks | elapsed: 13.9s\n[Parallel(n_jobs=-1)]: Done 608 tasks | elapsed: 31.7s\n[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 48.7s finished\n" - } - ], - "source": [ - "###main hyperparameters###\n", - "task2_sample_sweep = (2**np.arange(np.log2(60), np.log2(5010)+1, .25)).astype('int')\n", - "task1_sample = 500\n", - "task2_angle = 25*np.pi/180\n", - "mc_rep = 1000\n", - "\n", - "mean_te = np.zeros(len(task2_sample_sweep), dtype=float)\n", - "for ii,sample_no in enumerate(task2_sample_sweep):\n", - " error = np.array(\n", - " Parallel(n_jobs=-1,verbose=1)(\n", - " delayed(experiment)(\n", - " task1_sample,sample_no,\n", - " task2_angle=task2_angle, \n", - " max_depth=None\n", - " ) for _ in range(mc_rep)\n", - " )\n", - " )\n", - "\n", - " mean_te[ii] = np.mean(error[:,0])/np.mean(error[:,1])\n", - "\n", - "with open('./data/mean_sample_te.pickle','wb') as f:\n", - " pickle.dump(mean_te,f)" - ] - }, - { - "source": [ - "# Plot the result" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAH8CAYAAAD14ypOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeZxcVZn/8c/TSTqdtbOShYQs7AkECDsqqBBBAVFk3EBx1HHQGRzcdRwRUGeccWFEFnVQGRB/AzosIgPKIogIYQsQCCSBbGRfO+ksnd6e3x/ndvftSm23uqqrqvv7fr3q1Xc599STGMmTc859jrk7IiIiIlKYmnIHICIiIlLNlEyJiIiI9ICSKREREZEeUDIlIiIi0gNKpqqAma00s5XljkNERET2NbDcAUhe6uvr6+sBvXopIiL9hZU7gHxpZEpERESkB5RMiYiIiPSAkikRERGRHlAyJSIiItIDSqZEREREekDJlIiIiEgPKJkSERER6QElUyIiIiI9oGRKREREpAeUTImIiIj0QOLtZMzMgGOAE4FJwDhgCLAF2Ay8CvzF3TcXMU4RERGRipRXMmVmNcA5wN8CbweGpzYhZd84M1sM/A9wk7uv6nmoIiIiIpXH3DPvnWtmQ4DLgEuBCXRtOtgMLCaMRG0DmoDR0Wc6MDFq59Hnj8A33f3pov8K+gEza6ivr69vaGgodygiIiK9pWo2Os44MmVmnwH+ha7E6AngduBx4EV3b87y7P7A8YTRrPcCZwFnmtldwJfd/fXihC8iIiJSXhlHpsysHdgO/Bj4ubuvLOgLzAYC7wS+CLwFuMLdryos3P5JI1MiItIPVf/IFPB14Dp339GTL3D3VuAe4B4zexMwqif9iYiIiFSSrGumpDJoZEpERPqhPjEyJSIiIpLVn5dsYmPjXk6cMYYpo4cQKij1LyVNpsxsKPBpd/9BKb9HREREyuOWJ1fywKINAHzvgjn8zXFTyxxR7ytJBXQzG2Fm/wysAP69FN8hIiIi5dXe7jy9Ymvn+TEHjC5jNOWT98iUmR0CzAIGAMvcfUGaNvXAF4B/BOoJ8517ihOqiIiIVJIlGxtp2N0CwLjhtRw4fliZIyqPnMmUmR0M3AyckHL9ZeAid38xOr8E+DahcKcRinneAFxT5JhFRESkAsxf1jUqdcKMMf1yvRTkSKbMbDTwCKFwZ+rv0BHAg2Z2OHA1cGHUZlV0fqO77yp2wCIiIlIZnloeS6amjyljJOWVa2TqUsJmxnsIo05/JCRMZxLqUI0F7gOOA9YRKqbf7O5tpQpYREREys/dmb98S+f5iTPHljGa8sqVTL2LsLfeF9z9J7Hrz5jZVuA64FhgATDP3bem6UNERET6mGWbd7F5Z9hZrn7IIA6dMKLMEZVPrrf5Dol+3pzmXvzal5RIiYiI9B/x9VLHTx9DTU3/XC8FuZOpkcBWd9+deiNaD9UxvvdUsQMTERGRytVtim9G/10vBbmTqRqgJcv9VgB331m0iERERKSiuXu3kakTZyqZEhEREcnbG1v3sH5HEwDDBw9k1qSRZY6ovPIp2jnczC7PdA8gy30A3P2qpIGJiIhIZYpP8R07bTQDB/TvsZl8kqlhwDdztMl1P3EyZaHy12GEYqEdnzlALbDX3euS9pnhe0YAnwMuAGYAbcAS4NfAde6ebZozXX+1hLcbZ0WX/tvdP1aMWEVERCrB/OWa4ovLlUytIpRGKIdpwKJSfoGZzQAeBGam3Do++lxkZvPcfVuCbr9MVyIlIiLS58SLdfb3xeeQI5ly9+m9FEcuq4GngXHAW4rRYTSCdA8hkdpDSILuBAYBFwOXE2po3Qa8I88+DyIUM90OtBO21hEREekz1m3fw6qt4SX/ukE1HLn/qDJHVH6VPMm5BXgPMMndp7r7+cDDRez/U8Ds6Phid7/W3de4+wp3vxL4WnRvnpmdnWefNwB1hIRqRxFjFRERqQjxUam5B4ymdmAlpxK9o2J/B9y90d3vdvf1JfqKT0c/F7j7b9LcvxrYlNI2IzO7CDgDeJaQVImIiPQ5T8ZLIszov1vIxOWzAH0fZjYROJywNx/AVmBRCROfojKzmXSta/ptujbu3mJmdwOfBE43s6HpipdG/Y0GfkCY2vuMu7f3152zRUSkb3sq9ibfCVovBSRIpsxsKPD30efgDG1eA34C/CyqkF6p5saO52dpN5+QTNURkq9nMrT7D2A/4KfurmrwIiLSJ21q3Mvrm8Jf77UDajjmAK2Xgjyn+cxsLvAC8H3Cfn2W4XNw1OYFMzu2FAEXyaGx42VZ2i3P8EwnM3sz8AnClODX0rURERHpC+LrpY6aWk/doAFljKZy5ByZMrOjgIeAekKZhAeAu4AXgc1Rs3GEGlDvIawbmgk8bGanuvsLJYi7p8bFjjdlbAUbY8f7TAyb2SDgp4RE8ssJSyjE+2nI0aS+kH5FRESK6alu+/FpvVSHrMmUmQ0Ebif8Zf4acFGGaazFwOPADWZ2AvAr4CDgdjOb5e5txQ27x4bFjpuytNsTOx6e5n5HTanHgf8uQlwiIiIVS8U608s1MvURwtTdWuAt7r4hV4fu/pSZnUaoC3UQ8FHglz0NtNKY2YHAvxA2e/60uxdc3NTds046RyNXGp0SEZGyadjdzKvrGwEYUGPMPUClFDvkWjP1XsLU3tfzSaQ6uPs64BuE6a/zCw+vZOKL47NtSzMkdrwz5d710bPXuPvCYgUmIiJSieLrpY7cv55hgwsqCNAn5Uqmjo5+3lFA3x0lB47O2qo8NseOx2dpF7/XOVFsZucRqqKvIfe+hCIiIlVPW8hkliuZGg80uHtj0o6jZxrovti7UiyOHc/I0i5+L90z+wONZuapH8LeggAXx65/rMeRi4iIlIHWS2WWK5naTffF2kkNjfqoNM/Fjk/M0q7jXhMl3nRZRESkUjU2tfDy2u0AmMGx05RMxeWa8HwDONLMjnH3BUk6NrNjgFrg1UKDKxV3X2Zmiwhv4l0A/Ftqm+hNxvOi04dSqp/fCjyS42v+D5hE2Ez58ujaqh6ELSIiUhbPrNxGe/Sa1axJI6kfMqi8AVWYXMnUg4T6UV8ALkrY9xcJi9cfLCCu3nAD8GNgrpm9z93/N+X+ZYSq5h1tO7n7JrLXp8LMmqPDre7+fBHiFRERKYv5sf34tIXMvnIlUzcC/wR8yMyec/cf5tOpmX0B+BChbMCNhQZnZrOAkbFLU7pu2UkpzRe4+97Ys48ApwEr3X16mu5/BlwCzAZuMbMJhGKkg4CL6RpNesDd7y301yAiIlLtVKwzu6zJlLu/amZXE0aZvhfVj/pOpv3nzOxE4J+BcwijUte4e0+m+a4nJESpaoEnUq7NAFbk27G7N5vZuYSRs5nAddEn7lngA/n2KSIi0tfsbm7lxdXbO881MrWvfIpEfIUwIvRBQpJ0jpltJOzV15GqjgWOomtazIDbgC8VNdoic/flZnY08DnC2qmZQBuwBPg1cK27t5QxRBERkbJasKqB1mjB1CEThjNmWG2ZI6o8OZOpqLL3h83scUJNpXHABGBeSlOLfm4GrnL3a3sanLu/tdTPRiUcroo+RZNhalFERKSqzF/WNcWnUan08i5f6u7XmdnPCRXN30p4E67jd3Ur8ArwJ+AOd8+2352IiIhUiW71pbReKq1EteCjJOnX0ScvZnagu7+eNDAREREpr6aWNha80dB5rsrn6WUt2mlmfzCzAwrp2MxqzOyrwIsFRSYiIiJl9eLq7TS3tgMwY9ww9huZbTvb/itXBfR5wEIz+8cknZrZXOAZ4Dtk30hYREREKlR8vZRGpTLLlUw9BYwAfmRmj5nZIdkam1mdmX0PeJKwwfFOIFEiJiIiIpXhqRUq1pmPXMnUKYTyBk3Am4DnzeyrZrbPc2Z2OvAS8HnCWqx7gdnufkNqWxEREalsLW3tPLtyW+f5iTO1+DyTrMmUu7e7+w8INaT+TJiy+w7wlJnNATCzUWb2S+CPhDpNm4EPufu57r66pNGLiIhISSxcs53dzW0A7D9qCPuPGlLmiCpXrpEpANz9tahu0z8Spu7mAk+b2c8IJREuJtSZuhk43N1vK024IiIi0hueipdEmKkpvmzySqY6uPv1wBGEUapBwCcIBTyXA2e6+8fcfWuWLkRERKQKaPF5/hIlU5HTgTmEvfcs+tlMGLESERGRKtfW7jyzIrZeSsU6s8o7mTKzA8zsD8DPgVGE6b0vEvbnOxR4zMyuMbNhJYlUREREesUr63bQuLcVgP1GDGba2KFljqiy5ZVMmdmlhDf1zgBagW8Dx7j7DwnbytwW9fUPhLpU7yhNuCIiIlJq3baQmTkWM8vSWnJVQD/UzP4C/CcwHHgOOM7dL3f3FgB33+zuHwLOA9YC04H7zOwmMxtd0uhFRESk6LS5cTK5RqaeB04m1Jn6CnCiuy9M19Dd7wFmE6YBDfgIsMjMLiheuCIiIlJK7e3O07FinScpmcopVzI1mPDm3lHu/j13b8/W2N13uPvfEaYDVxDe9PufYgQqIiIipbd040627W4BYMywWg7ab3iZI6p8uZKpz7j729z9tSSduvvDhBIK/1lwZCIiItLrnloem+KbPkbrpfKQqwL6Twrt2N33uPvnCVvSiIiISBV4UsU6EyukzlQi7v5Uqb9DREREes7dmb9MmxsnVfJkSkRERKrD8s272LxzLwAj6wZy2MSRZY6oOmRMpszsl2Z2ULG+yMwGmNnHzeyjxepTREREulu6oZHP3fY8373vVRau3o675/1svL7U8dPHMKBG66XyMTDLvYuBi8zsduBn7v5oIV9gZpOBDwKfBaYCVxbSj4iIiOT2zd+9zF9fD4vIf/Lo6xwwZihnz5nE2UdOYvbkkVkXlGtz48JkS6bOBL4LfAj4oJmtB/4XeBx4NtMbfmY2EjgWOB44G3gToe7UXuB7wDVFi15EREQ6tbU7C1Y1dLu2autubnjkdW545HVmjBvG2UdO4uw5kzhs4ohuiVVYLxUv1qn9+PJluYb/zOwDwOcJyRGEjY0hFPLcAmwjbHQ8Chgd/ez4X8eA7cCvgO+6+5piBt9fmFlDfX19fUNDQ+7GIiLSby3btJO3/yBMJA0eWEPtgJrOPfZSzRw/jHOOnMQ5R03mkAkjeGPrbt7yH38CYGjtAF785jsYOKCsS6urZo4x28gUAO5+G3CbmR0BfByYR9iPbwgwJfqkagD+Stiz77fuvqdoEYuIiEhar6xr7Dw+YcYYbrz4OB5bspnfv7iWBxZtYFdzW+f9ZZt2cc3Dr3HNw69x8H7DmTZ2WOe9Y6eNLnciVVVyJlMd3P0lwggVZjYKOA6YBIwjVErfCmwGFrv7y8UPVURERLJ5Zd2OzuNZk0cyeOAAzpg1gTNmTaCppY1Hl2zi9y+u46FXNrA7llgt3biTpRt3dp6fNFNTfEnknUzFuXsD8GCRYxEREZEe6JZMTepe1qBu0ADOnD2RM2dPZE9zG48s3hgSq1c30NTSfbe4E1VfKpGCkikRERGpPPFk6vBJmWtEDakdwDuPnMQ7j5zE7uZWHn51I/e+uI4nl23hTQeN49hpo3sj3D5DyZSIiEgf0LC7mbXbmwCoHVjDzHHDcjwRDK0dyDlzJnPOnMmlDK9P0+oyERGRPmBRbFTqkAnDtYC8F+l3WkREpA+Iv8l3uLaB6VVKpkRERPqA1Df5pPcomRIREekD8l18LsWnZEpERKTKtbS1s3RDV50oTfP1LiVTIiIiVe71TTtpbgu1ovYfNYT6oYPKHFH/omRKRESkynWf4htRxkj6p0TJlJmtNLMrzWxGqQISERGRZLq9yaf1Ur0u6cjUVOBfgKVm9pCZXWhmdSWIS0RERPKkxefllTSZ+gTw1+i5twE3A+vM7HozO77YwYmIiEhu2fbkk9JLlEy5+y/d/S3AIcB3gbVAPfD3wJNm9qKZXWZm43oamAWHm9nFZnadmT1tZnvNzM2sqaf9x75nhJldHsXeaGYNZvZU9OvIuILPzIZFsV1rZn81sxVmtsvM9pjZMjP7tZmdUaw4RURE0tnY2MTmnc0ADKsdwAFjhpY5ov7H3L3wh80MOJMwYnUuUAs40ALcA/wSuM8L+BIzmw4sz3B7r7v3eHoxWvv1IDAzQ5NngXnuvi3Ns0cAC/P4mluAj7t7aw/ibKivr69vaGgotAsREemjHl2yiYt/8RQAcw8YxR2feVOZIyoaK3cA+erR23we3O/ufwNMBi4DXiAkVecTEqo3zOw7ZpYpYcnHauBO4LGexBtnZrWE+GYCe4BLgSnADOAKoB04FrgtQxftwHzgSuAcYA4wHjgQeDfwSNTuI8C/FStuERGRuEVrtV6q3IpWGsHdt7r7NcAlwOOEjNIISdZXgSVmdqeZHZZnl1uA9wCT3H2qu58PPFyseIFPAbOj44vd/Vp3X+PuK9z9SuBr0b15ZnZ26sPuvsjdT3L3K9z9Xndf6O6b3X2Zu98DvB24N2r+GTPTuKuIiBSdFp+XX1GSKTMbb2afN7OFwBNAxxjjM8A/E5IgA84DnjWzU3L16e6N7n63u68vRoxpfDr6ucDdf5Pm/tXAppS2eYumNn8RnQ4FDk8coYiISA5Kpsqv4GTKzAaY2XlmdhdhGu57hJGe7cC1wNHufoK7f9fd5wGHAn8AhhAWr5dNNOU4Kzr9bbo27t4C3B2dnl7gyFJL7HhvAc+LiIhk1NTSxrLNuwAwg8MmqmBnOQxM+oCZzQb+FriIsEaoY4HYo8CNwG/dfZ/Ewd1fM7MLgM3AMQVHXBxzY8fzs7SbD3wSqCMkX88k/J73Rz+3A0sTPisiIpLV0g07aWsP73hNHzuMYYMT/7UuRZDod93MniIsyoaQRG0A/hu40d1fy/W8u+8ysw2E4p/ldGjseFmWdvG3CQ8lj2TKzMYAhwGfBT4QXb4iXYIpIiLSE9pGpjIkTWGPI7zF9gfgv4B73L0tYR9XA6MSPlNs8TpYmzK2go2x47GZGpnZV0n/xt5m4Ep3vzZbMGaWq+ZBfY77IiLSDy2KJ1MTtV6qXJImU98EfuHuawr9Qnf/UaHPFtGw2HG2AqB7YsfDE35HKyHhvDtXQxERkUIs0uLzipC0Avq3epJI9WE/AEZEn8nAu4AHCOUVFprZO7I97O6jsn0Ia65EREQ6uXv3ab7JSqbKJVEyFb3Bd4CZTc6j7eSobdFqWRXRrthxtkrqQ2LHOzM1cvcWd98Zfda5+33u/i7gx4Qpujujiu4iIiJFsaZhD41NYXONkXUDmVzf441BpEBJE50PEBZlX5VH2x9Ebd+XNKhesDl2PD5Lu/i9LQV8z1eB3YQ6U58s4HkREZG0XlnX2Hk8a/JIwg5vUg6FJFMAP8+j7U8Ib/x9MOF39IbFseMZWdrF7y3O2CoDd98NvBSdlrschIiI9CEq1lk5kiZTRxAWVj+VR9vHo7ZzkgbVC56LHZ+YpV3HvSZgUYHf1bHIv/AdpUVERFJoT77KkTSZmgzsyKccgru3EhZO51xf1dvcfRldydEF6dqY2UDC9jcAD0WjTImY2WhCAgrZ61mJiIgk8sr6rmRqlpKpskqaTO0GRkaJRlZmNggYCTQXElgvuCH6OdfM0q3rugzYL6Vtp1wbNkcL738M1EaX7igwThERkW527m1l5Zbwb/wBNcZB+yWt3iPFlLTO1KvAScBZwO9ztD0LGAQsKSAuAMxsFiEh6zCl65adlNJ8QbzKuJk9ApwGrHT36Wm6/xlwCWE/wVvMbAJwVxTzxcDlUbsH3P3eNM//xMzqgP9H2Nx5FWE6cCxhevBSwu8VhC12Hsn16xUREcnH4tio1IHjh1E3aEAZo5GkydSdwMnA1Wb2jLuvT9fIzCYB/0lYJ3RXD+K7npAQpaolJDBxM4AV+Xbs7s1mdi7wIDATuC76xD1L16L7dE4k+5orgJuBT+Ubl4iISC6LYm/yab1U+SWd5rseWElIPl4wsy+a2WwzGxF9jjCzLwPPE5Kb1YSprork7suBowmV3RcS6k/tIOzB93ngZHffluHxvydMBd5NGLHbSlhw3wAsICRmJ7j7xdqXT0REiin+Jp/WS5WfuSd7ySyaerufMOWW6WED1gDvdPeXMrSRPJlZQ319fX1DQ64t/EREpD947/WPs2BV+Dvh5o+fwKmHZCuZWLWqpnBW4urk7r4IOAr4PmEjYEv5bAC+BxylREpERKS42tqdVzXNV1GSrpkCIJr6+jLwZTObBkyIbm1w95XFCk5ERES6W7llF3taQoWiccMHM37E4DJHJAUlU3FR8qQESkREpBe80m1UakQZI5EOlbgJsYiIiGSgxeeVp+CRKTObQqjuPZpQmykjd7+50O8RERGRLt2SqclKpipB4mTKzE4EfgQcn+AxJVMiIiJFoA2OK0+iZMrMjgUeBuoIb+6tJpRAaCp+aCIiIhLXsLuZtdvDX7m1A2uYOW5YmSMSSD4ydQUwhFDg8m/d/bmiRyQiIiJpLYqNSh0yYTgDB2jpcyVImkydQijUeaFqSImIiPSubm/yTdQUX6VImtLWATuVSImIiPQ+rZeqTEmTqdeAwWbW4/pUIiIikoySqcqUNJn6JVALnFeCWERERCSDlrZ2lm7Y2XmuGlOVI2kydQ3wR+AnZnZyCeIRERGRNJZt2kVzWzsA+48aQv3QrCUepRclna77F+Ap4ATgL2b2GPA00JjtIXe/qrDwREREBGDRuu2dx9pGprIUUhrBCTWmAE4F3pKlvUXtlUyJiEi/NH/ZFr597yucMGMM//yuwxlQY7kfSqP7nnya4qskSZOpmwnJkYiIiOThynsWsWjdDhau2c4BY4Zy8SnTC+pHi88rV6Jkyt0/VqI4RERE+pwdTS28sr4rCfqP+1/lHbMnMKl+SOK+lExVLpVOFRERKZHnVzXgsfmcXc1tfPPulxP3s7Gxic07mwEYWjuAaWOGFitEKQIlUyIiIiXy3Kpt+1z746IN3P/S+kT9xNdLHTZxBDUFrruS0igomTKzGWZ2jZm9YmY7zaw15f4oM7vczL5hZnp3U0RE+qXnVjV0Hu8/qmtq74rfvUxjU0ve/Sxaqym+SpY4mTKz9wIvAv8AHAoMpevtPgDcvQF4O+Htv3f3OEoREZEq097uLIiNTN1w0VzGDa8FYP2OJr7/h8V596X1UpUtUTJlZocBtwLDgJ8RSiNsztD8vwhJ1jk9CVBERKQavb5pJ41NYeJm7LBajty/nsvPnd15/+YnV3ZLtrJRMlXZko5MfYmw2fHV7v5pd/8L0Jah7YPRzxMKDU5ERKRaxddLHXPAaMyMc+dM4rRDxgPgDl+7YyEtUVXzTJpa2li2eRcAZmHNlFSWpMnU6YQ6U/+Rq6G7bwB2AVMLiEtERKSqPbeya73U3GmjADAzvv2eI6gbFP76fXV9Izc+tjxrP0s37KStPbwSOG3MUIYNTloiUkotaTI1EWiMEqV87CVsjCwiItKvPBsbmZp7wOjO46ljhvL5eYd0nv/ooSWs3LIrYz/xKb5ZkzXFV4mSJlO7gGFmNiBXQzMbAYwCthYSmIiISLXavruF1zbuBGBAjTFnSn23+x9/0wxmRWufmlra+Ze7XsI9/QYji+LrpSYqmapESZOpl6Nnjs2j7Qeits8mDUpERKSaLXija1Rq1qSRDK3tPjU3cEAN/3b+kXSUi3ps6Wbufn5t2r4WafF5xUuaTN1OeEPvW2aW8VkzOxL4LmF91a2FhyciIlJ94vWl5h4wKm2bo6aO4qMnT+88/9bvF7FtV3O3Nu7e/U0+TfNVpKTJ1E8JNabOAB6Kak4NhJBAmdk5ZnYd8CQwBngcuK2I8YqIiFS8eMmDudNGZ2z3xTMPZVJ9HQBbdjXzr//3Srf7axr2dJZXGFk3kMlRW6ksiZIpd28BziJM3Z0G/JaQNAE8D9wNXAIMISRU53umSWAREZE+qL3deb7byFTmZGr44IFcdd4Rnee/eXY1T7y+pfM8vo3M4ZNGYqZtZCpR4gro7r4eOAX4FPBXoIUw9WdAO/AU8GngVHfPVNBTRESkT1q6cSeNe8No0rjhg5kyekjW9vNmTeCs2RM7z79+50KaWkIJRxXrrA4F7c3n7q3ufqO7v4VQDX0CMAkY4u4nu/tP3b01ey8iIiJ9z7Mr4yURRuU1mnTFu2czIqoftWzzLq7/02uAyiJUi4KSqTh3b3P3Te6+QQmUiIj0d8/luV4qbmJ9HV8+69DO8xsefZ2lGxq7vck3SyNTFavHyZSIiIh0iSdTx+aZTAFceOI0jone/Gtpc7742xdZuWU3EGpVHbTf8OIGKkWTsSa9mZ0aHe5292dSriXi7n8u5DkREZFq0rC7mWWbQjXzgTXGkfvX53iiS02N8W/nH8k51/yF1nbnhTe6FrEfOH4YdYNy1suWMsm2wc8jhDpRi4FZKdeS8BzfIyIi0icsiL3FN3vyyMQJ0GETR/KpU2dy/SOvd7uuxeeVLVuSs4qQCK1Nc01ERERSxKf4jslSEiGbz55+MPcuXNc5xQdKpipdxmTK3afnc61ULLz+cBhwQuwzh7Bx8l53L0rlsmgPwc8BFwAzgDZgCfBr4Lqotlam+N4MvAt4UxTraML+hUuBP0TPrytGnCIiUvkKWXyeqm7QAL7zniO56OfzO69p8Xllq+Tpt2nAolJ+gZnNAB4EZqbcOj76XGRm89x92z4PhwKl56a5Xg8cF33+0cw+4u73FDFsERGpQG37FOtMv41MPt588DguPPEAbp2/iokj6zhuemGJmfSOanmbbzVwJ/BYsTo0s1rgHkIitQe4FJhCGJ26glCA9Fgyb4fT8c+ERwlV348AxgIHAV8EdhISq9+aWT4bQ4uISBVbvL6RXc2h2OaEkYPZf1T2Yp25fOu8I7j7H97EHz9/6j4bJUtlSZRMmdkYM/uomaUbkUlt++6obaGp+RbgPcAkd5/q7ucDDxfYVzqfAmZHxxe7+7XuvsbdV7j7lcDXonvzzOzsNM8/ABzt7m+NipS+7O5b3f11d/8BcCZhyrAW+FYR4xYRkQrUbYrvgNE93vqlpsY4auooRtYN6mloUmJJR6Y+CvwSmJtH21OjthclDQrA3VTGbp0AACAASURBVBvd/e5o+5pS+HT0c4G7/ybN/auBTSlt4/F9x91fyNS5u/8VuDc6Pd3M9P8GEZE+LDWZkv4jaTL13ujn/+TR9heE/frOT/gdJWdmM+kq9/DbdG2ihed3R6enm9nQAr6qY81XLTCugOdFRKRKxMsizJ1W+HopqT5Jk6kDgSZ3X5yrobsvApoIa4gqTXxkbX7GVl336uhKvpKYEDvekbGViIhUta27mlm+ORTrHDTAmD05/2KdUv2SJlPjCIu187Ub2C/hd/SGQ2PHy7K0W57hmZzMbDBwTnT6krvvSvK8iIhUjwWxKb7Zk+tVrbyfSfp6wDZgvJmNdPesIy1mVg+MIiwkrzTxKbdNGVvBxtjx2ITf8WVgfHT8k2wNzawh233CW4EiIlKhnl2p9VL9WdKRqWcJ66A+kkfbj0T9P580qF4wLHbclKVdfBQu7x0mzewU4BvR6fPAf+UfmoiIVJtCNzeWviFpMnULIZn6dzObl6mRmb0D+C5h65lbCg+v+pjZVMKi9kGEWlMfdvfmbM+4+6hsH2B7L4QuIiIFaG1r54U3uv4zrcXn/U+iaT53v83MPgmcDtxnZvcD9xH27INQtfxdwDsIidoj7v6rIsZbLPH1S3WEpCedeMW1TG06mdlowu/HJKAFeJ+7v1JokCIiUvleXd/InpZQrHNSfR2T6ntWrFOqTyElVd9H2LfuXdHnnSn3O6qU3Qd8uPDQSmpz7Hg8mROl8bHjrGu/otIJ9xIKgbYDF7r7H3sSpIiIVL4Fqi/V7yXeTsbdd7j7OcDZhK1WVgF7o8+q6NrZ7n62u1fq9FS8tMOMLO3i9zKWg4i2prkDODm69PcZCoGKiEgf81ysvtQxPdiPT6pXwZv9uPt9hNGnavRc7PhEMm9Tc2L0s4kMmy6bWQ1wK2H7GIAvufuNxQhSREQqX7fK51p83i9Vy0bHReXuy+hKji5I18bMBgLnRacPufvuDN39NNbHd9z9+0ULVEREKtrmnXtZuSX89VA7oIbZk0eWOSIph36ZTEVuiH7ONbP3pbl/GV0FR29Icx8z+w/gk9Hpde7+L8UNUUREKtlzsfpSR06pZ/BAFevsjzJO85nZR6PD7e5+d8q1RNz95kKeM7NZQDzNn9J1y05Kab7A3ffGnn0EOA1Y6e7T03T/M+ASwoLxW8xsAnAXoaTBxcDlUbsH3P3e1IfN7EvAl6LT/wW+ZmbZalHtcnfPcl9ERKpMfL3UXK2X6reyrZm6iVAnajFdG/52XEuqoGQKuJ6QEKWqBZ5IuTYDWJFvx+7ebGbnAg8CM4Hrok/cs8AHMnTxD7Hj90WfbBLFJyIile85vcknZE+m/kxInFaludYnuPtyMzsa+Bxh3dNMoA1YQij/cK27t5QxRBERqVAtbe28uDo2MqXF5/2Waeap8plZQ319fX1DQ64t/EREpLcsXL2dc6/9CwD7jxrC4199e5kj6nMsd5PKkHEBupldbmaf681gREREqkV8ik/1pfq3bG/zXUHXAmsAzGy5mT1Z0ohERESqwLMrtbmxBNnWTDn7JlvTgMGlC0dERKQ6aPG5dMg2MrUVGGtmI3orGBERkWqwsbGJ1dv2ADB4YA2HT1Kxzv4s28jUk4SNjH9nZr+hazPgIUnrTRVaZ0pERKQSPbey64WgOVPqqR3Yn2tgS7Zk6irgbYQ6T6fGro8Efpnwe5RMiYhIn7FAU3wSkzGZcvenoxpMnyJUCR8CvBVoYd+CmSIiIv1G9zf5lEz1d9lGpnD314Avd5ybWTuw1d3fVurAREREKlFzazsvrt7eeT53msoi9HfZ9uY7AGhz9zWxyyuBjSWPSkREpEItWreDva3tAEwdM4T9RtSVOSIpt2wjUyuAdcD+sWs3AY0ljEdERKSiPbdS66Wku1yvH6SWcv8m8IUSxSIiIlLxVF9KUmVLpvYA9WmuV81eOSIiIsW2YFVsc2MlU0L2ZGoJUGdmnzWzob0VkIiISKXasKOJNQ2hWGfdoBoOm6S61pI9mfo5YRTqaqDRzNqi6xPMrC3Bp7XkvwoREZFeEF8vNWfKKAYNULFOyV5n6lozqwc+C4yP3Uo6zadpQRER6RO0XkrSyVVn6jvAd8xsPDAUWA5sAk7ohdhEREQqyrOxkaljpymZkiBrMtXB3TcBmBmE2lMrSxmUiIhIpdnb2sZLa3Z0nh9zgIp1SpBXMhXzNqC5FIGIiIhUspfX7qC5LRTrnDZ2KOOGDy5zRFIpEiVT7v5oqQIRERGpZCrWKZlkfQ3BzH5oZldkuHe4mc3J8fz/mtlDPYhPRESkrNyd+19az38/saLz2lxN8UlMrpGpy4D1wBVp7j1MeMsvWx+nAPsVFJmIiEgZuTt/eW0z3//DYl6IbWwMcOLMsWWKSipR0jVTqVT2QERE+pxnV27je394lSeXbe12fVjtAD437xAOmaBindKlp8mUiIhIn/HKuh18/w+LeejVjd2u1w6s4eKTp3HJaQcyVgvPJYWSKRER6feWb97F1Q8s4XcvrO12fUCN8YHjp3Lp2w9iUv2QMkUnlU7JlIiI9FtrG/bw44eXcvszq2lr987rZnDeUZO57IxDmD5uWBkjlGqgZEpERPqdLTv3cv0jr3PLkytpbm3vdm/erAl84R2HcNjEkWWKTqqNkikREelXnly2hU/c9DS7mtu6XT/lwLF88cxDVUNKElMyJSIi/Ya787U7FnZLpI6aOoovn3kobzpoXBkjk2qWTzI13syWpbk+DiDDvc5nC4pKRESkBBau2c7yzbuAUObg6g8czbxZEzr2nhUpSD7J1ABgepb72e4BeI77IiIiveJ3z3e9rXfmERN5x+yJZYxG+opcydSVvRKFiIhIibW3O79/cV3n+buPmlzGaKQvyZpMubuSKRER6ROeWrGV9TuaABg7rFZrpKRosm50LCIi0lfcHZvie9eRkxg0QH8FSnHoT5KIiPR5za3t3PdSbIrvaE3xSfEomRIRkT7vL69tomF3CwCT6+s4VrWkpIiUTImISJ8Xf4vv3KMmU1OjUghSPEqmRESkT9vT3MYfF23oPNcUnxSbkikREenTHnxlA7ujiucHjh/GrEnac0+Kq2KTKQsON7OLzew6M3vazPaamZtZUxG/Z4SZXW5mL5pZo5k1mNlTZnaZmQ3K8ez+Zna+mX3XzB42s+1RfG5mJxUrRhERKdzvXuia4nv3Ufur2rkUXSXvzTcNWFTKLzCzGcCDwMyUW8dHn4vMbJ67b8vQxeOEOEVEpAJt39PCo4s3dZ5rik9KIdHIlJl9Nvr09p/G1cCdwGPF6tDMaoF7CInUHuBSYAowA7gCaAeOBW7Lo7sGQlJ2e7HiExGRnvvDS+tpbmsHYM6UemaMG1bmiKQvSjrNdzXwfWBzCWJJtQV4DzDJ3ae6+/nAw0Xs/1PA7Oj4Yne/1t3XuPuKqPL716J788zs7Ax9XAocBoxx93nADUWMT0REeqj7FJ9GpaQ0kiZTm4FGd28uRTBx7t7o7ne7+/oSfcWno58L3P03ae5fDWxKaduNu9/j7ovdXZs5i4hUmI2NTfz19fBvfzM4Z46SKSmNpMnUc0C9mY0vRTC9xcxmArOi09+ma+PuLcDd0enpZja0N2ITEZHiuPfFdbRH/9Q9YfoYJtbXlTcg6bOSJlPXRM98owSx9Ka5seP5Wdp13KujK/kSEZEq0G2KTwvPpYQSJVPufh/wReASM7vFzI4qTVgld2jseFmWdsszPCMiIhXsja27WbCqAYCBNca7jphU5oikL0tUGsHMOhKPVuDDwIfNbA9hsXhbhsfc3Q8sPMSSGBc73pSxFWyMHY8tUSyYWUOOJvWl+m4Rkb4oPip16iHjGT2stozRSF+XtM7U9DTXhkafTCpxcXb83dhsBUD3xI6HlygWEREpsvhefHqLT0otaTL1tpJE0c+5+6hs96ORK41OiYjkYfH6RhZvaASgblAN82ZNKHNE0tclSqbc/dFSBdLLdsWO64CdGdoNiR1naiMiIhXkdy+s6Tw+/fAJDBtcyZt9SF9QsXvzlVi86Gi2Mg/xe1tKFIuIiBSJu3PPC+s6z8/TFJ/0goLTdTMbSNhuZSow1N1vLlpUpbc4djyD7m/tkXIv3TMiIlKBnn+jgVVbdwMwsm4gpx1a1WURpUoUNDJlZl8B1gN/Jexd98uU+6PMbJGZvVaGffzy8Vzs+MQs7TruNVHiTZdFRKTn7o4tPD/riIkMHjigjNFIf5E4mTKzW4F/BUYTRnRaU9u4ewPwKGFk54M9jLHo3H0ZXcnRBenaRCNv50WnD7n77t6ITURECtPW7ty7sGuK791H7V/GaKQ/SZRMmdkHgQ8RRqVOcfeDgK0Zmt8KGHBGjyIsnY5Nieea2fvS3L8M2C+lrYiIVKgnl21hU+NeAMYNH8zJB5asPKBIN0nXTH2CUDfqMnfPtg0LwDNAO3BEIYEBmNksYGTs0pSuW3ZSSvMF7r439uwjwGnASnefnqb7nwGXALOBW8xsAnAXMAi4GLg8aveAu9+bIb4psZig+5Yzs80s3vx1d89WIFRERHogXlvqnDmTGFBjWVqLFE/SZOoYQjL1u1wN3b3JzLaT/W25XK4nJESpaoEnUq7NAFbk27G7N5vZucCDwEzguugT9yzwgSzdfBL4ZoZ7N6ac/y1wU77xiYhI/va2tnHfS7EpPu3FJ70o6Zqp4UBjfAQoh1oybzNTdu6+HDiakBAtJNSf2kEYVfs8cLK7bytfhCIiko9HF29iR1NYwjt1zBCOmZq1FrJIUSUdmdoETDazEe7emK2hmR1M2LZlSaHBuftbS/1s9Ou4Kvok/Y4rgCuSPiciIsUV34vv3DmTSVlmIVJSSUemHo9+/k0ebb9EmBL8U8LvEBERyduuva08+MqGznNN8UlvS5pM/Zjwht63zSztwnIzG2xm3yGsJ3Lg2p6FKCIiktmDr2ygqaUdgEMnjOCwiSNzPCFSXEn35nvczL5HGHWab2YPAiMAzOyHwAHAWwk1qAAud/eXixeuiIhId/G3+DQqJeWQeDsZd/+Kma0FvgWcG7v1T4RRKwgLub/m7hqVEhGRktm2q5lHl3RVnTl3jpIp6X0F7c3n7j8ys5uA9wGnAJMIU4YbCCULfuPumYp5ioiIFMV9L62ntd0BOHrqKA4YO7TMEUl/lDGZMrOPAnvc/Tfp7rv7duAX0UdERKTX/e6FNZ3H52mKT8ok2wL0m4D/jF8ws4fNLG1yJSIi0pvWb29i/vIwCVJjcPacSWWOSPqrbNN8zr7J1lsJ+/KJiIiU1e9fXIuHGT5OPnAs+42oK29A0m9lG5naAYw1s8G9FYyIiEi+HlgUqy11lKb4pHyyjUw9RxiJ+qWZ/QrYGV2vNbO30PXmXk7u/ueCIxQREUljyYaujTjefHBPtoEV6ZlsydS/EzYZ/gDdN/sdDTyS4Ds8x/eIiIgksnVXM9t2twAwtHYAk0Zqik/KJ2OS4+5/NLO3AZcCs4EhwHSgHVjdK9GJiIiksWzTzs7jGeOGUVOjvfikfLKOGLn7Y8BjHedm1g5scvcZpQ5MREQkk9djydSB44eXMRKR5HvziYiIlN3rm3Z1HiuZknJLujefki8RESm71zfGRqb2G1bGSESKvDDczMYBxwGDgce0pYyIiJSCpvmkkiQaaTKzk8zs12b2lTT3LgKWAfcCdwCrzOzDxQlTREQk2NvaxqqtuwEwCwvQRcop6bTdRYQyCTviF83sIMIefcOBVmAvMBS4ycyOKEKcIiIiAKzcsptob2OmjB5C3aAB5Q1I+r2kydSbo5/3pFz/e8KU4aPAWGAUcHt07Z96EqCIiEjcMk3xSYVJmkxNBNqANSnXzyYU5/ymu+9092agYyrwtJ6FKCIi0iX+Jt/McUqmpPySJlNjgEb3jq0lwczGAIcRpv46a1K5+0pgNzClCHGKiIgAepNPKk/SZGoXUG9mtbFrHSNPT8STrEgzYSRLRESkKPQmn1SapMnUIsIGx++LXfsYYYrvkXhDMxsO1APrCg9PRESki7urYKdUnKR1pm4HTgZ+ZmZvBiYB5wItwG0pbU8hJF5LexqkiIgIwMbGvezc2wrAyLqBjBtem+MJkdJLmkxdD7wXOBW4hJAsAVwVrZGK+yBhxOrhHkUoIiIS6b5eajhm2uBYyi/pdjItZnY68GHgJMKi8/vc/c/xdmY2CBgC/I59yyiIiIgUROulpBIl3k7G3duAW6JPpjYtwId6EJeIiMg+tF5KKpE2LhYRkaoRH5maOV5lEaQyKJkSEZGqsUwjU1KBEk/zmdkA4O+AC4AjgNE5+nF3T/w9IiIicbubW1nTsAeAgTXGtLFDyxyRSJAoyTGzEcCDwHF0vcmX87GkQYmIiKSKj0odMHYogwZockUqQ9IRo8uB44G9wH8BdxH26WsqclwiIiLd6E0+qVRJk6n3EWpHfdrdbyp+OCIiIunpTT6pVEnHSCcDrcCtJYhFREQko+4jU3qTTypH0mRqE7AnqiMlIiLSa1Krn4tUiqTJ1P3ACDM7vBTBiIiIpNPe7izfHJvmG6dkSipH0mTqKmAb8KNoyxgREZGSW9Owh72t7QCMG15L/VD9FSSVI+kCdAM+DtwEPGNmPwSeARqzPeTuqwqKTkREhNTK5xqVksqSNJlaHjuuB36RxzNewPdgYSvww4ATYp85QC2w193rkvaZ4XtGAJ8jFCGdAbQBS4BfA9flsz7MzI6J+ngrsB+wFXgC+LG7P1KMOEVE+jO9ySeVrJCRqaQKLdo5DVhU4LN5MbMZhCKkM1NuHR99LjKzee6+LUsfnwBuAOJjzpOA84H3mtmV7n5lcSMXEelf9CafVLJEa6bcvaaQTxHiXA3cCTxWhL4AMLNa4B5CIrUHuBSYQhidugJoB44FbsvSx6nATwmJ1PPA6YSRqZOBhwmJ5BVm9uFixS0i0h/pTT6pZJVci38L8B5gkrtPdffzCQlKsXwKmB0dX+zu17r7GndfEY0kfS26N8/Mzs7Qxw+AAcBa4G3u/rC7b3L3J4F3Ai9E7f7dzIoyLSki0h/Fp/kO0jSfVJiKTabcvdHd73b39SX6ik9HPxe4+2/S3L+aUFcr3raTmR1P2KMQ4N/dvSF+392bgW9Gp1OAc3ocsYhIP7R9Twubd+4FYPDAGiaPGlLmiES6q9hkqpTMbCYwKzr9bbo20cLzu6PT080sdXvyc2PHafsA/g/YHR2/u4BQRUT6vWWx9VIzxg1jQE2hS3FFSiPxW3YAZjaE8PbbmwhbzAwj80Jzd/fTCwuvZObGjudnaTcf+CRQR0i+nknTx2p3X5vuYXdvMbMFhN+nuenaiIhIdnqTTypdISUL3k4oGzCekEB5x61Ys/g1p/IcGjtelqVdvBTEoXRPpjr6yPZ8Rx9vAg4ysxp3b887ShER0Zt8UvESJVNmdhBh6msYoaTAvYS1RduBLwATgDOAtwGbgSuBnWk7K69xseNNGVvBxtjx2Ax9ZHs+3sdgYDiwI7WBmTWkXktRn+N+YjfddNM+12bPns3xxx9PS0sLt966717WRx99NEcffTS7d+/m9ttv3+f+cccdxxFHHMH27du5884797l/8sknc+ihh7J582Z+//vf73P/1FNPZebMmaxfv577779/n/unn346U6dO5Y033uChhx7a5/5ZZ53FxIkTWbZsGX/+85/3uX/OOecwbtw4Fi9ezBNPPLHP/fe+973U19fz0ksv8cwzz+xz//3vfz9Dhw7l+eef5/nnn9/n/oUXXsigQYN4+umnefnll/e5/7GPfQyAv/71ryxZsqTbvUGDBnHhhRcC8Oijj7J8+fJu94cOHcr73/9+AB588EFWr17d7f7IkSM5//zzAbj//vtZv777UsOxY8dy7rlhZvqee+5hy5Yt3e5PnDiRs846C4A77riDHTu6/zGdMmUKZ5xxBgC33347u3fv7nZ/xowZnHbaaQDceuuttLR0L892yCGHcMoppwD6s6c/e8n/7L2+cVTn+epXnuOmtV2/h33xz17H/15SPZKumfoSIZH6lbu/w91/FF3f4+6/cPd/i6b0ziJMjf0t8D/FC7do4v+0acrSbk/sOHVsuaOPbM/n6kNERHKIj0yNG9xWxkhE0jP3/GfhzGwpoS7T4e6+JLrWDqx398kpbT8O3Ah8w92/U5Rgza4gvCHXowroZvYz4O+i00Hu3pqh3UHA0uj06+7+r7F7zYT6Ure6+0VZvuvbwNej0/0zra/KEW9DfX19fUNDrgGsyrKjqYV/uPU59ra2c+2HjmG/kaoOISLJtLS1c/g37qe1Pfxd9fKVZzJscEHLfaX6VM2bBklHpvYHmjsSqUg7YRQq1a+BVuD9BcZWSrtix9n+ho+/f5s6XdnRR64MIVsffdr/m7+Kx5Zu5qnlW/nF4yvKHY6IVKFVW3d3JlKT6+uUSElFSppM7WXfhKARqI8qindy9yZCwjGj8PBKZnPseHyWdvF7W1LubU7TJlsfzfSzZOrFNdu7jldX16iaiFQGVT6XapA0mVpNSJzi/zR4Pfp5XLyhmU0kLJyuxGG6xbHjbMle/N7ilHuL07TJ1sfS/vYm3yvruhaSvrx2B0mmlEVEAJZt7ppImDlOb/JJZUqaTC0ibJ9yVOzaQ4SE6fKOLVOiUaqOxekLehpkCTwXOz4xS7uOe03su+lyRx9TzWxSuoejpHNuSvt+YU9zGyti/xHcvqeFtdtzrdUXEelOI1NSDZImU/cREqfzYteuIUxfzQPeMLPHCSNYFxBqTP2gCHEWlbsvoys5uiBdmygR6vh1PuTuu1Oa3BM7TtsH8C6go3L67woItWot3tBIe8pA1MuxaT8RkXx0rzGlZEoqU9Jk6rfApUBnIRN3X0PYWmUtoRbTyYQaTHuAy9z97jT9VIIbop9zzex9ae5fBuyX0raTuz9NVxHPL5tZt1pQZjYIuCI6XQ3sW2CkD4tP8XV4ee2+10REMnF3VT+XqpDotQh33wlcl+b6o2Y2g5BITSEU8Xzc3Xs0FGFms4CRsUtTum7ZSSnNF7j73tizjwCnASvdfXqa7n8GXALMBm4xswnAXYRyBxcDl0ftHnD3ezOE+AXg4SiuP5nZ54GXCOUj/hU4Jmr3lWhBfr+RLplalOaaiEgmW3Y1s31PKMI5rHYAE0YOLnNEIuklrYDekdjscvduldOiWk2PFSuwyPWEhChVLZBaRngGsCLfjt292czOJVRyn0lIElMTxWeBD2Tp489mdkkU5zHAn1KbAFe6+6/zjauvSJtMaWRKRBJIXS9lVonvM4kkn+ZrALYSNjeueu6+HDiaUAh0IaGUww7C9N3ngZPdfVuOPm4kLFT/FWE6rxlYD9wJvN3dryzZL6BCuTuvrmvsPO/479+ahj007G4uU1QiUm00xSfVImn1s51Aq7u/UYpgUrn7W0v9rLs3AldFn0K/awHwkUKf72tWb9tD495QVH7U0EFMGT2El9aEUalFa3dwykHjsj0uIgJog2OpHklHppYDQ1PqTIl0E5/iO3ziSGZP6lqbr0XoIpKvZbFkaqZGpqSCJU2mbics0H5PCWKRPuKV2BTf4ZNGMmty1zsEWoQuIvnSNJ9Ui6TJ1PcI64l+amanlyAe6QO6jUxNGsHsWDL18lrVmhKR3Jpa2nhjWyjvV2MwbezQHE+IlE/S6bqvEkoBHA780cxeJLxVtwloy/SQuxe8Hkmqzyvr48nUSKaPG4YZuId/aTa1tFE3aEAZIxSRSrdiyy46dqCaOmao/pshFS1rMmVmDwNb3P1voktXEF7373g/9ShgTrYuovZKpvqJnXtbWbkl/GtyYI1x8IThDB44gOljh7F88y7a2p3F6xs5auqoMkcqIpXs9Y2a4pPqkWtk6q2E1/w73ExIjkTSWhwblTpwfEikAGZNHsnyaK++l9fuUDIlIlnpTT6pJkkroH+sRHFIH7Eotvj8sEkjOo9nTx7JvS+ui9po3ZSIZKc9+aSaJF2ALpJV98XnXQvPZ02KL0LXG30ikl23ZGo/JVNS2ZRMSVFlSqZmT+6qNfXqukba2jVbLCLpuTvLYmURZo7TNJ9UNiVTUjTt0eLyDofHpvnGjxjM+BFhk9I9LW2d66dERFKt39HE7ubwgviooYMYM6y2zBGJZJfPmql6M/tFD77D3f0TPXheqsTKrbs7/wM4bngt+42o63Z/9uSRPLJ4ExDqTR2koXsRSSP1TT5tcCyVLp9kqg64uMD+O0ojKJnqBzJN8XWIJ1OL1u3gvKP377XYRKR66E0+qTb5JFMthMKcIlnlSqZmxfboW6RF6CKSgd7kk2qTTzK11d3fVvJIpOqlbiOTqvu2Mjtwdw3fi8g+lExJtdECdCma1A2OUx0wZijDB4f8feuuZjbs2NtrsYlI9ei2ZkprK6UKKJmSoti+u4U1DXsAqB1Qk/ZfkzU11m3ESpsei0iqnXtbWb+jCYBBA4ypo4eUOSKR3JRMSVG8GttG5qD9hjNoQPo/WvF6U1o3JSKplsWm+KaNHcbADP8tEakk+lMqRZFr8XkHVUIXkWzixTr1Jp9UCyVTUhTd10vtu/i8w6z4InTt0SciKbT4XKpR1mTK3WvcfXJvBSPV65XYNN+sLCNTB08YzsCa8AbfG1v3sH1PS8ljE5He4e6s2LyLXXtbC+5DyZRUI41MSY+1trWnbCOTOZkaPHAAB0/oGrmKTw+KSHX7+V+W89bvP8IZP3yUVVt2F9SH3uSTaqRkSnpsxZZd7G1tB2DiyDpG59hHK15vqtoXobs7O3vwr3CRvuS/n1gBwLrtTXzm18/S1NKW6Pm2du+2b+dMrZmSKqFkSnpsUWy91GFZ1kt16CuL0N2dz9/+Akd88w98466Xyh2OSFmt276HN7bu6Tx/ac0OvvX7RYn6WL1tN81t4R9m+40YzMi6QUWNUaRUlExJj+X7Jl+H3Fgp8QAAIABJREFU7pXQq3cR+r0L13HngjUA/Gr+SnY3a4RK+q+nlm/d59qt81dxV/T/kXxovZRUKyVT0mNJk6nDY8nUaxt3src12VRAJdi5t7Xbv7rdw69FpL+KJ1MjBnftVPa1OxaydENjukf2EV8vpSk+qSZKpqTH4snUrDym+UbWDeKAMUMBaG13lm6oviTkmoeW7rMdzpIq/HWIFEs8mfrB+49i5riQDO1paePTtz6X1xt+yzZrZEqqk5Ip6ZH4HnuDB9YwfWx+/5qs5kXoSzY08ou/LE97XaQ/2rqrmaXRyOzAGuMtB4/n+ovmUjco/BXz2sadfP3Ohbh71n70Jp9UKyVT0iPxUalDJ47Ie+uH7ovQq2fdlLvzjbteorU9/KUQn86Il4cQ6U+eXtE1KnXklHqG1A7gsIkj+fZ7juy8ftfza7l1/qqs/XRfM6VpPqkeAzPdMLNTi/Ul7v7nYvUlPdfc2s7CNdv5/+ydd3gc1dWH36PuIsu927j3bjAldAgdTOg1IUAKAQIJIYQSIIEQSCihpXyBBBJ6ErrpxUACuIALYONubNyrLNlWP98fd3Z3Vt6q3ZW00nmfZ55pd+6c3Z2ZPXPvub8zea9OKdcVFi/VM368VIDRfbJzRN+L89Yyw+vOyM0R7jhtHD96/FPAWqaM1sssXxfflIGdg8unTe7LrBVbeXr2agB+/dICxvftyNi+JXvUsW1nFVt2VgFQlJ9D7xJLcGxkD1GdKWA6ELtNNjE0znmMRqK2TrnzjUX8a/Zqtu+q5qNrj6BbcWFKdS4ICz6PHy8VwJ/weOG6HdTVKTmeMnpzZUdFNbdOWxhcv/AbA/jmqB4U5OZQVVvHutIKdlRU23Buo9Ux09cyNWVA57B9v5o6mvlrSlm4bgdVtXVc8vgnTLv8IEraht8n/nipQV3bN/vngWH4idUnsyrGtBsQb6oFNnhTrW/7Lq/s6gzZbiRJbo4wc8VWNpdXUVOn/OfTr1OuMzwnX+ItU92LC+niiXvurKrlq60NU0tuTP7w5hI2lbn4sB4dCrniyGHk5+aEjTpKdNSSYbQUyitrgq3LIrD3XuHOVFF+Ln88d1KwS/zrbbu56l/z9oifsngpI5uJ6kyp6gBVHVh/Au4G8oG3gMOB9qra28vh1w44DHjDK3OXd4zRTDh7Sv/g8lMzV1FX1/DGx6qaOpZu9At2Ju5MiUhY0uPmHoS+cN2OoLozwA3Hj6K99+cwvGeoRW7RehvRZ7QuPv1qG7Xec2R4j+I9WpwABnZtx+9PHxdcf2vhBv7v/eVhZSxeyshmkgpAF5HjgD8AT6jqUao6XVWrAvtVtVpV31PVY4AngXtF5Jj0mmykwgnjetGhyDkBK7fs4uPlWxpc17JN5VTXuodon45tKGmTXPfWqCwR7wwEnQf+MA4Y3IUTxvUK7h/myzXY0uKmtu+q4oF3lvD2wg1xR2IZrRN/8Pm+AztHLXfMmF5c+I3Qu/XvXl/EDN/zx+9MDTJZBCPLSHY031W4GKifJ1D2Gm/+syTPYWSQovxcTpnUN7j+xMzYo2tikaxYZ338cVPNOQj9P5+uYfZX2wDIzxV+PXUMIqF4jpbqTFVU13LmXz7mzjcWc9Gjs7nksU/ZurMq/oFGq2KGL/h8nxjOFMAvjh3BpP4dARfDefmTc4Jd58s3+br5rGXKyDKSdaYmAKWquileQVXdCGwHJjbEMCNznDWlX3D59S/Ws6W8Mkbp6HzpkwJIRKyzPmFaU+uapzNVurua374SCjq/6MBBDKkXzzG8hTpTt7y8gEW+z/PaF+s56p73eefLDU1oldGcqKypZe7q7cH1+sHn9SnIy+GBcybRyesK3FhWyRVPzaGiOjxuclBXa5kysotknakCoIOIxG2GEJESoIN3jNGMGNGzQ/DtsLq24YHoqbZMDejSjjb5uQBsKqtkY1lFg+zIJHe/sSg4XLtXSRGXHz5kjzJ9O7UJfo7N5VUNdk6bE69+ti6iJtDm8koufGQ21z77WUKK1kbLZv7XpVTVuMTEA7q0pXuHorjH9O7Yhj+cNZFA4+6Hy7Zw1TPzgt3ofTq2oU1BbsZsNoxMkKwz9bl3zHUJlL0WyAU+S9YoI/P4A9GfnLm6QfEwqTpTuTkSJqfQ3Lr6Pl9Tyj8//iq4fuMJo2hXuKfKR06OMLRH6E0629PKfL1tF9f8Z35w/fixvfj7d/cJk9F4cuYqjrvvAz75as/ktkbrYWYUfal4HDKsG5cfFnoxmfbZuuCyjeQzspFknakHcLIHV4vIwyIytH4BERkiIn8FrsbFV92fqpEicrKIvCYiG0SkQkSWi8gfRWRwGuo+WESeFpGvRaTSO8frInJ6gsd3EJHrRWS2iJSKyE4R+VJE7hSR3qnalylOGNebYi8QfcXmnXyUZCD6xrIKNpe7Fpt2BbnBXHvJ0lxH9NXVKb984XMCgx0PGtqVY8b0jFq+pcRN1dTWccVTc9lR4Vqd+nRsw22njOWw4d1548qDOX5sKPD+qy27OP3PH/H7178Mtk4YrQu/M7VPnC6++lxx5DC+MaTLHtstXsrIRpJyplT1ceCPOIfqAuBLEVnrORKzRWQtsAi40CvzoKo+2VDjxPEw8BxwNNAdKAQGApcAc70Rhg2t/27gPeAMoA+uS7I7cBTwjOdkRW1vFpGxuJa3W4HJuG7NtsBwXLD+ZyJySEPtyyRtCnL51sQ+wfUnZyYnB+bXlxres7jBAnv+IPTm5Ez965PVzFnlYkEKcnP2CDqvjz9ualEWO1N/eGsJn3jB9rk5wn1nTwyO0uzUroAHzpnIH86cEHTE6xQefHcZ3/rj/7LaiTSSp7ZOg9cKwL4D93SMYpGbI9x71kR6dAgXDrYEx0Y2knRuPlW9DDgfWIFzmHoCk7ypp7dtGXCeqv44RfuuxTlmAM8A43HOzlRgJdAeeFpEhiVbsYhcDfzEW/0Ip4/VFecI3QbU4Zys30c5vjMwDegPVHq2Dga6AcfhnKzOwHMisley9jUGZ+0T6up7/fPkAtH9XXzJ6EvVpzkGoW/fVcXtr34ZXP/+wYMY2DX223JYN1+W5uj7cOlmHpy+NLh+1VHD9kg5JCKcPLEPr195MAcMDv15frF2Byfc/18e+mB5StplRvawcN0Oyr24uR4dCunXOfn0L13bF/LAOZPI9b2M1R/gYRjZQIMSHavq46o6BOdAXYxzJK71liep6jBVfSIVw0SkB6HYrGnAWao6X1U3qeqLOMHQnTiH6jdJ1t0ZuNFbXQwc7mlmbVHVxap6PfBLb/+PRWR4hGp+BgSGxV2iqrer6nJV3ayqrwIHAxuBTriWq2bHqN4dmNDPBaJX1dbx7KdrEj421XipAMN6FAcfpCs27ww+nJuS37++iG27qgHXzXXpYXsGndfHL9y5eENZ1mkybSmv5Mqn5xIw+8AhXfnhwdF70Xt3bMNjF+3LjSeMoiDPPUaqauq4ddpCzn1oBmu2724Ms40mJDxeqkvMlttY7DOgM7efMpbiojyOGNE97ohAw2iOJCva+WNv6g2gqnNV9W+qeoc3/U1V56bJtm/jFNUBrtd6/06qugL4q7d6ioh0T6Lu43FOGMCvVTXSMLJ7gE24IPofRth/pjdfBDxaf6eqbgd+562eJSLJtYE3EueEBaKvStgJ8DtTDZFFCFCUn8sQX7P+wiZunZq3enuY9tZNJ45KaGRRzw5Fwa6vHRU1bNiRPSP66uqUq/41j42e3k+XdgXcfcb4uF23OTnChQcOZNrlBzLGl7j6o+VbOOae93n206+zzqk0EifMmRqQWtL00/fux7wbj+LhC/axnHxGVpJsy9Q9wJ3A5gzYUp8TvfkSVZ0Xpcy/vXkOcEISdY/3LX8UqYCq7gYC553q3yci7YFB3upMVY0WffuxN8/DOXDNjhPG9wqmRVm+eWeYAF80KqprWeYT2Bves+EtU1Cvq68J46ZqvaDzwP//YcO78c1RPRI6VkSyNm7qb/9bwfRFIem4u84Yn9AQ9wBDexTz7CXf4LLDhhD4HyyrrOGnz8zjphe/SLe5RjNAVcOUz6ckGS8VCXOijGwmWWdqM1DmTyGTQQJinzNilJmNS64MrssxUUp8y2tjlAvsGygi/levZI8HF6De7GhbkMfJE0ODDp9MQBF96cbyoCbMXl3aBp2xhtJc0so8NWsV87925y/Iy+Hmk0Yn1XUx1OdMZUvC48++LuWO18Ljww4dnkwjr6MgL4efHT2cf/3wAPbqEhrZ+Y+PvmJRlsaQGdFZtmlnUH+tpE0+Qy3OyWjlJOtMfQqUiEi3TBgTQET6EOqGWx6tnKpWAgGBkkhxTdHwN3/Eki/w7xuRxuObFX7NqVc/W8+2OClD/IHiI1NslYJ68ghN1M23dWcVv3ttUXD9kkMGs1eX5IZoD/cFoWeDA1FWUc1lT34azK84vm8JPzsqmdtoTybv1YlXfnwQ+/i6fWabFlWLw98qtc+AztaqZLR6knWm7vOO+WW8ginS1bccL3XNRm+eTDvzQt/yvpEKiEgRMM63KWiTqpYBAdnwfSR684W/7q5RyjQ5o3uXMN4XiB5PET1dwecBRvnqWLy+nOrazGsW1dTWsXRjGdPmr+PuNxbx3b/PpHS3Czrv37ktlxyavITZsJ7ZozUVSN781RaXwqN9YR73nz0pGEyeCu0K8zhqVEiTKyAxYbQcwoPPU4uXMoyWQFL9M6r6qoj8DLjd6/a6M0Y8Uyr4mwTi5RgJDBtKpp35FaAayAduFJFnvVYuP1fgZBgC1K//BeBSXIvTt6kXhO6l0/EnhI5qn4jE+7cpibM/Zc6Z0o95Xo6tJ2eu4qIDB0bt4gp3phoefB6gY9sC+nRsw5rtu6mqrWPJhvKw1qpUUFXWlVawaH0ZizaUufn6MpZuKo8qNHnzSaMoyk8+nUW4cGc5dXXabN/Y//PpGp6fG+qF/s23xtC/S8OEVyMxwUtXBITlbjNaBvVH8hlGaycpZ0pEAl1uNcA5wDkishvYQih2qT6qqikrlacTVV0rIg8CV+KcobdE5AacNlQXnHN0Lc6RC0Ti1h+W9Huc3lYH4M+elMMzQBmwD3AH0MNXR7Me1nTCuN7c8vJCyitrWLZpJ7NWbouYHkJVwwQ709EyBS4IPTCcfsG6HQ12pmpq65j22TpmrtgadKDKKhKXW/jWxD4cPiKxoPP6dG1fSJd2BWzZWcXu6lrWbN9NvwYqw2eSZZvKufGFz4PrZ+zdl6kT+sQ4InnG9C4hL0eoqVOWbiyndHd1UPzTyG7WbN8dvFfb5OeGDSAxjNZKspHDAyJsa+tN0WiIE7HTtxxvWFFAKS7ZhGjX4D7PycCBwPR6+9fjpA3u9tbDXq9V9SsRORV4FijGOU931KvjbuAgnHMV9fVcVTtG2wfBlquMtk61K8xj6oTeweS2T85cFdGZWldaEewOKy7Ko2+n5IX6IjGqdwfeWLABcEHop03um3Qd1bV1/OjxT3nTqycevUqKGN6zmOE9ihnes5iRvTowomdqLW3DehQHU/MsWl/W7JypyppaLn9iDruq3LvP4G7tuPmk0Wk/T5uCXEb0KubzNa4Vc/7X2zloaEZDLY1GYpavVWryXp3Iz029a9gwsp1knanDMmLFnvilF+I9gQP7k0oup6pVInIKTuX8Qtxou2JgDa4L7zZcCpsAe+RbUdW3RGQ0LnXMsTgRzypcoP59qvq8iCyNdnxz4+wp/YPO1LTP1nHTiaPo2LYgrMzCesHnDRXqq0+qaWXq6pSf/3t+REeqQ1EeI3p2YFjP9gzv6RymYd2LKWmb/paS4T19ztSGMo5MUFqhsfjtK18Gg/wL8nK4/+xJtC1IbTRmNCb06xh0puauMmeqpTAjhXx8htFSSTZm6r1MGVKPtbiWpva4PHwREZFCQiPmFkUrFw1PCPRpb4pU/0hvcSfwZaQyqroa1114ZYTjiwi15n2SrH2NzZg+JYzrW8L8r0upqnGK6BceGP71pzteKkD9EX2qmrCjpqrc/NIXPDcnpOB+xt59OW5sL4b3LKZnh6K0OX3xCEsr08yC0N9csIFHPlwZXL/h+JFpi02LxMR+nXjsY+ecW9xUyyFcX8qcKcOABqaTyTSekzPHW4042s5jMk6hHFxrULo5ypu/rarRYsJicQQh+15Pj0mZ5ew4iuiZiJcC6F1SREevpaisoobVWxNPR3LnG4v4x0dfBdfPntKfO04dx6HDu9OrpE2jOVIQnvB48YZke54zx7rS3Vz979BYkaNG9eD8/TKbMtIfhD5n9XZTQ28BbCmvZOlGd13n5woT+8eMUDCMVkOzdKY8XvLmw0RkbJQyp3nzOuDldJ5cRPYD9vZWH2pgNZd5809VdU7Mks2EE8f3pp2XPmXJxvKwrPAAC9enVxYhgIjUS3qcmHjnn99bxoPvLguunzi+N7eePKZRHSg/fuHOZRvLqWkEmYdEuP65z9nu5RvsVVLE704bl/HvaGCXdsGg8607q5JykI3myayVoefBuL4dGzTq1TBaIg12pkSkv4icJSI/FZFfisiN0aYGnuIfwC5veY9ExiIyAPi+t/qsqm6sX6aheKKkf/dW31PVl2KVj1LH5cAx3urP0mVbpmlfmMdJvpFd/jx1u6tqWbnZjQ3IkfDkvunArzf1RQJxU0/MWMXtr4Z6Xw8f0Z27zxgfloG+sSlpk0+vEjdmoqq2jpVbdsU5IvPMXrmVd750t4cI3HvWxD1i4TJBTo4E9csA5qzeFqO0kQ2ESyJYF59hBEjamRKR3iLyEk6Z/HGcRMDNwE0RpsD2pFHVDYScqBNF5CkRGSsi3UTkBOAdnB5VOXB9BDsfEREVkYh9CyJynoi8LCJniMhAEekoIkNF5FJcTr4RuBF9F0azUUQ+EJFbRGSKiHQVkR4icpiIPIkTOAX4vaq+25DvoKnwJz+eNn8dpV6LxqINZXhZZBjYtV3a30qTCUJ/cd5arn/+s+D6vgM788dzJzWLkUXNLa3MXW8sDi5/a0KfRv0TnOB3pky8M+sJi5ey4HPDCJLUP48nRPkecBxu9NyLgOC0lB4H3sI5N+LtfxTXwtRQfgv8zVs+E5iPUzx/CReYXg6cqaqLIx8ek0Dy4adxjuE2YDHwANALF3B+hKpGTWeDG713Ay5/4Cac8/UOcBZOd+s3qvrz6Ic3T8b2LWFMH9dKVFlTx7NznCJ6upXP6xOeoy+6M/XOlxv46dNzgwmJx/Ut4aHv7N1suhzC0so0sTP14dLNwdGFuTnCFUcObdTzTzTxzhZDWUV1MHemCEweYMrnhhEg2df4nwCDgVnAcFX9lre9VFW/rapH4xyR23HpU6pV9bsNNU4dFwGn4AK4NwGVwArgz8AEVX2lgdW/i2v5+gjnBFXjHLXpwI+8uhfEqeNa4ClgKc6x2wUs8WzbW1VvaKBtTU6kQPRMO1ODuraj0Etnsn5HBVvK64vSw8fLt3DJY59S4zWRDe3enke+O4XiouYjCBmuhN50zpSqctebofeMM/bum3S+wVSZ0DfkTC1Yu4PKmoaM4zCaA5+u2h5smR7ZswMdmtE9ZxhNTbICMyfhRDivVtWIr5mqugu4TkTygZ+KyHuq+ngqRqrqc8BzSR5zAXBBjP1f4VqVUrHrSeDJVOporpw0vje/mbaQXVW1LN5QzqertmVMFiFAXm4OI3p1CKa1WbBuR5g20bzV27nokVlUemlg+nVuw2MX70vndpmP/0kGvzPVlAmPpy/eFBxAUJCbw2WHN26rFECndgUM6NKWlVt2UVVbx4K1O5jY31o0spGZK0JSfhYvZRjhJNsyNRg3cu7Detsj/ZsF1MC/l6xRRtNTXJTPSeN7B9cfn7GKLzMki+AnWhD64g1lfOfvM9npKXd3Ly7k8Yv2o0eHeAL5jY9fa2rlll1N0hqjqtz1Rkh67ewp/ejTMT1q9cnid54sbip7mbUiNIDAnCnDCCdZZyoP2F5Pc2kn0EHqjbNW1c24FCrRZA2MZs45+4a6+l6Yu5aySpfjrmPbfHpmyIkZHSFuatWWXZz30Izg0P6ObfN57OJ905qYN520Lcijv5dGprZOWb5pZ5wj0s/rX2wIqo8X5uVw6WFDGt2GAP4gdIubyk4qqmvDfjtTPjeMcJJ1ptbgVMn9fI0Tphzu3ygibYCOxM7bZzRjxvYpCTo3tXWhQZHpTCNTnzAl9LWlbNhRwXkPz2BjmYufaleQy6PfnRLWldYcacq4qdo65e43Q61S3zlgAN2bsAXPgtCzn/lfl1LlaaYN6tqObsWFTWyRYTQvknWmlgEFIjLYt+0jb/7DemWvwI3qW4aRlYhIWCB6gEx18YFz1AIyUcs37+Tch2awaqvTairMy+Gh7+wTpl3UXBnWhGllXp6/Nqi+3q4glx8cPKhRz1+fET07UOANLFi1dVfEgQVG88bipQwjNsk6U2/jHKRjfNv+5M0vF5FpIvIbEXkRN1JOcfIIRpYydUJv2tSTHMhE8HmANgW5DOrmHBFVgqkr8nKEP503if0Hd8nYudOJX9B00frGSytTU1vHH95aEly/8MCBdGnftK0IBXk5jPG1OFrrVPYx06d8bl18hrEnyTpTTwL/AboHNqjqLOAanON0LPAL4ASc0/UccFdaLDWahPqB6JDZlikID0IHp2lz1xnjOXxEj4yeN500VTffc3PWsMJTqS8uyuPiA5u2VSqAPwjdnKnGY1dVDa98to5VKSjx19TW8YklNzaMmCQljaCqa4DTI2y/U0ReAU4F+gKlwJuq+mZarDSalLP37c/Ts1cDroXIP1otE4zu3YEX560Nrv/m5LFM9aW4yQYGdWtHbo5QW6es2rqLXVU1tC1IVokkOapq6rj37VCr1PcPGkRJ2+ahBWRK6I3Pys07ufgfs1m6sZz8XOH/zt+bw0Z0j39gPRas2xEcRdurpIi+nZpmVKhhNGfSlntDVReo6i2q+gNV/bk5Ui2H8X1LOGFcLwAuOGAAhXmZVRo/aUJv2hfmkZsjXH/cyLBRhdlCYV4uA3yjDQPdlZnkmdmr+XqbSybcqW0+3z1wYMbPmSh+Z2re6u3U1UXM8mSkif8u2czUB/8XvO6qa5UfPPYJ/1u6Oem66ufja6ok4obRnMnsq7LRIhARHjhnEredUt0oqse9Stow47ojKKuooWdJ89ORSpThPYtZ5skiLFpfxri+mQucr6iu5f53Qq1Slxw6mPaFzef27tupDV3bF7K5vJKyyhqWbSoPy2FopAdV5ZEPV3LrtIVhI3DBtVxe/OhsHr1wSlJddX5nyuKlDCMyyebme0dEbhSRQ0XExsa2MhozfUS7wrysdqSgceOmHp+xig073Ci5bsWFnL/fgIyeL1lEJLyrz+Km0k5VTR3XPvsZv3ppQdCR6l5cyB/PnRTUhdtdXcuFj8xKOG5NVcOSG+9r8VKGEZFku/kOBW7CjerbLiLvi8gtIvJNETE9KcPwEZZWZkPmuvl2VdXwp+lLg+uXHTaENgXNI+mzH9Obyhybyys596GPeWrW6uC28X1LeOnyAzlubC+e+N6+dPVGdZZX1vDth2fw+ZrSuPUu3VjONk8st1PbfIZ0z2y8pGFkK8k6U5fgEvuuAwqBA4HrgNeAbSLykYjcLiLHioi14RutGr8ztSSDLVOPfvgVm8urAOhdUsRZU/pl7FypMNGC0DPCF2tLmfrA/5jlky84eUJvnv7B/sF0S4O6tefxi/elkzcgYUdFDec/PCNui+nMleFdfBYvZRiRScqZUtW/qOq5qtoXGApcDDwGrAbygX2BnwMvA1tFZJaI3Jlmmw0jKxjQpS0Fue4WW1daQenu6rSfY0dFNX9+L6SLe/kRQzM+QKChjO1bQuC/eNH6Heyqqmlag1oAr362jtP+9BFrtruBByLwi2NHcM+ZEyiqpw83vGcx/7xoXzoUuVi6bbuqOeevM1i+KXqraf3gc8MwItPg0XyqukxV/6aq31HVAcBA4ALg78BKXIqZycBPUjfTMLKPvNwcBvu6RTLROvW3/64IOmn9O7fltMl9036OdFFclM+w7q61rk5dihKjYdTVKfe8uZhLHv+U3dVOtqB9YR4Pf2dvfnjI4KgtSGP6lPDohVOCgxNc9+AMVm/dU4dKVc2ZMowESZs0AtDBN1nHumFQP61MeuOmtu2s4uEPVgTXrzxyKPm56byl048lPU6dnZU1/OjxT8M0xQZ0acvzlx6QkLDtxP6d+NsF+wQzG6wrreDsv37MWq91K8DX23azrrQCcGmJ6ovpGoYRokFPXnFMFJErReQ5EdkMzAXuxQl3tgHeAK4HDkqbtYaRZWRyRN//fbCcskrXVTa4W7usEDad4A9Ct7ippPl62y5O/dOHvPbF+uC2A4d05flLv8GQ7omHqU4Z2JmHvrN3MGfi19t2c+5DM9i4oyJYxj+Kb9Jenchr5o66YTQlSQnRiMjVwMG4wPMOuJQx4BTPXwHeA94HPlHV2jTaaRhZyXD/iL716XOmNpVV8sj/VgbXf/rN4eTmNP/gYP+Ivjmrt8UoadRn5oqtXPLYJ2zZWRXcdsEBA7jh+JENcnS+MaQrfzlvMt//52yqa5UVXmLxp76/H13aF4Z38Zm+lGHEJNk78A7gOJwT9TzwU1xcVGdVPVFV71TVmeZIGYYjUy1Tf5q+LBgrM6JnMceO6Zm2ujPJ0O7FtPNkGzbsqGRd6e44RxiqyqMfruTchz4OOlL5ucLtp4zl5pNGp9RidNiI7tx/9qSgI75kYznnPzyT0l3VYSP5LF7KMGLTkLtQgGJgODDEm7ql0yjDaCn07dQmGJuyZWcVm8srU65zfWkFj834Krh+1VHDycmCVimA3BwJU4K3rr7YbNtZxff+8Qk3vfgF1bVOiLNLuwKe+N5+nDUlPWmWjhnTk7vPGB8cablg3Q7O+uvHLPfU+wtycxjfL3Pq/YbREkjWmTpUsWLbAAAgAElEQVQNuB/4DBgJ/AhPd0pEFojIH0XkTBGJHwVpGK2AnBypF4SeeuvUA+8uoaqmDnDCjEeOTD55bVMyob8poSfCx8u3cOy9H/DWwg3BbaN7d+DFyw9Me1qXqRP6cMep44LrC9ftCC6P71eyh8yCYRjhJBUzparPAs8CiEgnXHD5IThl9PHACOAH3v4lwHTgPVV9Mm0WG0aWMaxHMfM8GYDF68s4YHDXBte1eusunvapXF911PCsE1IMG9FnLVN7UFNbx33vLOWBd5bgT693wQED+MWxIzLm2Jyxdz8qq2v55QtfhG23fHyGEZ8GZ0JV1W3Ai96EiHTABaYfAhwNjCMk7GnOlNFqCYub2piaPMI9by0OdvdMGdCZg4Y23DFrKvxK6PPXbKe6tq7ZSzo0Fmu27+bKp+aEqZl3apvP708bz5GjMt/gf/7+A6isqePWaQuD2/axeCnDiEta0sqLSBEuEH2KNw0DlNBoP8NotQzr6XOmUhjRN//r7Tz76Zrg+k+PGpZ1rVIA3TsU0adjG9Zs301FdR2L1pcxpk9JU5vV5Lz2+Xqu+c/8MKX8/QZ15g9nTmzUpN8XHzQIgLvfXMzkvTpx0JDsc9gNo7FpkDPlJTX+Bq4V6hBgH1w6GQg5UJuBD3ByCYbRagmTR9hQhqom7QSpKre+HGotOHJkD/Yb1CVtNjY2E/p1DKZAmbt6e6t2piqqa7l12gIe+3hVcFtujvCTI4dyyaFDmkTy4uKDBnHBAQNMW8owEiRZnak7cDpTk3zHBu70dTiNqfdxcVIL0mWkYWQzPToUUlyUR1lFDWUVNazfUUGvkjZJ1fH6F+uDQ9XzcoTrjhuRCVMbjYn9OzLts3WAS3p83n57NbFFTcPiDWVc/sQcFvkGJvTp2Ib7zp7A5L2atnvNHCnDSJxkW6au9i2vwnOccM7T0rRZZRgtCBFheI9iZn/l4mAWbyhPypmqrKnltle+DK6fv/9eDOqW3RmbwtPKtD7xTlXliZmr+PVLC6j0RmYCHDumJ7efMo6StvkxjjYMo7mRrDP1NzyVc1X9Kl5hwzAcw3r6nKn1ZRwyLHFptn98+BWrvES0JW3yueKIoRmxsTEZ06eEvByhpk5ZtmknpbuqW40DUbqrml88O59XPw+lhCnMy+GmE0dz9pR+WRkHZxitnWSlES5O9gQikq+q1fFLGkbLpX7cVKJsKa/kvndCCW2vOGIoHdsWpNW2pqAoP5eRvTrw2RonGTHv6+0cnISDma0s21TOtx+eGYwXA3dt3H/OxLBRn4ZhZBdJdYqLyA+SLF+ISztjGK2aoQ0U7rz37SWUVbhkxoO6tuP8/VtObFF4V1/r0Jv65fOfhzlS5++3Fy9c9g1zpAwjy0k2wvBBETk7kYKeXMLLwDFJW2UYLQx/y9SSDeXU+dUYo7BkQxmPzwiN8Lr2uJEtSo8pLOnxqpYfN7WudDcfLd8CQI7An8+bxC0njzF1ccNoAST7ZFbgERE5IVYhTzrhVeAIYEOssobRGujSvpCu7V333O7qWr7eFj/B722vLKTWc7oOGNwl69LGxKN+y5RqfAczm3l53joCH/GAwV05ZkyvpjXIMIy0kawzdSEuzuoZETk0UgERKQbewOlPrQUOS8VAw2gpDEsibur9xZt4d9EmAETg+uNHtrjA5IFd21HSxgWdb9tVHQyyb6m8MC8kuHrShN5NaIlhGOkmKWdKVf8J/BgoAl4QkSn+/SJSArwFHACsBg5V1UVpstUwspqwtDIxnKma2jpunRaSaTtjcj9G9255opYiEtY6NacF5+lburGcz9e45MEFeTkcM6ZnE1tkGEY6SToAQ1UfBH4JFAOviMgYABHpAryDU0NfARxi2lOGESJRZ+rp2atZvMHl8GtbkMtVRw3LuG1NRWsJQn9x3trg8uHDu9OhqHXIQBhGa6FB0ayq+hvgLqAz8IaIfAPnSE0EluJapFamy0jDaAkM7xka0bcoSo6+HRXV3P3G4uD6jw4dTPcOjZeXrbFpDUHoqsqLc0NdfFOti88wWhwNTnSsqleLSEfgIpwSugCLgCNUdW3Mgw2jFTKke6hlavmmndTU1u2RsuOP7y5jy84qAHqXFAWTzrZU/C1TC9btoKK6tsWNbpv/dSkrt7h4sOLCPA4b0bIGEhiG0cCWKR/fB57BOVJf4Lr2zJEyjAiUtMmnV4lrZaqqrQv+wQZYvXUXf/vviuD6NceOaHGORX06ti1gYNd2AFTXKgvW7Whii9LP875WqaPH9Gzxv6lhtEaitkyJyDsJ1pGPk0yoBZ6KMOJIVfWIhplnGC2LYT2KWVdaAbi4qSHdQ11/t7/2JVW1Lk/bhH4dOWl86+gOmtivIys27wRcEPqk/p2a2KL0UVunvDRvXXDduvgMo2USq5vv0CTrGhdle8riMSJyMvBDXExWCU5y4TXgLlVdlmLdBwOXAt8AugHbgbnAQ6r6rwSObw9cApwMjMQF5pfjujxfBh5U1ZYZDGIkzfCexby32EkeLFpfxnFjndbQ7JVbmTY/9Kf7yxNanhRCNCb078izc1zrTUsLQv9o2RY2l1cC0LV9IfsP6tLEFhmGkQliOVPfbTQroiDu3+QhnL6Vn4E4B+Z8ETlTVV9pYP13Az+pt7k7cBRwlIg8A5yjqrVRjh+K09QaUG9XR2Bfb7pMRI5V1TkNsdFoWQz1tUQt2eiC0OvqlFumLQxuP2FcLybv1bnRbWsqwuURWtZ7xwu+Lr4TxvXaI0bOMIyWQVRnSlUfbUxDonAtIUfqGeA3wDpgf+BenBPztIhMVtXFEWuIgohcTciR+gi4DvgM6AJ8B/gFcAawBvhphOPzcHkHBwDVwD3AE1753sBZwFVAD+A5ERmpqvFlr40WzfCePuFOb0Tfi/PWMs9rkSnIy+GaY0Y0iW1NxYieHSjMy6Gypo6vt+1mc3klXdsXNrVZKVNRXctrn68Prp88sU8TWmMYRiZptq9JItID5+AATAPOUtX5qrpJVV8EDgd2Au1xTlYydXcGbvRWFwOHq+p0Vd2iqotV9XqclhbAj0VkeIRqDgdGecu/UNVrVHWeqm727LwO+Jm3fy8sR6EBDOnenkDv3cotuyjdVc0dr30Z3H/RgQPp17ltE1nXNBTk5TCmT0iUdG4LEe+cvmgjZZUuSfVeXdoyvm/LE141DMPRbJ0p4NtAO2/5eq2XuEtVVwB/9VZPEZFkxhsfj3PCAH6tqhURytwDbAJycfFa9RnvW34iynke9y23XOVFI2HaFuTRr5NzlmrrlOue+ywYkN61fQE/OnRwU5rXZEz0d/WtbhldfS/MDQ1snjq+d6uJgTOM1khSzpSITBWRWhFJJDB7mlf2uAbadqI3X6Kq86KU+bc3zwFiJl+uh98R+ihSAa9LLnDeqRGK+B2wuijn8W/flLB1RovGr4Q+7bNQ0PlPvzmc4laqjD2hf9MooS/dWM4VT83hmVmr01rvjopq3v5yY3DdcvEZRssm2Zaps7z5nxMo+0ec/tQ5SZ4jwERvPiNGmdk4SQaASUnU7W9vj6WLFdg3UETqj9f+1Ld8WpTjT/fm1cC7iZtntGT8SujBbT2KOWPvvk1gTfPAH4Q+b3UptXUpDwKOS2VNLRc+MosX5q7l5/+ZzwdL0ve+8/rn66mqce9So3t3CBNsNQyj5ZGsMzUJ57z8N4Gyb3tlJydrlIj0IdQNtzxaOVWtxAWkA0SKa4qGXxkw1iujf19YVLCq/g/3GQHuFJFrRWSQiBSJyEARuQb4g7f/Jq9b0jDCWqYC3HDCyFY90qtPxzZ0K3ZB5+WVNSzbVJ7xcz7+8SpWbQ0Jp9784hdBByhV/Ln4TFvKMFo+yT69+wKlnhMTEy8OaTvQkCEsXX3L8V4XA23pyQi4LPQt7xupgIgUEa6d1TVCsVOAl4A2wG3AMmA3zgG8HfgcOF1VfxvLGBHZHmsivCXNyHLqO1OHDe/GQUO7NZE1zQMRCU96nOEg9B0V1dz/zpKwbcs27eTRD1emXPfGsgr+t3QzACJwYisRXzWM1kyyzlQV0F4SiKT0yuzZn5EY7XzLkYLD/QTkBpI51yu4rjeAG0Uk0jjsK3CaUwH2qF9Vd+D0uB6Kcp6ewGARsfwRRpBB3drRxkspkpsjXH/8yCa2qHkwoRGD0P/y3jK27XKPgLyc0OPs3reXsHFHvEdObKbNX0egl3LKgM70KmmTUn2GYTR/knWmlgEFwEEJlD0EKASaXfeWlz/wQW91BPCWiBwiIp1FZKiI3IKTW/A/VfcI4hCRE3Cf7wLgVpxUQmdvfiuum/B24D+eLlU0ezrGmoDSVD+z0XwozMvl11NHM65vCb/91liLp/GY2N8v3pm5lqn1pRU87MuB+NtTxgbT+pRX1nC7T6qiIYSN4ptg2lKG0RpI1pmahgsqv1tE2kUr5O27G+eATGuAXTt9y0VxygZe+5INsrgGJ7oJcCAwHdiC0526Ade9eJ2vfNjTXUQOAF7ApY+5UFV/qaoLVXWbN/8lcJFXfCrwoyTtM1owp+/djxcvO5Az9unX1KY0G8b17RjU4Fq8oYydnkZTuvnDW4upqA4Fh586qS83nzg6uP/ZT9fwyVdbG1T3V1t2Bkcj5ucKx47pmbrBhmE0e5J1pu7FORwTgVkicpqIBF+rRaRYRM7AjbKbgHNA7m6AXZt9y/GCSQL7tyRzAlWtwsU8nYVLCbMF1425Ahc4Po7weK36Y6dvwH1/S1T1n1HO8Q9gqbd6QTL2GUZro31hHsO9eLI6DQ/iThdLNpTxzOzQrfyLY0eQkyMcOLQrx4wOOT43vvBFg0YUvuhrlTpkWDc6tStIzWDDMLKCpJwpVd2Kc0DKcN1jTwPbRGSLiGwBtgFP4kbWlQGnqurmaPXFYC2hlqaB0Qp5sU6B6M5FyZ5EHU+r6tGq2lVVC1V1kKr+RFU34RIXg2spq9/2f4A3j5dzLyChYIExhhGHI0f2CC7f+vICvtqyM0bp5LnjtUXBeKaDhnYNC/y//viRFOa5R+IXa3fw1KxVSdWtqjzvy8V3knXxGUarIemx2Kr6AU4i4d846YMcoJM35Xjb/gVMUtXpDTHKUzsPOCkRR9t5TMYplEO47lO6OMqbvx0h2XGiUaWB6Nb0jLk2jBbMpYcNYVA3F0Gws6qWnzw9l5ra9Nw6s1Zu5a2FG4Lr9XMg9uvclkt8CvR3vr6I7buqEq5/wbodLNvknL+2BbkcOTKZpAyGYWQzDRK2UdXlqnoGzoE6DNdVdpa33ElVz1TVZSna9pI3HyYiY6OUCYhl1gEvp3i+MERkP2BvbzXSaL1ABtN4YqGB/cm95hpGK6RNQS73njkxOMLu01XbefDdVB8lrtXotldCiignT+gdlg8wwA8PGUzfTu49aduuau56I/H86f4uvqNG9aBtQdQxJ4ZhtDBSUglU1Z2q+p6qPuNN76lqutrl/wEEFPX2SGQsIgOA73urz6rqxvplGoqIdAP+7q2+p6ovRSgWEOwcIiLnRqnn20DgVff1dNlnGC2ZsX1L+Mk3Q6ks73tnCXNWpSaV8PoX64MjBAtyc7jqqMgav0X5udxw/Kjg+uMzvmLB2h0Ry/qpq9N6Qp3WxWcYrYlmK7msqhsIOVEnishTIjJWRLp5kgTv4PSoyoHr6x8vIo+IiIpIxChSETlPRF4WkTM8xfKOnizCpbicfCNwrU8XRjHx90BAvPTvIvIrERnh1TPCk1d42NtfRsMC8Q2jVfLDQwazzwCXwam2TvnJ03MbPLqvuraO370WCqk8f/+96Ne5bdTyR4/uwUFDnUZvnTpl9Hp51vdg1sqtwYTVndrmc+DQSBq/hmG0VFJypsTRWUT6iUj/aFMKp/gt8Ddv+UxgPk7x/CVcYHo5cKaqJt4WHyIPOB4XRL8cFzy/GHgA6IULOD9CVSOms1HVhbiuzTIgH7gRp6y+zZvf4J1jG/AtVbVuPsNIkNwc4e4zJtC+0HWVrdyyi1unLWhQXU/PWs3yza7BvLgoj8sOGxKzvIhw04mjg12NM1dujTuy8HlfF9/x43qR34pTAxlGa6RBd7yInCoib+OcmU3ASpykQKQpam69eHij7S7CjSB83TtXpVfvn4EJqvpKA6t/F9fy9RGuBaoa56hNx2lCTVDVmE9vVX0eJ9D5W5wcxHZcAP52YBZwCzBKVd+OWolhGBHp17ktv54a0n96cuZqXv9ifYwj9mRnZQ1/eCuUNuaSQwcnJFcwpHt7LjwwNJD4tlcWRm0Zq6qp45XP1gXXrYvPMFofEq/5eo8DRP6Ei1WKm1ImgKraa1oKiMj2kpKSku3bM5uvzDCaG6rKZU/OYdp856x0apvP61ceTPcO8bR8Hfe+tYR73nIN1z07FDH96kMpyk8su1NZRTWH3/Uem8pcb/4PDxnML44dsUe5txZs4OJ/zAZcwuYPfn4YOTkJPx4Nw4hO1txISTk5InIq8AOc7tL5uNQp4Fp28nBJjS/AdZdtBo4yR8owjIYiItx28lh6lTjnaduuaq7+9/y4MUwAm8sr+b/3QyMBf/rNYQk7UgDFRflc63OeHv7vcpZv2jPRwgu+LsATx/c2R8owWiHJOjoX41LEXKOqj6tqsKlEVetUdZ2n+j0Z1xX3nIjs+SpnGIaRICVt87nr9PHB9fcWb+KfH38V97j73l7CzionDzesR3tOndw36XN/a2IfJu/lAuGra5Vfv7wgzJHbWVnDmwtCXY9TJ/Teow7DMFo+yTpTAc2kx2PV48kjXIYbbXdtw0wzDMNwHDCkK987KBTD9JtpC1m6sSxq+RWbd/LEjNCYj2uOGUFuA1qMRIRfnTQ6mDNw+qJNvL0wpMLy5oINwTx/w3q0Z0RPS1ptGK2RZJ2pjsAOVfULr1QB7esXVNVZuO7AwxpunmEYhuNnRw8POiuVNXVc8dRcqmoiq6Pf+foiary8MVMGdubwEQ1XIx/Tp4Szp4QGJf/65QVUVLsWrxd86WOmTuiDiHXxGUZrJFlnajN7BoRtBdqISCRhlVzAcioYhpEyhXm5/OGsCRT48ufd/eaeqihzV29nmm903bXHjkjZybn6qOGUtMkHYNXWXfz1/eVsKa/k/SWh1KMnjbcuPsNorSTrTK0GikWko2/bPG9+tL+giBwMFOF0lgzDMFJmRM8OYTn1/vL+Mj5eviW4rqr81pc25rixPZnYv1PK5+3UroCfHR1STX9w+lIe+u8Kar3Wr8l7dYopBGoYRssmWWdqhjc/yLft37jWqrtF5HRPRfwUXDoYBd5I3UzDMAzHdw8YEFQoV4WrnplH6e5qAN5dtJEZK7YCkJcjXH10+sa/nDOlP6N6dQCgorqOP00PjRS0wHPDaN0k60wFHKfzfNsewQlfdgOewimH/wvoj+sWvDFlKw3DMDxycoQ7Tx9Px7au223N9t3c9MLn1NYpd7waShtz9pT+DOzaLm3nzc0RfuUTEfVvP25sr7SdxzCM7CMpZ0pVPwCKcVpSgW21wFG4XHUrgRpgC/AksJ+qxh/DbBiGkQQ9OhRx27fGBtefn7uWSx//lEUb3Ai/dgW5/PiIoWk/7z4DOnNyvVaoA4d0pWv7wrSfyzCM7CFpQU1V3amquyNsu0ZVB6tqoap2V9VzVXVF+kw1DMMIcdzYXpzm0456zZdq5nsHD6JbcWYcnGuPG0m7gpD4p3XxGYZh6uSGYWQtN504in6d24Rt69q+gIsPGpSxc/boUMRvTx1HUX4O+w3qbF18hmEkn5vPaHwsN59hROeTr7Zy+p8/whtYxy1TR3P+/gMyft66OrXUMYaRWbLmBktLy5SIHCAifxCRF0XkPyJyvYjY65phGBln8l6d+dVJoynIy+HIkd05yyewmUnMkTIMI0DclikR6QLcDpyISw+zFLhbVf/p7f8rcGGEQ3cBZ6jqq2m1uBViLVOGER9VNQVyw2hZZM0NHdOZEpEiYDYwkvAPpcC3cermd3nb1gOrgD7eBFAOjFbV1ek1u3VhzpRhGIbRCskaZypeN98lwCic8/RX4HJvrsBPvPUtwDGq2ltV91PVfjhRz9W4lqzLMmS7YRiGYRhGk5MXZ/8pOMfpalW9J7BRRBYCd3v7fqSqYSrnqvo/EbkCeBanQXVNWq02DMMwDMNoJsTr5tsCdAQ6qmqZb3sxUIpzpgZFEub0ugh3AWWqWpJuw1sT1s1nGIZhtEJaTDdfCVDqd6QAvPVSb3VVpANVtQKXTqZ9qkYahmEYhmE0V+I5UzlARZR9FQAaezhgbUOMMgzDMAzDyBZMAd0wDMMwDCMFzJkyDMMwDMNIgXij+QA6i8g7kbYDRNkXVsYwDMMwDKOlkogzVQAcGmN/rH3gRvwZhmEYhmG0SOI5U482ihWGYRiGYRhZSkxnSlW/21iGGIZhGIZhZCMWgG4YhmEYhpEC5kwZhmEYhmGkgDlThmEYhmEYKWDOlGEYhmEYRgrETHRsNA9EpA6QkhLLF20YhmG0DkpLS1ep6l5NbUciJKIzZTQ9dUBOaWnpDt+2QALp8gbUl+yxyZRPtGwq9rcEmsPnz6QN6arbrvPspjl8frvOG14+kbLN4TducqxlKksRkekAqnpopo9NpnyiZVOxvyXQHD5/Jm1IV912nWc3zeHz23Xe8PKJlG0Ov3FzwGKmDMMwDMMwUsCcKcMwDMMwjBQwZ8owDMMwDCMFzJkyDMMwDMNIAQtANwzDMAzDSAFrmTIMwzAMw0gBc6YMwzAMwzBSwJwpwzAMwzCMFDBnqgUgIgNERBOYYirUikixiNwoIvNFpExEtovITBG5UkTyG+vzGEYkmtN1LiITReQfIrJKRCpEZK2I/EdEDk3LhzVaLS3pOhfHd0XkPRHZLCK7RORLEfmdiPRIpI5swQLQWwAiMgBYkUDRnaraPtIOERkIvAUMinLsJ8A3VXVbQ2w0jFRpLte5iFwE/AmI9IekwK9U9VcJ2GkYe9BSrnMRKQSeB46JUmQjcLyqzo5WRzZhLVMtj+OA4ihTxDcBESkAXsLdeLuBy4G+wEDgZlxuwMnA05k13TASpkmucxE5GPgL7g9mLnAE0B3YH3gHEOBmETknxc9nGJDd1/n9hBypB4HhQC/gPGCrV9+LItI1Rh3Zg6ralOUTMAD3pqDAoQ04/jLf8adH2P9z3/7jm/rz2tQ6p+ZwnQOzvP1rgI719hXg/ngUWA0UNfV3ZlP2TS3hOgfG4pw2BR6MsH9/oNbb//um/s7TMVnLlAFwiTefo6r/irD/HmBTvbKGkW2kdJ2LyD7A3t7qHaq63b9fVauAm7zVvsAJKVtsGMnTHK7zH+Jar6pwrWFhqOpHwIve6sUikhftw2QL5ky1ckRkEDDKW/13pDKqWg284K0eISJtG8M2w0gXabrOT/QtR6wDeAXY5S2f1ABTDaPBNKPrPFDHe6q6KcJ+f90dgYOjlMkazJlqoXj95okwybc8I0a5wL4iQjerYTQpjXydB+r4WlXXRjrY+6OaE+GchtFgsuk692Kg+iVhwx51ZCPmTLU8HvCGzFZ6Q1nniMgtItI9SvnhvuXlMer1jy4ZHrWUYTQOTXGdB9ZjHe+vY4iI2DPWSIVsvM4TteErXFxVJBuyDrvRWx6jgXbeciEwAbgB+FJEjo5Q3j+SIlpzLLhhrAG6pGShYaROU1zngTpiHe+voxCIOHTdMBIkG6/zhGzwWrcC8VhZ/59izlTLoA54HfgObhRFR9wNOAm4DzdqohPwnIjUb05t51uuiHGO3b5l+4MwmoKmvs4DdcQ6Pl4dhhGPbL/OE7XBX0fW3ydZH0FvgKquIrIw2hxgjoi8CzwLtAHuBg5tPOsMIz3YdW60Buw6z06sZaoVoKrPA894q4eISG/f7p2+5aIY1bTxLcdMY2AYTUEjXOeBOmIdH68Ow0iJLLjOE7XBX0fW3yfmTLUeXvItT/Atb/Ytd4txvH/flrRYZBjpJ5PX+eYIZWLVUUUL+JMwmiXN+TpPyAZPW6pjFBuyDnOmWg/+gMOOvuVFvuWBMY7371sUtZRhNC2ZvM4XRSgTq44lqloXs6RhNIzmfJ0nasNehHyQrP9PMWeq9dDTt+xXtP3Ut7xvjOMD+yqABekyyjDSTCav80Ad/USkV6SDvbftSfXKG0a6abbXuapuxqWZSdSGPerIRsyZaj1M9S0HxNZQ1eWEbqbTIh3o3TiB499W1V2RyhlGMyCT17m/ayViHbjEtAFF6RejlDGMVGnu13mgjkNFJJrsQaDu7cD7UcpkDeZMtQBEpE+c/WcAp3ir76rqunpF/uTNJ4nIqRGquBKX4dtf1jAalaa+zlV1FjDbW/25iJTUO38+oTxkXwMvx7LXMCLRQq7zv+CSGBcQITefiOxLyKF7SFVrItSRXTR1pmWbUp9wwmjPAOfiUgN0wQX+HQj8H6Hs3eXA+AjHFwCfe2V2AT8CeuP6tG8Earx9bzT1Z7Wp9U7N4TrH5RALlPsUNyy9KzAFeMvbrsA5Tf192ZSdU0u5zj1bA+XuA4YCPYBzcEHqCqwFujb1d56OSbwPbWQxIrIdKIlTbC3uwn8vSh0DcTfJoCjHfwJ8U1W3NdhQw0iB5nKdi8jFwB+B/Ai7FfiVqv4qjp2GEZGWcp2LSCHwPJE1s8AF0R+vqrOj7M8qzJlqAYjIKcBBuIC+Prg3iDxgKzAP1wz7qKqWxamnGPgJri97EE5pdzHwBPCAOvl/w2gSmtN1LiITgZ/i3ti7ezZ8BNynqtOT/3SG4WhJ17mICHAB8F1capw2uOD0F4E7VXVDvDqyBXOmDMMwDMMwUsAC0A3DMAzDMFLAnCnDMAzDMIwUMGfKMAzDMAwjBcyZMgzDMAzDSAFzpoysQERWioiKyKFNbUtjIyLFInK3iCwTkSrve1jZ1HYZRiYQkeneNX5BNtRrNB7N+Tc0Z6qFICKPeBeZisgncco+5pV7pJHMM1LjWc5d7FQAABKMSURBVNwQ50HAbmADTtgvLiLSX0SuFJGXRGSViFSKSJmIzBOR26Pl3vIdf4Hvuoo2lceqw1fXVBFZIiJbReTPIlKUyHEJ1v1IFNvKROQLEfmjiIyMcuw4n5N6UZzz3OmV2xAjTQYi0llErhWRD0RkvVf/BhH5r4hcF+vYVD9PnHrj/ZbRpunJnstIDyKS592Hr4nIOu9a2iYiC0Vkmoj8QkSmNLWdrZ28pjbAyAiTROQUVX22qQ0xUkNERgNHAtXAwar6cRLH9gNWAuLbvANoB4zzpu+LyKmq+m6c6qpxGjOR2JmALQOAv+PUjxfj1JFv8KZ04rdTcBo9o7zpIhE5T1X/5T9AVeeLyB2eLXeKyCu6Z4oOvD+sK73Vy1R1SyQDROQc4EGgo7epDij1bOkOfAO4WkQuVdUn0v154hBN16czTpyxwrO1PtF++0ywClgUxY7mWG/GEJFuwCvA3r7NFbhrYTgwApcnr5TQ9WY0AdYy1XL5tYjY75v9jPbm85NxpDxyvfk04HSgs6qW4BKUHgesADoBz4tIz8hVBPlQVXtGmQYnYMvewExVfU1dMtZ7cU5FuvHb2QMoAo7FOZUFwN+9P6j63IJLENsR5wiFISIFwN9w3+nz0RwYEfkB8JhXzye477mNqnb2bDkGmOXtf8wrn4nPE5FovyHwoVfk6ShlTolVbzpR1W+r6ghVfS4b6s0wj+HunTLg50AvVW2jqh1xKunfxKmUb286Ew0wZ6ol8h4uH9NoXCuAkd208eYJdaXVYxswUVVPUNV/B1JHqGqVqr6K+6OvADoA8f7UU+VzYB8RmSIinXCKyDG7o9OBqlar6mu4PGfgWuX2SP6qqlXARbhWpG+JyOn1ityAu6e243Kd7YE4tej7cK0GLwD7q+qrXt0BW14HDvD2C3CfiExI9+cxsh8RGQEc5a1eqKq/V9X1gf2qWqaqb6nqpbgWKqMJMWeq5bEeeMBbvllEEu7K9cVHDIiyf0CgTJT9wSBxEenlxcWsFpHdXv/+T/ytZSJyuhdTsl1Ednj9/2MSsLO/iDzk1V0hIiu8WJaY+axEZIyI/M0rX+Gd938i8kNxmdDjfaY+XqzKcnGxR3Pj2RqhvlO82IdNXh1fi8jjIjKpXrmbve/5EW/TIfViWA6Ndy5VLVXVeTH2fwkEWrsmJ/tZksE71zW4VrL1uO6rmzN5znp8RMghHRWpgNfyd7+3+oCIdAYQkfHAL7ztP43UBehxK661aC3w7WjpOlS1BvgOsM4rf0tyHwVI4PNkgkTvBxHpKiI/EpEXRORLL9Zrp4gsEDeYoneMc0QNMq53/s5eXSu8868Rkb9KlDjATNXrHZ8rLjZxvve82yQiL4vIN7z9MZ+tURjrW345VkFVrYhgUyq/Qcae5fXqbtCzPBYNfM4XiMgVIvKhV75aXIzjPBF5UET2j3vipsyybFP6JtyfrgJP4bKMl3rr34tQ9jFv3yP1tgcyfA+Ico4BgTJR9q/09n8X90ehnh01vrrv98re7q3X4OJ4Avu3AUNj1H0xLkGm4pq+d/uOXYJrBo9k22W43FTqO9Zv17tA2xjn/T4u6FtxMULlwNwkfp8c4FHf+Wq8zxpYrwUu8ZX/Gc7pCPyOVd56YDogTdfNv736p0XZf4G3f3oar9XcDF7/Ee3EtQKVe2UejFFPO2C5V+4fuLjST7z1N2Ic1xfXqqXAtQnafJ1Xvg7om4nPk8T3N50Iz4QI5RK6H4A7fdd2NbCl3v22ERgXx5YLYpz/PN/yTlwLa6DuFUCnRqw3HxfX5P+823zLp/r2DUjiNzndd9zgBvymqfwGge+gWT3LY/2G3v6kn/O4e3y6r0ydZ7v/uKfift+p3oQ2NY8JnzPlrd/sra8CCuuVzbQztR0XgzHO294W100SuFCvwzkHVwDtvDJjgC+9Ms/EqXsJcKC3PQeYSujBvscfHnCyt28HcDXQ1dteAByNC4hW4C8xzlsGzMfnxABDkvh9fuH7/DcAxd72PsAzhByqg+sddwFpdmZ8decRelDeEaVM4PybgC9wD7wyXLfdPcDApr72613/Eb8nXHxW4Pq+Kk5dR/jKvuDNy6PdF94x5/qOGZmgzaN8x5yTqc+ToC3TSc6Zink/AD8GrsW1ruR523JxLaCveXV8jpcfNootF8Q4/zZgDq4rNXAtn0TIifldI9b7K0LOxBW4GDmAvYCXCH9pinoNRah3kO+414BuSf6mqfwGge+juT3LY/2GDXrOA98m5DyfBxT5vqv+wKUk8IKU0g1oU/OZ2NOZ6oB7E1HginplM+1MbQU6Rtj/tu8cN0bYf5C3rwIoiFL3biI4McBhvroP9G3P9R17dBS7B3s3UjX13oYIf8j2aOBv055QC9NvI+zPBT7w9r9fb98FZM6ZuoKQEzcqSpnA+QMPzy3e9xTYtot6jkATX//T623P9x6kK7z9VdRrBYpS30O+z6jA5XHK/8Z37eYkaHMOUOkdd0smP08CtkwnOWcqlfuhEOeYK3BIDFsuiHH+9UCXCPuv8vYvb4x6gWJCLYTXRTguH5jru44GJPld+VuzK4G3cN3JU0nSuUryNwh8H83mWR7rNySF5zwugF+BP6VyD1nMVAtFVXcAv/NWrxWRdo14+j+raqTRJW958yrg7gj7/4e7+QqBIVHqfkZVl9bfqG5of2BE0mm+XYfi3hA/Vxf8uwequgwXO5TnlY/EP1Q12rDyeHwT59xWEfpN/OevJRQ3c5DEH1mXMiIyDvitt/qAqi6IUnQtcBPubbNIVbvgnMPjcaPf2gCPisjBGTY5UQ4Qp+u0XkQ24K6n13AvAnXAD1T16wTq+ZNveQkRRvjVo7M336aqdYkY6pXb5q1G051K1+dJNw2+H1S1EnjTW23oiM7/08jSFM9784ENfOYlW+9RuK7hCtzggzDUxc1FetYlyve846twLSxHANd79mwUkZkicq6ISIw69iCJ36A5PctjcSgNf87v8OYxNffiYc5Uy+Z+nK5MD1yTb2PxWZTtG735SlXdY3Sa9+ey2VvtFKWO6THO+5439wdzH+DNh/r+lPaYfOX6Ran7oxjnjUfAnnnqjaiLwPu4FiJ/+YzgBdI+j3OEPsEFhkdEVd9Q1V+r6hcaGpVWqaqv4L6zpbiH0+2ZtDkJ8nHXew+cplPgGbcV2FdV/x6vAu+P6U7fpiFkRsYhEVL+PBki7v0gIiNE5AEvKHuHiNRJaADLFV6xqEHQcZgVZfsa33JDdJeSrXeiN58b6Znm8UED7ABA3cjbq3DPpR8CT+Kce/WK7IPraXhaIkjhpOE3aE7P8lik8px/1ZtPFZEXxQ0SiimqGwlzplowqroLuM1bvTqVERJJEm20U22c/f4yEUddEP5Qi7bPr7sTeNsoJPSnFGkKqHG3jVJ3QorjUQjYE9V2daNxAg+fhHWDkkXcCLU3gIG4h/LxGmEkUCKoaimh62s/EemaHitDiMisKA/Gn0U55D1VFVUV3G86ARdk3xl4WJwsQzy+j3tzrcQ98AX4q4gUxjgmIGrZKdKfWiS8cgF7oolipuPzZIKY94OInIWLqboUF7PTDtfVvcGbAkKvDW0xL4u0sd61HO0Zks56A9d8rGfa2gbYUf/8G1X1L6p6jqoOwz3Xvges9oqcDlzuPyZNv0FzepbHosHPeVV9D7gRF/N2IvAfYLM3avFOERmaiAHmTLV8/oK74Trh+v1bG4Fr/IXAn1Kc6eYo9dRG2Z4MaUuf0hA8Z/p1XJfdKuDIFLouA8wIVI9z0NJNNyI/FNvHO9BrQZsHnIH73ONw90NURKQvoa7YW4CzcF1xw3EP3Ggs9OaFXtlEGIHrugHXZRqThnyeDBL1fhAnIvpX3J/o0zjRySJV7aQhkdB7AsUzbmkLRFU3qOpDuJabwD18YWB/K/wNUnrOq+otwDBcwP7ruK6/Ebj/zAUi8u1EDTBaKF7feCAe58o4rQeBB2S0P/3GatmKRawm6cA+/1tz4EHTPzPmJETAnqg2iMtTF2haTqUVLFr97QilpViPc6RWpfs86UZVByTp9EaqQ3Hd3LXA6SJySIzif+b/2zvXEKuqKI7//8wYlpZ9MnpAU1B9UCrKLKyG7OEoPSyCIkJKxD7IFBYZhhhBET0QjECIIEFBQUT6VKYJA1JImVJkYJbpRyHNkkkYnVYf1t6d45l79tx7z71eZ+b/g8vMPc99Hneddfb+r7Vc3/YDPMLxGLKXkBVBa1aLAWRDL4/X2bS4nMGHeeuiwePpBAvgzu7P8OCE721kzq0rzn+z2kLsTU7pbSppcVKY2R/wiFPAnYHIWLgGjdryFJXtvJn9bmbvmtl8eM/vXPjvshvAOpLTU+vLmZoYrAfwGzzyZGViuSg0vKZk/h2tbFSTpB4ccd6+3LSo7biZ5NXtadKoxPbckGhDL7JamftKlmkKkhfDQ7TnwKPxHjSzQy3a/J25/4+0aJstx8x+gb+hAx55NwKSz8KF9cMAlpgn10TQJe2Cv+V/UmsYL4jAo/ain+RlqfaE+f3h6+eNisjrOZ4OEu3Hj7XE+EGTdv/5bVLb2B/+3kqyrLf03ja3IQ7XDeWmjYVr0KgtT9FSO29mw2Y2AOARePTfFJxbH3EEcqYmAOGh8Gb4ugzlb0pRbLiwOCPoRZYXp3eAp0leX5wYosmiSDhfN20XfJizC8AHqQ23UX+yA95tPAme/6S43y4Aq8PX3ZYrGVEVek25bfC3rJMA5pnZgTrXTXb/B4cgOuffmlnLe9RaTBSV381CBvkwLLI2fF1jZsVSNy/A00DMRibcLfIG3PBeBWBDIttyNzzk/cqwfGr4MEXp8XSYWEh4Zsk9tBQepj4e2AF3ZibDtUnnEK71y81smOR1JJPnieQlyHo48xUZxsI1aNSWp2jazgcbWcYQshGblGZSztQEYhOyUPayN5It4e9Skouj4JbkDPgQUbORN61kCMAXJOcALuIl+ShclAsAO83s67hw6Nruhw+lPEPyM+ZqoZGcRHIWyffhuXtajpkNIhNqv0RyVXyLDW9RmwHcgyyhZ0sITtomeHHdUwAWmFkjvV7XktxDcgnJ/7vP6aUX5sPDn28M7X69Ve1uF2a2H1lId/E8fwQXEx+Cp4Iorns4N/0t1igLEhyw+OBcCOAbkvOjU0Wym+Q8+HmLD8DlDV6Teo+nk3wF/73NhNcevBxw55vkCniaiVrpB8YcZnYKmfbobZIvhp5ghN/MVjSvJZwB4CDJbSSfYq6cDckpwe7tzm3/w9y6Y+EaNGTLU1S08xtIrifZR/LS3Do98JeeyfCcWOmoTKuQpEqfC+eDQtLOkmXyZQ1GJOiD95zsyc0/gyzZ5HH4A8IwetLO+0rmP49RElCWbQPlJQj+ybU3VU5mMbIEiTHZZLG8wojjGu2YGrg+XRhZTuYEshIkwwCWNXPOEvvsze3vNM4tR1P8fFdj/Z7C/XIarhEZyk0bBLDoArr/k+cJnvMrtv2uMO0xZElJexPrdgHYG5bdnlhuEbwXMO5nuMa99lfqvFU5nibP3wAaS9qZ/D3Acw/l750/kZX52A5PPFlzf6gvuWbp/nP77DlP270ILlrO282Y9XwIwBO5eTXtU8n++grnMNqtk4VpZ1E7YWiVa5A8H+iQLU9dwzC/YTsPTxMT58Xcb4OF8zuqjVPP1MRiGxJj0Obe/UPwbtIj8BtrEG7Yb4eLcjvNr/Cx60/hD6SY+XYNgFlWUoTWXPdyE3wo5wDcqMQs8QPwXod6o7AaxnwM/jl4ErodcIM4FR5avBnAbDNb1+Ld5n/fk5EOGa4VgnwMLnTeAuAg3DBNC3/3AngPnjl9Y4vb3TbMbCcyncvqEOEYE3R+bGalQnDz5KpL4Ma1j+SikuU2wodQVsF7oY7D9Yon4MkIV8NrrVU+b8Xjqbq9VmFmr8CHRvfDH25d4f/lcF3a2c61rrWY5197GB6o8BPctpyF6xR74fXgIrUSYJZt90u4TXoV/sCPCS6nhu3sg9uzW8zsnRrrX+jXoClbnqJJO78SwGtwB/Mw3DnuguuM1wO4rZ7fKoNnJoQQQogWQ/IB+LDbUTPr6XBzOg7JI/Bs5XPNRd7jAvVMCSGEEO0jBp3sTC4lxjRypoQQQogmIdlFcmsINpiWmz6D5Fa49ukMatTuE+OH7tEXEUIIIUQJhAf3PAkAJP+GP1tjyZJ/AfSbWVmdOzEOkDMlhBBCNM8wPH9fH7wG3nS4gPkoPIP2Wmsy/YUYO0iALoQQQghRAWmmhBBCCCEqIGdKCCGEEKICcqaEEEIIISogZ0oIIYQQogJypoQQQgghKiBnSgghhBCiAnKmhBBCCCEq8B+cz8OezYHJ4wAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], - "source": [ - "with open('./data/mean_sample_te.pickle','rb') as f:\n", - " te = pickle.load(f)\n", - "task2_sample_sweep = (2**np.arange(np.log2(60), np.log2(5010)+1, .25)).astype('int')\n", - "\n", - "sns.set_context(\"talk\")\n", - "fig, ax = plt.subplots(1,1, figsize=(8,8))\n", - "ax.plot(task2_sample_sweep,te,linewidth = 3)\n", - "ax.hlines(1, 60,5200, colors='gray', linestyles='dashed',linewidth=1.5)\n", - "ax.set_xscale('log')\n", - "ax.set_xticks([])\n", - "#ax.set_yticks([0.87,0.9,0.93])\n", - "ax.tick_params(labelsize=26)\n", - "ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())\n", - "ax.text(50, np.mean(ax.get_ylim())-.042, \"50\", fontsize=26)\n", - "ax.text(500, np.mean(ax.get_ylim())-.042, \"500\", fontsize=26)\n", - "ax.text(5000, np.mean(ax.get_ylim())-.042, \"5000\", fontsize=26)\n", - "\n", - "ax.text(50, np.mean(ax.get_ylim())-.046, \"Number of $25^\\circ$-RXOR Training Samples\", fontsize=24)\n", - "ax.set_ylabel('Backward Transfer Efficiency (XOR)',fontsize=24)\n", - "\n", - "right_side = ax.spines[\"right\"]\n", - "right_side.set_visible(False)\n", - "top_side = ax.spines[\"top\"]\n", - "top_side.set_visible(False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.9-final" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/experiments/parity_experiment/generate_paper_plot.py b/experiments/parity_experiment/generate_paper_plot.py deleted file mode 100644 index c1457c0ab5..0000000000 --- a/experiments/parity_experiment/generate_paper_plot.py +++ /dev/null @@ -1,270 +0,0 @@ -#%% -import random -import matplotlib.pyplot as plt -import tensorflow as tf -import tensorflow.keras as keras -import seaborn as sns -import matplotlib -import numpy as np -import pickle -from proglearn.sims import generate_gaussian_parity - -from sklearn.model_selection import StratifiedKFold -from math import log2, ceil - - -#%% -def unpickle(file): - with open(file, 'rb') as fo: - dict = pickle.load(fo, encoding='bytes') - return dict - -def get_colors(colors, inds): - c = [colors[i] for i in inds] - return c - -#%%#%% Plotting the result -#mc_rep = 50 -fontsize=30 -labelsize=28 - - -fig = plt.figure(constrained_layout=True,figsize=(21,30)) -gs = fig.add_gridspec(30, 21) - -colors = sns.color_palette('Dark2', n_colors=2) - -X, Y = generate_gaussian_parity(750) -Z, W = generate_gaussian_parity(750, angle_params=np.pi/2) -P, Q = generate_gaussian_parity(750, angle_params=np.pi/4) - -ax = fig.add_subplot(gs[:6,:6]) -ax.scatter(X[:, 0], X[:, 1], c=get_colors(colors, Y), s=50) - -ax.set_xticks([]) -ax.set_yticks([]) -ax.set_title('Gaussian XOR', fontsize=30) - -plt.tight_layout() -ax.axis('off') -#plt.savefig('./result/figs/gaussian-xor.pdf') - -##################### -ax = fig.add_subplot(gs[:6,7:13]) -ax.scatter(Z[:, 0], Z[:, 1], c=get_colors(colors, W), s=50) - -ax.set_xticks([]) -ax.set_yticks([]) -ax.set_title('Gaussian N-XOR', fontsize=30) -ax.axis('off') - -##################### -ax = fig.add_subplot(gs[:6,14:20]) -ax.scatter(P[:, 0], P[:, 1], c=get_colors(colors, Q), s=50) - -ax.set_xticks([]) -ax.set_yticks([]) -ax.set_title('Gaussian R-XOR', fontsize=30) -ax.axis('off') - -###################### -mean_error = unpickle('plots/mean_xor_nxor.pickle') - -n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int) -n_nxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int) - -n1s = n_xor -n2s = n_nxor - -ns = np.concatenate((n1s, n2s + n1s[-1])) -ls=['-', '--'] -algorithms = ['XOR Forest', 'N-XOR Forest', 'Lifelong Forest', 'Naive Forest'] - - -TASK1='XOR' -TASK2='N-XOR' - -fontsize=30 -labelsize=28 - -colors = sns.color_palette("Set1", n_colors = 2) - -ax1 = fig.add_subplot(gs[7:13,2:9]) -# for i, algo in enumerate(algorithms): -ax1.plot(n1s, mean_error[0,:len(n1s)], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3) -ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[1], c=colors[1], ls=ls[1], lw=3) - -ax1.plot(ns, mean_error[1], label=algorithms[2], c=colors[0], ls=ls[np.sum(1 > 1).astype(int)], lw=3) - -ax1.plot(ns, mean_error[4], label=algorithms[3], c='g', ls=ls[np.sum(1 > 1).astype(int)], lw=3) - -ax1.set_ylabel('Generalization Error (%s)'%(TASK1), fontsize=fontsize) -ax1.legend(loc='upper left', fontsize=20, frameon=False) -#ax1.set_ylim(0.09, 0.21) -ax1.set_xlabel('Total Sample Size', fontsize=fontsize) -ax1.tick_params(labelsize=labelsize) -#ax1.set_yticks([0.1,0.15, 0.2]) -ax1.set_xticks([250,750,1500]) -#ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") -ax1.set_title('XOR', fontsize=30) - -right_side = ax1.spines["right"] -right_side.set_visible(False) -top_side = ax1.spines["top"] -top_side.set_visible(False) - -ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=26) -ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=26) - -####################### -mean_error = unpickle('plots/mean_xor_nxor.pickle') - -algorithms = ['XOR Forest', 'N-XOR Forest', 'Lifelong Forest', 'Naive Forest'] - -TASK1='XOR' -TASK2='N-XOR' - -ax1 = fig.add_subplot(gs[7:13,12:19]) -ax1.plot(n1s, mean_error[0,:len(n1s)], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3) -ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[1], c=colors[1], ls=ls[1], lw=3) - -ax1.plot(ns[len(n1s):], mean_error[3, len(n1s):], label=algorithms[2], c=colors[0], ls=ls[1], lw=3) -ax1.plot(ns[len(n1s):], mean_error[5, len(n1s):], label=algorithms[3], c='g', ls=ls[1], lw=3) - -ax1.set_ylabel('Generalization Error (%s)'%(TASK2), fontsize=fontsize) -#ax1.legend(loc='upper left', fontsize=18, frameon=False) -# ax1.set_ylim(-0.01, 0.22) -ax1.set_xlabel('Total Sample Size', fontsize=fontsize) -ax1.tick_params(labelsize=labelsize) -# ax1.set_yticks([0.15, 0.25, 0.35]) -#ax1.set_yticks([0.15, 0.2]) -ax1.set_xticks([250,750,1500]) -#ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") - -#ax1.set_ylim(0.11, 0.21) - -right_side = ax1.spines["right"] -right_side.set_visible(False) -top_side = ax1.spines["top"] -top_side.set_visible(False) - -# ax1.set_ylim(0.14, 0.36) -ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=26) -ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=26) - -ax1.set_title('N-XOR', fontsize=30) - -################## -mean_te = unpickle('plots/mean_te_xor_nxor.pickle') -algorithms = ['Lifelong BTE', 'Lifelong FTE', 'Naive BTE', 'Naive FTE'] - -TASK1='XOR' -TASK2='N-XOR' - -ax1 = fig.add_subplot(gs[15:21,2:9]) - -ax1.plot(ns, mean_te[0], label=algorithms[0], c=colors[0], ls=ls[0], lw=3) - -ax1.plot(ns[len(n1s):], mean_te[1, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3) - -ax1.plot(ns, mean_te[2], label=algorithms[2], c='g', ls=ls[0], lw=3) -ax1.plot(ns[len(n1s):], mean_te[3, len(n1s):], label=algorithms[3], c='g', ls=ls[1], lw=3) - -ax1.set_ylabel('Forward/Backward \n Transfer Efficiency (FTE/BTE)', fontsize=fontsize) -ax1.legend(loc='upper left', fontsize=20, frameon=False) -#ax1.set_ylim(.99, 1.4) -ax1.set_xlabel('Total Sample Size', fontsize=fontsize) -ax1.tick_params(labelsize=labelsize) -ax1.set_yticks([0,.5,1,1.5]) -ax1.set_xticks([250,750,1500]) -#ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") -right_side = ax1.spines["right"] -right_side.set_visible(False) -top_side = ax1.spines["top"] -top_side.set_visible(False) -ax1.hlines(1, 50,1500, colors='gray', linestyles='dashed',linewidth=1.5) - -ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=26) -ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=26) - -###################### -mean_te = unpickle('plots/mean_te_xor_rxor.pickle') -algorithms = ['Lifelong BTE', 'Lifelong FTE', 'Naive BTE', 'Naive FTE'] - -TASK1='XOR' -TASK2='R-XOR' - -ax1 = fig.add_subplot(gs[15:21,12:19]) - -ax1.plot(ns, mean_te[0], label=algorithms[0], c=colors[0], ls=ls[0], lw=3) - -ax1.plot(ns[len(n1s):], mean_te[1, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3) - -ax1.plot(ns, mean_te[2], label=algorithms[2], c='g', ls=ls[0], lw=3) -ax1.plot(ns[len(n1s):], mean_te[3, len(n1s):], label=algorithms[3], c='g', ls=ls[1], lw=3) - -ax1.set_ylabel('Forward/Backward \n Transfer Efficiency (FTE/BTE)', fontsize=fontsize) -#ax1.legend(loc='upper left', fontsize=20, frameon=False) -#ax1.set_ylim(.99, 1.4) -ax1.set_xlabel('Total Sample Size', fontsize=fontsize) -ax1.tick_params(labelsize=labelsize) -ax1.set_yticks([0,.5,1]) -ax1.set_xticks([250,750,1500]) -#ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") -right_side = ax1.spines["right"] -right_side.set_visible(False) -top_side = ax1.spines["top"] -top_side.set_visible(False) -ax1.hlines(1, 50,1500, colors='gray', linestyles='dashed',linewidth=1.5) - -ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=26) -ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=26) - -######################################################## -ax = fig.add_subplot(gs[23:29,2:9]) -with open('plots/mean_angle_te.pickle','rb') as f: - te = pickle.load(f) -angle_sweep = range(0,90,1) - -ax.plot(angle_sweep,te,c='r',linewidth = 3) -ax.set_xticks(range(0,91,15)) -ax.tick_params(labelsize=labelsize) -ax.set_xlabel('Angle of Rotation (Degrees)', fontsize=fontsize) -ax.set_ylabel('Backward Transfer Efficiency (XOR)', fontsize=fontsize) -#ax.set_title("XOR vs. Rotated-XOR", fontsize = fontsize) -ax.hlines(1,0,90, colors='grey', linestyles='dashed',linewidth=1.5) - -right_side = ax.spines["right"] -right_side.set_visible(False) -top_side = ax.spines["top"] -top_side.set_visible(False) - -##################################### -ax = fig.add_subplot(gs[23:29,12:19]) - -with open('plots/mean_sample_te.pickle','rb') as f: - te = pickle.load(f) -task2_sample_sweep = (2**np.arange(np.log2(60), np.log2(5010)+1, .25)).astype('int') - -ax.plot(task2_sample_sweep,te,c='r',linewidth = 3) -ax.hlines(1, 60,5200, colors='gray', linestyles='dashed',linewidth=1.5) -ax.set_xscale('log') -ax.set_xticks([]) -ax.set_yticks([0.98,1,1.02,1.04]) -ax.tick_params(labelsize=26) -ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) -ax.text(50, np.mean(ax.get_ylim())-.042, "50", fontsize=labelsize) -ax.text(500, np.mean(ax.get_ylim())-.042, "500", fontsize=labelsize) -ax.text(5000, np.mean(ax.get_ylim())-.042, "5000", fontsize=labelsize) - -ax.text(50, np.mean(ax.get_ylim())-.047, "Number of $25^\circ$-RXOR Training Samples", fontsize=fontsize-4) -ax.set_ylabel('Backward Transfer Efficiency (XOR)',fontsize=24) - -right_side = ax.spines["right"] -right_side.set_visible(False) -top_side = ax.spines["top"] -top_side.set_visible(False) - - -plt.savefig('./plots/parity_exp.pdf') -# %% diff --git a/experiments/parity_experiment/plots/parity_exp.pdf b/experiments/parity_experiment/plots/parity_exp.pdf deleted file mode 100644 index 205edda5047855f21df72e1aee975d256ce7a110..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 68830 zcmYhiWmp|Nur-QP+}$>%I23nxcPsAh4jXqV?iBY@+}(@2ZeZi??t1&)^PPLYU&-Xj znl-cXBY7qXrLwprBg=PoM9RuFKt($u3xFBmXkvrN&ktZyHnuc(1+e}bQ3Wumdpnr} zn8b|TjO`pP0fK^v<_>26P2~Q+01{qqQfh9-Zsq{?{{cxlI=BJY{->{O?B-_f;sD_I z&qQQWc5yUSGj{{%{^Jps{O8}?%MHLJWB-p+^#8PC|EHA!=mVJ4tc=a99V`Ky{{#P_ zWMX4(>IUHYf1UsT;jl3O8~EP@L>wF(-CX}s{KJd=3&q^wpT+Y(4y0Th-JJmcr75Nc zU=la?ur@VUmHJ2h&r)|Wc5rnvb}@G__5R_PvFPE%Rvv=@N@U`>AdCh4lMNf z&{7lNfB#HSb8+tL+hg&lbUAP0ohQ~~m&arHc|&IS`EajP^Kfi0vHZj1?&tcn1F7rX z=G~w7`}CfVeWn+}|0thqgt~9<$N4@l9Q|Llx^E0W3MsclUMqB8|HgT*E_d}*a(piT z8a~8#?fH28e0$;gwDoz9|9rf3bowL~>bP_mHuUpNJGEv!*l#NHyYuFJ(KfDWsk-J7 zt1*~Azq!fCv&Su};&`B6k~(d*ubTgSleqKK;+q{}v7fc%Hf%YTF?^o)THOwDf4ffY zdA}L!dCkf*e12yO_^fuU65AZtG@LDs>zhTopX+*Sx4Yc9yV8l_DLO`RWZW9|0sC9z z-KHPDYF%viJc#e#zH{aM9BBKo8n~;I{P=Ok)^ffGwlCWpnsuC?dMH7feWW%~0(Il9 z@ssq%cZ0I4!6!^4<9>0PRxR#)>6aHk;@j%v4vM?l$wtp%(MO{TpwD5wBi~zpiZY6ogU)uP1yUPTQC9!l}@CL}T(tl6CaMU|{+U7iRygbO!voCoF7Nvucy$6~ONEN7@ zkKzAKVC}By>vwM_U%>Me`kxM?Jhd zU+Fvc@ml(gzhrO7%-sedp7ObS^@oV*sEPz1_@BIXEnL+Wu&3F1?zqRId=8SaOC!UOj z_`vgddv&V!p9aQ6$iqk~$T28T< zUejw6Q6OJ|1v^dYMfuyg2C&xTj8(6r&ZUfMk*-m65;TQR+Z8Dd zc7Q^-4lPf{$B174nj)Kl(CbKGe%>pV^? zFBH{Ev`Gy&+3ld(@2!u}%xKqR_K7mYD1u7n!Y;=2JJ&3Z?r+==)*AuWyr=Ufp>txC zs{76T*kWT*$KV`_TadybG1FQ=?GtNt1TTW|vK&FlMZ}!pd$tQ$xRF0DIIT!Z4W{r& zCs)2(o@xiU?W~U|egC8uCt0d2SPxcK*S&%}R-Y`;E%NdKV=1WRjPp6W|IE@W8jVeI zJBevG*{$+=i||@+-r>Vkhdrcd2q3@;Lq{B|E+2iOxzaS+Oc^voFVOJdQ^R;W-*+iQ z%-FMZuS$I~(%nb%)6b#V7dL-+!8DypC*6~O-YCZ}%7yoHgl$)|o=s`%$Bdw_wr6#h zO+n11nCG#P<#S`+|f!<@`~^g{9QGJ zL*|txQ)63`;5~zx3XXitm+v-<P8brnVqu^Zj_Akh6@LxxO>8|HY}H7JV|tNYQph2AxA2eSTnejYC7eLXt1_6 zgo%|@<&u>% zo!k2i6`6u#rw4y*wsh3UN{ZwwavM}I6HfxryQ7-sD5-?#{Eip9Rqb`Qg%p+omB(lm zUiNpYOD^axzMdy6THX1C@jN3+<0Qphe@UTEpW@~A5<@Ah#GQg|I=@}Th*Tc~eSKxI zYipI%uFH;RuqU;LUmr3?@w{ul?M_B)6b#_^!?2iM3HRS)L@tXcO+P2VQYu;A7Mp~c z__5Z3lyZ{hlU%0r085lHaHo44Z4Xu0;(m#3b^^Ao%BpGZsNPs)`QEHnP;aTZrAD+W zot*`$NI#Ayz49y>>Xphu#ppw-Yatt5#$ndqX7tm|`ayn2_-tz2(P=TO;mcfk3wI910t==3D#JipsJiD_VC5A|}eA?P}p*hAZuG=Dd|5sl+BPWUOBCng|L1I(dlQPhf{% ziczAlcZDTXuL`U%4vB33G4CTVpzOu7x)cl{GX`?F(x1b zEs>xX^)IA5kI5ZvV&o#8Br>@7bs#%&8Tg>slc%}DGUp9*FLYEgy(`is>4mh(U}Lcx zd?>P#2o5-N&OwM*X_To#EWdnmo#r{DAdJf`X(C3kM+RYN=BOu#Wvd%m%5q$EMWFq7 z6R-)+q|+PWlM(qe`F>ARb(pdYvZ{zX;)jJC`~#IXcL(4ZS2gfHlhR`?pQ z-Bj5E=2_*JX0SAdzRjxAXw8(-3Gs}*?MXBdGOhZ@M){xvJ!i5yl5`}N+wXt&b2Jf# zAvIT1wq?W3M$p@HRDEx_K;%g4Y}U7R(YF=AM6NPRVSR+ED@3Qd2;ms};50p`I;O}| zA=akY^o#j@7`@>~w?xw z{M{vXZh*Xy7+pqK`rFy@=j{a3Ggog{9)s1kIBp)%vGLG-kexQAQYkVsIGdgg+Yc(= zyV}1lO-UHHT8!R~+)UUqOx?CLr=+efq}PXHD}SGVti*!}MyTa%42;Oe&JxN5WmOc8 zezLa}l?+2I2OL<^XBk+sM7Yt02VKuIp1+VydHV8(u(0?8YJbRWTn45Yy)`iD_;8vZ zUOO87`r%ndPY-YmVo(_s5Ddajg3k?J5 zS(Q~!K-b!Yi}l-5x>7e-hXY410QCyI^tz7mS7q5gH;kgZcF6MtF%TGWzn7Q#CUyz` z+ak}Z{g}wasmR9p?s)xGB=Q)n*eJO zOR6{Bq5j^nRO7{E5o~4)5ha?4OBF)84Ru`0@T! z<=Elq5OgV$D=|rzCqR}d7?hjJiH#EsU*}V+F||&^{c=dqwY$|ll!Mx_-~T9)2%xqX6Rki_QJ7{Op>Ln{k}%Gdn59(rTrm!$*gQ9a{s?g$$tyi zy1NL-QGN&nRzVO2p@^WixVmPuo*Qu?{H;*cukEv1 z?2K7!?JFhC?VY=bSIyZy*8xuJ);=n1BfbmX!p2laCRI(j`Inp|ASI$7U)TWKW;pl? zE;MeinNMpMW**Xd1`xIhgOrRBZrerGl`x8k_GhNXN*m3Z@xnVPHr{*_Rva`TY)1S1 z!}A7{?+&W#SblB=TA!gNz+>tBPfm38(R#;sUi-`%42N}G?PvXIT&uU`Qb$J2bVZqb4XoTJ_6 zsMmUJ3KZnonL_>8S4K^%Frs(1Voyq`7uS6UtKpu<1&=D|1*eD3Bq*?7mdhvUc&r3i zwv1oAs`Lj{*=dHd^X$~8%H=!cbNq`YfgY`FXHM7|$7n#-8DU9^&9)j-_pH${g;)82 z&QeYT$m;&#=x+#4-$%WAk0G$oj8rVX0@E=VTF@M&^YAc!@huRvOYm;{JbE*_i`tXh z&ZXE$CMv&%NV)5|WF6W@KMQmctEbAxJZKE-(?S0E%Y!O$_Rsq{YKJ?^OX zsaEVVsMa;`vPiBBXik!Vs4=)28g*pkmNvt9n78rV7)toj)#dbQS3;7*0MDwG;Xd#s zw}#T-Vr_46v^^=(x>FTpQlz7+Ls zs2i;VLX3U>P=WW-F`dsr-fk3by>b)^vCPY2R(?tA^~huB0Cz#|88;tly>%B&C>b>h z7q)(aEE1~xUX3GxZQ<9*Ivd+8!`+lEN}1Ao;Cv}-`Aj+VH00l2-9E8mSa7!2%!%VN zR3r1tJ`d;`we_qWE0D9Q8B?6b3ERw}0#B9nN0Y@7y3e?Dc=d1M6G4y@k2y*p_eIwe z0X`C}9qX`5`J)P6ptDadV{#&--N=Smk7g~BtbWLHZ;*RjgmSA`*WG|q1hS8$6j6AQ z$i1y_8N$&>cSi|gmc7Ez3?cGKOunjkI49hhf=npkXx4mLSmc%U%D5nn8l%kbIekN= zzTb??-(HrqZ3M`nRG37M(~@wDX6wmh@FiGset}3nA=YyhQS}>S*i6RiPcIFni2Og@ zL{(@++)&)6AbP2rcb=-XguI0oCT|RRJbn?&)<5b#?&M;3icO2H5kjtNi6l?JR5+(( zZ)!rH6)Ik^E7mRTVL?}RKWs&yi$lWW^ujv9q&epgCV%)hnWnI>R@?5c#@D#=BVx6xuSrFa%5 z5BdpQU-!I;9w*N88mjAEARKJ?=pxWJwts~0c6yxjWgAXANhr*>dRz$fNz<^1u1{z! z_+??asm+!qPkP`^p>Vr5H%5^lnh8sC%wF0O<6X1x{B_XIK30a}>VybhmdU42oUeYT z@(tqQ$a}Du>dY8fIsiOxvYr^y2+44YdOb6`sSHm6ysxifXri1_D=S~qHqq&JjHn>) z{vzvAblGZVY9oNbMKqF4&!Ycz=o&ZyRHdxBJQuNNRfJ7z~nxd%B;2 zr{c}g?wCQHJT=LK{esMY2la&#FWC+S{=Ld2LW7EUhz)+l+-Om)wgeui2NH(o^?SaB zfvCsj^&Z1(gr+}9Wl;SybJx-L+jv+yX!$+p=5BBKn|OYNzZg72iq(2BCjQ-~`-tcz zv_lrom(u7TxqMW}x!CqK19dr?QMx5!h~=*&yb?CQ7i51zV!BRc(^19xAjT z?}4@+fant7lXGD@rDW_RQFgA?p@+Bl28zcVjV@loHt$bK%NwB$HB$XqDyeQ4uCidA zwL&Z04KvE(28#fXXizd}Vlg_V`9kD3lriFUaoXBMODsYxDHvj=Rd5N9fVz1OPbew1 zcw(0jO5%xjgQD~7J*Z_VIMNy=O6)a;nYfOJ3GmbUJ4c~Z6r-Lg6oPwLU?BPAioJG* zjk0%qAoectt>kch32~$7+zrc3S+A7gSSZzwx0B*jM-xBabeqZkYO$mtyh-T50jI)y zmzkwVD3IXDT9!xyk5Re9WFiVYai6Z)YY4w=mL8(|N2M!~<*4dUhbD|n`(bI`JorRys%DdcEv3)Rc)C8$ae!&J>*NQZt{))Z?9+2&x{ED3l zI-xvBboN@)E>AF^bZ?DCzGDwVLt9NFsWkCFA~ z>)?{w;_Sbs<1Gcd2=;UhZ{-9|&LP_2dNQafSL+Wv45KFvpe(D=QQ2S&M0{qf8EWeE z(;U0TH3#K(*OxmYZK@%g%+OpEBfGZ2oR@n13lY+c88r2cwuSelZUNN!ks#@x$QQ{{e7;|@EOH!4e+$31o_)Cl!upM*w zxh8U~w1U0MY`w*(Npt3j9ZN;+O3{pBJU)2i-hJLl7tHbsjBw6P&9h@IjbgTcS>HvO z4C;w}KF%bGg`n-&t~p~M>$Nnf6w2XqG9aLXd0lZH`yya~w_kGqwwyAfTlnXA`&v!w ze%eS;i<#a?oWBm15IC}GV^3NJBz}c)vk28dM*%i%SwZ9V_&5-SQLFn#w4y%2snzY|lp1`4KAQuC`qUTFi;Y zk>&1x%Ut6!(emkjO#1@R>ml!0W{hgEwGdsS(_nLG-yX)73=oox#N(jy_$AcYzsM(? z2t+^ljkv1H@D!BAc$Bqpm0H)iyFLv7|M+UJuwgHPP)Qz`$+J)hvjSz;?1&@B9sLw2#<=<#P_Em&=k+P!z zcn;m4>hR5ykngD>?7Ha=R@61KmhszW%QFW!mOo5{DQ_!$&iVpbf0gsm*{}Gm347s|+Ip3>grYthk);LzTQ42$Yy17i zn=pFd5e=QR)>ol|8LLgkW0X5AdrxCmf72|MMGa<>)R;dHso>H5)0f!taDnXn0BOtH z>b8+dYs;b$?aK^zM_GC#IEgMpHxwaURD~&5B1pKDVwKM*&JmP0?`i;xEX4^jhh8AkPNT(m+$6;HuJQ5}d__{Edk5@c)!bWq%Uh+T z*wXR`7HXqW3}Xsm_w?P&u`IBeH&(=-^HtNN+^I~~8$L!RJQjaZ`7z(QSdlzRjwV2S zg?cUrMM6~JABWR9quUnA%CRncLh_pi*-S~2Dbm7diDL~u6IR+C&Y17d_AQ~>*q)de z2lgs}?U`8uErCY6sHPdmkzhC!!284&);ps}SIM_&k?0>Fuv1PlIGri*&BdW8-oCCz zn{#14B1q)m*idG)&55G{;8JqB{VH29v=AyLyz-up<$vipI!r$@FTuu>R>Tmmdg4KJ zzayBDJNzv|ZzU5+{&2Z*;&jk&3DtMNp7ue_x1XW-`wXdyb1RfL>um`A3L1zP-ROWG zF^RykVoZ06@T4HaPTUGX`4a65(64f8M1FPn zfRu_*C#I4u$Toy;ESM|1qna}&R2&`UB?vFf#gf5QD+OM)c~1Eh0{0`vd#t*Wq+vbT z0AhQLG_goEZ7C9E6&T2kqJm0ko~-WE zaBD1;XCdW&8DgD=sLW}*Zt*$`NjoJ)L4}-$8oW;E3ZW;lW%i?ld0$Mt$s<0k2kf6z z)ZroKDo=1OW07uiMU%h4Y~DA2b*H#L$L+_?g>gZdpyWpoHG{QO;OC?-iG)5md6D+ zrhac{NC`KuaprI@sVj|Sw3`<@E47dVfs>0{hBwhb8wv0Vo>AhB?#usG80XVu@klH% z>%eS>Lih;C#Tg)juRg7#g2=H$;joj+u4uo)5$;-?fWLYU&l$+Q; z$3KRY8_>(!A-l8AyrY+?8tt3(w~bhZcSkKDL%gcO38n4Kggkt$_=Z99}{&ET4n=92sI3U2qwIh|Muq`!|FP2 z2qgq4fsvO3qcmNL?c2n@XIh6UeMMk)VJPrMlQcw{yB%18yTHBg%w(nPrhRZDlB!e~wC!5s$ zNWN`*0Atg3qB`)hiRJfD2UgE9YKpSKjhDQoun|%j8L(g!hyg>H7POYX;%d(hTHYar z$QkT8WRZIOYx^zAjIZT&aDU21_oVQQRWPOhE^z$H{GC%<8ItTQ>M2QzJh7zF6_LN5 zUnT0hw+s&_PP63E^*XJNTSAIPd_h!5-ssay9vf_gz2GC%iyd`Wc ztrvBBG`rLCLNIW5fzO+VO9wi>vgVoshCp=V+9CgJ389KKgCs+L4EGHupbiI*Cm)_VCRF3Ts@jH#kH&qsS z&Xt>BvXkro$Q}AE@NLUGiBN*65F2`IF_5Jjj&lxIr#aB=Mtjf(+Epa*mJ9 zbg!(~NmQ}RD8~=Gt~hXLRXI1eSl#!QOmuwKI9#`E3Pw4jP!91>_WZX_gwTsQt&&k? z8*~_Fo?;#*+fLl2MNqF9si8P90wd8_fF0?Q%3K_>!^!0X#jG=b_=5Sh67Qy$Cc_X& zx8jM1NN@37Wbe015JgjK9~cj*CN_1V&59qJ? zB7TUalZ8X+`_O!9b@_Rn`ue$i!N@=J7w8YY8AK0B*VQeuYb>Bb6i&g;LBBk0+`c4q ziDuUMG-|ky`F7VKP2z-}ynoG7f2L5flyV~9aljifD-d4pYwX@S$n}-$%11`pP}|6y@CdfBk{={~`CgV3eD)cGcF#VnG}!}5K*^&S z)Ms8q-3^{*5(SXXjLSl^v2P=kCkH`F;*fG8{dJMiFxZztCWU%VHrt&zgN5~T!ql7B z9LwBvY$)v^crzB>zWE`r$tXH%qc3IL{BPU$A-GCpnCBidaH}^78%JwYf5wbKdMqAY z+;|$CYOUsM8c5jtgh@!!9;x6jL$~{3imnUnGBiopqAHPJD?5x>r=eqi#+eqcZNhwM zbHVvz4?AORINa@3T^aBd=W@s|MR|y21b-$!X_J?hbX>Z6QwoQt`33d&xyO+}1{t6@ zlI)1ZdY|6o9MM3=L>R8`PYuK+?+H6Tni&v^F=rvix*?}+x+x*#jW?fSFPV0q*kre$ zEY_70&D)Z3J-qv)HZ=#b&BzHyU_zN!ESaY|p@bv{l6U8_Qg!+MzdmxPhF*r8 zsM*6^S!&gF151ij)m{k#8fNn~KQra)7+(rVyHrQ7XJD*qebPGag}I;wWmwD8;VCi9 zWnLor)@y?&pBD~ox}aMf+<5w+L||tIzR|%))cn>&nr+=s4)8hj!JT+O_0oZfNzx6!Iq)rjcO-A{4 zM|6MW0)A6Byz`RP+eJzYv={Kf37tlJ40l-o8Q*Lmu+O3-tV9K#$rGK%k3X%}`uGELUw{tkG{1vudfW0fM_ zmD5iX;U z;jGR(DmH5|W+PPuRJ?LDl@66F3N5f&C{1R5h4BY@~>P#D=NP-dY zcYnOpwI4FXDmqRH8Z*^j5?dcFp}eQCsUFoX2~}KXA+;XLgvi_ynoD4hU@c#^-&5fQ zU76Kxze+4Cr%Ck9x@u2D50F`%#>~zV6K2OmBZ1wD6aj+#rb5^jyxp!78L&i4V*)r6 zcitu{#Nqq!CZEj#M?ry*3W}mL1koqtB;WL3gFvrcNA&3TWKJ~mNnW~}`*Bnw4){0- zPO8`HEIz19V6^(PtHrOniqpP9gBjS>`xE{nq$GY4AVCJ*wpMK>p=(@bX`sb+l@@htnCUVhSc7)q%hr4phq_2x8V%Q-WFaPQ`O|8lE zd3p%hFH#e5QJ*Z;%U-isHnwVXE?H$&!U>=Nm*P`41L>Grr@n^*;`@9G?@Ny+W3zv2eoG6_B*rKF=`B9E01t%kxX# zubY15@CDcAU1$DGb_u>ihaz0vq%ea#Sz)6SorohDs=<5X4%ZU<{Q^&0tg!y|s_7;~ z)-CbM^iC2 z_xU5nuzyfS8PX6F6jCxU~CZy!e#_EQk+t5png%pxKcpd6v~){1=LUi0ja)-TaD zk|Kl12hEpCM^N4nUZt9D0rjq$R>|`t5Sd+V_JQ3Hc`~&Ktu2S0M0{G=ugDY0<$UIs z1gL9cY9&P`fd%>`D>D?j&m_OQ&<3(op}~IHIG7G~w@sG9EFLMYjlB1dBPV2{1to5b z`&j`*9iaVOVbbylO!;0caFYiAe172RQKGp2>uVyXnaU>^e&+TU=-@VGH#9edWpIR8 zN4Ler`()5+O9L0@QC!kuJ0mKYZBOR({%IqIE?-bkxW&9zDlh<*rV?n2)Yvk5H)Yo0 zM^RL2#3X`npQd@te^xh{6vyGMaWwyU$-IY2pH*d*lv^p@h49HKFJq)hKlHBP+{02h zAu^Llvf-;L-Qm569GLQxiEu?%u$3D5n$M%;ujEKOZGs@`u@mc69bNTS!y?<;kSeO8 z!XJCMB2i=~3HnI)NoR}jdQN;$ipod66}nV_p{43;gvEh~p!$%cprZ8^^7|r^PS#>K zjRdIBP-eLXLMMWT?t}p{nK=7boh7buu1Mbd`lj(OnPpdh)a z>ydhj(ScEL091~{`M-NHq&3#D^|V$0OO&4%Ujr}83~pe{uowBe5_y(;cd2ugG?lxK9=-k2iK(v9WI8Vt z2@fsZs8@9Pg;GT<<_mjTk#l{8^?D?r9v_04;~>@A6g+s*jRhfodY}ClO(Xy^_;9Rb z44+w<$WTE_xdomUV~_wAgS@OLexd#$DA6TjxxnSUNm$F2EG5T5`o)fIY$|lu>3{i}5ud1=wkjKZKbl;#u5n!DX>_y2hMl3_YQl?VyKn97^WQ>v8u} zG%0LyWO0bP8z`+owzwPF1)U`p=ox%0$GdXQ{Qlu~F~F<(crKNO-2nJ$`Xt~u%RNG* zTY+a@BEHJY*i@CzMf!4cW2GL3Xh5;$AE{jVS2CD4;t3h`;*`T>ewJ`dSdYAK025>^ za3?^IN;xk5!xlhBPLzuFDBvaB(bAAUpf+g9^4=}{)?0XmlA>aEh#ShmlNN*Rh_+5w zylYg{sw()c7@i6$p=G)^s13DbH~z$aT~Z0FmXr>TX#@_OQuXKz3JueU&Va8x1%6?S zROR|t$@Ln6g6vk1%K2VOvgJCi1rlhDuYmEY&aKpo>r7v&;mZ+$)d0bMGWW1V#LdY3 z8Rcw`>D4JRcuAqsWXim8gxmx_oiVRt8hS=$e!CM+$C24);;4tTlJwE6Hp(Qj5@Gxt0aQp?+MUP)l{Fl66mqKS?^%KnX@G3&EFG?HyM) z5oGp48QQ=ab(*M!YBR&d-Q;Qu9EW_`|i=m74*y}L2L8qbg?2YGFxN=+U45G z2fwe15&rEm;>~kiLxh!5^gqZh89zg9O*&bW#ithzFLVXs{@qf?NPPbd5}kx`tA^2` zB+?Zk!w?#uK9k?`m3`+&Ad z3oRKlY{BFa#R{2Ob<9t)dy5_tO)+m!X1~kIsvWaPF}M}ZQ~evxAlFN)JQqpXpsnYx zH%P>E8B+XKGOEsIJD*P++WXgWKCb~zmt6QXRmxRf(wDB&I?Ee*7T^xn>O#}3h^j*i zKHqbc+SqU)PE;7b-+RE% zrMr)!FCb$ml{2diGFS`=>KlAb<_nG!d8g=^U+ZSlv8|$;U0*+l7;q0TU-Z5fZ0W(9 zo@z4Jj*2jwKikvo9_J?MP7s{?m*t;ExQ+zw%T({JB)S^Y_0unz#zqZ=B#vC`fUPmN z`?)Ezs>{e}xCp@fKkr&7q9*S4^ve^1zC~`wQ8@g?{vcfIw=m6Rv-x+xvvjf%^KB}%T?!dq%!pGg9YWS@g~j_SQh;PzRj{;2eW3P zwW2D_FB|H|*;^nN?=M@5HaJ%rxgvyR!m8~oCtCAt3K}5`RFSGGlutpJcx9f%7 z*vG3m@lxKwv)8*31b!8!5B~Ap*uM{kJBH9vt#`SUGSe!a<#=$hfm>gjpdT^$*<93k zMBez0Z1SW;8LlPobUY`yU4Z21k3sR)`}be%nZaS9(iP0fV7In3aooLVhUJLTyqGF7 zirx{w>_eiheKgx8L0XuG?NUp0De_SRCvp(ITQRzGR#b9AGCZaS@!xHmq76wk2TgV9 zVdp@5&rkg3=*@EYYrtC~WXWY+@&P>VPl=B6v=uZZSy_|2y*wf$$irCvyQZ87&7VG{ zfc2YxMK7y_!Y^Te*`f#0mRkc_){KNM3O$iB9Z&f=h zwSrdMa6GdzWt?C`w2rn)-;NXg-iY^7?GiV3c#yNHfM&|ae@)0k-+y<{$|xg%#tZ)v zH<0xe%WvL3W_GM=K`wLyH~^pI+PMA8a`&6q@sA$OI2#6rDtFl8tO7HALyN^p<`5Nj zFlcI=ol%UJ)5{o~`0UnJqETPdw3rt-E+q%kI+Y@$Ffuin5GU>2GLTRwkmTnr1oF%< zjG7cKLDT=b+-=5+E?-<2e#km>HIB?nv&-zL3mAvq(96 zyz~5h0&lLKG6C;}PVzoqUOa08Y92pAK4z7C-}hTSw=WGp4+2VUuU=k1?}#Y&7WVtL zc+EMXDWR?|?jJv|zyXh3pWC0$OrQIoZ)l%)FPk6fJ+GIB0iW?TpU0O0uZNo-5BJkG zu(u0Or-u1|r-mPGJrqF`O36yUm_sK(J#WLH9>4c_Ch#ZtvxnmT#iRJ+e)vx52|i5l z2#p>G(grIgfEydmEg{$Ztf$mnncGoGqiZW-`Kv1L?Ze6UnzL4vsvX%CtO#93N}umc zWavnY^K8nl!I3DCimMp`{_e5!>BMpE{s=$AltqkjDfL#x0wzUzs`Neq#-kG(+_V}? zS(s570SXmB5;bTkqay^7y(wbdLV8L*^xYaZ&9H}H?9|TvzeVY&ALD?Iz^CH1)oulN zODdho2gRIF^M(Sl_FWGr;TJxgNJJ}i@{58s8~(#TIiJKGybLq*Vjt43Z$f2+Ka6C)&;ZhLt3ZP2A8Lk9ICY!cxk;X45#>P23ihbe0 zSF$RP({ZrI@!W>JS1r-K+!F>71gDv#>FP?-qsv&q2*$*>bts7apE3Vogw{PZamDD<&^;K2^8m>?0arAMlJvjwPKO_bJWrlbHgJ z-EN8P6fS!vCg2@Apq|2|_5M91QiOP4vk zsY-0_N_H%53($wWr?k_Oo|tzFEv*juDro{dU|pe82*Wq=fgo2(VR>GuF>N{ibwA}+ zU2{fl^OBq=rtd(Hl*z0&C973$49Fd4tdCLz?_?Fs^qz&y1CXzf zw|F@Utym@#c%6yW0+vg zqMW@|Co`OJ4je^;O4Vdkci_DXQ6kL3SZ{%`HBVs@9Un!K=uR^Zo5XJsHan}erbNzC z4hY`+G4@8mNC!7XbQ@Ux1+RF{U0qc@6Sl?+G9B5;14V?Cl+q0N`x;=Mw(6Js7-T<# zC8>n?$b{LKt}q=N_hYQkT+vcV@8=cevT@P4O?ZQDJmpjo4<+-&OkN8hhnsBGrAt=g zjS6RynDFP$*~H$Nq^srTS|?=9F$6oGieeJMxNh%PfBS}S!RDgtVmv?(gVA1eLPq1i}P86e0zOK8$K4uMGp)oDF zs8~t+PHJ02Tp&<2K8@w4W;Exr7{D7E3p$K{fspk0o?xU!e6sR{Dmg$-!|TLmUJp5&SK2$PzZ};)0`)dsd5SU<;jUp9vIh4ribv0NBuFQ$^4?_WS90~pm22Un!gZAa zv#4KA^~u*eiD-XeJ3jhS2wx3GU|eNsi26yeQ-3#~Q3BsIKBDF)%9*4n}`ML(nM}9bC+2SbXIGBdp5LEp|tyIJu#cwXBS-33c_{mwq zyifCcUJB-szm-#t3_O*;!osJQ!2SJ9rWQVz(pR$J?!bTl8U~S!nP9o#hqqsYvS@0> zBAa~#T*c2Mlf%hzryERUQiHxr_6?B#EWMQB^P22Uf6{6u&&4j zf#+NlDst$3Ql6P1)z?>tYh^2f+=8iXFgVU3U;1pqx#Trpu(VbW*Pf&X1OxUC!?_%> z60#|8AD8~~_Ur!5`A}wD0AV;oW^6{!8(!l=b5=a@Nq0Vdz0pUL6$Hnga%+(KNwb?U zOz4Glg%i6vrF2a)02olsN>e4rlWXm_}r8y>TthluxNYjBDAi3Gakwe6X)?&kI$X)^gLagm0 zW>4+J(iI$&_=(wWl9kox8x3sDo#}lbk}=Jh7+2&OFpH zhtjm0`VB#cP;Pr{dkmK7v*`~{XjH=|K#SnY&##FTmd%2)A;2{=gLgZ>$Y3*a?l+tv%QAmsxo zZz-Me8tE4f33|mI6SsCFs%NlEy?RoW(b`FpyKB7LnXMRf;}bJKl2RC&i*5BV^GM1V zf{3B)>q#3G;%#1hACcMPBgeuNVQ09>2jph};(FApoG;|AbT3TT!O}>bJ{6>lF$x+f zq z+lqnSqn7=wFAU)NC=K!fDy3p}pzvMxW-!>c&Wk3%WSLjg3!{)dB1;SfIgw;)mg05I ztX^gR$hrk_{ief9orcB<^hH0JensnY6tR(u1*?5F+JVvhT5Oi_-9QxeCBXE-D@lZ* zH=WxhGI~$TQ)L3S+^JL9>5-g!w}$=#J7o!|NFsfx3=bOH zvBr1URfS_jZ=R9%R948&{)Q_-&-MeR4EBLNJ32)ZSb$vI2FGyC(MYloaMe#3%oHf6 zN@Vj;pmO#4pgGB643_PajNC_A^jZ3pYk^V$r~v>uOOXNDv64c@PTL;>BES9wkn|n) zxmZlHE=3i}Fq$<$8~0Mv1R&Uke-!|xG0K;@%Qd4{1TV7zyMXo^sC#n+dKE<0yO^+d zYUPk=z(8xcWv*vT{<=OLvbI^C*g;#0^_QoGoVeXL2#QKwuJhC@C@3qJQ;^eV!Rg+2 zj-Vp7gSKZ5MR$r>I^vu@w<*tp>23~Phbtc+a4|e2H+;*FSkeYNR%J7I4TNh^1(FwUb|k5 z*a@=&A1U((&csJn6n`gY{~l=cwPou-fH8dRNx0Wm!Fs}*2|3v=W{wGL5`O`ed$Wjo zbu)52IGuxD=cCLqwI=}Uu2C8FVH_Ks(yyUYLyejiT*19S>fTY`Nrh=b)RAHcaJ`h< zi|EuaCqwr@RdoGvF!F-!wiBaeAHWrVTc!pI)kpHWT|3qbO=yIp76FG0{J(~@LD@~FY3Mt6&XLM4PeAwM z9uTII<@F6FxlLeThTEpS-}FI#QjFf zkl476Y`CM?zV@D)wP_jodp$w14HDKZMjxFXwb$B!O-dQQp z=G3!b47?~e3MC^+h^UhtJyqH4UJ=E@;U!Vod|2_6WXR^Ve(fW(H~PGxz#=T+>BkMm z)?KhGq%27fc9bSD=H|cwg7m+)Tg-s|wr2vL=P2bzH`q}*gL3-}67NizfoZ8hJHR~j$LG0k69Qp|gew-wCo~!ccd%=7W#2kK28Anb&D8QLNxSG=voi;&Z zKOs^UH54LQJ@f;+t&q)KesIoAx@^-A`IUI@j}%U)AO~_10@M~oo-SAOYnS)W6)ZlT z#)bBVHsoM}Z2Srvsd19n=ysURYe|_X6Kc>cZp1d~Z5)I+uGkoc4ltY0%Q+D zng*g#*I-3UK?$XF3doMO@(MeC57TNZdmUpwg0fpr)b#P^PIJPfW=ae)L-^`B3gXJ= zzEhu-I2PdCR<6aAk%fLn|CUKPcF$6nfklAOfp=0LYYGNo3y!O~+FvpaTY(d6N9WJc zk8R&6Z7Li*Bvr9LIurD#mGQ|EEt)v-Lsql2$dh&*ihMa9px^7W%~P<(+>&w!z5p(Y zGB8R*^ODC{Q2}&{H6#Lz*+>k93L( z($TDx5c4tNvZFGKfTGex>gESpMnwa^ zmZbmOjnKp%WB8)?9Jbr`1M4K?yR#`Zl?~OA3lh|( zkmI&%N7u`?5?RFD)2DBhbg zfJ8<2;>v6vLjd+ToLP@p0E22;ife(g!E5TdY;y(*1?LX2Yy4=-@p`3^&R2wo zL+0pS3zFfDBq8(c0m~(lQ_esOw%k^CW0+0r9SHW&uwGkUUtV$E1Er=n=uv=rz=j+- z8-e!3y3c_J>4>roE#8_G-j06A9GJ0sXGuni02n2@FC;N-Rb;_hz52#dQVQs!A&U#h zmv+2Uo~gI62$TS(k(1k&SgDO>m-)PoUa|0oB(;oe4)z*&p$YHV^-!))4nFD1KUtUl zO;fkGdf9qsz8yeFw38gFk=sbud=<2=p@)*6(x2>v8>~;j;AAZdN;v>ZK}uMel_m6D zzxJT$6szFq)jJ?;>P%WN8AiJwin9fS$j!AZuspCFc}^(X1-h`ExcT+s_1T+!Id|C#?E888MjJO$yC zZ^Xd7L9GTCED}=;ra5vv*K5RzfnytwRv!E*ZS$$q>!n?90@SG}#uNcRMnJbJFn@Lhj8vj?vyY;E6e83qoU@=~&`Rj5 z>2K)8ABB7RcyeS{l868{hbXBYaO6Z4r_ZdOM}IR}-gDw1o=JGH-)I(su_?C^y894f zrtKa8voPchnS|A@hTc-3$^qUV#s)%(hi*3ws(Wo8RhcP6G969^dC3LKmY?g`KyvxX z39!y9@k3j|EnX$y&brxJg%~SE$dgB>AEQpP54&?KmFfl>gIPmS#n<~F$y#c#H zXs)Go_)77SfZ<*75D{OwqojilpuD3PFyTjYs(oYIopYOk;-H@Os0EXBEn_%aXX{S& zjPw~5e2!l-kn0z1B8gql3_$C9^yP>XoCz3tNd!p33Zke<0+U{CjV#Ae&V;=Ul?5vp zdIwpL-T;d6b(rc}*3gEyT8PENn9l=1pA-tB*G-@HJ6^xSUVx;C0BpahLosYIX~zvO zI9!mdG|BDsTw=zu6x18KMfK*e-jE;|L@J9yvqDpaRQz{~d3P?%l>q`gvjsv-L3&OJ zab8(;b0!gjipiiLWjV@p(Yk)fbtDmsF276fZOl~m(b_o>(7SS8oQGQ*20%XkgMPY0 zcVEwYDVvA1btbVuwtt-H)W)%E$0KrbLqBCa1~VAxgR5mm!CPuuX$@eI5uuP(&)U|O zsj-4QS!gP_T=Ql)ElbA`L9ftBx&_-{0KhnRZC(4Kan$3R!I55YE4u3%WK#gK4x%KY zJB3I;NK6>43J@^BGn6AXn+VWmvw}Sj>bXbuN8fnJrmiFzN*?c9&WMO$N~Jw_Xu_Ez zFW36HnIFaS23X_Bh9r_jw{$T;a-X^-AI)^tHlB&mp~YzP+1D|^NeI{}8Nqb@PCwj+ zB6TJ7SL?RW`choJ&R$Q?Zz+{VlX4Vnd7^9XFg}0|Cf~LVi5Llc!BfO+JUvOmy5~?$ zI_{~2Zj|fe2M|Tb zWPsV6dG8{EUZWA{bRB2rA@WMw5w-t;7;1bBhz6qZ{?Kjot%pc1gK}r1=j{DNi9O*! z3n)Vl5bb)mE*G~!|Bjr{M5|5T9VA{a2(E|50G&}NFLn-+x$LX2-mcLgQ)lh0=9{{5 z&R$LAG{Sd5fiwVhMmrvLrbGHqCuL?D;w}RsqZao9`1bN;M-H!>o{E&G9TyTtW_e{R8C`%b2Bg36K9a&gG z{+*fOtN9^}*4`w6D?D!sP%+}sZ?A@@lcE1LI`hb=Eo@_CIBTgmgg>RlsaTM{JGmiO-zoTNA9T?_KZcr66-s z0_Z9C%GMEtG;Vi7AxZ(X*dM;tujUF9xQc6PCMn2ED4%N39_e61`ohG|uVbpedwy82 zaTYoIg@RVJm6`(ewoW+=63@fv#U;?EyKaz7z_n}lP7anc{L!nCYh5J4TCu3t!Az}8 zIHPr{;K-(u=&=5h9hch)Ms$~KX{RtTh^h2NWe(TAOLZGORY<>wvgPcblC!|aSFff! zIs*i$6$BH;8~_84O@Qj$QBQ2RNI*S?egW{g|dM|&jC{B@CPN~8(Hds8`k>xgS zDDT%_=5d}$DgF0!;F$G%iq46?KcJN?$3Xpwa+C7jdLAWN#B@sFuSLdi+h?w!6lTm- z&o05R*|dytfT8OBleub-Q;<&#Kn?SLIOv?*M8*#$x>0bxUGC^~KpiLm=lI%&a5b#r zupKo%TBC3aYb|L7(bt)bAJ$viQvTb*H zmQyfxSNgkQG*w8onQGE1TcGar1FxMd9lYTLUCSSc{%(rI*olH$p?tE>B*~M@JDtIk zRLZ=I@#tato=BQ%Jzj5~P1j?s?+Imvjr%IZ_=avVIi5ioI85OCS|(y<>LjQ7rteNk z>ICF5*KiaN0z=88Erb~c(t-pFv)|5zfjWv4)FBKRbR`}mHIuF>)mF%;5NYjz4luv@ zSF5F>091#$Y>!k*84t7?wAF$ouHJ=yFM0Q-8@fO#k(rN0bbkCw6rNgQOPPm3QGc>y z=xq-Li9ZODyUv2rlyewaPsR=TyHGCO>ID!w?qFy1N4>-A>w#&OS04S&8@%$*T|ovD zIs?%(*XmcSno~n^rI%qlkYbu2ZQ5>&Lh*H@TLW1Q-AO#fKugN!(AoGwa^9eFgko@v z{c20D6L@54;UNF_=c_cP`3dr;V?vBCwUqH-BNG| z*Ml8cDrG896zq+I`RP>09P8J+zAWQP=nDS?!~Tj@2Qk8q53rP!6R2100D&r-K;8MW0 zXG)AJs!`Y<5FHnEbj*&pQWITks`~UW^xqIRt{=ckKynq8;0+U)brha%v}f<}uELZ9 zhCNb9{GBb6)nL@Wg2?pgiOngS<9` zg6+{&LOq+w>PNA--rCBBg^q!v1V_{AgIpjQ0e5|c1W4;M7j7VsoKycX_Zb6zEQ4}s8GMEMUXWqj;y2~unxm2YJwDmgmhAnG$ zew{h5v9^#k$j&bKqLNe@y(n~fX0nW2oIK*G6GX85`_U!T&&;-9pVzT-K*ZCR(xPVR zW%UN)fw|YYqqo4Wq8*`?p0GA!?1?*+iCvQo-=IHJ?>*qg-7tYHW+B!OiQV|131CVd z86RZ0Xt2YKjnz9&wvzacF)$q`168O;ZT(KaLqARl`+)TYZMDW~ESI5Zk|G=~M6>FbsbKxymg1$#>LIVQY}hS$h05v60#B0{;fg#llI zuzX>bF&i`gG_`4c+?vEXC_@e|^g|XyE@4#t>@M7)1DsPPOmF*n(LUFzw9Wuxy?vtr z7K6f91KrS(@;#1z%2kpNMyw6Xs9gX4A|hADbT&lD<@PywKNKwwr4P*PF_K7fy|vW^ z15(H|ye}nYM}PQ&{RK?vEGcDU3IUrUC^SwVkf$R=E{Ag!eSX6@xY3EEzK&~TW)}g^ z(XSdc#A!>OO9{1J_d=`HCh~sQ-UM@XnNun4LjVWy9Gi%(uB*!V+rhw0s-q#t0AqYh zq8uw|TbVpXQ7sF)_;gx_oy@8i6sX5q;#3iR887V%XILg?T!GNkz?2?t8DpdzpzS~) zv=7)N>TN|5s3bOQkv$ApH}P=_E3eQA!Y|^-))Z>!5UB=?Vj8ia??xz+BLkx&hoNAT;fWCvRm= zs3}`%^Sc;QiM^Pc92ML}>pdmxoqbRoUXc=SYi-9$-V7>max*Xj`}DXnJkeQ%ylOv0 zj-i(iFoKFqn=+dF(Le`>+Dnqi z<>Y*8OV58+#pc^EX0Pz`%;=4i$u9E%*R^|Rgm%_}+u9Rk=)LXUIQO<-p>IeENkpQUxN(rTw_sKiWTRY z;#RFwXW&pjB}bC$p=1*4+6LNU%5TqW!Mux}8!2A7y~CCIVDgNwsBls5QZ^pvI~cXX z(gHJXN_X^xneudWHnW2N6B>1e&f=M_09a3VbmxD@MI*L=kB!bD!%pt-{9G>zKB0 zqXaefqT9zHk&_V{k?dK_OX&N0!AQUF`N?nyT6NDNey3?SGfEINi)O2cBp5&zb!G^zL8~G|4vFwCI9{9Az*cG%+nmYH z1N*14f+*P5w1Hsej5Z(Ljfv2No_O?v!-@c#S1Rs~m4ZSITrZ#ULy*yF-cNn*_VqwN z(RCRZp(|9@_!_oRc%$c-QH=*$iC4j*>>w}>)8yuvSPys!V-?I>U>%-h0`MzZO6nNN zY0muKmLebtr0$fT^u#F2$%c$XFL*NK=NFJ+Ur@}Se+K{BQ{9c z(NFu~^$OvX)-(!Jt3P6XS{#d1tuMFP&V)Z|E;A|QDXPn`y8_ByFpQA%(J5?@K8+O7 z=&3QT?faDxwZ_`^-1>9SuRG7!ZIgZJHmu^1AfvcTE{T#QaYMr@yA?+w&;Z7zja=E73Br0p>`*#gCT$6wwbQl4=YYUDAm=lVhT54~aS z8G{@><=uu%QRo;J1hp!+pNfAD4HXFQnNE^#)o1K_=`8GtZR-RhDwl9VgX)moxVw&q zf(5L~`}D_AGXF3Vs#I<(NYa?}LM+9`qv8`A7#mbTIZ+=u)uMJBl-xuN8- zyth-9DgWMW!ah8{(1z{Mo&P>`TwyO#Z5rSJ)FO*xBm>m!oU6%6Mc=;Tq*`%GzCqp9 zD81kFo?w7QQ3-VF3Das#ZhV>VdI8`7YIi@Mz_^`@++pbkAvhbw{O!vXEG0{=+M8Wkd!Vm zY~%HAoU(sZcutPOju$K@3pJD7tX>B}eoujQr0?_8TSLhA&|kTAP_s3@(E3cC-=Ifn zh(P=_=RcTZbtqv@wp`I1gXn{~&WgxQ-65q6EA^1+6`^j#y!I88D)V?i#GxjfxO0V{ z##F)hf#;+r0XbD{dKy~%4GmOsVi%l{W?*GZ>m3Ox5-7 zMMDNA?rQSc(+*2+1W+w+S!N;ySYl4x&eKTjLZpscybNSJk-q()BgP~c{oylUa^>@N zB=jywH!Eg=@SA2qR~LjTUkBf!Q&lhTdit(sZCd<&yberFitxOmTm(Y4=57bho$)a6 zEZExm_x?_Wr3E*u0JPhNcpYDd`paST@*a=sgODIz&g^*50oDT^=*h2PLZczGAm0lI zS7I_+Fmw9&6`SzK>IIsYrhDYn_#E6_7<{RBIe92M7Q-WOdp%Z>#Rm;hu;l~Lj@qoA zZ^qLJ-SDqPn+3^g6$O&<`34F6u$F?yp17TQSPh!sk;AJD;^H1aTu=Bx?s5@8*|ttD ziqsH0&5b(8)fLdeW?~G4R8ECKI;iMaL2XH(1{!trgQ$ku%Mtqv;7eB+it;o)2(0~E zXL5cp01N)qdR6MT^Ct>;K+WuIY&mqP4_UR8P|9Z!;Wuso?7XdBr zpti6cd2wx{-rj!2Ru@@W`ttgHE#-Mo|2k(%JYkx&g6^HkVl)Y7N>Wic1s6a6)6hY0d8;{6I!3c`jP;1G^31eaU6{K`)RD|=vb4~*xm;&Wm zEU13zNnR%|76dR00pLf~dg#dO()k%)FBPOtpw}yRbtvjr)3WtfzR9p;43hjM}v{`o_p4MYOZCM$?8 zm-3bmSU5#=QBgPH#D|ceb<_!8u-h5H#2*Mq@{kYo!Uy=^4i9FNqf_=)knHB9CK}}< z+CXnZpL0Oj8v9g{Vsw0&X%*?2(v2l{~*df6a@7j`U?*Q-G1Ei8w467UHX}4T))wL0z%S= zqmvrSk`~giG(fIphU^(ON@~5Qge7`Zn_vOD1SB1~-_?+)0wo-Mj`ZN^loE zP7bc>&BdS)=nxX$(LodOdC=!F=+txodEl%1K3C)xMpD7I!UpD8lT%g~C-<}>lP6kL z!Rg3RbTs&M$(2;YWN`HX`d9`Ed#B!-M5hV>wGI8(z_P~qAip?hL26sZc*gXafzg=- z+w~bPXm!!NZSjEfL)I4rdAX&fwIq|c(YNvEB04gayZc@DL~j@fHbE&I*?BcEzrcPA z-U~T&g)KORC9?@;W{lAcb@v}Sol~ZJp_tlJzDITx7PAh{rryP%m8fM<%mXPVq*jZ@ z?DX&IdL=f41{ORGme|J>O2Pg-EtYa?%QePf*fFj3H*s89jW>?2&ENfoG%jD z77YdTRVi3#s7QQ~ z1oj<;$9T%-8wPg;j`MDS2bvojk?o;#rDQ7F|J&ZV^-6MFSNgqwMLo(7Rf_xN(Sjud zgMkf6#Mr>d4;-nfp@$+ZQnE1q^|QVmd8#t=L^V%0=|LC}CD}Y#m6ex>*s(8buSM}A z_XR0V<9Dji+20S&xCZCPO6o0H-iF_;V80hqtlesBPK;6$6N%|XTo=|hRNT^g2)hWOCen?mWPnS+uZxp3GUDTnm% zgkw9K6eSHZin_q=Q~)HNp<8YKBx^Czb`9a_)fj9Pb%)aXf|-IVBvXbz$$04j*9&n+ zL_gNEk+e#p-5gTzlzDT$Ie?`J((lQ%(RP-#5IwLof2qWNiqu1Fb-|Iy5s`1pK5Hai zQcN%Ap(t^VW;vi7N4^}rt4I3?oB3E<0cbm)2X_IoPA^UM<>X;^JUy#HG3mUQh zo*XxI42o|ZP1>o~C)Wg&S=6gf<|I~@yh6*iUY!-O+k~!nuEeEsAA+6LD2uE%5Js3- zu{H@>+CfXKwHXyX^z}j;v>-tDg0IT_MRCeX5;NBc&?-IcTen}#mhDmW(Bh)?pNJlF zPR1UgvofUVxJAni1iQAjYo99gWfudY%koe}o>$PzEdt|kDA5`Vu$F^1gErMzzan@< z6%-9-(*-IX>=$R3X`?)p1&TiqvgknDl6=dUOs{@^KeRw-lZ0B?o8&XMA96XelCCi| zV5IQ@yaIjyphKO)WqZ7-&N{+mvivT?>dwoqu10F)aXq+#o-G0nh5hJ-Dl^czrMO`_ z(DMI$XC8E`8b>;KHR*Ca^E|CEatKFiVo_4myC=bnbXDp#EeM$=&V;2@4rd*KD!BCq z0&|L*tG9yq5+w1BNvG`?vWYac#UbB-o$A#!#AhR&m2e-rJlEE(n&jw9bi-9aAJ{rH z7;f50L!+kbODHhd+oVuLp$XC#tTv*v;;l8Yf}}un2S}@&g*a7dA#0SH9R2E@gpjZ?u zDi-YP!2?NwM6WgEVW$9#6{#u*DmYJ?XbSH_F@^(wfuXNKBVV4#F`>DLtgq`xP?{!= zHo-;!xn2^^s2~xWmIZXt)JGakh)!{2UNj5T^ z025A9#67i0bdMRixNmgdIeL;RdK%?PXr8n+X{(AcxMB?^dey0i6s8!%WPF6xOjf(l zB!Sci^^+$*k8W;?wMNY_9GY;W@tUUGu%5e0Rgq5&i^T@36XFLGM_k)NHa-9Q4FOYksY*D!xN|U>-z30g8}-LR*=eN{7Gpxl$LDVHh&m zK@n5{glvlA+9q_OUogcCB^&CPSX%f%S^Y`AyPs3j^r)ee74uN-SgfX{=gl&%m+Lq7 zD`%Q}@|Xrh$3VFLl%#w(X!!WaC3(-CHs7vr#5Y;{^_)+mRe<(UJ1@m8IeQR-Xyn?0 zyxi!n7T8FURtS)&qB!7^GVFD7BWtbe1p$V@P-vVKjKSB0FC>4y)5EafK2+$8A?)w4 zAwvq54V0DoyoigQPc=fP)}hGNENzN4>(t-4YKRp0x8_ZFest2wy>W8G&j7&{#tt5@ z(y~Wh2;7g8%P(u9mzvgF6{Ab32TY!P207Wbju) zgC2Rd@Z`BSD154X+js$OYQTD#c6G@ z&Lg<-lkp(VCNfFZnxKzW6w|=!6?k}BU#~I3ipWi2vxd%9b1vb-OZ1_vR~{sOEKN=U ziW-+8$eJL-^Yb!~g`f0``W%}sK!FTZ4o`E$dXD=w8s%k0 z>?g!@DHNH5FRs<~s)MOmh9z~f)=ZlMJlDFU<9etyx_`ArDwKugzo%P7Ey8HFcK7jD!7}Nj2$76sad&t7 z2%F^L=?jtm;BL@4%~|-x%1hSv_jT!*`G8OrbjHbci`5vUkZsxC+ijHA;_}5u1EJmk$(6(gqjNR$dUUv)Vq6OGi@)N zkPA%>Fqo96Dp@%b4kd=un(lr2rjwlM$~AH}7>*1f)S}+i<)%@)(FfwX9t{hS z7f@`LYwT`4Q%P};!Xsq1Z6lLwGAc2|~Xob3g>R7+n~Tba=}N#qeYVJ~xMWYDqjqU9|3^1`}%^mcEcq#Bv* zXt4lvsBy=YeE4=J9|=7W!5*0$`ujX23ocC~Av!Su=XfLqY{x7ZhWH@)JbXW9sIQx& zF$rEKMb8ZyqenjD@OA24h~CO&&m+&&6G^7n@_L3c!<$p^_DxMq>zQmTT{&qz|M-eh zGci&@a5orJZcs#s((8(z8T5dfW<6^rdWhZ-HK5p@X7eUG>fMTP0cq6>Ilcr3cR8++ zMTVlsTaB4&SPBEdmT0(dsn3?sH96yUW6|`jz1Wcztf|%YR>c)QDW82;0F6chYQpr@ zwmZ$-LPKH7rnN%gs-6E)L{Q}$eT>Q->6G!-58VuxDovAv`mPq_uBWh&nid_und&-d=x6i;FG&Yguf`p>SWFezaRPSWk+4ArzN+ zxq;BUabVJ$OfiuBp@i<_hCAoiGpvvfrmAO32|No#8qlK}=lwLs$lweT)OQS>!l_7S zS&w1Gp@?lbd%i|1&1-1n<91{_+j?$0G(Q2Hc?@)L83`c-?U7casfjAuqo}Zv(|@_&~i-Eyi`TP+=$xov&cVG=)z=%PYM1N1`U*D z4SE-P2RRHt1-@)8%}<>Tx(O;haSldcZA0*6*Y3+59(G!7-kK{sOw)3y(dw%m@#^Ge z^8%I<gmf3v5Z7a$=14@-JGgc-q$JQG)@HR4Q8CJ18a=tCq3Nib1)HF`= z2ONOqST6yfXCZ!RdA*XbC*4&n_vlBu9l8d^Q+YufjLp-OQ4~gps1-h}mgMTa%kY?a z)NZMFk3>uzjM0!5xcscrNdzZHwUv(lCSNqm{w4%E)?060BSk6blc$_u6i? zFmj#NaV!}Zpp7i(4qgh}1~4;f2VHM8yvZi(K1&5IM8P{NBr$%r<;KD)fKbAKc1scc z9xC4;C#HC|V4{O9qIyl)2hMlB5BQU(1D71ce7^Tl932Q5#8k3duatsTg@+}hRu9QW z!oP=h6%m3JhfXK4IcSr>IfIedX&4>ae6z7DHZiSnp!N$Wmu@^WZJIOIsKFo~u7 zF{pmpOOD~d8bg6QxPd}Nq${|gvAEn&!%^il6H%jy8FC`u9EIH_o$%tZ z{GF!88lXXOIcOiRWsdXE{w?hH?qWY>(O@SA|*?NnV zQY3C-jdBi~HC<=YW%~Bqu)-;rIY2;B~q#9$Ue|EveWZKlmpXz{j^wj*;&s=SM+C0GoIHgKj*-GCo9!UdXI3r|CWVv?c+Jz7S@n{>ECnp5kw^d|`mYU*HS7+YczfZwFy*7Hvk zn1>KdqXAojs47M1Bo}2C4$=Qqb81mP6fV&lKc6p1AS^e?dER zmm7x^Xs`v~Q$VqkH*ZB|#pmh%4d%2UGX>4GTp1Fl3WHi+&|OcK5rcxRIBON6>B`rJ zzSnBQK<)z%F$R+%zCyN{0l4Lo)-z*t&_-Lm0X|_e=q2ejE6`jp6w=KCLC*~)XSOp~ z#gG!6S{edo=!xopg$EnF(MSb1lf06Bzq>a=_hk zfR;W5>TL-H!5C;QUC%sKs6T*C4G`T$1cGpQv}MXxWtsh2RxDZ5EF-&LAmh!}EF%}nX-hs6 zdaUqnBe?=CKR@PpK{*?~#WV5I3a{2Y1Se-LqO`6*16oDi=zAA*_(x@i{yas%c}QE! zJR+$c%X*$;(<5rire+XI`BvR~o|Ma(TmJ zB@+Y*@E3&nPDMkHCR;JwH;mXcBFQCM(Zw;)3k=mp%0uYpJ61Bdyobm1zhC=0>g*Ky{cRZy;2P zXgwCXjgex|j_ob9oZ~eqXhw}J1`exH{gHuW{>%mnh2G&k<9E#7_l8f1% zb@nz4lbq?~Rxm0{2MDv!ZakYrx#|fz>L&3S+s!*|svHVgX^4$uH62SWm!vzJ<^)2mkn5A5aa6z%flv^wU-xx7YeN|Gx&e>~#t7^ld>@2&o=x<*(N4Saq{eu|N%ej(7pjqgUZzfY*Y=p#{}hVOd#jF9d}NK-ts#Vq2t$$0)-Dhds=MI`NqJ1m1WsO?le0~io*o!}<)u!m z+6M8Jd20GEeICu5_JUQl*ewwsJGLG5~;`X5i&UI?1nv4c!$;faUWx(hKC+7W8wWhfvV$n?b<| zTr&j#G9pvf8;vs>XaL>X&|Ak)#p>G=H3Y>wAwnnPLom3OMz0qQ^>iMg?9Gp5I&_JL-(3>LSmS8q6o^@bV)8C#~;S8LTWUr;K<6SjMoCo7?OG_6Ma zdWVETi_Vn=xo;6h>p7F>BG*LvQjRo|@(WTwUJ+a_usb8%rqEfwDBfd1j$^%v&R*pZ z+V*g&kuI|RpM8Ah$3wSPl7}0P>{oC`p)9lE=747We%h;&@nH4<(@BD#YD!>g6Oks# zU{bw<|4Gqo^tDdeA{){l+KKo|v#qD3f>4cLkg6*X-)ZYi4mD`JEkgknbQ-6vISPSV z*RGh%UegApx}G7se)?;7n|AlQNC;?~)FU05$X9-4X~LQ{r~GQIakye1PgrEP$m z%O`rP^^}^oHwg86?qS;4M5587DdTw~+N)&YNGr;kPpQ3(NKh_{OJu!=Shp!8MfSAi z=8|k+2s}HW6SM{*0PsLR@)OjzyfNf;$O3EYmFwLot}R$&4a5qGtriB_3wWRe*=BMp z5@rwf5z+{$*}U<_VbQwI?Rh6u4^wRHkz7>2Iqtx6@7~Iph(#l#-mKb|A4v zRtBEeFiYUWb}nm-qIjyt*+qBykwV0`=J#^E5z9AjfFSKSxq!+bR85sSc9RN&u6t7RV`9QctG7Xu1Y{Yq&XjYfM1weD3N*>zFt||` zQLcLihcb66qn@}Y%O_`^7}8HVnAb~uUrmV%0U4ONLDfalml~iI)s^g&uF-aw;;fx2 z4;7FFSDdfj%A=@&0862YUm)sq=Oo$+ua<32E20E;`Dk42n%{-m&Ag%^FD4=v8;7ot zD@Y!CFgR21{|fCQX|pcxyY~qc5hVdx(k2;)=5kehTZ`#h&jZe!ZyBnr;7#?EVm9Q<^A)aF zg@SSPxoU%_Nxo@Eh74xC*dB6B-6aGBw88?PF!AELV&=3W8(MWrF`86xqCUj}5$SrF z&?e_27c2vHCUhx53sA>ika)|eXezQ^MV>yqoa{;odhs(Hdr|lxLA0_=G7GsmtW{f_tB6%uKIEK=AIDkxK8Vi+-ChCy*p%lO44rF z{CdlXViAlcNG8zis{lamMUrb#{JiZN0$s%HOhSkr)0VX{%y|$q7)4s?8*I7PpqV6B zM*&M)u=lRPJ>GZ~q-~=jA!Ck8eZd`$YzFK|@K|Th5>3TJ23NM%x6LA2lkxBjzy>45HCZq(;Z!XWGpgN=7 zLTy984?Ta65E4zdpxVGYC??d6^R^usosRJ36zt%jlGa-W{AKM*x^F^KcK-=x5DG4Y zIHH_(`W-3?zqy1sm2WRdGU}(R6+a@v1V@Fydxq^6kWZprLLprCw?PTg@5NY=>Jsp?%q)J>o6t*%@RtT_&y5kCjFA1D z=(^v~PSA_a)}H6Q{*H=m+B}IR=NpFc{10WwV=@r!?JV;Tv-!z$uS#91x&&|!*qiLv6#2S1stsXi@z)s5j zpRO@@IQ8OS(BsNiqrHT4IB8|h)+7ow`ph}tH?Xxr)Gcc~kK=%%dzM1+7F$q%gyqBc z>CA&Ryy-@B_CNqV&DO|f`6sx7$jY)`O!|GkZ?JQso%NXSDAu~<6qj~t?^om2NzpoA z7c3c&lFJUAOHX|RD3ivRIG`iJ>s15u70aJjH~cGV(p}wXWyEbWBuErdgbOB3g4P9BB)8=>jNtwGrzzgAnNGwDy?mdJC?g4V%f^)UpYf z7bBM;OFk==Kp_%363Z94{$zLP+?w_i)6XoM?R&~de}STGfKud;)Y)%GghWb}9aU_0 zK|t68X-QA8%GyJcDZhX<8GBSF2G!FqXolg$mFI`A1wOZc*=c|!%3NzgJ|}2uMO6_m z+`!culPs^ht!FGs9^%m2&k5^_;TAhE&ahsg7c(p$SsON6_9d~LD|MPS?~0+w&T==+ zUdZTT8=AALje<}8mUO4&qfp)hV+}J@UJ(Kgbvu08S`mddb-G4ErroH!^(MH78v(^4 zS}m}eTDuY2&a`0WFAe~>Rb~Ca>v;uM)_b}hm1WW?#UtEo*o8tI*aG@U3vzB5%!8&l z3QG!1EAF(OHl{g3E?~vGtbc(kL3>(($u>U;iz-64uyh*CLEa^-blD_cmm9V#?jeBQ zSZf}zNmrfgfn8w1ag+BE$oL}fX-Is%SiHWr-ip9kNX-En@j05~6d(%AzAWh4Tw(b$ zx`A4U6G%5XUcD~3 zkeHcz@MPN`IeXqraA-3xHxwOeUS>`O0YpihPRbtQ99kZLC(3nF+^T3QK^snXHl+22 zL5rZ#V^&zT3W*C0f!UbDr!8rgEhX?_R^`#RDz^~(m!=s!@+yj8We#9G@i6rpkCo4D z&ZC8&oFVSePvgxMba53CEQt8EzE!~1QF|?A=MZmD_9UF=+0%7&(SPnfG5n91u$gCF&hUK)a+3`kbarTa64vCA!v!bU7l`?CiSIlkQdNKQ!T4T zMarzM*Ia4oBSal(Nk~H+%Q{DOzYDSh88xS#DYqOD#4$7(owC)%DRfqb{U(=y7CyN_ zX#P?Zr#*enj#(XDXt4iv*GC^NS}Fmy%moJzM*>m_s+ZQu+B3QqF)irAc4O29&W%aw zm<$@;T(0XSd9K<$leugy7<661a*ExxX}dNM2bT?-(+n9aAKj&x;(|M!RUDE|>2%C> zt2pSjWN4tLiFQM17E>kwz!ElFI_6WTfqB4x*^&4M5plw!DX-zpDmwJ>+kRH@r9bqBRsF zE-gM9?YvvhlLkdi{kei7G*)+c(R6*c1yO~@T}Wq-{?pi&k*%;Dzn(QVR(Q89W5`3I z5HTcxXqXB(=L@N6;;DcsCNe_|~%3ftK!N6R%#saBD|qpLZD zl#HODb@EH#T$UR-q~T;I$$PmBxJXY5M^x)mJxhp?s8DHrC!JaF8q*UyOs^cx{Q4q($Z}*))9X`zS{hZ}fXWuBxA6Nnor@N&iiS3JPo5dENiitQkC0 zt_7Y8lmrpJF!{F&IvT*#Q?2MO@-@q!`sAEfSi7LGDAH;~4#aUro!yh3Kt5?)@6}#` zXE!QQFb7{VMfwEgcb!r<>1DuW04+OfH&|qjpu}O>(3*V|oJ6&M3wMQ1TF3gB^kEA)*mA zg*>Ah9t|I9+;NRAoEY)<-Fk@@`Z*QkrCOq|165RtV#eU+$z;uN+11uM&}i$z2deJU zl5+#|2V)}uj!kqH7%GAfZM~r&Ck2(iz7(qm(5_#o8G4)b%pbHZ#cjm+=B6I0T%-b z*I{8;ZYY3En^pyk5*_p7;a@?JYwGstWq7h|x=PD5U{ZNWiZ>SIIt$c_vTl`#9tQ!H zwP4kwIf*kZ&rqRtS6KWs3mW%0&5%0OCv>bqp(Qe8 z!Mfc7dwWM(X}NKeTP!~WlCqd1gytm3}=HMMN^+*azBmWt(hA( zw^C%AiRfWsQ$QT2R1=n|09h+Xxj-K!8;>kekL%&30E?$k^)=(!>WHlL7TZai{NX&1 zuM3*3CDlerJNljqvS`zu$Vd--L+r=;^yH{y*bu^#c4JyMx>Gdd^mUq(X;P!HeOmG{ z=qjXw2uvfe)CxTd(NEWs^odHIL{PXbWx*MlDd~PG$Haz(-Nnt=0OBW)>Ox_=M5! zeWPxUv@JJm!Gc5W2<)|p;XDr{P)e?uu4unry$0l=2S=wpOl}7?KbH{GowrqA>4}FA zQ!}d#4+g;m-@KpJt~}A1gI`ZZnT|5VE~3xbujjte{LmYovBs<7CC5^6KFgF^2g#fS z?#>`k)+>S9g8uR=c6ONF7*TS|CMS%OCI3kS-KInpRsJRFp?PpzQ`Ms?>h!H$AwWr>SRoSU~O&C9GfxXWbC5C$5(n z(6h@UA}MR=QbtZIB9~D6g1P*wx74G~g2Jm<8%u|-L>|JFjwS^(kx9ztu&JnOSJF`T zxy8PAB60*ZLQeyDAuj?nvR{zuk_>u6S(~!mpgfhmaPsKRoxe*A9@Pv7DJQ5Y;CWh4 z4k6L0&>*m?U^0Pzlj|mXm|1mG+=Z1F8sefz#n_*%^JjNq3Jdipmy*txr+7hVw8LRm z+%(&F)n?bKfmU+Hf%fcIXm~9wrzzOH(@4TH<$<$(L1 z278tE1=IoN)fo&H49@09T%nKE$=aG+TrYEGLh!B2f_bX}nD^gMPc{jRsT)*Hx66}9 zEe3jWEm^60!L1Q$GP8K{+*ovUNdivI3uZfTV2O(xv|z5Z0ig?0`PSOi(i z3n(Jw$V*FUp0p#5OE@%e`vgY}+US6orw~oNBWSM+8Ga5lV+-_Fm3D>Ih8Y+y&lU?R z7)JIDW>5}Lo9d@kI!s|5l{+5nSwSCw4GHT7QNA$G{m$T zok_XNm)Gy2e3a)@kb&g4oPC4JTegBdwV5Q?#)Tn57>C+$kI%H8f=&pYP{pD~ZRu9)>~mH^K5so+lNJ^w*A!ijQ=ciN z8wB2MYf*`E$O4@fV0@OF7xec6hA25&6&Dytu^M-8E7p^u!(m0?4B`z~fXP5I@Y5p7 z&B?*jgZS1iVAR1aYL_c>Cny%5O+N`-JRU;I8d^o zYu`gfX$pLEH=xPYRND~#Q&`h`qHTYJwClz-*fFheWODnAh7}JSvHm*0vI; z5J7NIn+66Vo~hRXmlz>6exiTzI;zQP&$4FjW=VR5wGNN1-fB#tXBWeInVM2jx=)Zp zlrq$GQT5Vp6g$lh`GY=2<>U)+r0BK#V+j(YD5Z0czjTqac4$FMPc+ z0C-xcS6m84dz(Y_@I#3~z4N5e@@ddpL$ z(PSmT(7V+#U`8$w{|DXwil~OxK#T-qL>Mm;%4vi}=8e9xel;|5y`BZy!=O@*KzG-h z7e-L$6q@xqC=da+IsDgh^+c~iiMB}_sCei$;RE}<7&0$ zQr7e3*f+XI{s+mkL9iK;&()Q_pnE1y;YKfMP}nBl6H#j4TySm96LJlp+)8nUcDrEh zHU$|v#NDQxMw%OP+B=BOW*wsJkqG6@J3@&Ia!Nq{ATC7XEEHr?d{{5HNJb2)c^#+l zPn!r^$(b2-g>g1Damq5}8x?PL)Oeuur&Vvg7n?{m7GuVz{@S#OdpH#32(0IZUttI- z1)LY9aOLNM!mKLlZWExP|b-<+=29}mC;4M>JD7iy46nZD`+4OCPoQoXi zCB3<*Gg1R_Z255G)??d$qNmsuygJCD<-=X76;gEi6FeIT2l^yUdLF7j+3E&-ZiU!Iky2@*7sPmH~a8_-xEoXYcpX8fH3{(u}UyV_lFkf?ZL5d#T97%_sWN|MF_7e2|uCK_u zJj&8YwFfz;&C+ceh8#=nQ=l{`bN#OKF|ln~=Y})MXFu)AF%fm>OVF1GcNi>6^%QE?EBj2M)C!K_nh1_ z=*`G$HH~yw>k?{I22MT7@ZO)4DH-505BWt~AalKEv>2$81t{*)ARjN;IBwg5ZFj+= zh(x%;oIOa0hY_uwj0M z2EJ+@&uAy`rakST(eet1^#0`QCcj?p3&0}4O2{R7d(|TrEjwKNg7hLS6XI*EdM?3I zprHeWk7Y%J2EM&FdbvV_S~AK>4_U70ylXd8U~1&b;L(DjrskkcaKUmlT^W&BfdC_0 zuMhM?*uS)14wBY)U!m`COdAAqtO2h2HYMFHC{r2pd8Z*c;@HJtS%mdUD%N2flSe$O zMFSklm(p{lHiwFmc}m(=0id=E^=f%qJ^8s`X}$D7nRHphs8EB*a00j|C7VomqF9Dr zF4A23BBAIx_F7?LK8r17*a-)yD}GWWr*P3vVI^1n zBx+EhG1SG1bG)4bv-mVw1b7mur)b@lu&q&CRvfz`KLfchDmKZr3~EO1S_b)`nLM?J zSBMYk)JL3-uB%9Qh1^3oZMD%v2GWbd5x)-0V$4yis+9HIB}G(;Mo0&GU7m6@pTd=A zoi=F8kQguUO(ux<5hu&l&w>Pl$d(Lru~=;$VhjG8`hwG0{mpYEz)S-<+BHQ`V~{DpRbjM=lQmnDC;#3A8ay>KN{#8 zB(hV>4Oe}Dj7_gA7__NXivP|}i(j;qYQ@LKMq4jIcE2l(hi7QTEQP`)$3#L(J#6YZ z3YZGbC{v5oApX=&l)8z+gk&g_r0{=1wH+FOy8^t(1Q{ksXZfZuBTYSNW*>rYnhc6O zE(vw441g~zNNPnp2ryN79%1v76{G`5PIL4p9EpK8$!4lIJ>s<}`X!&b+}I8MUcG%# zgW#=^xX?0>4ZY)OflYCeOdJJ!oDhwqqO8n-ueUj(gP22d5ef2(p*#xQa*7w$gXl04 zE(h&6ZZuv}cgY?|N1;PAks2Fr&7ixKhq$DmW@XLejK=B){Z7Pl4LMHZHfo(I zk|U2EFjzo5s?#eyPfqqkL$dY-c)#TO>jt$UKpME*KpWgh-NUi zgaTnmhf>ONql_yD)}Ka>cv|YPCV4HGYQ@QjKgyQm=7L-mDWfFo*wUb$G0wIS($rxC zkCT1wa<^*1J4{IX7R})}XaCa_4k0K+lSf>D2FUMpY^#2~9566h1`9|>>Od->m$X?DjpCS^Np{%!QpWk8X{2_&cB#9n|zambRW-ZGdU*Vi2i8-VVl>~%x$cEQ1@5Y_gG`gAU~s5}t=crF_+@p1#<8dV-L zO(WBwZMJ4AfYWkFyj9wQYLD871AxLb3UCOVReU}&w zUv65moz|dQth~~7yS+jSHS?mV*G8w;Uy+N8baGeg&{z@WeC@yzc;_$*imiP^vVicQcGh40gUfbYwKg5@Qmv zRtsuzUE!zmsKJI}t&71~k19##xTGYAH*kwQwu-C}`HQG1H>MtNCLJum|B+q zmB^x9wX8Zakgc8r{1wK+xN!jYdQZn8jTvB<13l8yD7e6k_3SRm*(K2=~BVcuH-NwVHulmRTknkzTJ73` zS#-)HxwdM~gh?OE)ODD{*Nd3-=37CMvKZ4MOcQd7FyL)o{S8Q%;<)A*HE^&D$sO!@ zLGfb3W%SmvB7-tO)FX$h`F%C;+vo=Qd_M;eL)nvLWpcwp_p zo^s8K{%eI1M&6%dvOa)MF*Orto<`SB?;_K5j20j%HQ97L-IP|$bW|)mY66aeN;WMM zBx(A*bFG$}lj#C|`47Zecc-g@jP{W>-wIS@tOpq_R?V@B6$1oeo5naQps z1xfN9k&a*Q-2!5-^yp;+V$l|t$OHR1ii>0>j2~I?1L~jJU2aa>ZIP>+*7N2Ng>-27 z)ljS}26l)JiQN$cu*O)JW+lYbkv>Xm9cc;yjGceIiB9GiCZHC)lk-RmbBj<)aqmyC z)$ljy*`i`1O}imr7N?#k_&m8~3I0!D07W;b1w`Smueh}^v!I72<|DpzusXuq)~9MD zg$@L$4v|ycVB|5IF5_HczTV`!*ACG_A4O2bp0UZshxO`FWLmnbKKV@Ne$zXoHYKMg z%%=u=dyp=ee#xcWv?puXX8%NhxZh|=~-OoO|{PY)O*)E@b z@y;8`hLasYdahk4$?GMiSo7tx-@W_E-+%t+@4ox;^RF+zy8iP&{_1ZopZ)9Q=byd% z>EHUx@4wSk^~Ns$s{j4v@;@*CqW}Lp{qOHN{_dTeJB=nB6KIyvb9DK`yMnrpUV+}( z%fYV>2Q{s4dTn1FPQM@g-|yaip^FDD?sRd_#c%C&d42LODCCSVuJ5mYJm|Dg^_%a0 zrg!+4m$wocZv|Lx!L7;8*gQx@bnO7+orLUOUW8rzU1B#YMo#~@*zw>8E++5dma=zb zZ%v@>aIt#6*yI(S-|Gi1RvbH9NugzWQ%)Dtg1ukuFinhd2MAn|v(eDxK&t#@l6>~f zpFaQU^6St4@NZwezx?{k|9F4AR1% zx5zu)t{R_THOna}O(S}K)4LDecIE8go^TYIKrxLgrw?4Y(L1==E6uFE|N8y6pMUk`e|-L@FTeTv z^7C)M{pQ=tZ+;>Z_nW_Y`T0Ly9uKws)>v+-H9gYHKMK_KHqzzW_m_XVe0>R*|8|Ko zNDkUM*&5C3%;wRx1y>$zp`% zIn`=!60*70OlmsRcB@8Pj;Z94gYoE(RiTw>uQ)*US12q3^kjXdY?dJyZ&XWAYKBB7 zpUw&P0ci#bk2=n7Y{XDH9)L#3X5{ffswVHK4`L=WSR%*c4feFg;k~8Ra*6VXD(fp` zvJ|bNs+9C_P$qgiuDg&OGE)HaNz**ATeVbT8$YC1XINB@Yc~aW=e7^f#2k;%w44jQ zJ9N5r20z(r3N*S|U*0%FQJ^2!rs^kOru6ZFQ;<^lDZNGDdmt|Drz#~`o;m{5qnfr| zgLc=6YXSscDpto4Z zrc&U!Vh$%nAX7I{7N(mV&0;e~o8b)zXW|Ua&#esSy;bIW=AK(7oQAU`I4)k3r-muk70v{4x! zpahZ_w1nhqb=IV7^H>3YvWv^S7Womayex@0&dBsyWGL{qc`UCpRQrGm5;I_%uBH<=OvjA8MYnyQo3J^VX>(S@Q?}Vn`IG6AlZ6cxks&@ni`3aA=x~4@ zdz-`FfHpdA6N?PY_5s}JjD?~eh(X&nQ{{RDd*d=_uscI@IA&@A+oj{6zcbTZhv7zu z0N6QB50H0by;YEX<2X7!FeYs$bS55;R;cG92=Q`4EZ&YosZJ*OqrgJo{{}wJ;$589wXYTo>c5(hNGAYc2oOT(Y-&FxT)`S541)HrFzf zR3fuKnd|8IsZOKx(OxrXXv5Zivez-t#rkr_&R%Qw!$#T6LhTK9%n0uFI4u0mU`Mp+ zy9``78Eh>8`QFhFUwUV-HNNIo_I5JZ$r}NDu4jXtkiIsx)1$%G?2t|C-ImARVyD7u ztJ$Zc#nvyNa|QLu(PAeV6j+UhH~p~KS*8q$jIoF8EOrh|Nt%F<7CVC>aVUSCEOyRj znS4E4>|8*RG;e$4-ePBx<_bp4u;kL1H@dgG$;SM;SDE9Z1)gTF zr#Wf;=-X4>`m(dDkKDCCWUhaIPlgrCx!z3`g1yWIY_z4XcB%NoDfcCy)!7ec{KNJ2 zIU{ivN$vI!pr$3YTVQo@_X5D~v{`EFV`6sdGmji$qfA2L`48``&++vKr`PqDdvgEf znMZ1x``vB8x%-zN*zW)Gi*LSt|J|Qn9^-W$;__*Eh6SyJsFu(O?;N}|j)WJf;W-Rb%TF6+^q#fFz`wH&}?A86bZ-MK9*9ZRj_;(H4iEy4=sddvOS zNZS@^AHZpCyIrS!N_%JB&d>|9ctAVqjnGbIfb5qYA!AbGRM z-dk40A!cYP6@}L|ZJ*Hf>X?1DZk*EL`0tc5>bF3uXkH z)ASE7izJWY4UE?IJ-?lkS{|8HuV7v4l^=hZ+FN9aFoxn!8id9tnpfGXTw9$7P~J9$ z^>1~2qPOcH!`sf$o2_pA8mTf`a{V^x^ismOYos`ux7?h4(ng|CUJ|p-kK7#VL8EG+ zzGdn>Shnqy3LVUNP>8`afxUm3!CJ)QoDQXjAL%(#-#W=MBP>92F*$7K_HH6tQOVbB)oD67djUWG+WOR* z)?saFW*5!)7+g%l{b_N*Ce%{MuNPM|UHVvFuda9l4!fOmSY7;b8QG%K>Y~4_){!bcuC55OYb4-L zt4nVRC}w-Ty5#Zd%4xE?Nco0s5g!(pKG3R3uh$j@09`Y`UR(TD^y3X27Z;fy-DG^d zxX4GDAM$E(QJLtuzFu4K!D%*6))xJWZX2BA+6wkEa(uP6V7Z887=+{6+SL?}Ym4nw zlm0(t-+C599~aLqOLkg3`T|_eeT?XS@sOy|33+%N`^A&tX4HCguNDv4KRCVXtHqNW zl_~i%<-B-urH3QLdR{xa@{Qt1c(pO*VnkT!)zZlbK$MiXJKHTCf`Ewlcsnnh4B8KH zd^<0l98LGNrEp$4*;;K!#qO|jWFCMhZ~Odyamw-j!wFdJEgS!b>fuf($`;n$U`}V+tow&AVUeaO?wD zij*+qy7=l8_MWcv8q*!9grL;Dd!PGbAGngH0+Qs`>fX;+dMlutACblXXgs$fOq6B) z8C1PH{wAa^6U8H>PIYw4sGQS%kE_;bk_9JV^Zn?Xu2{hZcbHup!RQHE{OXe0BnaJ- z<*jxX-5r11Wf4z+N{WKwcvAm?CvB+FYT3#MJ6`s2{7si_{s0-+un}cVE2! z_VV*DzWDODU%vnPxBvI@o1gsRv!DO;XP^E2movkJlxKE?+}?^>HHX*648}OtB$vxw#(&=r_4j-|$E>1=7Qv$`aCiay%Fu+$Wei19S>6lk`qzSUw;_!)A45Q2lAYc$4LN_<2rvI^b2{r z^Y`i7hMwg7{R*xkB64v&PEy^&esVhAVYA3UUk=A31ntowt9m+)_f&9=kH>wXjYJOW z>3ARsiA443IBn&bmZbCX4&WAu$?iqEwa%Vn~@Q^fEod^kVwHc`m5xu52S~K!rICBU&yq#B6rGw9{Q4;Ou3Uf zu2(2e(6T8wgZfHK)sAPm!~?D;`>((+qbY$HbI*Ce^-whd4plC)yvEgJh_93kN`+(> z#}()niwhJCL*@r&w*`a0wLZ`y!NQ{8$MKe(fzuLd!-`}4_&#m(1Kd}^{sLXlas4EX zMgzZ{jZxecJC6LxK%;b&xZ?QrTt~!X@R4eeD87tQs4wV|NOzwOgJ?-WQoxR6Gy~8n zX1_i_-F4_6PwRuUsba`dPV2)`PO%Sc z>TZ2lipV)D6ztcBK^8-@#O!{3K{@YJ!;_AA7eLL4x!{SqN=gxKr#66p%O;}2URZ$q^H z)i3$0U$TT>Qft&uhi2jF&hA!X9xAOzvs)o9s2b~jG`kfmAXB?_B;3tzHA^dlb~3va z%Ffc#$t$Vw+cpZ)N2^Q7)u9;kN2^=G4rFU-Jy_kUWu3wCrlZv@#GHEinvPaiJCA;H zD{JknZh;t!wy1;ERg`9+Oe@CktZsp(PnN~EgVil0bjhxs+>(L>x~thA-IBu2HVD)X zR<~3`s*X14ht(}SMM4kqXmv{^X&93|(!=T&NJE^wn|8Fih5o=C({OqoR+r;mZeKXL zC8YwaM-=mDbxVb+At!foOgJ9oZJr&IQlT_4qV6BxF?pKu-{-CxvxYM4!SCRHQ4JXT z?PCGRM61s)baF@pcsen%k>S?eea?^XcEbJ>a`yA@!^8v}G)0USrD zbodL86~OVT-JqXW0LM$&;*H%3(0$4~%wvV^R)8IsAq_*Y(yT|uomK!~^j70=g?B3ew!uJ6>$n0Kl1wS#v;qn)W$-bdR)D#s-aN;{ z3Lx*{259B50zj73GI}rfD*(?9O~~^Kp!y*iI^oz$MeGDME)58*8gQs`LKk3zX zS+MQ=2O#--U;A5b81UWex$-#t>F;&G-i{FJ#~ptpe)_T8cZIk68a`Cx?nYo=xch`k zQ->I)Lbvs}`r+6IsxqA@(mK!zUE$wTY4VC{Xfn%bR{%O5{J^!mf(QIlaEP?Yd{42- zN22_KHQK$@-LVf{DmoC=q{Iq{us2qlPLS!3sy6Kgu_AYsA&fpkcz4I&gy5|iP=j_# ze3vk<{p>E=3vbC+1$2kY?vB6dvK?S7q(MX&uWCQ@f{DTiIZxq!=RZmn<^)Fm5y~(p zz{-DC83z0@O@XZ*2W2;XkApIW)BJy_!#umy*0oj}WD&<(?X;ODFE{*jT#jSt)t~2E zr+Fa1#F5PwP)ft7(SWEN#i+CUd1E| zP;cgp8Wp*0z%Wx2sK`wY8G{}-OeNs)l6n|-MQ6cyBOMG3fz`M;q2jnkm(|V&nCIdd zQ2KyGIaHw{yvM8pML9k{Kw%2HDraQuLg@nmiH2B6y==z6x7hAzO5ZfL-Y%YVc5$4s zA^&Ze${;CvYa5tS+j7^0_VxiP;RB78@#)Dn={Wfu*`{%~_E2zx+TEg7H-^KS>5)b# z_5p}{x8av{@5E~363$yJY*?^B<8fxSG8cSn163Tl-C`K;R%6ujcAU;}-)+4HBg=n* zF3Z=Bb$e{>L%ogT9x}feZM~9g8~y#CZohwQr14|yW$P8R4TXXh)8JR`Y ziyv8y{W{X?LCszhqMR0z^_>(phtopRDTN}5%jcD378$*_S4&BsWTyNeJlL-#YkbM6 zrww=bSWIU3qlR$+aCfVT%BF73hx2N(Q|Qy!+6W%Y$xdm-I_HiHN}rG}a4+lQv7!vS zmqBi((~`1)6tV)>Pix9P(F#Zd#kgBk`o!^|qqekPRpu;&-s)*p*%_#7Y|+nsS&a`` zbg$P{r->mA@_`@h7=579^HbqeI%Gpv^1Zvn5&wfw!Mjspc*-lp~6|x80KJhTq)q%^7X={6VSm}z9 z*2VnU@hN>Y$Zb7X4;x)NuQ}wiDYrkFXZd+I@R{{L z!|(Y(7sxKhgdx+bO6la+9I7+>)xjBbd8YH~uxdl{ahq?C)j`^yhKB4<%Y%xWoCm+H zr^oW3qDQNvKQ9kTfHEmz>+*Ok4?gI$wDi;Rp!7&3VzUd6_ z3?F1oz0tb5TOP&uZMGO{w>mhEc`xa-KA0w^AYV@FqsT7A$HaQ94`yO&_^YS&Q93Ek zG-#{#>%%^Pb}GMGAHmvAx2~w;`iM~%KRYq3DA|Usd2qKrsx#jBv^i1t^}*WAfC=(x zeN;~&*o|7_ZiTSQ8~)XKg;Y=ZGUYwO_9J^e?)lDXX873Z@!^E?#}tk3dw9ape@oG5 zw*V4dyt`9=2oJxpX&Vs&qAI!M)Or#)Py=BG_F_lf;D^r5RjDP}sCqh;oB zl|E0%do6(Wc*(@S?WKV6w_pGMtM`|0zPSAAn?DWSj^F&`@819Z+xPFkdt}L9)8u=k zNxcI36HET%_}fVGiEFiwYqp^DF^U=e>1Bg!0|e5Km)#wI+hu#zhSn4aXioU=ZDhgl z%ekQ3a=h&0_?s>pnt>-8GqJ?&vd>i?WI}GRaMV+O((d@1E(@ki0Zhp7v6bzz&m|uq z)gzXxr?_0j0_SatxZlU7frO`wrITzJaIJ%+lw(}206$^ z#Y!V%H4KqLC0z+MXFJ}=fxzzqNheBu77PYj3KH5tn#w%hNF0R#C3|53)369jrNvOz z`ma!)nV;$DErZY%j*vvE?h>t?J*Pno3+Zd6&Ux8DqTSqe5V8SEM;(_}R|#|N_+yjC zQKTnzJe3?R%?(-^g0*ui3Nf13LRWuq4*v+PRyhZDKREr#f^Z}BcdeL<8vqxflg#`# zNJ;5mT=<#oemqQR`+2$?R8G(Mbk}MBy zv3j*a2$W{lqrh=n5@Rw%pj9Jm5oA_BgFZQM*-C)P>eyRuV2+i(*R_)&%yy!CgDRpPhwZ`~*Oe%jk8)rU?s z&&1b3u8wXLW;R^WacF6i0vWK-4jTj8Atv3|WJK~X{ie>ZUdRY&F1SI%8vqm1#$g7G zBJOAyi6k~*0KDjhDpnsUnQW}o6{8gjfp^{T(qzT726Y(aT|i2sd*$wWMl z({Zq?*`^T38<^duXC=ZxYLKJkf3=I~NflGkBC>(58*C)@w!tmSROB|Gs1SiyNbS9K zSXE2(Hx2^QT@vb{L6LJf1&8kL5EM~bkZz;|DM3_95F}JWz#^3rQ97hiP(TR*K~fYH zh2QL>-g`lQ-!ISmynnvjXYSr-?TIyO)~xkeGqbnn>ADq!+&EpFYU3;gc0P*buvX&%yUdG`FTTxR&y?4~ozY&zwSnGHje_11 zUW(O^WS~6d;hGCB77&%8!DFm`bN``cnltl*j&Bb7oC)H5dx2R@m&+@*I;9+{+`PKd zis&$)O9nDym;`lv)~X~QZ_I|rV-Gws!4V$xZ9Wt6Ao-D#-}AAn1`Ug9aUY+2hpEla z3)S@s7HJ&)7(O?A@Is$=v`5)JW*n8o9G}2g=4q2+Drd=_tW00uAKI_4lr@hxIo^za zRAIh`+Y-qTt~@{ba;&O)!nI1ofQ*80HHfsY&u7F-N9Zoko&Fz#q<5H%>S)zz(qoLa z)LTO{Zp(JCOcd;!%e^b5lLBC;sv7O51>)C_>?~eCt{0T>j3vJB5IZpwMD*}|NZz?% zm9x_BVFoPh_qjK&&u^@pA^kkLUp9X#+K#cgXq_OP@L+G|1oKeh)c!u<&BOwN)b{9G zFJWod#qPeg3V%qTJ3BLfL7waef4DmxZ8*Ig0q*!g>Rk(-I@9o*+e726=AMK1GFy4&(RsKK+=IQQ5LvyI7@e|&KGD7&htJ;vNcQBj|K^<>n@Y4wCB z6-T2K_pvffd`R)B*MHTQ&Lid86!F+HNO076IGJ))oqe**tvrHg_T~o+ z0x8ccdY@W{U>)16H~b6gWL{!xSO4RlHd4lM zH*8lm2JU=6!nbAhu75sbiu)A#q4sl!Jw)D_8gUGMXJw6-QmE~oiCl@D(q@nD4b+)j zOyi3bW72a>%~+r8*tnWi&OP^|W24{#+IHcn-I~`uLT9#jeuNbH7dA-ENhSg~9!S$# zZzW!M|728tDfvDj!jlVChJq1n!GV>3lD3HbP*~sE5l~NM~4@azjti* zJRn}}WEyAkzY?6k-0EE&b6k(;M}X`HlZj^bPcLGk+9sMe&j%{#=&A55xV%5ye3`h; zy`p&f*_YK5G6Cn|^MTg7@0O?6OxTDnU1~P2Ez>RQ>ei{a@cmJicJwvbi8bB4wmyL$ zUlJKJWt%>q|L&?AJa_NxwPmM$7tS_oH?r}T#^#_7#QwausrpXFVbCgn;4Kzje!zBo z^ULS0<>@o+Yn7Yd=HOv=?>;Qno?p}4=-MKp@{oN-Ve4Y!>E&T-=?vYuTAia16@?*S z&vANx|SM4o+US9^mR^>1C^AYwc=d3xjLfx}5d0hlz{BWMn9QSLv6I ziLIutLy##2jw9KnBcjYRB`KO_dXjX`Mxb&q-k zRrLmQ;67jVMfJM^(_63it@fwTS;r8N<@sK28(McbdLnqTSwvEk`$-_FbK*u!A!&}w z#SXq^K9fr)+NL$)Ov{o|O|uGU+PX0L#_KP1JG8W-cqsNH~$3pt#5~Gj*h-wJpAUfoy{(?{G$Q? z+gOWY5!+=Mr^!$cqf%T;S5U26zmVxwrLpkr0dO9Geuag=otgjoeSEh?BN?4_ESM$`ALANz*FbYy9wK|HGv>s$vC#M>JO2pIArrzoaWk|~5DPszz#y53I0*iKm5q16#0tf*;|99_&6XKQ5{ z*?`0rhqQ5p1iKg=_-bVO+*p5k=DsP#+L;Rk5fkAsbyqojRls)hF{mgB5FZFn5a8I_yYy8XMT zdxXM>zYm9V(&gg(nG-hO(7rD3`Sj{dM`k|Fp;U%8ftTm(b?)BaD!qN^Nr7pr;BY?j z$buo8gLKPV@pb~8tBh^-(nG~*msSk3PAQz$Y9O!v^vU#+wy+atZ!lQhS^4}xY{E6K zJXxWMB)Xd^Wwguh+M?`;sae@B!o%!Qcsnc;3WG8EJ)C(e+lJHD-hsyML&yo1Cb|7; zZ0VK+InUEPE&M$ydI<`~=uYm!0(Orqh+(#A6y{1XJ+R(H0eKe0?Szb9TXSD*JRx7V z&tc_knVfo_S>jcsJx#hgoumC(K|ih#(d}gyxD$-&0VWriUJt9*BIQQK2f z?8Da_^*-m5Y&ZPbJbZ}h6V z)5fp)L(xiA@Rqo~G);1C^ia>E7N$-qY))J!Oy1zsMMvAX`Hv~tL<|VgC&F?*CU?^L z9GZK#P?^i$2npXB7VIJ%@x2NMDYi{G%5j=kiMZ&11%9D=Ytt?BYRT;I1xXQ!9;YHc z!PlrtBF2E_7OfjRY!FITf))73io9)5j3>Z{tsXuVNwCvKp#I)==F z^29({ZJZNRD~+S<5$(5~?R3TOo!F1haE_8yoA?T79teK6g5YD6r5*XMA80O?J;!ub zz=Yqi>->!R$1`8rvS}OLg=Scb=R0`U&fGOjC@>5-yXf%qZbkD3ZJf(-+%B@(D>6Z$ zc0dyY%>*-fvbWC+XZAfjxB2pXdfLF`=3BB)_iu%=Fo1trprt{RO8<&SYCQjD8W?N~lBT>rX+hX2XehbTgG|jCM9i4;b5}jdGa_ zuWoALe(cY2@cb^Q?oW4YaD?3_@I;(^Zz6m0r^zVqV?|YD+BY~Hx!G{#NK99A<`^>b z0FV5DFibtGLYFyK4RuKJ?6LE4V}6CK@ZhIcUL&s+q!^PRACpg6NT!nC738LSc8j+% zy4rqL@Ty%?+S`c81n#vF>Gbr~s%Pm+B&W&8gkLdSW%F-C3P@6G+&cGx_=e@vuMzHP zSd9w9zIpTFNAJ$^TMkbZl^P(aJKf#jH#_Kg14cwG84pF>SX-cvZK(NX?nHm8vZIo} z@7hnnH)@BOUQeIWPJJLacDQgdn)&tm){oJyF4;J-pyI!W2DMjEhTZNpP$;w!La!UM zkHIdIf1Bm|*O6Hp8uBI+#$l0|us%ArTZC@=l`gOo2F4&^6U{oJkHk31XrZ24k6 zDqmFR>XVbmW66IUcsPUFYD%paA~7%A49Mzj5_*I4zLr@nFN-ii9CF&-!-$aN|Jp~Av2Y1kuowe-}3mD37e zX`Zl`fMpi-=~4lyL2rLu5f|2%bhI{=M(aBIpXR$!wctaD(hQHsOc#PA(~3W`-xU88 zyr}Z3E%u>3S8$7oz#N~&upz%PgN@E(QucWP>zdr5vlhEn2r{pez-z(BWqITF>eRU6FE~@IaqpP6> zFODu{>bxxYyyYm2QrBUza1?b24L#-;&Go9TBNSd4s6B%Y6hppUk{CMVrduI0oYH>r z?2F_&6QdO0r*QKjwIJW9!eBd_fKs)Wao4X)d{IF24|35<^MFAV_6*ArdSLLOR?sX& zWcK=F9my*Rw|JPwT$6alJ~C_gXgjgr>zBB7o2>n@$R&wX-a9^)?&p@1xwx~utuf8( zmvy*(nkP2zBj)sZ6MD~*j=1w@YbTo%;VRD;79Br=yCieErzw2at1#5M=Jn%MMu+#6 zU(bw@$^>m)JMg`7RJLj16!$Jt+cO#j24Gt-2+$x<*P1!z&!Gh4BF~!Tb?3Jp9qc8y zu&~!me@V~5LGKs+yi0zv$?R2Z+WO5_^W|zO=0oI9E(+)qpNCz-}0t|!1u`TuB&PojuSd(G`lsy8`ru+!FMS&${x&i z&6kRl%{%If56u?{T-SwVnw9KJxniQlV$HUy^g*O?Rlcw^A~SsDP9ROmw|p)J^E>IG z0{cm`43{5C&)0{~N>@aYeHd4`Vac10nX9;YccSr``3Kai=hf7;R>`cyj}eJqt~aK( z`#d*g7jV}p;jn(KlQdQQgzM?2fH78BNN@np> zI3Uwk?fTni(i$pm5nLx_6HYSRxKyV}Rh;BHuBsw0P5F#9VjR`b#Tp^s8J;7T{)LS$ z)i3gmipz|TTW3u@Di*howeh4|USI0hQ-hP~qyluE&PmI$3RUVx%p<@B>go+`PEhT zl6Y0`?$)7n+_BW5g}d`wfwZRlsrny;GNzF-0tKH>=>#p59_*RClWV+@{&O@wd4;?D z?d^e&CVcv-R|f9JRY+~cW-V_LUA=WeW*6!06;q>d+cCAYfu;+IDB0UCp$fU&C2fz) zg3*PM3uZSvj0!2>M2|(2Qm6{}WM>mDp|pa(c$kmtuRL`+cXomM$Z2d*5N6VUKjOBR)g|g=0-@S_)X_Kchi*lMUr#7J*t;B?vt;(% zJlayv%denRmoBIiRM_K8Q+4{(GeKuO{vw_PaNQ2KkpxWM+kv7G% zT?zsgyi@8orrmhPGT+KmimtjpO4fB+yCHNueu+e~jgaW+&(VY{T>k&tDj-APMSAQH6M*qX3DP-Bny5m&*&a#+PG$ut>jxq_=<;dz@Cqeis41) zJYvPK>HN?rbJ^6Yl6|()q5iA%(t;(8AJUnN?*6#{vY0cImOsF?>{?PsM}9bSzmI?Z z<1Xui{l1wS-+vH_5ZvBnB>*7SUu$vy>q-m?wawCMUz2C32Z7sSa71QEG2!P-FMo~A z3&-NH3ncTgA@Pw2GAS#nIRsyg|Hhbcj;0&->Nh?%Wht_Al*6n>B&yai8S8^1w?E~M ze`M0WJV)=@2R=a{rhmlwX-3O>T~OBOVdKZV85a+k&4!Eg@UAHD^Bgonbj>ztYF@iL zKQwySP6qXQ7xmmLQb(einz&H7J`G(YLSG%ilCQ;H%9f{E+!2s%8GTScya_%*l_B zalDB@iFk-L?xjU`Z1MHDMvp`J6bU3JEna`*(7$}~XwoZkuRE_Asyg1^oBrw}rU+ko zpI_w{L^Y>b^kODAKsfNB!r_ipElFQ>o~KKBjP!Q2BnGJ&@z*7!t%9D&ZDrXWUEgT! z`uvlUS@6`6zvYMCE1bq{ce~nGiPHU%(Thu##o>uwM0zukQW?_kQ~CAEE8# zg>el8Xc35Kc8H8lNga&r6MCoO53XC4P%pS z!Y4Uba!qV54a9*j4=6Rzy%V}!_i&}MCb{8Mi%Yb|^6i7NDY;_Emk+xOpQzr&URJ>z z<(Y;lhWj6%=~&QzYg0ex!}U?ZkR{4ZcuSF_B+0u?D2dov{@ozYj4O*2{qX+MDUZ@h zEtfCP7R)F!UrU%3JCn+hCwq=s>?dfbCx1iGF#KkeMM&_laaD}^iw7&G1SItycNcoq zh=s6`9>7`DCp@5eZSP7@FGIU}N2T#A^R0Yg*ku zD65=94L#)X{Ry4)Oey=nbhB?%M6*4*(lC`-J0kl6mo>M+%2E;bewU%yYm9-}?ix^7 z6o|zT#YPAuRv&>y@3UfzU{VyhMfPV|QLfOV;#Qld1-SGQd?cr?+okQj!ffpJ2pxrd zq6b#M(1Z+;EFccF+mBz+tSyMHR1jfRqiSd)ETsx5<4eDI$xHz)pLEfbF4vCVj!s>i zh&yFJL2DWFhh2EtD|i(b-DXjxJF1yO5M(6XGKMwu3V|V?CW?E1nmt$Is0bV&I>^P= zPwjFrs_ed|Z(`7_e|dCHOGvNbxl`;qvH1=`1wrTDS945h4n)ho?3yNuYG!lXg|WTD z#2v_IS0N?S9T#EM5+?1~*OTlsfefMX zj&h~)FU3fY;g1Ky#;K6eN-&G(O}Bk7T=-ET+*ZpIg(Pu$g`>f`eRymc z%b5N0xNp>kQrz9dg6wghIH&cn#HQM|0p3uv~PJw%1ulO`FoIm zU3RbjELZfThCIiKY_f$emPWo>=ivqSxgVoj67?C=Z>UVJ`YuaqIaW`=MO$MkLzEYo z`aesvKA59AxY(L%?a>#cIDM+9eMCO5>&M}_HCnwGyGy&saj(cr6uVumz=GXBTP91Y z`vajplf`EbxU@?{?iS1K_Z1*6C?{d;A%QzCEGoO7`yu>or#b2t@j?OT{7;esPl@nddb(Fgf&yD| z+k?Mq_eKQO9EOB-DP#RQ`kLpXwztoyCo5OV zi*RsTGK_P4aMCK8MoO5)wDf4l19l;!7UMukY$Yj)hkI%FUCuP7C&L$)Y%kfUo-2OT zZY#7>{e}EMIP=scU8d-W=};Ow?qvZYtAMXVRwgF!LVC7W>QSTy#Jx@~3<$Jx$!r+M zph+`ER#$cCd8_=hnCI(Q@l?3_`78`PE(sT{A6elS1GOYxa*InXq3ZcKPJI_OB z3qvcfEu;YDdq z*E^Szyp|q*`>@*Hb*x55`l?dZ({C}3?s*avN^UCWR${y?8%tUga|Vbp(nOBs1P@33 zzlqtada;FkVvL?Z=W;4;y{c%QBZ`VKSp8c(n7x7}@$G7={LhB91#vLHU6$bW(hD3g zjbS(4s(=a!2BhJrWn>g_CY5lc;qv~}Yzs_*M1t z{j!~HH@@}?k&r0tw)vy2r|F`^MfKJ*=G1$2UM|8;#R22#&9}w%M)OA^4_r{A{a9jr zXwJ~eJNnZ~u69Zr@;r0?2i><@`c(T|wz^y7%bvt$Sb-04HNN1L`he!)5O^(o_?o0H zhh0Qd! zFQPjl2Wj0(YNB7u0^)W4!e*aO#m$yn;Am4ZAmf%>j<;29rZ{D_FYzjl0q!8X?!X>u zx*wyu8XjY5`rajBA8nYhhDqkJ(^TP;d8t6ZLi=+ z6uo^H8gosP1}qOLuHho!2!r5ow?l;w^VZ&BEl-k@Q@({iX9!Pfu0z#uDuo&%Bh!csm<#hGSjRk{rK!f9kt1i_p$7EV(m`X_ZW6k+}vy* z<~?Vtl1hY}GkU^UQer_eMN%%chFZu!H4`3{(N;90BYJ1pPK7;q>+S01z5pb`dY9hq z6>jb5912?opdSK_AWcw-luM3}R*2zZRU>HV_;8VYD&z#%vc4lu`j9{BC^bRT3^o5Q z4eu3BiDI?~o62#Oka<+{G?pi4C?cCJZtn5jDq#JlQRYf;Eb0-TVc}r`?!4jG_N$2V zG+Ekw$At&^A1AVVaIna0h~Dti5xtlFseA|1v6&19#JL*$(4&|sOyOaJ+cbTPWQRMoqpiG44Z1I5Rbc+3&p23HUhg^ zlZvJZk`Y3&^SktNulNmx+79cF8Q`w+ic+=zqzJYkm|I!SJfzjXvE`+1OhQuV)GjsY zQLn@oEFAY%-*No4iruXjOONh#L@cVkZIQU-*rI%@HTlI^CE-cY2C0UNi*MK24t=}d z(OOE{1Rq*sJN~JFyj`K`GODcp$kqBIEyWgd+=T&thB@^Gyn_>$w`3YUSue8G^4QnG zzfIrc@vF^Iej{!7w#Q*zk6LudP>=A5ue^Tan8SWuBvIA;=a2jSavUgRp$ z*;dKX@@!a6Q{&gE!E3q1<}*#UIpX`ir5<@fq>$UZj5Uy@9;g`j7#PeQKYm+I9oa8SlC(Zw>be5g;n(uc&szT@50NT z;hO07X@CI{IhY1uchoJk^TxBFOs|r2;4n|Pz|o>(atb2w6TOnBYPukjTt z$XuIG>o90sV<~0oI`&Ali~h+m3Sxam>2;(4Gk1Si|BQs6Wr_^ZBRU-+7C+KNg8h%i z&iEzigw;uMAV=vFccBR{wGI!yGktR&#Y|mHie>I}6JH0g5 zvgvi^>(85{%4PxCyNtqKvD#n3H`W9}pkS`aLt+hkJKSQx)fm^_(ofuhH-l~`4ulzh zaAT8mxN!$MyYsG)`oZ6AgELxtTtnQh0C)==QV(K%0`{bRpLVHuuSiA|wIk-a)=mvJ z&lDGp#u!%EWD24NG6y#w%^}j{71rgsC6^Io_dl;-yBn8!?$nEIVh8S7Ul%@HgMa#|`Z7s>jCmdsswZrZ^T{n6V<|DPA_VHcYdt|`{&X%*n z%TzCnPggWk%f@Lw@O^4rdqKevk+Mr)_6jg|E?i*@a1Tf1sOEww%wZuuFVm+<3W68j zMJAo0P%JwhlXjKmy2CeHF5_c~BG2a4oufHc)>wS}oFnV^jy{7h6 zIz3GDIz?h)LNg!bCRNI)2V5^V{#*yg68Kbj)hK2aL4y&1()lCH3L7+xIyKBOJyyMD&0lRZT9% zyY)l|RmW9SBRgmOidsc!YABKXr>}g@ik;)VN@J&^w z^|2e2@)tj?)UzH?%5l8mipla$3=XdDGw;v!UhCtbNN>5SN5$brGT0|gGtAJrn8yFi zNQmvGcoMABY;Z=f4p?|0=n$OP~LX{uC5k{a|LWW1PS2QUObyTuCBJ`mWR0Nf`-yjRhp&d7@!LiAd&Q(;+aW0?_RnF% zZZfQ?#bTnSGT7t^)FFZ&q)oZ={3LbNMIJZrf*(CR=9NOqDb}4A$J`6gsEMjb=krXA zHtSZNabsZ!+J&FJ!m%Bvf56dodT{zj5jy>||MIo9)?AIRu3_`tAvwNl7sDjvS1LG! z(nVZ`O#C^nC1&yy6t8M2&cCxz9=Lpx>DU<;>u#$fwX)xNVaeVrr^Q#}7)B2_vK|cB zg}=Q*G|?Rg*rcz?Lnk4L7SBh>(h2z}n2wejgMj~xX4=THmev%jeN$9-V2Taw7m7qoT?ebkhZ(4u`T@~oJf@_{$sr?xa$=F!F5sU^idgX0!%?EI%g zSi~%59Imiqyv8o(iCk9*ZRA@@4fGC}snuokJGbMksZ>^+4&nG#aQ(uu$=eB^+cG)6 zaiq^LNtU{d37qrc?(two_LriY50Eh`ACfw+oaZ)P`pS0z&CqX0sgq3jP)9bFhQNaR z^ofv950!A5y;pOyTx*)wXyphDcR8O7fd9V$QNhyFR>jrD3kFxRJ!g5`+tAX*69!kb zxAf5SaJBY?i9*V1Kmk{F0dIXcxSWMaNm0O+9PI3DJ#1a9Z9RdV1(7D))6LQvtau_| za5qcvz{%DQ)QG?Ja5!u41p|8+aQpLa_O>p7Z0q6RY6HqRS$f*T;QqEAt}wW(i!BA* z%NN{v*?ZUm+iU0Q4c<7hbMOK8o(_KCf3`kQX~IA8^84+cLA z6Gea;9l!-VcZ9*6U~p#&IA|2G#A_T6Oa$+oHq>a1B3eluObSAp9kH5nN$3B z75~TzEQf=4XFNQ;AbA2g0*B(_^}l&1kVVPX)7rzq&CAsTCJGr>Ab+T&wxyQ`kc1fw zA%Z|aU>yAS&mC}VT9&_CLW0d3xQ?YW=+?iZ`X9drc{J1?$M$RVO&n~z?7?tDe$)VR za(~_q`mb@9_q4VJs)9q}fQneUsr?!Y&@YH#=*cl?5fge%=&UDDi(g#tp}#v>g~8Rm zES(&zJonqEaLdLje+) zVptdkteA-d6eR`#x0pC!00HiyEA$)%5_pA743vlJ#EIj;^%o7g;yZ&9qkygu6Huq1 zgcU{M%VI#sf7Jojp6Rs|qCOF(`(CxB{F*#UVBLGhBbJV93C$c)z5CuK^8U zI_Nf@eMk@fsUOM(^$D*`peE?|Kea$iArKV!XTK}JVR5iO2~vb#Isoax_Jo%;& z{*&NysH0b>Ywg>+z-gaZZ}uNS}?VgHl< z=)|8ZBor|26!tD~IJpUv}FQ8F{uIB$3x&I zFp7AZG7JeV9RQjN3=Am#P8EiPLM}klf`P#WcNDIe$gx;mx`~&3h3@Hnl%h`0$;)g%#&Ytw!kd>zQa33FxT-p>|j9n z`0{x7iTd3X-lO8r6oJ;x!qC54`|Xy2UBwr6fT4dk=?DWacj2pXg8VoBsWY%zzwTUM zVCw}>!@FXj2KXPYFtD)y>kc?*{H7de%?(Tvh)VGvcmO6IKHq;(0_JzizYzlFcaJ@Q zHvG!#2?OQ`U(YWz01Okp4hSG%esk~(R)BY_em%hh6a1PO;KK{($glFhPzLrl4-oJG z1`c1s8wTD^z~A}6u)jO&3&Z|y={%S%zn=O7`}eCZJc7Xk&i{H&s561$+S*o@3j7{r~>}u?%d##S1K2nbRgGPvbYP$8-4x24?&^nhiY8ppJya4 zV3SJX&UMRVg!dYaJ5D|g?4ng-BMIg(8ob+jXV#sop7|JY7SYLovI`AxqS!cuPv|*g z1eQGU+L2BTbPwUZeEnVa_VJSZf705kwEjDF{-19BFS-TI*FUPI=;{qnIxrrZ4mMEe z24Y`m+Je~Omo?F|JPSg)e`hfO4*w|(z8c`=;Oe3T86`m_2_yoEK;S_9j6(n~eGGvX zKp+H!DBy}vJ`lPHI$L_VIk|c{IRG~%f)qgt!|c7h+$7-ee;dPixmZEb0-ZAK+R4XwDP%whDHM5zmtaen+CA)&VFDa>%F5a;1BYX(BD6D#sJ0m zizbSMeDwBw;E)5*u^lul1V(ny#Qu^qfc_v{-;oaqMW8!rC~@Gaw%3Qm{x!a!w|~g4GbFhHw}aQyB`=RDBDpV1_vRh z?QLL@Ab{FQ1I+wI6Ng~kjs=1~_rCopQlK-%Ht19~Oaz;sfaK zpSgfVh(l;-2W=Od1NJL+_5*}8f6qZtEQI2>*C&dDknMIF68YEs0I$!22zF;avA^3u zii1FYM?MsYJpZDB9h03jF;NJm|KY{U!_vXY)&q}&)m`jdVR)wkz_@{{E98stz|zpc e-xe5i$iRDgS$cTk%{x{Mv`E3nr>v_&@&5q`g1Gzu diff --git a/experiments/rotation_xor/bte_90/experiment.py b/experiments/rotation_xor/bte_90/experiment.py new file mode 100644 index 0000000000..f5bed49ca4 --- /dev/null +++ b/experiments/rotation_xor/bte_90/experiment.py @@ -0,0 +1,97 @@ +import matplotlib.pyplot as plt +import random +import pickle +from skimage.transform import rotate +from scipy import ndimage +from skimage.util import img_as_ubyte +from joblib import Parallel, delayed +from sklearn.ensemble.forest import _generate_unsampled_indices +from sklearn.ensemble.forest import _generate_sample_indices +import numpy as np +from sklearn.ensemble import BaggingClassifier +from sklearn.tree import DecisionTreeClassifier +from itertools import product + +from joblib import Parallel, delayed +from multiprocessing import Pool + +from proglearn.progressive_learner import ProgressiveLearner +from proglearn.deciders import SimpleArgmaxAverage +from proglearn.transformers import TreeClassificationTransformer, NeuralClassificationTransformer +from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter + +def generate_gaussian_parity(n, cov_scale=1, angle_params=None, k=1, acorn=None): + means = [[-1, -1], [-1, 1], [1, -1], [1, 1]] + blob = np.concatenate([np.random.multivariate_normal(mean, cov_scale * np.eye(len(mean)), + size=int(n / 4)) for mean in means]) + + X = np.zeros_like(blob) + Y = np.logical_xor(blob[:, 0] > 0, blob[:, 1] > 0) + X[:, 0] = blob[:, 0] * np.cos(angle_params * np.pi / 180) + blob[:, 1] * np.sin(angle_params * np.pi / 180) + X[:, 1] = -blob[:, 0] * np.sin(angle_params * np.pi / 180) + blob[:, 1] * np.cos(angle_params * np.pi / 180) + return X, Y.astype(int) + + +def LF_experiment(angle, reps=1, ntrees=10, acorn=None): + + errors = np.zeros(2) + + for rep in range(reps): + print("Starting Rep {} of Angle {}".format(rep, angle)) + X_base_train, y_base_train = generate_gaussian_parity(n = 100, angle_params = 0, acorn=rep) + X_base_test, y_base_test = generate_gaussian_parity(n = 10000, angle_params = 0, acorn=rep) + X_rotated_train, y_rotated_train = generate_gaussian_parity(n = 100, angle_params = angle, acorn=rep) + + + default_transformer_class = TreeClassificationTransformer + default_transformer_kwargs = {"kwargs" : {"max_depth" : 10}} + + default_voter_class = TreeClassificationVoter + default_voter_kwargs = {} + + default_decider_class = SimpleArgmaxAverage + default_decider_kwargs = {} + progressive_learner = ProgressiveLearner(default_transformer_class = default_transformer_class, + default_transformer_kwargs = default_transformer_kwargs, + default_voter_class = default_voter_class, + default_voter_kwargs = default_voter_kwargs, + default_decider_class = default_decider_class) + progressive_learner.add_task( + X_base_train, + y_base_train, + num_transformers = ntrees, + transformer_voter_decider_split = [0.67, 0.33, 0], + decider_kwargs = {"classes" : np.unique(y_base_train)} + ) + base_predictions_test = progressive_learner.predict(X_base_test, task_id=0) + progressive_learner.add_transformer( + X = X_rotated_train, + y = y_rotated_train, + transformer_data_proportion = 1, + num_transformers = 10, + backward_task_ids = [0] + ) + + all_predictions_test=progressive_learner.predict(X_base_test, task_id=0) + + errors[1] = errors[1]+(1 - np.mean(all_predictions_test == y_base_test)) + errors[0] = errors[0]+(1 - np.mean(base_predictions_test == y_base_test)) + + + errors = errors/reps + print("Errors For Angle {}: {}".format(angle, errors)) + with open('results/angle_'+str(angle)+'.pickle', 'wb') as f: + pickle.dump(errors, f, protocol = 2) + + +### MAIN HYPERPARAMS ### +granularity = 1 +reps = 10 +######################## + + +def perform_angle(angle): + LF_experiment(angle, reps=reps, ntrees=10) + +angles = np.arange(0,90 + granularity,granularity) +Parallel(n_jobs=-1, verbose = 1)(delayed(LF_experiment)(angle, reps=reps, ntrees=10) for angle in angles) diff --git a/experiments/rotation_xor/figs/RXOR_suite.pdf b/experiments/rotation_xor/figs/RXOR_suite.pdf new file mode 100644 index 0000000000000000000000000000000000000000..51f42d8070f0779ca74311b260da88872de580fa GIT binary patch literal 23738 zcmb`v2Rzl^A3t8UONorETx73%uX}CEjO@M3=-PYlLMVIh5h5}QAw=29&IlQ06xj-i z@_)aTK2g8#zsK+Y*W+}~eZ9|lo!5Dt*ZZ93>-B!W50i?N3>Tam31KQ8hZfaB;7}OU z-oy$bA_C=6F*Zj#LlFQ)4a%e8>41jvNE*8s+t`~!#l#?JyX#;@f!`WPd$?RycQJNB zLyI3~q$pHM(9xhNGIa{DliJ!UT z&s+{_2<1_?FurbSXAb52(OgH_#0qWd0_8to{+~E-7(h52fViEVy^Ax@1<+m+5Cv@q z{1W`Z;Ifmws{<4qrldNQM+)s`X^K|640H|r(r_}ib9OLxLfe^o9*+D+eV`*AMf7z` zV+nf?fG^k?93jXDMe*~2ov46qTn<&HhIY1hbutBX2rB894nej4ra(}hLxE*1Z2%oX zd1Pz=B}$=9?XLqmS3ujDyI4Ts;MAyr4V_(_(8jh9kMxpM`6z?-n4s-Vjuo}5^XyY8 zWsjk{Hz`b$8Ei1OI4vG@WCusVEhAw2lT&vJR!Z4j6?FqHMH|xcb1)({TJE%?CmSx# zE^j7Qt?um3Y`tE-xU(~nSZ)7h_iOZ*)8dYybLWmgDJn&9R1 z!g8r%uy!M5?Cg57cfGdnmss_Ek1rcLTdk`bT3@&Jh8k_McoQP=J#9-?wXS!5T0NbW zH)YfNY^uS}&tW3O#*x6saBsq#Uuj8K*>?OZA@}(^UlOYj zFDFY%$K+Es4fN{;^l3dGT36QgJkGdnZ&_r!Lc=NFobtfU@zHQw4_khQrC0o<+Mv}a z$JJs!^OO&@ZLMWq-QMR#tDW+fquSA!YN zw4i9*lCJ9gIkNEJS~ty!a^G{}e%ULkKJpV+c5Tc&9eUg}_)80|eOLB4O*0CGiKkRv zk6{d()$^1Y71Tk_x?S+{QvC2ysfB-#Ex;M^xw1dMh+}u4EdB*D%bY}BQ8-g2y}UW| zmBD%KRS~#V2+y^rd#iNUeD>_TzpuCMDnDEiv%B`pYxDhFTHQ9!ew6HPCtaqf%;?3c z`%b2GmOQz&lEq7T7h2ca>y~@p?4G*oQNAdguD(UCOEmR4-quK|=)!ZJhT7dJexB7# z-%oQ}8v~X-!lz2kZV85!*c06t_wz@icfVcky~ow}7cz8#t-G5N`k z?-OjVL#%V-C3n{D-GH+4b(@Dza_iD_^56HMY-$*L@2OYcID=im^@Ky6SdsOqtjHUs zz8R;xxT{;}_f~iMO)5F7*euv30y;a0Gp0s@u~c5Y?AZ1!zJhpv|7Aoib+`{-+~zwM z!v`x{%h}N$#mwwbky@V5#dFh@rsDETu~gfzkPb_x>UyM)7=IBoTc5KX0~6b~qB4%R zg4de<*4N}a)|kw1?-a#8X)`w^3aTtoGwec_PRdUfFB=sTW!y)ymQ~(aJtL{roEj#G zsY8u0IL|=wg3DwJJ2=A7;fzdBJOMXM0LO%lwXmTB%1usD>5?jDe$DQ#L=KZu;S6&5 zU5HQd^9#dH{0=d-Y}GEr0?tNCG|r7-<7!-fUN;4c92(Ipwi|QrN>NrU%7kZTG8ds` zJ9qTTw60%A_djkl&Z~M{M#F=u$lnew?Ya!9dPiu0ze^aLkiaICpW=N<5D#-WoWL-` z;U)KdFUG4+2pa>QTgka=b1>DA@rx~64ys9ZQ8`go)0ezu6DHQ)xGwoFIWkvj-g9lJ zl&86IbnZFIvu|*c9y2+oCf&rGaB9D7C4T3Ty|tengw@~SdeR5ftoCe$QOjHE7eyN? zr&hay`-SGTliMMM;nD5%)Vg6-F`~iZg@p;JB6KM zd3YOt+a-y}qlA>_&aDb*w*&*ycHOj^xZM*5^jX5;f@Y5M=lXTAGjLkPSvzIY$zMA2 zHe$)L)OIP$&qzeeUQNTpl=sa_e<$Kub7vYMOHfdPRaoLUY_dNiH`i%^L73r-S{g31@oJG6o#f+lOmk9pdv>CC*5YHj-6?rLx?7zA z)X-Y8$EoH^ zPHphLaVdX&;p2qYI`ub#>|~Zj-pCDKsKD?Ufy|dT@g0{oPEv9f={Fjh4&_oC3p`B| zc7ncQZu}Txn6r9E2*DvY`dP{ePU9l=E=-*RzTEa!J36pKKf&;^uv}5dms6Q1tmChK zfyTYNuzkWdr;yp|)?#t(UUq3VM8objmKUdu#{GL);ir16WA0xjSMFjQ`80Lj{?V2( z=f*BqFz3auPbC5qFkNxP_B&(@>K2727Orj?wRO1PXe_w(<@FkU7KdN_^+F+`^$>c5Ow_TRCvvlz>Hi{{M(@sO0Zn=|){yu^!WosRJgTg7sSiwnRZ=0iY zwe-csTA!;+zUjAPrpr;M%xqgG6?qAuwf7a7<}0ulbCLKPip9w&+5kM_Df(hJSs*%C>uq&{CT>G5LyMdl*}FWWi<}>?iTik=h;xw{ z5lTG-re9SFlT+QI2T+&UuD()=)X`3TFkmVE@phH9Rm*_*;OFn5D{Yq_yClu-7rqp) zztyHb>YfeZoW;?flvmNeV1I=L?H*V^FRJ8q*D{rfi;klov)^b~#cIuwtv|1@+KC{k zS0OmnvHFo~`us-z$Ei31Wy@a&YQ$4g%D?2an( zSgW#k?NPF&w|;^YS>mlmAx+NJKF={Tb6fp7{9N|7Rx{C8iLJ%v49PH&yGE-kcwu=l z_h;kG(mC_933hb^m1@t8^=e5aQMxUXczOp zy2f!@d)Df5^Z9~EUO|H)+tV0LQD`x&;#3VZ(`n8)(f78lj?c+A>p0p@GDg`;A(ANoOUHG%6W1kHxwd`jW=X11Rh7>Ts@exhjW2@8sPMK^RMQ7)gp72F zB$Ic$Qk~o#pMOnucEK%n)w@c?q`dm1juSWD6(cQQublxGb2s_i=*{V3p{tgDEQ+%D zJ8#eD&ycmfW3RYeQy5|2agt-H2}6t$wknp2nfOh(yH@fgavg`I97jr3z>~)=H87%> zz$P`nv8&XTtX2^B1` z_Y#>;wGq1R$a_M$=d#H2K2lPB(s-`nW}dfQ^hIg8pM|ZU-{*TUDj2%;^hKbN!jxC; z4s{A|b+zLnpOPbsJTI2b%ldQ4&GLFAzL8J7EF{+Vx%ZCN47roH+x*7!yN}`tlFH(dQWAtuQd0H*J$p4$QHVp?S3jQz$q=*%$e4ffzH_Sl82>A zykvtcsi=T9A&#EeNUa6-m1ypI9?ehXDktBadH%V|ZgKV#B(2!gbB()3$5s5!KuVjc z_*26;&F6EMRFq639AHv{?=6`*sG{)&=iz$!O_H4eLAba1RTo z3sjzqFP_s$T*VJmoe`&Crs<@SKutp8_JY*=>=`dcrAVw)MBcrI!j$rj%(w)j7EE6E z7ol$sypub=+PQYbrT|R3SSWPHR6=%HrjiC2N`L`?wHIy#t zuHL=NQHdOLZG6A(C)epk#9-Fl_gJiWnp@kExs5&y2BEoGJ%Kwr$`jQ|wf2;#c{(L2w;xFPkld9X-Cr?$0aSm2dV!}uWKWJ(PO zaU^;5y=qe?Y*bOSX(t|G`N_w`anZ;+9C! zf@+W2(B?sF_O%6uj9qPizT06sV;*ksF#KXxs!jP~@43X6!OhQ3=r&D#27?kmz2l$Z zi36`0bgy{@P=bds3pf}=_&1*$am3+9g?FB6xr8UVsvac&wpT@2%lqZl4MQ9zi6$Z& zK?ZSNV(JcmqKD4k6YurRTuuGnhp$?M8>Pp5tKyFHMGX{rH@TCn?(3B0Z1ww(VkMOv zC<@pE^rX+UJxMHY>dYR*=Xk*>axOA+%TPqAt z@`F7YXXCl><;}>6;u~5s(s**V^=PN+|E zxXoS_Hjknkb-VFiXPCSaDT?TNsw~Y&_`+Q;yMMiW1-Y$NALWQ9`@Z9MC1k8LJCQ%x zNS7w-F|UVs?}hWe-hGS3V%H+?eU`R@=MozmYq6F-AZ+ZK7k_Gbj+sQfgUZPeKGLDM zeFkA%RLV9Jq1JVYC)`975!1r;DP=PMZ1<4+bmmoww|8NrD~3~g5Br{N;KI)kcwoLY z;_pjlB(nSPc+c`ywDma!lY#c{#H(M0OV1{|$$!Hq)#wl#eeU_OB27lz+#v0oTvKY@ z{j$}<3C62Uyr(NAo36h|bmP(AQ(QOa_-<1f5@ny=8QSufY5F}V_P=5}h-1?vsv_uw zC63qmfy@hoe_~ZPDR*N3KKYX+BN?QMkOePZ?M_jx1((l4#cJDvYH(`U-YcK z1se=%ifO}AV_cy=Cr&v5rRHvJm z*t5(|)7+w1@xZTD&nN29;8BxR;toX=nK3S?5W!QL-6ZU_B5lSPrc6q1XuWe5ywb(w zt2QWeW+kF$)>R6&f0eO7@9Fp~Yu4SWFJouazqNZ_oVut+X5jl575-~jj9>7Gp(}R7 zNp8aMu%2gXuVHaRFYG%OPw(r~&sb2|`A?4r2AR$}u;QjG_l>QF3MmN5*f>c;jME59 z8tBs=Z*K1v>F1=1$-e)X<{}z5Np1G0Scu=li~nn8`H@G&LWS25KL^BeesC8n<4fB& z51Ni|_sQ{C#>)vQoHyRCi5l=f-@zIBZgx-SRy6ZKnDLm)_`Zk5pd$Ob#`mw{^HV8A z>8^gEAoz-iJ?*OyO!W?!LZudG;Rco-FM;h9x*2)~qHtOBl`N$n%IGP3@h^OMLsLc|}FxT5n+ zMC6h_?%ui~)bqMfU)}5Z12!y~N|{PY9=UriJkm4fSHjggna31lUI^wn)@fL_`bdmE z>Xi9H;ylhq7;GD0vdg@=)l!(0j)f$NA3|-KUS*YgL(=3K#O#ffQ za;0PH9I@bplAlTfm{j(zY^JyO*X|FVn4`pXZ-MNIsM<2K`+m89*(<@P#Ju6gIgd3l zzmLk&3k8Fs*p%{+l@A@K3zyYG&t6ZU9}8B0AvdeR@XGiW0WSMTSx;FV#S%Kx>apq3 z*rHZZrs><%AF$qkk@)WDh>DIMQ60V;rrAa4oHWk1c!4ICeg3Rx_{r3u$fvzBr&$?V z!%4Zwy9Eo%wAP-Ca68&G=cj3#AXrIOntH8ozdc7|(@r*Mo!i6WmpPYyvPgW5mE8W4gT5z85FO}#cCo=pLSKIn4j&r^(Ff~sr(5R z!x@z(ijcLE5v=>(mvvT9DWiD|X483M!Y9VQ*+|Q0&3B^_w)`m=>Z$^*nVUKV9o;Qs zN;Ej|;soqX|Jvb?OOoT6uUT{33VQ=6XwH6Xpeh+bU{+U;TuKuVa~lV2AF1gJQVZorW};qoDb95a_ba%S$w$47G*b8W z)mA_368ZDpll#m3gO7>+W&Zh&-d()BNDY_@41q(EpBM~zA8ZC;3pS9+PrT%B0JAl- zDTr>y);MW?lXT9ZF(Uc-jkQ0(p|3wz?xzxYN0_Qy{440BP z2__t`_5+!SxU}L%rkj`5{td2f%0pTa zq%*gNUt}1OmIpbRGhYpqo<#=TqB$F1l#@sLI&NTrXhy8Z)$Z#Zd=AeTMX4d4OtJ>`*U=B z%b!{(w@_SG?j{~p-$cZw)K-j*S;C#N%++=ax)i^O@+UcI>8yWI_^KD)x|w5RlPj(< zT2HS2aH6`kcJ_RjuP`c-BwgJglL%oS6Rdom_C&1dKy20QhqRpB>o<6 zmS{X5G^rUTKYDtI=bFBrCcw_m|KCfExG+IozEtu%{F60n7 z`IAu`gw|JvZPw>(ZVy#q3u~L+pL*o)fAu8mWvyKiT*)4(6DJ%IUnmXfm)DAe zGON4NewojWeKGN^oTh76%4aw6I@ygua| zVW*svBNylWl!sI+5=)jDNV~Bk@XGAkmEuFp(}P$8tk6wbJDgO)u?e(EGfsw0K_=52 zxSM_{@6)P~3@;lRs`mxBDc5|GEJ6NfyirDAoAZihUVQZ(! zwXQ0#HdrQ{uRU{P{$S^6?iPLrY?Sih(%Kdo_Mn=_x?fm{+qKNYI0%PP&NiM z#Ng_K={IQ0mzP77XZGGC)AwFFuS$`;^^m-1T~r}ArBpgds0G+qxz3ks3Mii)>Snu! za+|22Jmo0B?62f_*1`T&Um-kUWn6^5!GLs6Ot&-XibJ+4Y4Ui0Os(-P6P38T#42a? zcw})z`_RWwDhZB#S`Jjt! z>_vQ2TP?cSXhp2E)}dvm)ElK2pK~r8y+#D{u-vmcV~B6jse5lu8mGE5p2}XI+t0S2 zmHe6o&F8JKjq^A5XA-Uk{HaOafAu>MDAbXg8Ku%;3jopGItbsHOZU;QE5xs+eSemX zqz=bru!)IJuAyIRN@7<#yAWV+XbhPMno6)zajVxJ4+y2d@`&smPUh>4#kUl22Di+w zdd%k0IG&`$m(NdrV2b1$qO$L_Ny!QJf0&J+g)dX#vQaam26QJ1uYV>`l~uZoRWtic z;DLIp8Do^_kef3OdX3qL#)iFQ!4x%LAD?=Kf=NB&2GfVp3bnfeR}?VnKdvYmx(7xY zT@!E?o>=}M<}Zi)d{iv^RZ&G;r$_Vo7LU#61NYw$ePFJGy9zDeZ4gZviBaZzzg=UD zA?{w%T;EPlxjc7XiD_kb^^4xc8*&r|wSUp$zj{kZAV&1Nwu{`Ht759kwGbJO zAog%Pvv7_y=35iwVj%Brif?=9fZOW?JCxIf9$_z_vMwlS{t5CAWnn|}mX9cssr6uY zDiaCLT#j%Uj;iNr$hluetnH)dHTv|uZ{LU&xqqC|EwkG>!PL5vioK++xZ@<>SnkTj zq)BGu;*CKe^a(?8QHuS~KTjmN7O^aF z`>wtCh`Gg_M}-3>CF@D9Gj~6YpTOt6T@vqmn{OR8Uo_W@OMC;lL#y1cnBhnhE@@u& z_{lATbpF=I*c}2QX=H)1^3QMk7|U+=IpU3rVY!r~jJIit&XV9>4mBhqFTi?SF`k{_QUR%ssdVV!*4OLsf_9^YRk`d>XaIN#Ao znWC~F2hpFK3!6@upOR+UcFAPRsWc>#PxP$IL4O zt++Eb?7Gimzh8xAQIxm4?B6C%x@hgiTP9F)_N8x*wdwo3FWcvfzL@UL=S?bXl@Vmp zjoS*3{AHm3>O&!pZBf#y!gj4N!Z*H|gCSJn2q0z+2tVB+WtO^26-FHI(7-^b-wj95Y#Qq)|g z*4wBn?hlicxB9VDCX^=+WnfkC)?Ntl3rA@BmXjmc9ohsK8A@OJsB;pmKC5f%r8|E` zXX`KO`&So4@R*rIh?6{r;$f~f1hAZARr@}$(D8j=FUIk+gc}L;K?J*aTc1~4c7GrP zO&dQM&PQzAM;j-Ivli@$S9PVzCUL0)q?g zj17*9Ff)0YF-9X9n&nLQwvh2`X&GJy#nD!48mtz@GW|0Wi2@Snw8{*%ea8Iyo2Sa{ z&Fq<%o<_vFr{0l5Ok0cE!K)(Et4xs8rjrqZ{LUu~SDy4CK0ip7+OnU3_bLwC1 zb(7mLV$=5~rwXS#rS8}b+0*D;As_HI`RHod*ChZoS>QX@Y?D0>y5UC`0fh_m!lO!+S1;|P0Ks#uXAArv5bndCR zzx4dCSfB4G&f-NN)PSCOF-d~+nGYT5OARU6g%U^mW`{MO$Qc>zBYA+;h`3q!;@uU@ z6A4~q3V#vhUm>%=QBf4b%fJXJrnhn<-pz>TyR&LcyVWP#YvcpZM_=!1!J0jHb{0eE zUdcD^!seltwkV;?Y9X;53RIDbAH@wjwb2HpxARghgO+jT9v1m|lzhNc4WpXS(323|`unD|G>#uQsEIBeh40|}oy^Y0IvP-n#;9Y^7)w(C;=R#;_hokAO=HjD*x~Pe> zXFTQBC9e5&%HkOhW+&h7y;(KeB*i4)YZihqmBc1tT<{0?u| zCh|s`x9>iN`6H{Wzo_6l}C@X(6yuoat2Q22<$YCkqyJZ+ z!+UJ>T(NSov_FG9eZ(g5E}2vB5`6bd=mxJbVZ>Yj5iM*-6+pBl+J2iIq$RO8qP~(% zaNnSdAaQMfCPlGcF>A9UQk6JJRzV_>c>m<~9X_9RZb#vABD*L?3irlGRRT(t_y%N5 z=Q;~?NLUf1zL_u!Q%2s_NFpI2;Q;h9{#wI47dtuXHQ7a(({2Gnf_6Ii+v3gwRYZR0 z>*0wwI{soIxuY+k$%3t8nBJku*A3Y2tB&2hjwV>)`z{v{;E8o`oI;o5p+`r7?KchI_qfex{RK#O}U=0v`^fM~blNSD#Ihy+B`+lvF zQ$UN%^9NPvl&u-NxpwxXZ(mz4sw+^kzZ-c`C#c$ zE6JK{RO34e{ueBcIJx{R&BN2Xrb?oA41y?M8)tFE3FCf81)&6CpMXw-FEu8jnlvzG z=jEqpm01ZChodw**-`>8cwSQaRJtulQ*ojZ zf*aVMjjtQ5^c+f^+o&dFc&<1}1T$HiIeFZPOdYRYrTB90-I|4$Zz+ky@*4IvdbFDU zqOgC(ZE*OpCvi%hrzGKowdN3+wW)QHhacG{_VwDWcyNp_J;B9O7}8dcG4NQgjbGC( zuU{whA|wc+7Jr<;M*uH|^iIp_kn3QQ^X0vFyVz||G_X|XeO>KpHJVZC4WlKVJ1emX zOT1~D$l}GtJ*|w*?-*Q(3|Idm`o99Y<4^2>z?@Svj8Jl044WsKa-CyAWWgn2{KlKh zH484ralx!7Zt=kcIuPZ$@=d( zwa#!7-z+7H*Ri;m8Bvi#2peHa)4ON%`?0m9q-Vz4DlixCz;(0&WeEdl@9R|tu6TuI z&a?W?ExfxTfkvA%M7|IrTc_dA$q1thbF{JCBs$rcl-6OM@L}^CCi)|K<1fnnR}2O} z2EwG3YffPTk3&VVDFmK>o%5u*SGzPNvq3M*l!}m3m4dyy74`w+;U$M@=|E|^6<*d; z6qW&xpWvM#CiNy&u!m!B8tJ!^pK-i($;#xQZXuP(A?Nylz}VAx1!ZGn&;v{#mT~;5Lt3*Hh5uT4d2(QoFQn)^jS%{X(I_v0d>jb99vU~e$c2WFDJUH23 zX769YBl74f$cv~}fvG$~Vvz)2de!&*5`AklL09iw0A$vIGUw4HWIO;@{kjNA{?g;W z;z2m_=sKbp1uw^>CzRY34T>`A;Cu9;BkP*&%9KnnDcdEC?znbhW4l}zX{92E-R8=v z)x;*--k>hJq=n_+ahhOh4)p7u+;B3yZM&x6E!2@QGX5$Fz
#Zf=-y?c+#H)u_;tED?YoOub~;;R{kdDbk{%o{tkgfq;d1BjO4yZFnxV&mpMQ0h|pQ_p0F@2h~dNF7w zIpr@C{LirW*aJ&clsri@6xc@6B`&W~%zU~xKn8>|8B%O6B_^B42-4r4j(Nb!=Hud! zY4(NIu~>9+O?7}mvrDQ}#)6USZNhClgJ#3Gyha(1@*b&KP@I(y@oH?kG=N7k=EXnq zlww4-BKyKel4P13d^#QyLpi_O?>ybgl&>_)Db-Fca^I+bHZrq|Yc9`0{+A*BGnV}$ z)FJF71qAJ;fat7Q7hO+9ipJ<}HL-vk6At60rWNs!$Mby3osPf%jnk)*1 ziqj^Jh$UD7-1%I_5;RVNSq7tFG(|Aku8-lQ(%U?5N4L(1r4y$_sIdpSALRw`mT#s@ zt2TB@Rb(-C21f>^yba{_3MCA)nlc=|DJy{YtzPCzE5nw_=xtw8yEsh}MtKX`cP9-O z@HpE$t?{XwC_Asd&4$0eDmzAgd9psmO)ZiZ#t`eSNn@O7BO91;gM~KGJE+0_Rz;-j zB;#OPft>7zTc@Ob_f2Knfh0}3P0-Q zA1u^2n}O)Y391>4^}jIwXI#gBG$1FfB6u1AM{mAC{Gd0b>B=YLa@2SCE92EKgvmvh z%ceD`7!$N(O}wp~MhBTTVot@TzEdB;jl?Nm?if4UW72bBm^K7QzxB#cGKXSaDm|6g z18XBUP6h^LYK55jT=q+!_$kR5%Iy$jQ0q2skFw6Le4^cl(Yvs^RjQ%>&2gbyv}K*O zjQ2RCPuUix=h2*X(!s{m2zbjm%e-`Jk*?HUsB;$=5iEM=FGK!UJP5>zjs*CQJ*K}R z)a&js*RWqjr?H)baYZ2oKZQxYX;xlQO|$Ci&Tt5YsP=b}kMcH!dty}b$OQW^D-!J* z?yPn#HRkth(i>N8#i9mIwdYY5S0!YcGPB+Q)ij^qxt8m>5WvuHsCv$(Fa$4tfc8sXoMY%K zMo8Bf*Q3M^GmWs<))f!RPNYOUhSv9?R2Cbi2lC_?*YpUKCE;%YU;DmxGnTmLSTKfD`Y(2o_NA#4@7eRd#rjGzYejrnPODg8`EHpy~$P;v>9Vh zrCkeCqVrD5dHZ{U3Xlc-5+0|h*6m(;Rkg$`vo+0JtXr{<$eI?z%(r20A8g+awNfC+ zBUnI}a>lZr)`;1>a{sn~lojKLyB8GQr>SNQ5*{0AVX<(3jLv#t8RFh#89(4$t;5ij zt|#1fK|6G-j(Ib*(!q`>JfoJmu-|9+WASjQF(;vx`6m@EEw zbiSNve2JaZloXCi+ZTL-+55;rw&{ANmZ8&{^L(dltZ|fZz+($>zU$-)swcCq51hGE zA01>ADA1v0MwE2sA!cP-L#K$O!9Ln*!z|X;JUsJW5}G=M)-apE^&Y9n;z|umdsN(2 zmRF?4CgX9Mymb?8&m6|8&co$%G$}&w2RC`d!l-sB4ez*jKf5?-!C` z-*&Kleziqfgx@$bNAl*a^Pxgz7LWQ-SVhiMuN7G)x+u+N)p#?$xt48DykR!zM8p^r zaP3B)kRzWRYPz$uI1w;v^kXB3o_ z_Ftcf^<~h~5yePdc^`}xeQHB$le2_t8|11ndM!~y4CG3>7x1p zU8=S2U3p;*r{0ukJH3$=}J!Oidj?$f7xgeZ~^ ziqcY2#96~6)wCSu!dXw(#57N=o>F9+$z5;U5V`qkO+^3IAi0m0XI9q5&xvUHKNSna zc>YtYgt0UF;NS@!aVJY-8$}J^hzAQ}C-A@tXDA%pY=Pq^r0syi6~OZ(L_{DwQkG_B zXz;WL;HU952awTD zmiE`7zykvwFSL_Al*ir<4dHQd2TCp$PH5l+2Q%Op2;hH9H=yin=>hzQb^}|Y4|ws| zS=ynYd;mvrD31gbc-N6f3d$o51zsuUQG)U)Lj(YU)P5XH0Tlp6JEfip9>VKC5j0sj3e0Y_&j82{`De1nBY z$=DVc)6e;X@Tj|*xE!260-i#`dw3+rk4e_HyzXKFOf2X-sDb$C@XMdyA*#5uDR?l4 zARs1ihKYmh56$xfFL?k*fBd+{g#cK9CvTWL119i8=>PZ89uX8cuLL+A#nM#V&fEqK zg#kx}7<(Lu2Pg;J>UiM0q(v31o=e(NAl|j*aRHX;k<)l zfeEYtBnbGm7|8m7)vs1Rgy20;%t7ZsKOkFBXt2`ZfDdy(*k3~N18)@b0v_7IH9&Z< zK1f5M5WuPm(2;_Nz5n0^e4K&;+x(CS%pttM5(Bmu02FYTz)}2~ByggBO9#?}TKt^| zln-VQ6#6h7SOZY+z+wRU@A-kIK^l1dxAc=I1Qg(Kz{hj&RydeJK;2@R+O47g$`lF--EZILw z%1~hGKe(y}m;+b>R$3_HV9^HFC@2ElRe`oTP+*-uC>aA5`J-e4X!A$O6pHxS$8{*; zpbrSJA051~2(%ochQMV1_yO*Zz$_p9Fb9?wumm~WV0nLbX$e@= zk1EzsAf$Cr*#-)H8FEmv1$XO%k{uLz&>iH*#tMXr56JdV<3f_a4Y{& z0?%$b*yw>5r2q=#$bSE`=l}NlgEmf3V7d-U&cMw7EFJ9az&q6kJizT9u=yW#4nPGE zx;psf0^9^YO9vfIcP}I*p575Q|ru=>11MZst zu+abdAWYy`042Qc6z~Fuly|-nmLIcO7HdMq4Ql9>aR=pE?amBsTXZ-?ID z4_Li6@5JJd->@r|g5>EN~^3fZ5TIzI1luPeq#8<{j;Cpcq^JH`E(GxGUuVsEua zgkSHJA_+d{G;el=cgo~x(%2X2QC2E5vQus=XDp~hy34%lXSWi15I8eXoKcq>_qnTk zm_4IPljU1oFK=3&oPA=F+)4c`>UPyowY%2hcb-9B7dR>i&@ziE5j${RcvL#lc9N-s zk9~JqQIJr~3zCLiNTJ)dXquczf{-RDYHWxjnh_Xi{F?G^f?df~dT|DWB-*s)RC>np z*%WU@fBa(eiR}};Uv;Mz=_38FdHjiwfmQN9-TzPJ0_Ue4RUi1Y6tB)4LS8_M;Sc!B z^{)HYwtd3J#QPFDFXHh$3p;w)7Uac*6o{(0pOrBXl(;f2y-bB>a;#>jl$Z67OdB~+ zF<-q&&Tlkt89{||c^8n+ogm@g%Cwf^*MJ(B2gl|<#uBh`^Br96! zB@nbbSf>C0=v6?X4ftlSv-oyZV_70C8;cxR>0i+D=sJ4{y$yAL5r z2F(bR5>J*YT?{{c!ieFj?#-oADM9&Hk$GA6PusVNE}c++{1?@Lx8vb=KmWN7QfMn< zEmw8m9Jt@T2fl+l_K5cYEV4(uha+wPXv;rr^EXrtn)feMeH3T@pKgbvu$u4ZTK#_u ztN$C@Z#UBa8CmoFSiJv3)(8C`s_YP1155vJ$Qr=7|KVz20slYX>i;p`AHe!QQU3?F z<^`7cf5p}Z=KT{{9}El}hdz`K#5Vum6XgGv2QRQsBLTMv2`uLVz~;us%Lfqzb`*YK zkw);NfL#s%f*2E)q_0rLX^fI)!+;{*Ifuq_INs|P%Qxz~4b0>VK{1A77?EZ}7Sv>9+{0O4ozgE;}40||oqIcL9E{U`te{$K%s zEwC91lnRji&o5nTJ@9D`gaGkAk{`gqfWHcg58A;m{)Yx~U`&8P9q9F^ae&-` z-;jfAKN$!Dp3Pwb4dI6kfOc>+9q1ac3(zKhO9%D<+QeZxu$7-S0oudw2^99=H^77c zw*-!y4~7Ef@TU!cc5o~S0zr@iy8!%XzTeWJO&sQ+Qh<2}a5|75O9ylP<2qR9R|4$< zoK-OYg{=>k`ol#IM2rWx3P7|!P}dJU_}`lN`z|5_%*Rh?Cj)W@HkjW58hGiDu{iw4 z5v1Y(?Qo~~b%-jDsWJ56jYS@D#9=icR`YX1`J>uzv5(&%;C~|ihQIzJ{tgWOTWq;p z?JN-pz+4VM+wa1IThF2JlJ>4ZOa+ig-tsyaI6F9dRqek$@5lME|Mdk#wtj02oMGx> zX>TV59v90hC4_(hkt9JF9L@*lNAYpNkSs753mb$-608Trl2~nxT^wxeU2H5(puF4& zZUiUP!o|fwh==FD3*7cj=0Fo5(s$j}6gWrq_cjjK&7da6rq;mP|D!$IZ~F3ZLYqMV z;}e7cH`mWUV8T&=QJ6u0(LnzS{Da#4q#+P6&`gff-~xbY|3L$m(Bm}lmimJR+)Br2 z2-qL}0yRKu1pj`?0)z1aOZRaa7-2s~L-KpQar+f&$Kl$;({;+3YhQR2;QGUEg(6>HDLxJnhF&h6La|A~s z{+LVP-LF4v9F7zOAkQ&=$iL_cg#cEOWA#vcf86`PcWB_Iaa2A&@D3nIbw{YX8yAPV#aj?o1FxIcic1dJse)^l+( zwzNSz9h@;PXJ=*)fDK?{0Jc^&dwXy{IVh`JdI5Xx&*z)QPA&&aG!V1|qPt8?(#kTB F{|EFThyefq literal 0 HcmV?d00001 diff --git a/experiments/rotation_xor/plot.py b/experiments/rotation_xor/plot.py new file mode 100644 index 0000000000..6fbaaaa8ab --- /dev/null +++ b/experiments/rotation_xor/plot.py @@ -0,0 +1,82 @@ +#%% +import pickle +import matplotlib.pyplot as plt +from matplotlib import rcParams +rcParams.update({'figure.autolayout': True}) +import numpy as np +from itertools import product +import seaborn as sns +from matplotlib.pyplot import cm + +#%% +def unpickle(file): + with open(file, 'rb') as fo: + dict = pickle.load(fo, encoding='bytes') + return dict + +fig, ax = plt.subplots(1,2, figsize=(18, 8)) + +alg_name = ['L2F'] +angles = np.arange(0,91,1) +tes = [[] for _ in range(len(alg_name))] + +for algo_no,alg in enumerate(alg_name): + for angle in angles: + orig_error, transfer_error = pickle.load( + open("bte_90/results/angle_" + str(angle) + ".pickle", "rb") + ) + tes[algo_no].append(orig_error / transfer_error) + +# %% +clr = ["#e41a1c"] +c = sns.color_palette(clr, n_colors=len(clr)) + +for alg_no,alg in enumerate(alg_name): + if alg_no<2: + ax[0].plot(angles,tes[alg_no], c=c[alg_no], label=alg_name[alg_no], linewidth=3) + else: + ax[0].plot(angles,tes[alg_no], c=c[alg_no], label=alg_name[alg_no]) + + +ax[0].set_xticks(range(0, 90 + 15, 15)) +ax[0].tick_params(labelsize=25) +ax[0].set_xlabel('Angle of Rotation (Degrees)', fontsize=24) +ax[0].set_ylabel('Backward Transfer Efficiency (XOR)', fontsize=24) +ax[0].hlines(1,0,90, colors='grey', linestyles='dashed',linewidth=1.5) + + + +#%% +te_ra = [] +n1_ra = range(10, 6000, 50) +for n1 in n1_ra: + te_across_reps = [] + for rep in range(500): + filename = 'te_exp/result/'+str(n1)+'_'+str(rep)+'.pickle' + df = unpickle(filename) + te_across_reps.append(float(df['te'])) + te_ra.append(np.mean(te_across_reps)) + + +#%% +sns.set() + +fontsize=22 +ticksize=20 + +ax[1].plot(n1_ra, te_ra, c="#e41a1c", linewidth = 2.6) +ax[1].set_xticks([100, 1000, 2500, 5000]) +ax[1].tick_params(labelsize=25) +ax[1].hlines(1, 1, max(n1_ra), colors='grey', linestyles='dashed',linewidth=1.5) +ax[1].set_xlabel(r'Number of $10^\circ$-XOR Training Samples', fontsize=24) +ax[1].set_ylabel('Backward Transfer Efficiency (XOR)', fontsize=24) + +for a in ax: + right_side = a.spines["right"] + right_side.set_visible(False) + top_side = a.spines["top"] + top_side.set_visible(False) +plt.tight_layout() + +plt.savefig('figs/RXOR_suite.pdf') +# %% diff --git a/experiments/rotation_xor/te_exp/fte_bte_exp.py b/experiments/rotation_xor/te_exp/fte_bte_exp.py new file mode 100644 index 0000000000..a2fdad812d --- /dev/null +++ b/experiments/rotation_xor/te_exp/fte_bte_exp.py @@ -0,0 +1,100 @@ +#%% +import random +import matplotlib.pyplot as plt +from itertools import product +import pandas as pd + +import numpy as np +import pickle + +from sklearn.model_selection import StratifiedKFold +from math import log2, ceil + +from proglearn.progressive_learner import ProgressiveLearner +from proglearn.deciders import SimpleArgmaxAverage +from proglearn.transformers import TreeClassificationTransformer, NeuralClassificationTransformer +from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter + +from joblib import Parallel, delayed +from multiprocessing import Pool + +#%% +def LF_experiment(num_task_1_data, rep): + + default_transformer_class = TreeClassificationTransformer + default_transformer_kwargs = {"kwargs" : {"max_depth" : 30}} + + default_voter_class = TreeClassificationVoter + default_voter_kwargs = {} + + default_decider_class = SimpleArgmaxAverage + default_decider_kwargs = {} + progressive_learner = ProgressiveLearner(default_transformer_class = default_transformer_class, + default_transformer_kwargs = default_transformer_kwargs, + default_voter_class = default_voter_class, + default_voter_kwargs = default_voter_kwargs, + default_decider_class = default_decider_class) + + X_train_task0, y_train_task0 = generate_gaussian_parity(n = num_task_1_data, angle_params = 0, acorn=1) + X_train_task1, y_train_task1 = generate_gaussian_parity(n = 100, angle_params = 10, acorn=1) + X_test_task0, y_test_task0 = generate_gaussian_parity(n = 10000, angle_params = 0, acorn=2) + + + progressive_learner.add_task( + X_train_task0, + y_train_task0, + num_transformers = 10, + transformer_voter_decider_split = [0.67, 0.33, 0], + decider_kwargs = {"classes" : np.unique(y_train_task0)} + ) + llf_task=progressive_learner.predict(X_test_task0, task_id=0) + single_task_accuracy = np.nanmean(llf_task == y_test_task0) + single_task_error = 1 - single_task_accuracy + + progressive_learner.add_transformer( + X = X_train_task1, + y = y_train_task1, + transformer_data_proportion = 1, + num_transformers = 10, + backward_task_ids = [0] + ) + + llf_task=progressive_learner.predict(X_test_task0, task_id=0) + double_task_accuracy = np.nanmean(llf_task == y_test_task0) + double_task_error = 1 - double_task_accuracy + + if double_task_error == 0 or single_task_error == 0: + te = 1 + else: + te = (single_task_error + 1e-6) / (double_task_error + 1e-6) + + df = pd.DataFrame() + df['te'] = [te] + + print('n = {}, te = {}'.format(num_task_1_data, te)) + file_to_save = 'result/'+str(num_task_1_data)+'_'+str(rep)+'.pickle' + with open(file_to_save, 'wb') as f: + pickle.dump(df, f) + +#%% +def generate_gaussian_parity(n, cov_scale=1, angle_params=None, k=1, acorn=None): + means = [[-1, -1], [-1, 1], [1, -1], [1, 1]] + blob = np.concatenate([np.random.multivariate_normal(mean, cov_scale * np.eye(len(mean)), + size=int(n / 4)) for mean in means]) + + X = np.zeros_like(blob) + Y = np.logical_xor(blob[:, 0] > 0, blob[:, 1] > 0) + X[:, 0] = blob[:, 0] * np.cos(angle_params * np.pi / 180) + blob[:, 1] * np.sin(angle_params * np.pi / 180) + X[:, 1] = -blob[:, 0] * np.sin(angle_params * np.pi / 180) + blob[:, 1] * np.cos(angle_params * np.pi / 180) + return X, Y.astype(int) + +#%% +num_task_1_data_ra=(2**np.arange(np.log2(60), np.log2(5010)+1, .25)).astype('int') +reps = range(1000) +iterable = product(num_task_1_data_ra, reps) +Parallel(n_jobs=-1,verbose=1)(delayed(LF_experiment)(num_task_1_data, rep) for num_task_1_data, rep in iterable) + + + + +# %% diff --git a/experiments/xor_nxor_exp/control_exp.py b/experiments/xor_nxor_exp/control_exp.py new file mode 100644 index 0000000000..fd952ed530 --- /dev/null +++ b/experiments/xor_nxor_exp/control_exp.py @@ -0,0 +1,174 @@ +#%% +import random +import matplotlib.pyplot as plt +import tensorflow as tf +import tensorflow.keras as keras + +import numpy as np +import pickle + +from sklearn.model_selection import StratifiedKFold +from math import log2, ceil + +import sys +sys.path.append("../../src/") +from lifelong_dnn import LifeLongDNN +from joblib import Parallel, delayed + +# %% +def unpickle(file): + with open(file, 'rb') as fo: + dict = pickle.load(fo, encoding='bytes') + return dict + +def get_colors(colors, inds): + c = [colors[i] for i in inds] + return c + +def generate_2d_rotation(theta=0, acorn=None): + if acorn is not None: + np.random.seed(acorn) + + R = np.array([ + [np.cos(theta), np.sin(theta)], + [-np.sin(theta), np.cos(theta)] + ]) + + return R + + +def generate_gaussian_parity(n, mean=np.array([-1, -1]), cov_scale=1, angle_params=None, k=1, acorn=None): + if acorn is not None: + np.random.seed(acorn) + + d = len(mean) + + if mean[0] == -1 and mean[1] == -1: + mean = mean + 1 / 2**k + + mnt = np.random.multinomial(n, 1/(4**k) * np.ones(4**k)) + cumsum = np.cumsum(mnt) + cumsum = np.concatenate(([0], cumsum)) + + Y = np.zeros(n) + X = np.zeros((n, d)) + + for i in range(2**k): + for j in range(2**k): + temp = np.random.multivariate_normal(mean, cov_scale * np.eye(d), + size=mnt[i*(2**k) + j]) + temp[:, 0] += i*(1/2**(k-1)) + temp[:, 1] += j*(1/2**(k-1)) + + X[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = temp + + if i % 2 == j % 2: + Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 0 + else: + Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 1 + + if d == 2: + if angle_params is None: + angle_params = np.random.uniform(0, 2*np.pi) + + R = generate_2d_rotation(angle_params) + X = X @ R + + else: + raise ValueError('d=%i not implemented!'%(d)) + + return X, Y.astype(int) + + +# %% +def exp(n_sample, n_test, angle_params, n_trees, reps, acorn=None): + + if acorn != None: + np.random.seed(acorn) + + error = np.zeros(reps,dtype=float) + + for i in range(reps): + train, label = generate_gaussian_parity(n_sample,cov_scale=0.1,angle_params=angle_params) + test, test_label = generate_gaussian_parity(n_test,cov_scale=0.1,angle_params=angle_params) + + l2f = LifeLongDNN() + l2f.new_forest(train, label, n_estimators=n_trees, max_samples=ceil(log2(n_sample))) + + uf_task = l2f.predict(test, representation=0, decider=0) + error[i] = 1 - np.sum(uf_task == test_label)/n_test + + return np.mean(error,axis=0), np.std(error,ddof=1,axis=0) + +#%% +n_trees = range(1,50,1) +n_test = 1000 +n_sample = 1500 +reps = 20 +error1 = np.zeros(len(n_trees),dtype=float) +error2 = np.zeros(len(n_trees),dtype=float) + +'''for count,n_tree in enumerate(n_trees): + print(count) + error1[count],_ = exp(n_sample,n_test,angle_params=0,n_trees=n_tree,reps=reps) + +for count,n_tree in enumerate(n_trees): + error2[count],_ = exp(n_sample,n_test,angle_params=np.pi/4,n_trees=n_tree,reps=reps)''' + +error1 = np.array( + Parallel(n_jobs=-2,verbose=1)( + delayed(exp)(n_sample,n_test,angle_params=0,n_trees=n_tree,reps=reps) for n_tree in n_trees + ) + ) + +error2 = np.array( + Parallel(n_jobs=-2,verbose=1)( + delayed(exp)(n_sample,n_test,angle_params=np.pi/4,n_trees=n_tree,reps=reps) for n_tree in n_trees + ) + ) + +with open('./result/control_xor.pickle','wb') as f: + pickle.dump(error1,f) + +with open('./result/control_nxor.pickle','wb') as f: + pickle.dump(error2,f) + +#%% plotting the results +n_trees = np.arange(1,50,1) + +tmp1 = unpickle('./result/control_xor.pickle') +tmp2 = unpickle('./result/control_nxor.pickle') + +err1 = np.zeros(len(n_trees),dtype=float) +err2 = np.zeros(len(n_trees),dtype=float) + +for i in range(len(n_trees)): + err1[i] = 1-tmp1[i][0] + err2[i] = 1-tmp2[i][0] + + +fig, ax = plt.subplots(1,2, figsize=(26,8)) +ax[0].plot(n_trees, err1, marker='.', markersize=14, linewidth=3) +ax[1].plot(n_trees, err2, marker='.', markersize=14, linewidth=3) + +ax[0].set_title('XOR',fontsize=30) +ax[0].set_xlabel('Accuracy') +ax[0].set_ylabel('Accuracy', fontsize=30) +ax[0].set_xlabel('Number of trees', fontsize=30) +ax[0].tick_params(labelsize=27.5) +#ax.set_xticks(rotation=90) + +ax[1].set_title('RXOR',fontsize=30) +ax[1].set_xlabel('Accuracy') +ax[1].set_ylabel('Accuracy', fontsize=30) +ax[1].set_xlabel('Number of trees', fontsize=30) +ax[1].tick_params(labelsize=27.5) + +for i in range(1,50,10): + ax[0].axvline(x = i, linewidth=1.5,alpha=0.5, color='k') + ax[1].axvline(x = i, linewidth=1.5,alpha=0.5, color='k') + +plt.savefig('./result/control_xor_rxor.png',dpi=500) +plt.savefig('./result/control_xor_rxor.pdf',dpi=500) + +# %% diff --git a/experiments/xor_nxor_exp/experiment.py b/experiments/xor_nxor_exp/experiment.py new file mode 100644 index 0000000000..679ef8c75f --- /dev/null +++ b/experiments/xor_nxor_exp/experiment.py @@ -0,0 +1,425 @@ +#%% +import random +import matplotlib.pyplot as plt +import tensorflow as tf +import tensorflow.keras as keras +import seaborn as sns + +import numpy as np +import pickle + +from sklearn.model_selection import StratifiedKFold +from math import log2, ceil + +import sys + +from proglearn.progressive_learner import ProgressiveLearner +from proglearn.deciders import SimpleArgmaxAverage +from proglearn.transformers import TreeClassificationTransformer, NeuralClassificationTransformer +from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter + +from joblib import Parallel, delayed + +#%% +def unpickle(file): + with open(file, 'rb') as fo: + dict = pickle.load(fo, encoding='bytes') + return dict + +def get_colors(colors, inds): + c = [colors[i] for i in inds] + return c + +def generate_2d_rotation(theta=0, acorn=None): + if acorn is not None: + np.random.seed(acorn) + + R = np.array([ + [np.cos(theta), np.sin(theta)], + [-np.sin(theta), np.cos(theta)] + ]) + + return R + + +def generate_gaussian_parity(n, mean=np.array([-1, -1]), cov_scale=1, angle_params=None, k=1, acorn=None): + if acorn is not None: + np.random.seed(acorn) + + d = len(mean) + + if mean[0] == -1 and mean[1] == -1: + mean = mean + 1 / 2**k + + mnt = np.random.multinomial(n, 1/(4**k) * np.ones(4**k)) + cumsum = np.cumsum(mnt) + cumsum = np.concatenate(([0], cumsum)) + + Y = np.zeros(n) + X = np.zeros((n, d)) + + for i in range(2**k): + for j in range(2**k): + temp = np.random.multivariate_normal(mean, cov_scale * np.eye(d), + size=mnt[i*(2**k) + j]) + temp[:, 0] += i*(1/2**(k-1)) + temp[:, 1] += j*(1/2**(k-1)) + + X[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = temp + + if i % 2 == j % 2: + Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 0 + else: + Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 1 + + if d == 2: + if angle_params is None: + angle_params = np.random.uniform(0, 2*np.pi) + + R = generate_2d_rotation(angle_params) + X = X @ R + + else: + raise ValueError('d=%i not implemented!'%(d)) + + return X, Y.astype(int) + + +#%% +def experiment(n_xor, n_nxor, n_test, reps, n_trees, max_depth, acorn=None): + #print(1) + if n_xor==0 and n_nxor==0: + raise ValueError('Wake up and provide samples to train!!!') + + if acorn != None: + np.random.seed(acorn) + + errors = np.zeros((reps,4),dtype=float) + + for i in range(reps): + default_transformer_class = TreeClassificationTransformer + default_transformer_kwargs = {"kwargs" : {"max_depth" : max_depth}} + + default_voter_class = TreeClassificationVoter + default_voter_kwargs = {} + + default_decider_class = SimpleArgmaxAverage + default_decider_kwargs = {"classes" : np.arange(2)} + progressive_learner = ProgressiveLearner(default_transformer_class = default_transformer_class, + default_transformer_kwargs = default_transformer_kwargs, + default_voter_class = default_voter_class, + default_voter_kwargs = default_voter_kwargs, + default_decider_class = default_decider_class, + default_decider_kwargs = default_decider_kwargs) + uf = ProgressiveLearner(default_transformer_class = default_transformer_class, + default_transformer_kwargs = default_transformer_kwargs, + default_voter_class = default_voter_class, + default_voter_kwargs = default_voter_kwargs, + default_decider_class = default_decider_class, + default_decider_kwargs = default_decider_kwargs) + #source data + xor, label_xor = generate_gaussian_parity(n_xor,cov_scale=0.1,angle_params=0) + test_xor, test_label_xor = generate_gaussian_parity(n_test,cov_scale=0.1,angle_params=0) + + #target data + nxor, label_nxor = generate_gaussian_parity(n_nxor,cov_scale=0.1,angle_params=np.pi/2) + test_nxor, test_label_nxor = generate_gaussian_parity(n_test,cov_scale=0.1,angle_params=np.pi/2) + + if n_xor == 0: + progressive_learner.add_task(nxor, label_nxor, num_transformers=n_trees) + + errors[i,0] = 0.5 + errors[i,1] = 0.5 + + uf_task2=progressive_learner.predict(test_nxor, transformer_ids=[0], task_id=0) + l2f_task2=progressive_learner.predict(test_nxor, task_id=0) + + errors[i,2] = 1 - np.sum(uf_task2 == test_label_nxor)/n_test + errors[i,3] = 1 - np.sum(l2f_task2 == test_label_nxor)/n_test + elif n_nxor == 0: + progressive_learner.add_task(xor, label_xor, num_transformers=n_trees) + + uf_task1=progressive_learner.predict(test_xor, transformer_ids=[0], task_id=0) + l2f_task1=progressive_learner.predict(test_xor, task_id=0) + + errors[i,0] = 1 - np.sum(uf_task1 == test_label_xor)/n_test + errors[i,1] = 1 - np.sum(l2f_task1 == test_label_xor)/n_test + errors[i,2] = 0.5 + errors[i,3] = 0.5 + else: + progressive_learner.add_task(xor, label_xor, num_transformers=n_trees) + progressive_learner.add_task(nxor, label_nxor, num_transformers=n_trees) + + uf.add_task(xor, label_xor, num_transformers=2*n_trees) + uf.add_task(nxor, label_nxor, num_transformers=2*n_trees) + + uf_task1=uf.predict(test_xor, transformer_ids=[0], task_id=0) + l2f_task1=progressive_learner.predict(test_xor, task_id=0) + uf_task2=uf.predict(test_nxor, transformer_ids=[1], task_id=1) + l2f_task2=progressive_learner.predict(test_nxor, task_id=1) + + errors[i,0] = 1 - np.sum(uf_task1 == test_label_xor)/n_test + errors[i,1] = 1 - np.sum(l2f_task1 == test_label_xor)/n_test + errors[i,2] = 1 - np.sum(uf_task2 == test_label_nxor)/n_test + errors[i,3] = 1 - np.sum(l2f_task2 == test_label_nxor)/n_test + + return np.mean(errors,axis=0) + +#%% +mc_rep = 1000 +n_test = 1000 +n_trees = 10 +n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int) +n_nxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int) + +mean_error = np.zeros((4, len(n_xor)+len(n_nxor))) +std_error = np.zeros((4, len(n_xor)+len(n_nxor))) + +mean_te = np.zeros((2, len(n_xor)+len(n_nxor))) +std_te = np.zeros((2, len(n_xor)+len(n_nxor))) + +for i,n1 in enumerate(n_xor): + print('starting to compute %s xor\n'%n1) + error = np.array( + Parallel(n_jobs=-1,verbose=1)( + delayed(experiment)(n1,0,n_test,1,n_trees=n_trees,max_depth=ceil(log2(750))) for _ in range(mc_rep) + ) + ) + mean_error[:,i] = np.mean(error,axis=0) + std_error[:,i] = np.std(error,ddof=1,axis=0) + mean_te[0,i] = np.mean(error[:,0]/error[:,1]) + mean_te[1,i] = np.mean(error[:,2]/error[:,3]) + std_te[0,i] = np.std(error[:,0]/error[:,1],ddof=1) + std_te[1,i] = np.std(error[:,2]/error[:,3],ddof=1) + + if n1==n_xor[-1]: + for j,n2 in enumerate(n_nxor): + print('starting to compute %s nxor\n'%n2) + + error = np.array( + Parallel(n_jobs=40,verbose=1)( + delayed(experiment)(n1,n2,n_test,1,n_trees=n_trees,max_depth=ceil(log2(750))) for _ in range(mc_rep) + ) + ) + mean_error[:,i+j+1] = np.mean(error,axis=0) + std_error[:,i+j+1] = np.std(error,ddof=1,axis=0) + mean_te[0,i+j+1] = np.mean(error[:,0]/error[:,1]) + mean_te[1,i+j+1] = np.mean(error[:,2]/error[:,3]) + std_te[0,i+j+1] = np.std(error[:,0]/error[:,1],ddof=1) + std_te[1,i+j+1] = np.std(error[:,2]/error[:,3],ddof=1) + +with open('./result/mean_xor_nxor.pickle','wb') as f: + pickle.dump(mean_error,f) + +with open('./result/std_xor_nxor.pickle','wb') as f: + pickle.dump(std_error,f) + +with open('./result/mean_te_xor_nxor.pickle','wb') as f: + pickle.dump(mean_te,f) + +with open('./result/std_te_xor_nxor.pickle','wb') as f: + pickle.dump(std_te,f) + +#%% Plotting the result +#mc_rep = 50 +mean_error = unpickle('result/mean_xor_nxor.pickle') +std_error = unpickle('result/std_xor_nxor.pickle') + +n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int) +n_nxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int) + +n1s = n_xor +n2s = n_nxor + +ns = np.concatenate((n1s, n2s + n1s[-1])) +ls=['-', '--'] +algorithms = ['Uncertainty Forest', 'Lifelong Forest'] + + +TASK1='XOR' +TASK2='N-XOR' + +fontsize=35 +labelsize=27.5 + +colors = sns.color_palette("Set1", n_colors = 2) + +fig1 = plt.figure(figsize=(8,8)) +ax1 = fig1.add_subplot(1,1,1) +# for i, algo in enumerate(algorithms): +ax1.plot(ns, mean_error[0], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3) +#ax1.fill_between(ns, +# mean_error[0] + 1.96*std_error[0], +# mean_error[0] - 1.96*std_error[0], +# where=mean_error[0] + 1.96*std_error[0] >= mean_error[0] - 1.96*std_error[0], +# facecolor=colors[1], +# alpha=0.15, +# interpolate=True) + +ax1.plot(ns, mean_error[1], label=algorithms[1], c=colors[0], ls=ls[np.sum(1 > 1).astype(int)], lw=3) +#ax1.fill_between(ns, +# mean_error[1] + 1.96*std_error[1, ], +# mean_error[1] - 1.96*std_error[1, ], +# where=mean_error[1] + 1.96*std_error[1] >= mean_error[1] - 1.96*std_error[1], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.set_ylabel('Generalization Error (%s)'%(TASK1), fontname="Arial", fontsize=fontsize) +ax1.legend(loc='upper right', fontsize=24, frameon=False) +ax1.set_ylim(0.1, 0.21) +ax1.set_xlabel('Total Sample Size', fontname="Arial", fontsize=fontsize) +ax1.tick_params(labelsize=labelsize) +ax1.set_yticks([0.15, 0.2]) +ax1.set_xticks([250,750,1500]) +ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") + +right_side = ax1.spines["right"] +right_side.set_visible(False) +top_side = ax1.spines["top"] +top_side.set_visible(False) + +ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=30) +ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=30) + +plt.tight_layout() + +# plt.savefig('./result/figs/generalization_error_xor.pdf',dpi=500) + +#%% +mean_error = unpickle('result/mean_xor_nxor.pickle') +std_error = unpickle('result/std_xor_nxor.pickle') + +algorithms = ['Uncertainty Forest', 'Lifelong Forest'] + +TASK1='XOR' +TASK2='N-XOR' + +fig1 = plt.figure(figsize=(8,8)) +ax1 = fig1.add_subplot(1,1,1) +# for i, algo in enumerate(algorithms): +ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[0], c=colors[1], ls=ls[1], lw=3) +#ax1.fill_between(ns[len(n1s):], +# mean_error[2, len(n1s):] + 1.96*std_error[2, len(n1s):], +# mean_error[2, len(n1s):] - 1.96*std_error[2, len(n1s):], +# where=mean_error[2, len(n1s):] + 1.96*std_error[2, len(n1s):] >= mean_error[2, len(n1s):] - 1.96*std_error[2, len(n1s):], +# facecolor=colors[1], +# alpha=0.15, +# interpolate=True) + +ax1.plot(ns[len(n1s):], mean_error[3, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3) +#ax1.fill_between(ns[len(n1s):], +# mean_error[3, len(n1s):] + 1.96*std_error[3, len(n1s):], +# mean_error[3, len(n1s):] - 1.96*std_error[3, len(n1s):], +# where=mean_error[3, len(n1s):] + 1.96*std_error[3, len(n1s):] >= mean_error[3, len(n1s):] - 1.96*std_error[3, len(n1s):], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.set_ylabel('Generalization Error (%s)'%(TASK2), fontsize=fontsize) +ax1.legend(loc='upper right', fontsize=24, frameon=False) +# ax1.set_ylim(-0.01, 0.22) +ax1.set_xlabel('Total Sample Size', fontsize=fontsize) +ax1.tick_params(labelsize=labelsize) +# ax1.set_yticks([0.15, 0.25, 0.35]) +ax1.set_yticks([0.15, 0.2]) +ax1.set_xticks([250,750,1500]) +ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") + +ax1.set_ylim(0.11, 0.21) + +ax1.set_xlim(-10) +right_side = ax1.spines["right"] +right_side.set_visible(False) +top_side = ax1.spines["top"] +top_side.set_visible(False) + +# ax1.set_ylim(0.14, 0.36) +ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=30) +ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=30) + +plt.tight_layout() + +# plt.savefig('./result/figs/generalization_error_nxor.pdf',dpi=500) + +#%% +mean_error = unpickle('result/mean_te_xor_nxor.pickle') +std_error = unpickle('result/std_te_xor_nxor.pickle') + +algorithms = ['Forward Transfer', 'Backward Transfer'] + +TASK1='XOR' +TASK2='N-XOR' + +fig1 = plt.figure(figsize=(8,8)) +ax1 = fig1.add_subplot(1,1,1) + +ax1.plot(ns, mean_error[0], label=algorithms[0], c=colors[0], ls=ls[0], lw=3) +#ax1.fill_between(ns, +# mean_error[0] + 1.96*std_error[0], +# mean_error[0] - 1.96*std_error[0], +# where=mean_error[1] + 1.96*std_error[0] >= mean_error[0] - 1.96*std_error[0], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.plot(ns[len(n1s):], mean_error[1, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3) +#ax1.fill_between(ns[len(n1s):], +# mean_error[1, len(n1s):] + 1.96*std_error[1, len(n1s):], +# mean_error[1, len(n1s):] - 1.96*std_error[1, len(n1s):], +# where=mean_error[1, len(n1s):] + 1.96*std_error[1, len(n1s):] >= mean_error[1, len(n1s):] - 1.96*std_error[1, len(n1s):], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.set_ylabel('Transfer Efficiency', fontsize=fontsize) +ax1.legend(loc='upper right', fontsize=24, frameon=False) +ax1.set_ylim(0.95, 1.42) +ax1.set_xlabel('Total Sample Size', fontsize=fontsize) +ax1.tick_params(labelsize=labelsize) +ax1.set_yticks([1, 1.4]) +ax1.set_xticks([250,750,1500]) +ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") +right_side = ax1.spines["right"] +right_side.set_visible(False) +top_side = ax1.spines["top"] +top_side.set_visible(False) +ax1.hlines(1, 50,1500, colors='gray', linestyles='dashed',linewidth=1.5) + +ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=30) +ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=30) + +plt.tight_layout() + +# plt.savefig('./result/figs/TE.pdf',dpi=500) + +#%% +colors = sns.color_palette('Dark2', n_colors=2) + +X, Y = generate_gaussian_parity(750, cov_scale=0.1, angle_params=0) +Z, W = generate_gaussian_parity(750, cov_scale=0.1, angle_params=np.pi/2) + +fig, ax = plt.subplots(1,1, figsize=(8,8)) +ax.scatter(X[:, 0], X[:, 1], c=get_colors(colors, Y), s=50) + +ax.set_xticks([]) +ax.set_yticks([]) +ax.set_title('Gaussian XOR', fontsize=30) + +plt.tight_layout() +ax.axis('off') +# plt.savefig('./result/figs/gaussian-xor.pdf') + +#%% +colors = sns.color_palette('Dark2', n_colors=2) +fig, ax = plt.subplots(1,1, figsize=(8,8)) +ax.scatter(Z[:, 0], Z[:, 1], c=get_colors(colors, W), s=50) + +ax.set_xticks([]) +ax.set_yticks([]) +ax.set_title('Gaussian N-XOR', fontsize=30) +ax.axis('off') +plt.tight_layout() +# plt.savefig('./result/figs/gaussian-nxor.pdf') + +# %% diff --git a/experiments/xor_nxor_exp/result/figs/TE.pdf b/experiments/xor_nxor_exp/result/figs/TE.pdf new file mode 100644 index 0000000000000000000000000000000000000000..438108d2c7706f047c3acfc3072fe82d6d2d0ae0 GIT binary patch literal 13791 zcmb_@2{@I{7qB&4Yt|(7rjRUmzt^=?*A}jwN}=r8*K1E{K}1O?vSrKCV$E8~zC|UK z7NumDNYUz>_e#IW_kTR!^WC0l<~{GsoHOT~Ip@s0hq!^7hAdhRhY-K^5-O-dpdl3G zZta9nQi6~MR)_7pAq;>RK}eGT4?75{YDKkjaX$?0*nzNfvxPg#|206}pSs(aYDKk! za0`Pp+})@UcA;%xMWxz#xj}gN5rH)DahD?$ zvVf4r4pz2~ZigYl!f;c4YbQG!Dnz7B{vSDL6aXwPfb8bxPW1*Tz<5>SY78OO?0g+}Au8 zHt{*$a#H1ZsewS*-8;>xv;J7F&EgTM8s3GI7rQE-s`fi&c&s(5sGHpUgZF6TC)IS1 zQ?DE2KKf$qr2P-h9{z5@n3i@|xBDygqi8~(P2+TN7**{U}@2kC%<`v?}X_OZLCvWWIH&zV)jb zs|w~xytxx6sadDz<5li%VsdwR|G@T|9f?&hv|2Lu$(4=2lsP~2vd|cJuPWIhV4_Kb zxZg-;zxNv-)0H4DZvFEGzs zDo9SpUds=8&GOp)*Bzx7 zHHr!xhiCabZB#OfM%lxzQI09y=A2g)j2Io^zrVh1apQ#SUsoeBy%q){z&IX=F@!xHlwXliK z^lD7c!@Nn&kcuSbycd*~Hx4V6cf7VYo68YxNDUQV?|J%sOf4OD_)tk(jNloy6WgX^ z1f3&0GVHgwolofrFRjhk7K-6~Kaj&rf1ldmY~qLeL{BsjQSNG*lWt}pf4$`P*( zZP@esUj3UbwBD4wJrYh8(oJNF7jwB4<~?@S_PX*Fu~c3!mkJLi&*-%~=H6do?hy5h z>AoJnsRF|hP+u03+;bqA$51Aj%GrkPbx!s1j6wShzlE9>|i4f%MF8Pw>#Eh>j&ySk!pEEwUCbKr~fV<0} zXnoXWGu;i+xTtkW3cTM!hR!PHj>x^7$ov|gdX1Nm**KUWvxZr__IgWXQ*>LE54KUE znvT7SB75+*U*`eOb+4|Q7?fn01YN4Lq*OD7T-zpKU2;}Y8~4IdoT__Z@UwyQi0^ZX zS*xqG;~v&xLMWi9S;G!;6cnj8qIu)w)=6_H?0BC6Yyms6uQ zhI~?#<>Gdw&R(&(gSMt?u+h&G8N)-I`_I~pJ8VuXsgv(CI`lF+Tc4$L4Z=a>T({Nh zqHU6OR_&fZ922+Cb+*0tbjgYZg0Yrio^O)_ve`Cp za;>)&!PBQ^BzKM+v%^fl{J{7+oG~#2B;w|Ays@=uQU+^uR?ahJxhp)@v z3~_>u>XlqcA;B7%+cPE7)w9BbI&#@MoXfXnN^l(Bmfn-jW@`0PrahO#5)w08d?nTVT}808@6*TK#%^$tSmGp&c4p7)KG*#B%~kUlgwd@u5Ga7P-p^xLIM z|C*?rUk?i}|FTqh2w6ToB6V!OyL#%&bKs~*Ks{axS)gP+!<)>X-&`KJssk1z7r zMAEV5_?>C%opY4le{`T(PLU#3euTyK!uQC0mMpgu9pcU6`%dp~8`6$3EsaYwP0QnI z>%!;mnXA+9(9sFsx|Y(Sr5ss!^dQS@`qA52pUiB3WZIm3WEQK#oU;Byd}iFULX))h z0~>L#;`XK``r5I`L=$bZC49bp?taHYL1iO(ACgZuqz!n5%dktaO!?mE+vUHn8tO5Y z=2lcoI(NR$h`E4-rKf0gb8WG7eR2uf!%(B{%vvh=b~;o~T5Jc2NJZ)HNeyi&H0n1E z>T=)|stT)lQet>B zzr!%U@R*2*n2OEL5j}-_TmmoO7Or#ft2i)~ZFnhoG?6#fz*||(6f3T9D(ldJ!-@yaHK&$3FkdcN1|-B#gxq_n-_4OX+xX!Uhq88VLxgF!NnIPRF-1 z^R?5Lbm(-1$f#0m6C#Q>$Jkk0g*9LZMImisrfYVschTkQnAvaxN5|;7?!pQbtu~q< z;+If_k1kqUi(+LA%CTf>r|0|9nqBw3oNdk_OK3yOz~H^qVrrr85X;O^mhLAN!3R% z_M(Us!Q^%VG2*d+t)`lzt(n^}ZzMte>cFI~H--5AOO{r*>jB|Qfx=$COlwtJE!mu^ z1a(bIl?CRFQxzg-gPXaesW1DxFKqg(Tz_~+IOTTZm)zb6wJKywOm`B6O&8bu@Ma5t zrxGD6rV}C?nV)dBil{r%=tUq{-4aj z5SK7VJ%)0YaWjwVY;xW1^j{vSXNyN)9#fQ4c<53nzU?Wtl94ZHszoQxt;V)Ou|puO zUl`>*r+vw#L1$Rcd`sL7{(h4**0b$>H6!T}L28|usm%L(Iys%_562Fkm^dLf6eU3H zY`w1W{{BqnQ=U7Hew&^Kgn!X|*H>?Hr<2svSslsh$iBa)^iGTme=C>s&h5G{I@@`Q z-ngvaJG`NfwR)eQBxT*vyVEFfzMb5!z8M~|AZCv7AC}xF;oKE4tTl4zb6X~Nqo>rc zP|-xk*4aZ>jbrnSgAPwR{=8bz{GB_-Z7*pBUcm>E)ffRRR(=Vu@J5taGcxOoyT-!| zH=KUm4@gex8Tj>rb^KcTaY5b~LHU*j3Ws5|SL3FD6H^Mu?~c89{IR1i^zn(SVn1uk z97QIZlkkRxIBThn9bbNK+uUsY?lsSFr6!-fEyfEHKK;FH$FV1ubx1$fWI1|&+ol!B zBm3;tdfy}aW5|y#tWOvp2=|dKtYX!@B;qV4Oe(|RyP8w`F{$gekb7hxt+Wb#fhbMv zM#aOj0Wtml`9jE}x1*n8&gEU)!;HDbHfX7s$aZy`7|-4Gt(6hg4x`)7+BYS=2n~xB zn|-C6oIF!?H(8DOAX~r86W+7Jfo&K`MNaK>r}s>ktZsh^^-LmYR~UCsSQOoSeOSWk zAjj{38 z1o{{P27j`fM>w6{V~yIe^>kAD{CX?U0UtY8Lx=oQ4Uvs5;soZ8DMl>D+*$AV? z@8$QNaUN5+y^(v1gvUl=_CrbKM;p`&BDyke-n;Zzto6Z7?*?%@@hGp#y6S90HfAz` z?Z>(s!`S(z#7gN&?(>x*Rx8j4pM6(D9~QNgQOdE3u^=W;4N5s7)Dks!Vc?UkWc=)} zi5-~My&+l=blZ?ViN!fekfQ|K{KNi!YsL3|&r7+qDY z(3oG3N->+sO+FK*dm(9PJ4LvhJ+;0pVkjZFft!fSW$}ro)N#J*aoCTz@8L7AczbuR zA6`l5vdQRUp>slp0)t;S>t}?IXumz8v~9C_5K2Rkcfk1JuCpcP*QXDveBmlzUtC9a z(i$p}RC?wUs4wRxbf1UYw$fxy&v1O=0rt+gHk&f(W;AHMuizMmqPq;TSEePd zgB_!BRX0`MzvXCj(o8`7kpEA5mrve`D=>c5!59{`)OHwZxdF!4j0t=?PWM*sZZlbb zV*aM+BQ{G*2TJn&wIU*G{Uh#mkq4U0o`KZ=nd2!cp?fCk~R+k+mzlELZI;)8n*{^qq@_aY&FLAn-4X`} zTUf94PTdj|J}o>aXgqaOd7}Q*sB%R(>-)DVm#nrXNf0S)_-7Ykf1y%kuEAU^SUScwHEHoK?cluORJQvgPr^J=6alW zHyfT2LrZ1}4`9|lO1@!@xWd+`porKmz9u&+mFO+7Y>#30moz$2$S@r(Jhfn*j*o=(@esVJ2yEfWDx zlQd7Asr=%u=%>fC%Unvj&yR18K1I8>*l-c&-=jwcgngho#=;HcicB;l& zccjM|&Z5fB&UhA|-|h3DwKth0o7nr|>V(b_Zc~Xw!}n4tLzo?sd7sSnf|0$IksQv4hYz*N8^F&n0`7ji#k~PN|O1viUd;gv+iU;BBS8-u= zB~~Z)mqI4YyKN#<=AON}GM@c*gkSf}*jn%I(kv>`aJ%d6l$N>L;IzI?dv0w_IkC}f z^pxDgt<&lZ-p@=>U87AD%DJl(y?vYPcVM6Xs|&z*tj@k;a7)8EUBhZuHJ}Tx`OV+Z zjX4LTvKv`^aaV0+jj4mKAf>K~3w~*$aP+g7ao-s@zen}h#+~SKtc-H&z~h~Rm8~ZH zcLee;UosG~?*Hk)R3k`5ib=Pzygp~g;oUj=CX?r)r3B9Mn!A>SP)`lkwl3nz*?RJ2 zlXZT&{4zHL?qgdf_7aN~N+1`1alW@rbZSh!LNWI(Goy;)V;a3S<|1O54_H1O5ivY- zLOSjV8#UueLsiF{f}tACN%U7vok3v4srz5@SN8xE6}T4~*AGH)#el%YmU-$3ob zJT>sq{Go!!T(@iW7$OAKPt4$*D5wt=7y)MksY`JeYxkhc*`I&NX#0iH(n$&H4k~9n zSv=)=@{!i}FP?#P1wRAVyyAYeLCkao3RfG1;+Gy~ummiKbWlYmC=9_6MZhsw^M&%O z%B8a|9{P6WdsU>jd0T?&5#0zIXYC5OR~=<7jc%}*aszPO#L@GH34$ogehuxoc_%NT zQbkTklcS-HzJw#BR6O~_X)_fZIqrlhPqw{;J&%?=qu9kYbgiWV?^mE@)sYr@$+lJQ zs1^u8u`)l{VO+CT~OUNT* zC-e1sQMr!6dBIL^sznAVJrO(acMUOyHw!zjK-g+StYy}CMJ6Ti?3EMJkzwgzc$naU z5KCP{mln)XwgS>shZp!|KHxkhmJwoAn@v5jCFI9|Qex5`ulWhwB^`qA#oV8#w72B& z$_()bpnkSY-?zOrQnsNWC7K~pjK5=G`;6)Fo)oFK9c5}|pNlYFFGoaAzU3Uck!(_2 zVc4XQuOJ|wGt~Ai|HF?8nYKGy!ZFM)Pe@z@kN3B%qWCiJ@AV7+t`>9kLSE)u-x!y< zlNXxqwDky7=n=k;imziiar6qC&a`g2PuQ+^gHnNBY+t54t3T~3EU#h9a$y~4;fdlR zSL@w4<~jDGZ(gB3W#~D_zO#N)iaO5K?~v%$$jT7)5B!fmDGOa6;}D%}O|69;AkzNy3Vd8`+<_)6RV#2D=Bh2_ zacLxoR0~7$uBIumi_+Ji%tt{I@5=|4HG|^^Sl*Kt+3KnM-Av@Cjo=%wW?@V5H+w5 zbRL-?cC}}>|8m`$oTWlg;f+huX^jh4Xp6ljr7yaJVjW%+{@%@&AiiB4d7)5z_5orl zIAV~0_Ek?pi7M`*1L-I`c6+{vXg7tBFk-KfKc<$ zaGH*!S~V88sAlyr;guPk%jjJZAnlhP`c**{3cMKOKC7^Brc@4@FypB;iJ6x8 z3Js&^l<~|$w?jV12Lp`@KF_jj*Z1}HRKDLXyaHXgRXcbrVTs+-HK4euZRU949clhX zYwKqEPSu`0L%&`W)tgLg4_kLklY69i&&DxhYoCbm>1^GLZI}Ro-1qt~<_$R*+~yy& zkW0&>QmhAgpETBOReF!xA|m-zX45%EeG&W6riSQuDRRP=X@c~4v-tbRNv;aST~#sb z%kxY6Yz;WXMpf>!T#!q?`taguQfjWHwx2{!^!64@C#WiErQw)*OeMU@)V%kQ*?0?CM~j*t z`pxGFebp{?r;`o8DQ=vS^7=(xZqu7@+n#d=-`{y z$1{_CkBKF(d$U7$ccRo5Pir^C_^dFU{hfUkP4Adr(Gvq!SmkQN0xWiEOd@MUI=dCk z(f$*0)RJy&dMb6J&g1X%RINSC%=s?uN&{Z?YT`#_VqO?JzkRAgKHpb%)ht2G9*k4JRgF%n5J&daa|igry1DJ1e|*JddqirRfZ|w0`^9`t2=6 zmSbZ1LH@>B^?6&Ly*o3%qtRRFgy5Ym4z?_{YzSGIpqYQ~-5xI3Od;pBv4 zXZrwUOlDv6yRT4hpMau@)4q@llwVVT+*ypPotm@N;geZSjb8?zoy%sj7;du5l4tmu zxV?^1JE_AZ1Nzl6viT~8C+Eh9wq&`XfZu4Vc}ZnWiWbIfRz31Qf9F_T;%C20n1cI? z0SSEBdg^n+LARJVQ{IjCIwyu|l#}jBiytBQ26|23PTJ4iny0BL&|QVl%WUDNJWH5M zicEU+xc%eni?hPV=IOC-kI=6ml-0&Zgk`ZBmS7BGH53DHPEObgH)1j!$7Qy#$0Tf! zQ)Rb7xmvqqS=w8#vE2`$p{hr8UUR(XSD@s(KuAP%$OkQga?fuA7<1Oe-U~L zY~p1$RRtRDlQks8GLl)_hXevu zyt^lh+Rx9)RV(q=h_N8<>rKp0y;_ z>*qwVPndUcwp6ZtVz(~qa(q+NsV%yjjWn-}O5|b5F-(~ShMCbD8jp^&Z%MJ*v&D(y zyE)~>Q*XY`^*BYr0wq%R?tRJat&Qx`EI(`R*Q%SWFHqv)^|<>&^=I<<0I}~;Wl7`A z+(GZ+8kB(P)L@xNjBeQ+5&3pb`Q6ypAB?%#W`Zj)aJ3Q5vb$G&R5kqRNfo|(U32E# zY-_gm7x$AB4??p1W>1_{AWv6_NF~d;_3jH4Id>sdg05&rM|I-0rFzeq1N^dw+-x3L zZ@;ti+g2#SXZoQ0Obl<|rbZ#rpcUv_ZAgJ$_W3~h92x!&#W)!dx|2uBSH-liWDoGn zhbT#}4nAOwLJO*>y5~A^T|U9td?uTc`{bikWP~B^m>>f9Ee3{_M*T9Hp9+et3&#d98Ov~H%3>W*Vv^dsTKIirA zp}evA?mc~n4!xF(`gckA)kY)BzCS8Q-Qx^FaWKxOh;6||=wf)@GJikjh?r>Jkz(7u z&Ek!Kqspn|=Pg?LW*<^dojl1OQ+UXAxaZDxN>D!Jg!x4{;`fx@Z-dYZ7x4Jix_S)A z)A~D=32)HO2|RA~VT52VKf`g`)V;TT=AB(1C|a$ZS21mgV-3h_?UWj!>`>6*z9o0J zNR0iukN9|75|k=Ec_p#9=;5=smLBUR4u%L4Er%VW*W;=ECvxQCRgO1`e@r~$6Eu8B zU)bMi*_S@0v=}}5xARBqKgbSTiT%`;D)Ln%dE%pDiCe#;FIYH{A zho+t5VFxO_E|_5WjVuNn6ySWn!`?um3skRSy~{}jiIN~M)6s_PcG$%ZLV+AbD}Ne+ zfE_p>M`Nm;>s}b|LKf#TmLX055C#OWxQ@l(*$g6}Q2##);{SCXELtAI0r}wwC`cYy zX9AXhAOYh?1gAd?$Yj8R>p-~R0iE!BxIY%$5YTEY5$^xL3S#j+7W9P+JjY_egU|(y zf*Bx>0|iV(l81;y@C-H}9v~;e1#B)136B5;BH%$fC^%2Z13e{zeMpoC1fW10uHpAs zP(a2I5sZiDB*~LNy#Rx2+G4Oo1YE;Jz>9(l0Vp;+77rG_FbC)h@Y32?9AJbzt>8fp z4BRFGqfY>E0vZDrxPTW2@Z!NH!jj-|I0z4FdB7~VrWFj_k3eGrT*LTjLW3CyXaEdF zz&P<>42>y^#KAR9(_l;>2?{m`fJ~TdcxiAA3QZm`x`l$k|CZUGsTLZ5z=bI=V8vh< z9;OOV4iAUbU{PF)H4qtMkr3JpI3nl-HYQ9ytOtMQhkL<5nlgcz;O9THz(j%cE!w-^ z6Oe#aTr996Ea(8N2TKc$*FY~|o%pNJ^a0k1#X{4S-#P*7!`}s_i}noWfOTWBz$+)9 z@IZ!uR#*pCC?sI3X?g+t2H~%=s1u7d%oHGZ1g(bKe-)an7v95t{uEd*V5!2j#UJDF z_mM&cqUE{)U!e{xGtC?VKLXfEOM2FWfZ3PK!GQKfVgQe zQwRh5O3=>=0-~q2Y#>D0LrugU39%P zd!~J;QJ7OB7nOD>Oy-T0DF*Zo;%PD0-yZ012c!YCe*xWpmK}axOhO=|7gFHK0Ji9i|0MAvZLGk#686bt%wjj- zyBB=Of4TmP-Qb?ToyTA5@gERg-fz7B0pWH216*`HwCsF$AK)heT8g7B9QV)?{EcA8 zzd*;rA1VAdAuvyWW<;ujOnIuKyPF#PHwoL+6fh_Z3WdjzKrN3Z$)a$QD3qiWVxb=h z9=5q!Q9WGTsVbyo zfDH@drT$`yzn7go0+=%_0{D~PKj1F#KRG%SM=QLs&hfB(sn2s`)XFdT>>mcxi3yjcz-fti-U z4mI}*Ro#rmc3WV-kX;Zp%OAfb|QO~9YPY>D=VZF$;_6K z6r_rLG!@wl&hpXYhUx#ygF&bjw_E|aR13@3t%8^ZMP4YaTZf`G!I zPNudHAt5MC)x^re4T=OH>QI>GRc8w*Owt5nV((-H6%m10IGTeM`G093?S+xmz?fhx zpxlRzWSkr^P}E^r)dYjFaCL<8fR7NEs;iTkh6M(y4~!!v1N3j+0n031xEFc3`1!raD0 z!pRHh7aR=1&xeHa@bQ9!sDf=UKS-u-;pXJ-Y6j2{B+^eBf@J-LfFM3U5SFpA2WSL^ z$=Cx#l(H~$G6!g`XyIsuv4$c*)~JIG-7u~eCJqp1zdM`V;PG_b|P{$HN(`&DbL(DV!-p%7?qnucth|#?{1S4i~9W}B?c@Q(_8?jMp{CFqC9B|`36p*XpWcJ_L!{Qb9VzD(?GEUPS! z?_r8E4Mt^848KwL?3jIN%CnIeFOo}*ms)NUZ`LN=GwSQwGglw`9-C}bT|{2*w8JGl zuCBf~`|*jMu-HkuD0Ox+{Q?&H)@V-Z>@M_hym}sbyxq%~1tI&j3$e~>&Qn3pl*3;; zd%QBjGA#B>gE9v%bI|+OY8|%LlA$=fZ?6@U4m!ui&~2PMW&YNSxFeUFMJ3TBtbzU& z{LND3hx}Jw-!>O})4pwPKJ#4o%FkJyq@k}`#+WTl#_#9Nw`cQZm^{ZR7niPP^i+H? zx}>0~IYIQ}gL1|9DvIe!#YW1#^;fsj{Of(UzI+UuTT}^_Y^ZsZ^}b{9tAT6u9W(NV z?lP@o!rRBIw^^HJ8^&HT5t&OA2ryxZnhDZv2sKg+GRh6jrHshDCj0cd-fi`F600<#;^id8 z>5q*Kx#ov)=5W3~k80t!?MCcgFlL;Z!htAD?j;Ka+p|U~TIHB%hE3BHnIgLF3u<%H zg#_gSCupY|#CZnz-$k5A!s^ntO4BuHL9i`fUcdD5wxo4WR$aOfP44BI5ds1Iv^#6q zA6VG)K1eRK7%|~BNust>D)Mh_G7aBy4ev_#o~iJY@O??}_1?otKAgm;XtFO<>`JRQ zs^S$LKdq}V7^_k3)@Kw?X+>m;jx+c_*T_0PJy^Z5^+c~a5w>U8Ba*U^*7vR|+^=hR z=Q_z{mdyPOk*4acl|YTgm~{T}bPJi?lwF-iQCKwA13Kb9X%CrN>=FxG@48p&<(abT z*782CH1$o9_N{opeL0!8?Id^PCi+D@I%4XR`>Y)+-c?*&V1s|%+PD2$V zjc{Mu&o0-Qq4ahd!aK}+_+N6F*jz613*LUXs)14ADt75xs0nY5wGd zdb4BD%K)tpd1;F2?)7g&zlbqo_0N!f6PGEnCSrEh_4RHFRjz&1pLz$vQGw+oPxRp8 zV(oKNiEBpaCr^gr%L$x9Ghf>YtoX+#G`~6>#p%P+MEebw+;5jZO36xWQ?B_v`qR0h zZjrBE#02`iLpv6vVC=QG}cYrQkz}M<*Y~DBOr!e2hLn&k1>5H!x|f zKG*xTa$IReZ1Tcgr&jDUk{g=+m~j_@=WXY*GBxw%d2?sb6aIZ-j~1J-U>adcoy)7s zxm}Lt@@}!BrAxS-Vu!(YZ|g$P9NAm>(QGc39DN*@*gJNdG0BNm5tM0aydls&0N0i-S_YZnYTu+ zBqtx2Jsrqvz59}lHAUSoPf%#cQU$AXgQhCZG9c1f&f-+bxN55!-(AgoQ;!#>B-b>Z zeS*=6ix8&cpWkox7i?YgxLGdTC#@nW!g_1TL&7%{bpsE}N3|p^?o2UZagMLyMEQ(b zY*MnMvaWkSW_0_}mwNHU`>A&}&N7Yet4$W{(0m=8+rgJJa2E?u78LfU4=Lm_FR{y= zfn9JJ!X+qM+_0+%m_3SL?2_4o2^&E$~Ukc_R=XLXq5=A%4vxz&HJ*uiy&fL*Z?Clzc*U^(*i9HD}!Bvv^44CIsvj*=V&$ zO}EGLOt?$Kf^^kaq9Y`k>H;rMOKi?H zUm4Y^3s$$kFeK7QSZooj*qqs)ZrFC^=?I(Pg=o6L%ZLyHL-XKP3k|edbzX-kl`qXZ zHgp;D9!rFOpVC`~QMv^CB4?>o$0do4d7!h197^+?_+r_B8TO1Y$BvY?Vf?;aDnaQm zBtf+$v&_S{?M1_K-Z`1)o%>qS7a8Z{F00h?TSl`CZ0c+m?p8eYWDC)vl&qRwe2T3+ zZ#-MaWhnpY#eEi+E|&~q@i5c-Q|lud;bp8fXV~_Sz3MR}&9)&7$TZW?T%$GZ^}XVW z^&y$_K$rZ1ap7__EEWM3Vae zpJH?S_?KX&)%NVCnR1_C6?n3>P53Hl;|1=_{VvY8uMv&Pm-P zYtt~?ij$aoHH<&djkhp|qg_DoR7Zl=2|3^S&3W^)?1jSqKtj#BZ9oR}=Ms_62j()?-8Vc}D?hr5Hzxy7&2?bL^rv9_<^8!A4H08?N8K zlDinOho6$?sHL!!;$fV;z&u5Z_N8&c3_VT^ba|6P8S$-c_<}vDtes&)LFH@$J-^Sh zt1s?Fy~K}S-#wu!!R=3?=SV$p{dCdp<%^Hph%DYP#*GO2KQ$(s^tU$Q?cqpzL!Jy3{boLrY>2lOc!Nc>}>;D&*}9s(TE|8;d2ER0$t)UM8z? zk|B&hS{31cJa;mGc2Pu7>*Y50^(=B5m0NE_qQ1-3#4N&W?V`rtHCSWpD%? zdSkNc^E6bW>(~jFibrxOJ_Fr)ODm!tPhRMbW_#{GKbcRcqIi#KW> zPrkdl>AA4`(o6F(qf*?DxFJMRqvF;?zI5h-QI=|8;Z6$8!|Fh*A;&KWv{I;}e}&WSi~Tjk{HN+tyiBv~5$<&r{1VB}y}= zHfFMv)+N-U3g9m>mcB05Q-s=tR9CF!i$iC7#g|Vd%~K`+i4yYH4f6jY84`g!ijyju z5F3H}X)km~>_UJ8e0h}B@Y}l}tZZGx<>^Mhb7ZY6F*ruY--T9%Q=GL7UDhoK93-?q zm&cV-=oMt}ybr%L}#Y7gl_q^60&37ObpyT|5>=nN+ej}Y4c{@Xoyq|tSxFF zSpiRpd$g~(jl4&QH!G?KDz0vD)6ODlaV{Yfn-q?y;t=!D$w*K8!bM*7u-?dTK*)ZSeJmD(a)`$=eC- zL@z3h^>h-KzPG2*o~0eft<~{lQ8?rGYz@vtCQ9`7i`q3qzRU%3D;6DQyWXp_a&tzX zJ2HuyUD#%+N*B8>Y#HTh#N=!ESS{P^_WujxW29MYx|hE9pZhnd z+QPT*POY1>#BF_B6hXFYUzZCx#tL&!D$5aq+A!no_f1Tg3V!q)N$u`xcq|1Y>tyRq zXMgcVdZ#QYqNYrsxu6MtUwJF6}#qvgjFZ&~J5M|hDnyUB|GY)TMOR9Je4hYUuoEXps7}sZOCk zfuIuyY?PxdwhJFAldF`<@73lPk-Tv=ZpLd5%YNNW@Gpc15C8s!@JQ5ei%3n*^#naZ z?H2pSjr>OTl~m>K{Plf14wRfSrLi5t=Ee<9uMqlI4P7^2Pp&D=a$n;^j;#oc(mAVC zbG=FEylK@K-=L$J;Q170IC{y~Gq}Ld(%h%~Qg>8boWN%ZZsrks5@AMwi5zYLS!|Eg zKi0GAU+0>St5g<@hN#YF2wX(oqFrSoT(IVh>d=7wV*`%BKo$-mA;l+^O%AgW_81r z8)P=`pKKaUoD%WfzjNlxlX20OB?E@PPz^j6{Wq$?kBBRenw%pbu5}9(>o<-~ay@Gm zS6SRIKG%)Ohd%jml_Do7~R=*Egvn{k5JY{Ms-L6dtnEMJ0d^+sOeIjg5^r0`OqkeF3v z)GrrbzT(k*?_xPu#iE@G|L9^qOPmTcRln?bLWGVYr5W{x)JLx74e^5Vz|>o78P^EQ zcJk;+4Kq@1u$(-VDJEDlQ<)Z`6ZpX0J*_e#ordk4%04eQj~v4k8B@w=f3^Phw^X0K zuh==78fkwa7kCc*Pvqi0YFedLYa=8P1Pj7ARJg`_96qU@m*U2r3Cqhk2hv{_jk!#k zc)LM?pfuKLQdUM>82=en;3VorFIAv;&#f%6l+V<}NnSy(WgKTcoO|k;P~qs~RLz&2 za|V(&4MwI?PO%X8IK-}oOVr3|Qn+ZQxhSp{l=Vgo-^hM!Up^51i9X_%f*ccbf}h64 z{R%eyi?gq#$x1Fw-MFj7J;5O=8DrY@AXaS){y1{Or7T+3{bl=T3Ys%%bSZaH@fwjX zbCTLew)- zM?TOyII2JDOaa#G->8Q|A9VtR)fF6Z5V&K#Y}I1fD@v}Z`QuA({q^s4X%;|W*p-Ob z1cH1f(fOF$C`G@|u7;CpYftTMt)}UhxOj86bzO~Wf<|2Xl1)ohXxm|J6`H!~+HW%@ zR|8qeh>mf-zkxGRPrJWLmG^wOB+#|V$Nadl{Gg*)i)0`5B|UKxlig^F*(}v!`-x>% zsLtTSz;ul1?bGqc*y;;Uha~2WJ_x=Q7gKPqe>FU7MgO^Bh>5Dc{@4jG%a_EXg#<#xBYEzJ0z`oC0L9vOv@$CI5SS9j)~(V zHe8D1RqVGC*|eiqa0ENBu%GUY$3*n{yyplv82hBiveIXhOH1~sp3ZbHK-6C0on zurzsI9V@QiusE5^HQnYd^Gqqv3anR*WJA_W!~~>`J&W))ua>K$;}jLs8&cMpQgnln zB*Ls^%^y=JN^-wG>@KBEC1Un*s<;!|)s=UPV$j1oud>(d+@NRb?w7AvT*uO>|FRtZ z)e%OZP)D?f(j9TqCcx8N_6tnCUW&Dzit(2J=Fb_$yM(hCemyz}jw@tJumESO^WL4% z%2IIVjoe|PmKMUb#eYMki6d(kdVhQ5ZThF|$vJYRumuvgfr=~)pV~!-r}x{o8+_Bo z&udj)xPOyQfBqI%--R{l<8C9G@ZR|r1%*4gi=*S`Ek#hnf0@m{y3I)LqZUL-t=2&b zSlsW(4c;GHu)CUyuWq>MB-xG|)d)?8vE?#RZnh{8Oq|jus-KG1lJut&MSMbW2)9oS zicUXi*Cel}D7crXN@Y5+XMLiM5(8sk?>P1Djs<~R&(`});sj%6ZsUhea?Dgibtv=3 zko3qV@q3zQJe9~fiYU5KZHwA`Wdh|;doL!k$(CbMCq}8Fx{Wi#OXH%NUFq^5F*uiv zhv&|!h23P2eT9d~c=e*D>wV$OrU#!SZ0&tsjh8RMfO)MsDJhG(ML^*QiM2Z0~8R3 zItCS0sh9g0@BV$G!a>5P4a&zuD5Y<1@YpKAm#UEzcB*WNu?Y=Ya0C3;OBo&CkaCLm zg9d!6umj3gT>|>$b~jzTj}`8DpL|QyPs^bD7YzT|(dPM0eMc+AU_)`Gwo-30UjI5J zl$5OHy1&SssL1P)khgbBo-v1%V}|@He6MY-+q`n_F>T@fh~uFQe)y=11!vC%XqjF z>e@ywb`2N3L7yZSO{%4``Z=6+Xe5wUVks9MBLBS_d2{?i@R!=5n8uL`k zs7KuYlv(0v8UOqd(rjrCf@XQy^~@z8T_Y;n1k6*A8VOC&HNXF{HvFV;5n*UrK6sJ@*?G? zC5}g0f;(T@+UL2SPqiao;dG2MxR^b!z#cgwf|o6e4A|8;8})Lr35o_UrPrP=K?p^E%j{RhSPvA$xD z`R~iAB7BQYZ)B!;_%o!Oc`rgOo5aTGV(JL_v_*Z)vR$ zE=D$8Y%4WhU?}kM(#UGczcBJ4Y+t0=jp`<4J)?C4Y-gsB(W^d7`n9m-ScN`Oyp3!e zd3?a4O;6{P!UBg*>xUgE;5`UR*y>!*fP1!F<%&c)SV-BKSOsLYG;dCi+{r#+INM^8 z#eaM!>0%?cd~%n42J~Co9DOd5IHzb%o~25S!gIdep!`YQeL1B5mUL)0dCx*)(r3>^ zWMQ}9)p)XOW$A5dpUM-b?|+ydwMz<=sX{+zXS&Ag;qAKiG+B?RJ^#`rih&x4a%LO3 z!btpfa%gh@VCTxage_|SeJs@EHLSldciB;ak(RG7^5kD%PmP-=f4DMiRpJi-mdeU4Eih$PiA9LL%js6QR|LQKG z5J#5*kGg^@unfkYX*l2LNqpv;iYc>QdiLlR3wsHtm;@J0uV2A$kZCNtX-en(7E`H& z$eqRHF7@Uu%5w5v&SKeKk}6Kf2{kg|Z6pf?!(i{=tbmtEf(Ujou`(N_*QvY5P8LrX zdBrLRGzgwWj+5MtrXjxYJXs-3=~Aq)+*kIGpR?k)F@DVKZaY4%`Q)~l?YI7_DvP#m$(TUjq)1uL6ffb^GKC%J)sS`zwn8XryBaNFX3G6#W!HB+s3WMIR~l=5to zmf_Ul^>3%7^?fq`!i9fz^L}H(ffl^pL@vp7j3)N@r$0O9{#XA8fkGV7uhMrqPXi|q zlFOPCq-)e7`N2b}Bj1V_;K||=+u{s@t8mubC(n^*cWn)tr)4i%ckah$L5R@Ww) ziwdq=qfoVhtGx)+Q#>bW(v#TH7LTktJ5i|=@X$U^^HG3@&`F}oT#G_nzkCOid5%?r zMy)H=t*1q!6drj#)vEWG(10iWWiJ2fDWOnD*A0(4y6CMK!GbTu5PIFCJ7oqZ-*4$% zP^=L|vO+sFIg&EYX2*hFi}Nnmvqd?Fkh5!B?T`?%7#*h9*#yz5J3@h)&#XG@>R+Xh zKo#O3ckjluGU0zCNEqj$oiVc$y~F4!>}{+Sev1^VlbkHmPEVk=DLLY+P!5*pB#CR0 zZWXN=#ii3VF0Uz;CD*UE(LgN|<3k~a+98yF;;Rp2ANg+SYU)D!7HQ?2!y{CquY25h zeTe{FPFb4=`=S?{h=*AWV_3>)AeHM%F*OwULL`FW$a}{7p|dzr{>vqHJH^+YnQ}H= z40nqXq@DPje1)sU*10Sv_DT*DeIN_aZm--s?VJmsVlmRnz1Whge)>ZnOEt#M#~bMln0*hMmL<1hQe+gHDR z#ip&iuK5?%{Im1LeUvqvYUmhjaoo-s3U3Lwf#uT9=&k)ZNC#FxkR()q(?zvKg*cvl ze63BZVq!Vz%yZA@>F+w+&r+g^DK7P&(NxMatfPB+%7fPO_<9x(M*#H#wx}6|&)daI zv1N48oto!_&#;|}r7Du0%BB4Uj)wb4TT+usPB{LeLGS6dCnT>d&Sc$-YYD%_s6?-R zDSe(fA0-}jBC}8}GlI6+Z?2Q^zKIs2Ey1pV!q~7ISq}}jAZ4KtI$KsJrL(;mpZ(Nc zU3Y`DCQYFbF{$&jG0DA@Pg8v3{ZGo9H@2_1mDRy1bXTVzpN&#_yv+xj+!p?@u=5o= zFI%7TF9iHo_YA>zbe$?iDG^H069;UiWKhA=*Rk)cTN}*nRe7xJOy1m3pqI>T!agTE zDI*)yGwW5-jv%bVM>1cDSWgRIxDbgqPvP*qrb2M3n*+hZLB?oo7yIU(Ecy0CBEI;| zPisw7XQZ<15}kO`-0%AN)eaaAX1i|f{dx{9+slcjTCNNQuWeP2$?)G%4!l>MY(^CsSf>;*Ot&OF<^L1rECleB!D5$>3` z6=gAY{5kKQ&g3ub4`_`W8NK5Q|I3vA)u}`R(V4%-FY>5%o(8OGtrdhakNo%z^HlAp z?)!EQF9l6V_9b-NVsWqLxA(BkDToLt5>;|ND`mic{?zMP&^R@yf*Y3xkH zeC0YNpYg0s1Pu>n;${w4oWzZ0rj?{??mn~iD%4)KzkN>5ak6G_X zJ-c%@WpPEY+;M`%)`OwXl>#|f&fR(jmrR;Y=&E#%^JMue&mnHoK}&q)c&s92(Qv|J z#tc{Vu74_$LM!w~W~VvTwQdoK9n+}zlQf85Jy8i0H;aRaSRmZg)I8*3IRf#b7*C*tv39ip%9cO?D)4XP0hHZrynsIo4+}>K%)-XX8Uy9! zfx^V0d_Z$$C`<*)4|J{$1wPlnbfIWID9i*3Gljy;pa?hu3IjU>N@ys|0SH9}08T*0 z4S@mO1Cszkcio`~Bmlk&HH3T*7XCR8fafq78&@|BI9FhfFpvrohat3_2sqG;lbaU> z%pc7SbOM}E0im>D6)6ihGgljDjFT%A0m>K;a;9t=s^X9b)|t^ZgxFApRK$x3)18ceJv% zfWm>$V-v3f1fd8NH^3|njD>?XNYBII?B7TR)BTCqFZ1}Je)OTdaQOd?1o{8l4+{8t z&kgX8n->n{2b3KziWh?Bfdldgha!Ow;wa#B3QRlzp5S}1K8hD{m;;}VfcpO{L4LeP z0d>Iy_VFX}0FEC54ibQ$8%RJ$XnrUkAMgyUFdkrVJ}~hhp-40j1W3SA;f3-5dt!b- zPWgZZ$HxyK00+uo4!%bL30M|0G;ehQ7-+@=Vg+FSLkxbf>qic-4Dth!gC4j6CjglC0s5dE{OljB z1b6}I zLVz=eeB`}@FGq1@lcJTSn(w??qb|J3af z2Nw|8Lkj%&{)aXO@1ckz4zHt#1AY9kpg%9vz|2g50}Y@dOdR>68enY?75{(tZhonT z`cVze1z5rVuZq9m`iq784?z&&@1I%!1O6%|N`O}Q&JiVGf`@eZuj;|OAKz(zm_Tm8 z-UC;JxDV|7|GM%5@b^D!E#u_s@WZwEas3Av=;v)1hbTeP>reuz-4q5Y-JoNHrH?mg zcq38c&nPriUoe+M`R?F4nP1Hzf8X68sD~18XGoyT%n0a}sN+}jV1Drc0iSnB{}N`} zW~r&Iz1gKOv+i{-H21jCRIn$DeR^I#ws*qV z+n7R8TnH{C2hcQfGL)vs-w%`Ks(CT4bk|99A)?U$wE zD%Wp6Q51?Xxhw%e)^BW8W zYS-Ukp!)e82DtS{VZhU0U?{-t`Mn+z4k$(N_Y-G0ijU{dak>Afhd}Z2{(%dE5Af}d z_J=_5`~`*pT&dscA^AaN0{(u*1#o|UhoM2Wf3zNe-tRPpa{~zeQIGd8Fn-WZ9qo?? z`3HV*9-cq(TlwTIaullZh(mpCMIbW8OZ+u-O+sa literal 0 HcmV?d00001 diff --git a/experiments/xor_nxor_exp/result/figs/control_xor_rxor.png b/experiments/xor_nxor_exp/result/figs/control_xor_rxor.png new file mode 100644 index 0000000000000000000000000000000000000000..53db8b6c673ef59d57372f37b2ebf500fc3903b8 GIT binary patch literal 800075 zcmeFacUaWtwl-`|PU7CN#aOUHq9`f~L8OQRNvwc?f`Uj(KtM!5q>Mu~@gyom6a+*> zR73;?q$tQxOd=rC1SwKx#sGrUk>26G*I@Q$g!en={p0(t>w7P}cD4+{{C>aZSth|9Nt+p8bp&``*%jpEwr255PC&9d;dd(6%*qVElB-Y=-qu4ku68I-IaH`P#|s zl)a^`jkJW6#O94(A9HXxsURu&?|+xDJ!K)e#_N{qj2U0gP}%wY!PD1U3#C3eGh_Cr z-`?{ms*C;Ql;{_o9JV5^@qhSdcz5|H|A)VVA3rkvOXG_+y$~OaXL=!~7vjSTOfSUr zLI|$Fv_%N6$F#GYwuotq5L|(2ix6CoX&*6d5z`hSxB}A_A-Ep@fAbMaPK{TIGx_AD z`PfU&+V?;Ir{MEU{pvy5r&IsK|I>G;f9b>OOfSUrLI@s|X^WV)h-r%uT!Cqe5L}OG zA2Dqa(-tAP0@D^DxE|9!V%j36EkbYw{y(ya2FYhFe`^8$eFM`6^8eN4H)CA1#09>b zVck2g&H6t?_Wpb2CwwK&oABa)`sMU5eORgKg_vFl!9z1`5z`hiZ4rViFl`Zn>oM&k zrY&OHA_P}p+9CwkW7&eo)|trY|P295ZH2FQedsOdE*cdQ2P0N9!?dARjHrvOH&Jw5UEjfKa`q7N+;6510YYkk|g`f>c&=+K^=iz~ymBQ@-vell}soKgDiJ9k7? zRaI{@cpSTTx6Wm|548mi*8RsvSLVNbIJ2y*EUW5~RUMnb_37idNXpvOEa9d18MzL3 zSLimzZZ|i#)~ZM1N0Mz;W@Tj^Ffdqw8yKk_t-iQ&+wLFR2aEzGIHxFJ3Z1eHj8A-S8K8CLZ8l@>wRm-x$O6U{b~B{ z<*kl@I9IdeusIXo^SeCVD@Bc6QL86@bH%niOY#K zWNBH*6tfsS`O*Hmy8b#}-@1$2BvKuk{1pBv_zvT*&UpOs*t)v5DKhNh+q|G0ZB4~R zR^<;=LQ8i_1bO{APkFnB{9pe??-hRg_Nv}Wi?C8Xfw$SRW2!~{(e_)sOG?8vtIga{ zMHeRn$Ff7gyvI8$j6K})uS%`%V(0pc<%BXg!2>q-iEcx^r@M>y)MX5{dzs}0W?6)} z1u8U!=^Q+`aP^*x-W_#0IsF}Vb#Knj(+DkXy%G?x%hA!X*;_IK7BE()Ne1ZB*Ipc> zpZpHn?!eSB4(CR z{gsc1vQm5I*l0dONWx&rt4Pfv*W|5(xZ&ELX9}Os@)F9CF513e&YU?>{-c&{Rgb(D zXl|EUyYK3kra2dV=B`w@qj6m4`0?Ynttw)pq%*Dab-Oh%5U)d-z8@v#=3xefEyTq)S^{!s2-OpMR(XJ_VIld;;&wuT+1_1Ahy zx%R)`$I!oq6P7i9&x-kB9;3{=EZFpq2X%FGKAE}VQj?AS<)X$qvJCD>JEP<2r}LiS ztZ9jvnbbeOEM;AlBtO#qDjdrkWqT9n{lXdg#!hDCypN8lehqc0BIQ@6Vb%J3n8_;oZx15)!=U zbA$fY0%(NlT+)d%TDjx5*%zv+s`fEldRv#mi4@}y(bH_>rAZemv^>aX?C}*|>8m_? zx`9=oVr^}`(I`#cCS#!CbVIPk?f7^p$CAvLloa{wiz}DEx~uM09KL7IeVrIBu|;Xu zu3dWvm(=X77_A;6TbyjmmCTrRZtluuZ{NNxPIu`mr5gFa{yY`dnd)@*E{;prUg+cFBXzv=-s!)7723>ofB*Z;x};Ycd9KMXvFDo> z!+tVH+H6hX#G>q-LST?N^|}6af6S8f{^Zlo?-Z^-W@ct~z|b&MVf7OmcIqxBlX)d5 zD90{mrO-JM_tVXy|GKw-e{tl@ix)5MMMtZKUN&GkwVAwr_!I3(_--Fh(~DczdU|jL#{a$S=n`eDQ-FK>R|kt-HJRF|(6}zF9 z{Pt(F7C&oC<_hDysD~z2cehqb-_;Bg=8lc_g{uWgMA?6#qpq&*&{iemxcmEe6>-J~ z4<6i!yS{$9_Cj%@MNz5Bzi)KLjHfnJFX&qQU2!aILk z?17VmeLRr`VjA8T7KmlzEL>KYIq{ChzdmCgosh6OIyzd*V&QchgKW#l(8csi3pC`v zp#>CMQwH|{Bk6b{9(Ob&{X}Jg{6M`w-KEC1wxrXDg`2tQ9oft4Slkht2G*}OS)PmR zddhTjKApGyOL7hNy;t3OE5+_=gf7D~c`LaMVz=dGWMqmTSyhxS{Vej{y>+`Uu2@P} zg-_grV5=o2aM)SjA5aP_io7Uz`>#Vv%geJbeY3-)r@1V+z2Vf8(;ZntbuGqY&UaY_ zY#6)g`!~PG!ximg%u{%G6X*CMPNG?={ynAP_kX6;dWxI;^~bLVbajIi#G-Iiau(?t z%-?Ztu6n4}ei+v6)Kmp*Z40(`Uzn0&Ar9fY*YT#!D+F(Y|LWT1zb)~=O9h8_Uq*(x zI~$z*{WGbPZ=RNJ&3#~$uJGIJrGz?y+k4*?ua3TdpB>fDt#PWhmNI*BC7+Swy>x-E z(%>;HU~5b=$8)QF!?ThIHSI{zvb*Xb{e_H-1wn>RdSr!;8o%F*in@T1c(-ufv0b}% zNu8>H-v9eN_b+J$2_R?)K!MGEYAXeA`C+nUMXce*BT4IyJUSlGWMgV-x-V2grt93E zki_ilYC0Df>;&h@8?o`L9F&( z_(jiuE?E2Qw>itT8ee)p&`*{yFS@aE&6+hG;UXjJMh7c0?+V`2`2Cz&Y+C);+OEz= zZnvJE-gSo(m3Y^I&QiXU&3+qXd}E*;4`2JsEQ#lcJJm^++T%eMk>#0>9Oo)-%Xw_1 zuZ|80MFLu|M$u#dy2B|af9h_jkd$~*@7Ld&SfnLZysy4%fNvoA(nVy1&(fG(CN1SL zQHc{5=gjPSt&fgLs}I2<{&8f$((EeDf)E=G4DAbKIy&Cb5Wk_>3ZJDRk z|Ksc>-+t{r+7*@qCx;Vxo#N!vpFgd`5BsL3rj~BqvO3JIS8o{0a&dHIDCf$0ZIiBs zf++uqH}c`@n_15ryE#oh!Kqi)jSIizd2C?X=lu1K-( zPT{TK$`m_O@+82yChav(fD=Om(N(|P!nY$r!UFgC-B+*#siV&?9e#BD&|TIO0|_I9 z0CwjLOZ$Z5WzkDEAKhD8R%Vu39lpnxjv$L2$Y@`v-#*v_0(NBKvB0WiTM_$){0p-r)4nB#)F^QE@fZ8g{0(__C(2ls+_@@e zYjowxl{*@hrsWUx7Mz_q?;<~}_Wd@bH?~xc>uSF*M0Qgb+h0Rry)d)>az0~Lf#)J| zlNVRk2Xl*R{6gWw?Ov(N?IK?kDSAL#djW!+dT8;9o_6-O*!142C2}?f%?l^q${V%k zACsZ4^&eSR%i2778%PPpT^2=1$L7*}5n*eMWy_Y)<;eRC^#1YdEdB1f`wX_DE?{65 z|KM*C=cRRNAgDY;@M7fgR&J^WfLt78a7tzNvMuY3oSPy_w@$o)4`08m9Ukq=^erhV zNdfL(4Zm4fxq7Z*_sgr>81T#6)Qy`%U)5>o4nae0?cI$XZuj5sWMSLT@LXpaMEU zLdLFk4J<^t3vh0@z5$_U%1iPYk^6$bqA&*U_v27+n;jjfV2c||!(2O6ny;Hj0ogPZ zgb4ll+Z-b!n#szO}14#H|_l& zvrGZwDxNdU0y_d|_HL%;YWy_X3 zg_eQ%nZ-DKHv6t^S+4|$h;zI{Q)%GnY~k(lH()TO>nGmC)6B1fKFUjfwADRyXwj#i z&wlROm)a8R6=dYR9&tVS)LQ~EFIcc*RDPxvJoJ zy!Cbb>Q_KE^fa5zR7)!=EHd2woFlgr(MOuAZk_A5M(V`thvZqBuPlBmGSuw zaqsjG+liDQbcb{|HgOM7*9lJAR!5rj_3@u1d5^InZrxSWix-fCMQBvE5iCN8C~#%K z=}MVqd*gvCxudyW}U#LLO>#)b9X!0dJ&{Y{L9UO&1=Ds$W|O6hX&OC+5f^g1SD-AK*;zaP8w zG2nRWaqqzc@1H-NX`aD?fuC-Q2%^Abi_FD_`7S{>&d84KSYehCqJ`xY8GV0F3LgL1 zi4*%mU)8c*cE9i=|eL zTOT`0+vz^?&g7a?YQOnY-^(;Z@h42zzjRuY(2Jhu}g^?%2~-U z@EWV$@Sj*3^MY%OxI>)28oB(S&X+spW#KoL@i$=Nh0lz6O_ifQ^*9`Fvdepk)GB!U z&FnUArpNF=kq2kfyi1FJ0r``CV9&}$SOoKiYQlcrOQqL#u@6#YXfBPi!yZLySekI% z`h2i***~3Ix!7&6`vNE3We@UDhxVGS3XJv@_$gzeuI%jW;HP$iPNKk$wW_W2RlW!} z@NIdVvB+}S6X%n;?%PH?gEF6CyR|$XtevYo{Qhu;E0fOxys$Z-qq7((XO#4j2Xr|A zhGlKl$(o@8SaSTKzx$7XfPe#s4h1NLXB|hLIsDf=kMo_Kop3Z|!vkHW4f(;ryc+=h zpE0c@$&vh1?D|9f_F1D0dZxMCS|2Xia%_J$ z0DA+bDJak|+bXk=;bo!R(q_S_r0gbmWNSh=sX+#mgLX$Km>hE(k~E z9U!io4LGcgXDw73YW>^$II1@Mi<3B#WM8;d%!bwWxOC~n4ShOxb6r?bqxPPO-<&by zeVF@jok)(P$3R{_LlWWSs0)TX=n4DHG%_7?kYY~Q+A z(&)Ov8cGWQfi4~h-wn*Zi|8JSpuBEx+9E+mSPhwkf`rH+|_XvhZJwiI3- zfauBJXWOYLxm)>yqOjndwCU0$kCzRsI&9=FXa?!rH@Prvzj zX6@r@8!tpzE8iO<#w(rQ-Rc8nCg>%{Xs=1>E>Y9A5VQ*ZtB2FDeR z;nVEB*cSKG0dKP#*^PE&t1LNs%1;1&H?tMrKm9ZuspVYxH)nAFtkJ<1ti)0r80Y4w z_@lXgupE%pzPCY40=)V^xTP7UWQV}bCkqkoxZxI!T?74fB4bOi;F>ke#?W|dlcMve zhm2kAvy`EB*6N_VHCE4$fS>SUy-NP_kqukn24cz*nP!i8M&l<(g5K7S#WBr4|IeM5 zcV=Du51U1v|5%Z%wJ@mpN~qStYK`Zsp2xoV!sKN4c~90qBsQ+zu>Kd%Be7?$Iv?Ef z=!@@4&_k^_0lzUEkbvF4 zrX?vDr=D`J0hF$Aeg8W>!5ucxhqRGvN7gYgGbJ`rCu&lp=-41mt8w^@QV4h0ywhfV zX=&+BUtvX)k~=DEf<3T%+2Gb{Q|d0>mkAomKp3|xkg0fvyvolwdx#0J#Lq{oZCKXD z7L5r-N<+`!ru=)zf5N`i%7?Zf%lGYRsmMVJYXYp^(OYesLl}&_^Txvuza~betFg!z zkU4JMkn6P{ZhcAEZv{*z!f1*hbY|5u0BG+OTQ^%K-o3lllIQOV(B!do$QDj49wZ8% zj7Qei(R@E{^leQhl0+f1u%c5S^0Kppj18J)5>knw0ELmuQXa_FtOawW!r2r+?0eN? z>*X*i^(ve!%lt59Wv433$UAH;J~ayy@f9*Ued}FfUS3|^Oy&OXXRna|R>7(DaQDF2 zUYw=vAiwww4e0;FN!(ft^r<{< z-b-ny%ejxus3Z6ZKk^LD$xC7A(vG3p7I`a609=(Y$xX={1qgs$Q z8*+sa7s+qra9ntXegj$i4GmYW+~(vhcH{IaCe9`AA`fUZmzAZ1f1sGS9TkY&YH~Zn z{W;1S*j_S1z=D9cJ>8a+)PjB_!uVM6?Og{f#-u6jTe9`kQQ~VrBH^jKUupWnxeGa( zONi?{I1j+G#@YznL~*9a*qs7Nle%o54*X0`xUbT(d5Ycpw*&64anYFvk|H)^u-PwP zfW00y(o?r~vG`VS4d%~}|LM=)P|4Xr#%7tkf8Dd|TkUJH;3`#{9zU^f%%;GAu&i1I z9A{X^$Q&{}kys$B!iqSBZ|n+Fa`RM31hr=OHbA#Ls^WF$+q}9)~r6T{yCeGS$dXrz6`@ zNZA$Yf+86aF`f$2=N5_U>`XK-@RN;u(s1n^&|rzVDiXSj>$UF^pS8qm@um&UtpHM# zs#A)0&wk>eIpgtQfAdGarauSPE`qQF;`>IDKFkV_;00oJZQJ5kaAs6`A>UfxM!{IN z`hOE=d|heu6${#3N5s@`2t7Z3#@6jeUYLNRc4ACG=ev; z8F*W=Fb6SmIh)1sC3_ZjX^rpiP0lnd9iV&&$<-pqwUakv#zM7Q`_G48RMHvm00O^NoMq$cnd2kER#8Y@X8ZZEF38E>Ud}V|^a}3|~}p`jIbPP1D~%286P1`np7?*FT-3QcA6#n#6^e z$5qkmr0uPMZfYD}soQlG$n8O(OejJo+;860ziYo1{;3rS6 zR|{0x9Sv`l&JsM7@0$=Ug~($ZIB+>hAJpc*JVrwjDsS>lcl@dJVVV5k!A7d(BHz%c z+7v)ZVONoIm|Nk+ZS6}aU%d|0QE3tI0~otHxy%7|qDfvTwE$I|=Tn2o&)pU?Wlp^Q zmRJjO1%VW+7Bzh@#0SZ&_unGUn)h8 zRcWCJUlG!#_lN#95YNxzJVsjHA-V3=1J%Fr1+!w}vOSFyzvBGSsZ-KN`Lq_b2UX6< zpCY4Qf}M5hw2>f^5+P$NGZ|8mkb=*Gz*t&PoU3fa@+uI@?+5dL!%b&BsA^HlYjzyw*nq`J+LQ`e;OHG zLgBqRpU+*f z)eT(7EyM$Qi}Egl=Rn}~PYbESRtf7GIv(n@$qU?Mip_@Ke2-0iwm$N@pIad%{Z#Ev zI#IcK=t0#@7<_Ez=-?9B6Nh{C==ZkwzBa9F+`qyw)!_mT!{5sHKm98bJ~XFHo^F~*c9&`&Hlh>ZvK z$3tL|+39_p<)q0-EYt(M?ry7=YnkoYQe_qAb9S!6I(-iy6Fb!VELsFSM_9~cR5VO! zBmY3QqqdUhpuH7mz3x$kks7BBG8TvC()G;bg~WS;=x3BKU8&%3-gu;0w>ZVF4tJ9X zv}-n|r-v%yY!RjHbQd@rh0fo<3p{mTD#CquH669gCFSqLWOYRL$em?9t}MZQWj^d zOtJ&gK)_%lHTY*R^!tv3Iy%`PG{O;XD$PsFxqnTx_lFVdCb_H8tpw9huMy=LxwJi^ z8c#i2@;H2l6ykn8o3?gMkbxg!>V4g~i%?9-w0NV^B@R8<&&O&~?8>(~{*FDS3W=VD z0aZV%xuddJ8;V1uIQjL58_E5WsOQ~qA8guaJ@JMLcky5zCJ>yJw zioL~fY7guQR08i7D4eYYOfV!pPvs!aoH4P2`T`c+@9?XZq~IMsRgN@Dca}o=5bV(2 zsu8-X1 zIZ)vZmX1p2F_}Q$@2Zn+J1dkTUg0)LJ(1WWf{1it$|Y(eelGfc?2B@)U*SkK=qXdI zMJ|h~fmG6F_IdS#tX@vV)6RC#rC*W_!G|MA?BQm(5w}$B4dkdyfcw`UzNz+3y#v5N zMc$n_lZgd~(@xuw3#c4iXpCPl1*#}4F+z=nQeZU!n%S%Jww`z&UPFLe$vPq^8`d$m+I8EOvJ7GKxZ%h)f8O0CQ@wD=s~yUACn1$h#)9^ z`}?z>;}Go{>$M%@I|OpL)!um$tc^ehS7J2n4xtQ-w81}yH``#M)vODhoFW)YLxXk< zyi#X7E?NhM8wrdBe3v*Mqp-jO5ahoCcSu+P@l9Ue1GzO6WqXdcRG2}YwRz|JCPA5CK=A1s?0SXHSWR^HY5_;;pz0M9vwizme|f^vL~*lu_5;& zs=u>cxrK^AfKuNu`%w1FcN#sqo=yh=sS_h~7`HP|QS67+w4V8N?)kBSu(8~7E;8ow zF=Nj-*m}oXNsp~+LsU8`5rFba`jcZf7KpvVty#5&Fg^=kf z;x4of9GFkbvjr|$Z4Bz$3*b5|EVW&?O1>BcGQSk@Q3}Mr9miatmXHY6nj1s9cnoN# z@=vv!XS$D=Ky;kT3Nu6W=wNY2B$$1Blm`zyt}u!spRN;Y5FEh<-OMjo!%wJr*eAkM zJOgq_=-~m)Z&Vh#vKz1*hYs6@$3zCsER zqQxGMf)cDFp}^zOhIi+bhktVIV{r>gVxyvRog1XG8U?-O>$J(|!I-byg!==Zk~!*3 zi3k?I9@0^-HEMyPyt&}6=WeaP1QTSUY;1y3iCz`fA{P3+jco;Ne=70OVh)pDo#$UmF0)lG1NP)%LMjt_{psb-ZP+!kRg~flZdes97 zmH}K3QMYO=f-%2;CUn%&c0K9$`?KXTE=Pd&DaxjJ9-(fx=!;*8DeolL<0m)qMn0Uu zn-Wz>hZ7u<>l4TA9Z8-)Ll+f~aeKESn##bb(kz!%5F+PGvN>jQDYDfCfKGWON^j15 zT1#AYU~eG7%Xk=)xuqr)K`1(h;Rcvq{s*MI5saJsrNFWY_XgC`p%Mc4EIN)sR3u!$A)L&mY(hvU&kxR1w1Jijz-2 z;lm?K%}|B1&n|^rFc30BCxgWQ#;qANj>Z_WWYv;mQPLvo-c8UVc?ilMg3+Drc#c{u zqXuUrZfr2FpVOBC^5{5;2H?QAsSP2U_p-$R>5GPopd?*oijkd4-!;uS?9vwoPux}QGr*!lOv+10C@ILyYB=IHx=46CzI+L777q=`v0=Lug&B&I!b$`SYZuK#4FI&j(7{3;6{g zD60A$s5zJeqa%vvmly)M1xiful%;D5NAm9fO}{RaQRTFQQrW2gxOEnTU%i05e!+?E zWXf)GR@m>ub3Q!XQA-_D*h?hAh>vP6YGptm^6e>g2}!ol2*Yy4a}r}4%hO^7n4es@9b>ggs4+#4eu*E)W6M|GT^O9K#3!gBZ#_WMJAt4 zC6Z22*Bg`3QJX~yW{-guaM{a2MXIF~hfz?Ui@t$+cGZuBI#S6Kz`bYhAWKEK52a~pP0o!+~x|CqR(5eFvWih3Coj$h+o`Z3T3 zm`(MC(WW?1z(=ThJfLJeR8>)nYPBXOX45Idxm6KrK^qN6>nSZPq3$;7T7Uzf1S8M} zY5mk$g@j$Zu^p+FfmKYwT5E8G!Fmxk8tbkI1)PgV9jtzcj%P+!D8NPeV)C=#RJW^D zFHK>-9USF=!O=@ysCm)iR^!(bAL`2PNg3rOUGxc2LW#dRor-QKQU_w#P}kp(HG|Zk zkmy<_rZ3^aq41MCwITjPz10LGvyh|>9QMPXcI02*D$NY4WrF`ma9B>uJY}A6!G6p$ z66H<1+%-X>yjX)Lo9P&MG+U825NwoMMqW_n@LTF9fm8K|_~~1I_QYQ4^!ghT+0`44 zhN08#Xp<5+&v*b%*yrlWM=^X7RCpeT5+Q-ZwLA&E1W|O5bUsneM0J4LB~LnOrNy72D1Z=eZuug@XyT@$fM2^r!QmLmc9@Le{*Dgl zF5Ma$M{0#K&l86l#s!B?A_$xk;^Q~6`K#NRe9A4%K3!tn#T7zkJY@d4A%btqf3;ue zt$d&4AC(?qcRn~+qRcycsX+tG_Go_5a&#=D0h#4C_JN$pK+~ESuUz&?p@Jfm6NwH3 z`eN5l{ty@|eX=E%RN3h5y_(kY-yX(=d%%E9vfKU+Y79kC@+;be&+-q zY^1bTRxK#g5j&EFg$_#FhSKh7U~@l4t}RS29$vqm4Z(q!?Ucx`n|ijI6oz>Ik5ED3 zS4=74dB?(&PFMT*1}BKv^XQ6GiqC7Vxs3`Iz~ ztp|PKpO(iJmy|4Wn%_bNxs8UM&S>i5bLA{RGndY(BnG9szze8zP5_7!b;V@Zmr$oL z^cVgN^3N%61NBG$$|1otQjNVz(yMBb8+uzmu3W3elFfC@wuCe~AB7$Ym{9yYDN`7om0k;J#VPHEyfl)JhGRj3Oc<9ugC>O=gS_nn< za!{(sT!tu*N7W+o0+$4k6SJL%Y?%WTmpL>C#dpE-!#;0=BhRgd-1ZbA;Y^Q#F61an&wf5fRf);~ zq(6BwKK{nVf}q8w0ViK4SZXFKu%At2+?kW6aI zG(}x5*P;#Ka=h?gu2cAwyJUeiCGNwAeha49P}pb!08j^b>>pD7vCSZdr4+oO;a(Vx^-aeN2uT; zqjlmk%$RZF7K$df(ee(`EGUhQo?7{~q*s0n`*wrn=>rWR9iu}$F`h88NEqeMR7_N3 zpaQIyT5s3(sKUG{b%j7H*N5$0MFkX?i3Z0S6`1jGWKWh#B4B?87p5xTd@tOjvpzSs z`iWC)0pvYl5g{!bb(Hkr>;b-TK9SSw6{@WDMg8cRx*YpTM4RAIo1%hn(*cff!MFp( zqR~0aWx>5@B-wJ6X!9Jm9)m$56gfP};5{)CyCa8E$Z05~6Ou?oU_LeJMO|!EGY{;g z#`r~x7U@-mB;qt@k=!tCXox$e#7z7<>7d<jJ|Z9nWaEYcYFs>?Eyy5 zL0eWr66t0(vN!$S-%%G18Ysf3PMUi0E<$Ce6?eb^ZXr$nQ%2rnr?#q;dOx*ctiAU6hlhyFDwHEbPb#8r>evTV~8JJ1St~M zTm~&FSC!nH1DycrO`rtK6TH&+Bb-V7k*d}pd5&7@qKM=%+UQ|!Y5UJ3Nyp}+|I0F} zqW|C~{m0(O_Jf>#{GQuAPB#cw{aXvrq@!=W2yd<5DG|1*qVmter!mWsc`Q;3+?ZPe zX@b3AvhjXkvh$0mfb)|F>!F&SEw*eNR>hWDEo8%v6CCUfwQ?h2;zq5A+2ags=UU4c zy+j)05fn3)7&fv|U!WrR;cPVjf)aTaxzmkp)N4 zJkUE-Qa(Dh(Vc|9%R*~xKnxd@@Ch((|28@va#Jy65eJ)PRH?QR4|}U;udsO7InWBu zx)?HJdb!5G5EtdoDFHic(IjG@FBOl%mAT**!!$qSH^UySY^&?#j=}vMEyBNj^2z%8 zJ4ew5r1sPCOR=}UuR3nA$XfrH{$=U&=YKh}>f!PKv}FFE^Y-4cpZzYZJN=JEQCrl- zzyJQTdC%?SS3f_QIySF2)7tvT%}m~K!+UpSwR1&|>E<@A#RkUzUdZU*&>%|m1v0m{ z=`X^{V)W5P7P<_+yuc+uRd?fJ(CM7#X<((R^Fvx$!0-wxa#!TC9!8dMar?gs7E(dlA0OIS*|1nKB<2mf^`eDO46eXfgOh?@}|NGGmQsqaZz z1)pEa7#ra=V)3Y&ddCGpLaZslR?BTn+s&x|N6#!1s@8$1zv55`_AOj5(OhM!zLoC| zbt5;X(lUvkbImEt@$>YS3Y`zI5*MMC_6(Hi8`5{j);x^~#(yiRRn8*RQHO>jG+nof zeX`b4Kw|M)ZVmGziN$wiS{NDv+0_L&*BYmL5V!Ax7!{4__SN6m3eSuQCerLqi`~m; zg8X*W4DtN(>hQxG*M__T_@xd_|DKN)h8FJTh7F6o>>#zyq4^aEj%o^4R4UQZ@^jd2 z-QD5qv7OA$fFWOdeswL?^J2Fh{LJP}`9A#Tii(+*D;oBFu}Et|?FXA8_h9mppP)*s z*N1yr(B|IQ(qdtBMR4^n*#o#E`w-(rgqc(->TV9G_Kft&A1gaas;@|;o~RT+K>wmt znw7CyWMFUSRNdSA4-xH3GzC?uTRG|5njTP#8b6zc9;gQcAToyEN;Yn0L4=P9D&eq- zC;4%zA9m#lsYj6Yc~k00jb{!z0O$PP5kbA>YsM720~O9gkhnV{iWI>c*1}oFbw4>& zfOOl>L2>T2xP#oWgJD9w1(Z30g7pM(b?C*87}Dp~p-82!B$ySAn{@OqAeMGR=30j_ z20nZ(ZzCxmDOaesKhA=Za3?lf+^zjHA%ia|vxq2)@zko>vT5NLq^ZwmwQiF;X?24d zCP~T|Hdq=-0vS(yV{I4{odCPA;r>MeX3?u|$@z%m*e_ESr7cF7j`Vz}r5}8ePl5+> zf`NlFui=l@Hr;iG?(h|Ax#-UNl;*$`B!x70{V}AU>CT_;!34rTn{mvz5re#-9Ex`Z z$O=qN>d#T_`j}RUzK>ESO$$i@Q7Uf63D7lK8a9w`vB6B|P*8Jx4(iLIO$j_|3LqNx zuDb8pyA%l^o7K(_k&`4wmL^)6LcSJ|x&!`#*xh2(fK)?2T5SGe1pEY#OC9<&k6}9$ z3lR4hHEpBvT1QWuM|w$Pxem#gYN!Z==DPYsnmhqG&98W7KrdL)4BueGfXf*3hIT5;9VMshVW^ zLbPpok`xL&jD2-HjwN^`VRGy?+XQT4{KeCm@rZ8pUNqYQVh|e1=8-W%O80Dt6-h-! zIiEovHD%P163p>j)jJXpQV>Qw4s<9)wdgh~)G8JS<<{F=OZ5oJT-ay3y5{M~x1L$G zVLUG0e>DxAquYemISV<}BDzf=q^vy2%oSM3Cv5}8zV2Iy#3X&qNB7E$*)l1@R?$0x zPIf9;3i6fa)~wsq(-JpU2g!v>iF%Lxnjwj-qOZ#u*J#q9pC4{r>RWawn=l=}z}B~H ziq$Cnx_xvc4*cD-BKO|Jdw3?!{Za*zP$CT%3oQnC<*VhfIag}$MhztosP#zSyC8Rx zq%Zj2tWKkFRjNQzGZwPPu)YlwukzGo-Q+;}7=Yp##sm2m5{XDYyve)S91&0@RrntT z#t78Xws!~9E@h%LN2+JEZZ@V*CAuozOMsvTod@ks4L<_sP=RmVVy|3t3?F%RN5#Ju z3aY)b;i;;2uS&V$!x1SS%m4b^M!g*Vh2L{}$6w=xi(s>y+m(ioB}0cQh(?e$&)=&Q z3Gf_tfK73s%N$i0_%FD}u!X)!?HD51wRYe>g;XFAAdDM=OYvb@_OIsmiJ+cdSx|W0 z00l?tMy$8T$@43^cTo#*1Pml#lBVZS@_amVb74JG<^&9c8y z;1}o`yE&3r5F(XMqevZR8aG6ZkV+N^D74&kkUI6se3qxkXh(s5R zoAYUo1>qpw=6%o4p7UiYlZt`ryl9iUjX7h?H~}F2;g)4oF;Rddq13`d`ZnD0aS|tD zuwlBEg%L__)X%JgH}zVck`_i8ANn!5H1#MvDQOGO@xvSO|2pG#&~K90-GnwADQMda z%#ERK?trNK?PgZAO2@Z9f+~Tzaj7}l)_HG&Go_<6;RdF&Vr-N*cB4;W;=6zNdVifm zQ^^{4$c?h7bq;h>p-bqIHfo@U`b&4P2Bphq5TgrWD#wHF%0mIL3|-H#v&&P;^ikj= zUDD0ihRvB9I^>TPJc5_V524g4O~ski zI5gD>r4If@h;8BpOz{LacQ+w}r+&tc`^F<1E-H`qr&UDtpgtdJz$=mf3>@uJ9+M8L zJaoWwdCGd5xC9S?JHO$T_Mav@A4l#sok{w_3KDyiF?TKAR!5cV&O0iFrYI>yhDiEC8#@}V>KK=$tTSXNUL~$ z2)oeEZICQ0dOD{jng>?fku-@uz)jhJ^Pz(K{oQY>ogbrQSE9d2oYJ?9XNhcxz!=_m zS9FdrWNugP)6!h z=-25k432o2v#(8dt>|Bhp_9v{v~D8wHdk%ld%DOof! z?IVvn`%3-Cs9}KG;2#)gD)D4Euh8Eajzf-p_M*~8Q!GmRDnV|ESX;8O217iIGR+De z&dVHDGr%~Kcqqa?@{8k7b7q+ts%0d`$W{>xT}Z!#XmJF%!{>&gOGA40kTWXQe32Z- zs(x+OoEmt<9CT7h^AdQ7`T>OGd!$jwB!Y&}K2va3gzMhP*5wXx7?uSpIjC=$M+Mxb z)!RBI!B)R^BKI6B<)|O3#2Q?PpM>QiuPmBoMq@gOpZniDMk95pySCehc_A*oO;?R^ zK!N`m%2~m54bTpCP>2<}_!!)QliIl0pZ%j5H|6I%V^j$B2_(?qWRw{T1<%HtPd7|L zoSpGN+2df`l#{)3EcMCP6G0X`AZ^p4av%%9W;BUlqW*4MiXvKg8#j1t)fM<;7( z2$D`ib+MTTWF$*NYx?solopVF@opQ*<>fLue5lRjE;~A(zhpIT49qN~u?YT2jJB$t z#xcnn$XsZQF3PW@E~Oc+&p`awVwjgNI8o8yF?aW&YA(tX*XNVA9=`Zcv%oODH)q8Q zKBgi!RN&B=BIycd=%bDS^2UqUWOR;D%?l?kpvjx&-GGbJSuOIzaOO2RTVVub8nwQU z1@%vUQqHJKkNmqFzzR|JwP*~5qLiQVIBF#z(M;yRHN-AjBTlQe0r%LYW?ZB()jtXpUTLXi;cz9EWM)a%z#@2|Q0*8b;7hKFck zkV>k}n+9<>JYVv2HOmCpo$L2<-ZZeuaVw+JH&$l z3Dx`_WMroNA)IPz;${MBhxdO?_VNMuNe%=KFrP)+fCt;P^O;o6iUlOkZ;+-@Sfrs% z(_a*TloT_>0+|dnwE%uGqB6#CvNTF!3b0tDZX}0B5B}hA{3^nJRNV9{GD6=F4N;1R zoz@G?O8wxDzLumMBe76H{4T~g660VzTq|TpEGigs1^A(KYEeB5Jw?gZN5w#_{2_}B zD6STw>teXeg8Fbe&;usbwN+EG=O9t?@H5ebm_Dp&A9tjBOLKY5a%$8>=Jbr_s2qm6 zggj-`M8;jZ|9l}vVQ8;bDLCWsTkj3Q_@FcZ7QcqCCgHf0sD2Lli2 z-T_y=^I3r1dqhYXPNNdj@-p-=y|AHx@D^5Dn%7x@L$#PDc2l=E`4$>;rNG1R9&bdu zJvjP;gE2qcSoALhtVjfd*2@m6x)RP@6RL|Y7NXOsUarzuDogK-(e)Obm1sA{N`&=y zjY%y0LJA|E=$tepN@Naq(g=QOp3W}JHSk0s!i?hvH@w+4!Iu0Np~$qMAdj)VjWnUx zDlT1?3N57mt;P6~VurX(YN} z_2a|6>|eAJd?SB8J8C9%sM)E>Mnb!r(Gz2v1)u0wa8JFVFmyR}?xa0nx!mC{ z(yWoxX&?>ixh!}(5ghO?r$gEhyg+o&xWjFe7sC`a@ev zgijNM{I3NXdrKr2d(n7$GCx11iB|gI>w{*Le$q5f38>hPN)rsCvV4NOH8tzem@R33 z1cj_>Bx5WCW=L&RGgqAat|9T%P_mPT7VgexX8t`Hr!XkuZ0l zkYNHRrXpCPJEuE|@v#K-zutG6A*6n~HJR8n#gfFDV9@$wuY&hZ- z4KNdHsW?hO9WCN!oHl@FT%0H3ZisZT7S>hhI{G0kz&0#Hg=I1Ri>2Wid{k3^X@_5T zBL>zek9PR_Crym9XXZ_&7xvP~0~$<{&mzGSba<{|8IM7X*g?N%k?|*$!!hhXKTZG8 z3Mfn|9_F*CxeTch49|`FZv5H-0h>e(dy8mr2i-c3`P!x;kdLD+nWN$=Q- zANJ)t>8OlQ&AFzvMl(dt_99l^jAM;Y1)xUQFMj<)$!&xh5l9Q{>Pu~eu!Jkj@)AJI8NnIy_AS5^Y0^;6^$hqHWiX zW6}fJ$ar|cU=ruB%)ieDbTE0YLDZ3oK^U8PI*Y)w5Wvf4(F8n`_^ZsIzCP^bGkA&3 zJYh&1g5?I@kZ=+zWKXyY3l0aPFZlyMQ0mC9o_K7Zp3|OuZb%djS>DM8HULc4rsSFg zu173BRfal))~(MS)ioGG(+9S+5I}}7rb-_^w_#t&+w>8P(%B0nPoEQk(b|a9Gb?bY zXi2FBE;yM#kOKau!EoYTeE9mF28{zF!qcx8EkRUKQ>l_EKv(2KnhlaRM4$xof-|`u z?T|jv>`t?cBGh@Tx)q;)I#>Q{V6`Crev!yMpOu!0vFl<@Xw8yR37XdqdY|Uvi&|#F zCy>(Yqb(9KnCv^qNMSS$f*i?jo@B__`=eS;(WOOeNDmr5$N z>i9|UHkI{N*WEny3Lz`B_2-vl-T17CSkWnG49ulb@HBso2CH=SVjoQ~9V(b%bq&qu z)X}$jV(j>IWI#>gi72sU9Xj&~H`B~X+`$)c7@y<6AZlR1Bmw`VJtR&Fl28})Qc73- z(ms+7e(gdk01)Nty4oRFT#1aW{oHXHmBKgjaG%i%s-J+Z%S{VOKIp4l2tFJ%n4hdi zUfs<{MQFWlTY`kiuNN~bz5+s15xnI12A^rZiRu@PT>%t*o;H$aJi3`C&oGnME`_;K zFzae3v`(@BrT1ZR@X^$12yn8wra5yC`dLU_0T;2?v923+g}o(jZNV zM?*a}n|V}nBe{j3NV5OUWV~=91^}CsCiyIs{%9`u+Z_xV2YMAVi~Vv;U7#odol=k% z5=m|6bK!>aSx82SoQJE7K{(8YCeAM@^Zl=qqD_82$Z}~W?q(j*I^+oj@8N^7NBdKm z4QYuVzefn%s7h5C8`GMW;HeAJTu{)Ui9SjWkpOPQ@0dR?VxO zBr%3%SH);|q;eJ_oHQT5P_SeMouIi1Sd5GJK;bvE(eCm;J%}~&=sle|*#R8o2M>7f z@!(-TZ@v>Iv=9fU(jrNpZ@@=VEM^OWm|r{5KzH(tLooJ=_^mD*)K`w7iwt_qKV)5Smk}55E~5$E`nVg^!={z zY5lpUdtr|_X>RG)+v?%Ym5MnvFR17w+Jvf=A~kQ(rxoS1 zsCK*DHchHaptJ4a*c9i063u^~18UkIkJglU=a_nBnGpB=*p_?4Qcg2U_-6woU^HV? zrD`~tsyir3`X{mQ5ny-JdWl398G45*$PioGwhC>^EGgJ9_8Vl}CbO@V0rv^Q%+0do=Ck@ylk=b|3 zA_b*8RF0*2e(4bHJR_kX5N20znXd6le*Pt(i)amN^>7hr+nRC4pc}GNz{Ts#KKfuE zkZVUdKIh*NTx+YA>uQH4frL2N^&r5t9P;mX6wwDNYB*X=bJE6l4ov_wbF#s(2f!%D5%$7c6EuS@K*_QLvH%o4F<@^qe z$5S51Ce#ar17OA}c!iJ9x>4Ww5P9cmlzfm8XKJyRkg|aW8mWY|u0)zq3x0aSKFTPN*@pyBv-cmHCc2;xUmp~rQ7bfVK9~V5;{s)Thz{V6 z9DE3gCd@b^5J)Vf&&F$Dk5L_ITq+c3&Tq%0sVQAHMl_p%M$h;?UY=sfMj=)ul?$HL z&q1XTlkzVB&zNymD!aR;L53bIsNQ#*oI$wC=LJdn0(wEM2;}LF&tL0mA1eb`rrD8|3^QRQS`g{QO!y3Or~? zHo>u}ogwjAG({<&McNIbI=gHfrNF9RMZaJJn}+g|KW6rgDS(fop}cu%ENuOFy3?>8 zhXcNd^ep~KRxG+5YCgHs2Cl#BvahQsKP)AqMMOma2}~hFdwT8_C~^9*#s+qXP3n4n zZ0SqCj=_1w_y>6FjKSkHmaEG~SZQpah(6)WFUbR+2_f24?nH8{@vXVF|GoS%nX(MG zA-?>C*+<%`|Ha;$$77woZ{y}O)AX5|_Dw~mjiNMBC`C=hC`%=&kclD@DUqyG(;}fr zvZbW@-%yIt?=I&lKKP}`dUK2;$$WQ`ucYjXc0L3(wb zrr=4*6!!s`Kx6^sWZKp82yFqTB^TfK!fSBNZ46jGV>ySQ{-cy=37aAm*gnoaYAVzQ z`TOF0$0$;wTwO~sP$_^~L(j33Cb5COU}qixj7T&%85U9-nK&P1 z5J7Qr)8kn{7C2E4jZV;itNikYvg3Sj#N)R;jB zM94rn8Xz3sn`W?WNlbbPyM(09C>vP9-sANxKkXV4l5{muN3g`n&KS~c$*xYg-9G4$ zlpPSYY-#?TYfX;3TzsDv`7eq%eE(;8--OGK(>xV-&r`JVxiRC^eA$VSKMU^YT#|WJ z*KeDkuFbDi5d{I+Jp+d2p_Qkz*lxO7&*CL3TlP114dqn#oLnzDWFg^IGiDuf3^2_t znHX62Iq4tiAl)+>9jYm(Y8=B8x8wU_xK6*^MgDrjGdg4#Qd4f8-casO9Ek;(+d09@ zc55INdoZW8^ExM&1+u}}u%~@z+Jym_oTh}#kx}rmy7H}-&$`ClX~c6N1@)S8>fh36 z#?qF-jnu?OXC$44189$nny;nqz$K_((g2wc32}AfiW1f-+=@+*X;#d69Ch`cs>=f8hLN;2pvQlI_T3JX-(WM`Gma?VAiMQw(3<~l+Jx@_69Un>U9 zC@ea4v2Ma40Sk0H-hB$#Ggshcb|mjMq7`qsTRnyf?EwjD<htsB}-N#S8$) zX^$RZ8I1nRd=#Vw0=5Z>{mV+6F@^9xfoYB=Neu52Wr}OO85CL52!XCCS0#Hm-f~FY zE`px8s|?EzhC9ln8|4~BCXTp{vVG*5=|-do7>~eFLVB%jqq3t9F=#Cq*H3*^z*?4x ziI|ItH4=?aXVLr(3A*9>rzy7LWGn@xdIq^11!S}s~ljR!ag@`~tXLuTG zC>WZf*Y6qy=?gCzm$C*FtfbzX&VpJoY1(}z8Dgc@%eQzW)WgB?^d(?hvRX=K0Xk5j z)`V#n>lor8k-|((z zg^M80=V-zw=eDPINOCO7@K7*WyfGqKG`XFO9LUi`z=^oSjF&^p0;CqC247R&5(tcm zIIT71Xl9d3nv+TU!c3DpT0PALZd6H=znoT{KHe~8T23O5OyDrY>;v+%`D~&tDfH*c z&)(77@=s?1k#+6+GqIRR{KHaWRFl)7BJ0sh#3gF<3h7wk5fBkeJ1=xOF`1ASXZe)l zG9t7A2g3l}%B&jiXGq`d2s9WoQCAWMNk=vgMtZJB0_Opdt)U7tz7)ZjHo>`b=W5ti z$&*COrV^gn)=aP~bx_*$Lr;U>f(*h*#td>+jA|y{2uOZa(D2Rip*DdOt~DVYCo^JP zlk4@_o1JJRoZ*FAS@fjHMP=QJAl64-0$8`ButX-GBv>?3I}FC`uo2>8~3-{qev$k zleT6`dr73BBIHM0xw8Rh8@4qQ3k)!@6*TSw0Uhna{c_>L1sN9VT#~}?Mkm+F_*BT9 zJ3oOr;#&zxToT^_~a z;rL0I9wOcuUkfh$HIx#>_vIYJ>XUmH2B|^)!-G$y+$iRhFUjDOTt!|5*oLYI7p_r3 zEDE;7{E{u9Rt|q`q<&!R%lRhYXyyfO+fqYd%kKjm~ zKFxGcbA>e&305L7xPaH)O`e%Wlxe_34_R@(5QlW1*7A zYb6iWZ82ngPA25`KrD;T)+6G};90pBy)1y3wyTo*g-rV}0A|N*3(*TCV>GO^M;uC` z5F>VFv@Q0h{yK58BP~zABUrNcP!;OuZ5T2TYIKsM&H6zPcrdYZCUpTw0i>-NajcrEgo-R*QlW)uwQyr4`XO`{p7rMEg4b64_a&a} zV6R$nhx9Pm7uRHwNI&wk(P8|pi&8e<+R@>&TbRrXamIv9V?fKGR#8p)4MJf_gSf4k zi2Pv5BX*pGl*u;C5(+g=L2^r*0pC0w2zb>!Tfr+xdik9!(OY6tZy&iqP@?n+7O5!* zDT*wKN57YkR|-nHOdl0&Xc8aZEhmR=h5EO8X#AeP)Jzeks(joMs6PV z=x(fVvfR9RGqoR_M4ZW^t4#|K3NZ^tLv-Dh6WT4_Ke7*h48>sPfQ*IBA@`GBN+u!0 zQ=0opYKU~2(pflQC#k_;DymE*9CWjFwFb~N?u&g@`4;XdM|xYcff{JH{jSRILfASu znNB8!Fg<|n=RZUfxQS`!tz5o5-N#)3sNxk=qY!NYnF64(_k#yNn~F~)>=rM}*HUpZ zb0zWPaEdYWwujUgA_u9)0X+XKSe={R8!4VY>m~JenqQ8TaNdIAgJiPhE7Tyc%t&pF ziffO(g61jcjUL;0xf4U(*)>nj6DmM6n5LpTNWZKJrvQE`DJj?*1_)~q08|tjc-{zb zOK70`h*C5fYLL4yA@i|FyZQRD3&|?yS??akB^tLW>=6FSmlcpF1i@$%EoOR*2#~;uvvlpY`G8Fuvw37)q+J(1-wdLFN3uw5Q1lpj=2C@aQ zS0Jhz?>Uh~q$!t)9Hgj%ZlVJTm_*tI9z_yIoX|9=z&aI6AqX*CuZ{p!V(x&6067e( z0D+yvJ9eI;Nbw~G$d{9T0cAS`j#Ye^Awys-A!r89mq_oC69qL@KDC+)Z2;S%+M^AE*qhsFNu}+Z+jw2yy@VW`A zVN(KU4EzckmS&ZyTr@R7wL$teyx2Z8QHLo&*A9%-b79{&;9DPw-jz>cP{SJ;J>Dz$ zifuU8TJ!fvUa#PSBeZ2OZqShTLlbCjqKQhTlBEFG}Gl)RC!%D^&Ym%?Xy5J}0o=T^z99N_$ z)f}zhNovI@&Z5a+8sm}`C2lU=3Vv81%-~;!{@K!&P>`(R?Wy=$Yp9t3pLb+b<*VNQTvLy!FZUJP>GhUNOb`3|1)#%KF^q;w8EoPV0h3+YB0t>399`UgIBWdt zXt)=R4w(uI0QZ`V?CA1Ih;S%hZp53RJWd9?;8wi*D!><{va_TGJ+_rt3=RCO&^pOO z)MMI9m98K!GJ`{42V$kp)3GIav@>vQ6{>W@eMF1e&dnbKYRJ-mxY;g`v6s$bvV!rN ztzaC*AWJJ-krjjcEEVYm&=^GXVV{Z6nX_i4U~>3cPj-g00Aut^w7EoQg`rlSp=lJu z>0u=j5KI7mo%kN44dK!>(r!wkny3`rMsM!-3#BB7gpIe{(a}*hZaGnc$O)l_5#^$x z?|63uZDfwr`5N|uBC{SO2Wyb<)AX=VB{2pWS9{`T#<9Cuo}=H;TD31S=by+8glMaPFCkwB&ct;3soM09>;xL~@une3 zeoj4WC)YiI;YW;Ac^AyH|2#g9cvU?T-Z8$EP69wd>mAEbcXE;O14lbaX zY0!5^UnB1qX{R$6u$W;PM#Md*aL}S_%B>2}8rB5!23K1{J{?u&Y7705wsR4Vv6G1b zP+4Mi(YZtQPgw(Q!5nj4hs}}=qB7^;n#$KxY$%&nfTFE zADxQmKtDJQO8oN*RZqzgub$6+e;-1rH?ASlNu|wEX9hhp8w@B*Q6snVUV|7(m7&KE zeP}#t5?&sa)NPXc67V?|hh$qk6t;CWEMY#oeYsScc+zsH>pYJgo%h$%m4*B&o!A(w5B>GW==`WM*)))G(% zwSO?G#A|AXj3FFU7w95NAsfC-CM%|0s6iR*1Lu@%7>Gxo-3fz@ND6RVq#T3H*n{o& z00aqwgXsOzw37$B6M!ZzyHnB9`FX%dsaRz8TovH9?W1p^_Xi-5H>m5Ey*In$ECI6* z!v|QOln)mpODK*;tuQ7&vZ%_ViVooX)8Y!?>I*38x<_n3tPZ^`ya4&!Q7~(T4`hv= z2@aWSe3EO!-?&U|8IJ)Iq-Wt^M}D?q0mo8jc#b-v9L_Icr8y780@dOB5sqjw6(P?k zf-&0n+<*(I!H3ntYR;f@CNHWE7>#H+l#Wt8>Y;C?OpfMPF*?zS{OuNoujue-mlBBs zbxfU}L*N^N06mRMmNR%IlTnW9*1vyWO6fG`M7M8SGalG1l7DDxHd%Y-?W=AK;S5JI zvHCmbaUy~s;`L8M6!KBqRwaVdOJ|PDnjMx+4-|b`-QAySK~EEUR6FODToYa zfTMcjV3I4~Yok8WxBwNQ&d4dy7qBH!js7Xr?YYqN89DZjALhzps!&D9RgjJZ1J=hx z=pqJ?IUQ9egy8kpOG{pX#z>vfP}p+R z-b8bxc^NT~X{yoqqRAVN3c41FnJOMM=Ka0rCwd@<=}2xvfxqY5*lzP=#uJlqSm#d(yHsXr^#WG+&GGmlN}S_M#ycl zyg2(tyg2b91q61CeZ*^s!ve$?3Wk{TB|lm|wD53+dQ_!>>GD@^;gEvULC;>s(Jeeq$uefg?CrSg0HvKU%uw(b!dJglATJ}x1%dv}xQ;HV~ zk`Q38=HUY&6&F8AP;Em8!!br07EBDNndMAC3TYl9{YfvKM646MgEZ0upq!nw?l4K9 z34?F~M9f=2YOtZ6617#20+d3S!>GS&0j}&Cp9~1SMst& zFrS6-#kpvmpjUB4AM89*lW{VkZYT1I?Lg6?N@oqcM*8_K=heLqhe_0bt6x!!eeL5H)x;*%YTqWsfl}7+p+kLl?>Xc zm>;}-nOtppB$m#g+#_#_+->q2#1DBmAy6MwJVTVQtyDjK6F(VcV_**lZI5dyqpOpqH0K%$6c z>PuTtVGC2IDc)U|Oeq!R*DW0!s2ti@>EG{4NGv)E3y@jbAsH6MYy!=?qzze(XHF;H z-4#H&Y3LY{`vNj7_ae+36TO1yZTm2N7>~S|ywWI{GDnlTXE3K%7_=}Onh8Bt80y)g z=m?gCB0;h`?L-Se5wi67-XnDPkUikAtqqkmqqEavj^`#Qd_S5OP$P>I>p>Q;l-;w@ zuS_Gw9FVb(^q3t)l|w{5;0xgDEug-S*HHiK9tq!6n(!qKuMNuWy1pCFXcJHtaG0d~ zS0Uy12v+8%LJYS%tbfp5A{O{)Q1AVAd_$5dpw~Hx2mom542;8tya5=8W4swoC^H*~ zStsh3Q?^N~l}AfiMWi19iefr3ff)^5n1_5qD@Hp|N0f&IZE)Y(5qe+g|C00D@sqC- zws+{zp+trBWV~zA%#d*>FqM?zbzm@y3kKgHm9d4JIB_B)jzl=7&M02fF~^3U8qQHi zY17iRxXBn9)Mjd%5IwI=Ur7m35n%i-I1kmZ!Jte93WrUz16>_^>WHCd+h(!d?gSb_ zDL4$=C=#-|mhUmddp=GFhH0DrZ;}^)U{8j<(U|0g@~UQaA;>1s8nrcJNr#;oLIMdF zy|r2sy%1dQvoJOY;Pw*mqGW99IjEy^x|Zi31nfz5E}3Yeq* znjX<8gzpY->$}eu!k)-*t8vn6%26h!;jYJ(pU(|>R+?_BDF^C6T{txI?*f4$CJZUX zB`O3&lVkZl>^GY2tn}YGiJs$d5r^6_4YE-Go^V+8g492aMn_@B3s;C?GmM}(f;_W9 zw5lmbvo4|}-XNAHE{KXlVuI#gyN{C>BdGx5DW>BI%%GMAWpSvZz`#T3Uiw)bwd;$< z`LT1zMV9gNUm--v)C?sWDV)`mH@vzc5PBJ7uuEGikUF`VH?8F%6=8I_Z2`*E^xZf{ zeFT~^po(SY%$YTPT!GhVc8|{bza#`cxRniYGLR6!2CWrxG2ryLAe$z`C`S`qHuGt+ z10i{-f%14XTI^Bdp%?}~n%)g~MtIa$A-$eP`VK|NP}(izAD+bU9;1H+F77j|$6`Xp znZ_8={Jw+?*KYd)#JK+h0d3^a+oq31=^iRG)0jB=WQIGjX$Q6*qjDjOww6BFVVLp)9`x;*@$ch>XBH)1B0Tw+1%@wwJ*V%Ey7v>2n3J; zZrSMa%i8VE7rc@^uCdJYp?%yp0fl6N+t>%{L( z%n5LufY?J70!^PzhPax!*Os*+I8*nr5!;%nkAa(GbZCDcjshJimm=ldnsS2t@$){a zDW{lCO8ZNhi5^49>Mg~)p&&)p4W?Zn9^28~Vk+uIoL9y{oi;71d~+|wrE4LW0(75X z_=?4{T9kC8o8==`3z@2mjf{gYzx%RQSx-?Fi4~DP+d9$S^G5ZAM?q6!RhV7fUXg&R zxk`PgLmfdO0JJ^2`o!P>h<)H3fg~!0GHOXERFOV;kHn>8G}vRyv@vL$>VL2qmar}0 zH)n{33g2<5tuLX63OQ#U?CI?lq4tCd53`n}?YZV+)c8=FzQhM_R>E>Ab*y~7XE~9u ziPnxvq0M5#+D-7^(ZD-F_YkI=!3Q4lkA5P7tS_L?ot}vBE2+M(DF-v7=f8iO?8JUz zOunHon_f!50l_VJ5V-ffh`NoL<)q7GbAz{Vi~u(zG5Y}f6UtKgdgpm6gPk0w<;g7*_q?=7SBVdvN%cqa1d_iFKjAxxa z1|1P$v%1zf%TuKV2#Sa#)NM@6x%+(_xk}@rMPG(?1SXI^+Yymp?g(zuXQv4inscfk zienT^o-o8jPSi9GXG&`3;TUVKDbKh={bmqr&VZz-iQq-cZSHl$gp^}wdV(-Atu{lc zZZmSa--WGJ!_ch%d1Iu*<8>BlK!pkm2(ngT&kgv`qccDg(>8*=2FTTk!=~Mq_{8lu zV5xL$Ys%58+&~P#c$NK42pr5HH?=S6h$QBuvyk9Q4-F1fQ+?rul-{*p?$1hZU`oT8 z0ZtI*;iI3=9_=xLha1RCE7TKV>V$iabW3W=-R{xrKx2j!1=~8oH=M0*(E+UaNG>)n zwaHe>4N&Epaw4gaj?CyzLB7(Lmn@?YoPKEs ziexT~BFR;R=n#U;oI%EK0SOHtHa!s5W)P=>tO_U*qjqw;#cn^c3?nF#!WSdB_5+{C zwHBvWIdpgJ+IMR({~Iy^CHQ&tUjBIBfFqdPl|-2Y4F=o>P-s=J4dkPlMC+%k&tyz} z8S1948xSuN7P=AN_xRf>Bvt}g%^PS&ngP%ivT7t24hbx`I0@w=d0Mu7xeYNtsj`Pk zNKTi`+aVHqB{oh?`PjQid5m3DOl&-oL&Vin!$zA%3P%He9rq~7Vr+cM(YUPU8GN9p z#1Qik!l(#q1(PL}R0i-Svby%C69b9@6j^YRNU7n|g_mmjmUP?F93Pd%j{mZie1P>K zEq0M%`S{d`4?ROdFmsL`Iu7-jk1HSv%MlDnD#7* ziV#XlcNlbX?U`HJc`NvIRYVG>(LAcC5#|W{G4~p0l}iBzptC|-GeIc8cVtJwOV$nd zzf58HaJ=l0Bfw1^1XmjN!Pz4@7iQ)XrMHtYQhIXWolXLmBp^6 zx?4@B zovkjm56PKw*7dha7uInbAzi<+Hz>d35sbI&-@JJfnlnaReD!+8s#R%iZ6}qr53-Cy zg4!oXAWu%kUBZ$u(bpHmKjn|(Xp%G`W| zmX?+V-t6qzvo#JKS|}wg4cE-kFY^9xodqQ&2jDLA6XM-W=FDU#r>^c05)x8WTx?^^;%2c}ySCf>{`>Do*UZa3 zx~2*NcJ+o0T#FYkHbgIklbhSl#>VE>ty`Bd!;^~YPV>ZxpZgj=+mplZ;rSL76_r-3 zD^yB)8V8RD`u@bF4=%#XtPb zN}zZ&`Su^aZuCFD+-^MjAO1&wd+5mhKl-{+U$iOY@MpsXqdxr)f7$u<$NID~U!T^e zwcz-=2|q2y*R%C$EjYf0j1i0RHDrufjQ^J*qcLal@OLg+g_2+v+<@~VwIb&_IXTH} z8}XKgKYVTmC;IS5kM?hzKYzY0vP#}rxXj z&Q1UJC1ZU4*i!K^{`Ft}$@+lR`;_IeWv-rxrlzL%SrIWY&dA6}nQd>)bYn`96LyA4 zn1Mcx+|NuExzvfb#VL5%lSOIx{cMgPh{o5RNZ|L!Q=pC7m$vb?R;245{M?T%UquV_ zZ%BH9kKf%^!&=_yYSO@eTGynB-xIXw;1jRL$EZ=NWv!m;^*#@Jpe`#fKUnRMfOlaC zB8$(W?u3xg&{R+fhVr$;R3A;p`~0`J0=+Q@B+JS7T>EP z(iY!y_&xn}$>P&H>&H9B*K)iS_?pVmIt>5%e|gfsW~d)lorB}+b@OR0zGkQ+*5Yf1 zI$|;Yf0Lp1r)LkeYwec;#J165$MWg(p8vk=vY_BojYSQw>Rw5o`0aF;du(jDQ1>`l zE?KV2y8?faee%nXEB8#Y$x`8W&g&egUQ)MYx_8t9#V}p-lU{v;7S?>DK>}-j7Ovd? z(_i-^{%$do`6koT+r?vPREk3Tr z*KP4}DZWOFPfPK2TYOrJ|C?wLA$O(h0~dhf>tgYiQ8gb37v3xxy!-RuF;Z2V54TlB6X$1r9 zq}$vIRjDOXD=O7Z`?Ks%et6qsfBRcyrRFo06XRy^SXqb`#29z6D}3`0tq7T1{iwRV zwW3kGI?w%e)w`-(3)W{kpC4YgTf1r52hio!ogd@Iz*}DZ%xTAG*we7xyt_E0h+A%Q zlV?YWXLo&jOLbd*Y3rZjVaa_4NnGcPH$3S2@Ur;RQnRI^Ix4iWe<+Fbd#$ZgH!J?K z>G;N%_iP-U$3JK*4gI_1?B4CA$73|wqt4tn@GU4g;CI)jNAbtZ>EHdRrd@AjvRJmx_7M=}VX*Ua+FYoGdPTO*-P)efm=Jqj` zo4!ZWscr1{5w@AqUw*QUy=%oE;Q;OjZPSXH9=R`~jx$4jPFubMx5X$tHM z$KG$&7WU#9A2xIS(QP^(p8trSZj{|=i0@4Q6D}Y@v3(O(rXTAKJ&Sz^nOWDuQ7 zyn!)nS@AK}h+aBw$%r31dh8!MGV@^_?cBxgnf{&;$`Oyu%hp(!M%9(($$xmZqu-^q zU^+r7E=lf^+kNJAVH7=rCMO+lbz14&snQw^xZA)3VXqrE> zeVQ(qC$2meBP#tQR4=M2J?(aZ`MdgqGkrH+sk-*<4vn2j-(t>6r3ClVra2K{%##2C zxZleg8XLV66D7czo#iUa8&Rxh1celul*e=;F?*SDdKjoVz~^>7v_3d7oWk`-w)fq; z3o$z|4^&*cxVShPJ6PlG&y2@+Y-nh>7aA%^uLWthUKKFTyKiRJR`i-SPN_^Ihc+%){25sA@Q{BLl<=d} zKLm&O&r|K{h!efy%8SoFO7NsoW=Xw2dz(n2Zk{qu28*Ocew@bz5<6BOx zsEFOTSMS)>S?=?_PiDI3-bhcVF6|OrZh!aNDOYAV)X(Re+%Vt&$2W7%_jNTq#-(~k z*bGW&#Pz26JetR$X$1T@6cjX_*E1W`{_!^_7P)`_}qsN>w~rS7HqRn6k%W8 z`cm|W#@-`p9wvE@nOI^i>6lfksdYq6_IA?3*`WqSL0!i)YBV;>ZCP=@$E&Nad)Gkq zl^6C`PhFh+b}Ab8MN?K{J#NG0`wZqsG$84aTTpPb$QWCM7K*g3l6v#Q7A>OPVThTg zv~6?LW|D_1%_)bs7g;GODWzbrkCUWSNhnKAO>J{dDICjJ9E=yk7;!(J)euRaDOfZp zwgxCz@JqD2=8&1qgpzQ{Vwf${;0r0YK{UY@OZT+)*aWLC-dEdTf(@;4=XbK=bgqApMs{RjA6+bQRex6IV=qOkF9cNP0wG-!B=eJ z+f`UJ-ATP->WhQLoE>t-$;NX+4K813oL}|4VyR(I!1?Mc3Jd0b+k2BY8VadK5|buP zV&)2<3Q6)5+?F&Hr-^Yk+QIS=*`3gUc=76k?d z-U|%mC-*;0S)PFK8Xoa%TRuFPaWWo^-Zf!I(CYA3+ zix{0DtQ=W{)4-Fj>gYRiliP^21yqFvv(AIFfHz;E-AM=Q`cRg>I{!;*#2QmPWN{aBt%dI_h!Tdct zqT71RNezY6V`!ER#`HgfQ0-#8*X033%E&T-hCU5x;2JuI_W}Zzvx8$g$f?t^_k~v~ zBYBILWDJIjif$Rt9=Sy}T}sC_{A4~$BR!S9+KN5DHP5Y3bFf5|{vO_HSBG0VPyW05 zsm&h~&O4FI$4qV3d#B8g@%P+0b=Lgov^$mwdD-|z)&sjcqCE|(-_?c(8%tmEbWN|V z&UOvb!~wm^s__x4dr-k`EW*LDlar=P%Zy8plTc9+Ozle68R$Zn-VoB?snQZ{*EvP? zRmpIYy=47$Om{Q0y)l9i+|D%U6bVdeHqnvAL%akGT7mZ zt$5TcIy#yh;~4Qc8bu?w%P6P8dl({In~k|jnmE?L7^%+d=Rc67Eo?DkW9!^>H8A0# z^E#@O#@gsql1E8v<p^W~(B+Xk_;(^3IufY+lvh zrfXZnUffK*%*v?B`=Pzs^@z$M_e_)L0vyXWe9E1k7ym<6l6%GC-NNI24UP96AWtlM zn;N<=!qDuQdY@E$R9(ldq)t2fyPmoCI!YsFV5!!JAlnYT9U*49M)UOHQ$2fBDC1hK zd0JKYwBg~CApy}?bu(=YDz&~*uv*V}-D9q*WStpVvm5^P179+X47`jdEZ-kzq;nNU zD~a$hBcX-7Y?(5M@l=z@8cmspLwF(T)b8t9T8s%PeiI}ay5qm;cLxD=$fWtarFQRR=R>Exmq52E4`VEfzViOl$FQ;%D7qFx19Zv!$efG57N}Hzt z_~@u7WSXg4s4@Q+zxAE38Z&E;#KFFYgg{4o=GNLeQS2Vud-wEp{GZ$8i>yhjvMbe0 z@k`wo{%AFSO#ECq*D~=$ix$T!&h>Bah_zl$G_1OlXqa)$a&@d#*yI)9-PL=zMLyyb z4p@{C)bK*SXGTuQeOu3!wpDipE=h;o?yEdqi>m3RzJdKkwc?}2P7WJGdg^l%mTfni znX+*F&Ez|lM;-sDOiZMc?2{c7og@~R)?6o5uo4*~YjX)6 z%6CO;)xGMv zXIiaNhmL=INLyept@wh$OAgy)47;LEO$dy>yKc5Y*#ZHPwW(LK>~=k>%`zD%Q5f^V zC58ENa6E4<;R%N6~S;mLm8cvK4exHPaLT3Fu$ zIa7Xf{R3fPoV|6YPCp9_wl#F|n3={^zX5T-FKGyV~nlW7)Jym09BCy9qn0+7!p9&GOnH^!>Y)a(aLkhJz{!&0PnT zyo@tg{9%C(jXdh}x*Q~yUbzzI>*;h~Pmo7gpi!f(e-du~CkGP@hU1mS=B%Ok$~1=t z9%T>X!ydv$o8GMu+`b;;--EJ92FVM7E^Qyr-BZ`DT}uw)r0X)5w4qDZ&D?~0#{*IY zjNlae#!E~&eoGoRX;)#rX^|{6xwHDLIy%kx`1fBXK{8H3mmAW~pHoY+aq# zqc&XpQXFD0=P+9{tuPxsL9gvk@=CaISG2{pMy91GOPe3{VpV@%WHJKd$i6>zzN~kk z)2ID;wtZfN|62BU>wiab!+WzZx%>6RzB?toezIlid%0(17N!&pol-SFot(R?EaCod zuMtv>zNde_>WsQNo{xfn&G~|qTaknO>>FEOu8mGcrI(C)MGCoiIE65czk4r=MVZK` zS~k3jt#Xo1wNCW4VSmf>;}9|Jhua|IP{sC0J}l%)x#9+Bhw1qHgg$(@mNF$$+a_c7&sK0NZ{a*m z|CQ{SCa-WE#A>EC?2FcszM7=B@5W3M1@RwVtvWd(U%u{t?#o*L@lb^S=}OCPRgoBj zB#FTY!lLfsGDB7)-jue5*Tq3xJJjBm@0mlxaXIdjyofpT02^FoX@|*(Ylf9=G?Uw7 zQ0i(d#i}{b-ulYp;p(=uBZgM{Por*`cv9X%k(aW|NK4h(Q?mEZe`L|$_$yXDzOJsW zyX>{Z97ri>lq~07rtahE$ac*QzCQJd-Cty3Xc$E-;iuAyAs!(5jK0YZHBL(jJQddhIf z-y2h_j>g+r{eQn+K9rD{K%!%$W;>kce>`wa{z8umK3;gHDu~IewRUeq)}Z6h5ic+z zUzyvZHWI=deuaJ;z#1a);Q}}H$`-U2CQe%wV!E*|%wjS9eSYOpdwiO`)%u(OJKRA1 zg;I&PS;-GRKRM~z1^KVA=gHc~jif67CL)u`vwhr!vT99tqd<0-IHF-Hw<4(gx^Ze> zM3k|#>^ryt zs(haTYJINwNeIy#zO;gHX~hn<`Zgc?X8qcci!^HtXlPU1vH5PAt*A7R2?rOIaXPD1 zT=kP}=B`W}GqFxm9zXlrnFoiyHS_b_xpTmbT^i;fSqRJ%c%*0Z!iS@ilF&4q-ni(v z)SGnKM+ui4>2F$VIQU?(#-_@=D8<452^4#0;ylzC(4JX5PSPJ~HVs^N7o|zeCil*& z#XLQ~lAayS%8NnpMiW!j;gC;-iI+6l13-;xCW+QU&6eyHCYBTw6>*YuC9YZl0;$g3 z-WD-$-aPWF$}K7?y8C(o*`{FIxEn6X>BKktpY?y5hdh<#B6=+AVn`1FcjIORgJcKmR5- zGIrS;RqM&3vFc&PP(2|`y%_Oi>x4z!^)zmqJvqjNW_Bb^ggL=3T>^d1p8{DpWh+0_!MIi43a_qT~VU-CK zhDj|T@gMg}d+8A}k^uf`@^n7|3vh%=do9uRh|me_w850FH)J^h&0biF^T1W3C(`Pm zx;hUD%5H%20$nC4a448~eefosGxVeHgKZ*EFxDMy!c0E?!i6{2B z#g|f6U+Vbp!h>2LxBxQZ<6h;A1p1!N7*!=PuhqF2MbK*f0$syihl7_J{RC~0VN5Sp zL%kI09=Ak(DA$%g3-rqIso=1ErKw>E?zIdAAoB}CAt*g0@oD8Ah??0d#gB_GA8+aLoC3_~q%Vms=cSFyJGbH3f z4`-XASMMJ3HeiHDlKL}~wn8YcqEH_C0~$3?ueaiWrBR7O3Wsp!3e=u!t{&By`q&0MqqzWzr7|k!ymKi2KU=btL`{1WtIDipqS_;WY1z^s<9)+16;- z1U#n_syaMvfi27^Qc?5rkUZz2(iR^-KVCAVJa>E41HFbK%I<}WNrSj%g*+C_-EWn{ zUX$zp@w_%NnV(>G{xg|hEU@P|m^vM5>J5{PFOYGtm2j01N!$MbRKY+ZF*NP;d&G($y`im){Uur$T? ztua%OsCPG;B+bvy&u^_=WwkDsElFP1ngFB574xoxZh>Le+QON7Nf7(P!8b^TRYUc7 z$?nZCUGe!%d*Dw#iB=nODBH7lZz^2td(L^jC@bR{dZ#e7=fS{|0aCMvK=Dkyp+9EG zU#7Ab8)6O=JPyK5XHHY_WyX|(9GQ{D5gJBfHh*Tji5Y5;pU=3`QBcyYeFtY`9y9Ur zY)xDdQvSE#?mI6^lv~;=uwcxQL0}uavuq5^d_vIK((KryfAzLb_gW;i9zAa@}^mP-={(g?ThCY3`6iQc0WZ*tjsBJ+p39fmj` zsS4(*Ii7|JHd*yfjM#{)kpvYPFq7_2k5+vNShJ;()MV0NM_Bc@Jl&f%XD@?58|tv= zpGswVUO;*XoTn?}_w8jZcE0HQ zP+a4sMQ!WzvWM4mVtn&B-dcJJ`KSX3T;2cFqWyHM|H+V^Si{~nJQN-OCTHY;qH^jB zLL~I@UgEA16p46;M#suvoy$2D!lHw%*DthY@!d>`-5-|X-Cme>b(V^^#+EHFMb=1X z-Y%GYoXT)?Fa5UU=!KySu|di50^sZ&rxN5TB(~OCPDVp?^N7`4+cLe_@*+E_CW_f1sq{-qx$#nwrFeZWtBX3XV;b_K~cZ|*dJb;42I z#`q+OvrxU3K6UC;73&h$$zLhlkqmD=?wcz7rw30aGkR+zt+Px}P~O}MntZLW8sbeH zC2#&SZfCXT=G>u`==W<*6!G!==B@TfK;Nlfu3_XuV?Oo~#Kn(DkV+M+KYEZ3;#$G> zN8F8*yE88`po$Ymh0~t{W+_zX1E%rubi7qP{+-R{fwR7zo5znnUel=dP4eharZB=0 z&u1&DuONQ+r@-j7+w!CROf1|bd{Yefc{z#&E9jWtQAi)^Ydk+#IMkvzZ#?%-E~H>) zl`9_=n3suJn4O91vRWhSo?k}L3Roaq$`>R;wfkdqad+3ZN$COq>G1?Xy;39(1fqHsa$VT4^ z>gjgCg&wG>^NhL=x;0U*_$5TF#O7c`BVL;u(^bMpmDWiqWBz zG3X1|g6s4I>1ss$4n&o;W3;|BW(e~cC%KHvcMZiI*QqS%UqV8k;Rx(yPQ-Al;^m3As zt-h(EFJpAdfSYvGpx2rD^!j2=D4N>niHM4(nIyJ*-h%PcBC{o$5csA9kvEYsxFONm zZvE+ytgMzCYL~1AvT06TuUs}i z2^|CRC}5I}l|v59B0~slqhyhhPtkgy6c_1zgYBI;*1o=gMI-qetKyx$2hHOxU#J-S zsYQc*n}DS0VFGf8e?@H>tEISv?_aX*$E;(zy0%N_QN|_$jp5F50rsl=G@GQ*~adyJ6hyycXMM;(F-?+1?9H)qNI0mo%~Ja#|D#4GiUXf zPUYx4LY=%b)t&po16J?V)4!Ur(m+a)x69t3lI0_Iaq@;`@*D0Mc!=FM@IdtavAHtn zTiZ8*_(ECnyDu{9+QLoKnv3E!yI6_vlACskt4LVlx&NBUjf&HG>J_IaoHcexo2}P$ zC+{y#Ni#VQ$)?Mk&tuk5O1R#}z`S~XZb^w-QN=7})oG+rr(wo6e6~6*nGU8HJL(1C znQb+tmyJs{7P{Xgy1LznG3~g%SeiHPqrmQx4wb`(0 znniW;W{c_@3kNh#3?1a&_an#5Ul8kEolmbuZi4&rP*_FGawpqyYbS-@sk5qRsg~|= z0J}^md+z$jX@2n`z%bAUaWzhr@D5pdFLC*NbiL1<)-73^o?g?|T6AubVRa=J8bQck zA5;4bNw&fCQgP_3SHnX@R&Ui0Le$NKPQik(RW$d(7+1t1_19 zJq^YF7pv55JXf0K$uHatKpo5IZY;H^!Ch!|P=v0z-j=hd=Ql*^?ND8R$nt7z(2Bv+ zC3$Dg9F(Jy9;lC6<@-m}`ZnIJyHIC`X0qB5!#98Qv_6YiiNajG9?}{z1pXUF9<+U7 z_3jr{(bF<3R4cDNZ3aAGSpIS;)rD8-vjBaz8W)?OH#2Cr;@-uhQRk>MS{WW|9*lZP@ zr~|FGR^*5RxmlE>{%RDK;MhDDj=Yz0nIlT|d%dBgW)k=_d zP}bZpdSH+!ct^LdbjD;P66M>k*jCwki3w3!J^ZUAV65D|B#d%*RMJtxof)8~ZAFir z(oxq-b)oE&lKzS60OJhP|L6&SXlMd>_%K==Z-7vO!Gy z_|<;H{nQn}!8qrkSb4*yFEg+@n8zjM{HX$|(6#E^6wDX_$HSJkur%;q7{1 z-V6<5vBL(T@C1_Tg`3aqqJw4$5LvV#n?nntRpE)SuWgwu)BoDjXDH#b12D^d-V6C< zmz~|avI@r;siD1Q-t{H}P$0WEXTcm0So|1r2d(uc@mXV#;WqUFr6>9V0Ymb|0!VZ8 z-4Zt(U@FP@T9+ZU831TKjioLfP>T^3>>je56Q*w=%$`{iK&`q^gI~oL@0zGPPvb>r zU6gSBR;2c4PGpyG_Ebm2CIzo=aE}E~t6&y&aIK0-;lh6=D68#1&HPxyuQ zVHF{_8fMUQ)!U=2%om;3rwBXB`U=W6wsx)G4kzw1m}A5GVI~DEu|HS!$q0n9N!a4kK zwLK!tk)l`UtAiFx+%QHXdHB~4%f=vZT6elK)hw&-{Pp*V6oSm<%a@l=6iH3m$l_;T z-SaY`c)E-1EuLDXFn>V&#D4pDkU9?%*Ch9k9%>X&z^Hi!AkQRQm3xlDEuQ>RxAir$ z9IsZ5AXx-hsOf#)lDL+bT5eYL#@GEt_MM6QKXHIIZ6~=)Qd-w*A%A$%X2uFXf~jgOG3C z+C}IJp2BWC1rn&WVZ)k(AC?U_ixzxXEc)}o(CB`C`J3;I<^iMRd~q;94!p{%0~ zZd)9d{BE0C-|uF9ks}XMikVAJOv)dRbTwaEv}=Hay=UGChVgw5O(!N^O?JulCih#mBSCA2g1SOQ*-yyf-682m%uO1!D<6R*ju9~gpjua zgldyJEqgN6Q$ZV;UaHvw8C~dS%QScK+W|Wb4_U(nTL$t5=8IO|zu&cJuNi4phlh~Q zCuE+dm+sh-Cn=8<*tvf6@>&IyS1_>g+;QQ;PPTHTCg=xEwJi`$KAvN2FWFbRK-97` zmiS7a`XAS>ebEH#9x7(Fzg^a7)>7>y%PX*O;nXcpf8qFc0_Wzb$rl=S?X>NURXu%I zLpNk5`((0h!Kv(12fW%humjG{T=%fRH+IXcZR}j{6~9b5c5SKN!ihVkM~uHXHA36b z^;ubaf9?SX|0~J;TFvP-195_aHw4;yEVY`Klyzo9{3`vayHH_O+4pIjaJ z?vm$2<3f&~|43jB-CuC#RMLOGVYwIOXpegrDQer%;+{F{)wsDv+vk;{P>%XbY2H^vWMW4}%~=;eE%+bT4ihW>q#?< zxW3x*1L_SCtc=&e0)}szT}(3B9mQ(nuskW%?YilK8~N`ajb>%c!5;;VN@g{!J?zl` zJi&vhD0^{7_jXa>1p$+z?SEEJIAL?{n`JtBF)X_A^d6YDYvt#=_RJ+s_eOY&uW_8k z4+q9LXk**e(uJ8C@mvy^TPnPkjNQP+dfLC9bm&rhHCU#GMl^iPFv z9^rG!c~a9j3V<12j^FCvux*<guJLd zv6X(N5x>4)*CaUNub)0V!GCksPIkIJJ4iRbb1`3sVb2f8B~R||YdD}}lD9H*LXjFH zE2|fI_nB{xYKyy~U2Ez?U5o=FV{)4L z#U^!x=$|$xve|`N?P1Cz=o-O9m=%GnPz)Nh8n%eOt69*KPl#Z-uL}G(o z?GNj5PoQn7ZL*1}e?MQi+rB+zj=J6o0WSO1pVsEXN7jD^%8$M242;Ry?Nzy3Hfl@j>dAKVX8Sk2 z{NwVO+XIL8f3s3e(dXP1Emn}n?#{ z-J#cm|M=rO^6Zt0_+_Pp#KFp;!LE*{iyb)ARUiQk3*B!P?-#RxxN>SlTYJ0Rkz%;E z=#<15cwJxN6xLdppPPGV2_G-76cfl+u*mLc-(E2;&5sNI>4WpivQba4B(oZ?HoYGI zlX*zRt{_ok(IT}cm-D>2OAemiJ;&2k%Vd;(AZJY!>(eWY_{h3YTW5>wj-Z&rzz2T5 z>JIF-?x@JPZQ?FBip{ zVEx~ifu}M9zvb(j4&1~}y09fwzPy`t{OsS^``sK}^-Q?UZ7LG)w)UtNzx2)U6WloP z_cY(7DLNH3Mp<4$2j;x?T`s{}(tOt6H!&q7;dBVU&QWC=NIj|ZgCvl5bGSs zn(yM~=9Y?pjQ)X1JQ8QZL}8hJA5E;}Ukl*e&;i7nGyShOjm^y>H_7`&bHA~0k1Dd< zt4A!j6A}{I`Ua#TPM$njb7E_1Qe%2{_RSY>Zsc^;wy&WbYAw-V(KMH+@&CSbDD| zDSk%+u70KOXDLgE>6;p}ZXaB;WnR}mO7Su;ZfY# zV;40%uRmOEctp|vrU8EpODbta<(^OhUVnjA7O~|@92}R$B$9lO=-SqHObTsR!%Hd@ z&Tb4bTeUlCaYplcv2jQtV!A{cQWOGD*KCa`KmGF`?>ceGVQX7YrA~p}k(H{k&-dNr z1}^Ofu%r>__P5z331%@EQCVZ$wC~%j6L@ZTaJ6-H^D-mc(_d?}t&KLbT*6(A=nH^6 zAUfLk@qS~TG0$M(pPJlfkCrcF>3*00H2LiT#hIIG#7hdic@pB3B?NvmndL3PFM0P{ zY4J5ng^Qc{N1Qm0pObY)S%rQ4+|Td2`)^`f>!#G5G_~0Kyl#z&>ARYn+e22|&&xA) ziaOJLW}P?pW_PA>cXv#B$ChD(~Olw}>&7*O# zJ0a(`M3Tr&?!wfF>XTb#Uca_~*}vR-twF|7JB9gLDyx*u!uGb@&v#QheXO}{UM3ny zyAH|O<~ddwl?HRIbaM*2dgF{{k8x|y%9ScATrayOpZl{h5?5Zz*~SXnnOW=b14!YA zDj4kjUyQv4Sd{7aK5k+Wx(Xr)sDKEFigc?Wq0-$V4bmxXfg+(ur?lkIBdsDJIdnH7 z3_~;2P`~rK>$>~d-S7WD*QMYk;_yD_Ip;q2xz9P=rRHvIw^uAQ)a8<0uL!lzv8?aQ zUezftD;G!2Wh%PL#=*%RASuEjDBH~)upx}C=Lrglj?O%IjDoT*ul@7$V=J)Rg{ls= z3C7G7x70g)_^Ab$qy?WV1h1MrP@`L3Zm_JYtEti zGjf^}biue;caozAW-Lz%R*gr4!vnDAbv_A=K>-S6FLAWy-Po>`z|W&&jGg{A&Yp7Y zKRhm_21^uw;X{ku)o%3jhbgtj*f%6T1-XsMwU)6dW%#7mO-Qixy3dTDvRiUu)5}lP zSJ*6Pv&@yHL`wl@D?1j5YSRvfdAKP=D=Kol4T%d$*qS-jL>ZMH{pRKQhkn*_js@Do zkK*NGQrETE+4@c}RvLQLwiG1sYCCqF>2n+T(C0$%n~d|t9G!a1^QyC_FEM%fBJ@x- zy{x+J<_EDwuj;7e@6MyOGF#w%8J+?0)XS-UUHF+3=X;g#me`S|shrG$C~KftiY}WEaW7JyJ&x>?2Hygr@gm*mKQ9XAz#!Qsqbf29Zne42Rcm$OdjhTYCoM9ak7~*rE|FQ zhO3!op_xS1(TvTtN1L~e0_oBOzJHreuXG#g;&j3_pFXB+*Jkm~W_RnmEVd)#&3}0LrwyOM>|CdfOP1h1+g5WujJEVqxjqnVxY7afM>fIt9!uHaGSu3JTx#>`~7!RE;%s3VHW`!MFqca~m63 zUc#5`up3#OecJtIcMpwt9<5oq1kdktI|yI=4YeIQm22{5IAK>SECZ1N#moL?0&16V z^-;M_bSe>l7=p4SpB)thh7xUaZ_@?JWEytDV@B?5NN*Zx!@vM^Sn~?hhDmF~d8twlr!Z zBi(dI#Y4rnx$aJDhD&_=f^L#DUwdv6dF1ve|lMaaLu;sW;&=3l*Ap2aW6B z5~hnga$p}zx|L#ZlGmW&XDz!h33JCzbAStsU&L_KZ`(MnmQ1wS9~Fp`zM_#U0ywt$ zghi+#O-m=v@V(9MsZO-%r;`UYxIKd?Ffr$R=<7pib!!3A6qQ@1IJ<@JG^h~zi7xU*Ugu027c z3kt|JnB(nt_xr0+{IIQ$EmefB<2U=WK)$ec7ueThGEp}zpE3jSHOscJ=D_{DeK+0URdAi(`e09E$Z&mW_+(PpyN*y zV&X*7)A$#+e{6_IyGff?s5n`H^;mj={SX6Ntbk6liA2ly^95$Ij<|kSr}xDTC-WlI z>3_pdkMVitpSN-}O8_Y1u#LYg6UX{ki~ir3iW(? zmx@988`c))&U`p4-?mXq&*fQf(iC-FW4zsag|z{g5p3jztg8+O(`K>Dgv&w&JFi!H z3QU1&AfNOrDs5AR_W`gLB00SdYi76XmALn6Op_x+ej zOpoZ*Vf$P>?0x->UVYsxBI5g;jlGi-*j`lsEO)5k64wrYv`lJSd%MHd`bSTq^Z%Fa zeL`$cLC)qD8A>Dxi9D*gO>oZ<%iBlQ?}ATMU8}b`=$Vz3k!mz0;Te_+77gbzy~UCA zZ2IiMeS017>mBWrVVJyc=zWlGDL}%uNGjy+k<}-kQCayQVexO1GoFRE&;6~W^3zt& z+5Rh!61zFK;cF+}ul)n+R>;K-w*fOyuIqM>xg zG8-b`P*w%Tc&2XA#bNPaJ=L3q5IUT-m?`*Eux{Rw;zjmWm+93ALiZZk^mEztL($#3 zK3Xv)i%$Lc&oTJ`BXe`Dh4J#-6DsUb6GIV&xT6C7Aey_*;83Qe*-n`33n~C*&24QSceS_pf6s zb75)fb*W{D;QGe5ol1DIfsk(BuWTYyz1TpDydtR&K}+nc(~x2vO?!ZP|pR}g`@%puS?6zdzOAzQc?<5_)R}JA-r-&9iSp< zDgVSul&%#a*@6pT)RW&H^k)3EGm@>?RmrnYpYrw*+;4`^4l7yq zPu`SwkD?Hie`mPNWV$$TWZ)`glGbc_$#!uJV5uX$jc`)idSGfaT$c?vc1ukpf@#Yv zee)Df;xpFBE*(ES>-P5y`$XTUXiJx`(e_x3f-;X&zc%9oWp0PGytKQrp3Y*XQZ|u1 zeA);GuYP3e8@TcCq(mSF#h9`BY_@y>yg9-~V%*oe|a9|`Fg zS}q45=K@_TgM#Bi9ylSK;HM0P-32Tqx~M3}=5MO!d&S^Bwi` z(WoTeNmG%F&1bS8vzkq_;2KJWw3=tF0~c_t_6+8)Q1Ql8^p0%e-~YQm{)Dfpf5HOs zrdNBs0C;*+L&uQNKXM@0=pcITxEv(7E`+V6js1E1_VOhpeDe!Xc;Kg4cjT%0Bl1e} zmge-gE~sze+`%RAXbVe&EFQ#=ma={%qK(tN+kNVJ_4a{(0gmx>GWIU`*-6Lut4RU| z91^6jIx}8fZHX{uc>eHv*v1aycnH@8owY3HAf_+WC!8L+5r$rs;&D++4ht@DrSSExaw1EU)N0s54qlsG@yeDD=XLxID~}n20r9Xf;cSXxXd|` z?789Kco(e-ltCwJzj?FALTt(S!a2BQCi`_gM@*($CXUF>guNNe7uDb@JXk}i-T*@tLUf5xyyT1P{_ z*~E&E<93gA2!Q;I6r&!X?4G%fzNOl>(baF66uT`Yds$F+yv=)MGk4Noy0fB$Tm7-u zq7I<5LhDsEzQo>Re+|L+b8P$my-Xz*Tc0As1}@IY-$Nasx#~R`RULvgoEp5=fBT(_ z=w#Y#SlO9#iJ8Jj+m09YnE0$-oM}BcS->hHaGRqhg~iz5!C`7oE->P`NQ!b*w|hXa zL%8YDX1@HTHb;FzZhVzcV9-hX!+s|0x5J(?cPjTUc#&MO1C#F)Y3}Qcr(+B);V9zKTAl1-wO6=C*0x} zQGk>T$rb`F1v8tWu;}1j@Qc&(4KnbE`Z}VfI@VS{!@^dKZ+zXjyun5@kAI(ADB*80 zSGhHmSW~3KRaD|okfkc*zVq5Xx8Vm<>fOC^XixY8b~_@-+cAW*C}YONr$kWK!z1WN zj$triocwHd`^>XA_-lk-UDnKClv1o=Fn8^_%nc9LCrVJR}v}yJ&4%y3YQjT z@(!h)7EWvJccuQ8o2HxO>%foiX=*<;d$_sK4I-g;ZLNv3n_sgaJvNvQx46+cFrjQJ z8Woy3L>(;b7#R^|_J@Oo{jvVvqHSu<)I+ciB9}od7Z#`YN~-AT#lu{IhYZJ3DQIZ2 zU|+SWfa46Mb!ZyuL@6K&eT*S=zlz%u)f)uD9#ykXPY%{B&E&anI@0sCwzfucTSUIO z{HLM*{KRWFU`6}!LU;dUH&`palr3cXzI!W1omW62w|PM;?8ps+9+loqU6cT2kh)0e z^kr>F6+*YmL!hzV))K4swvtw5C6!R1xr2-CXNx0h^8XsZk5g@N{%h^;T0LYXK&O=n zLt3~!wxUkJ_B|+fn7{4o2#hBJAV2Ct$rZk7fs1PvB*_d?70pHtg)43=`rDzao#^zW zECR}t`xji#u}I`-IBH_0oiW5JoZ`S(+tGo|O_t!Lj-Z6{)w9>NlVlA|iXzH#t(g#h zr;6ueQM|?lgAUe5XXk_m7q?_+gon=LMF3yuGLhXI85!|gUPP+7k!AW&#oC3zjR)~& zG9{wIyF8xha-!yev?a`OO}7udheF!!79Astr3q9jc6_`B4-!l_Qf#%^`LrKls}4nX z_D`znYX(wjy6zA*TZ?G9wk9gIY08&0pU#qBhp4RGEejPYqCJ$0x7UniRKs8{RwrAZ z`gZU5=g}SF&ze&D2CLLys4tb#>CyhjRw+Z-exjK)bR_@t5=Q9XkYL9 zGfnF46D2IK#Uj=F9dB+Sj|NW2Z92iCk@9M3#_dc%KFn8z>gK56`xzJHi8EX>7kgq9 zNZmVM>G`>LW|2N5CKB>SID%(4?CkPkR+GO$Q#4;Yz)JRwvemi4jCp8qs#&r&gBo%t zEWjm-h7L6bbbr>DFQ43FkR9KJ1>wbxV1n6iq92z)+scGJ|HSeJQFNh2KR26N&c_?9 zuCNciNwOKVVIi+y-)HzI+cKhB2JXvI!<<3?RFf<)0}B07cbAx8!Y>d+`M*sU zl*;s!c zz*YgurU%c{?3qyp%Y{;22xmb?Qm(e4gh0o{qC2*hshW?Ai$fi_%6g1Ut6y$f{h0{L z&wokDT0H-gnH+^OqHhzFPbpuML;17{f0kkvO(IoinXyT zvnZ=$y^Vkbbw1dI8hsBS?rlVwD=9?lXbMWKW%Z^4y(22@X>OQr`N*hLXKU!Pzm(MB zjjd0RPffx9MwoCtgm`PH)Zc^1>an|cVvv(wlO#(B-iN%td0;@1`|7a2g;4514oPZi zX0B)``N#l8Dq@SOZ|uPqW!*Dezs9~guus9k4xJuVy5donTe-6VrOn9e7u6N7zuhHl zJ}b}@uhbE&5V0E2k!yW;xt#&sZRPZQuavKy_sZnTz)MpN8yr4I$f+FaoNYl5AV3$E z)_XzG8=IbX2E~BZ{__a8nokDM~;jxR}c!jbut1)cAP)*F)}jp+fTiQj-SDZd>KFA()sXtL>P6Kue_V zQHy>BDiw(q<79>}Q@{~IDY0F0Xk%QVFdHM;G3<=EMc%7yyrX-LKL9qC#PCYikPckD zP!FM^hVl01X^Pp*of(__TK|rOV|ETJ9mLiA>P$a73gIcNvoE(Z|Ne&l=l39}Fotv+ z_iF3k_-mB_Q8nEEng#{_yu#`}-C>Hnh<_9xh=NZaK41^(8YFy!8Kz}dTfE1%y!nxN zK9l^9lJml8xP6EY&9S@4`=L>0dwj?+pRV0SzoWg4j}dB85sm4ntnie(>ZU-mwDAva z=+N89@0LjJ{sYk-JTU`hy_K)tRgT>+oMUL?s5D$T9hDM5;bzox?ZoJn-{vs)t@B=QY!Ppf#1GsYV>zw+ug#=_>EH0(zVaK0U`nRGFz0`PE1NQ?rnVO z6$PU2zW+H2N`Z@YN?{=CaMf5%0UMAk)pYIG#bM2{lm;`Y+RvS zP$1D)A2otKiTu_hAHD35WCTW*nL?KVk;Z7omoHzYpeL+7A0sRP4sPg?L~S5lH#FLj za2_j1;NWnDyLcX`e&;Fc*eCjjcZznPmr2T_((|J_sDm?AGS&3ng$TuZ5KQU$5J8Jk zQ>5X)1m+tL+*Qw=?L>cAnX0LBaoUwH&3IN0?>ul&P`WkX5+ociDP6*|E}lY-|DtM&5&|*MID3`&A`x=si<8=)IUhpf6YKm zkT6hx>>TTLC(g}%i;Bw4<8DJ21z8Es3bJ>QH8c!k=1(4mazv#^jv2a0H3pns_|zpK_f6ua z7-#XXMv=eGzG!>eE#3OGTSh*Z#MPsO-^HOJzaMbe%N8=a1Bl=Ey8*ENNDRW;wCwV-Jm86V5ab3lv2qdpv8jJ#-b4=#=?KBtB=NkN1!#t+t~Ju8Y+VulvH^S`bEf24c5^ z^ns{9D&O#xhl8hc?&#siAqP9bgBm&cqmtiONCQt`k4ZL07$2yOY_E5ggDsKvHUe+y zQMw=qMLYYiMnqNGVScLLUpNnyTvaMjXayHL(Iw$ zKcU)Bx!P7lRbG%K-fk;C6}d(1z8uXCSj5DM?O8Z5t%f%Xp-3FY^TKn@qeO2E_%gN_ z9;sK80bv|{Ckh_Dxcqcuhxmdl9d!k%_NK{6n95-lwi93{j&mB0jSo4ftWm-IVe+6ZV;8n1Zv&Ck z9N;@EU$in62$B`#e+F8~z$pYZyR-2&7{pS)CogiK8-5er*m#feqWE0-L|K`jzB(9D z3CNKBCq_GrFtJ(CPiImaKm!HmSu4*By6q{6`o^XftFr$;&gj@q@1TtY@VrG{5VdVczvG=@$4BNUDGVEhIciOmhrPBIEGk=C%C0OKrhul+Yzty)s?fdr0=( zRe$i>dnIlMv);b3*E+{s-9l-5ttFwr;xhBy6iOLKd;e0yS-;>}diQTq_n+4Ju{#Iy z>Opcpjlx8gZs~@CAAa(9>wni7SC{V=D8)>*ZC2MJnG0mgrixWxA!&J+dE$s;_l?)Z zP~3iCR}A`dgX$F9!D~Wy!E1vsI0!r^0s@;3Mcv|VKf##w!J#Bu*!UjUWqaqOUu(vz z@xt{GLl{Tb@X58cem2kTL6j^VV}aANa1NHlMoAAyxR5fSa-w!KBJ?=9zmg)}T5J<%-RX8_8D@r~qdcC3milYYOa zEZ_yaj)O8SsA1xIPzVUC8JM&p+&sX_YVxdIU^1lcRHS+K8EYA1B8>pXU3@X=&UJqE+ma+!0; zd7Q*z;6tlq7n$d}s6Q1~z2x6!x&D5zfDVHU4=N2$s{pYIia^3vDBLpNKpT^e9A2bE zyGU;SnfTf8(W$I*5|^!~w#ED|Pq~?XYl;a^AxF!QO)u`fW?x(`%;sT;?i+Bw8Ry_w zW4+yvZYJsD?YdZBU5&{*f^3no?84Ll#gz1bNq_Xu+>4N zy~4$QT+d;ZFq3`K@k;YuMR?$c_~vgt>l<##-X@uKG1)#J6BUyHmT51&LpkAhR%>43 zz`nhOYxuNO%+)xNbF9Z-)3e-Zp1QxG)Eu2@i*(?@ec0y zPosw09_zw8+oInmincxl5PLGhZx+vB>K3m7Z97HsW@^8QZe$ z$#?YyZPMhyW)q*#VYh4w!CVKqL0!M!DM_MP9KEr8B09+qpwWn`%5CUf1_v&yx!P9-uU@!mc6eZj)oxNe^xjvIRg zwBujGadi7H{ynFIZ%6bqm7Jw?2X?0-K9=J$Q!51Jk8DNzFWe(aH;u+U|s@6lbo&F zJ(%7c|5twUj+zDp9H!IFAiz%sxy=rgp1GlkB1V~QNquiAZf^}aPeI0qcx^;pu$B44 zv6?T{f_Q1c)oQH0>7z)mZuXi}H%=^7LZ@;inU0Qnwq@vA~Y-4O2aEd)_VRXz*wCJH((K}b~;5?2R@??b2Qcr2qK z5f6U*mfol8d;?+0wK+ATqGIR7bWjf@wWCCv|WkvZK7_WPTjOu~Gf z&hbDIO9oaZCJCfA?r(6gL0MHhncAvM-g9f5?ohO{f zO^LE!`X)vHsB&xKYDjFX<-g=dUMt${!GEK!2`fFI*cHgoEXXJ1*EZ4eD7?DT*x9Mb zQPDLy2(b(lE$H^y(mzP^8d#^7lA?(h)bA&1#dD?}Uym*S|Pf z_{(N*1voMP^D2VTdI2fbuYLZ~9qN8W^7Ffl{e&^7M1P3hY&7^?+#OXZgMb04%ce7_RN9a?NZSa1&v_z0BlDxFi6%-1-d+0RvK@!TG+ zxc^Yn*t_q25^s5tb3kY|bDMWw%kFj=v5RE&EA^{X zV59xdQj1TvBQV*PH-SNlkN%{?Wc4`mt8;Fy-Dg6YF!IsH-G2R9iC}c%`K4ee^*}a+ zR2}W|f(p-h`eg%8JRo275Qo1V^>~v%sh02P|=}#JS8;@ao+oxvk>)913HFGxhoS zw+&2Y`p}x;*pZ%7V)(H*zc#Rg#?ID3`9Q2IXsvD{C_kHFYnN8@Pw)qa!u=kF;t36T z^F|NafNo1j;QTn6TcDc@>`+zJ_}vKt4w@g^13kC&x4-jLp0N(?pX~}!)k%XfRwghM zpQtZlZMEMD*DNs48M+2zX-#^rZ4Qy~Ya^2i3ZOmA!O@YF7l)Yrixc$t(&6pq8yw3e zrKN@UKkb|CM`I+1U_2ZihSYui7gXW(g^*221sSPEd7=sk1J7)`UHupFI7(-K>8b&m zcFFHd#pF{PYaHKFHls76T zX|&zW!-NZZX?i|_QRXT}yQ#X1R*SGYFyOvX-cwGpk zNF+fepX4l+Vf(MLrl{>`}e5M?Ii4uYRPk%mD^4mpZHX(b|}#~`RGSxmEVS#-_k zG{sw&;y%9qrN?;qj%pv6@$P*2esEePuba1rk2QD2oDL+z-Yfl5D~5AIV_N9}|+VP);Y-3t=>$=DQ_kOy|zZ-0sNWPn5advogcA5R$2{C>j`a8&%=a*E^v3OOm zV~G*8OQ`w62~*?_I;a3!1_Gw(64MCKm6*#~WWb$Q1`-&^YKNEyqJ)1@lwKq%M8%v9 zxP*XskVg5;7Kh;{%?ANHhE<&yz|g=$eU?ffxag}xUm>XyKb=JYpcjaGQoJ?fB4}1QJqO9x&>y~Wh0~&v`4eIG)KcsS1FP8Ph=h4-Np>_ zka~5I@C@8%VC{i69X!lkp8|8|30i|Ggz!ya9$u`%y?cId?wy2*8BhS=!NROD_Mouf z;3U8$%B`(sJpbhN8}-~(#jb-$t^SD_=-RKKFh~2M!Ewb7D5N1dC%+ZQS!u2s7mV-b zJIyc3cRKCV4s%3k)jfZ9-1e#Uk-g7v5I;F5Uf`>7D%UdW{X6IQ_uIXfIhr^epkjrQITuh*}27&ecqpMB~x&BvEk!iqtcH|Sru z<Lqx69OlR9f*mm<( z8sn0VNiasz95SvO8c6$0-(*yKO-b)|e!3=q2rZqVWAM9)MQ8js@9X7Tizni;OAU-d zD?Ar3#buio9nZKe662oTHcr2i@3h)5J|2;=GCN2Z^0jc;3Dwe$=ITMea;eBiM1>{L^|OzVp;d%aN;R#hMOAK8EMgyg=Jt$TqDS%^e>ym?iCO-6v_3GVE^eG(s<(s6d}4z>7EDj|lNU}Ef|{GGtSw&-Y1sknJ_CA587 zalXW0x%;$DF}YDb%LPucBl3Fi6*Eql+0mloS>Ym5uT3gd$uvt;oxDO zTkq)VqEcbyJ(DRxWvd<{W{VZ2xl4sjD5?Po;Is8yP{j61@rURGyjES*w#MLNXo-s z0Ea)DizYmjPHo6y;t4j>mnx4f(M!1gHi1z}TgaU-A6UQgxy#mpS6jHjE~SR}Wow|Z zeSp zpEj!ZU*pS-`}t^lqA%yXIYzBZlm^?9^`25bLGA&ip5e{svWFVZ^YWHxm&_*L+FmL> z=`i@n)Ts88`g&4&^~_vO9=SSp|(Qki5!=EwCeJ5G6pv^SORpS(9lNoOx!+&hN+#4mZvh$e8g1_Y*%|w%Ju@F%z zQDb3cw)Q5jZ>7QCkSgkIVn)6qr}-^kagqRGT;C2SvEXs`YbPEvyvATo^=d*bQOjw0 zle%NTGH|-Dq%q*J$0g>AT4|f#oS+kX-diwTv|Pwr z`4zQVZDhz~-s{hI6#YD$1|bSAnwgkf%T%$o&C@H~3VG8Hqmkdk&H`!`vQ$f`b!b3m zE^v2jVYnF-yA6K~%&9BI!*UWcm~2PI{V;qlv#jpTn~y1=0~BTySDB?GB~8tuhgA#= zlJvOTCt#h4;-g2!Ftd5T=(Ib&Re~SJroezLSu89{d0lO5grbS_hYNvA71>ThiXkxa z^Nb2ILaVjx(K2zy4{h^LJNWVOThD@dx&80@D?4gL=e3Uq3tZL_J^5s9 z9c!H^dY6ZWQ=rCFy#)L2iU5;TgcQ4x#4q!1A?s=USAKiXKF#Gt+I)IvWjo_QZ<3=! z7c1a_c%eGb4(7ezKT@6By9=CW>sa?IrS`sL*Q;k3Url^_x;hf)o6+AGFhag**2l@j z)HFkR6I)D1hJ&ZHVc+!p5q-fo-^+2?*uZS6xCGVH;wGc>P8(ZWaSgMrqMkh&)1g=3 zxlVbxHttTzy`^mP!i8@gO9_f}!{}0_M<)zjQ!r zCN${P%ka%svU*YxRX`M?`0gLPLQQ18NlkR|!s`Q78xe+4q|+tQoQ$=%!FqLCx;ir$ ztxlOPKNinVd`EXCjv_*{D*s^ii#Hj>*e%R$TmOyZ~g zGZ0EItn+HS18PWeTI-CWxh-@B9XlXr*GR4#&R9ctW_$8A1bfV2bVmG< z@6CCd&Wn=e6%AMRU-c9oea;qVy80~G3wMO{fG=&BCiR`^LL<%Oqk+*w6{)?=T#7g|RtuVEV7K9{}G zp=%*OO`gujXBzqTZ3;ZS{)Rx)_8lS%;g)wLMV6>+l64K!a?#`!QpBD4pZP6Oy_dPf zL}MSbd>M(D=n%naQ&hKgkiT8(#SuY#N;U!HCx(%O1?Q;F^Kq z_(n|gKGib(ePfbI915xO?soL_m`KL-^r(Tt{ER|F9B3xasNkTq?cMn~LOtjHV+JhP zvVv|Ld$+#5g9AdRYgD)u|KKgva&CZlviR05KX;)|qt+%chxJFX2S!~}X=nx!kx(U( zP;*~mVya!}t3YlIneh4zRc(h5$GHJhwL!QCVvv%w0vU?r%FtdR3!^=}J9jf+`G!*E z=HNUYik2`Kzixp5vmQ%Tvb9W|wf|x^e|*a9y!j4}dh{E=tCmKA3;HPO8P6EmoTJBb z&2|ciw=3^*kc*7WWZxvoSLbqlkZvS1!G+3Oi4$ae8Z$UjYVs4f;Q$W8jR(1(QZ*3pX-{&3wsUKue^O1m zzstBQbS8{VV|<)LI%3^ksM>#!9#_y0iGisfc-{%pSKZ*A=`OBTfLU$`WHbhx=(unz zi_q1>;O^??J2a$;3yBxo87sV13P59Jrm5JMH1)a6JL^&*mNW|<0dLjdj)I2S)vsoS z;WUgUnM00Zft7Y2Q_Y)W1eJD$U865kcm(Kj3fg#e4cf)e5w@?mYfNnF$>D_4R773T zv2kG;Jug}mD`Nf=Abx<%gJd&m*3K0_9dKtG2D9;%lnZ=VxhLk+kASH`em2pfhDLZ(`m1~*+*sx(mxs-~ zkbB_Dw@La6DsLW|ezLrAWLs7Jsi+|dDO=BiIL#rVhI_uPbaSyO%5=&my(v$HAKg2GR(IHKyv)`}op!vL3;^uN zF%Wth{kVjp)9a<-;o(+0DT)Ri?t%IFa4)KBYRrbp9zn#oo@oh9l`t(OBrXmG`zxkl zq)@wIn05+m`;qPK?WMXlf)7}urlu}*n%5zxpfH2w6$F?L-r3)8t~PY_j;w6AHwiT- zOzA*%tf`-szWGxNPza-1%3-2W3DnREfzlE+4+{;Qt`*tIg~eefq@#J|RkduM!x+a~ z(&5)`f(St*Yt0eAx(dB1Nu%#X76a1go2sz$~ zM5|)v?U_r_*}|1GK9iX5-;$<3vDP>z`?$Nf1-FeS0&bCRo2<<5WCMBpjJ%UooK6oR zq9~Y#%WZHg#&LV$x{L2#UU!Me0GtoXoh7h#)7*WsjB}9P{lnU6{@bsN{FeGI`;u!m zgz&iJsG9BH_Rqj%g&ZW;DB5_ZYOKfYz`HWzE@7^W%>rJgc1r%$~*}Lxchq($t0-Ug1xBkPsIAx8TVc z*JU9PePtHLPX+i^4qDbP9B7IPjnAlIJX9@=^$v33a=?ev&`&+<%`9Os&&iGmPj9HX zXnJFPa@HW5l1I#G+fr4IY_(s(QHdwJCnfCkJr#w^Plfh9hFpv0rpuL2qxNYf$#<)W z&WKRviMZ&eY6n&*kF|55M6ODU?8-P+QXg^y&Qz;;vrzJRHSls8w$+q_Ygw&*Y6_^%epY2Q8<)*OUBmhp2b$s{ z<5{;&D!U%!nz(61*Q8csA4jO?@il^ye*2u!*B<2? zuf>^eo2xkbX2-rx@VhDRAw*m@BKMXeYbZ+@9fPvge9>!DK>_4}$rJ3>Jw+cy>buj3 zr|*@w4h1t4T20+{F_Z}Dl|TNijYu3pO)KSfqU6*k%pA`;zhV254j#A-P8_}{S%0Y0{BYEdn;erunmW|4i!#61qDcHP z4QE|~-|j5!7@FPQPFOU}br~Z(RKL7qR~7-el%h9N^r}{{;vxiFa#b|5z@QU`@5VL$ zfvJ|DLf69Dxl&q6nJ`UR%S)YreT5vV#0)Rq-h6102mmn+iI0@V)mU3x2u%oLm-&C` zOgsF5JO7{LC33BIyM_ic(7t9Xgl3l63{xI~0L<-Y-r+RJ^YX~7$kH?~Qe}ZlAIa}R zoT2HQr2bqYGK7*QyZEh-*-!^Dq%4#w!`)pEGdKlqwHzkNH4*Q+uPt=`c32#T82gEM zT|z8aEyC5^&Tu-k;#C>c=jcAUA%a6LqPe7BugwBUWFYk#B{ncpz*UCW{7b}UoUA#1 zAqqy_eeXP}fY%+4d3W49B2G!nLqpFDKq?Zoi!{BAmM}xt#Fd79Cj45#F$zIbd%hD(FQ~wHi%s+)x94` zj(nyRv(+z3%4mBtC&O2(oo>Q%k93>r4zbie>*u^OyZpEwSPxESdL8WI&TbDc=lMI3 z2(~=I(sy+AX0RQiUKs))%qBopP*vF~LSr`5(mqeuhWzqcI8NiV8bO0iI!elgMLJMt zq>J+i*k#TimwI-qae6i+Qs|A|>f=mEX4Wc}UdkR?P1xlVq1SQJ;k?Cxp}C;>wJvbw zxK_~k1;}yPOXf8b3v-inGSI5&Ib--{I=2vJ`rkM`&AhV(pD!bReX0^hd=qDoQ&XF( zv3VMObEJB-J3ceL(knc&#)$n z=)}*rZr#Eo1P3C2hrzj7-rhv0?C#dq`2B}Sr(jRFj`pOzADxI!CG0_SfVQ`YA2bYN zVLxAoS$+Yx&HDh{%E(lH05_5Ory()4sRMe8RFNaQ?m2r#><_@r8urh8H*jb%;QhJw~ zGK?y9*_)&zRk>!(Pb0rvq5IyuR7x+!ao~hUs9o)I;;V4xBvi*!$d@r|4QCu7nhMTt z`zscX?FzT&^Gv!Vb041pDoW?_rEU~A4QG~>&6{%N{8;9epa^x1aGo|RSApHcp8!+u z1wb?8D4x#o{-Qa&b`Ljaul@Y_|N3zx(^-&qHvOTzN4)m@sqXaB?&yofJLk@`H2%Q2 z3!>S=Xc(bm(rYwN8e%eSJ>5%2W)9>dg>GyzkQ)Zaj%4m7g2#y>sl{G>sPbw_oN0Rc zNLu8hx#PeUd5l{me153m(7yp*>Qu+m9W#wmyllg6CiyZG_Otv;pbMoAY!*MC8xqc^ zKTzhh+J$}0BM}df})R2Rm8DC&Wr`g{NEC*xSW>cnxZ1(zkPU7xk(GWlantF-xIf* z(K^Zrp6Z#mnmq<84r^`qM7=Mj)JiZ53E#1^ZDVj3R?C90-V`G=JvXZeyf|FL6Y=No zyf~`p;%4xXn17SsMm`?NH6i5$&bzRDE1VlxcfuGy&9NoDkty8(f&Kc!hVC}yDk)*+ zP}MM!*!T?ymX-tK8xg<}z-5M?q<-cS?|wQOvo?2>dqQZlPJZIK!@Zdl2t6Nj+P~#X z{QjnZ{coT5W=0CJBW@tQBw4YPRTDBN>1r;EKGpVY(o~$e74=EW_74RxucF!%{QgD5 zFUw`%UcD6Cy1Ix61 zL-Lo~m#pj)mc+@r@Qq@O#0w~MzUlswLL=8?X7}s+TSvuxLM{1C9EmGKseo`qolOLW zaVs4&S$6C?-c&hb)BzpFg9GL-LTY=wL}QQfBoJ`sqA%BsuRc>_b6Neal}zG?CukUt zwXsXpQ~j3pl!V5+TSr$bHC;c3iu*;Z=0~h`31Q1f7%77=4Y75`POGq$vP+B><&HL9{2%PO*Di0@Xh&3B$0dkbKiC%DlvhX4%tAvV)P8VC9|e7= zX*BX2QL8=vbe~roqJNN0>Hdr>f3SP2y?w^Gx9JpcHIjfkIvqfjWPUMes@|rKiqe4~ zdb-Nuyvy8ott@a1ZPJH2$B#De4Gpjivvf_9tK6Cs({|E{gs8^lviW3rZ63AbB%4)} zT*GqlLdVRdy$D0HZMTzZ>*|L7o~%!V_4=P(T50MQ!rh8<9h^+jUXdULt}ho z4==a^joV>3$*|FxW2PFXiE~utxOQSMqZ$S?ll@TM#cj8T=LiK<=^D@;DarF88+gj& z+f@+N2Kg;MSOV`9%sYg8eD!W%paSGL-@mze(Du%*zW>jQos_BasxA$%#_<txUcctgc}*F_eB z(-UM>-83xGdQ9swb>5;kuX;vOM=w{+e%zmD8g^(EiwB%Fb^PCjaOW-|=}^<^9q?q= z3s84~#vlha10K+K8QSzmiX6dbPwT0JE^}?FDC%CsOtqiBTOo8e&Yo1@J(*hWUI9?3_R}xe?guUUnCK7EJWO3*fYT&nDNnk$}x)P&iS0$0qm=BYDb*K-k#0Xts z(SMR)S)Da}?^?+}E3VZ;ThU5|tRDpPX?UZWMs zrwB5o2(ld#4(xriRRiwOdmo(S$N_YJ;%WH5Go*)TxSg)wUR7ywNxAWR-AJ->P#0Ja z`)@rqA)NyFei1r$0hy0E8cAvNhp>@H(n@Rxj+6M3ifl%zyrO8LOm1kFY6FHf{p*m~ z4TatI|0x7ii|ld}@>}-ML_SK_8I(`nWlQh$2VDB;c@-Du`T7~jz52jxc`Vd3*%rGy z$xJ6Sim}D<)D`S4`ZSWh$n4^v_l#o4BMk5-kJwNguePO7al8`sYA3U?NtsT+`b5}% z`;&=Pc$8{f2GqU+ zTW`{iB~4r9zLA!lKF3*{nOq$h%Gvw=^^HR&AAfY}5g+$&k z1QO~)K6XY0N$;Qr-1v2tb7{wC@d7-FnxGrTFt-~-{U1yOfc1o}h8j;JnT&+(q8prT4g^lw0bzPl(BZSpTS?gJRTx*Sl- z<^8zAe{pVKT^T;F%{0XjlG1O(17OKERg|*WlyVKb?E~POOQqM;rd}pcaW2Q%MSYAK z$i+Gg`R!fX`AQ4Pmm|*R8E;HqN%)q5pYRd1Z@wiQ|Lx&6 zM!JwF%~Leu+JE`?LyJG|XnKB%5}|*aSUM>VV4U_l`*gQ9*Gt_udyaTJLEh=l zRkJ)Rq8#V0pCq?nnRG*iu0xD*Oxw3i<-QFO1%_BGVVw9N0 z*r*!SKs*;QRw{nICqB2#b95xQgYJpd*3DZFJTb8KT_0;WdQvlw^C(LSn$m^Fq+fdO z&$4z0kXeL;2zvBJ_Sn%>xvDc!3)-gsazKiV;jJiZgFw~A_3oFLh8&O zmJN+u8ZTMw>+5!5dr`(`C+b_g-Y2$m=gtkev^T5kEkIjZMo8&2z#_j6*oCo-A0W_IQEA!*}T4;;yaAL?vvm6g8R?-_PR(OU%ya(;^gWIwcbYOr7OpQzy z9nY5p&;}6pRP&akWBT?`;pav9kGlTq-M=vik9M0cfG~VzOhgc`-vmphZ*ObA9a>VR z1aJV=zBesY6*7b`(l=*%XhIQ}u3Vc*G9F5^{kn@_8?~i0Lt@rROb-_9()-aAaW2sd zGO~WYO5iK?1Vru}F+OLZl#@jn2JugcrV`G;N+g9f(DllZUu5{jurMV5F&2ALiZw|A z9wNJruFkJd187@OfVFyGW;`6;>NFE%=sLAt&4@?Pma?0~a8ct>#A3xE^DixP%{!qm zVc>J+q?m%ldi}z~A@pGglj?n>hNhgDj_P;7^*ME1paBdIEcnOIV{>MeeYOtsBX^%5q+IYSt!#%kL>48b7+w)T7bx<#5T^QU zh1A0R+y9%Qpk>k#(mN0b99&%_7+uJ8I;y`OQ4C@OJsr>m3u`p><$RkuvUBSvVCDI( z{c~ay^ufANaF?Cr*q%#_Y7L%Q=N)_%=Yn8knCJ;_qpXCE`+k9(U-58=NhYu36J8J=rVmIDkdW|$z)v!WNrCw6?HD_TfVLfoy@-2{L*J^I#92Onlj zg*WjGBRS7BiL+ii!)dkBNsKFASXU6y!kvY!jnqy`C)cwQF>`5&1Pv=av5~Rz{{@-HaVML>;}!J1~qc=sBu6Cv$EYE(9jzGEl|^peK- z`-KBBRC_noCI?+0$B1RQtDmK9BFlEGN4g=vSuYQ?mu5&eCeZvTg1#HUth0fcS;}C2 zR60zSPfJaeu_>Xw?e>`0L)ZulD_R5P-GTl41?&gq>%viTKo;K7Jwb_b4}{^2)EDg0 zjXa)HyFFH>s*wKHMCed3)>Wjz>c3u6X_TcI6cLebgI(?@oNGs;T&C|6PKTK+&yAT# z|H+m%j;`(nZJuk^JKeH&hsGRn$^SnxbJgh0A^j5!E2~KR8#?|kY5nD%+02`FhZI-! z8dN>p^2p;ja(fpkAOWz<>f>UXE@3ai1+M7#<-X>}jXBWF!F0O2G;CBm`NOBP z99^x(x>h)SY&sa#!8y#gu-zs8zy@%W-}<3Y%F6lsCct`TWgFH|q8A+df5hq!JMR4J z0qh4CU5xyhgfPw?nV*MvOL%PpPF-JJccI}26^o( z-ig6KXMc`*57Pe0zSRI44ftUvkQz^8 z2(dH3Az?UQzsH!uhS8v!Nmx$0CINsDvEh@?*%vP5n9;294DFY$e~dkc#0%-xqCM|7 zJAf#nIzmKMeL@Lw$=F5w;6Xo+2X;RhkEeh#!~ryhkkE&}JuS?AT@H6Nez_E-4eS8X z)h%%sXLv*5c+kF`;SwlGjkSTxd4#IOW&Ksvi4Z~N*GsdO9HME*H7r}e7}2-5p6IS# zbCe6=I{dYtPxOV&Sf+Igh;L>;7tuLTbNUKhs(CB;<<(TCyGbA^C7=i(0qf{U zJ}(kU){&Asx;IJVhyn>B3#;=xU!Bx_bOC4;M6X0PKbHN>c|P(|DVM0&d#@caX)?#Q zI(~e9P1eU>bp)d5Ju55yn+~w?@CV+@0h5b%&TGwKn3Ukolg5vxToRR1GP-+j5*}Gv zx%tZbd)VIJ>bSUCzsLAq2imZy%>*TUY;|JFO&yaBnevs)4uB#c22?ju&cQ{6x_+PW z^|NM4u{Xn770pqIXslI4b%fu1kv&)Psn=d#k-eJUS|QnXf|A#^R7H)DvNi=G(vaAz z12AVR3`C3v$s(z>)ojDQmiGHp#6jmei>2A&@Jq%ozkh!`gSugprO8!YTiXi#=sbnj@f*(PhQ~%5>pE zlHUFRbXYb=#?nOy)Z9#lc)h$4c^r8+uqkoFahgG?<U}z_?lguFK@X35iwzuQ9u12;1VQIDcK9N*#e=tfSAjL^EWawPx|<`+f8u$yiL=;H9$vWnqsFjceI zMx}oJnlUQ1r>g2v8J`AYjpY z9_jZJ4xOf;g^#J7$U3R9@tsh&v*hC9VtcMt#1+d3ma^vDIv;DV|L}Y3`YX}gxV@@9Wlp~ayrV=?sbg8Pjp8s~M=^!GQB#)C=+2&dv z6n47WNu~<^%1P%s#NRF)|DC}!Sz>}7wvsxMFB(e|6Gu~K>o+sLVAKFptUex^O z_}*5Q)qM*3mknqs5s(CdV(y0@a$K-a-dc$d1rj|)mUV9*d(#_8e3g55=>ejh1{c&v z)HtMS2E^YpFHJ@~$ZByp98t%jsN0TUB4{I14(Fg&5N&D5@ z|A`xnafJ(qkn=dp8gUYy+VKFCYz>^_nMpSJ#but;0Rhs6ys$qA!eUDGtlhBp@c`rDuGMZFcpBBsZmec-ppk%@9IRgo#IItDr2Ef&eU&`J>zj_yK_nKu%6h7fl0c&;`9qCJ1u-l)G9!sG?cIt2v0AhwjEs zypHd1YLEc4*0!f?f62CY5KK7zzf}!(?)u(?$Gwe${HyglHp1lXk zO5)cddpU)qFWqTc4F}D>ZpfNsV%~Xj|0>x?W{(bIZjV|jAGcUFbRs4+EXx`o>8w9% zhRm_4m-LLk9f$|ha{6P*+sI%rF*g;Qfw)vgo4Pq>TgzwAc$eB3gOcynyS9e+&oqHa z;|0xD<77LwT_qh`vUGy+)prrGcV(iT-(r^yc&5K<_lQb}z57WzTXACu5Gb0qVQ?Q2 z4P0M+w+KQ*^bsFjg#lOB-9|G(?sFRA{ndrKlJM7ulhX#l8jJ4RAf~A@CLVdRiS2SE z;%>LscAolUb&uk)@>zdQ{~YxSuvj~oeQhrhw_>G&TJwjOvK3boPN|HRE=v$53Q6i+t zaEOmp;G6m!k>~xdS8o|GDTjX^Su|#g<+*UVH31fKGeKy;ZdF79$iN&BY;9D{yo3N( zY|1(nV$AUN{w;$w3jX{cFadq0hKyB_y5&WU8!2ikQVhx|q_}yx<8^)*S@IDI+Ss)K zXai#lKk+>2Dv?MFhs&hK?#yNpX(gKN6*WV_bR-&@*S#cb`z97HxU-W(l2%LS-D>)v zoC8XWBt~&$J(tsrnY;gbpW`$?vYhVpwa>xDBlCqM-AI;jzj4;KIon=P(t-B%tpAav zO{Gu*SNBzhabcOBSJp!(@2wS6hKtm?85G22cBxrmUU|kA5WGDb{@eiuibRs;pVL1_ z4_^LJ8>sr%Sjl>Ukl92`<=t6+LJqIZ4+_)OX_ye8(v`IG>B6eHVkQ#CT{fRYv|GSe zn^eJ%dME>45>cn;7(M1kScmW)_xtcioCUPR`m%%`*wP)Sg=({1=_VdfL7h3L+hb6o zW2ILju2+=T5MO~ml8UHK^e?^KEUVuPpRZV7mTz!>aJiRNvJNB@k`kT-&2?gy{0#Te zBp{cA4jwSXa7nV5i{K(O#v8Nx#l&^&&8{ct>p4FPxc7uw%5YG_SCNeFiAgK+%#*7V zUn!vT`NLJl*ZDohJ^%n2q{FGHrzf#^pj#XV^6wLj+!2&ry$e$cYh}30g9e+wA>?## zyF%k1=zIZ?7G!mnb{UoDsz%nrv_!r&#)8fur!-%|`?#okUT6WLfUML(_&+<`CplS9_=!COl)Z= zeravK4FCEy-t#ucH}}bpbgn>@Kt~pCLcDV@^oj&^D$-|C59WO@EjD0r8!oAa6NdJh zIM+dfXb$!ROy8f?fgC+t2i{~{WA%xG$-h+&kJyGrZIK-Z%;`QRsEqJ$J?~N#O?tr% z#A|hajXVzXg)}Uke>h8j&c!YVrI4t=AHkk&9@hSTEKX@zU8z#idEmn=%qG<1%Tp`o z8rHjphRAokRjmE{YUmhzZZ0KvI*9S|%cX8TUFX-2l7!kJ(1;gj$IL^h(&f@bzw~_T zY7k^fTVWxs4B6uGh*Ip(%sGxz0+aadtiqSI0R@?>?zaO7W8Eo5hJUTOfoW)hY>B^r zm`*{;fHf&GuuzEaU|utMP~Q<0$>6hOU5gD0Qgw+o!~RRQMKkyg+HU zKDR2M9}SfCfyztZ4@XSxD{Btlqb)9dwEX$TWVI%uLZtPZAw=aQ_hM-<4NZgzZv!6W z=grf=PSuZUn$`iA6QN=_M=-L)TBBaIp#ez^aG3gKxLLK2P%j(1An35zl7@ULl)=j2ur znG76cGRUMT62i32A)+aHfg$RDn>ByNXTOYAy`6j~RkG zxI2J`w!QiDP=6hj+2uFICPpwJE0pWk3QYi7i4gzc#;@os6GA7@^~nB7bXLkDj32KV znq3b9LP`nvd-&!(|IS1r@0DEvM%oCt!z3xT4t6^@)gxqGmv;d#)e{>xZ{L}wjkD!?tvq%%P@ zbT*0TI6SD1NsX}%!-4?#!T7H0TsLm~!it8C`WmkjPb4us1k3-G& z^4WOK$_v~VT1PK0>;N3e3>0mVo860*T<)sUO4g=K-`1W9^nJSb zp8DHud!Jv!r0g@cy_U*p{ZL&;H`XGnr2RH0P5a1?_O$0IYS*sWW>%llY<;&k2(?Y? z`t@5|HebJfI9tKQ6YET!$c@X64CCi_DO-zuTRY=X&l?sg9Jc8BV0wY&z8Oclb*oX0 z(-2$4e3)KEviLXMSP<;|u$yG=VVJPwqIlRGNhzr7{OK=K-t4HI{9tvg|5RCIvhbLC zml!T2X>g8r45n8xhq9Vtw#OU|+817hZ25m(ZnG3D&ju&MP_yg46l?OEc?pHvR#utT zrHdxWlxq_WJ`z&jaR19*kYaiulCk?l?K<536i{<2sw68Qd|xf@UO0%eyRhr4+QrUU z`fg(=V^h-zJ!H<)zhCt9;~0MvuI~K~Zs9qFVuhwthf5qgzP#&D*;F~{TwI85N_rTf zHytyLQ5zno2o0yA={zT*U(@RaO5Zo@inbu2|GH{*K{U?ArJ_(c&pYk74n(6`bX0AJ z_oZ5NBif~l6HA9#GL{F+(wVh^psvHQv}Qw5e9tovflK@!M=yAyvQ15Cx1OuolJ1lf zj$~XUDT;hs-Fa18Uo(|mqI)2OI3Cle_@t;}+4v$>m|skxys(P1?DN9RXC4e2`R(*+ zk<-M$zP78pTI!mqXztr^Z^2X2=krD>PbO?s)Fge{9IunxzguKp z#HmY}hFG6yyL|wPIh%(&GUKb$juQ=Se0No&)s*g}fAVm&Ftf!@P^5*&MnX=+j|PF% zu+rkLYh?3xJrPYx26b>CJ)`hzvd22U{tZ)!pkrtu`;8^5+bj7Cx4iWuM0A}lwkH@r z3pSzbybRqRXB&;%m|s`kExY^X;Bj100`L{UMfF$1I{zh0cM>m0)CsyHQ zxvj0NeTM2{?k>69qWo$B4g((qO2Q4&o>8ma?MhCatWHIHCz&_DfAvl*M%Ks4+$_&I zv%_em*N(t2#)@yf9MXogaoW_Yqn>U{VecHDSl6>U&o_P9N-)Au>#|FPkj+Mao4B}B zg!F9?%4LS}n~wPKls3ZTP*S4Y5dvpa_S_t16J{^y`MWco+9Lp!zt zr9kycq&Bd5S~<^2cQB=7=L(z6yKZ^#{UsBbs)4teuF>upWe*t-A+C&(?}!B(e2?%L z9Q4%ANM>i8l@Z*_bvT31X^+CTm`UEbYk$(OyH|?Z{u5CCx+vbjs(zB5k06JQ26QR% zRI-n#8r^lW!7y)R>VsGn~Uv|i8lLKx>fU|!o%ev zYoQ7_-ir$ryvFCIS5G|uRBq|&+I&@PwvXaEHM5^U-S+f+vR)Z8MULYC<#m?{s)$LU zv9)tt8#abIW9eF)-KQN1j?Jx|tR|GpXE70Kd440Qa&!qpq!s0hx*ADoJNmJMXKo0u zJKZ(+GVnTOdQOU3pVd@oZ~68mlc1UTM^6vU_XZuDRH!hXndpIN?v@U!82P22Bi?F3#8bk!>emunXZP8FUE!Od6lN@U+?u5`r=3NR?TC0>&D8G z!RXzN)Y0b1uTLD7%=voOurgVF;kNoVx7nf+2c89kiKtQ;jy8(rxD_WcG&C-*2K;zW zx4yXiW8X3Ml_iPSAo4ZDY&_KkA;E~c_gr~JM!G-21VA!kYX>rXmfPV1GEjCSZct-E zOmmv(X1@I39kjm*ijKy$wyGv3B%Hr=NqOJCeJ`IsS8{VJg4Q>!t*s!m)D8{~PAx9h zt*EGI&$o?7>T*1m=N5}6p!a*jN78=twxsqX!P_3jC4RZN%kG(vhNEUbC@w!6HNDy}+;y|0ND5uG zxqqIZSLj$ar^=$1_w-gd;n7_s^{%7J%a=b%eAitj8CTc%JdM*& zVECo5f!TP_HRd+{j}uh7h+K@nzNTK>x>iBU zVBXd})g|Yb1y=jMmogOZxd-+`I2Ro|h1JVccbZ(0cleg+>VD79lH7RoLm0T3V?Sx+ z*(NQ-jW43*h`1lEblaF<-{vUicknDbBRs0UH9R`M_VfAMY=McxM%k+FDc9t7%~8uA z%X*ZQ)dz_WU4}u_O^Pu~y8TNS626l5edWTf{0=c!v}8fFW|j&B7qvK}w1Bku!hRy7 z$Z3@NyndtfX?~YXn;f2(X#yU7QY_*YiB8S>M}`@s|e z3lDSOT=mwpcX8@EoFlD`-`BcF&64$2mG1>b?N49h$YKuKmkf>u&s1^n$gG_5^`O&d zaNg`UgdO1u2x#Q#ekilOe8S7PpsQz{SuiMvNQ734hcTnn?UVjU4+Kbj2++yjBUcJE z$}rFD9W-P^`mm|U*ZLdO;_jM9^qpf%SEl7+GC}ApVE5yeoM}ozoKHu*#*7@Qzj&gQjwSYM*Lc&b3Z2K}Ssf#DL(vsFvt+B&k|zFq zCt|*qLz8dQ3Ja?}xGJu_vdr4<^IC;>_fdDXJmn7{I(roKwfT^P&D#sYvO8+qj_iMk zb-tqCwYqdJSe1pgsI3%2FS4{@{B}0slM>B4F z!sv#s#XbD%z*r6^iu=Byb4NctGAikMn7`Hu~YLf{M?bh_+acY8_T(6rMe}PJZop$DAuA&(jn1d-zmf= zUn@&cg%e|2tne8^MZ3-r-HMmq-z^j8`i9?Z9_7%Y)#Yfoe&!j=&-YSJMbZ#62)GT@ zzdK&K5_5`0u*AJZ$vAns_ym`=NP1C#=*^+}o5xA}fB2Uj2xgsVeiAaMLi$85pZE@rLzQ=87pwn&+pw-0e0VzX#$&J139P~&OU zVPJ|uJ$-+ugUPHScWWV-dKXGiPD?Mo4)@e((zRr1f%?Stej8>?f+I3IQJ<(qjR-^o$c$kg-;IopwIlMWdI5 zPcW6w@IwbV1lfk+1}Y$cL<(=9d9popNe<~lgG>VrO@RQm^B1`HnZA6+BeAehJ6_6H z8HQykPK!E?XCTEpkXWgKYO-&U$y*XySdpNe0}W}D2*^h`3~KFmpScY!w2qZ_!-$Ry z&`gg&wQLBf8ui~^-VP@+0R#6apujWK%*V;MNSjU-%rV{5*MA`x!opWnDbuEkxiK^S z(h(M*iN+%~5I!F|WUWGL@+0C;@4Xe?(O!q!yZ784n0Z4R@cOAvMxh5NbdJ~7&y*83 zZ}V&8bQ+22*t6sw#T#+6L4h>^$5%NRb7k2BP%0nr?MZrkK&1+~VJ@=YJI7=bIt z=^eHYz~F?duZKhSADCW__+vV}-v5^&ef(wpts^E%-uQ$H>7kd8IJ5~x+KXpNCX_{e zb)Q*ppQY^0aPe2^G$0CeblWmteCUy>l2j!4vU=Em9esCFS~W_QtyCfmDAwrt5gbJ* z_4}L@VOofi&4;MF zmb>vhBAWPPK6%^5dI#1yPt_(t1gg5V#YKTh@W`xU^QQ=JYMLqK%h=9U_7J!yNZ2P@ zpUh{k_FD^3r|KM9H!8vl(IRWRuICMi-s^DF@er|@TUhTQpciyu;ilSh>s|WmX26dr zXEptngpo>hR30&%H1?+4TFp81_7u0ba{sBvBlBCu3U3Vi+4DPA6@*<#6-hh0eVLeW zw`|uuDNK*?T zlCW+_`#(=a*tTbe3vm6~+%`?JK!}GpDeLm=En#n}%zv!<_s;_%YTlk>F8;N?u8xG1 zdQvk8_0uwISuiYp2=xC=NTDb2J2$bwsH$pfTMRKXGBP6le`t$8W6~94#JxIB4QYWcke|17y*TlFJL$OkquCd21xUWYI8WVFJPA*6q(`k#@X>`O-2e^)+0 z6UV%XgDFcX*!jurlM|tCG~dV^g=&Qt$gbGeh93+WdAug$^>Yh7Lrv~DrDsj+M+lL% zI05S&#G_O$1)wqro*}VW*csEl~z;s<_BMAHLN1#LH`SkxIpDHgd z-fzV%dJp6Ky8peFVy!}9c%T+ZKTqWD$dnaA2AbTD$v8P zumbpswmkmQI6ejYbeP`hGmH=|!Snrw1R>bO`HIX;mSwKL#yut7qdDAGzx3O(i zH70~%XiCru2sQ$2SDWz9Ih8^sj0ngO9D5%YPN89p-3{#etCYl$2ZZ zJ=n61H7~&`<~G-wjxSAHS#hV0bxiu>&L?QmJxAD!JB221DV&}Ymi5qc`A0y3dUc<#$65PB&a?#a?(5; zWBoSZ-eOmH*@-lpra-od)=!Sc7N+!lGUnjr22hEv_8tYEZ#pDZ8pfLp4d&VKPD1KK zrFpwsTglcI{$I;mXx=`{cH;e8RqTt=5ZO~$VQ2KG~Ez;Wg zpT#}Z&%`2<04q=X;>C+zgZj>W&z7K;7>Cmt4Nl+1y!R@7U!?ITr4AVaFcU3}|yTlvlQz z84ZIaBnj)2-V$b?pYKE3qBGR}7hT$NTgx$?JeDe0312btY_j0_U6 zVG!|3U>ArZ5nW!UWp54Adh}W;le(J*Q>`pp>hSJ~mFhhc_Cl9WE9{XU`Z?pc<#s{~ z4pPq9*0fXQ1aw4u&QQ&z)s>8KFVn4$(lV0nFkY;T`T184WA$@>u!gJfC&T)<1M6|u z1q-!&{5V~VOl*t_=}{B_2GKSLf3I-s5lZd_8=g6u{d6{ zKYBrR!zfrHPvJF|oR_cZ&AXTGsMk$R)Zqk%fWC+nmy8ot`8g~2b8&Me$N4>7Gk9Pp zXjAz5rbN@EFZZ%S_2@i%?Y_}g7@t7?@MlH*!(eq@?w2F0Jj;?a$nMZqIgEZ0|@w$ zc4B&Lfz;7U_n$*wDMzxF>9O!4L|iu8DCuRwJOJr+3)}jFv?PB^b90U>%|Z|6@OTX} ze;jtOfN?6WP)YUU!HH#lW%l@z57IZ5Bu-0^j62`$f0^4*~uYZgSLIg zYj$y}ks2*9jFPIT95WX~vr(}ZM(I`-Edc*1q1`6OBlyKdWoB?}89)c5)y>BwQ#|?P z^P*Z*R#ooR;&w#7cMh?QxwZ=fP^$)mJWXZ}B7O@&TM4dBm4H_{{-ho!{(KPMKpA1~ zZ{-i9+tH3@B{MT!p@-}LpyqquX?L-%8qJ97(MFjE z#0zDexZ4wcYJ{9GgVA9Z$JvUlBz<%skazV2yt^G2Wv7 z@J?bMB(9XS8+6?N#koLbW7-3Qs5aEzGdPxTvZ43U#RzaEog7aDT$~Fzs7L-ro1^GP zZfo`Q0CnOx%pZdQ=b4r2UaPCgx4i2{cO{=uUAvumc=#*2zSU(lpcWG9gQ~6IaoLyH ztA=80vLS)shv2c+Ja2fIx?`kt_j0Ib=@4X}Kv2!L61NWI(9JjSMiwvJ@-i;ZgZoyp z;PRs0(;=8ue~D;uwADNXFtUCCR z{ckqJS_R@!nRj zJ}AF5Khc9n>Hyy&Wy1e{ZHs$6-PmbhiGDsF;bp_c>k`8lUuSS!yXwh$1H|1zHrC|s z5h+4?WDeppOI;skkZnvlFOLcO*2*_x^%|wwhn@aco z25&Z3Xt=##Gq-H<)|p#AbNu0Y-IAHNc$@8)pVZ5i>SCfUulL7`jtk$s9t0m>G?6It zAlA8JXT)RfZ+!$Ls}XFKVX)5wAhbzUt0SW-WTNp)nR|u-cPFHtX^da>@{+a7bo1|= zUY}MJD|PpVG=lN#KQ8NP@2<|Ml|O9BpG%*7^c#qkYJ9I#O>lOi5-E`A5(gbq|DFg;{F%$n8#A+Q>)epF_{5_(!LrqGw_H+$F z;IGU;4i<#{2rw8Nd3#5!jAg~wkKS5^rZgBsv9^(S{=?X#qlf&P&I*~9qzpq4fAF$eVc)5*jU>e@!*(SS(1H_ibS0Z z+30|M&R}Viw(We|Qh$YqqxA&$OZw%tj?E@RA^Xdt{nt+dw_5J@dHIanHP2KZz&4*WSj`V#Hn+X%A;>(L2>S{W6Yr0U6e%-!Fgmq! z{Xw3az|X)gk>xBkR|~Z_4Ret=3$rGb^p^r7S!&@kU#$yV#{WsA>9s25%l~t=8>fHW z;?gWPp|RgHn|DUMcSZGElqzt`<0;> ze40gxcBjX3$*<9VK3{($@0Rk05=3N~Ep-r0s|{z?-wFfi&@~CNaY9z-1bVssr4^k+ z_koy^iUzqKhMui_z6}b^kPxUR@XMFGIgpE~bZF8m`&q)9t{-;1M@cbjb{l*!X_T4w zme%cfX6;TB%H#`}HB^lbuf=T+GzMC(PDgsEd-w7e^ZABFpB8IU$&tAxh^|zDJ~1HQ zxC<>|fj2jTnCZYi6BRql{G~HDIcqDgPOql}vsku9xK-f4qJmv^*7&lPF`u~dy}WQV zjK^U){kW>KW9z60OMULDV_{!~W1+Qv=|=SJXW&wzFSa~vecMyq!25Qwx&`qT5Vv{J z5tlTx_8BJ8hMq$&6B7fms|8v+O*9s-!Iy9k+9oXzl<@|l&TubF^WXuaT3TCSp@^j2 z7CjG-5<@LpTU#&VzGY;wi`ae6r`EHdMaSw(XU4n_PzUQKG z`Lx1K=!u7j;LE3>Wdjj-g2d$H<8O!eARYK4g&`0x?)MY@fthjpZ$Z>k&~kycAa+sf z`KOm6F5hza&RBiZft@o((||d=iu5LvC$p(su2c{p$YshJj@x@R-v%i#C84y1qDXq! zGTRivE(wL*$xM{7pR=kE5OY~x+Y)G;e3ZYOqg9?Yx-YQP*UjGyeKS)rd-FooT(w9S z!I@w{4!?9oQiD-urbhb_4gfFiQEa$kw$q6e3cKi@#WTn01q{#C%3PZ)#F&Mj@NAD@ zeS`;?9_NhlW!1{n1GLnDYzg`Bm+Y~^={D2_k#D^re;P^m8dRHcpE{ju)v1Vris z^~7*v@DpW6(rW?Q=>CBgV!*v}ATqkc#YN<5c5|YzR;lFR(0Q9ysLJUP=Waf&5pAfA zIKc%2`v|NccEW5_-N)78h3Z7YQJTz4bv&-ATK-illGNI}Ofv5KCpU|ijDQpc$JZCW zRIQO_Widl-w;DsZ4HLCi0R$E_-Z{N9G#H#$FWWO7M@uKY_5;9HUSd83{eHGq8j6D$$zM z37iY6jz;OtqD6?Ev{|WliKHbXKqIg=#0Pp|fTuASu>Yg0U^rXhbv)X?_bqT;?gy|F z`@ftJOcyEmbnvI$dGev8%Nn5~H!rtxOh-uc>l%*yuybEVMd=y>ji%xpI@a+Daj~%X z$X|K+L6tH}2Evv0{pZ<2M^!~ViMWVUCvw@!4C!)bu9mQB73#6sNI<53OIyWVGvvx@ z0U)cx(KD{;-u_rq>)gUY!By8OlZ!l8?ppYRf@RIME=+`z^J6P3OIV9_3xs?QH7m60 z4mD#;)WnxM*+zKhN6rjC;=Zpw7-~-R@jD@GS1n8=ew=5G2sHfcLF3UYbl~IKU8Sz7 zng9@H#rxv5)n)2%a*QBXLrh#;T#ob9JxFHdfob--Uk})1AiLt*F6(i#ED(vLW!B}- zo7IK!O9SVPf)9AE&BRb4Mc^N`EpwZY>1%^Kpu3+$ubb53G+6pC)2cEymNM@P{jc9#|yi1VZ= zcjF}CsuNd{e1 zkIxXj9DG{XxS8r3a+a#=Oy?WDw=a7Hh|RZjiR3xODP}*qx}O!)5!b)?ID88Nsun2J zU7teAdhC8<#`K$5{WTf}4pCnm61^Q!LP#BbUb&8Hc#r1)=VIwk436L1^Uvv@gNJMz zo656?##y&aO&yz1lFb5xvpBnNt3_{c<<=yCae;tUcex!;4k0631ti)?n1e6R=zkFuoqude)aO-hTXov_7G;QDKS+_Qe3Jgfu+U-czHGRcvs@-$WK zuYwa8F>LwWE}~iBTkA}LqIyKgVm?RO3KnROXzZ>|-jbJZ1&m2SIGIRPgH+?Cj}QMl zwcfN0fpJH(d-vjioXbVbs-!El=SBM%rUW__ynIgIjg|xr2<5c@mAK)SC-WL_*eTu~H&S9(^-DW47$AGtbTB7$)3Ui&lDB^#U&x^czZ0GfUCHcp<2e(f| zCcSu~0s@btTZ5JRb%Aym4%o~QP06 zLg4)@%`+Y|x>JLhr)O72_SflWsa&-7Z*YUG>Tf~q>pBbJ@ec5Oz768H`w5CIpwC0} zS8orFY7|vb%X3-E@eLE120xH2#Qj}n*L+Wli3P3P{_tb}a_d#hL(G5oB?SOPCQ7Vw zT5z5mdaLbhcZ-Mo6qmFdSa$e_F~=#qbw+3q=DVC1Cqd=n4fDgPzNy>U9e} zXcYNCzWT;T21Fif4ngZfsi_w#-oLmtX8r)6z<%=)2XuFGe~5K~HtB zfv^E!$6H`P4N^xbIc-uGj*PNwdYutC^&?ObFTO5QRufPwM>>Mw(^men_d@x z|9-DzdAz6)d?Mrj^oQ5%b<8H>n=GeU8F{0BlMf3w3~xqVVdYsyJ$)z)>=e5w6R7!ye#6{Y1Q#;NP)zIgV?3*&F9_=WAkSfhhj zN!l$bn}*I-GQjVuLtbyXUNP?IRq^NU!2yUbZct^Ihk*Y;bk8noe;gv)yIS0yGK{(3 zuw0gwBy_fNgGKo#%+V#nL6e@Rz|y$AT*CM(`&g z`EDGXKCP{+WPVkrhdCzd^QIS@TK`6sXDNas{bO{irEAHedxl2}(6iqgyi(Be`8^bg zeZHB{9M3K!+CVQ36VJXS`jpR2V3+lP-SdaNuXJYqe^FC<9WHkRH6^lJ-e!IqoA6C# zdHw`Y7}%mYc?9<;0a^+_5R!%qyLOYkKg1~80SI#w%0vIBZP%AqY7F;`^_Qp0`Pw5+ zS#C$dtpM1wAq7z~ry8MG!3!)W zTD}KoLRnDf-6KDnS6yhbA;+9+=~@~H<b78Ozn^fod8 z)<)fQO{psEtHX-eOJ`~<1tV?~OdH6dd`1jkIk~u0Jv~dINWkP)_X{&?YcdREW~f=F z;jx*mt&RCi&I7?37lec~TwGkdew0jp+WpIX{{avFUZq>E=@fw)Se!J%G}cdj4%bU+ z+#kMtlbn|i5{TKTV{G)?XrDc3vb1O|&bISaXAeykgnbAzjHLGXh7b$C+>x0sHSLmg z*_g2_2>{w9%}Gu|Q?T;UU7If!s63ULA5IH4VB@{w26{w2iBsjTOQtt3bT3EDn~x_~ z07Mcix6BFt(}287%GC61ilTB(t_JydbVT3vPVm! zdn|18sBagk!FlP`qZg`z^3r7yE)cj6%P;eP)SR_OLPh_Z6>nPW1!YJ+zJ8QBX(W1Y zYPxsA@bn`N*;j&2N1yMLGC61F?C+d;QP7iM;IFY16D&$=b==AbgLXGv?cIn1J_;Q6 zY0b1xaCP!U{0Wj~PJmm1)U_pcr+WHL0-p69Y%E(aDxNackOhsV(|xJl^y1+UyKgAi zY{Vu#V}Wd;&eL|!lZLaCB`9)2jB1dmR(Xg*;-4KZrN(BZW*;GKHO2}hkYGA#_6aJf zFsnsu5P(*tGOSZN*cZcBe&q>V)6zr@0d@ZLxOAD||BPXyHkV^z52gh59RqAC-~@)s z@pIMSYt$)+2|&$j_`+P#9tHXk!N#n7|qh{qFo;co(3xmI9HbN-Rte(Bd@n4+B{@9$;e;LH|EwGqdw!}!RXk*vi{gLn}Br5FQxBk40!aKmmq`dool)ZIa zmFf0Aj6F&@qjbp#A`Jo}t)d_;-6yD;J=LFdYs=d!1R{Ckk4Wxpk$F0$o|*kH zpq&xmU{t*&RY7Gz-Rm|cR*}(Ufp=%p^&K+PL{=uRT}Z_JGw1N$)|@WTMgar{`oYK5 z$i^}}KP`|s8)|}V+TY|9OJWfBpMTzlnSK7o6a9Lgt9NViY)Yp{YwP^m_!3~Km*vWM z_3m6oHbJAu#8Wa}t9~x=Jozs}wpCe|C4h zDH^ygp&t`!sVij}iU@-I@{o;g|xD)yS35*$c4xzG4nV%e>0DYF2^{M z`HALyu=3+l02i$hM!fmG0pyR#wPhh72h{R>()CqGI`HV|NT|zvOD6bN#yGMRj(d5Y z>h}}^bdA$Ps79fqcmprIZLZ~8n-PkG$JzPFJ{XAYp*6hJha zP4cgLKW*Gdu8r%z^zJdP)qUl_de@-&@B$`A3`uweuFHTJAbJJQGGHVfM4*TkbS+W> z!SMQC*e+qSNW?s=B!r-WXsz{NP>fOS@wKmT=6lDuflO4EaOwv3LaT7{1Jbk*M@F-` zgQ>Q$#VJB0o5~63D`eaES$zW{_HC7N)`DQ-n|7ri^xyuGK>b6L-o%XGV>n)YgNyro zhzbqD-gb3oyl{dGfq{3$pIB{iWp`$CD}oh+6DT3Ivk zxpAc^B*d0j_!{XNrfhy%%^%AA0Xqp^x(gyN3lJ5k@)eL*%7YPOiR6%96oIORk%x-6 z57LO%A89d2;X)PbAAUOsT1FQ8AiKKmscC3Lq$tGM+*7;sp8J76x?)pHJP(=E*BT>) zU5-294)ga2n=upqR2S*!Y&G;Qk%Qb?UhKfh>i~yMjYc-k!ca~`Rd<^AKdY}6GFoS& zJ^a&A(3rzS$Ol;ia=J)CKvOpaw8Ox|K_A_><=!0H7{c~b z2GNm;Ss1rNb&ItcfmyKo-I2Sgd!8}(?K&w^XLF~7RP2))R~Cw|hs-b8Yf8T~r4x99 zUg!a&Y5PmNgy~Ekk8&vKvQjiFn}KPJeCuL->y%_c(xn@lx@i^*TDmqK*APPvNb04T zQpI+lg=!rWlkH&x*x!Ao%PQGL6jz-LiqYh{Qm01Wi&A6M9{*GC49dDuE*eM*xl>(w zBOw2uKR~(Lqn?ir6|^r0V+|C0JJP418|d{rD-dAZ(~6c+l;0yJ5+zdWlrIC#DS*9r zV~`Ak>CJv{h>pBA)=o7X-=PH`jM|laOb^x`LM)B z9T?VA(9{9_GU*mvOBDo=a$7<(C}^rcwaqI>8yk=2mPa~IXmu;a0TnT{jJXN}1bX}R zFq6Zw%KCAW-vE5JtaGd2^KuFcBU7_D98}6;708_)d_VzrLD}DIX8)Zl8bNq{Z-#}1 znQHV^dhJ0&>>Ze0E$F`SkzP|`ba@+1EVkc~lL_+^SYWqsPWerHP~*X1YYBK)YBXx5 zgC3FRQ3^VJJk}bdpsgLHmZ@Q=G1~6E$phE_DOdxt(g@1e_SfZ%GGPzl;`$r^!chJ) zQ&apeUJ9=+E}uhk;KAFTVhw6859#!;dN@qUd*$xsv|~$+Z{{uCU{WRxWPG^kf;$Bs z84yT5P$AjcX8zXbb?tz?$z0v&rLt~fO)p|4G?pBa8Wv_g@7W2Q21LQohRPShm+-`zj*>@0^Jtu5VKwnsCt^} zjG>XPrv*x}hM(FE3q8GDXe>0JTaktHM~oe`+p&p{JN}#299o$z_YMUCDXKU$L5LB; zW_?fyfE}|U{D^;&IiRaxqDMp61>yVIW0krevZXBvw6RyuDiR?rP`l>xdF^O*s5?OT z%3R?%PV6B7jZ-4mxe?84upS`ueuc^YqI$P$_Y0GM++D)$XOQn!eIuU=M+#IsXfwJI zjCbA+QSz6U8x=-uyU(kf+T~g?ppGDaSUIYns$aeq>HrY5`lS2pLgtf6?}PjQx_RC{ z?3;1WILtSnNaOC(En4Hg-8E2w0bX?XBXIA+w6-^O<92owFqQ*F(um|?liG$it9^Cb zLE#lTB41(}x0pVr)3N7qMhG(`0$r>L1FT*ibn1KsGij=Kk*?O4uHnwKRx1Nq^_KyC zX37>&2EDJ51u=OIfGW4;^Pr;uQT5HsSQdaUfh>DaOYujRJ$il6T)irU+$8l&x{q|` zX_GIfzFjg#?1SrevCRlUGYbpLH8$4s6mFhBZm~&o7)2PWmPDOAjN~3{g5ap!HbOvR z|8MNtMY6E>i;rR66}F?0!HOat23B@tlx{iX+yhny+pY(7zE#aC8lICl3aus?fyLwG9h)4G3UM!vokg_ggD&4u1gDzAw}tiEKZoTB<@f77bBDiOwPrigm~U!{Yo2u; zEHtRQS1YkX(YkKmoXqULR&hdbz-XT%fb6=;>{4_7Mf)(vW0zhhe|f@M<@53d%j0Q2 zac}pR`t47gglM$59y~Fv$l<$WDq0+~I>+S0+L`b2a)H~!cs1CqCO>?sz$te9>CB2N zuA?i)9k-P0kfZ%8N4hk=vh-sT9AYH@_z0U{;+mXD>y&=JI#wOALTpAr>$GgUL>-Pk z!!#X@Y820Dl9^3pJzY0n;Z-l!=wqas7Q0uMoMLPW*Vx(EuqV{NKQz6C5gz3b!5toB-_FsYwGB_J zuR33>7nvY{B~ppA3-49km)A+sCf0eMSa!vD&Q>UBrW8dos6J$jVy{wEQOu6?C#}+Z z@noq{?!~#L+N#oH4u_{cn88qwUikJo1jELMm0X=y8jtk2_fu(lnNanPcPZbKW(}wl zc0{yP#_b)s3sz`pXvDi^$jIs9ZEI%NMicF&9>)21(*Tww%W3uTn&;Uv3V#M%-(@UO zmx*TX(Z0)}tJim#aE7_L>a*@{j)k#0UN=##i=xX;qN5{@vKd>n-95iEyBjzZalAOU zH|@hJG@3LZ<6;p&yo?34b8>x@mvec$gOo$aq1~RH-q5MEZ!>m`k^%E|q z5HC{=HD~7{L(OeoXeWc-eepbiwrol!PK)R5cfR5u{TQz2-uOE66%{|_TSqiBCL3t< z!CzmEV!x4n3PxO5c6_)sSmt6|oUf&=UHG7$XliU9?38Rp zIq9C<7GKcc7dw^HaXz4z#4a}IdeL09dQnF6H$%mEdglZC-Dk9=W8VW$&PTU!{;}ln zQGfYLap|$&ic`K_nR&G+ zNzm?X-c3KkN3TrO)`=(Xi@i*RIXOBmat#HT7YeQwy6H9# z6%S^K3gPC;rmE8umBDe$4K=q8|B_amzwb)M^^dFh_e&Xak(L|a4pM@py7?Yo_~vkW z>yO`cBF;ubekF=Au&@K*=l2Hy8qu-2jQ~!jkeu7HyVg z1w|WAdR0A*?r0gr)SK2yS`6qu*l59=Yt>dw2e4`50Vc*-V|`;pqu%H>9-m?C%{ch`Jvp#Unh;1>*5`!YyRX_qfd54zEQ5D zMxD5)+mhH~HjL7(Tvttf_qKLAC9m~_#H-eYi~-=G?+m8uYlqO-b}b|edF}EYG+O3{ zG8X>jPLPWbyZ7<7&;Iy_$U$Mzd53r1swbQd7@xo&2OXDN2)!ze{^(^Y6hOE?c2trL}S@8&tf zhGvmR{Kcl2xzM&mX>UyniGz3x&Slqlcwl3Dtc@AWpN6r2GS{{3DzlR_Gh1>p7Z$7l zQAXyCDa*(N(rW?}gs`^^&2+D5g!*zaf!(Re^YjwFynM!o*Lgt$2G3((XTpdK7BR80 z*Z`a77_Rz-mvE>%cYtdG;CNmah; zUU%??XMQMoQ&SyI-DvV;?>9EJTh19jZkGSy`toJZlI4ck9LuF18Qv+E`QsK>-Zh(J zCzS)P)$AXarHe^{GvOBAT4_}C(s0*#cY2dYm}*AKf@)~vYaL5P`OfRP$W}38?k0Xt z8LYZLleX?Dr4~T-mG=E^lX{wIQ_V&x#Nk~c7{3-XcT4}Tl;QCCn8bfV z@9^YSnDhN9$W;3>KIZA={tkji^A{<>^7u{1+)C_Vww=hr4c;$?s8ce8QZKsT;uRz$ z^@Z%aWk};b7fZZ(0l1^JF`*MdPCtG2<}E=iv}!N^0C-Q#{+5t&>p3WIWrr zMKpu6=38^tR9lSB65G!0JF!*$FiTQrTiinS;7#AG2{ zF6QUL^0211w!T;q4@^w=;9xpzhGrEI81Pj)oQB<( z{w5H1sKTBq48gQ$LrrM?z0TH5$H>IQ%FHYkKuovf+y@1!)3=7-8LwQS>{tj~y%AT2 zY<3thi{oQxZrJi(YBZA_`)W{Up5{WqPSE~MIbkJrq=1e^iec@K~RKa|oj542(-1}ZtjJ1~c3!S!41Irf0u!81x z3Yz?4c0kxt&*t1a@Rd4}a3?{@wA&fZQG_`syZN;)-B&1lw+d=~_ED8&$YpXcFX$mv z$hw-=8%UL|qN3@e=TlTVk|;-l8&p}%77HH}ljyEbnvJYJdkh!-i&XWat1A6F68+=z z_=Q;c?8EKqTd$5fGQ!w9&l!KJ9!{{B$Cf*5t%Z++sqNZ+&{+dIB=m@-(X zp9y>N@qTNig>PT``=rzqLS@Jq=}UKJx!o-Wxw7JTr1G;VKfqhW9VUDrJhMk|-|m)7 z)zVF_Cx6$e&RVJcVK2MkhwGNV+59Z9qurJ=fiPIME86nRTmtQ`P9dyV>?JWs2#K(p z+T#B{T~^hg5WJd^T!pvdQ#|a+AdMr0FUgeIA+0HH3^D zX6q*;ZxUjMqXH~?eH1!y;uqxh4k9~6`+aWnw;bI|r1Me;W*;-#`C3I3tiHT}?#)ec zmhtd>({a9RDJCL~xQbtKj5^$VG`n|ybypVh7;n#mT6f#clU^noZ^wKHJ&;hik`@xd zRpH#OAxHDx2u1SaF|fHnxkeR+8vk^xCU0L(Q}aE&01RXn5O{XEiHFK25ke*NHci*S72Yhs(Sc2-II&;DGUFB{n;coA_`Dww}>?Bdc zNS`4t0UGCwjFaW>Pf=W(XRLvIplPV)J6D3)dr?6-8#4nj;?fxB5m6Q{7fPrhkOYQz zdhn6=!3{Po{j|527Y2VbrJ>E%8})3MgXVuF6&kzgr$_1#N@(><^&ilAC~R>Kq$Ef` za3%)7KYz$L#Jichh1+gANVm4)VffWO`k^dZ?bjFou=?}+O+ozTn_V%3ie6o2^;RG% z$spM)$V*ZSR-j4G-2N?&hU$=+QBVisQRI+_nmV^m(hy|sTp5-cHaBl4RXRx}K*IQp zdB<^VBs;uHMC&?LpeNpk)UQaI22+BylvJ|xEA#oU>f=YtL7-44CVDw#qyGh5!EXF> zjQ7I?3rej5aKZB~A#;o3hJxPdx->CyVwc9Iax7gf3M2@nuuy)zx)-?FY~slk+--<$ zx1~-9nXwbWc*gaj{M4LWpLx5E)b7r$FzE49Wh#`&K#tl|T$gOQv!o?bhW?y7ov6kt z;3=(VOBNXVxPOD&+@C#Q^$d@!R>?U$iAZ?7G<;0BHndhohG)Ei#_7Yx&tJ?Sn;K15 zD%>+@j2be>K7Qv24_-VdKU&hH?(R&QdCf-5bIr)&bQMtfURK`t6e<8K2o{}3&2-}iyh;?yi1;nGCX~%8Hc4llEufN^x^kDo z-RlbD6&;1)x2f+Zc{b+Z378%|w=qlbxI*|6TOPH3k%ac|YqI~DF5T17vt{(ww@0o_3t<}Bq}rU$&if61K1!o zEUFVvPt+YuG86G`mdd$IZr!F)S$T+*g!W@Trfr&~A*i=pdoAMCkeohkSW^AyKt?xB zjQ@9MloTfkP1ja7#lwdj=QGQp5Z2W|GpU89*PO}cenm=Yg!QAi+{5qJ9zsPAX=%zg zy`*AiT0Y^j4UK%!t0HKr6MGb~gxin7MUI5UrQe-r%|bg=(?(mhlxt<&pm9b@CH^T! z^VJjpLNgummCbwFIHYc{~v$67g60SgK?+IJN5D zJG=O{#^znOjk?A&@rs)0-OY{PrKP3wFoJBx`2$Fh{bTQm`KG?h$3&i$Fq@tHY$Am| z;%urUB%WoQEIc2e%TFNJLnwX$Ns8LDGCI~qB;`s^e^rPa6iGLKsA{24>USo?@-)-c z>z_$3HhUOd9>%!a`StSQjpOGM3~zZBa&ce(oMpbljPX(#bYqX8etkYotd%@|B!CL{ zC0(haYPn=$WL#UFXfAbGpXcVl!Jl%CN8ff^Ub!8WjDE#Ar=`TJ;@D{{gu2rpyl|xI zf{E2WDGQ;dF`e65`w-}E+37Q7`CzBs-D*eFI$P9yFn0xpU(QyuIwCjn)@u2WIsLwh z4vvn5%?L|psCk%_kZ>D^tMja@Y1pGWO2c3Vb235PO%*nk{j&U(#OPL~puB?XODJhF z8XE3_92F(htRBq$>q-B7VUUveDr@(9T=B!@PGxX}!#|?A?{mn{p=NnOFIDYU<|kK{ zs=QUHlBsM>+Z~MSS9c8koy>68-tU;>HLvg$OCpAns`Gw7D@_Qxx4!uKOCFV}5$!D{JF`5nwxULp8&POD6%H*|~X zBVe5}*Xg`yW9idfz<4KA=7Wa>?$X$aj%0GPE@f9y#Dftk)9b6D1l=W;Vqj+|8tv zGgK5U=KPEvx$nJ9@&{xa&){v-wOKy;G>LPbO->MZ--xLY9O*Pi(a4m5y8D3qH8}Zs=f&L74XG?8$(!Yumx_=!35^B9Fn=pDLr$=z50{E28RG)ND-8{aVzHX{@Cz@k~`>8o?tE-!oN)1)#9 z*L8{6m?zfJu%{}&e%CX^N_iAom~^FLpzDnb8Ysso^er^_ywfHO>n)ECUjJ>x`1H9 z+1=WU#1|P-7-dtus~gzM$MNiEq26Rjj24N8n-8|w0}ofVyCWe>m2mK1q0_={_0J+Us5O!pwa=S$h{FCv@5~8&i4rZfJEOS?R|FJw8I%w!3*W!lh>$9?QXoy^tX- zcW@{Y1waG4%^>}8Re+S4@d?``~18H+o1iSrg_xwBa{@ z%Ic1J`uq(7B;XJr0e({RJ6Z)3_>=Iw=WB%|&6RiRBlm2~JJ<*DB`9($HYzMn&j7re zH{ibcr*KqjilslpOw+AZt)fDSb+z!h{xs(d%Trl!jSnU^CjekSstx^da2iO{dw-7M zV2+`9asKAgNJdf7^{4))u^xU!Rs%*FeaYc^hz%=SX4o(1pCu+foR@+{_5LQX=!`rJ zbzQh_x_zd802xp5?`^~@BH6_ zg~{pFFbs=|cowmA$43SoOS2oz6++XKd6|`wj*B-lEKg=3sD0u!$IUXf?UfItE#&6X z*9}7Xi)i|QS5U*2805pVXBGWCN0|b}xw?bXwpcrH#V7~3sPxKYaceWd-ig(wsRC9& z9wY3+cX7`1yF2qL?wJE2qN#(zyJN*$GsVS3JdAXGS4EBY=P7+w!f~M(Yn8~ii8bGx zwx?06&I+kxExpS?oy@Fx4JtZbo0*>bRTCXe7GVB1`G0)&9sjyq^Af69^FDlSTno)* zio?Fg1u?Td!DGW&RW@gbALW?w{K-Bzcg{Q6$BNU-+BFYQMr-NAa@AyvFq1rF{#WrX zMIfmQDLgh#oAj;+&0D7yZ}&KchIb*CEfalgyAXnq%4KZ@Z))W`8Xz zie$jf!XZUyr+Rh^WfsZ=1qPjlP&1A8_DhhSxQ{nkjX0RUxV`UW_(3(AsLZBSp%;Lq z-Su7RgNeu2_zK-J(IhGimdpvr&vTUFwZBN?}XsSmI?)8A&=RhV|MKUW;ayIuPb zdejd&1-$@hXMt5nqu1QFLMEq}JPio=E1k&7%JMgfAq-yK;n}rc>P`(dbo<8{!^`#m zgZCwWht&zPj*wJWKd%Ulx|j?c8==B0HEG#)*LE7;aoj%qtbil}sx|V38la})U}=DK zJPmducu7?Iv~_E^0DsFw`*Pm*PSAAJ8v*Nf4-mxd4f*rbA0Fpo>fTy#j)L;Ohve~B zgi8x+5orbz>_u;lRFX$CHSs%;l=owTlQWn)Vt0%X8R zMv7UNM7L=3ww7dS=z1#JE(*9ett_}~QFm8gXl;5qX~ya&ZZcwiu!36GZ+>qgZF4(# z*v$AxDAY;w5<7CaR#n2R&d)h>=o!(zUblHUQt;Z{aFg0dXM*iM^raEhhLhpbSdPrs z&4%jkR-7hvTS}%nPXLY&p&*NYS)zB&MSy)C3!$aC;_dQ6x++u~0FQj`+WX}-HrV#n z{!3EsYk1rw!hYhBpvZQUb8Fmn9p|#vIYBPX-uhJ3R$wh`0@yqQ2#j=)>GP2z)EJ4T zyS4VKHYdue-!0AL64e$3QZi06k;f9^tq>y!=~PEOySwWEk#+iSv5arY;Hu8Ario9D z3mn_NZU4rmVt=s{nG%3)?` zk_TmW3*%l&!R~S0kRxEJQdk+x0D-A2I(MZ}t}t!!+(QVY2ry|w`wM3|{`sR~B0)3w z>c{bJYV!*VJ+Ri9u(7GJQBg%DgkF;?uA5>X%O`&OHbL{6`-$a9Q^<`OY0du4if5kx z6M1vj9G0Cgg=SLHcA;-=ne-~} zlX<>s0|4>?AWTo}&N!%#EI88W_Sr86K&a{2d~!?4Z;<+4<>9#fezoEv*+f{Y>8PVD z z%{GCUTmBuu&t=8hGFK@gJ?+JS#%hUpXHJt^gGQ2tngFJ`N-513uk4~6q9HL~iV8_4 zri=Xu|8{!Ai}dQSd;m}j*BSQ;zt#wjEO9eZ{dUKsK8n{xHLaHqGlkWsN)No?p{<)J zS;DdPC!-|Qmgc0-me#5vjaV&8;bf(Lc7OIrzzIh>i(Af_kdV+9zl$L@;D# z*{c$k3P?R0VoMFip#=YS&p?!pd;&N!fO5Lyuzvvk!YF?{{orq;VZRSZq^P2+#!!U=j$%|jGP)w@3~ zq)b=6&t|fvNh!JK7wYT@^P6CrqbH8}*-`d_JJa873a1h=TqqwO2NGP)lp*%qAIogwCJcYo3+Ut%2_l7=p= z37PEqsXdX~Zlyd}ef$`nlbiq%o)b1#*&5?keHvmE6ul|)Z=H^shkCkx7ml0yGyoIU zOb2c7Su;mHbPy{J2v|SolV@f53d#3&?Ilv~&c|n*iSUk&^#ykfDOvAA#_5L#(NYM7 zF_l_R{x&L(HW9du?p=X*ynE@#;4OR%WYga__jw0o$;JAImpY?{g30L!PF@1Y4U|3v zGmg~&YB<#Z4rjSRE*~&bpvy!PqsOkL56Sa5>++&ViWyc_LwC|o7N~U|mzOFf&F1hV z$-0}9B~u8l;mE6wKFE@wQsqQWx2TVFBz$*9Qyu9;x;*GSlN4s1)d{(%`FH)Ihh4)k zK(d~dcjq}V3JZxYVCC*!+OM4ZqI+i7ONhySgosc5H2Z)EgJK5&g1_x_=GZp-f6+7e z+JLsb4p4fy63W@5B5FisXO-IxpJTo|k5m~)_0jG3!wE-)#r>foOLh}7;`prS(S&xxZYxv-7RmO8c*ju)MTJQ z3hif-%|F73(};L7m&3S&mQ@Ojk5bWR9ioi+aq6Ty0j!@F37QzMLg@zu0r+ydUm!Qf zkvBY$;4vKO8~p+eZBG2lA^0L6W-V?Z4cmR<#baxe#ZIET%%2$?LE z2X35%jLZxGZVM|bUN&GoN7d`O*EaWf5^YjzCSDIMUT63f9)EmygXp|TxyTBqRA-gA zjREc<5xoP8TG1@Fv|bPZut33OR)5-;GcS8Hq_Xs3eh_bwrf#hn@E`L`wqY~;$^lxs zr$jpdm{E+Ek9mmXB!+6sB4`g%vU%cSVzck>==$}ClISXOn>QxEY&guO4f!*FseWK{ z@w>5B`~TrH%82<9I)72rb1sv|?eYl7=jM>o8R6amj$)MD`_7}iZI$L#!zU^vPZt); zCA?SrN)vXhIQ_45n{K{2(e0QHrHT$;EYP6)M_J-JpeL##L+F~ zPjPW*C2vuK_yzQ74!A5wfyKYjjR;0}+RE#~n$1N$A3x^p<(G)b04xUtsJ73Jspxd( zvCKoK6&9Y$?iU7fdmBz;HH=Jxb~{xK&PX1k0fBYzN1+R zKkPh>f?1;K1TWOVPxk(TPi~%f)cS9d{hQeo)1* zErFU99!hIh5^WvufpEzzEQS(3pFpW$cXUn-g!6X z7Wwdw*2_ad%a@}=9y(Qer3%UQky+?(>It83Z+y#g!+72-|LZV+dkE7-`V#I25;SU6 zxECUq1W-KhG!ga3B!^m0EBh+v%?Qz5bfl&R$Sn}gJThnCq6lVX?9cu z2KEjwU|;|3=nS^$0=O`|VC(g0e?blchc0BJ$l;vlei zj?n(SS*;RA3p2NW4@Zsft#c;v5zQe4mfJ6CjEn~Q)a7HSwEthifl z_yU__4uN5JO2|Ww>hzo~ZFF=Ec0u4-FhMWPgI!p_;h?ywm-ARY5{Uz+Ua*D? zC(lb?46z0KDqbe8Z}m9R`}X-v1Uq|dP+7iCiU99KM<)UcW$G3a+;4SV*Uer`j+#6h zTTIh;VR;D)9n~3@nl|^8Y!6m9f0urKw)ih~&9PW07WWddv8ivS`n9?_}LLL{Fp3Z_oQLIy3|4%~H zm$Pqaw&w(=Ep~0BP)%L&UsOg5^+|)Y+Nku6Nq(800deP>o?#FWw8fQop`e5Ema8!@ zi_hIerm&Y!Hs2jU$vvf9Z=WH%(&&ZWl|nR{<6s=8D+q$9*?NqvQCQvdiohuz0BC$5 z&;lEwZlQ0=c&;{ew`!1?L7W(G`%-S2@9goW{jKKX7DtbNvDc5^7md8`=2RM^jf)rawCgB% zu)m)r68ZW<>c^b(-9g9Jqh|>g9J6kA^elA-&Amee0Z{K+dElfF-Lme5Ygs>u3dDE# zU0nY3(}(=qpB?Pgye;I9(m;f>%r=k`S5YV#OPfc|%$XbvIxP(l)3rptPSfLX46{?| ziRqgkB8mdl*$R7`<*_5Dl{@(;q#JMLM4{Y7r4K*0C6j^WegiK zrDW!y>InVgg3Vt-7r)!GvM(iGQJUQA+guzfv>g)_&&w<@Zv3MrFGcpfkp`)#zLr*` zq2}J!GCy0hK7|_57g-3@|#xr*Uv-gaD-tS zDcB#Y@VRLw=ynL5V|8xq<355Fy6*0ax8&UN?$-v$Yw1qMfdOm)oH{>prXFy*U`86y zYR|;%;Uk>-LOBPXY`1fYa;lJ@$Bvy+9G8ek{k?<3&51dzP|uv;ObWCkKy6w3tN=8^ zH~4K*#jC2UOAyP}k++mg0j@&CVeuvcOG0AX1q0Jh`f-Je^VFMtT=BSoTj@P|%f=T3ihHX4oG}kryvs0Nf`DVD@0CW2&JWu;ONu zPJ*G)(N;*)cW)TGHUUVhsIFUavHc%%e0;soLy!*;5fD6-FWzMZ=J>Jr4It$bRGR10CvG^zbNEi!$K#2bIAV&q7 zyKjzCq$}nWMM{jiXho3@VA#w9zHcbyT@ZLLyvnB(=v+j?Q{dgkfavi4Nazy~;!%a2jX8yuW zdF|;5e0`Wjdkj#gx7 zkOb=Ijj?x*A%E1kWsAKyhu?{a<+1e}*muh`9js9qy#wN;vxpH;t-pl=7CF6}_umVm z(qVY(gL{3*!koCnjZ}YQ%?aqoREIuIdQJWjr+2pjwQl@8fLk6L%gKaRu#frq%0vM* zIkG-^Frx_8i0I%GpFOLn^mZBD3vbd_RaNyjwjM4~gr)YS;7=b;*1hsKq1ZY2CAI$X z;BNT*#e|$A?$Okpf>9Vfv(V~cc~~&fGIY`){es*g0#y~%_`TOZT&jH)zLaxR&sKx9;1QCoUfn6M9zOUrVG_mZ5y8Fo>1 zzEWzyLE!QHUO8~^(63RDk%CCw(!Vtf_ymEvg)(|OIPO7dqax()tvb#>P8I&ZH2#m9 z5@=YLa~tw5U=D&~iSx3n9Jv|!Z~fp9e}A3uS=?#5grHSh*FySme~Wk~!_YOxwhyIx`^&>I?PV<6Ly9SD{#`G1Q#&iyKS0ey5Mdj zDn)>6YJ%ygCi;Lr20^CWS;ct&=@Z*lWfqiKpzrDbE&Om_e~0qzMH3`U{)>78v_w<) zm^TBfs8aJ1W#TX8;J9b!Vgb@_2jC0+8GN~8cr#(6@$?A)aX6oM=Kfd5*P5Rp|j;NQjDmugVl?-;+Wotf0_dDAa98($5nQ7Edx1JgD=1n{- zVaq5fDH+mCPEOv1T~tm3CgBtvEnB4QTE-fEt^8wF8l-I;mupJe^P)w)wCKDx-qZy{ zGMpl&nQQdaP%|wp&EbaUmO$vsmjqt0Z{FV+nadT)V-^HA;d@V-vR0LM1%v``pMMXo zZDT-^vyah`$I<_w9H2{;b9Z74xB|w>LQ;e5nJ5k8}s~L2gSK(}~@f92etex-e5Y zo7lCn*_H^atGtF2faIl&y8u=_o(;u}pM_{C13*_9De-q3JIfE(3T=biJI0(N*4@pk z2OneBzIuZ?S7ICZUWAX^nB1R{A)61%JviEFhf59WQ`NC95EsPEt+-A(43bcOy)RoL z17v63I^`#jwH(xHX}jM}6>52(sN?W0^*bTK|Qa+q~+BO9kr zz_X-@WIp1}&K8n|J~8tUb`-@b409lp5#2gMdIbTqoq=16D7(n6tEGKR*lTA65)^4D zQeWr8*D(4?V*Lp~koemK@WStOcy8Rv{hgzi4+{R|p^~S{D~brybWWo&$_##d?#?N_OrX)XU-tNBkaLb!>+vt@*CGs z_?VYNsBey?1n<55@4GdNmkTO(lW4Uo)v1~v&%59sp}(y#14vpf_R}OE%SBz6gO#KH z#v-d*-onR#7OM@cddZCr}uVRW;BTunAO-TyZO76WDMwx7eBiF0pU{ zo!b&fXaE@DT&mB|1Go`ca3l8g22)aPs8Y_K(QlUUSW1+JzcdA*3be04Z%d>%wWsKJ zS2mBA~@)V8AYNgr18S4@?jk3jwNR7M? z!`!fMzE_s%D?4z0E!4xy9kQm3?%z``TlLL%gG347HUK8^5%7_WUu|}(HGp6w09rA! z6PnziJql!X%#osz^Ll?9do=OrF`~b}_}Axgzmw}+54KZLXXZANQ~S(^;-Lp*wbXAx z18IMNtay&)82dHeJ5akCY8@^Ew*lR8=3q~bc6#$ZNc$F`_>_D79tc}UqDslrPzEhf zh%`PoxFQ>9Jw!22UphkzY=h7C2U+ZaO^mb3UVEuGNYZ^GMQ6^Xk#4IcHyes~04lKQd*_W%I7lr5JUO5Tz!TIyxci{lC)7mJD8mS!ly&po`rn_%i)}2otLO1`fd8ksku*c*T5E z^@N7^aXjDWaKn)Pm%hPeIY^F@Koypcd7EbS_WQ^+6`!NF8?Ty!3Nb{`kChx8)FNEa zCIVkk@YLmGs_T2H#>7-_?F7OdqPb!BDF+()9QEn4A&+VfW9Na<#^o@#(ck2*q@?91 z-(&t$|9&IdVt|8!w%_!c$wEw%+w9NY?K$IEa=a4vl{UAzjJk`6i0BSVt!c@*4mqYnfJ8`#)4sQ-%IBLR=solp4zpBfo< zkV<^QR_(Z-zGIo>m|Nri{3-ZWyErVzo7OtZ(wp}65xj`F1ximBr#Um*(1l&rS@U%G{AaR2i1&$+cZ|7GyMUTxf{7H-)Fd^^K(d<@KI_aO3`NG?W2 zSHx~?Fl6{-YZ;@$5BtA05yX9fvod@tDr&uN_hnLU(H#JxCAJ1GVJbX>SObx4FEgwn zutm%%;mva_(=CwyeEtlru(}p=e&Y)M6rBI+J_mPgUccwFFyi6_<0I-;&91zYqK_fH z{l{--?;dC9Vz_E_?2DhqLzXc1XRl7(>FhI)S6dr~h6)s3vSiLv1}#geBOLs`%t6;-WcEOcz3ZRY9eGt3;rXKFgliQ)*HmSol({SS?rj z<&@cFJiO69VHOo1nqjHLy%dYCui1qUn~T*XuRWDiD*kq3>F6ZF!4BopDJcAt2(9Ewjb7Emre0xdQ&|)8?Pq>BrcFNZ+Lg&t%iFXfd$)XGNuRRo^s;_S<=t z@&Xoxia}nrqoCHTAV2pNS7D5cUJ%hmbq$(YGqwS>q+CaS%fV;)BrVZPJZcVk5-t^` zQXIvl%_wT;sFbk|+)LAkHPkJQC+C(U(a+r-X8F@Ivv>;7LzgQGMfF{_Y|S3(ep0t) z-^hxglQ`Qmxpt;PnJPoM`KmRmu#M~Dln{}5`-DR>Um#ccbvr>}+Tg>DL$yUA)1?Ey zOJ#EHdM-sqpG(8mnSw5r9eSgfbl1OHbUV*-jA|v32ocYJCTeXl$E!ifzbq0wzTZ-J z!03&NGi#r?5Xog5sO}S|x9BkcJXxsF%HvHeZDe)npMRfW)n`N0->?7q`H=a3z~SjR z`<;xg7nHAjgtS>J1&mM^vmFH&B0H*LByi@J%SKF5(Y~Emzr+u5-s?@I^R|{gAQKzP zn0LRDq4=Ba#7R7#-#-u!@R^ zfKmknEQ=sjdIyo-MF=G{6@`^*p;who2%&`@Kv7WXkWfMwX$e&bz5Mgydd}JJJKvw{ zl9mX0-{+ZUX72l*nWQpGZ|sUpPMUXxzA(zc?^RN1+RM|cYnll{e@OPvlA$E$OGr&b zZ9LIzhRh5o&$YhQs(Y05(Z@?_csC$xUoDm0_rumUEsVTvVDSzylhcN+aK^A zch9o%9_vqI&a$Cqhi>1w>(^N%(Srl}c0?6RHXmS5DI!7GW+NG62_~NFiaO z%3LPy%kjpSWoKWyMMXw@A~x|>7^|V9lTqqC#-hb9B&1=PT&aQ8MP5u|MYcFsAV@x$E5~ zvKk^AYWuB)Y|cpFrcJja(zk&ez5E@3r(7i>c0h z&Um0Bf_Wd>^H${$ek@1&&6N|WbL;+(##}uMHwK+BrqTC3hn&Eq6FGVBL3z*Wx<-hH zZ2>oJYwnYgq}bV-aPoC;7$$Z1Kt5A!zol1I5v5#YNt@&KI~ur|YKA=^1LK0~BpG4Hi78r3M(=X4`>2)~1__Q3af@(kOBoR-Jm_HXcv zm7iX{;TlI44b!--7A)}kUBt_y$wiH4j+wQt@Ye)mql^vSD(#go#1EFsz+~giAMcv~ zf`vNrZu`9Fx{a}YnEmS82bI!+rgy_-ZvDq$O$E4%xKUx@0UA;R+#XR9;Cx7e4=@;6?(qP@i4*LD8@6XYUyI6EAYC`j#H_F zf0SE$-wTGN5wf1^)T+B`{{Dstsl%h9!*QQpIKX=c|jAOXuBoSyi$9@ZZWIM3xj@lyRxa#5}hChqptQQxC9*1v@w@^yVjPJQx9 zK2e(Yp>?|Zxw>c6>rT&x@B;$|8T)pTF&>bI;vcVed8QaJ@pf6Dlln75P!i?58)QP1 zOG}%5fJiS?2$SiL%j;TTu|}x zjoG}e*?TBOFqPw~;ux85@$-Lj3hphz7WErB$oSV)|R+^=c1U;_e zu<+{CkJFgSDi8`1C6@HA{xSB(zfmVyN+qYItF$|oa8ZT&BhZ&N@TUh}0lpIU)J&{x zYSc>N(zfaf7KWD(^80YuQhU*hulraQdM_g8w)#R@zu@!1#>&ic=x3&(Skg|pO6T<_ z_W6Ne@5iL(^2n8&reu* z1&&Do{uGHwJgLQh?wm|txtnPAcK4KDYf3jrggX_xM%sZfJ^2kwTd9a*yH1!AGswXh z>tMkGcqayOJf0r!?bc_$bA`642kL|GwL@PO166S%At;~nGzuv#4-T2|-m3Ka}&g6B%{g`TM1WBgqjjPuj~*b#_jR zrt%Fc1gfws^~)M-7#!-V8>>Hc!!?BR`o8=WSv<^WQ=mDVT%DPfg>5%<7Qy6q^crf0 zu!;$ryPuahxo+U1lgnQAp?580YxxY!#Ynh}-y19_fQcX-8XS|qXhR!GG>ydzsJK{ z!&;~O_OF!l>M=&le=!@nS!o87Xs3t64=|=eauLEPwAGLZp**j;4Xz_@)7^US#&pF| zs2XLMd6|uzefrdSRAB{q)<@~gO&7!FvwaVgc|OSouo!V{+5XvV*0_E~dmvJi*{Hnm zofbcioSwHqW-)@KEBm@MPEzxjFiI~;JDcY5N!ly>&Yyp6d!v)d+fiNZ1@UWL)rou| zKHkY%(^57%N}QJ+$ShU;^hEt&QfmF;0-7tKyTlrt5ZA#L2++EOR-sQTb3vtsclnen03Qc_-A zSlyKK3y$e`6kH*$3s)K+P_}M7lO2lOvY-dNdwh?uoa!2AZyEdp1Gx@74(1|lrX_!T z<`nl@&OJ@54Q58BRDYdtVNq+gavp7H{pnUfxA%GI_lizH2B0Wr0^eyQnB5PffN8Te zOtx()cl=2UMKC!cghf~$hKA+FLgxl;LsWzbjl%iUJUYRE=rJBJCz#r%z^@5l0t05k z9#^$l7I{hczE$JfTLCP3|L9Wv`&mc|SI!-~D5aa6rB`f2?cL9q&m+{8QyX$K{3Ppn zB+^z~&P?qIqED!^N=+Ui=@k*=`~(hXgCkSP?)FqHCgiD_N8lqDX4;FMCsw`1yt_#d zJg}ISt))j;%80a=HnT}OA=QI%h74!GRY_^euYLIMh|KDPQQ(%y=sO|EJzD-5^i7V* z`dGtK3@M$L&8$@B0IOX zjru4%=L1br88-A@)^;o+WOb|Tob}hba;5G$AP$t)YIw;L-< z%Ws})X!xa*9rU!b-QHXO{BYM1*m&keHp$GMf!^;CH*i%cx@LbNtAZ{JT^llm{3G`A z8$zuCQLDb_!~_k$hL^%E2Yb>KpSOn)^d?>{xQnqtlaMsnynQIuSY&uGH_a0FmBdTX z=Mj&8-%U4IzjLEvQSlTnuA|PF1NpZ(WXi3?!p(U_4-VO{a)GMgrS~)BY~>pJGkYds zny|V&^FkxThFMNAOC{2JM%W3SMXQdl1|if=Wl>9fo3z%b&1$;mcL7fcV@aW~{jDjs z;?#GHkPPpvmIZ)fQFwLYns1GC2&MhD*zQya3O-XVR8jJq=2%GSA*3sC3+|oH`84SG zjYSMuy^>k5((U__eUzO&$8)+=_6V0UukZ|Bmc1 z;D>B${23rVbe)X89efhWmlSW@*mSG%staZF-@LTek91PO{i`(&^2U}i>)-aPYCW(+|QAIjLPg^B#0NQd7 zMNj85NC??o=DT^E)S)ZLxmcEXXO%jryr1z$fAArIPq=W6U{VnmFJXo7oqdj$wqLrW zY>pqZvEd*N1oJQ2d=iyaoDsY%X$1HH7rg#`4DY!+|6hQpd#Wf2%M77UjHqin7UxJj zQQjc!KjU38qThX1i7k;k-~^0^O%^YfH63&4czJ}BwzN9`CX_;KD_e?#?iYJdcUqEz zT*uu>%>zfo4IOhN-$*l2tlR;cAa?9toMsbr%O31}Cg$hjtYxdT;vO}GSJ5aJvh3T@ z*C9%pC0FBg;poAkhn99jh4t+dMUEC|4)*{kb{WW_q$s5Mn2_h&S1ay=7rK6{oGS(* zN+-GMxeX_!vQ+7&KIaL0B^Vk8DF&1i~p76QsNC)XRk*ya^SQY`PX|M?CB;6i)oFy$g8GDwo*DS zYCX@pq*U0};&2B&S3tOU;fl{`(({W^2+|}ORVZ2kB^g&A`xx04RwQ#pxGkg{H{%FD zyL)dp@wAjY^BtIj7^rEXR!A0lzWiyZie7NBQZhir>O%$Z*Dw4uy=I#zeU(dnnbt{@ zT7U(1t|kVW^c|rMj<6kLJ8p+MN+)$G=Vd$P_q4zROq0VkRiKj{8;J31raz^RHVY$E%v&)4x2;c&^r8mu)+4c=X7%j?HZxhWvGa ztuSPYntwfN=+Y`v_AQWyKGX7PY%B`{hm=8G7>8)~=*Qw6&f-gmNU%v}$ZS>XbzLQUch~a){V~WPrDc z06lLy%&2Y3jqQH`O}-4B8->L^ex$rbmAg)5IrNn=>mjr3{`Hs@73M3Bbl`7ewOzE` zsQiZZw*MJtW|t@)G1J@)brr*gj6rf*$i1GDq(?NUlMnx8iKBBNg! zv2Ag(2gf?4Ey-Nvc#uK1uhBOtwlIvHjqBe_mwj}UzO7~Y4%%8X5fZb$Xq+d%HSV(I z3rO^h51twvv+bS1_bcgQg@)$|SwbdT4fU8G3vtf+JRjdTTe+*4Sf`$^EdR71#r(Xr z%<_?M)x{%)$9Cj8ibIc;C{#uIJeg9X) z`B`Fvhh zcHDa-=g52x3DJHwQr)Qs_0tOwEK)-yrY~oYf;u5v6QebeUC<eF+7kESTLaQtT);6-OO^pHkVTOIWBCPZG=zgnYZMxH;fcZg>^Q`!q>T55SVbb@S9>=i!q-C&L zO8WqVg-G7kEuA3N`)7(jTbRO4n`kTp3^&x zmr~2VPW(QZ)XIR+2>8ouZ+?U(3Z?qok-@SX=c}vGPu!RHKAHR`lMhsru_SHPb`4+EB*WRGvxDf(sd4t3Mrh9UmC8> z!&=FuZg=KadHaTUdykxwQcXqhCtK$r-o``Blor8Tf&h?j22((AE)%eqM{krj@$no2 z{TZ#>;kb9*SLq;HkB)iL>gt;W5MOo@@nz3`*hE1&P#VcI3@{%6M8C=f0}dZ;WL!S* z!G$)4s|o%$;G@g-i7R;gWy)SY>3ZV1mvlRW{qp>v5NlE&i)`Jo5&AdiV;gI-ebPZtY=R+SS z?|50--iRR`Qq05VD*6fP>#^;66vi#4n+%5xan-w{LB^{0bEYnUke%Ok6jry22a-B( z+b*)VBk&*@@h?QdbIQ7zA&|ToYmF^}>uMB#_>R0_-x-RKOe|CNubST5bc38^p^%nR z>ktIAsM`EOTNs59w?p#FY}q6Jzihu3LfZZ9!>+aE^-nWR3awPzB}|k3`kmPZ{)fVa z`iGq*hK{vMbz>RU6clIXyMz-E#&SU__cmDerbx-_+m(e)h3t-wpF3YnKc}>c!#7vG zxiCNh!&Gsv{94Kd%dbZv^lfjYe}16wwgfQyI+7BT z%X}8a4QU^2c>A=@7FQ`5&6^lc@pK$(&S@hX*d9OQjl1QQvWe>SV0pprXw9focgU=> zE2t+{Yl|ejR*}E_JKX~`%U2I9iIEKlGu{{{M);R9i<+vMG66)it9`;yph5H!UHAG@ zbOw{G!*^O-1Gia}&R$g%^zNn~Hgs2Yv&-U#hq^q!QJjW4pIv>juue0i)hS3oPhZ!C zaKs7nPraGwL}~uT`MC{gCOpgg7~Oa{1I*p|{yiT@iMi)Xr*_dyl=UaV{)L%nBck80di4# zoc(W6^{H1(YpoihuOQ9!I#raFJ3w#h=-$`{>`9hqIyZ47FwHYw>E<-O?p6Uq!R zdADI{JyW^720A_n0AY9LZrFk9iFygNT4zOx9(75#;J_KYH79S$yaD83_>?Ub(Bz;k zbkbsFpGA}Fre4-I^<^iIOmgM66{@(}f)XNai8(&z4b}5}T>qFS@OQB&bvK%I&qrIy za}$2?ezBMNWpl)5;_KJS$l}Gd4c*z_UJIu!p%=26Y&bZq(HwNM=Qx|K&E@;zp8)qY zxXS#P8wR``I?V_S)ER+~Z-Jo4m|j9MOH?>F)rEA9^D(MsCmj%C|!!{BOJ^Umkg>Kz&?eX>M zwJ6AxafwF$i|CRAw#txn$N4s`ZFTROb$!jQ!oenI1QqV{xskQU#V$ugiFHGTVR^5# zUi~sh{=9-P=mNHL@a^568$YN24{!gs4g6Mdo!w$x{oxMncy?bF3xlbw_VG?p8^B4lWb=AalCSZ0>noI=oJ@!)mouB5w`$2=mPwC%>|t&#U$wLTDvmuHdw6#cJMT|Jl&9GQ+sa zhehmR%3EQkQ&-=xOQJyvDkV@jjT7@(FY%{me#e#M)z(r5h@7BhQ+Q+TOtkkMG`j3| z7&`#I`S}8duHEJ=FqI10s47i3i9;;)7D!l-2K5!PLm8shg9o|RG%9tjjzinsy@VS- z)|`ZEXi!Avkww)RjC~%SuQWO zk{W6Dxrv`--kd{hXkPj{wW#xIN9FseMXR;ADIX*)QBW#k^ zceb)cLWH*#ogrDXdt`JZBeV{Wq%|Uw{8tFgxzo>C+IU+Rr0521 zS5bC37B5ey5q*FnQ>X0IDu8T9<*$5ke{P_9uhjPj^rC&TtnrpULmZxu2dhFOwQVPR zx_?A_>Bew8G1`qf=Eqs0;&s>{mgolyWm-lE~R-8lSgsqlX)t zDB+cS(=Q_CX!7a4!>EC3#??BdKH9|70}C|cy_DhdHJjSc4rNQP7R%CX6+k6Wz;QS& z29W>2uUS7qUE~%&N}bgDg#!G?EvFmw-RTiM$KUPwJ!RV4Er`$E=9!UEM0y}g6zS#q zSKx;F#4KO4Z_L^%L`8zpDV3!aB(jrbOq%|ve^~AITem$+CoaL7HlS0SG!#HLn9M@) z;H5Nk_%oOHv4_OPVI#`J^w>VB@tS^EsGVs-pfMf+p)O!?)^)&H!`bytA5(pekEjA6 z9KlmR5}~SYp6X}5b?jR%6>`vVLXT&s=NANiVqru;GN5Ehkj;{=(38NaL!zXGWEOOE zZ*Ig~^T>}CvA3~m1Tc&O05S;~0uCC@Tee%_h|V9f1N01Gi5|Bx=*N@=17Q3+KgD=X z=G74^Je<{S%KIFY62vu`nVDDNdBq8*EamvCZ>!cv_$g#O2AK(=m!!Z?(0~cYSZkV! zEO4&0mRn3QTE0uued1f|^QcZkw~5)Inlzf&F&^z44N&l~yASRF0w}tz23kUVI$^AF z_uvc^Y5e0GR$EN-y0a4p*n!px5Vpa(OxN(dPr9Zf`3@={D zEEL~E$B}!v{4S>@PTg7tdu}7ZMS+N^n#vr1Fp#j%Q#r1d#qpcblNs+k>R%Q*^u~W0uHm-bp}D+xE;Yr_egJtKF;kdp7=c$7b?jF{ZyBu= z_nnqf1F6#&WZMTl@dH3gusfW5zmUUyPz`dd--ef>61FuW+`I4@jmLDq?bQSrq zgyvwSgU9&H`}~U=s8+^=wdM5K z#W{xvEus$Fmoaa3mz#d+zL}uNxYYO(knSZ1Di$<4(AZfwc6a4SoAMmxAcwX56v$qh zab2eJ_H@-TVyc=L&XG~ZMA>_@0VcHt01kfB=A{&`$stY9X_MB z;wiW!ANJ1sv$C88db(`y?}{$&&mP{+da5}fbkTsRy&@GkpfLmfG8?q}yhasWv#YOM zmS;^69GKF9jdPtMo4aoq5zrHl_p)EE;0r!<?u zh7MrLiD(KC*X_4`H>k#%hW7oop*0^qEUeEr$7yXTDn?(vF)=ZbMsh3fLvOB(kN#NB7#K+WdYEKLkjeJ}wp?*t90xeZR=k)TOH(**GUIGF}{F8(C;yd0$ZzhPyz zV_ntZeDVF4?s^I2T7Eep$irdP0BM!&6r`DrsiynjbDI91ip*wPk$*W$KTtc387Ki(oQ;K6i|TbqbIdVWx~GdkB3k@ zj9bL6Ty~RpwW%%_@P;I~CtAxB@ zow@gp<7Q=4htz|-BB^WF56oQCejQ*w9(q6xbqDQ?NZ}-p?5qRMQgb+e)b0MS<7Rp1 zfbZBZ3g*`jk2vYnJPJWQrioZkVx^|!DR%yWsYXYoj;@u6#6@$R{8FP6~p<6JQ&&{ zw2d-*9LgKR$%p`KB+57k(Zd`#!KYzwKgHbHi?@wp_nN%{wK2%y99};n@W+I2U~n)I zM9`-L{5qem;TP;%Co0Wqse36zr02xPA5x~$IzQb(#yT~SUFK> z4Al?Kh1)^h8IhQnBjvqn_2t#Mw1t&C$l8&*g|wxAU>aUG@EGM}x&hI3~He9wc_oi7BdCHXe$*7&Jrbv7V#$d3GXL!OuC?oC2t^XV%a+F48Om z2MS3Tix?}#{|=NNU>TZvs-`v^USkvH16DPghXItGNlbybLutnO;)nPfvEJ%TG-dlq zQY8q+D2X0oS`D&0VBKJ>7qpZ_?Qj&^y$^*=}JT_gbm#z?NnHy2Q=c}KtHl$>btQ2rSgET zT6#C-@^HJVs(N}i=7-DXYaW+@a{WR8u1GJvZo)!|c2HslN?4|EQEYeYRav4KT#!?(HZ2 z%n7NQONJS+u)HxQr&riFYaX07oNC6WtZ*5(c6y{0*E zwRfcvfeb`-A>)TmDp=vDF&|NgW1*uv9t&lZpq@0*+fb3-&_Gyvy+W(E<6>SDFMm>}tR*M!b6U4rWsu;wpXwK79C4LtkHi1`U>|2X$wO9;3{NZP@gd+6n@9QOvya!&xGK~O6wk$Wv z;vOu(U^Y$hVr5XaMuN%qsVON|>&tWGJkx-Eva?lZ&YUT{_kO30Y}|a}x$SHJ`$KgU z1TO!IU`I}1d%ZP=2bw^(4a-rH0m?l~5fNfc`1M=bTB?{hBct>skp%MEuHfUW?AfBS z3CX}n@=o}kkCpMaq0APT7sT|8-P4VjjwzO5XBuO((5oDNu^pQwG0we2o8`Lo;|Uay zNdBA=aLXwRtPMRe%1%ijcVWB{X`1KQNJh@%cy;N;q0X<|7X%5-2>)?`^F0!pG2LFY zf%Kaot8Ak*eFb)z*57h8$doji!>{i{pjasua2df;LaJIBJsfH4D9^) z6vGPI(zFr=r&B`@v=POwkSRKm7cOCmY>p0Ua1x}70XHse|7Y52p}mbYG|2lEGxPaCmJ8(fjNJrI# zQO19LE9vd~Kzh^#%9?b|=EhRS)>bb_KOyw05p2|pv0U*eJ_c#V!goCL*B?K=$SBvs{qmm_T78kWKrFAg>)NgIP&tP`*!MXK{;*A+>~E|8Gw+?~0(IZDf0 zzx(&^ABAXbeB27mBD1hi0}SUPK(1gYSjc$V1vZMMHzridC|Q__4kpXf8(1`Xlkn6NXga%PBc6jppNl9OC z?QNO=UzI(E4si8F$Z(4In#26@Qa_cF@(v9*k=(+4FQiJMpdLcd3M8zcTu8U~ z+HwsHW5oXo7LD%Te+O03DF^r~?v9L%7)|JEXuwp6Gq?ruV^I1@1Tf(~ik_$r^SEfB z%eH}ukXcz-`Dgv=N7Q_LDxnoL?}V{2H#avLG&;vvDAG$KY03#%y}btDj)?j6=H}*L zP3-_N^VZ+x2$NdP0Nf3JcE9Y`Ie$4;4PL#aUs>$3}2L=;^; zYoc!*pd09MUVfUWJ8fJrm#AB*a3YDM2t+lgjrf6@&}VzE0ZEFMEZv|C>r#{z(RQ0B zc(p01{!Pf)O!Sk;L%p^EIjHL(l~tIo+8962^ghqKqSvQim!)t&IMbUY)11oU{&c!VdU(oN~JxF-b%Q;fE zMZl&lJ>QQSN2F>W-;1%)c{Ri2HGk(ntQE1?T~P_PyZ{ntWAfY9ER0Re0Cu(m8WaG`)BKyMl_Lpfg6z_xh101 zI6AVNN)k(og3x$tMDW5O2T4&a%{HAYlBMdmX8qbF$Mj{Z<5P&a&vHPV#{ufxcc6m| ze{F1o3P&S#6>x`t0fd{zkn#)rZh9HQ?BlFVYn_=+=Bp3h82PN2ciTN)sf@eci8Gc) z3Z@ZU0QNC9bhsU&JN*4m`(geZ)H)bF@$k{)9r0LVT_w=vB2n@Kj4_X*huwpq9je84IvC1^944Nchk1p__RKgtJNi z@v68G?cs;iL=XLi{wcz-qi>vR<{X_u;sGJoG;qJi!STpfzi{LYpuBbYV||!rhs-+M zRQ5sH7w0xYMt{$zc2k==%-glHQr>kGO5suLkg*gT-x#_k^K4ICNBUcj$r>C!^-aTq z6r$=oW_Va}#yRan0wcji!EIwP$=KT7A+K|_X+YyboE_+*qaKOlazNk=AxtgrjhHtr)SQ^&dWcpFz%A)$F+> zIy6vpEYkXcg#yO(*TFN0s>uH@pg^_tnoslcfSQL1sIveN)VwT9gC!(;flNwk}@8w9yJWYyb{K#iolrQpt4o)X-DK?1J6mGh4D> z0h1m2{g_A`qVhr1fQa;+J*q${A1+V)^{@dnV5

Pwna9kK>uh6 zMAPHf)sUr}TvvndY(ZUfL(Q(_%*|5})5}0@>hnAk_>=bp!s?Pip`2VkYF9K_c7O7d zy|9Ol|IJf3A{Rszg2pdP3SO#NklGu_vrxC9Ka%(Gtt_1`n2C{L!N7tPXn<(dBbG7! zbr*(|1B@zD1JL*@mIJlT9**jdr#&5mC_AlAuGetbbvC^N45E~_E<%BX772Gaz?V=0 z`FIsGH#$~#?Vwfc_Hu;KcK=*~hx-;UAiWG@h56!pd}M&jc9`fRhm+xw38hWzRLS4c zK%$HQ23a-Ap;LrO0wArL7@rYObp{(IBvFn6A|Q%=qv(LYfCcTpj%!J~8QYsYT>+UNiA`O=Bs zYk~>ZGcRA4E%ou14Q3ugduS$JwDIwHI}!7hKc@wPGs!Zm0RLu#WWF%3lu8xvG^8Yh zYJnvw@#8vC1sxR12`%b+x>iO#Cx`WNgD~2qm65lBPs7LQ6K?VI7k<*QW^9|~z^N-V z9Umo|_S>t2InGF3RI1qE7NB|O>8%{~He~b}DXjdL@^?J)pKebGaG5CNFXThYhv=HF zQ)`FNmM)Q-0v8O2nyL-XGgL2$J()yXSe+2tm}HNJj0Ec9)?J}k6fV?1#P-T^a-qdb zq{NhTg<^hl%N6uBCVz()vq$)<)*k|ByQK!|knGU=We{kqAvlJxci&8e0xmIiR)6xCXFS2@)q zXTFU++;tBoKqMZ7qHOh);^0>aOC`H@V2hftYXd!5Tv0xzceV!qh&#_z-vXhqS;6kn z=C~knp-${rF~Dm9`jw=3+Fr$(BjXRl!l|1}MX~){7m07ja5GtO_)idmk50RckLaVv z+0kYm?0D<{0m@PQ;kRCF=xZn~ZCA*@u)^vuncPny1F zCvRUZza2X^SB(yB6hq?4Efu?zu;#~FpvT>7-9$qY3U$z-a^nwmZNj#3WxFVf4`@6O zs^Uy2w@q7o>h1%DoO6##xVC4P!HvJ}z0w(}{qGg{*H=#FEZ7+=NVk+bHk{qk70QvgC6x;vsyF<6 zmag){(|tz@eKyda>gwXyK3#Sj@GkCmA7&6c#aNJB?FU3T7RGS_UgcyVJI9RF#FU|^ zM^B7#bTU;bLn$(%Ga)RrDePxp5S9p4kpq!P9fxl=Fd(GK3;$X>x<}66Cm&37Gck>S zsOzvED%;3%_|co)<*VIC%z6g*e$te>Fd48HUgW*8cgG_p{aE8w=>p7#5~e-XoK*p? zgHje7pE=U zlZ-10)XPIfPWE%%#TUAbhnnkGxh@5AH6*>t>~A&kU%GNrC)bd_|C*YZH$kGuVQKx%2g+hA^ehms_AhMMLMsab=F2KjKKUMs$PC{!7zorwL^&YM$0ooqh+S zEk+hK{ZBO62fyepXPuv0mn+V_XDBN0^TCFFo$7|QY0Qwf14oa_ ziIauHhaV4lo=CBJ^mzU`t6uynEz8iKG}9n%;Lun8?(SNcD06?k1%7-a&be@Ct9IfG zRX~`h7E054wcK&*>FBT%*8Kc;qGcZc`VJ+Z9iy9y=#kkB*y(?Hr$f z?8Ksl8*)Mpjcp*U|N8m3mKa&TiiU%vdK! z%R>BFZ+=l3rK`*hrktO{?EKha2CE%n=1G=sU*A9U^-6JONJ zJXb`fGRD2?QvJT2ahYH7Mq24ijnK%b!W+ucMsxv9ys4fiBweR2n{#=(d7Pp1N`PHW zHd0O3l+m=1UD12pHmoy@o#3 z)^}Q^iv){s>2@lFPW=ljfjcKgkNI?W%m|!R~p?a=h+Z!I52b+kNfv+9>gtj zI1+m!Bnk-?O}3Ky349wCjSd8TwbVLXHPMx0Hb=0mnmTmVQc@_EwkCukgJzhav zVN73bV^Q@AafLJPuis}@>8QCx8&!CutkT9$jq$v9#U#dx7`*mLO0PYhZsJXj=j&TZ z$D+q_4iG?0|`tCHYf^M7_rS^();r9poMa(KStXuXFSbV;=Y{Ti z!FDI8gM%1;h_I4a&CHFn?g;DeGI3AJPH`x6yqPuRJvi`WN^66X<)Y-#Um|wJ(E&rm zcRv@$`MTAhU2caF%4InwrKTf{q&J%G8D1VNz!~4yh(2$5UT$?#%s-Iao@MQzuHYE} zH)3}WcK^P7Zt+W32aWw^RbbD@I;&>+6j&5@t2XK4J|85B6f^r^52-0RvyLtPy||B* z10;Snr~CJ6BVT!$y2fexdCEWo`u@oaKA2MMtsv1;ZS_g)9i*Bg!k%`4YE2JX!wPCr zWjq232WLDP*v=dNJQAr)9(#{5-|u{$CQ^e=c%Ep;hPJpJng2Rjsqt}jM8wflr(K>_ zeThf>iN?9EIHMBll+*YfZv@evYlj*=ljW4KwY-cAny}Kxm7CRIZz*lm;UXg!8KRlSQv)@k3!L<`<R5gcEM3d5|^h;SoWPYd%d5DhcLFyG~Bw41KeyLCkzAJClG z_flRZSVK!K94#B*aV0OWBU~es{9TNcs0It;rjUgkvfZlp-ejj-DBwJKMndeeG=H`6 zNtD-J9i#LaLWM3#346PCORf8h>S_(GJ8+*{blbosLUPSQmvD_sPaD>MQOx~YxX-Fq zUSjksYpbN|^JBcn&?x89A@AE~WheHYU=peb6LoRwqJ2~1M9l}qX*?*Ywe{9^$b9kX zj3kxawbdL68FZ)CDp zxa7)GcUHdfwR<|MEJxzRxW$3curc99)@Gh%QSqTl&bRs*IiLUPWbL^qX|#5a#*OXs zP>iAvnRmDU4K_^Fv{9u}2yg8)FBRq!zwTtve$i-S#qpbed}V8_z!{Jh=UmRNQ`uC@ zCOJQh;isPV?bga1lM)|{FzO7M#IiP1=bvpg+u$#7pI5wdAOR4czw(b)N3l{YrlGnXa)6_y)Wib`znvH$U5 zOZ#Dp5zdjeey_VJgHVIj7LB6fc}L1ztm47z8c#fbX}r3$^z#U=5PyJcoM_wkI*Kv$ z&hu9F_5h40m;PVB&6N9oxQ^{{{_ui4Gb5E_Z;oeSf1_|{N40)zPyFhq9tlEzc$2nw z>#NWgf5hd#dber1;$Y|;=c+-pg{vvjCT8XWFdlh_^RmIqLpYDuI&{0MixJq{*SpAq zzx&-!gW>>#qJr`0UPmtKk2i?FI(po$^Bb$IRa4+iEMJa*MAO*$)H>_;M8!(uZESn? zmTS3T)y9;gu*VOxJ~S0ehS}HMFPmZ^vy2yWM(Rs=goKEbS7+Z%PTGx(jZsU-65CaL zejI_Rs$QLY+oWuY=r%A1QsIH()PnMrId%=0J=cKdv1b zl@CQ2ajyM25%oIYNBI@>-Ng}zpL*&R+oOH1Br%@q&!?3XE5s+@OFQB-H1N4JvQu z5)E>ibO`EnQxG!bk3XEijK1ggEG#Ts;{7U-v2wnulC#T!)VnV;HX`l}CSrH=_C+oi z%r{FL!+a_9x9407h(pQCYn_y{G@I;@h zrXmR%2V(Rel-%AOU`v$jeM`N)*wN7XB`}D7PRH930wOJl!V65@HQv8v(IkrST)EgV zdEs(P*JH_@6wjsA)-M*abmGT`!fA!W8cN2ZV%2r#zE0S6x9qnv12Arq$JuX~^VY&-gWc|)?oVE6t97@nrk`p^ z=A)6wuM0L2g@bi7!Z%&^=`G1Kn|KwqS9)ZL!X=$#S9a@`rep>rQGs+bE0bjHVpdhx zeDv>?ek1q|bix1Y@yOB4+6Tt9664r7-;7LQIu<^$qDBOhtdyK0l#9hsV@XAnR#G`Z z;I~%oKc9Btm;Dc|4xRHeD|YfcRWVk%FVmmY)T516+EGYI9DlDY?-xL&<0Cb?LqZ8fzvQopqfBpJZK!VZhI;2$41t7g9fQg!!o~Q=3jt!v;AtR%s6lmFxjEWG3LalB)1JS0& zMkqJN6x#nk&fYq%$~5W%MNz>3n+_3^5~W*3KtVuS;($nZhqMJMB}hn@bR0Skr6M4m zheL-*9J)L1ew}eFR>*apOCQnl78nl zm}7pmh*h|5htvM9c)`dokmU0VZ~{_=apo4NC$EQr>yau3qupHzl3|%JyVTs?u>dAf>yu3(+mU_l#)eB^8BW!)d>qQkNuLUjAzEj(K|3Yn7C9$-iK&uHwRSUxUcrc4sN7!)Y$_A-yXLT!P z!5`Y3nZbL8*bn5GrjKm9XOQ970g{>CdxJ2oM~Q1bk7QyDMU8LN-QfDfHher>T|m($ z4Ld`j#pH0?0Z<4x2QA@eGacVjgPqM)B9e5HefzQ;vGq!2L&umqaO`lMgD1rx(Q|xw z#=R;(oy(~Jl3E6tz#bHVL%E=UBUM!Ddi!xvxR;%y((Q<+mPm0fu3FH1t`GU|O5%2{ zO+4^$PG+95NMY_v-;=c84%nh(0^RtYr6>>DN81Z>%F*u*t2^0?hs;q9X_1roDY;z2 zk?*VDKQ-~Y@!O-h*8Hzi(*L<{_7L#_$Xx9Vg@K-K%(d0oK{59p`+H_?g$ot{zs%J! zVsUqrqs-UQGee#4HBqZGjVzaIZEp%3Nyb9T=Ev8{6=m4x7V z%ARd0lJF|eQ!W?J-0)Fr*Dg}!x|WrGq}mSK84y!GZ>#Pl>DQT_T_yvdr=Yw{MvtqB zZuaoth^MzXu{Dc!rebz zjv%?uCnCMSXhCpojj^CksHP@`v%1TT?Wp!KC%p#Jwy%6LhM_c7_8!^&_3j?)aFVm} zmlub(7X95bULPknhW5p@j0{eJ5YXG%N`9U}8WzKOt>SyEh7<0JivF_eXO+&iL+?vG z^iU%Q)+pH774)<|fm|>r z(2GOzmtH6;DU8Da={rz@ZkV2ce@qD7uyqNSfmqzq+UA~{^Y8A8ZqM*_r697Ozebd~A-#J+S*(V|dAgfrEzfqJ+Rlrmg6OAST$M#`(cC8O z&eA&Gu7+Mk<)msrT1#i{aGg@~0&Dq6mAQrb#?_LuM8*#*DXO*!ZeNJF$^QUSub`%b zlu@QVty$}^CQ3+?n!PXPSbgWzN|Q7H)jz zZ|a?oqv#Y76T}Cip=(RM1^ZW%bg!`rw=w$nDPttc<*-FM5%UM4p zhjrhUh%Xm*cSraMomp!$Ba))z1pK)T_ZP(r95%*tD%;|#J|6vz0w-N&^#6xr{m-c$ zuB3A+eJq{1m-l^o$cs{h-6~ddW8;0uSm-8p;=+UEK9s)1LfUo4Gph}CqLeeo6b2mH z2r}9DnHa~vj?-tfUENN%qm!zH_98RpbnHMwQEL2JKH$Hx*~_$XU$}iI&t{%>jTdp( zYD(ocL#K4CEwu~+X$M$57c59@%GG2h`R*ui0)oiky`0lq%Vs+Hj#Uh-k4sfDWk%5h za5K&T&o6GTyBt@I7(fYzSz(LO_n0XUa2Lj8H9l<3^-V<7w}3~l_fvcj96ez^n6*9SX@=v`uI1%NVD!kvw+A8+b#y6reh zhjTvY>FLpzSYn3e{BR-XLOA^}6U=MnyK8+&rFIqckW}dUpK*+t?nw4W&dWfmSfMEU zFpT}IvHhjLH=u_X0&}s|O8QW6N`IG@e{C^V-+$Hsa+-qWUkDxDTV^>lMSh(H-SKH? z!e~xp&Y&RNQ6wE!dXA?uB7mgC&*h0QPb&>{>Z@I`xSp25BXID|Bm= zU;k0-Rgm;;!$fR|s#~)m?w^^9nXR&6zAbu3)>Jo9Wr{rGIYp%OFdjOUk3)XyI z|F`TlHp{WMxNnLuBS7tIy_$9A+F$t5S`JaTc`bqWeUWUlB7>izB&hS3@4rNX27tsg z5nA4s0QUf5FBF`-tzY|lGCxoMAA2umkU6!z^m1*ZpOtup;YTY|+$kYP{F8yj%ssVm ztuzsHUfu7*){&(MP?MGE=nQxOVi+WwyD%vysPFQ-&uaSO$r-(0KcD`rVpY=5ga!_o z%3Y9O+BrBP|Gp{h{e|?W7&zwQeEp9X1Y_1E1=r?d>6{(>BiV|2tR9X^N%6;*9y00w z{MeV8f*GH8xND3nS?RG{GKh#wEa}*gTz&@oN(hc}b%7no4Fg4}`Rqz1Oqhh}DG$lV_+Ux?@p2Qcv8VNoBC$sA^ytwe*(tglcSxmKjm ztS<=;jGrAWSBD#_s6iGsom@K4ORN)pk}s%%cC{UU{|Yf(qE{x;gjvEtVd2_?G}Up2DTuQx0AgzIE?- zl5Y6k=E2(+EW6FZZ{-$6?=E=Mn(XVTC(=c7J{}=0tu-Ok-&AiqO>41|IbHS-kOaK- z^S69n1lxfg2nB<_*AgqAzde69Pd2sKyC9-2X~MNHG#ayAd67{Q=Xam8>?FUJbIr+C zfj<8fNGuGivYds+fbUiy89Dg(i!>j4pGV z5fAWIny#+3p+^hVxh_?tdwz2W&J}Tvf$$ixMK&wg9;;QR@U&a!eOUV$jP>mKKX+{F z^+idZKcD~kVUU@MP4yaNyD3mZxrx!Pf#M_vt}7XEx}#NISfbJ5Zu=rLS(MA;Aa+YA>TKNmaeUSZT%oa>->0 zs?N@-o%Txlxol?EiuCrg7lWfIQbCSh^&?$=`jjFLn2U{8UzYz`G`qmN7qeumKE!e* zM+u!=T_1Q=Kb4bz_%ZP5S6eahvP(ww%Q0y{p6lv{EqpY2j}nM`|7$l2Ep4+WTjXca zM`d_-{D4}M(}nBE3m+nFt{z5%{)CD?jc(xhp(NLr!J1gWl(jSSEayi(+D((?D|9%1 zHE8iBk$$6SZyj_d!BO)MTj-7yK*=i)KO$Em-w*8V>r;}KkB3w_3HTIgs{7ZExrR>a9=dqg~LsDaHu920_EcotH=88d#~EoSZA} zA;h*fZ{Ea=hnv_oap7F{Dliy+WPc<7w$n-qm|JaECgo^_oD{KGEWhhkzM8r^w!J+* zB!sM>u(1AV&b3RIelGKPRmHKPFxQ|22(5fuJFLROns8|lViSb_!o!_Lfs^UjG*DXg z3=G`&D*XIN5ta*wSjp?@jZJ6`!3CR$g*`5AWEnjxQrQeG=s;HY7r97DNR*1q2ZZ;x zYO1SKp~FN{Mn)MfJv?*f4E(GAh!TV2GnPhk^|Wq0qevhiWOkTb?Q8kaWPDSA^wfKh zqr=N}y#aKCoG+5WlqRp!ppU4`Uti49Wx8g>jV<%V?7IlGbx*a??PcU(Q=!ZSaj2r{ zb~dCVeU@ewlnnrA!88fSZ2hsMkFK;(fumx$Vy>lNQ)i;0_J0=0X&vTy&)cDFBglN-F# zq*aRR#JvDjJAB(;M?-6uN}Yx5vh8uDyG4)81RdqQT_V;WlF^1>Wt(474I~|J>P6{wsK>VIqi}f0hfkGryzvGig0bbb;brg7?a#)4$q9Ei zOS)L~0&>NUm+(O8WU1;=Co`MZ468AY7XEBBtx?)FlPgfi%)Fl3-YyHdw0Jy2xDaBJ zua|NDVr!)^Te57vzTbnc%SKkm3e|;Z$&YO7x)&fa`>1d>3txdjF;X#V}DyFos3IB1OaK-g&*X{#jt#54P6galvYdhT~O|D`2 zoUM5HAlOwdfD;)x4IFlQ(?4BY#237mNPktEZZ<#AeilVGM%xJ>1&W=-yqV3UO`5r4 z&$iQ={FYwBb~0HDWL0w+CFYwcv`MonixU$IUWJUizv)_3!9LW6!*Ui~zwYVmyE_1c zDm;f*tDtEXKydL{X|pXy_X4(uv!E$m7~a@ge4gA$7ZJZ->UhfLc=K1l%3EVU*h-4ol0kZ{A-hcaicl-_dzq81ihsw=UOL zFYuGs)sw4RIspx1UAyS>X}NRxBjs+k_zQYhB`61xoddoWDjs%aq}aXK+pr|XWuthe zG~v`KsMn_y=YE-?nED^&N5A$txkglQEQs_bQOBY66cv zg_|(BZl2-D3LJ|z;!G0F<@QJx6-Z{#ZFi$cJ$zk1U=XwH(qlG5uzhj0X?AO{Ap*N` z-X=}xGDa$!Y=HePipIXm*^c{vDITx4*7T za-ofW{a4xV?`>nL4D~krm@H`o?WmM%hjz^!?({6G=#)CjqiRJH#nGD!9)&?&RIp>3 zj047HXi}hXp+kAbrE6f6XtK#H*m&O3xomCiol|+`bTJ!Md&g+O0ryA$Uurvx-~v%I zX=t>Idkk4t-;JUPdh3?n{K!kYGr0`MNcK#xul!Ho>&c=-{OU68bN)t(nqx=#i^itm zkk&H^Ujb?-fzS~sto}+(&RGrUEtEGOMRX*>jsk^H%wp#WD2PZdG-$va5d9Ua60?90YZ!D$vvJ%v#?9WvR zW?PqbHI_VTL%o1qb?AgUpYX;Nh_`gnf{Gmym&0hQZ=fQgQe;m?c1H9uk<2c)U-bfW zk~ox*Ir9C{NTFQ|4K4XG8{bc{ehjQ@q4bH#s)9kkV-nqx;nqap( zsf&svOMX&{?POWVf)XuaJwn(_tx1gWbZfhBA_B%higABjnDa2*JN?A`vU})>_Uv!w zp6hoeR$9-C1{KY}k}05EcG0a1ID(WZnm1%{0OdW5OV&e@AbW;+KLB zQ}-E{6Y<|imRf=uJxncTUD718R4FLb*lk=e+4s`fcqjI;8NWulfp9>a68$2Ofxq!B9vws(&-6R+!WHeoGc2_u|W^s;^$jRQHUu$Crt!Ev%Otb6B#Q z+9{;N0!E8HBjTEfS8S@EWiItSOk6Q}f52#<^l1b)Z5EfnyNfjTLQA0CaJGE=rm2D{+f)5-LPRGW>D!p8t{pQ!UEqiTq z^RH$4_rqjl$ap9f|3ovjS`-^X6G3VN2NN*`glS_ttKgoS&EKKq$SNtA(xbEOx>s@5 z7pjmM3UXpE-!UOcCRv9h^GebQmc2daguFf!7FH`yT4Bim*s=HryVIUooWu8ospdZZ zXh7olLWGt+(%aGt)zbLA{dKBPqu-ArsEg25Sf@ax5f6R`QD-O&^&#eu@&o}~Mi7Ec zOnQ|0NHpK+6sfIruCR#NX_GC9h`l<59|PT@3UrIijAj$p&~f*|_0f?!(Q@mDAKVu{ z(YZVLkGKZLgVm#ek|z0p$DNv_8YZw;Fip!qz-ix+2d!&%5#zxV94(kwQ0n(AQ|nb# zR{pCjIAf=?_0@fdjC-Pz@UNf2PBX?NlI(7t4H0ab1=s#fxOeEqZ@Y6UCn&`s1SLiRlr4w*uo(NNvuE zxGELM1VI$&m8qE-?sRkNK3Nt0D~3Ha@~k(msXz+Q5@>_+q7h#?myTlY(4Hx93I!-A zoTu3vFXeU>lNmB>7WzGrQ6U2}zn}m4xl=0@L!%74r)o<5QsPzdso}Q@#>RGT_@U)- zb{+5Pc&PH%<0BHlY?~^8dxx*UI3bc__$HNTT9Ias!N_uWN_`^Kmwy( zvXUw;9=wi9T=^equg5Mvp02c4;WFHc_XU?96b{gj!3!B2!OW?rYXJe?t%ctIWV5)7 z?iaE~#V<;)O$XD)trVUL*F&Ibp)#Cg* zsogWShd+I(m+`w*=3n`i_-K1W(a%Xw@?(mV)dL5lmK$^f#3~~ruXtBKeH;V(3S+Rz zUA0bfxGw|omx1!-V|Iuj>SL2}+lt%+rx0{6Gh~vYTBZ!#;SEOh-A*W+6%2U9<+E5uX8AjRT*|{!(HfQSa zrl$uAPhES-L`^18#c4zf);6cZkJ|%6ZXScIsqKL~^57`p#T)8zY!@^o z*liwK-<}OBbK|Ui_2=|?G&lSo^`*G@Le=FV4*TmZP}*EckRtluxU}J_C*{ev^J&RR zBsjve3adL?FSnM*j}_Qa2uyOe4!F3{gE%+rLDA{eoB-~}q=`%TL|Ia5Xp0+KH-4%X zX?lWJoWSO9X?8@ks`4Qq(kr{dvNl(d%Fi*;YU!@2nO4Shd+N1rr@{(%?RRt^c^5ML z<^F*ke&*E{44yNDTT(M1dK}p2_y=$Ndy)R}RHh^SAUG|e7g?%U>C9hS$>3WA?coIz zfHUJ+{o1`OjW%OInwF9i^=l_N0eI_6eCF#`z^356xzolKpX|(uD2TWx-%F5>52op; zp1I~Rw1gXd$q^iVDwW)vCayb+L0{r1h0$Wb7G6(urK9p3b#F3M%ls=#B~HpvnF7RJ z?B5~;aQ14%l}%Q^ff83shNU6&kpcPaI>Mc!Wbe?tqukspck;HVNU2(p()N2TB zEeUo9EQ~nfm>G23TrR%(G{nIb9E;#YD;(PuX| z`!4fa{s@W_Vj;sjD0nen>DM--za0p%(#;P02(>$N)!KPaTRt!!_QbS3J+AmpP7UV* zW5h|^^8Ktfd`M5Ry|HTR%usT?1mUlSZAZPlnd7%f7ru}z5$~w5b5FLYEiV|dGU_`HZ}Ui z14;AG7|fhKZ>Pr2r9dih+_1?qWh-cIt3x@M#t4)rL^j?FI^jz_85Y-H;ifT7@|+XE zOu!2><$^<#x$;`?o7?~E5QRV2?=ZvPRx!O0<^>X{b$kNR8485{-q1iUaIm>OI!#=kHn$J*;IL5)6c&1v zsU%j@tOmt_JH9e++luc*hlS0iFP)6;9G#zoS_QbJ-JGR80Va%;@2KK{idmcZnLEba zey!=^q7kUY1SXg2^G0<0R6?73!mefepCnA&0+?_8fUFrf;z~duzi#QpM%gPhZz}Qw zh!}Us)ON}BTs1y@kNsx_u^P#}K0RE|rVqQ4qiR`;}AGrrm0MLKzA5)IXSeLJ1;w)aC z)6d8d$m|O-mvi>&ThM&artRe96!OBcqS@e*`0ML8nP!&DKZC&>YSu~}{Yl{NEZ{>y z-U5TU0$g5$7|izs*}*bp$M^wpLgXd5=yX^+F?Tn&Q2#kCvCBW${>$pDWdgtrLFcV> zm6%%t^GE1w>`B^Qg2Rn=XbO!~Y(_mr`FoCr#zbX8mUc4N4*`eGN7}=@205o0Fxn64 zceQu#h)#)YuDfo@INcySc5#@qh!3$B|6$s2f2^dKSQFCZw6|qSw)(6GxW>u{9&ZwL zKP&EAOr6?}ZCk#e#v}*wiX*#CF@jy)ZvLClN)mzgz)l z`nvCxlZGx5w(Pb6?#lZ`w*GhE{Nrm6f=8Mi88521^lKMV0QIJ&n1Lqou}6-eQV}R4 z^hlW4pV%n=UC{Zg`bXScQtEg+QDwoL-tpCL8^PH~X21I0|73;39W5bVqikSMJ#q&F ztDm+d4ACZmo*#^hEY@!7R3ncZ^IwaIQuGtk$)ev9*axA=j0 zll$*AOSmL(m5&fJx90SAeR5*%{jJUOM!AnGb`~2zPAMx?I&6qg*?qc)9%Xo%Hs~;bE-N0 zZt4t>tVn_1Y{GU9he8?%fU#hwY{O{BBKc;Nn<#=!?f*Ju;Gy1sdxD3$THCW?Dp5}j z{p-RO5u0J0kk2_vs!sx7n$9F&!J0%gtnNq^UR$fNih3DLjyx;YeY(t-j#f-9Bfuh+lOKZ$KtEeMY zN~P9|ZT+EGg}3J_@8QyQd;he9ES#g#=p*?`HuyA@N-wL8ls~B zJqEl0d1E6HHlOkGXqe-IA7F*tTM_LRGeTXE+L!E>6eFMxzurl-Z3pKR>RrBxJIzb| z+|lJp!TrkOi_$oMybi=n9AsuNfZ@X@gps(CEewhm#^G7q9;ZnV1X^v^#?}$*>A~}T zwq-fcBlTBmzWUyl?~G}+p5?xN=3*Q#^nu5NQ+-ngGqQnL54DTJrNKN zlmU?r^TolUk-w28i9elHRHRaG*6*Kk>H4MbzcxT5N|0b!3Alc6FNcP+KNl2;a)DP- zQ%nP|3K(SN)9;@97STLiB|{%s@Z9P&mB_U}ugm+GIJ3H{9YPrv0ZN? zB0EV&_Gt(eN@V9$fP=1uS{{P`>Chf>4u=YM=wv|He2 zxNRx#<4%>jEk!YSV%L)p)qh=*Qxn&?gZfLbn6B(wD$<-g0v2@MojV@Y=_8vP%**Rt9fp;84Gm@W3ZK?R}K>F05xj!k*jl>oIL|j6C6BBT~W#)>jU}mS^Dbv z(zBDqp_|K2*8+mz0^%@1(jEjsG+a}<`xGo?%e(eX=I52D-08NuxhUUFtP4Fv%59o` z8d?79)Hc2u(40WOpZFN<=5CwZ%eVvkZ?z~sK@-3F(wk^1o(kIEj zhFuGyr_dt-9_FWikN-mhuK#R;7(z&G12)L4)UU6+`S_D_Iw=3tAt9r6B zuVaS7V~99^^yT-~3+48G6u#8wOzeYXCPH9a#D9T?wdGFCE~3bfxR&Yd4xV+IdgjcNB$!8jgmtAws1tt$)#+F2*< z={tUqc%7KH>3HVKsr_aVXX}A}n)7&N;b+{jLRFG!Im;Arv_&RoMg>|`K_d}#_*F?X z;7GgeZZ}Q*VaGtQQ|y>{UGFyU*YQ97+w8BLwf@_)HLRtw`5)ZRQ5ur|^5C_=J~It} zNW|f1K1)$$D0_q0t$-eKi`LxTGej)Zd5mFc9}lMy-yZn-!p_88t7=MQbx*i}U*JUg zNyjS0z&D?Gr!x8$=ouip7~1=I$Pe{r^@W;aWrvvLB0BVpL!Lw^okR)W^EUsktQh)4 zA+VqoC>>J>^qF`XY6VgIJslXCYN@Ep^(II_CuT zuIT#6efj(El|Uy{CifcX7LU5EYxq6{;z-q*XOWu@(3ZO5&FmQt_b2feWHH>qSUbL8 zC{QtF;&H7!W|@SD(C;zI-bm{ztcT_=Pjd{{Uhker-v^H{_-t(yu|<>M3OzCZ0hC5y z#k!94!w)~L5aVWtZq4P$2fCFThZ@U1n=j$Yn*jlSTZ?%`5)DyvcP(5y_pysb5v}Ew zKTYX~wp4Of9t)mQ@NED2YvWLQ&wnfhf{i4=O$8H=6SP-fnv(5qO~vJ^5xP^vK$HU| zu-w+hZ_mEvFh-D3GitbFj~>ch&@6Dm3OMq4N-Ev^vy7{(PQkA~y43=xT={t&@$e-R z$r!_y+FJSi0KQb}sT-Fmc-RXW1DacR%(W#Tw-PDOJ(9S(rAE2wTAH}BpXV^qCfDV# zU5i$|bySu3D8s$LQ@PpqiH}}LKhl3YQOxq{!L`(P-D*~G-kGxM?wOftV{zuJFA57% zhBe{HD6-S9JaUf&U1m7?;KCJ#g|o2pYhrmvqvjoryo80?%>{{w_2V2}vkT(of=SGjag#Y)_b@Au zzFgxwapPjD3BJ{=#r*hG-kd;b8Rpp-8MY{V-^Fb`gN8)<-OcC@g>P%eI^LPoGGFEE znqnHb8`KadG2x?pBeZIYiJ*0~De8&7fhbDKYi}uM)mhmCEsu3nw3y{w)`;R3e2}^r zAg-S<@sYc%^46JnpGG&k?K^W`uimqvWs8JMu^U1!?}v(>B=?ao{;+N{DO_P^pVUrL zt}H3SM6#eH6E3(){Qi1)7oAe0iCJQ|M~l6jiOB zlT6_Fgu!Ff?@915A8n}o@cTT7zo%k{2#rgI$-ow2u!DFdgHRQ1($b4xXQrsnX9X2& z=2C0IsryN^y!}Z;Ljwk!qv{H`f`hx4$)4+;e1okzoRDugb&6HJRO^O|;&q3Us@6s6 zQ*X*N>0_>*wsw+uh4-wZ#O%)siI0mc6+J~g6K5j&Xs>gA)vVV#_KsMvG*g;!d)7;d z3R_Bh+hT@qi^@`!T4)fPF_w`ZZ}7ianC>f2-k1YER?fjr9IG)-}9+j<>yqO-1Ys%efb|3gU^tshCQnb z6c+F*$Q?gzY2p9$<64Q?<}x%W|YF(Au*<|ck=OEEj+QAGWe@2a`!bf-hiP}bE- zK0l6;=Q_mL>6cAoB$97O%U>upQ=CJKb$CvyScLVcE|l0++ik&R#RIl7A#F4YbdJvc z!Ymy7Hyy_)uVY*q-Q7rQQ{VcY=up7<;`*<0r=_ITP4S0d)^h{uXUNUq{XK;Hj`A2k zp*Is6-rwbwJs&bX%}BK2$~G)3n{|VukbDxeW6NmMmIv3753uuzI+Q8?T<<|?#<&$_ zJroJM**~9m+R;CYO?kx4X1!U&VLjt?{qQagChQHnmz%K7t8w9+w#PMTCz)+~KA!WX zJ!ipE#RTW53^_S@r&0M+wOI4bs&QNR1U_Z-F*uL}*Y2^FFv&K}(i_cI@TX7HDC`X% zg75gFU4Jj)g&UE|f80^=*G$1fY-xImMMnrB2~(P>yqwYpds@Nx5Ym>L?ymoPP06G# zvbYnR5_A!cncGna;1|@?p`<)2w`KpHO=>ap4m^!r=EJO(eR2BnQeFt;Q}|M$@Q<+jpc8bW?cr+xZvkNxiXITveaNty6Uq!2AemQ7h;ME znrJb*C1wLZvU@ePNq0^43)$#DT#WF2X_Q%`U9%T_jyg`gg+6|Ju-D8k_=A04Cj-MW z{~yOL{Bt<|dd|QN8qH}8%*B@HHB245{pfm{X)fmAi_WB6C)Cb&e%2@f@sd>6jI54? z^EghEwOrpc6Fl+bq^2uEmd~=-Xrrt(DhJJrjGhdAM+?3j&@M7s3@!=Z8&>0@77TTR zDH1A)dpIP>G4S}vsm8mjTTcv>KIo5MR!1dBlv-IQaRHV5N(d0hH_hfn_jWgG$U zhLX{a{MFkDLlb0kXca5zyxcQ7JHpfpUR|XA%I5q}bl1KIJ&p<>GtlLBidIbsEZB%D zPcvKF7aCNer)&MXoZES|eQdplI8r)sb<2)mZ2-m3zgaxLP59itYxq!8BXz7wAuVT! z)kK4sldE>cSDLsSW`!+NqIDE{wmqr+Y+r+8?p(Q5`=s*S31+w7U;XvD5zse^P47E7Ri8*5w4aW}=wZ2qDzX%* zrKYh<=cS&i@eB4oRzug~f~P{1`hNWhYy6RN%x-LdbgSk&q6?g5@VrP^Jy)Uo>f%>k ziid$`oFyi`$fL4O&he@Yl|D&vlHkqE(p7Yg=$ks`aawLfW`Or{RrgM!iDc(EcTvWv zS~MmVb+W8n;=|l76s!Bwr1kdr8toNS%aJc0tnW!9zloKebqg~|Og`4|a!=@yS8aMS zPl!5dGzcyREVb9lWOK4KE8_iR|5)BfvviXMWhI^l9Wz+F1&0`V{YVksFH=nWO4+pf zf+8Y9hM{^BiEC{;E;hJFe+|UH9%3i(Gsos^7AhpOW0r{yslgV;op6a?8yL@uvX72kw<8IdyQChIxp+CxZoBbGs%}1^pU%tT# zu2Xt8MSj+tvv&Fe@}gT^!#(?QazjaCEoL0iXUD83d2Gb<&empke`gnR9XRBBe-1X7 zN5ca@?7rKsZ93dNTrq6ID60_jot-f+hDq>=F5B?Q7I($CaeEHurYr&GD3r)T1O&Y- zA&!CXGu#fL%BIA7v^qknqUq{I8NE#C7E>9x#t?~#J*S4x4Qv*4oY%2TUL2HFU-^cS z*ICY7P}DAo?xFZ-vPONyfMR=#;Ys5CPz8VY(Gw`ni*+!h`jF7+_G>8L*}h)Oa`-)l zGM)od|F-hjUWGYy8lDvjx1HB2upCncP_^FBFRiz#R&1SqWnh~}Xkm>G8uGUF*a$Y% zbt2S7_LpnLIoPP9;va+^73X*%XNqP=vI-p=g`VB{gkFKtj4T2Q4vViBbQ+ST)cT#Q zg@_E*>pI4;7DLQ!Kett;1F+R;CO7jI(z6mp{WI9Qg5Y~a^TFTGe)29DphGLWQcxY| zS2j;0?maxLENEeHqc8TEtm(1I_HLap9tLT54E~|sWpQ=X;r+v2l-vGrVA&65@%ph7 zS&Wx7WJ>9ZFRDN>#O(Kb|NGNp{}tbh>4!;Y&zl;^98g|za_zNSc!T9S^%FvK#rjv$ zfz>HCyCZnjoG)p`Nn(c^juSdHr#4*~aEDk2>xk1pSu;@e5PEH~V>g`+0DOhRD{rGImF@oXa7r)YAzP37Vk{2naHJR=4AK{fl za%*Kp{$`=&v2v)pn&6xb-rqWujwUvpY`IbKRvB{3IIe zl5(EWFFh(R)!duhCMV?xUz~PWPm8Z;G8B)^xRKR?LWd1}*)6#)x`ik5+&3p+ek}l} zeoVD(jfhpT>=zlaC8I>j3_sFcAJ$~~J+QT39m0QS-QV9MxbUwDx1z2?@G@h%H`mx6 zc5Bx8@>2F^;@dnn^AV-K+Rf%hYw#VR7P>AiNtW-J*`b6*%xK?F=t=*a*bhICj(?!2Ja+N zIpvGq7ypaO{qcSt?qaW0owI_CB6E(=RQ{$XrW!WF?Wmi13p&v@Ygpj7EuMl4@ zU}bu&nbJG{dG}eLX*-&YI<=wp)1eCuNu>sUtsdRP34EpL5d|AJoPG5PzFY}Hp9~ie zOf%&*wj;S89uyY)dV-WYdbwzT%jqd9bum)Gu7$d^pggzEv6<^^2PdP0$0E&+Ld^Zp z=nA*8T%wgijO1;Wii;{h9*~qsQ-vMv@M$zNU!N?PCGu@NB2%p;vZ*-c)#uY#p)Vi) zl}2c^;>N+Ng(@Fm?X-TMsme4Lsw`>$Zu)Wc=hm(A?YiU|8#hkZkK&hVsag)~j7(V( z21oSPcJHjopy!_OPy# z`gn_c^cP&*jSr!{5*93txEI&Ma+h!ZZg%^8bMc1rUu)<0gODbqa5i9r8fursiv=3umy0FIH+%XKh>yZS#3TK1Ia89whd9vgB9| zNvDw~*)i@yyQy{hAj&Y`{bqy=grAXiH-ytdIHA>4T`VCDJ2Q`Zy{%>PFvtAPLdKB9)J#D*n`ly4;qtVfbSZ4g~6+c&O`0*=YzL#J>w8xN>ba)Sif6Dka>7n~Ovz=-@XhTH*zh}b3{QEyIxTc5HTFge&m%bCE{Y_)#d}UVuzp9O`wdsaFHdya+djGqqg1Q&nb|z z&H1l3bnhVK@Hzoe>W{n@Uml@6vGs})Se>|bHsCAkWhLrEswHBy(QHzsH2%Lu3QsLF zrc4z*(FiP8g}j5)pxTJKfx%SC;j_V1^hS2)BM*^s2;0FWd{SBU9EG-ZT1!M%4FQSd zMhM>d*Sq}vZYz&dtpeVWI;f$l-h8x7mjB_TiXtSYnvD{gHx+k(_tw(*skjzG#y})! zcODW_?{mK;-O?BnOD`jW;;<&VmT3|6HIkII;^`-i1N>60#zYalcAM?1PDWCRSf#u2 z56rxeg`7`IDq(yQ#vNfhl*ni|Mwxn`VW@k93Ej!3a743F z1N$_~(O;oM?@Ld@Ir_0%;iHRNNVZGC8?HM?4Qcho)0Y|Allxs-_4_ly)d`WMWVd(6dkptI1rmL}`vKZ+%L}+qZQ$)F192jJ|Xz z^mJX$R?GvuI0q8I)C2^@IUX)Jxnk_F+_Ss+)s7(pSA?ur4fR%z@9o-uerwG?gD44I zF7q@4F6JR;;;VdrUb^QsJ#LeiKkhs+S#v$iI=k=GpVQ(o+Rjn&;ddkbUvuSgV{*Y3 zp9E=tkjJ56HphPP6+nC;i@7cbWpg<%ugj+iG8VhTcbQVnxVVSL@~6o|e_CcwSh1H! z))+6+sQJWdU)ak*LbaY3@YQ;FA9_t%`n*7 zlRZ&02rY0Xe(~T>O|9zZ2_z?^S2`CK?(2pt53=7833tN)h-!^}l>!%Z=>3s@515-p zK{_uIDME=j&+0sLjNWY8>m@tS!mKE5Bk}o`88^N{N@A)$2U&*keaR$k3muJ`rHTNs z{Pz?u#k3f35)mJXb8~&NN_SDir~ss3k;bK@_}Z@=x;Pzv+os#h$#U&l^JgND3s!shw~|w|+PZ5%;l;-fULAD+ zQs1;U9`@3w>BuESwW`s-fl_GC9HbuYc3Y~K3GNE(i(!6X9{~cR+`Hq8yV=C3B3bIE zGrh`z2vNb!&%qoARnO0~mBzSGz0VM+grfkxR*v5%YeikI7B_6mk5hB6EpaM-5>%5| zyRA1@yyA#Jx9NFa74IYxCHagJ++U@qy8#{l0qYN`Mf4>cX680QQ@56XK)QuR327<`Hr{H zW`M+6^?hf^^-+>VbXfEAI!{|i3}$TmbxY=eN;3SY=|zjkILl% zjnx(9`_g`dlg*;d^2$&1x5T^} z^pEf4F3jzfap5yE4($#pl}P%GJnDV4w5eUg6C?20Vm__w-B)V}sUl+~qwS+y7I(wh zzRLtQP-47)UPQ?V?fG)pPN$hU*%%aH?e?^R4uxn0lP|Pr{cG+1^^MqxI^b~PB9U6y zfuEOZ)ldhBnY8^{g&gJ-?|BIX3&j?RCw()%XPsdksKb?F5j3-=AfRC5=H^+b!ae01 zKW9T4ZB)4(t5}-uKN*lN!5qE(LiT|XD*adpITAo)OV&~R@+yAPB!=VU$QHA-kFMBT z;J0%utFhJ`vbsM(BGs9gpx~oN@Z~}$`sCfs{(&cUYpwTymMci%f+(7v*-RK1@M&>a zy>E*gwZo;C=9gl69Ggi#aB$i=x{vbl3R}ss3Aye%qINgLU9BhIVC{C|8>Ty^#k_1s zgC3@*6A<{l1gbP+mAbWBy1gU34S;a9QcD2kda;D)kO`K?2xlTdN)_fhn0-%g#hd#U z^+x~j-cA1fm3!se4}6CV$d$N^MC-Jr>m?VqO*dM+BbZm)LzqVSilRmC!7TVr5G27+ zt#(jWt!5?{Q8a7}5b0rb72kORrD3Ux(d z8H&#lC~@Z-**tp*fFU&{?SVkLp9`LD4f0y<2WRH1n|baDx2~|tT(=51VEV^_0dNlD zq?H=#uPOZf;Bk9u!Pe-@yC$_#bTiOlY_F@GTK3aCgc2Wf;Lpe+j3rvwbipi-MOjm8 z*artwWFBTQ;x&i-3#zi$&x6>RpM%L|!>5SJLj7dAEC!jCdq%h`Tg>qblR4|_(|+Eb zo38e<6RTUuA{$uS{W{S#m)-$|fDXpP3BF}n+=V4d@_q4v;ax3mS!Qxp(%z(j0MxuY7+JrHGttUbaq&`nHXVg5Jm!ubnMuvD*Y0bS+hMCG&ci zhSn=~KnKr2H=-+d$`3&gpdoT_ZAH(g7f0H&hV$P8C4a;5cUQyjLHNh#fq)NZOzaLb zieK^?A3gZ+Eis1;nJ)WVYd+44AfVUf)IZpqnYiPc;1fw=P}GPjE%QJbRXWti1#0kHa<`FMwq}#qXB$Gpam1I5gu^H}S8fEc&JRxzmP4 z_0-aGAd)d|m}YgZZc@5M9gj>AF~6o_5E^z_9v2mCuFJL{#v@bLSsK$x5mvskyBi)9 z{6v>q1_kKGZKqyllM*BF5uE66z|0c6DMYqvChW6jq^)ewi7Y$R(|+?!0ejm z#MfVO-G5DcppNPTS#s$ON`{C`=lw7OHoeHjnqSag+ngC25K>^T6C@!G>Auc&aXSUB5U$TFIjMBe#)o9)p?PkNz3%U z7BgqRaeIHHl%if;dE=u^ubJdDb!wwqTm3_yy_pFJ+Yfz|=ig*2)SpP2$gD(Sx!18J z&MT~gQ%uAcV8vR&euAGdRn~EKbzs6_r`AN_!cS262vvSEG2i4L?)g0!|Ne}fK-R|8 zF>#*<$D3*oe>_7!mW#Q2TdafzT=h!L6C(0Yg9mw-Vhxu6L@TV1b4vQ=UoRxX-om)x zodz6wzPm?8yctzc!=?2!a8GtH(jI6kUvH;DaoIn)%~4s;1M2*gP=Q)rQP*Q}DK7~a zH0c($kJltliWHp{Qh`TosECO~hh zhRs{fB4%Ctdq&BNk;S0lSg&4t&DZVKL0c_RveLM76yx+P&R&H_9W@aI!QRP9r-V$J z+Su+q!Dp+^?K9ZXS8UZE-c!@6h5wR~0@__OIFce6RsG$79`^an$0RlF74rH)t^fPD8+u zQGw0WD%;Cx^MN8SmB6(@L-A|%58f7FUYuqO6kWDDP-|^vo=b;9#RER5Y!UA5Nd)^ZgN4U=bvA>2N;oN83&_dn1g_3+nd?0{BTz*P^7S{!@ zl^+~*==r?Lm%YmPQQ7_3{mV74nDeyqZ=FpL-Y(I~&pnf1r)K(1g^lxQ&BSaf<^uS+ zfJ|>?>*mysvX73222&)En@6UAu5Mf>;7qu*ML(B6U6?A$DI)Sx?|0Jq*8l)*9+n?v z z_tZZ%q}Enid77gNSPj=iH$^Dr9qxt)Y|C#?s})rI%x-Q( z0K%|iS$=^$iCL7mzLtZs)8`@4SOax-zN&8LpS6QG+Fs^KfEe?^0mQ%6#W=*Bf&<+7< zVkoLLu?s%?W6cqXb8th|)wH-w1PY&d7AD@aUL&WuN_>btUwg<&553`*K1=Ji6hTXLtZSDfg{mal}l-z!Y6$?Do zKhYMi9n?KnutpKcmgrSRfgz6lrQvGV5+l?*usjw+7+y4}JvX zF^bR>ea#6}FSB^53Ln>)Ioc(4J1g#ZDMi-DNB1JY~SuxEqWedEcT? zRw2B0IW?hsD;tX*aJVuUC9VNqy%5lQ~ z^SVBdaxWNP;XGfoP*0kjENPvg3#0DahC0iA05_2+potLiStk!Y3)m|X&Ybq2%z_nL zw=(c3z4cY{8;e})0&}t@h-$&TK!`#DwJ~u~&GWK_XIbtT{i27)Yqh6L#gu2}RJdv9 zg&v%233Z)x<$h(=JfNp3##MmfQaK+{at#3X_-k8QGJ0kTd!yB+eP@M_Q8jw*O;Ue_ z9?SabMy&ThbP9}V**fWJxP-$C8}T>%+mnx-62AaFD0Wo_ESo#yMFj~8Gcu6xh(iz5 zC`~J%ycA$#)`eOA=R^PH?H3c|+o*&`7NPK=jvbXYU@_sP5Le28MZrgL*F<>RZLOR<{YR+?nkk0dk0ytAiz$?jFZdcXZ7g7sed+`o*)b=62~Em41dLt( zJf5!K!hKhkc5}AtiDNqdGWOZWHV;`UrbfuJSzPv`T$M)hn;J1R%h5DPu39f*(-I1? z^;7QqJK!7`)-d|R&k1&&4;sP{X0Gnu6uLgRSJHu&BWTj|?37Tni0}z5P+s5892Q9wpERe2@fo&F?B`9P(+;>d2k!=^=e z6kfw=Pl%Rn+D*-2HRE~D2a`!I0`9KaSTU8WV77POx#I*~WptESRPp8?Wkh508n-+Ql{th{$JRCSaGV)dfW9=vXole)Pj?1(vJu zU>QY0-a4JX1j7GZ`c7B)_a#6zsqJp!Y;cve2L)DF7%joyx2s6gR>$?HV`ZBRv zEG4^lY-SUqMc7#7MTq!LKO<7>fZ>7?!p~NoIr*w;LJ1ypH+$aK&lN8flAo7$)wQg! z$xWr=?L9f27rd~)Kz2`Z*1Pf>;KIqw8q$tXCTjM!QCvcm4j8ZN&w@QE>Ku&i_cenr z>Fah73B@pGPA7M?dW$@I6BbXCf}Xht`tZj43-pQqxGpDgk-Mn zY8S*7?AWUMu&aFtb3_KrV!ozH^fTF!-*gUYimiATmNca+Z5FC78Ax}`~x5n8;b(kZ#^E)}gbn-Ox@AIwJm z)U~;g*G!ytCgR^U0k$JO%`nsMPDO*}+@z@vZ+lYr=TZ}A7x#ms?_qqi%GHLZ26n~z zZDLfp--Myj%T3puUUf?}x-r}?py&ZJUURAJcbkLB_jLKb~INB@g{e$itq$ zSKps&L$U43vw*hDu?U&{!c2A%(w87CK*f8Y1$=NV{j(y>6Qh7@LE6d&_oAtz!A}KV zI;#!NG0Mth51o#wh;W#grBJlpgAQ5H(ya#Jng^Kg==n6W>A4NuuJ{(2LFs0i6}(bv z#fuWXHC}M{=I*r>bVR&ar2HW?YPPZc}3Un z|vz&m4%Hl*A!W*l6~+`ru`A-9WYjjes(${BkT63mb5l6 z11hGp>xBI&@*P>O3aRIS!?OniURTeQb*r+3IEN(H&SBcqC;Kf;7Qt$#@xJsXZr$!B zaFmlFgBdvRW>|mQT6>=5Ve=3OnmP|t{nw`_d$(D9Tn&+yE5-D0rOn&X(R_o+D zeFVA!ZX^oR?hiC_dPWx3qBhi0x-WG_)h7X%gV_v9Hw;Yd0o(EUpXvxCqG$i)LU{|| zxnQ!In&Jq49dY{Gk0f%W-n~qIV|?V8v&)LV>0aoCoeyhFNx&}cQ~hlHgEWVx^Q~K! zzZk63EO+)^T(j(|lt-9(mdeX5mfu3GUp9iQftny>fO?^eWrNyUeWL z(fczNet$i(<8!O3wq077$k7{35L16jyAKBX|A=!&%$4q{+HwPr31w|M?Kx>hU~GX- zW*+)OBhI6iP8r>J7F=uG_=;!T4l`cH{Y4zQz$D z@{970HBW2jSsrc+S2A;xw9ZK7kT^I*&x0069lkcN%kyA!cm!{5ZgpKRvfUr#c_5)k zb1R=oLR1)@EXFp@A0_R~sam&|sIxO&AeL0LZfww+dRS{0437D*CqDH8ge7(>~98@je;1NoDejcLQy`Y3j{AfsN(23!E84wgEm zFX9To^Vw&++8lXKIUq_A z1|s78RBzDfg*&r2JCwb-@~espBUum0Y;%dLCLiLAsng4)xzY;NxJo zZhR7-X77|9SH+R5 z5oF50a-&tMIfUW9%a6>%GI{&Y%p;;de==dGXy*>NvlH5*6YppTwbM(QbXtH9^GJJd zFkcds1DlQiJR{&FgYcVeC<$=B=3brCMSfzuFuNL?{FKg#qH++wDs`tee<6B7I{`|# z=2^672so8|!iu4!`K;9P`h<~9X+9w=8eY5eI&aVtAyP=vfZy2>Q)$x2vT=1z`=}l~ zf(MHB&st)J6OUE28kS_MBsyop<5=c^Lofnkts-da^*{2LFpH!bE;=l0Fq{8nNz-Si z4L6(9={T^cp19-(`w2AQNS*Fs*LzxBMV3wXX%1?NQ*?w91}?R0eq(PdJN{0(5-|fOHtZ!J7|b~9Igf?DSXi4$_|t1w_d_dw8}78f;Pc3 zA2b5WEpel)U|R!*_|@jd=P8aCzbsHxm4j3N;5M#&1twp8WL37-fhXO=+n993VBcol z_q#8kWe~Nx4eL4D0vr~O>T5d4;RFgf3ceBm0EAjy-CgVwd;|41*{UAj36yk}_R~v1 zLv>ZEp^RKBuo7Oo{qjG>+|Td%j6%JrJ0hFs1 zSQ)-_Yplf9_qYoqnjd%#xF6+ae6pZ`#o0(z2F~`ghD)sj;ZL-R?0n49WuIi5M!H0B zm3!oWeP@7h`hq@4Z)-L2T?Z@=KfKo4J-zo(Ns6(I(cirOsIz{`T%2YQ$Him-P`P%o z$87O=$E&Jt0`JaE&8-1uP@{6;DHm5M?171M4yDtr@Xo#zEtrjcy}c1yaV&|}d8C8B zaSLk&Xgq?;NIMPEp3#bY_J0x}GmW`(Yd|IDuuQA zIxFcuOVME?xh=KF@Yg}zE#6OKHT@|6ue89)@0@>mi1eS+<@-VdY^LD5gc_KBBaxhD zW041V=LmUT0sW4LGKf~lNUwxStz-dMy#V6T$ zO@8eQp*uw>y0Y~x?wjxKK_63_tc&CsuYtWS!-K5pGm$S%ErXP_L&qV_)$T=RT; z3qA{l9m2Ya#uh6?gk@TvWY}$Cc7&4hSpu#Ihqn*SPIj9Y0sd!i-j?C=el}%PwpF_Ai-HeJ)AwfZ1lrUg}@d) zUL2$6Pah|+wS3R8Z=dlHE-M2glx@@_5#!R4&G!Tf^@&D~6 z)54w0`fty3AIbHBk?66jPPL5r7@FI_Nit|DM-~&%aGS7~M6PypD;>65P=v&74dE}C zvtwH78Ls?h$Zsp(Lnr^v5kJSd?)^`|&jsw_D1e-Qsh(tABr{D}Q8FUiR>4AacncYs z2`CdG;sJ|>71Te-rMxD;mUkQJIxJw3yj2QTybA1Fc5rVToPF0YxtnTpdibIeSabj7 zb!11eoZ-fLD>rz!A0a_%hQxps^L-KWV>{KBEr$QZZsXWByF1S(EhJoBtdFu@Ivhb0LSxGn{s!=HTlQ7>cxh^d8)j&E9v7 zD~)2Ve_cI-T8AACK+>_bu2k)j0pyIY*pP^6O$HdV?A%3aOqeLPYDp8+dATe7pa}8%hPhg%+259#mBh zm`NP`%oZ=?M{xT~n1uY3gX8T@jb0N_Z9xvVG~=SZ|219nU+dcImxt3MU+DyJu_kvd z*HeiCf(4mJ^`?tuCNKB_K|0JXGNlslb50J>H~2VLa6))luJ z>sA)rYd@XQo%QfWBNvmki4WhYwB5~1dliMg4*%0LM}EeV@2-liSPfG@d`6bTM<66K zpcMle;8A2#?Q!c_qs97Rh~tq*P*R5a&8Y<&rEUNacdmXGq+!=S_Phh5)$FlAEl@6e z_IQhDHf+$DGJOoHBzs%`ma9WyR+uDTY}oxnpb3L^Xf?1u!hiG(QvF??-$JKb)@7!< zK$=X3^NL%dZPT%u>raRe+x9^kXqSo?n-6B}8k%KqvYh^IQS~ec3aD-=I}Em}3M()PRY0jk>w zFd?2a`ILSST{dX0P>^E~8gO-X&EPheB1l|dDefrnb82aC!#sBKBjX+iPa`uvvm z%+I;`^>v))cLT8O_kZs&=@?q+7{qrBwbyodP<=H|H!Jq&+PZjORm3 z^Kd;=HzAeh6TdJ6)LAY;YASuB|2P8f)BpR0$qpZNky|gin{FNXs$gw0Kb0bTE7q^n z5M%21KN{o4M7qe`yPS16a?R#bTLNpDN2hMM?5F;)Dx*X!A(11dFJo)1DLPg@J`a)x zaN=oc?ft#WTg^z3Cq#~yG=PRruRL6%2<8E1%U&I%R$FZ-WT06bp}6c88M!BiFUC2E zOW|nafOxkjI6D*qT1krl8lU80*0~LM_17iDCfEJNC8d3O?XkG$3=IpfpEcdV*^l~b z!48S)t3szf-zkDzBxr7-AP)@~lvK8`64|Iz8?H3J- z+S_y90UYT`;NEiHc*&jGyfLzNzeEPw0-zQ|H{zUskiSv;b1nLq0xoh(AC87BLE{~KgLArV$QZo$qXxm{EJhzf)2L|GSXRP>q`HL4gkhqMjNAG=Y zCCEEJg)Au?ejg3?n}wdzbAQIj*6CkcqMZEnx5s@2$BTcn&(ceF+da9|@zj~`;%*3V zR(UH*GAaM?#M4cE)%(9=go-MTq-{^yHJL}dH4`NV`Tjzq3^zIrwru5NYOm^wIzI&g zI5Ug6<1SD2!rB&Fx_wlXrDc%crdGxZdi{!0pNs&>LHIOB-=9GCzMSzwGK2@ZL&fQXXnDzV2`eXw`p?w-Xk|*vkN?oQo_UN{^TkBHgY9}n?=(Fhwyu#Io0wh_ zSLGXCHpsPp?$;JF=%~qF6712)WK+$)`8=E8@`}N7wt$!h+Oo`mPPSIepi3l=aA9m{ z7OVM^!{JzdY3Vq>ED1>t&5&t#YvZ=D@U2;bfQPN71y@DIom)mX*xz!6{CbQql_KAz z#k_*QMH%7NWm{t%#>h2!vVc4(g`T9yjY5{YRBSF01lV11UUH)7yfhBIfQ3{$i}s82 z64vX;d2+>!U2wKssd(H}R^P@p!rUBt!5Vd~$KJ;A)aP{z=d`#71#5@9hgs-x-_9eg zoj#qanebSDH}q`wgRRoGj~~y4{UPm8sa88VC}SU=(-#~&>Ko>~-#0Mb^4rqBe+e(e zdl?x$$t>Da?>Xbu57}q7`{}3I)=?e1fHaQS9JaT%sT+R*|5UhPxVa3X=!>H?sELe1YH` zg=>7~T{|hm*+DWt%u_T}rM>K8SagjsMnR+Kx?o71?UMNy2N~z4Z^z_Bol{EfJgL`w z?=3vvzs8=vu~{ppSDsm`vvCjCe<+;1-?tjq-)#ryTK?ZJU%D?#vxdS9T+>j6H}WF#&2?j*Ql9h0{{8 zo!o{g?lE3w0@Xul{kVkGJQiyuTlFhz10Ic3NMUh_1i6xscMH+0BMlq=ODp6-T$-bi z1-el2{W1ji@>i>}gEU2nN)O2AmzcOY6a8AbPpe9V!?C&S>4P!4XZ#*I$?P*ZQN!0l zEaa?y>Xxk^c6D)@pNdM_e6rpqOh;Lwu#jlatw~cMgh})c$n>y$95!!hVwX!}dYm@ zust-H>*!O!O?9l(m&hQ^FKU)$p?yr5_Hp*b`bT4k8C3>Oe?BiBMpp6DgnYK>--Z~) z(QNC3XZE+Uvo7M?c4!4o37Q)?bi@4%b!J+R`H5xE1d?=~tt~ zk&d1z4XCy9D=A#8FK?xK6tBfy5&E|q`pY+@XY9GPtr8PAA|BehyJsGB!=Yfv$E%#q@{_dL3i}akGX07e3W-&gq>&gYL?M_U~g7*~_i^?%t=(P_W zF0W$mdbgGBZM@Q!opb;qa9_Kc%Ervj>H}lW_`nB89HcqfdrFc?tcbmz#~b{)sOXH@ z{*V*R;cLD^l6u~BknY|VThvl$A|7jEVMa39QbxHKvjEuO>Uum7mJ+km`I{~SfY-~wCW}19?adxPrV7bp3Yb4*nX`fN#!x|&};U+8#ktnuOyOGvb00%rQr1*yHwSu6LN3(ivAE7`LL!-=EniKF{bkI%cn=R-rDrYk)@0@1g;;9up2n$jzu`!Ydbuxt zcui?@W6vXAqY@(#BOP0Bm6>2G@``iyo^`A zSIWN1)=p}7iB811io1?m-6fObH~Sj__|li={>lkI$C1h5 zoq-A@fw>PnYs=qB?E2o}vkSWgdNgch8qXUVsVAJc%Ol~jjD)#sY$`^IL>PuA3r ztdA}g@W~m@*!09}9$Y(xU{k9|JDAmwzpG6;gnRYKnX{_X)B98ZGPseuNTrQ zekJRSbff9N7ZstU@9WKd>fGzzx)m=5I@94aQL+4GfATWs^}#h!bhX`$Gt#F`WMb^AO-cr^^RO%k$FFNSeqQ?~61DmL zLi1+By^+LP-G=X)GD~8Xlg7_Af8?Kv%{yqMRya#XG!p4?A>Rj$$njbHtb|zWpYNs# z5ExH9&$bJ(MpgA4?r(L_wWueMSu}$YLph44q=h}hneoick@B`p0{v^JC+3qGcftyd zD}BFyt~Zc)&$Zq6yF|H=rf!3rzX9%To=FK}G;v3nASMWho4SSd5y9o7rIT8VT0*yD z9`x>M{ODL4wyYW$Jrq5|d+K=E&%mRi;^_a!RMoB)TsCWfde!8zLi!HXL!pwig+~_6kzK0Vs%N?)h-nK8 zUmXPmi0d?gJdQ8LY&8N^*xw2U$>eUeY!^51ya4A>d4%?D+>gZ>7H0nV^#+4ou{Z`L zAGBh2HX%`=G-tr&m0Q%YL7G9Khh;?=$j zsPH%3Jg*lih_-rsdPz*T;XT}7)MDEOfS6UbcAJARbJH_boiAs>>;#?8qsW_H+JiK|U6Vclk9lzb+mKNOc>_ zJWy*m7wqjN`F4=I&ABzR>j#MQ%7!R*-k9enw{^uiO0&JNXeyf*w=zfO<*Ygw7Htx{ z?$=K8xXIcjt8n(~Co@cEaux*WsTrmhymr=8*G(>Xy;kA6zaH=a@d0R&*9$?l8()c1V{2p^POD~it(U8ajTlbgnwM{XHf zWz4A$%cHMBn$?S3P55+L`n21{lY2V8QnDLBfiH}ULZ+jCcn7(CF?!XMS_&bb$hGba zun0?^*;iU}UVqVR) zHD=#dnUb4}vVX2R!$4kvs&d9=flra1cU9~ALdS}MRY;+tLUQ8;_peY^c!Z&$txWBm zSxgjW^Uw6l;#ulyN$tryUXWflIfh=j!fn@Ued40`bJfsI_hKK13r0w>xGzt~wgZ5N zlbO;+71JR(TUjshH;!naUa6nTF*H3%ULFYlk(#G!`V2dJdM`>H+d7w6krdRl$FlX_ zd;~XrS4S>;yh4P4C&PH4ggn+ZnO?Y?dfY!$YpN|XJ0p*ihfjz53-O5=??mm()yG)F z8NYo*hl!y*PtyE&-8{d>TQ?{Nwm+3`(8FZb0+M74j`+Nno9Zdk*xuHz40n!)n{O}Z zdn%%lhH>d959}xq#Q2Sj6zG-3w_G8m^5h;QI&-Abqq-w&Mi5*^^oh`kQJSyMS2t{w zr0S=3n(Arhw7U2+;H$hOVlTq6aGPuS=cQN5ch*KCY?Qr!QY0h=&zGFW@&Ye!BnH^j@%7e30p3Z2PNGi7M6< zsU5=u`p)cCOI8p#Bhoh<%DbcvWv!iyuKaTXtLe#_@%)gzS7R7s@M`#k@LDagq5|kE zL+eN|4c8jZMPFoyp}t)!R>v|4c)xLsaYxx=+B0tt^9?)B!L1a?#I#L?*zv4lj$>Be z+k=$@mQE{(Y5f2R0qPLFbDdvNsMhfpgi+PA&7EnSYYVI4Srvs*fcz#Bt2o>y?@2<^ z(6lPmj-OX&SVae9%G(m06!jNHEt*)i2!z;7EbT|1&JCV(Lh-!B-;4Wy2L;}9E<*F_ zvDVq@k39=ntIIgAe8~ymjdNAK&4%TWI1igyGd^Yi8h6crZRMR0#Af=m6w6%BVNdAX zttOwIK?(``l~q(m@^^}6k1v^=wq?h2(BaF$sjPCL=?w-7g5S~F8D zyOi+O1!hW7BRuT|KfM6m8r_zJmW@G~I-V9{cjbVbW@K>e*UvlXn^kUUIr<;B)JDEc zYB9{1D+@TUkTf%&e(G|#yr7$B4I&L@G_Qp-Bad76I5pk?J<!MlM$hvanEZP&QVgd76h;W-cAN_ zQ??}k0u<<1b)eA0V~fA_EM=jXK1sjDPkgbdyll3U-~v%ZH~#6#FEi=(%+#Bk~J zo^1M~Ghsz)bxW!cLZu`=!ZX;>r@vX)H~u~q&?QnRtoV zH%}SCRzX76XyKO`j-v83LnoZ3rSfe1`E2@2A&I79s}+nzy@9h)h;JvY`%(@=+C_3L z#o24Okv||+HpWg-i}J-M+xb`q=$#=Qlm?cfP_{p|&PUjwxa@Alx?6f{b}=zc)LgCj zjh#$x7$?1eyuhh+DU0qpNPE(z-`hRBsCpc(jwU=*s32xp(sr-a*=wa_7nxcv8_Tv6iJ4U3vw4irZ+n4YNPGcEnYmWyAXkqXtO4z~y~p0ld{tW!){VdTBMgn+!B0vkao zsH_5e<&7@fPs06)se^mH{F1s|2n!un@p7eh$t{P&<8mjd_4JF4=mpAW*86{eA&)f4 zAL|GDi>qN*&mrcIqFPu(Qa|RqAve1mNg39KA$K~bX*R~=7#AwLj!wo5s5>1BB^I0F zH3@C(`CQkEuoe@AZLOOh+#Q3>{975_2k*I(XCHgms~2c#PKk8KW8yALl;tDx(8AXl zXs!446nNfhfKNNUudkT%WOd&_+f%`37h3i6Fe?k5C0%mkM1kF@5r( zp=Zli(vL_b9&@DBnH740xw9M*)=5H4JDd)^#s@NK#7w8*l1m};kz5*vH`h1#LND?+S_h2LJvI;38lU{*aX&Y;^bzUC#4UO67fEtCT`mXWBN-;{ zgRdZl-CX9+Q>H2N#UyNp|66jU5{i=)sdCxDLt}br)L|&X>@1&%v}k<-rE&JG(n3~M zro2c2n$>fl?{X4zNATLVvD=z&%Y!# zalc4nq9({Ch0tZUap$&3H=OMWK2rA^2)WOti!r&UZ~q zk16^cUVp#BB$d$%U}i`GwUeF%l?^N9EuPhIw&6KZbBAJfef+~{b4qv^lU1U$LYNo& z6pz0pFCt!RatrkhcdOHmKM0lzp-^<31vkT_r0InV-x|2U`N6Jrs!6*NTrM!v}=H67D z(A8VmoIfkjV_++z>?c}KKuo_Lo- zD{PgEj~9&D_hdc`N5I%Ty~q&m4bpzVgJ-v}jiZfiO>hnwDuz03DGyhsh+6dGSDh30O{!!)yf=oau8D8j6F z0G5{O@RWJoNE1Gl+-I$iH~b#1#KXt^@~6E+Q%{+T8=xCm zeJD_B7s@4%PO%F!I35%?zi|&Hj38Wmh4BXG>1@2ISkqAbpWwXEc!%bP$bXNY=#s&{ zSRjdWRsryG&-z%Naxg^7CIy8lhD@V9U&520jLG-!k!Kh6VOT z2Q?LO@??xGKEq}v?-d#tE6VnMm+8swzqGBqd6Yn2ZFqT2bMWqTc_of=7d{SOw9CrfQ91SnLZ3f)Yv5-z4kdtz66ArPv2C5^8XO|YGh@|7xA43V2ASpGxdeN@&J)8<*lf4#>o3p* zOie&|t}j_W?5eID#Z&p(hjxqTbs|Ps)6s)?4j!|ovzw#h1PVP?;#3}Opp(>1CzaJA z4{X*qJD%O#V99L28{GI(n*w z$l&;{)izT;R$FUY^cDx5wm`WHMGsn`9`#s&JRT?#6kN?L@2PVP1tjXms1mjFQt!hN z2N~PCUHTQW#W7j3S;lBjhxblF%^iPG2MYJar)DB?3Kh3(r|1Ki(gEW?4mzvZe82kz zS=L%7$xhCcib#dp^;ztKB(RL>Rd3App|q}Qy-Nxm?G4;UC3GA>|HMUM5EFfLAM1IM z5LP^n`D@e^5XY7p72I=?mtNGn}N2r%z=_@Tf8XB+1fZZk^|%g=`5r0b}pDe%-0WIHEsq7D|^EJ&5QmKdU$fZr@qFj--^fgsAel0 z(-#kqLt8|t@rA~Ra~|ZomATbe5M+z53^38#lcCXvN^FR6^al`qp+n@Y3fJ2#LkBL1 zrDF!I`u}^Me|_%)G5}$*PkQI}QICG%#0n48J#>A7PLSZr`Is*>tIuc$dJ_s=7SS~2 z-zzJ`EkOzfc}2Q7CRhEg|Dxiu49tSz+jDwKyqEBS`&{f`zCi%4AHDgHj-8+NMs$n-rUyviA@sw#f^QLoxPFM9yi4cx%2ypmh zbY4&}@1=RV2Q`0EgH1JqR8&tbSlGjvF-wZ+qgk22VFeFoI&1c+;Y|`2Ym8UxNxQSj zESONS*Up7JNBlGRvI{u3(OHiLeQy8qc?XQd$ujeNuCjY?-^G9a?DadoG1Aco|3>mZ z)!}8luAMCz1he1H-xB|lCJ7&SpXqH$mNEq>8}GObsdT`guC_6$e`Az}lx2TTtHL~A zzbIO`QpcOB(v=8|K8PH!BDX3&Iz4rONJwT0rFa3H>o|y-xGpo9TcN_vm$Z85QL7K| zBVE8JlLrF!qo9J3pNWWw=0Tc+j<3yALZuCUR_*cvn!hghIx{?|x)d!w$u+GuG12{5kPGdp_NvAu@yU@O7eMWgB7iFM_*RyQ@H~v?y$X1; z&Vun$V3qD49^^4&v3IJuB)&Vtz|~Bo?b->o1~$3r_}s$GmSn;Az03`JC@tU+E1bH8hJFrnth!pzuemlHd~ z+i-yG{WQz3H~+a%{51C=N_wWp24diykw>Ylogqyd=Vx6F zJDCeN<;o;;1C!I2Ej%-4XGj8&w#5dl^J%HRlpqbmlO?mmj@II>*~uNxzO&u!pJp7l z=bmZXwN#$GwZ5hYv!275+C-t*K)3-S^$paIFc_@r2;Rvmcm%^S3CW8FO5aWr;myKO z^L|hU6%u(LZ9VzK64)3l@p*;^(dhnr$L#;!IB*#GATMDy$f^NYSILAeX=mTV3`)t9 z#}}SuwOL6mw22r6&14SF)S)sBqkF92V(?uA(r)Zb5to1 zx=Y^E?TrUQi4Ao7i|W*ZvD`xfhZ zvcnTEo&3zhV56dB0wue#S=&+f&<^%y95O1&S*>EC+pz#{kQ>G5```+AU5I<1v@G}w z1ndZarI!j~T($^;_%Pz+_~yK_Xql*X{9MSvF=zA)uGW(PI3;5uu^6*ey3hMw=Z+2M zS_|l~T`$oyUsrwF?aaGS0Bp@M(!Ul~CibAxlFKEN;Q?3$h*$clD5h6>3LEFSLF?O@ z*!@Fw1qz=9)`GS%L+GQW`G8LoMvxSnXt6gm5Q&DxaTv5WI@5MkN52~>>unG60W&SzQR8-x?w!a^U z@$=i22_Q)zT`w4I+?n>kt4WiduxOnU8%RI5g7kE9LG=UQXR9Q1_p*DY@XNb4bx&DU zy>6PJdJN&n3ViDsv&!vMsBM7Iuv-FWIycRX+N`xfwl)gYwCEd`KcCIHcaMZNu|-0{ zLbFC5uZAfFmDFC8 z+l&R~GudOy@Ts~j5C)EVU@u_JR-TTT|8 z*TViLb(}9WcvVq*aUyHOV?3%E;rYts#AHZLF~al6T$G6Hwa1nYn7b{zy$dU9Tp|UH zL3SX||M9rc7`3NeO_1Pf_=gJGEv~PRx^}g6p`GEz8RbsKAgMkbMw9~FewLTn<2P@x zk21{f=tXXNHPDg$11WQT4^nmTN21FFh~T2b69@I)r}nu-+VcraQ5cPvxaNXGRO2e} z$)(NR-UQci8*ZlDq5yB5Y?<)_=5iMpS0bgw@V>hh{|X-6l_1V^=7(2?$!t>J3u<)2 z)Pby{RGjb}QewAucW+?(ojR7p$tOU~{{xUx!Hrm@l(6@c)S)dO)OL>who??7|M*Ck#X=aF}4u=}IX*5I~GbQ*%EB?=(Ps zi6o4B4!KAM$k`n%T6|MtZH{mvEdt#6W5v0vxG&a<)0`}MvtdaLH=h$S`U z4Biy6iudVRy3j}n0oB_G9nr>I4R&q?T!FA#li=KaZYt(!ENe(q0xpXyeMssmuyeaA zBy+N}Y>cWp z>;Han>@vQ~ZhUny(by@VYv+U1OhW%~*;50MPYZdd?$|Cq$bBEp=yBcbZc(`Uu3rP- z#r==-IQnbowvyX%Ma!t!mrbnW`{KGUjaNRtBA0b@&yMY@K^57WP7%e;I%{w|C!mhn zNouOV{u+gPO;B)y`v5$)i(D(@NcBz-*T53zz_jGA;FIz=VyQ21zqna+kM>SW2T=Im z0Yq+=&B-RQDn0u5Ia2cakf=wIf3+%v1XMZ^V>`<1GH{vvwPUnp(<~I6(`-wEyFj)Z zgO_D+YrSv(ZcR6h(sr(K!;Y`<awG7PWqjJpX@&)`kOd_bgqNmUHS_EN| z#0lR&o(8X2yf@Rz`lc^%!v&kgX4>^0T-eTZb9lCPya&QBgZJL?W6qnZ30y1;&9DxK z=KUt$G+gdBZ~C7$d=FJ+G-b~O|8=ojz;rq8+}^KUJH`NWmJwHc=b^BN)upUnqJpB( zrQ(n1a?uMxb)W7Brl(nVXB0{F1-73;d$~RbTiRdyQOu5L_g{_8&q*9V1g!)`-=u(D z?4}uV{hKgWte_V>TysB>86qRSzm@9U5jR`1U|EGjP&-$JOuSCJ+Fo5M->l;;-ZxDgM#(C zx+eTNUW@L+)k84=3Qoy9J}=0riR(!k zEH7-a2omu#8>ih_=D$cqh5D=t4lIyR)9fsEd64>Q#cxEFebe7Eio|8!FY~1E$u(iS z*u$d^0;)GDxy2~M(D_{5P9x?F@O_TiL*G0#6RrC+w!m7 zDJOZVgVYDNp0mo!AgP@AIJI_i>HCL;yx}=#ymbs~>K3%gsLgsCNMZkablr4&4@?6Pg`f{(mr~r2Qs$3caJ1;bp{#Mt{@wqXYR|I$p5w0O2Z-V3 z3gUfZEyWxQ4<8u*pkck4!pzFbuA=om2$*bqEwhtzZny%~g*!L8GWag!R3s>3hNXA& zxwc}j=Z)HGJa6syE0}Jx9q<~R8BZzC8N{Gc> zcAEto`1E{IjVHPK>j1)vy6VkgVh-oFJN3h(IWn<4F!yprHYL!7&Q5jgM#|;9z*GO4 zVw9)s-M{UO92W-*o*-+Otqh{=%zz%8jIJY4p>SJf_k&mv^+|LHtSDk}Hq522UsaQE zd)o8uf&Ga_Tlai(R;hejR_;D^NC8_{enJK!2z@ijIz~UWLuQN^2?l4ZrVO^P>b_zD zt)BB5M~oG;vSQ}5E-N}sTsa*d4Jnp4cY+{Zt?jWJK~PTG_ANL|djsb(CGCHQ>aSb> zb%E+Cuhk-mfUA9#D^#80^)e<`2svLW?C?Zzq#_AzX~~CPQ&jyEXg!^zprRR&%%Li< zx0NJ=$^1Bd)71`Z?I3L1)FlvzN*0$dP~al|+;@8l)oQ-CL8vdjfRGJd(Nrk^kb&LJ zDk?M?*R9p-S1&6`k-w=1X*!r)sQ1{;S!KY3qWzCQkJ5C5@3M=(#X3P1B(bb$o!BM2 z$XF-}O(Q7Q32G`jc%aZlb)~mquB$=V5)F95xa-@(+lvU zAus9#N`(BS>*(tD(LchaQe!&yPql7AhPyEqSRaC)pz|Pr?0z;wNG6C0Ik=zuZCEk~ z=SbHIPi{aL&Gmaf?90~8eiw0}hpRs$V|hl;oG#)#ni6ezShwykOY>3ZKX{!km=ao~ z%ZeN*tkP1?nm#%Cv6=Yk%j5Y4N{dJS&@wXNjyVM&-G@BK9xsO&OB@HcBEl1V@vRF? z!#tq9z4IHj?_Mq$C87rj#|B+9OvCYgWN5nB(PLheMKoD``=(>7MG=LDJJc_Fe(Qrr z#t%LpKYh(n&Mq0Q6a11GUgJo);X9ELI8sOT7~{yl_oU3-+9VuUYHBBwAxq`$io?&$ zMh=BFUYWX+;9?8=NP;#Rnd2zH1{|Gwd#7EeVH*if_hIJD*wg7cfHI3BLG3dwtO~-);6{{P(^I&Dsc<`fj_!QA+JWc;`i5Ql)gl=?ifr@cbU{ii^xO_r&A=h`6m`$ zgIzDkJER{LBgO-vU{h2>bksRLZuo#pG1~8->!vi{lG$sX72*TL?vzp!$h+8$vDf32 zUY*jjcU6@Yx6(rEpTBGYiah~Xr#CjCgWLeUk%O2hXT5yq?BG5MRS(=iaG&p~A5P>W z{y(fd!t;_cObtIY9{m8Axq|!*1gMsOMNk>5o961jXa7G-m+3s0yFH}b+Vw^57(QSh zPqJ{^%IpS3>tHX(U|tToP8N0w*!B@_XOsiM0AqCAZ=yk+$~RWh)$I+JyX$lC7D5W8 z7?~(rO6;@JI|$~CT43Wj-hi9NQ6R$x*s@zNW=*FURfG6KeO4dJho2KP+I3FN$j7U8 z*^6^f;RYONtjEv4_*ho^s@B)@gZf`?Myk;MYp?42o`r4)3ZEWR&n<)-9&NY`8LU}s znH}`)7@#Bt&SsyxwUx6}G|6kcnqrRXic?^t<8gZP%Gy#lpq&ePT6G7r2kl&yOU1y8 zt#TgB<{$M+n0x}xg9nonH6zl__v|4>i&41Ak!7z9*n|acUI58u?(pdF8pvVimsfGg zF%vAU*&3B!Fk8fFS!*E?A0{neB&G#LP9Z?Fmd-qWG3474?cdy-&_9P5%YvkJH2J0b zbt>P$lG_@E6u{j^d^2O)MH`VWmSu0%W*txToO@_X*;OQt)3L2Q!1b~!nDuS@%QbgJ zTCe=FZqRGBUg1uQoT~kOelk@hd-VOknV!ZEH7;?rDQM5+19hONh*?~DUHktC`wpn4 z(ynV9$F5*Qnt%$5QdO!bMNx_fh)5@Z0@8c$C@LyVKtO7w_aME5fQWz)dT#**sUbmn z5C4gd<(-*t{;Zir0xr1sDd+67_dd_vWm_3Nk^0diLW=Cmef&1hUcs9wx&jIUq{7+T z;M5`0{-0)xW1wL8qyIvA=a1fzIpQ%)Y5JXz2bk*)a(P2u_ z0UGD=YfDONZfW0cUsb;@fEZs6w0d!7_oqd%(M%?B)TW;Bujm%C`EQNxeJ@B!zK3c)9+ zUUgBTi)#1IG5T%0Y=s%?<)15pY9l$CWTZ887nDEpCr}u^5lw$mJT7Tb1)>qoJWariDj&wISg;EnrXm%YVFoHi_>MPt?duXoC6cQjr|9{)Ik#IC6FF z{XM@@ysHpdBB?yF3VT8gu{T+)KnpzG(5gZy9kAFFpnKQmmOiu2TTn?h*JeyRr{)>( zL11f!ejPuMSzlX^wcHv_{Lm9Hn*~@6cfk>Za&|~6RAGM0IQ}v^pxNhI1@F8N&Y|x_ zQni%l%s3h$PxgDw;DoLMyMG(7MUWO|xUAIW{=-4E^&=E5l82@$q-D?lXYLe1Qzwlh zk@SSwC~z(r-V$f@F;8 ztRSA8zi^fXOb{nHv&h_U*3!sI&SWO)yf0Jy92LjW-OIQ%g^X7HZz5#fp$_e#avG(aq(3@N0&4KN-HKE@;*9f(#)07^1kuGGQNCa zR|$Ps2&iFJtiN+uL2tk&UqSjzG2(9FY99kp<^15T&!5{7>-MwAu(X^45q%Luzvg!3 zBYVlykSrZ*dUVE~gE!6R8;TtII&v@KMS#st3`*>T2s;1Ngng?$_(x5ff z?KlTDMx52>iR1l;4xVx1q!O|L+ke=_i2w|da?6KC=0 z&5`Z_-Uyj%*Ho^ZVAysz?BHSbKjP1Ezj>6TmUU{!3*~cb`2}j}VuW%{+1AI*uLu=r$f3QKmD#5X}Uq$aVYIHGGNv zvi@`5t_Uh{^=6zw4s}t6e_=J9$x%u-Hxdxdm|HQ%EiJHPt~f)xk)B_(gq2#D#EqDK z)9P4ybjF{EkmhW>XPz3_BqdRr(vM)9?u<5RQy3b&Z&#DG-S%!6(!_2j#k=U%B=yMI zN=i5m;Vt^+hjTpA-R|8>w}+;?c;Xz;oc`>SnTn@l?B5h#h0{|_lni17RJx3nM)!2O zx*KkypEHHO$nDDz;*fFA4ek)*xzT%WHjDVD8@=d%mOYQr-n9yN$9-@ZyTaFEyCHiK zzfmMrczc^5io4}icsE_0=bELf-TLV2P4jVqV5-OOD@Rfm^NPd-gcD>n%96G9W=6Js zMZ%@P5kAk1Fesx77PnENJucUo%|z~-)ubgK!>!K=Z(7eK*<9k%vpq;!x{GXk%%+-7 z%wJ^`-Qt6P%~Xs^0Xga8gFh;dHoE%5ZD4a(`alZ(%yy1jGC?+XVQ%Wh8^elxn~HJ| zWyk8To7PcZQv%tQZPV+dmk8mb^BC?^efBpZZYo%1lnyp@OP@_Dw8e+kg|ol$Dif`M z{~}4V6`q@0VaJ@KHcd=cE5w#bcs-4#ud{}v`K@(VuB{c?ia)lYw{|p~!zvi4(pw#3 zH(_Wh2|phkv#@6OW+~sM-O21nG@uag|B{RT`RV7IGciVHUHh=hPwXDV*CxehF0nV= zyo1bSU2K+BbhugOa9lJEPDM&T;y*^U)MqpCm^A*Rz{O@*yaaJvi{adhyx@47pvSBP zVV9da(U@z3uN=CHvS*U~KB%ENo@61LH`NLbj2)XzWGh~L_bj$%ZX3neCDwvKTUitG za+wH^%3Mbg(qz#|bal=0&sE_sN`^m>2?jt+*%7NEClNv)wdEmH+;4DBpeC)usVG-z zSS^1?|LlJYf5$iP532ABtox4++1f9^6=HF|D`VKG_Eza~V8(K)Z-5HG266ug9oc|mqHI5Jk=P=24G2Oi0>Bkkcqe{ z=^&QzH-sJ1>w2OK)&ucH`y3`2s`mOdiaTXo@z5AC%)V`p5!C0kJWI$#`Vm=tyla`S z7aHMA??#8}JA!!bl}9foq`;Gn+U-IN3emIfI}UiQSn7A4sw+B$g!E4*z| zjKBW&xM2tNQhQz01I`{}$50gp!LzEki-*l37YPSBE9#_@?-DFr)Nf!tNVXG>YIY%?Gr5VpZfP}KEqYf7{2^s6FXx=e=e+Y zNHb3n_KumKQrfHq_=jSw)8wz#UT=&Qx=p@6CEt>2m#us!sRAY^ckg7J*85=p-HOqS zoBL=;WyCjwTPx4X?aitDnWNd*_N9v6n?#vlO2@of>4w(LEKk>>{hKH#Uh|vIT4ZGi zSvdMXYvJWpTt@Uus4h0_o;1CWwK*%u6)RzRNO9#q>nq(NWmnUMu{H0Sx%u|~$-mtLT)+jYyu+&t-+#bpz_nh&z`e5t09t#t36 zq^FwS#>8#XJ6xVzoD?S*H;Eq5V>~RfHpH{g$=Hk%5FXE=a!4&ZkJz+P@@u-fa>=DF zV^5xH>fFlY%f{n_=mZaE+d8`C-P?lBXe`q&*1c%L!vMF&30;;s-7BNv`G$L<*H&e^ z{n@bm)#e*c>iG#8mjgN&>X-!2D&$;{XXzC`3j>v+?(2xf^Hz-a9u35{6<>8OY;+Vl z{=!=L=tzD?6N^9H>kO%(p}48FGyTFlWL+Lfbssb6Lu`L0?cW%*UhE=DAEgQN{`1vS z^KaWdnNOf-BJH%RzkaO{Jd@};&jEM_Ve?UkmQN^S_C^^M3yqCS;To?-Q%u%g-??-x ze|dPZAk^hccK3p?R zRJE;lVn2nK`sKjrj{Mbr0_xCGX<{|LRa2IKIo1Y&%SbpL=dz9R=cWGJ8}6IFVsDts zOL`~#X50(I2e`2le)}%uDzGg!+~Ny%FD<#D;8u*47SL@AI^w@JtNDO=AH)W`Eqf7I zTHKP2X=l(Jw94%VaoscrP{dBfk)5OTF|ET?6NBO1ldrlB?I_>NA|&$8Tq(JR&QN$_ zHfDfpUx>;HKU+g5n!WX~3qsR<#~mzd<2S~^UFAhx7X07`SqBpeW4LYO&$F`t*@ZHKptm^ROk+wC^nr~Z#_2l_&e{KXovLJ3RW+KgJW?~4 zJ<)nqb#dB=bL&1p2c@Uf^jKt`8a_!S751@pyz!=QU8g&V^jDR`km=K}oX}uOponfyEsyCG?P|b$kQ&4#-{=oC=|w@4 zv}e{5v*}AkZt7tYQ2dX#I0|#7)0i{Nsp=6YQ%R8<8bO z;X!6T5^MD>U5rdlwWF)0^K%;~_}A=)JoQ3Ir6uh8^H%rhBi$l5Hs~?Mx$lYWCuw#| zd#dH=sLHM1&dx*`<@vDBT(P+m=xH=|0go)dkSShb%(+P6B`sh&%aoN(j+$>@9cE6L z@taP1vW$r1p{(~`+y0+Uc#3Cd>{Fr^v5rM_SVwhA_nAD5|7cN7!3{>`juK3eS$1>w z5Lb^eE5rHESqFUhJhAr@cx%E&Cvu6Cl7BP{js!jKAgm2-%>3NcUQFI| z5%yM8PRWgsSk0`!B_E>OqIOIlezL#5qiJMs@2wMeYjh$F9iP03JTFv=0=vTX6rmy| zoe88KtLtDgyZdBXDE(#A645Pm(pm!#P3lY_Dg6R(I9Qr{;|05v)8mstCw#r!F|&hqiin+v*aR9J(ZX0QIp?WZXgB<;&RNO9zHzF|-jfIguALTZr^oHZxzZ!QLbX zO0}E|L5r_l;_mB3JE;DgL<+MbxS5^*NQix)_%YqN(P+%l+f8kduIckwW!%kGpU1t> zGUWu{njOi@4pb*&0;%t1L)B^qYT0BuliI}-e+Zq?lRkDggy?GTU9;g4QK%C07A-Fg z3a0z|qMV7v9@?l@$aNw0XnHJEz^cmKsgpD2MQF($nXkos25JwF;XIShxF>V$YW&AF z{kmrG%0FasxAZZQ=cmJN%^4sb*%TJLYlt6fl?+jS zO%tzkopo1Hm$69$A`q|)5c|BbZ5*NMLPTi-WfxV5*fgh0k1 zzWs#=enICN{~58T{`i^TqUnf)Y++Ftj>PDpzd?s`}gO#n9NKcc*#}>g@CeD#m=o_&9%rJzW8Q1;G z@e;kSBI(zszeeeqFyOjCo&f{SEh0zhj?=Zd$0HqNpYI$^*?D@VoljuhzLqy5f8EGk zdhByMAxkug409K$YYC{s0xE>8&c#5k*5<*%c$e&EqVUPt+D>YXlA;>5@~V@Y)AQAe z6)pQI;&IWV>uTq}S`Ki_hSbj&OprME4b#6ho<8pqVJ8{-N=P!w|nuXnJ9xjhG zbt+2Vsd=2&!f{9dT#(F-g7}f6n-XMp;!b<3**8@osuHS<+7EaryIlDMdpYC z%ANduT|36dpNy`5;m^064#3X)fBECH?j2`Uf6k_Sbd58edUTr1C<4N$Jar~347$Vyd!0_r6*U*-D!w=t!WVx+Sg?6c>2c${p(k&AYh3+7P^kDZj3dZEZ^#jHDPAZ z;}oNX23aDbHYCTu4EDQ_{4*>Sr5|1Y~)mfj6+S6mO z@#%`QRu~-MT0N2rRcS1aAFh)7<4WaHg-061q?$)D^lR81E^eQ>AuBnkzNd3?=W?-F z6=ms#wA)VoWMEu!A(zu9Iq;k^AUB+HQ(D;xM0@S4`rP9Vs;hT#yodQaKdrZ%xy7iR zN~DYHoj-7$7i*K6YU_$NrB!^@DSC>@`zO~xp>%3p@K-y}j{y_%uB9Pf40B(m#yyIS zI7*XXSgw`au#|JPSu|vm|3K+Tud?vy;uC!)QvW(Lb63w0Pj`-zoP+8fQ)M>#MKPYt z&JQW7#+Hlc(0JO}_M)PR>j@><)qd9li4~}n95)Jaqq4k`o1Kg1>-OGNC;hnznadTI z?o#2@GUa7BU;jf`_;Fd}uP53tTeF9_1{KXYD=Zy?%Ui_yVJ9BontnraJ|~&$PV(}Y zucQQkZrT}Z(&o5T25^+}ITJZ^0+@MplI^ti9;R>{zn}C%@vE5kCGUgIu<>h)mB)Qt ziAFZ}rxSb>AezpT*T@CS3~jX>F@4^U;ro2!O&3Q~iuU#1dME$)RQ2QmnKTlAyMG3! zNcWrxZ7LlMTmX}YVMh7a4;Kkn?pQi9ZunGWiX|qnk)dG)r%u@D`QQVO_XT3pB95$O zl%2p4*$wY%zeK?&?1)VtVzf+-eI`AqI>Mn_h=;|O_dC$>N>%(;j5u;)fPvYAA^d02`+Ifqp?%sbEcEDWdc1rfpk0ja8t;HKM-_Ts_-*K7Www3s@(bw_vVng_@bi)UBq7Hu;@}^zUIen?lp}Y8O z(xtk{yMq8s;X-LRYm6tm9$s?jUU>{biGMDqI&u|u;N~_oUi=OK!)KUFgyAKrl5FB z6!)q!k~j(BM%5FSyh~^3Y||FTN)FbZyQdFobMX|{fWrr(aF#=9+Kr*jdC3G`6fxqE z!>-&vD7dw5$a$*}vvSZ+xgfz#6`*-KLy8XE&6ej3`|tf1d8I%uWS^mg3*>eEWJ9M zSmo$`fXch2$j*z+`(h$O@hOC%E%-Z3$6J+nYnDQ4sUviJ;HSK73##9PYbpd+_!QXV zsdGYW(YI}VJZLFT{O8gZe|w|L@}DOXT2c0=%THkf17Y{|#l@fwR1T+~#I-MeY&=~v zzR`}&;8>Vg=S<+uDyhz1*TIp842Ysx)-i+y~7rMo` zYtoqgxr3_?JxI~rPQl&Nw^`tzy1S$t&Y&d)T*NGdR!$)eADn~i`14hjc3%C57vSeN zf4+I!3}txa?8B1zoDt}GtiZd_V+E^WQlhH%`Hya`Cfp=PF4&3($rT7e%$!e{B`Zc# zY)vZ&vfx{4LpJhEimJCdBg}8yaq~;Y-8t2cr+UCOn3Z%nqmlCAA*hL3sD}Cu=Q?v^ z<7#Uc+h1BtLJoW!MWlNkY4UYl>d1HG_~$n;s+A8ZvNT@mDUQF%h*-mpTb(xH=Ubgd zwIz#uE8N3JTf(^saKz?r!?4koFL5{sI#}h%5HneywrKrEObR@p+abi@#*#;mQ;}>Q z8)eHg(XnM)oo5h6BSoyehH>2J3<^ay2=@kvcvEI0b&qr)APA^m*|4Yn-x!$6i}O{8 zn%tSSTN9Lrk0TW>RoB~bO26^^~?PPvRkWT|!?2a@z|L{Zw!Dv!lD zj|!vkNX-q0?vfLl8S+M5@iqP8;?pQgz){kkR?9SUzaqEWNv~;r7?!=rsb(`eY^i3(D4t(Oz;m__2jY^9%MJZ2Vj0`q%gs z({iK#*?)3y|1J}Tg_<>Q$z0z4T9bv-z~Lerzckx*#(@Yio$G!wVj0%|9m)HdsOgA9 z!OrH@ts&YtQUkkrW@aADw~3KSYxB58XND=|M2g_i42Xopo5*^A^p)L$^@dh5cNE8$ zO3kHd^j0anT1@t3v*ZSk*g=`=P73C{#N~s7mXiN?d0k~DWOtJ5uhH@38ax@zkNUh9 z^noK$E{D_Ad6-sRbziI}P6b66u`&xW`xY{HLWJ>aDn^}E0_*_n+O3Z={;KNXce4gG z^&CUrfcT&cygiQp;GaWf$+vwS@0w!cj?_Fjo^IL!z%AWV`-OmVmoacg>C0Y*R98gkt+tYD4mOmeJU~P`Ce@w7-$Pt1|jA}Z6uSMdqOK+-Ry<6*#kFhgoI{}1{rT8IYS;v-{YNt zcj>zbfKFr)EqC_gvvlc_2TLJ@?2Coe`}F zsTDpk&u!|!JyilbX3^Mx*TB(#{-UE^C?pWzDFl*Gaq8KbqPnc;Oxbi;c7FQXgU<4v zQ&GyEj7y@@N*eORTsK%vyIRMERp_*=(T*p7Gp&2!_JccSw{5D_m;J6|T)LCUkz-`p zZL4l1cLC%q7XtC*RBX_};0SR|pr1gbu^Uij)(m5De8!ahbAY|9#{Ml2WGN$NI%PB1 z{q)(Yt0z>Vj%f;U!2{nH5BnoA*D{tn>5+~=auGq61_Kb--V_ z&*tl67soLz>BoaSWA2&tBPoEcD^mySrTzGYx1XOZjlY$|R;-K|(g)E>_6JXN;@Mu| zGgA<17psa2dk~|UfErutG5j~-9{^$|%VH5SS9tzxui0*2IufC5Vz%UCHYTDp@GUuJCH6q9u_HBTYbw1!t|T`O0YSR&qB+R{0lW%i z0RpP+Oj)r>1r#N;b>*9LZY(9@iMIc@ME%^BxFx$#eD_tScD1_9R7hwdl!W#2#!;@( z2zgn@1B7ITn|TZG;q)kLcy<9Ea}^m9`>C}j_qad92aLu$%8^~;#$Cg>xwUJK3SvE1 zxMe|s=>1KG+r97KvPX*sG|8JzTV+0%C_P)LHxxKjTO-7em)&mHenhrled656d^$dg zZ+0@2y!goSwkQw%roC-wIcZqxkh^aG>N9I$C~&%3Ln_6ba{1-?))sJLmTepW65APG zC`ZTWJ0^LqwrWP%&mH%PE>uZLRFlIb`;g1%iO%R38>1oPHo}i(!S?wdFE5O|fB^op zV%E%rZ4@lM?|M0L%2}7N%M3Br_Rafo zw<8VgcIrm<8$gj%LZ-TK${OZo>H#3~5b1a4!mS%s7ACAgnF#w^$sVK1du+NRvl>k% z*MJkmj((X}Bum7wsPEdQ%lJ2X@E5I6kK`X^&^wnEBL(zQZYFO9YS4Nmv3#LpZ^F7D zsXd$rAMffz{TSlMbBG@v>(w5S1x`hFj4rhZL;ZLevmjF}9 zE)#`}}83FPY%s`(}iBQmqd^#9652 znQ&5jm^=`>DdJ`HZ1uVLi*Nfk!ebx)nFD`cSg(2YD&>{Cqb?h|!mp*ayTun~>2t1X z@8V#sl%Ia{kc}DxRY#i8M0=krw-yT<7?TRwAiNx$eSN3?K>3%M@JKDOt*4&`g__uF=2?5=-Le1*1I;ih;jDV z)#MFTy0eiWIo1rh7qSNP!Z3nqwi{N7#l@G1<6#`-br2)i`pJTq8;a|fJJrAlU z`-s1x*Z_*(g7I|*0DP8S8g{5|6ov$D>pkFZhea?lFWTp+wOqCk6iYjV+%DHF0bB;p z5H5L$Yrp{O=94JCd(25I40z8}po6y-ovjU>RS`o)As%btfs0Eu5+{wUNq=mcEHPN; z14`B%AVz5%A2#d>e@dCC`<6ez4lT_N#VS`vKH=>Y2VEMug3wNLZhSYs-k1A%1ON8M z>YG7_?3=(UJP&NeRPFU2?N3rr2}W_$cU+Fj@cXi5LJ|{P09IXJ#=9X|m4R6S6%@$T)!{jf zdmHb@EDJ6vM*&r1psqk17<)vrz;vfjyPD+RZ{FI(Kpm;v5#5%f)L4mfQR${}Y?BaN z@?YCh5q}G%M@NPuBE463$!KkZF!xlK=Uv1S*%x@dG`&<(&J&&*$**AmKY{`Bb>(~d z=O5cdj3+j;fjuwU-vHVr#W>65)7s#dqDMrYmVu@+;oGhn{0HPr%q$fDX5Fx6rrNFd zo$%=VSQ~b|gGmuI02aY;tL9&i_*oJBmv!Ma#C-dPxi_dxX*s>wW5+7)M~B_l<4h`; zw-Tajs>hqQPM=2m>!Ue+h@8!W!R|S0`llxyN7nHHhAMUARJ2Gz&=5C2HOj5kO^DhE ztlf&-+T`iOfSvtb{;eVDQK~2jQyKN z8@f*g;^{YWWLp)AtG)xImxZ?Uy^z?7{-T!_cLkV2fdj<=nqvn-8Idr?Ig}EvLQu7L zS8B28ezKA?@q&qw%mGGEXZ^wb;(tn*=0XhlAeA7qra5=WGz3&DyEeH2qbCK>E15me zKv#72V9*z~+rIi_O;@+m%lDo-CBzmEL9Rg}I|cV0fVOh5VSUET3()n>QNm@n0W3}b zMq@mt_DKJGV~zMnIK|G0K+-V3ay!L8)V|N{>*Fa*d7g*cBQTLQ5tO4t6Njf+7qN1R z^6a}JuCBHB-DDI!v>`EndJS#)~cCQHQ z{Heyeng=)$!>q9B%t8YadC=M!);^Br^DRa)t*t4;eAtGP(-v^j`N9>PV#-H$j!%LT zS%TId<=Fa-*9VnXh*@=wmt|=9SB${hC-u=Jr9o1AqWd*b1sl>W`Q-Mz?ImJE}fr0MAF>v6`cvCZ#J8%?)9?8-gV*&bCgWN%f_z}Ul|Jf|?;V}jl z@r)U&E!to`-)80sqlNbOx-M&_NTL;6nrH$QVQD~BV}Ir`PjOxvfw`cl{Nz+>slfwCaWP3=?QRPr5q z=S%Hny#Ma|IctcwIz-wpNK4>paoZ-W#OtyV@-$S?Ay5npoKQXVa9^uXqT5$%_e- zpmHx)gN%7;ycSH19FQ^-Wb;^M{!fISHT|mi4O358c$YjG_{>;{W-?<6)P1Jty~7yy zht?{X&drjuM<-R_sO`KUCH(}URY%w%i8 zl<$rA(IPe}FjTO~uiF7FAzGosMe>Rcli?2HidflL;Q0iPgEd_VP7f!H1&Sjb%PB$O1BtkL48hQpz(I z5IGhuB(d{I7oqDf{k2ca&-AB4zLndw2_akH#w;@1pvs1~m1X6}+!v`#7k!;IJHPmD z#K@JT%|_bRo=D2K?MLh|vITcT@UR|i(F~}0N0SPafB**VAoM6Rn4QO=d9$SuP82bM zO%0)>6PP?GUUVJ(Q=vMY995>4%$2nb?gX(0W@mkTwJ1{~6DM1dB?M*C;CnNT(Z>T$aw`wx_Wv%iZb#>$I3cf-N}ijZ=o`OUVy2sxR>LuW9g+YdF@9A zT%6~05xp!dU-C3FVrt1|@wNfWSKrup;jL=?ylLMCfqoWWt&yA17dD==4=_!N<$jL0 zkTXvF3BLGgc<_3@_Rs#0f16Wy79z-$$syXvoDK9-2PGAo=$s9!5aggdvVs+>Mp{_y zr{4Xi-)I6MVzyG=T+GbD@dLTLLR;f9s4rHZtuOK0Uh{;>>_?3Hfj~_DM23+W@6G_+ z*9k1SP8bMUy>uQ(Fv1m^HX{9aR$SdTX$h)M;FFJ%-JkDcykE77b^#WI*BijL1eETF zNOut899Bls_v+0\F+2WbJbwgrzVTkPjqYWHSwsVC%`5x|)a9%6+?+Wx?0hM$GL zm%_anG&J7+?<@WVoCb7+nb-y;h>?4>wWe_9U)59tm1EtE;X{@DHQf6cP{zvRqjJoS zfWRigZ|w!fVITcLFv*jq3Yel#3UDQd?%>Li!<)}2H$ z-U4sX;+*PEylT;_vsp3yMByz1$HjBxq8$}c{;_a8XMQn+VeRZ7A@{GD3L(!FGIOHr zS4Y+VUitS=C&*AYTve48+k7*i{Y&%pu884Et7hdLHtJvyfwXQ?*JJ|G*%ic&N$5?X zi@9)u=SI4?I#vgDUQX>H@enGs2@!nyS`XvW|?r!8o*%D>!C!S^E?7{|t=9 zU~U-`22Ms4%}Zm-=LYEc1&aK$d7ziVXUv0~OK)srSZaAS#)|Jmb1PeD*m2&s7CK&< zqf;pQ+U3ca{Y@b(`svOCP^&sOxK^$vq$tlbm5){@d*Q{9Zo!!4YCE zrg^QrF%=@Y;ll&+w%gy|wa_RdmuH-weL6)Py0!NPp0PJ_dEmCDb{5cH`PvVB{#Tl{ z`rP+l-`Ku854y#WM-GxK0$PL{n9@MC3@hHGrpIHhxNmU&VpC>eTpe*QjX9#)8i<{K z*jUgW!Z(^^uThrJM`XVmM2l~;EecO_m3;I)lYP?p)ogS-sv_woHGhh~zQXag8{8?F zoTlnAtQhljuMmpMIJeVEA$d|O6 z1;AkxRV1duI2`(Z;yt#E&VKXy4>%Pm6@`t`*FjMv#0&uzLUy~)G9oQorxP*x)FC~E z&1qo~plQ`QsskZ`uB&tP|9Ow^cH~U|Bfgx-b#~_>JHW{XG{;b0SUnmcNFA2!>}n$W z?ng0FQ;Wo7ys`pwaF$TKf<8|kN25%aACGqY?U-6J>FP1JbPRlr&eDYEP%STYu#-); zT=TUD>N}5&te($cz&d};?03oT=jHy} zn|DKCpjc=b$f}v+@>%d!1kLZ79jzlRv>$gvfetPY6Vg(ui0kn&^933(46{*+*er=t^=$)S^JY^F1|_D0vlKz?0&^YnyP=1aD%YmXsDOP zlY5__Ml%Kn0=Zcba-c$3r$cz?4eueIzSBzUE#-4tz3BO`rTB}M8_Sn2sYh}f_q9At zHlCn-+;%N4Up)0q=A(UkpFQ&Wc$?AQj@EENkheLt+3#}I$QAYzr`S{d-ZbrhF?!YD zoZ8vT=G$bKckH#34d=tx%}~Wu(}f+Is}scH?GYGGx;lojt~)?g%^T%taB(XnMLv+K z!g%hD`dhW&=IST548!>~eJk&IkO4^1(sTHm?rqb1SVlG;%d%~oK+BtE`bXX~$T4tq z?NT0m8+mWk+CaV#bsTpTUAz`Oydk}$WT<*U)ER%IwKdczPW<|-urI?L;|<3Ty6$+Ba`fh0jxOno zQ*CDHN~Je`SV~slLm19nL^S1rnsc;Ris+!@Er|{lXAvj|*Oq5ukX7S62C0tIk_nP5!@zz%~1^l#pYlWXlQnffXS5 z;ml*QSIVof`&!imPd(^RuD)lld;uLNT%)=!di47sxm-I*?hyO&65q1N#dpqP4WjZ; zISLj!rI%0)6~f#|u}gUNGWlk~8Gocm;W-(H#(Jvvvi(uSrCbZlf2Vh&s%@%lVE z8#vzd!Zt8HuwpaZV0PLUormg3Io^7kan+3*Pfwx$Ci7+B@^O)q=?8P-L>-q)#)lC_5p7dC09(v#PDpZ1eoj?LlNTwyF#Qxt$iT&IAu-LmcCOKSWIO(TU8K3C zkYm#aMeEN4PlXC{x_aN2r9Z(6)`sB->fIBEG#!enshG5A44Fi^*|9h8OB>6K4bdQq zjO4E5+>=UXbg2&?vUiGhQ2V|*wN*@|F5vgd6gb!!AmWDl1_tOWoaR!l4 z=6BfZ^)UVA@4Yu~JT+E_QN?pj)au>iNbjYb*#UcT{Y*1s4JzaV@Y%Grn0Pimze_)Suq$< zS0i;9E%(Z4p?iJXAogWPTsF2FAQ{Td#;kXJ*jnw(%jv%Q@z9~!&1(Fxh*UQ^VB7vX zG!5p@@W-+O3Y$o1inubET*mg7_6L5O#~*J`JoGHyOfyn&vKU4puW(5o;F1j+8giSE z3mK7;?UFK;YTk+x+uUeUD|WMuzA*BRsri8}+$(XV_QN^{rHIvaPN()SiM+Ze&T@Pi z$&45ohX3!6EQLAgaE%JYx`HL`k%fE zy>4LqSbC@Uwh2`rtDmHpMkBdsn%i!seo-N)Qw2+pGEbK}sCj2VZpG za4a>?X=L}HvY%MV?B`(`I^;&QCl2Yb5On6elV zt%K@*xz|M5Z_3`kYoP9z&2-pVXW5xiz|8ddY11MD1WQ_1!2NuOe6~7nuDa@%ZNaIW z9M=uhW%i%rSgqPR7N48X+GW<;KC^Tk6YU%#S-U>Y_=>zzy;S*In7uhU_D}bR-;{MV z-1u6_ciEl_R$N02A3N;bzh39RI#K_28phiplxF^!*q*m6c=~MY2!q21dtVhpg!kqG z?2q^)42R4TB)t1hH;jX)Geg6^j6}^`zDSwD(8@9IP~cEgEy($NJZc$oXzT*vM#e~j zm}Nr_fEw#28y`XTzt(PshdvC5u>5NWaq`y( zoq>LP5;$0p%?5}dkEzzh{ybDmw!NKwZBthhIW?l@s8ZV-W)>EWr90PClQ6vH>;3#Px!Ap{#b1h_%jB-V zh#P&f(o`)~yE1hWb8%*MtgHCTQ=j{Wrjb>ut{OQ#j7T&gZDn2ON=)5G?}5(QkR7#> zo2m7;#+KRGn68{54YA2T3&c2^ygD#<`W1QnRpVHhRby?PUQw@g7rceEmL1E>dy}*1 z??n_$gx9w5T~w&RA53BAT-3{s)cS|+ z>vzr`LytUNZ-bsU*yhpvwpzhIPifHAtvCF=zMasqaM4BNJ1)(fzH1J_24GJvs#0`q z+(+QUQdj_M?>G~`C?&0SEGwFaj<@Vo`SQa{7jkp+RmVi~oK>|*n^N&vc^Rr>7;V^? zv#rb`$A(J88t>&~k9O4L%z9HX9qHV@ad0H|E~GS1kGcHfkt1x^+dC@Jer@*qb*-W< zK5){qp3BcPoet-KxS~|EA6xoM6Z*AwTdE3Yi~~K(Y;WXlz}_dV`ALL~QvK=K#&_;% zC{3___Fyg>iST?pSigOX+7~w)UL;DF#W=a7`o;E;j`MQES)Ny{QQO`z6xk`+c2Q5T zS-8DJ!IpnxnURgUwe;Gx>uER*Ip1cQE?joZcDev-HUwItoewCgd}JdRWZz#q&twbz zhO3s;|AqpWn(TaoC+Hw-7ZV3NWpd|Bo{1SpM#JDmy1jc_Oo~s4FAJySL6o_ey3K{L zC8$jkL!H+%N|IOxw_;Au`X)6SUfhDeI@`G181Ui_wnIDcIlsinI`iuzLryb67aXoT zciCV3EWGo4F`|p_T+?gCD0_c*n;O5q;!NW^{|7`ymCZZ0mKCw6lgN?c{Y1U~>h`OP zEx9Z2taqKpZuMm&{R6niPtJ>N>ej6}Sv3|W@^W9kcc&qfIRdPGmbYL}!1j%>Kd=Vz zwUCTRzr}v18vy0#YyCf#N*;z3dy2gO6NXAi<@_=>*nO)`GZzlXq&jd(cb0Ejfwu|5Cz!s#bSuI=B;OV>v0StEg2oD7PUSwm&pM6|xi^%=< z)1)WO3r%k~-x}8rIxX{8_@91GlZ**gi1Dy;8#DJ;9JU$~WDUnwYf_1w_gEaCAA#^e zS?a0KeZi}e3qqLkc;k!YG=6neXJt7h)8X{_2kO8z{PVTFMX8zK$1GYbs!r-TG)fMH zGGSsbwOlq5X|)xlgE1DSvK!N_ax%G-6#^EP&v^z(c5QSal(h6nCv1KqFNM>HfSKiU zKo`#+NZLOi)x_%?1 zy+|WK<>jJU5-i+wb#bu|lL0!K64gUFJu5fr>T=g}+bJ{ro6ECuy2lW%GgB+XO;Z>1 zK~v|ck{IhH!I?lqodFy^Pgd4uwqUv8#g2J4DeiFm;_CL!uP@qG`gy7Rk)8`HuW`3y z>|?Y?$tx_B=H_tUK0~SYj>yc6vP>8=Yr>PfgtFVg_SF9zE{Zok_KuFVhL)O4)kHg9 zQTMfz7xK$qTD+sUqpVIJ&M)^Zx`{Es-hk-FgTvuwCz0I#A_PR;gD*DZP5N0;amq}| ztK6bL7KW;&nX|tm+8#y#^0J5P^N`03|hIZPAMWYoXPWc?ytD^>2Gn3`6nDm zkm6F$NmZfZAcxLC4D0%b$z2~#?h23 +94qhc!e%evXy+|?Yec>WQ zrt{i$WGGY8%^g7FP`J1@{TcGc;Az`o!0j&XOS;w{AF>RGVaKb(huod+s)jv4q^K4L zY`YBr(o)CnZnOs!1_EV&tVRy4dYCusl zeK@D*iPA5{-uLz6=OY9OJq$%xa!<+#Y&Hin4<7W5#Rc2doUWDk>phSV+(hxlFyG;5 z9!gv+?^|Gl->cmjbR<0w_432?(}&LJJI=z#k}JU>t=VKD&!)$j_=UaQ7bxoY zou2hyW}-uiZhkt;p}($|VDQAvZEeAO1V7G9H~J*_7W(Hf{r1Lq+I;3k^AO1{cSDPN znAebBk~>^hK<@;-wj#Z!&HF_CRh_NIdL#Vw%`k+n!NW4PcP9E*5v2QHuF)3@ci!ZrpZu)Unxb zB-sz*KIGft1y`!tdK$;&`ZCXM9FDPjAdj6qt_cYl%i&SC70+er_Ia9aww;QZ!H4pzrz;HODUU4-ZgiflmcV>j6tGxBVpZl^ko9_P?>0r677Pzjh zA%*Z7RAE!1ZMoCZ=L?CMtdsjGT;z>qMDcqUc+q{rdLv7A%VZYW<^7I%dUBM~?&~~8 zrU)W6g>zADJoyfGP)e(Xv%2>6+-v14IP*K6UN!!$0@6hS(GhL`gmvc>VQL0dZm66) z4dju{7n>4t-LHO+nAwT<3NwAo@1r)>6<2EE-1o)7ux?2krNJZJE@+{%nnZ35F<#Y5$BF^$1Q+C+Cx*&V4{jY{#|C zUE_Q$c1fKiNYnrXf~cFD?DtseNiN1a@|=z#^9-*Aogq(9EM&fD8@xmn_0T|5*0qZq zP_;Xa{RAKRJ$mQ%n%NJR$Z3B**|Btly0BiDW`^NF} zZF!$srHTlOK&=dAihv*^SQQZwC?b0)Q+6XGAOW;i*+fA=nF`7tvNt$FB3oA2L=uJ& zAcVd1op&6y&(rt){>SmpQ3z5cxvz1azjfWbLUYb^eO-nY@~SOg{{Y=3&8k2tMzu_a zc1S~kEVN3bistU+L9nN@WYi#&bz;WhdV7U5(33I06>h$^x@fF{T?NI)T{S>dV_R+|CuD_R=7?z14;u56zLix~ zR5zxru`GS&qT)m-J#O#YMnAJ1i}Fj|(b759C$3?5A6@|DOhaBVfAWut-Dr>}+fTik zeLH<)GH6#`zzGzy^&q-ccgeVC(tXynLdc-{rIN<-cf`vjiP8A!UMNOfydmW3bvT;}^w zWTf+IF#6Rmi*kuYWz()WUhe$RrU{){hVy!wrMMqz)@b`|$H56ceE}^!j*E&rZ_CcF znaM`*GSq#~e<)e4h5K=QE2(As8AGR;L=hH*zY2f`H#bzo{tz4c$bkGNq=72avId7; zh+3}9_j@KS-(=u4Y3b&@)f0WB)o6h9DajC_u0p!|rWAs0s7 zKEK0TRsDOp7(MpcreU%=~3QK8P|jsF6zj(}5ii&(;Q8?;fA1JPH4o#PtuubvsP1%mZ&oUo|h> z?1(hmoOu!`+$50Gs#1xXy0AwhvZm(6(b|=P5+FaODE9%q0@!yQ2a{DdUh?Sb#<50; z$1>XUyY(l!(NKEfI(tR#MPki-T1S9U+nWnLL1gyN;M&ey$emmf;8KX_)sMx$8JF*8 zv%l_jAOie)CMRE7-co+R@xzQxUR{7zF@`J3#`5OiuLva3SU$7(I!$Ab>X14+6k8pX zhclv2fyIHq&3}4$`{k{7hx872JQQc{Bx;2L*9KL=0I=ukI}N?au>jg|cR`Wd5b?Xd zD$rWW5rLsqVI!zgVe&(PhCSPZVHVatqk0l#W@>hz4RQ|RTC&zb8Ra|$9}|*Xq)BDw z>EZ3A4cPnRIoURL8%fKnlc~H>Hf`~;ihKCvfB6Omm5&yE1B2KW{kUH2+;~A`bx@u~ z1nK~QN)}|P^9n0Z1^agPStg?|Rxi!%EXr$7=QC4M2DE5x-QPQ6Y&aqZWaOW&`PH`X z@;!6J{)imw`B4mqOOO?Ujj%G?M@{wbdLY=>;;TeaTFKRj)LQl`E+&#Un+l)HINpyY zG8Jj>f!2QHTS^tRZv8d2Fz;7Y#DYTB5Ms{3At0?NO4z{?vO^w4ZE;1Pp^aQZr-T-qC(gV#d6V>E~-$T#VVC zpet2cxore67xH>H0$0}B%9ta5ivG+}upFg^JDi(cGg?{Dm}c-^yR#D~^czNROC^CEas2?{Iy_4$>LFh4hq{jxpVe2z+?3fr0A z>uK=(@jsU{+bX?ZDYW2sD9+&L85MdlTO|fRfwyJ#3BK0TH?EqU$UlNa3JTBGrqlk< znS4Z{EbuqgEZi)@WrQ9Txhm2$flGv@yh$c2^JZK0cT)R&`>QDM_UhAhRG$-zCjF9` z^_>Mi_D;~^{7kLG_zjX^iT5Gy7Fb%I#hwR>^5!d}x#tsDcs^a~F;XVRT1-5>wB8kwbbUO!yExw||4N^`WQG zdx@m55nmThlR_!N&TFaE-ls`&4z-Q%7+gVtm;&C`x1~fR{hNNtwqZk9%>qpVZ8U^v z67^CsC;{Fwx>lqg;X3=C-krY{{r<6hFH6-c7L4_bwlIX9Do^&cF~bhxbF$~Y|K}dU zMC=yqQUtlaz;e?QJFSkZk1QFuC5UP0cVQHO2SD^^$TPZ?{JG=fO??Hq*=}`?kCRpj z=3-G}hB482OOR>{vD@j9SV`1&j6=hG9dp2w(UDgQ!eE42TkU>%)#4+QVS0P`cgi}N(v_C7Pc|3O1UAj6&mJpT^bQel0C?NJEp?kX~PT814-+QV) zx=>M$-5xF9vL+Hi5Har2a72)8gxjD1Fj*ja`^dF!T9JciQQX{oH2)J{*4F!?e*|pr&=<4Tn{LaMxrxUUb;}aF>Xmlo7u~ zqyJ<7xeXqincqs5!iX5AzK3pd5HbcLPl`YR$8P0COEclS-I)9k_*;>u*&e)!J%Hkb zZQL-gdb8sZ6wP0ZQBw3=nLS~X)`21o!_a7YhNET&eL4nU(I>ArbUc^Iy8nnkuA{zu zH+EBFg6%VgG>Gv#g$ zMfCJX-19JQX+Cc1X5L$O8Pq@++!yM(Lxm##ON+ZS3fmr|uN^j$6Z{6mc<&xG%=!j+ zsATzHwQYuN2tk>ygy2*wFm*|C-{)2ZtXxqB3n_9MbY-MQMozz;h~>uS(pD?1!-x!H*6F|}W$iMX z_fdp}Au5c`+U`^_mXOyp5k0n0v5Ifdiy9-ZzN+-TZtqlxwW#~wg%2dIAti+sMuf9s z07MJ#d1O+40g0i|5cH1diNpNBL`eF}nxIlys@U5-8g(}|TssQite*JzFCUPR07(FRsl3f^1P9+jD@I&vp5plW?GK-HPNY@O^D1d>&Dr_IR!K`QW z4a7iylXp{*g|en$Ki8=3k`qoqAGKO@SMpV^$}QqCB-e9$oyb! z5<9e7kos6qmAk;j+y?W$cc4AGxHGtuBd7?MqX}HL)*4al>Ki&KyXufc!p3w6L|Yz7 zzb(vT6iPlG_z9_?E(cZex;Y!ch9XOQAuhpAQwR(p*&#%1qDG9xQwi*(`bar9EQSKh zlJW*b2uPVhKlp3l$PAExj5G_Bp%h|7H7igcG~7LEPGSQ*ifBnTNCWu28T!kbL1|Ks-yjQ zKNX>RZDLOFqu#)Xf&XL$C4OV6)>o-=U&(q6Vu@__$@~)AB$T-G4Ed&U=W}l>YDBr8 z!!oX+I!4B>>r)zm5%PDj!Ja1yGivm!jr(t? zQ2;h;f`Z@W!TEOtu)VIshQ)#7OgnU!B!|hr#M(g;WmDh5%O1Y@A*kHGJ_ew71}x4{ zsU*Mhe2$%0Ve`{Z-#UvFbZ{Bp{$n5b&|LzkU`!shFEnY!bi#hP*28_;(N6&ZzgJ_p z3iEcd?cH0DU2?RxdJfYtuL%jes-iuf_q_$?#?KM(%?y18o-oee=1LbOAW}1PuJxcw zQcKeSgwEtuUP>Zr2g_bfj9uz+QxV*gb0`u*F1L)qjLB||=c+Ohn03dsY#M&{K-Ey> zvO1lb90x0Lv)a?FG>hnl3#bHNjpdWlKuZuEX28B%?fiMD2LL6)T_k4O``fv|)q^-z zYD%%-1^t+Mh*oT11(vE)Mb3k#vie>NcVS^T;*mVnRwBUFzIuyyrM`?D;L*%u*-cv@ z2SKyL(#vR(HaN)gq|1_o|Kdg<75uf8*gmQvMysXDmK8~E_~rarRv;7UCibW3VV0^< zkJ&*>?rdx1{V8`-S*UiPOn`Xh=tjVFKcj0~1d+g13-VS^8 zKl`lFJ&2ADePx*Ll?Anl(GAz2fr>>8*xRTh|9c>(E_o$6BGHUfbz`nTy1?#63L$^? zUZM+nwj|Vgq_E{lb3hFe#Q_@w03oA*y+YtCz!vPR^RN8oO!m9xJW@pYVigB*Ii|Lv z_eMbV+5>4_Q~ifPOlkeT1|m%sCj#dE1>QB%iU5nFsyznKKvqVzJ^KXe1 zj1(-XOStldOl~VgB69li5^reQl-!g5B3 zHDxfBU{4y++?5;*Nx%kZTXv-DmWUUkT#9P3o}S>>7kDeCEbiI7`iPa7OX~V#mY+RJg-3TjBkHY-pP;1C3|pnikEMIOy3;)_{Rgt2!8@csWCZy z2YAcMY|QUkT=}xoYVH1Qr~Uh|vVDv)s4W-EgESIJZn-HMlNSUyv=M?!ce~8ns(CP5 zl0&B#!>JdLEe`B*Ny%&e<6~GeaAwa6gPrMV6K>$o=~t|x=mf0Zz%pXn&LeJ!V!i_s zMSd;48z%E92bjgIOy&kL0tb^UGkF4ncZ1snX$Y-(x6)a|0s2OsqMHFrD{0Jjgm!M2 zD4$K8{GgApuei^D(2tT z=>P_D{m@RJ{i(QiM$|A0;srwC8c6!zhf7oqP?81u9|-!|*g8}bZ&q0>d|aP_WDDh? zCom<(d|KE+enaT6(oh}vY(puSw$~@LW zMAF%#ezQC0P9pE6O!6@|vUZP2jr!W!ePi0DaKOo31T-If{d&=j> z9Q`vgzr9sr-G8E z!`z^WT#9MqmB(~^RB&zlSROD&;%}4mQs3-^lo}EP<8R}?jO-j_gR8Zey{pr_z!(vR!*)y$G8YGbt~7LR+9~KjP~j%GtP@!)^4i$ z=bDs=_74pB3I=?9|4iC%ees5~a~Od@P?&!CmJ)O{A_z?-EL}vg-oV|?Lai2-CNt#F zYCbJf>)+F;fW_)3bQr~ZM(=PjbW#Tn2(t9KOPUlUf*RSYpk{q+GC?Cz(fo=`* z_d=q&vU`0!+ypqxy?@6tmbs~8WAp=l+g0(0C`EP2`&1RtxYfm%7HY}N{8L?W_>adm zuQc!vruzLjW1e{FYXJR~s%TRsYt%Qhjf?E+dkd_oBY^@DPh{*bJp1jUxNm2gmb4Qo z2Y&yR!JyZG%ig{11=d7``FBUD&!e;zE9t!01GCJ(ldmWA6tA4&G&s=YYwbRcuF$n$P=w%lv z0-+_`*zkCW=4|{y4)ZSI^_hxy!}5msq!5@j|gZ`IR^UU+gY6~4{dh^))~=F@wdp|wp) zh8qwB>-a9YQEDFd0iuvPJqDn0=}uK&N{NwSZ0pd--o4z1Nvf5eHxf-y4F~(HtPd+* zBR)Q{GJ`MLbuWmP9LHUUvQEYqm9dvyHv0)zlQ3&BDi}R}iINq?uAW&nyrcIlOrgT{ z-^-8>qteP#X%ZHEQc{+@MX~wev9Wc$G}RB}Toi7fYyov^zMbEuv=PqGyA*ZN? zQjnU|o~llSic^@!xpyzJD0~*i>m|wt_d%!Kb9(dv&*_^s3E24tWFh6yxLU3U@*Ut5 zz6|-9D0!dxQ63c5`&0V(w(zxc=I0VTXg-juRw=mj32&ZuiwL!WS3Z6 zd7rR4gTI$)6FYW^lCXE{O2c@Kgt_^~olwiTB2UlV1>;LQdws3as5rLKJazWamU>+4)2Qw@_PuC)*3EFsz z8Ok!~MYdC_-8nz!{sdf0_}UHqxX?y}3U6O?^Fet}W5=Q@%niN?e#-XT_-MBJ?x26U zleL95+KR|Qy9}#&1tv+7(VH=j+om*RhufK3iy`X48JV8cO3_8PRyYIJT&wE$9yGZK!+WN*lKktNj zX3#oUf=z`bgPf8Qc$d_SNDKZjpy&psCB^#Tf8NcWjSc&fIFS>kPctPXKFKEa)N{HU z5dL+y%GUh5+je#iS}vC@3l;68Oj$elwAgU?lIQLx9u=FbL#c)O4#Gu!isx>51>t6g zg_3S92XC>(iph2fHe?)WQyvWLkUcFdij^B{|{K>r)e(06=sHLg+g6C%!oDZ>Il1UX_`@v#=Sj%%wdb@c-J zptP$Cv{dfVY9@s9QhVyQJ%8jm@w4{nu}9v^efC9p#cHSAh7WU~Rw%jQ_DSg>y3>^_|Tr*LBE6qVa%=r*S#(aVvNWUjHZXaME6)eIIvq|ip=3fB(_oSK2@ti zjVM~d?a|LY`GncXODBL$;@oUvFqnKNy(GKbGrL2<&nW-u*FzC(!~ z=htoDB6*hfEwrf$h$LfgPM4AW8Pi2=cIK>sy#3?Q@?c8&QiYmv&$~e#0bdE>x@~Qe zoJknb(&Av~aHf{f#z)-rekev-Lh&nQ71FHzCtp0hz!+JicbuA4rQa@}?!BX{Ymg92 zzWQhkS*L{F1&*+7^Zxy|!hfGA)}LfCnof?^jVWhbXnW?D*$y{QNxuw=P1#bo-IsBi(=Xk>7`b(%fUABU_4u z(?{0{OUeBEqH2A-2j!=3BR%|>R0ltD_q`73YRh!*xj*ivSWfW4gpn#M6_&;u7$2wQ zLr&7i#+N-LUKyjYeDq*5mfd{OkN55cqrhza)%a{@kia%Xxg_`dN~G zX(OkO@?PKR0(CQVJr}xNjoa2d@WsTP)eo@!X*o1mr+a6QxF(!XE!kYy zGayvrJZzcW5mRG>-^aCWYV07{s^k%?fWEj=PP8X) zFM^PRC%(p6KV1*<`Hbc%zlNzCvFBF(l{^r*wBxf=|1pMQ%02yVle+AP(1L0iZrUi}goGZEg5QMf6z7ap#Bg*yxwCu=_-I=0DZGOAq z8FKFXX&&VHh>FsAXv_$LF^5~b-hSknA&MJl<3Er*oNsT(=f8|6Q)t$9FG^KcTQKtV z$#!`cg*M*ZF;5{!xO~&9yj4HL)u*;%`+q?9*~ZrE8=6OZMxR$%e1A^b_Z4ei8IQG$kzzxY_cNs zB{s0mHS>jL2`9=;;bY*GpTIz>?*>nQl_IQnt^$=Wll9GW@nzr-EtO|QO{OZ?dT*{_ zkNC@=f8B&R`LxqEDn~!=&>eb1e>rS{T}rJYqyh##dt_}oc)_4PG}O_m4#gM6;kJW6 zx#%P;xwgs+zra%{LQ*-u#~^4IdC*h!9VGqNGgYi(`3CSh{JwJ0#P7GG3OZx!JL3Aw zC!3!I(=}`S=2LFGOLxyG;+T!U^fiL`iv9R!mMPJbrWH?VmT3#ypx3F=L^F-bf4|Ps zl)R>U5n5T4ckT!HD+h=I0odxb@pxmyhUVS!gFi`C&z)6X?zJwUMksx0NPl*d3_-8oJGnx_sVThuiA z0x@g;qwbI*tWRb`f0eyw!Ya+)nmSInszhGfj08lXsLkJhwEMI~J5rBEzoS2oRLL-{ z;wf;NxLUZ@cFVv}Ek2~s$g<~wXEYv}dH(L)qP$;aUgnbjDK2>1B^HWQYY3(&?_tO% zw)z2e?)HqC`8jKZk}!Ik#31`~=X);~-gFLHwCC=99d()mtN0JD4B|ntD-Fyw%W=X- z_rUbXp~0ckK4=oxK2PF8C>8qG=Tq9R*pD4Q9_+qnlG{&_{*z_x#EXnv9gN|e?~}p| zVU*9?B1To)3^z1r4MBHnKkLDzH<9NHx4U2ExlnJLE57(fYy9=*CldJ7HY+zb9HIHM zbWOXfeb(W|)Ut5>l6phpX>F4%=Jj3~VhfiK3BF{fg_8qz9nYCUf zlu+gA!fTjVZP;IO^cTuJyFIZDg}MyGbNM0g<1#O?d&L^dTvEd6L?Slh3_BJ_{_&JA0N8!N*JF!pnQAt%9Wl6 zxP{q-1KILj>8R`%j{&iGTWKo_Sk@@%*BAIs1M3qQh9U+)nM-2nYsQv!iJw17=xXh% zlPOIrwN2)@y<*t&o+owo@d3_>+{VgA@ME9mp|3Gpfp%Tr@^a=(?oU^DT39X}2b!e(I@C`*$IZ9jcj=v7*+iw*ZbpUbHu9v*xqw=O<2aF)ZO%IeoKmlRr1;Gff@u-~W`JaP!jUQhoqrv~;_B zdWa6`iJ!EF9|mp=mZQ<@lj-VyHBHsb?hr09%46$@U@kEOn@_iLyzS!Avn!Me5?ts> zr*tna#zq^R*G07PN<$rhSm_)$;?+WCdto;(wP~d_h)^wLEI?@CJn%e5W$J->imYLz z2}+7em0v5Kw7~1M_-CrT0?E}Q6$)ErQg~h`+Lg(b zzMZ$!L4p+hD*(vU_)IT~#R0syDzAS`1r~7L+}s>X;Y<#Swe*Mk|2V%m?LLkdQC(}u z$cHv^DXPR{vO{6EoN6^x>G`=BToc>!oE>1)1di{wHJ};1U{xfgGPlJ3FoPErt4os` zcrs>XXMcNOU&>L-& z{t3@K73v>++*WxuYl_!od5z86?UO7A8~l*KrDs1eyk#aEV`uuqvW9HZ?@%k%a2k=o`_Mp;)RJp z*@XI7`jfqNiNz-@jEoj^0wg66&Ci-?k=gcj0sMto#>$ubov0iEtLLWN8=IP}L4_}% z*KQDMH)eUO=(WCxe-pTeFXdd|9)x%!o)0K%!ib2km#!V2sh3W8bX<=TEN}pYkQ6F z3cTpKs|E%aXrx@Y^9B(}yfsKUjO770BJ2vQzCv4R`__cVr`_!?C!DxKi5h*9V?dC>g6Hr8G#NRsfPZbF&?^rL)%naRO!RQimBdAD82J6#kp~KWVKS%m(d#09}-Cu_g8$Yp! zGfgKD$!oDgQ!f$yY6m;sUUj2SVWzkx04XZE(1)Y8N z6Q_uF*nnG|3et>?s=Qo8RV)LxmJmf1*^v*MDt@Z0P+)E@ST{rpWwtep-9)dB1QL&@ zC+t(_^Sru9>!GXGYB@MK6gzf{!gAp@uk;B1_3rmuo%D%?wa2GiOg2F<2!@rXWZ^Rw zT|C9a5&3<^UCT%Am(RV~rI*Y)9_m~H@5D*oH6lEoH}zS;Pitq7+!PYhH89zypWB#X z?xb^Mh`**LPqMXgsou!2=eI{bu>xhjhgCA1bnVp6ga5!sR=WNhb_FMuj-ok1?F^Jc zDXe=9A6YVPX_?x+Bz^0WBCeu1S3I~4?er=|dt0~{1Hk9IX_$F7Wzz-ChVKxT)nTi5GWw?&z6lEQIYcpm}Z zrLr6f%P+|~^eg>tSSl~00Ou#ZzCus#XC-w$yfrq_B8Jv!6AN1!fAI(-8QZ6O1z$_DX)E^r-9=dG90hiv)$ei-^v)`GeOWcPp*;cH+`PC1aG7S;bIyYW0R}G~RZMw0k8vk$ZE^8K_o}M%|=K?eZ zdpe|)%NBGZBusQHGTKSLzC@>`rIK)}V!5HB;O0zPj?;rb5(mm6Is;!|MAqE4E3Z}6 ztOTsZg`2T;zAMBCO`|h?&SNg&p#)mcb`d_z{Y|Vu@?FF3kzjDzBHD;gg zg>qwfwq|7*k)kOTh$MPB{*;8a!pNWaB4)d`(#-xk<`$g_I|-MSm36*|Mx#*|l9^ap zSy{n2%|ie6&Sb(=ceY*w|4EyRmlGA`@+zmYGV=1YZ3*lL6@I^_4C(`#?6*=Mp)~ur zF)WxZW$!Bajo)#O1obH2>mW4SSilGeWzfwi6@%NKu&LdgSO`r;RH1MegiZiZPw?D* z<>u>=s`Iwl91UTO?RraD-14_Co;T)DRf?#3QP_+;xZKRSj}=>`%93 zEqOAs(F@e~$>E{A#5(@n;W2nw`xPzoL-Jt(HOGn+%QAxyyXA&yU)He&)Wx<4eMaa* zUv-VWUYPCCc0=kKC<>|>!N>*%PJFYa>RF-M1Phi(higk2TXt`~E`?=By^gl=qUGvEK5zvh3U(N; zyyUIr=_fa4IsE7D8dZ8Yq&yL%0#DFz?k_&h7)1IJy2l)&1_+e1ZP)~&Oko;P!u3Sd zasj>wnLx0dHI!LFm{rRKvI)1yknHI^>}E-dgnO3LJ7P4h?tlnc_VjpNN$oKi4U+qU zVSSmvWAjJG(YZGn18p{~Q8Loh0Ha39=y6S<1d7p|A?(F#*l zt~zGWd9&tAX!hUkNAsdy%{Nm2O-buPH%Y7?PHlI&`S$uKvgi^4bYbFFS@G@=6oJ#a+cdI8QB_)g*w*aLA<;a5T zZ|@^+KWE!ke^2cJP!wz_6&e{iIbo{X3>>;kS6wK{uTx82DCu9w^q(IEZt3ubh8~m> zu5W(fbaL{9^<rdBJZtDSqe-I}N3c@dKep_I%)TbH8#cdXzoXh+NI-nS?CS9 z$H{*@N;^obIX}d}HYsv2v!U#*4&L#*(iGtTTIr#bEVG6O zHhCI&dq~pct^cM6cH?!Qw0mEFj+1ScwZ0GQI6fQO#n%t3==)caG1oktET4ErcWEV* ziPqkt|EN^^1?b(rJoXvcFL*#3zhG@`ZRL}^)@)BvS6$b&@)<}8U~V%eRGFtmMMd{D zRnzjStROcNJXSD6fJ6nYCtpW)0U>G#CTwqhu5VyKcr0yg1)D-k76TS}!HxEm^D@ZG zUGqh>7Vcpcl|1k15+t?K{{mtPs(#ZYeHDYdv0>Hc>fX z%@Ksucf%eyPyyki_BzdY)_ns1WAtC{MnLg(KSew9qq<;lhVge#lCyW6S&jkG0lFA; zkFH1eE8o)AA?cpGkYI7xtF-Md1Dd z2*}G`Y*4Q(301Z5{_V%vb`)sHzR(N7T>9giH#Si4rOW#x5yw?%-3dm+u2nM!Eu-6HY5rmCGw4-EZHSvjB=dlZjtaZUxRO(4L~853HPu%d;i?7j0`}pMYo(RAp^!4?~@J3ERqnb z43Q&Q&e@11T+}LIt0<&&n)Y-%krF5}yH`j^E8yXKSMvcvvoj zuj*>7i>{sAcTwEcoZ#te2>I5bx(nQrBVbcRnB@uPskmGW>n(u`M!gR*S0a|A?=JZ7 zuUXx1X65NU1-svRJ`ScSgIWwvzo1TKII*B^Uz5pr&GjY6ffj?rM6sldv5SeIeL?Z9_H($sN<^lakLomgE_7@Id@&$+t<&G(d&eM z#npyCU8WPBZs8|$XyIP-x~we=9eld0QwR`b2gC|QGxly3ql!{)Oz0@db}j=Al7}R>cgrDfg*E^XP5!PAe@JKWG+z0PIQv z0vI?GX>w{Z^O#t8eB0qeN4;j?%-V|V|10*#CiuKsoEzLmL!?U^u6XHMkg&7c-(4GM z244?kq#KzN6nej5Nr?M}MX~k4bpp1!*u!(vtK-e;yo!t!5)eT&KX}LIA(*wa2BiSa zEVf0`Bh(-#VZ0Wn1+J{8`vt130`c%zw`^o%`%SRIOoNpMSS^`D*T|;RN9%3B_ma9b!K8YJZrx2vwZT+#z4M& z@UrbkIv>zSkm!mS?&Jt`ehnC3Y#~1np-4ue2 zZGT_-^5kAjVo`v{;4@`t9tg_}R+ao(Pv??l;RreM=8nYyug60h-q%z$m6e_1Nh1Z1 zy%>A5ODgQnPIlo)eP{*iw0s@G&|LZJZ~nv=f|i?)c$l0`Vx?04jL`OH=K}HbkcUk+ zVx8i2b_0MandfuUl_XdCPEMyae9bMlsgmGDzxN#-55!uuF$cU~Bp`MH*aD1yF`|ig zPx=xOO*~od`s@IDORt6IeoJ#mVPvVRuuauD7UWkAiR4B7N700Q9kNKR=k%*%ZQjzq zgUgA0z1scGF9o8nonIL+a&2E8&r`o)8e_Zmau3R>*h!d1K{DY=sfVXaPQDWaGetk^ zVBl_s^c$3hxN}U#dWJI*XuIh+xT&ycPo)4sQa@+yA3yJSs*4EOi7@NDcpj1M^*%^W zYJ_fKwK^e=kgD#vFzCh_>sO_H`8vc^>UZpFu-gmsB10?Y=ZoSvi6Y3GK32lGTKODRkGL!@ zwky}PECRwb(goFEPYA}ais3*MbU3qY`OMrKKY+kn8fL*# zM%6+p!bZ;wb~+M8^Ip_sCqhgYATl_e@Ta3zUC*k{OU76W9FF+_ni#aXSUROBD@I@l7LU`G;-%W8Q*s^GRA z?!oc@1fHeABVz|-1J|xFaQkgZhV=Nop$0C;8gs1HTP!UhGLty18@L!+ctyw4O#|e8 zUO?(+%)F*wWgHW0CA+8@OG+wvT?!SFbTIZwmO?dDBfa*KM7AP`3Ab2xMh)a zYMMkR1ldxn#bcq}Adk4)umm>eIDPReI;$5+`ui}DtpHE<%fnf{`W8#;;1~l*@1i)Z z$#VPVqnH@s7(+PjIBlQmKG7O%qm`f_eL&Le@x=qCcCY{VF4&e2&PxT`+Gc9SpDO6F z@D+-Q9o=BvOsSL|gQ_d9kRi9VsONhDBv{>X zE=@#<9gXrOsC&7_uIJR%R7gtlDk;G~nJNkyS&2Gu!SB+pg;qsy&PpBqaYFMWp8r4N zU}qLO)Ait9$@^qn7*l|Fq|~fyZ3o?Uy<$4*$H9%YvKpHJd#zTH#$KRbU$24_Svyq} zeQmLf(o9`b@=y7-4A;%%zzO`es*j>1Kj@jjnoZsvx+DAog6a0tWTnsAzU&dOKN#&p zn8wNr6oif2W`nE!wI4f+REMyl5ljG{lKlRwBj*cE%3S#n4g445dIMwQgZ9aOURFMc zMkF4};RXSfVB49Bi6j_ym$?tGgKdS@P>70hJ0|b%dHyc>QTQb`=BwQ@3)DN4O`#{V z-6r@b<1&Gzy<^v-b1zZh%L^N%T;R!|l`{hExnH0}T%4TbiHU7e+Co)YYQ|W*av}YJ z(9el2Bp3R4vE?mwU56tWP-8d*^)3L*<-iUAg@uqPQ2{D@`F1DVVnCh)w{d|FDR3mK zI*YHD`(?So^V|p`vCL-rAk>-DeHd;aK7R?Q3{sJvHX2B5Xpc1-z|n=L7q!WCh8_;4 z&<9wEnrE4sPVJ?M5OUijLgY%~;rHdF`2Af)ykV6lWt<3#)#d-o*jKbm*!ejifY6GegI~5TjBe0#bvt(hM=w(DB_b=ALu@ z-#PPJVPM#q_kH4y>%N}r*6O~{_%%O(kK{vrXVZ;2_j|GQ_t^KzogPPM`T6Eu0?)A= zzQ=_wWR}jpznY8S7F*@0+Wv~JY(0s)8bC&s;$SzEiZxhYp?Db}wb#s-eLI^#c$xv@85uN};X@L+YOh$D2@aMYnzQzu|~?|itU6snqT z7ftkt{7P*(Py1{dH`%!BuZ;+V&Jgj*W$yZ}+7d+C!aWG*A7=l1`vJL+KX@8h>v1u_ zI{)@CdH*fjN+v(r&2)pqZ1CN4ShRYuXmeJlN?3yU(WF-O+5cJ})aYB?bgvJRy>O4^N#N5Rzi-AKn z7>pK~Hi9SeF;|Dti#ukO?x{HS48o+K1)8ztDn44;Yab53Ywg|!USeg|p`eX_Kh>2O zJCtJ&m5`tU)3>*s-e<>@k&FME^>4}#j@H&oJD5t^zU`L%pIk(dj!sM9sbySkR?X*_@a+`~YFla1|tHpeOQH}%NP=@I)-RClH=7hBN~)F(RO6RAQuq2z2H#nUp6$HeGn2fz z!QnSQHGDTlxaFSoLV&eW$bMSGpC@&G4$iO79xi-o)CwToTt131dqFC%>Y^;aQC4lI zqKZD1)t-{1CCx{w<#(E`_$|i7GzTA)mK&6C57&jw+$JV?Q#Bz)l~!GQ`?k9aMY0B` zufo%BZ@vFvsZN|7Go}#l!D`2x5e9Oh-?(t!{@|hAYm4vw8g>+dA56nyKR|bk%wmvR zuM6a0my6`9&BiYFx%XvrM8|ymc(Wq6+XAPjp~^d}>0A1ZN-2K6OUbsA^k?!Xm(zk- zbv3OCfF~)lLb$1!XBqqmAnU;|wX&@Wx zXhsteWR8>K<(jhi?_>3{cA$+c)@zC0*TP@mfL=YOoBH{xUz-XQl@TlXBdhk@n$x<= zj2&Z^X*S+pcV5Q75dYiS>z4ku348n0+JOSR^i3ZdPj&4tSYL8@>R9mv2KYgZiR_hSl;&V&W|{YB*aKSvCp$Jg0d8Sb*yYz}qW77Nyld1@z$1nJcq|N56+PMaRTF?YkA!w z?B(o&4E-j@!ZjY96TWnnTfSb=;aSDJhWpyuvoH%*9#?;UPf?a1>xXpl_L8LgSaC+B!?N$g zdMxt3QITQKi>pMN!2V2QBmKR)^2-%aQSI3E%MMk|(lJ*jLJGgPE;mxKT}e$XWo^wx zBKLva$&)Ad)&Wb3m!r-U*iAefb?==FZHE1|`(t2us+tjZfnKPM+e4ISg$Mee5~0C&u``hu z`6anhDoDr?bmZ}niuiG&0EUhsQVaVtyhUD$XUx{xVynRON0^)(MMptjYU7Q^kmegR_^t;OBLr>=K`V{cHRS#B`8j;2K}u4Qz_bT}#s&g$J;!4lQW zvSe4~TVDjZS{brX;xjV01(!wGKXHG2B+=Pr z_d02|cV+ESQ>1 lx^pylCoG!li0PQfu8s8sd=ab~DMPB{wgp<>5Ehp28VFN^rkF zsONmMUj7?7>K~Uly}KNN5p;U3ym5#nWbRhQwoVhc}OY^*h77+7Yw$%P-B^ zGutF+Q1`^yqy1W2Z&l>VM+@qyhqXz|$n2}TFw6AK?!HN1vW+o4hEi=me@!ky@=VHj zTfwP4DVqAr4FfAZ@5{gz(hj#`T0G8WN~G!z7tqr9lM{L*F`?jdT7{};DUp;0fikDL z{orAhjbgIsRhjuXSN#v5Wb6K6i~eyFTR-eyYv6O@v-fi}N_7jr5w5IJt4Inzo>5-g z^j^wGMH;Ks<-^XuoOG$}BJM@6-ufeDyn8J*%5|NpB?N=4@Y)`{$lL`?gF-P+;I+xGwV> z-#%>r2k<}|+HY>rqUA`P&)ffOY%lDW?pbXRAbhayGiEzN%b#qEuIL^YGMBd73WNf9|NDB+zEhzWb78D| zWb{D_ojh}LGF=>O>ej&-wpJ50^=A@RQ#X?;J?boQ>s@oZ601j-nQ2?;x@#GPuUT2uf#PwO72S{!U1&&jM#s{fvpBh2`>MS&2lKH@lqia!;cx%2h{njp z*klf83K?rIFrIRLXSljJl<~`D|EH%91ky=S{FWIJMyZCQeD68v4+>;^VES!jr1)4{LkD4Y$#D zh7?i1#M{Bf*e9i8IC4Yc0`I|-l#~d1(oo}{{6;E|bnR{zMceg=a4EOgl+@`NHGaRY z&)t>i-w`X{-~DfUV0&NvR`HVRp=E*9z;y|0C?_O>sgcP2O-f$gUr%Fe8orbW9jB&{ z`}zVo5=5_Khv$~}mV^OU^ytqq9;Tb4uTW1be4`IzoQ8j?f#dp=2mvbLLy65j8f`Jb zrQQl2O?k~|H`k$^ZV~+BG3LUz-Kx3s8meOl+E(saMzD4q{o?>bdrBVbfAg1}p5g6` zN(E9zCu<~&Z0DYiWxOw%*{zLkAKk0}XUx-0%MLEr`Jq1u_1hmVq^6f^5VXrB^-_V%;vnW@SfU;cz}`%;t~!}AU)?lp(NS*9Ziy1I^!E{I4n2v>|{ zn+-o>(p>dX#GBcA^q;!zF}x|^@6hG4SseX*m|xilPx? zoLH9@^63GRfc)|>-u?I7=G(89M;sFx9*!w0`V@$bjy^77{hQzO_5y=Cx*nIgdXJ$m zB}2o*Y~0*gZ9>2TR@T;zfmnE31~$*0tfO-4h|PIp3yaJXLSNroJbRDTr;N-y>CW_) zE#~y-b~*ZF){E3KDPVXA}zefze+{Ztjj*Q(hPtaM%e#~Es^CP{S zzA1^ZaTDcImSi65>j=XIa1hg^m-ye#IcA`h_Tsu>!;b-U{t${j$Lfk!7Y9 zGi;T5V5+nkMT$ZW9&0GByPOG;I_@IfSVX{|w)o5rlJK^%UaJUcUusAzWDAo<^V?{D z)0Dnnl*t^OzWGi{QAxH)*YNChPm_f+Ww!03u`74%(|X^DyjpupB(pJfa>^@vCXF>? zuRaxi?A-YEC>xZ)TW@NJO?`qOHDRb zJSZlH)3f4bSXh{<(NRaj%sLlg%^EdRc_^d7#KM9I6exbH{;S(HHH?5a?=kq~=~ENP z>OJm#d-pe79H)!uajkp~d?N|Jl@%?-!`5yyFYXCBI9`ZXeGMWBD_MjoB7S|yEh0RI zAt5D``SnZBk=KTKV@+nOCJH8g3&*nr(8S(m22{3fN^C?3XH-32ETP|9xC{qPAUmX* z^zcsNLI1;sa*ShYjz}hw53Zd>{--aywfEKLcHDPzx$7Q-HJPsys@zwv(}TYg9M;Qo zdu)bLHg5M041A6`t8hll8I?}QeCd(^6-;5%Tt+~^1EJ8+!%1$nO{DOH8JD&7Lm6t8 zC*HgsnHx($8LUitql9f|ecRB#A!&Z{h#iuG-!YO3g~^mpZON?5J;)EPo@=7FDOY>{ zOZk#ahQLJ3uG48?xCNMnGPD89M&EC5B5w%Ojajp?FOzj^R?bSYvv7u?PJLgL6%-kN zV)a|t*+(*Utzn&fe_`u;{vmnHp0B_8>-=PQaZ5IKV&Z;9?r&aQlaMBq%@2j^77EwB z+qZ84{_JayfK@-TJ)FE|6&BW1QOOY7Z!^opJ*lh>89A%{c7hi>T$o)Q^;f(`i^GydMT>5|0$T|qM8cJ8w#l-6z!+M2ub8^uXmvK5hkFrYr%D#jab?Ce8I(LuO-)6>U6k z4OTAwrOxMAs##oe%hJv5>ar($!&q^FACox;_G9(iP3PW^^MZ24=jFl;&RBEV94i<% z4rOw64-gfzeNSTB#@TAp9^Ae!umVZc*6xfn5y{)B>0I$wO=bgcX$Qw79#8>G&N>|3r7v()Hhr7P-Zm^CfqV=UYNXbzXxIVhr)a zD@*GKI^Uw`ZzKMCApbi;^IJ=%cFEql_a8n$K=*NeqC;8NZP@^0BOfE21cF2unQ*RM z`EM8h_~VbJ!P;Pc%idB|BTlVCSr+-|nhT# zb!t03N7R^aCe)Zo+i6PT+(LryI#}FOf2LDn@a$}P_GK`?`x-a#r&36^XJv-1{s>9ZBqb2Mt_HXl3%{}y@aw2HDv5-X4JhisP@Df#J_6F6Fs-*Cd+x%3%8zCSV-HA zq@L$2GI;jt?V8Q?@dd~S3Lf}e;v9~?xF;VSOP2*|ON^QN zUG+u5`UpPps0|w|Q^ZGwb){DZc^%ly?@_jRR1m`m5%w)uMbjU7?yolyA2Z#U#{cy< z#x@J&KFb^OklS}peO^y4_VwLckqf`eI&kXxkuXoPfbHnbea8f30U5|>SgBy%h(}oM zP=ve?9|7Xq*_Z3WIC)Qx18p7zKrfuea00~A0z0a}vQLyz*!ITLr%%~9I9lQ0nk^h5 z%W}J+wu32tSz{DLqbcnP3!q-cCkp?zhfKC-qvkO{2 zZ2SX$^`xe>$A-7NCEEAO2Gxya;N!*qlX&iAh94lPU!hHFf|(N5sa zPe@c^CUf$l8)_r3_be0XIHN^nU&`Ciy>io*lgQgxT0Wqh+w+pT$3+kSKkPvxvEHm< zx;WMj)S;8Ml!y0}a|w}6LP~R%4A``+K}=ee8Hqz`#aJPN$;}eC(Z}x!(*hnepLX|q zQ@+(6M!>wra1nk?S#CJ%ELf}QELq3meV_bJsIRs+n^~EkqOWo?Re1!~K~p=W{@vu! zETQ0BNJ%M4WvPNK_s}~Dq~k-)?t_V=D{s=I$3MLx34fo}9Zy*y4%~b&Jwb^T=BOuq zk9xko-gzM92ZZflYG$UQscCvc_4;*>6GD&PzZ>r&xD)g=1VsoNlq_@=ty;ctN^BB%Ps4&_T>-LyXAK zj6(wnPTJI`XJ(3GYR;ZH!^*-U2?RbRNHaWWm^1wuMGBL@UG{G`wru>4Cy!YgN5f_8 zM$=SQ=YxIlV;(QHX^+y~MRO{H{j~)f$~Mn}u`*$C}m72LjsV2)} z%;Bt_J%*YaVr%ivk|>nPL$`$m)fOYE<|xN&(%yfx$DDfXOgQ~O076?GP5T=PS!_3h zYs{oP&8tEgHYbGZnZnb?ihB$eD@GVyN)-0UlX8Zf^KtprBsOzt!0GCvB2R_4=%Hzs z6eaTb<1Vh(n&3=i<8~m4wvV%2PzzugKcuNH59MO7R!KfdFDx*-8lAQo7cGBYzX9`|etBU0DO(TU@6B!t%O({F&&l@RF2Zpa+OGhAMO;X+C$%Pw+{P>_6rWbn zj087n%87L(O^>;J2XuRv)>`4`iDqoWN}E9$z=UO9)HF>#%GS1%d&cE-D=8}@k|90( z*W0OOdC>9zpXw}QKZZ=~_msm8+5Hc2$@FT#BBpAb_lyWTt8}>GnaH4Zxy*^UM8H&0 zvl~o=536yZtF32*Kg`=$JQ634nlxdrb>-hxOKVdBOofDFUodr+N!X_2l{ zS@GSW-?I?$_}|f;{Ej!&P`H(cZ7Q0R9xu}%JOVuCmx%_%)=KjSVw;kh`YszgKW_^` zt)i)E`h;CcX)lpEQ~mbs`{JjfF>ny@vV_N8MHv|xOrGI~7ca|QSJ^~Fx*i%1I|4JilSsQoVj+f$2K@wA&zN2?kkmx z>TgBUXf27BfvtiT+qR_SHwpB_>$-R?T4Ih1= z{8RAi*J1eid3}*B`>p>F;M2ye=EyN zyP?zPShIAkZ}1$-wrVFsBvZ=rIQ3YX%1+bSd^gXjWtd8S=iAAU361Psvx6iU!7I=1 zl~ql-5#ILA8BF3BP?7t2!+_ey{4qsd`U={~fR$DO_}wm&jA& z?d!&-;|-N(wMs?nSLfqdI|QQm^smzV*GbN&QON3KiEE6WfJBooH=M`$kH)9z^I%A5jEcH^MO#+O5Bd6r@M%Zb zC@vo0O3{fBxcZ0U@du;an~v9*_elltyUHtGi!m(AQ_(pjFr4uTeOpq#?Px5!RJcxH zDnvm4b^dn{0Df4xv-n5LEV(2x{Jubx$#Nf34{J!gPl&c+mx9o^C-*Pi8n$uRls&-A(x@E?igGWyV$a>3{w2Wu z6^q!Xl;(5~OIIwsM>FRc2Ff48no_+{-%Z2R z3i=VL0H2fA7yEGdEw&*PY$XAgsg=NMYA4ixdN3Vg;l!`2w(*4*p;rLm!j1fyvSK^f zdeod#IHQp!wmD@d3&JPp)U?&SmO?7GGU*PlNk@G8P=KqoUDUkivEAtk;pgT&zp$U6 zE-FR3mN+|b#D4_NQGf(kyIy(gTGsGUS)ZFO! zeUFv#hTP+}1m)d?4^MY5(*owacPJ4l(!L#WrnF>)NgvTLQdx zla=|gPF!P=L`RA3*ee1YA^4MKfq3f!hHYhM%t$UqD$h(nTa*jg`|$>U7r!ZHa?XO;};HdL~h!k@#ws9@KfIMRTW8S#dHnMm<~-T zl`StH7-AO1RY`xv9<%SAXyFu-MXDRCu3Q@m-zrK7P%hv~1k*m>t4+_Eq3@|`1l#%b z!|Qz${?Gr1LUuP0xMJ7t#F;E7IH8r`T}_rp*!UYV+LQM+QRYO|w3U6v=4Po?M$7H( zM;DRoy9+Y-C1??b=^#%bNgg`X24U5}>&CT=6+_1Q%;A7(a%Vt|T8&oSt`A46MhX%# z+w83=Qi)9-jX9FGyJoSeDk4TR^bje3JbjxK-c&pY0g&dNw{)WOr9}c%P1>7GA=53V z6hG%m0S;Cxw~(f5a6)J>9VSHG9<%b-65!m0_n04dtelb5`k^)Q(9Xok!rq)at#vjg zNmXrGXJGY=Dg5SND^WGkKVY}dtnBQ(r&-w8q+h;#i6nVXp6md=LF^?HAg?t-KzLdT zi3v0{eT7;}%FA_ZhCeic-Qd@Iy8~!ka{4v?p%q`wpWb8!O`!aHwFi-C0!p_0d|E-m zb`z-}0FR^>)AwIs3JX>3yRAIKI5b`X30e*WgH+YNR>NMmBi=8xM5X}t4`js6X}ogC zJ{!(Nr9yt+rocr?PJA(K)4-Zx`Z3B;GT&JF`Fpb{S!2`K9M^;MA8F}iw@orZ<+rTj*3b zZdgtW;#&>UNj8Yf0)m6nmzu}(!R>^bKJ7*;rHh5k%1W{?n2JgR#`37#BMF(=^|9;a z8AVFqUXU6gHq)Ajgq{V)QCq&pdu=)`Peu3|o)1F*%wy4P;17)LfHA?EV*&U$ht#Z- zE1QsZmN)(^KOYV#4l3Y+v-f-UcfSPIVtCJI>fhY}--CjmcX{m_$M1b|_B zjgCghv=O{3-ORL!9nwe2K2JcIbHRCL#>Nmf(Jl%;YIE(hrVWxi&1W}sKc0~$#9jJ0 zz0*)oOdv`wK)Xx9S;j1X#GxQ94-OuWK1vedGg2zNUpTiq=WbPh`LWh|oXGWi(e~W` zFpvNK!(>$BNXu4$u{m4rMFOgtrkk1XL}+}UPL~4Vc5Vgt+;9deF>&-k&!tN}+;dcU zp{o4Ga8;`9#-T#sA5Ms9cs1!E`|#HkQ(An_o}BT8?x{%NhzS=(yG5Abx>^eow6sO= z5UNgA#AoKHs-3?kulY-z!~9X**vHZ|p>3<>`oH2u|G4VOXm@$`ufGwGYHDpw1k_w2 z_vEQl`)dENy{=<=~JNjZ>gdD5l27Hys^|0kTUD3OX1XzB&?REa`jXWt9&-`-u~8xaaO< zf;yEkGz36|2hbJ!E~katLx;D!hQvoRf!e(X|m!%AJDJ}`uv@|o>K zMn;&aVJU+Z+|lMi5MO zD7i?%^Vb%&Bh$E=zNofu)8qtS@^Z}Tz1VF)_bT>I(xrr`<9=rM#_ioN<;z^=?$m4M z%dy*qYHE+LBSsstnBr(^gbDb|MdUJ6&VTy2{EnUIshgfU z#g4!GeE98_W)1bq`rsoxh4Qu1^={QUB=mU3i7~5@`O;!D>WJ1GkycjrLK6Zlv;PQb zf4S3dPj_$wDVar#<2-Rv7QhEev2 zwAPD+%nu3+=YcDr@x!B1-LMv7blRxC90|!oY_0>@7R+(Szy*F3u4H0j^m~P6>w5S9 z_1oNzZ#cVpa(X&U&AWH6#j-nozpj(=e37~OnV(?ue8wW>@Hi9de0a z|9G)mEU~jtW_ndxsK`9Q1-TXu89CL7KfB#jNlbm0k=n@97Ei0#OMf?ihY&nYK=~2R z$KLca<^AjqoJ7Pb)RD_?Ktdd5`wq7HY>5p&fJ5+-%#T9H*3iGcnDdjhnv|SeosCUR zJqH+Q#PfEO!FA7^%<>ge+QWxOK~`1S)^?hSIw~mW708=hgSJ^s@s}Ti9}-&v5fqFh zvuo@3%UELJN|7*?vb_173lN|%ktL2QVWhyXe})JU+atAnx&$s zGE<0B+lLa*0mav3`8v>kC~JO?TQ7Eqt)5^XkK~^$aM|K)TzYK`mHSH4pB_$n_1h-d zGn#+~0KtSh*cLFa^R4N>0r4qX-Ts-I4LVG;Xz{LJNqpY@Lh&A9s(gfrv6b;x?7z5I z4uTJhpMcXe|It65ue5yFL&4NJ*A1n#&uYt;xS<^_Ig9m+wkVE={;`J}ej(6sfcx+; zxOV+IAQta@OXW|I#eC_Rm@+}YL7dm{!$*iIDQk0$<4ZFGs_hr9HpZg(&4?U5)^(hJ z($D}Pu{QD2lS%37)hAQMBTV1z;%9dRITFRlxICU&KgbVW9vGsTM*hI%@TB6#TelRANLX(FXrg}I;^-Gl-p0^k*{{^3bitNH z+^o0k*nXhV`ib56@AZZ0)jDE=u*0k`YX=-|nPO;Z3AxXUejr34<)4ULdb=w$TEKlo z&+1y4g?6@-j|FowHCM{m996<$wN|LrJ#FLPTQK6_$K^WQlC>dnsq*C!`)98zBo2>L ztN4lxy1PGNJG(YcpjN?(Ty2^HSxV{(VdUJ)`V=*+D-VN0G<>MVvL1fwc<9T~>HU~- zDmNbB86teyYJs)l*F*W^HPIPgiGOe~>$SD;M5NFw&$IVf#xwjR^Uo91hYI{W8odG@ zK*cQ$!I?tItLW*yEHv**hALDl z9^ctKj)y{JC~R-$^-;;Nh4al%>2-`9h7n#!Bht`>ifTz1*vGgzA8h6fH=O(VUYx^q zm9MP78MAT{Ldiq&&u2M#g0su+7E@N^+vGQvkhrh6tIz{S+jaBtf%C6=P9UuM_VR3< zef7g!qng=YvXutj(n2xrSBPUYZjr}=DK_(Wy0HKM2_`B*ntDzh)ST5LljVyW@t7d} zw{mqCm9N};p+i8Yy7AdRW*d)`i^I(sheGL*uAX3$9ZkK^{nGr?*CR0)OAAF;6(7K+ zqFd(PN*wn_d!FlLOn))Gzsl}+MO%l|yFDkotvt`2y);i2E7_cx>vQLBT_!VcB9XMS zRgz+O>#%kQ!Dotq#VHMRtEz2VW8)E)&8s#f*|RSqW)5MPBH`@MI%D4{x!!wVh+Z{c*d9m*a*ScgKprN{lqr5)E#JQW&i9jpmEGFjek^RrwlE+(?yF7s zK!5PytJ+`|v)RE~U_iF#8r0?At@_gyuItYiQT+WE_Uq|2^Ai?yly!g=Y z+=;ZZ4GMP2P=UM&sQ<0@*8ZBXNeOc04V3+WINjw!MW8*6&3LUNoY&;W6?gY8{S{x! zgLHS>fmRas;Rk&4eRw`^8j%|+Ca~kHn}iX7PGrJrpPcrMh?v+D_~glb4hDgpkGPBC z!#EEc?>j&neno3EDTBD+smkH4ZlIPeo}_+LU}>-F%oyt)Q&SA{QDDN6QFl?b zpI)vHc!% zD1rNZbA@i1={FhpRi371a`;?UF;LV{Wgx7qV^}jLG?D|39M%=21ilb`b#|OJFv8L1 zdd+s3i&ea4K66ZcVg{NO@h>hK$r5?D#^oXIWng2KiLz%6@(*t=mvfI&=-{@#;9vp& z+}8a+wKXp!i;2WvVh$$lst&=EUffn=MEylG4sbQj^bU2TS(M7E>2EPuY%d- z@)?S95V_c>u}fq$w4cZLV?5GEMIU6UbKKTf9AL%e#pVYQ zVrhAKyi=fayd{cz@-Cdiu_9_1RYe%Z9t}P#_ufI<4pcw4R3Q<`LMu{QN;O1^xv__n zl9H_8WOOw^oJWwhtDxk@g&c_fgh!i^8r_B?jQab1xcw28Ny=7h;q0vHWMa``v0sG6 zk!HfBhRB}%BgaKAm}2@muK7Jq|I=#5xu&Kxp{6oMhFC=*=o~OB6gX3wPfk5oSGCVw zl$W$i#Sry$$662T?waO(T?1Y!UAeJAsm-^gTwEGnV2yr^#jj6Lt>(}twR+N7$z+kc zv4+K;DN0&o4~v4M+S+=WXJxqiN{NMIFJWUg$w3VbniPf-xJxv>UjF_K>Ucd#BJXI` zu3LixywJr_Ow9CN$cRi{?DlK=-Pzl$YX3OY@4c$~!RftQ$>5Vecr4U6zhA>2h)!tb zHWi-!hw0dqAD5GOHk`8cgSU*cv-8~yFvIGY7iX4ZrQ9|WjesvU)0XANf8CFP7U}tM z+r9^#V^9}{H7Yab25R+Mi`crdZ0sc=!-nXixNd8i{K7&*6h;ftLqs+o#1b|z{Ontu z=OB>O{}_K+L!ql?+wSB0L6zPS3ms0&XG60p0kKkcABIZT5gM_z2c#`E_B*;_Zl;6CDY=YjBOi984t>OGSf~UW!`UO+$vDf*>2Bh(p1<`=@37@j0j2YrI2289W z1W~SGM%3B&b4eNsf4}0jYg;jkW4dBrC*ZUt7_1qE&3Of@x%!KeHa0dyn}Y@SYJ&vHrE~q38^f0UHgT)BU50t% zykJLQjm}sA$%hBHvxp$Le&w?R8jX%xkjn1YU3yF34^e!84;TI%!ZJu&DOGS^X_SB3Ni9huxRDtz{c1zhe*_vvUzTrvO8-=f;SaS#8)(2@8okx2Q8JPE_^yP$ z&DunVUz!*uBY{_Rx#G+W^IU*$ExIjD4CW-Gq-7cPql zsu#LC|5Ncut$Ox-7{=b#=oyLrbl&7^Txvm-!~d8Os)snvxbM3{Qc@CjMY*NRI;il6 zsbk8@P&st99p$dhTdltUP5U}8N|g8PS(QLjXHwI3MZ3)S==$#AEcB*dv5H1oTGVhk%b9AGiHtFn(iB*hI!|jwLLXmFsSd9&lo8W z6vS}m7!MI!<8UPfD6XZALo>Q@m)O9UD7iD0GCD7uwP$9R%{+EQcS+Z?@_;_|JEuSA zj|?q07cF!j<=G^j$+^=pj2)TKZ&*5EH3@fgsc()v_77BtifSeK_V>^M&@`_CVG)r- zX0&`-eQ})s~F4eH{K9)bik8B4jU;e%sbOS zSoSi$Z#o$^@@Av6Yl_1XKc(G9JCo%u!0$Gjw)k~espkb%p1O2D==~t*Xl+hZ))@(5 zEwHL^E%A z&cc{I2`sXDE;ybr#D2xS>QMo5IJ3I6KkCl18%MMrV7mz8Nv01BMb4}&tVx04BZ56t{ zO`i^)`{ItcOP0%+lK!_^VU@9E4M|B3A)&*$vEnquteXtsv4SVIrq9*Mb>p(uDysSW@>{9cXS8+kVEF}L z@ycLTKEMz*EA3{adyKSUM*OANN>e~?tkPlV?B36=yDW|LrkeqgIs=ra*aZlBiy&Jb z0FIYjlKW&qJM}q_Vr8P5ox%snVWGo!`yXvTNKV%K^w4`LDwx{4hD$_r zV=Clv|LaFRHePoXti}f*E*6(&+mnRsBiN>mWv9_^a_eW7Hyt3F6V8kMkNNNXUwx~T zx*W`z7-t%@-Kv!xo&h(Kw0$AqsjjF0;Jq=_V?&(mSJ4{CavQv@=?xuetQT{danbzF zSJy~c0e%Y1Vxnw&rb3^dhEe3%e34_-XViPBg<+RLt{x;3MPy!^yI?j>fnNE&?_`^A zR#-eJdW%H&dORfTtbL%NmX`4DYxGg4`*>>`cUetu(!GBcQd;@ zh_-1En&IA@<%YP!zA_;|l!09>(-&+pzui>#Q4rQ@YHmL0=jVrXYC$AS2f_(!2HkL~ zZ>EadjR$F#iu5)nX`MRBVrw=q>FM4;ti1@u_FxC+8h=KlN$yww z_?ZSw&cH&InUaYDmT~`6m&TQvYrAiSR6Ugp@YCI_x0>N*7UHX>o(!iXzRGqOBC6vu zSjUeh-W%Mu-XCQoU*~i^9P+>9BDXi*-vhO8gYf+usuClzSV_aA6{@+}zv%Ddom-9; z`<(ctZKkKV&Vv$U`pzke)z$4iKgZ(07s;a5%+ zZ`bJR>^un86?)Q~C9<)z%V4Xz>_Kt53Q(LQlarIsdk)&yZ1tT%TAIN2zq|Li;54Uu zG8htYc}TY$m~KIg$92U9tHV%~)UNKzqBdGEA~RcIrA`#>I!hJidAL)d3(wxD%oy<=Q!=415gPEUCb-OhT*5G;S~wd^W|~50 zGD+S`OVK<%vzHur_wlPV5iT*8Xs%Rir=LzpD?ky=&HNAS7TnI%9K>B;#o~YT7;~g5 z{bso_y1U%L{C;m+(2|YEJa<5z;l)ZJ&j8;}l6U3mFO!2j)u=Q07C9;@KJWhGY;Nv4 zaI^h%UmmcGa_B4@?Fp+rOLY)-K&q>d;7 zC@%cytEE~6w}Z&bS?=rONZ;qml}+S)$Uqs{)e;FrLPg2lfhQ!knqc%3!m+vpQBcy< zJ>7}Gcb{o2bW6{MPJP@qgcw=2$*B-fv-S!$9YB^CbG_IFe=%cqV(^8zwUtQ?g})5q zT**s<7X2TwMy2{0=8RTjF^$)qAv9F}m;2oM@!`qB@*E)xt&oQ04+l0^vF#uTXS#mZ zer0}TX?#&(qHtt=&Xv2etkD9VzByJ4*-rEH;MB83GUTd}lpUjoOfl^JLD1;|S|l>} ziH>K#Ksh})+4Jw2MNId4_rF|0RU$by6|qvUkELU=vRLQ?2ch7%G--l>q^_dtV+twF zvAjm|9MCEjQ9^@uGQ6*Do=cpK-ZVjW2GT(ULc;w(&{js2x@L?fIt$nl%d;h^Y}vx! zlA;ihq?kUPCund#`DkzZ(^ z*vtgVi7unr_*shyP>w443VSHd4 z|B`(Fa>rEH4BLi#W)fK1lZcy`Luaq2*|;PmCZ67y*&f^^nl z*-^e$6;9-%9fxtOlr{~8_}!-FG7F;0cQ)G~A_au)!*K@1;@lJ9pY$bdwD`#80fqkl z#^h07z$ON5ic>k*{T_ub7d@ErO~qj9oc>w0qY}scv@I$sq3UMf_Ph$bHG;?ygClSZ z9RiYm$Yq|vN$aa6NIPn9mV6DD=0034A>V@IXGm^@0BA>e4P{?V0;pRF**_8-mR2Q# zJ3u-fonw`ndazzyUF|UaX7`~jPqV+NqvI%q*TK@xcg;7?HHIfQbDc#$W*cCZk2)Nn zZRg^$;dx@F87F+$tRy&4Lc{JL3Hx0SF zm^Vk2M`jiUO_P^fkhz)aE=EAjt0jm(8-Pw@8c4rYFT3FLW<;!dzOiEI2#PF~zY2#t zs>L?v#8^5L$C1+=%p235hs=ASU$NH$@}VpE5u#;4pLzFlX=iKgzLoOgWZe^@tK~B@ zQ3RCeaQ)F3O7tyrbJKdK-&jq}$DaY38BFoLiZ~ktVL|;%2=?_p&Yi5&={RaH7BjJK zwb^n8Ku^f-3fvTKsl2Q41JiThF$O>6IDRZ@U@a={nKq|6GG2r!7i)8u;f0jE*vmAx zpi2bhYi;M}&^*M2{75pOV3b3I&=!d-z6N+=llbvWAKkTndM^Rwm|M+7!gBq)A@4;@ z`w0n;N>JZ9oDyTF`Krf#t;XFKQZ<35v)YUH?u+(b3m|~rce)d~m(lUB&M0tWNKqvF zWT;&Zh9jhUW;f#titnw-j;>hB4yF0m&2l-8YGy>C1MU7-IXOHz zh<2X1ZXqU#(`|O%<5p+zcsgQULhTejc5#c`Hy`gIx3{l9_(H<6oF)-#oZJ63*!X(c zIPtg`jJ|JxvH0D!W^%>V{UV6r@#83;{(R`SZajI${gI}PadS{>eNsE>G_t=z=68p|I zO1jD!e5*5j{ot*yy-GhKQt*REppg@wfPh_bfqqS0Pxf zF(MbY6iqc_Vqy@r{TeBjn2;L?q8-n@I>vkKuDzLaf6o;YF7O9|4mcK8_Q_Zu+B~Iq zi&Kl^bwmqu?3Ts}xW&EKolAqhVz)}QZp`@;$eSY=&d-6e#$Yjw6&|~t8jgjh<}8%|Nb}2@R@TcZ%c_$eCDXIt?||j>wT{oEF7w znnA}(uL1{sq@9zNMe&)OUO3M`Akw!if46L^mEgWvG}j<909>blNu zA3gp@S~@fX2D|2HT3?7|NxWN2GFQ|cX#Q8Ab!)Uo0le;|qaiGrny$w^G(<)y()a7uekI;SPMy!8KZ_8nkRUR%4#@sHjdTM!VG78|Gt z1d+~wQ52<0?+`({Kt_5U6Qj}*m0m_EA~1kM?^u8lkPbr!osl{e2N-&}Ymb_fXwJRQ zz4JU~=2OCa-`;EQz1F+l^)A@i5SC?7aD%qB=8_LMS*cQ3$OHbai-(5GTT(_fe8z9< zQ}R9Jc*>3X0RNAh^A*mK^|0>L)1R83E%b1$YsUDX;RUcJwC+h|ThBVMCDCvXbsh|D z!Yz=>jV(z@Lu+1@+S-$u;8K0@dS?DPld`;vOX3t%dyz-f!ArT`UnB(d-hBqT6%vkp z4-FgulR;x|zS5wd3`k{!o;*GriVB1vUSplGx(c~lCKM)IwM_!Yh6RyNdCd+y@tR`Ve-tU*Vo|8Hp3cnSbc)&Y6Ur zBN`LkKD*Np{oL}~g0lZ|`W{%V6Y<9zt;KwQ-je+EMFzts#U-5c0N25IYWdd24M1hO zqMj(q1nWD7!osP8?G-ypxDx{iKb*IhQq@{o!9Cbo92Ox(RxkUxx?5NBo8lF&zKq{o z6>f^Gfsl7s=1E1x>J6tN81k^uN@8|~_`&$4y2U43^CUH&6#CYBY2DWRSkYFv!cb|t z(BtBh@~{#9U&otBhE6ES&?1s(CfZkmwY12F-U0k%3-fph#~?Jk#39rlCFZo1vPC5U zHGITwFuFhza*}a12F!gtd-e+;^rN{<;Ym@> zVI;Gm`$k(3=%kWonl@K!0*OST^o+mvc?fZfn#zqRappqd5DNsfR63t~6E7wMNkD>4 zMBXTQaXG#`DHJc?G4J10WeQMDZH2TYfJ~#x$>2=bud)x3ThOTnp>|!yu>TplnqjAVKplDtet48qPXrwIr%bDlFoCXr4C${uf^1_B^a9tW zRpZ)!!`f~<>RhcfgnqJHb8Q*e&K>~3=fVmL+-kacJw@eLD{m9myG#vR4qZToYuPQo zA3E?Px(o$hhA2o-K|)+PcwBW3TuT0KUDA~1t$fG_LaYWSn(o&p+MeNlN^Mly}7=k34&7wA`a-hf0H0BMjV2KS&Tt&PCRt~ zg@8rT2<5J!p#p#V$FcHXd{YNm_$bd}$bwCD(DuzP>S#}Tw=5NJX*>Ig940$CD32`N zv3T~UFa75f{^i5H-$1I~f!-Ncr_%>5uVKZVJ2_pI48L-zIgtfIqSxNa(Q=hVqUxpI zKbx$*Zft97i)C={TYR6HP5;e-H*~Cf7Jj6-(w+yF*{Q`}z1q7tpMkCx-$WQ@>>6Av6Lujn2E$LCC1l?<$=7?W<<;oyMma^w7@ zdzsm4m1`TH@8qxVH~rk)-RscCW53a{hldxQTQz%Fe;46+aJ)zi`)pJ1LT4v~>4IfhM^7++h(wab* z^;d`OFV$a+1+;;Kv9N`3jOep8qiA&5e`bm{!`_YAzDITR z-Xauq2qgiqtY~!9a$&qJu#kC9pauI##Oo?G%+uS^^5k^BHGsSQ+G>274`5G!!`X{Q z1mh!{2P1;Sj{xuW#P*V5x80C#&CDmjdurI|! z_{Og=i|76>T1?D(jXB5JfCCGVPhPxSWquzoyXFmX{XPf3_ec0H6LeJpcueq~%m`%M zUw<=EMzkdHllwq3(n1KH;bzr)2;8+M!VdI_Scmf_D3_<(bDFT{D=~6ft}Twg&@|VM zWbD$)E3P~Ob^=k;;Os|E#9!?KK3A9lYPC)iF;~vsikNT{wYJ^rT=i?K>HC(Mxgr!C zg@Gu7d{zvOcAse#|DJtbG?x!(?_J8`^aDRvmB2tPq{zuM=yM!rkd={fg80$TY8&X|RoI+f)#&G-=ekkl>H*ERxi#?5ReBzrdzrRt6ddD8lMqM>*Y-Ta79xHPr zfrWM99+%vW%zWv!w)XbQsp5cfa)J|kINQP%wNNC3sig07Xmium)%}DzF_%g%qKFV( zG>n<@l@&=jLgV&sW zluQ_JRWcYYahSsgw+ncPaO5t%uye!q*6*;w9AR0)6rad3e|DI5U@9FiGRT&`)$eRE zO&%qry9S?==ZMDpUNLbYFC1@KBDf@sH67s5=GtzBq4LB+YzmP+q}#vvV#sHIW_fe~ zjhA)ejHDz9BqLbu*i(Sbag3}yDQ07i3QJiXc(64rfb>9lkzZ$5*Rgi*kw|?DC`t(| z7%u~$;usnHO=SY|KQI@Rlxzq?d9o;)JLT)8vc8(uZSk(rn1aH+I3YFWIiMIcz!Th^ z+U~dYz7P3~u*d}8yMSW{+=NRthWT8{_m;vp7Og9xpYIFZ|F-!mlsMFv8B`uiEYE?w z#d0T>s%1C7V?Lah73cr{HP{n{tJ?QORCSpc?ZEo?5U*hw=Nm0HvsF-xhW40(J3m7L zYP4qEvhE_v_$L$#na2e?`%bm;diZ;PKDm9~+I%Xo{&NH&N6P$MJAsm#(3Dmnf(+cp zWXRq}=n)O8e7z1Q`pWZxCrka~V#fGjJht1nv(j#fwdK-n~XV0D`4`syQb4(GQu=c{^9{--CMx}=AzlZcde zaJ#-6)gq`@C3h-BK;Ky<&5t~FN2jc^cHqdxI>t^tMHOQul*nLi85JHT|EiC7c$xvZ zx)p_$VR1~?%{gDlSATuVFduMyyO85F8a6H3)=Ihs^~2kUFO1Of5FNjYj=AE*-W zUn$qmOX@iG39PR(<=|n57BPge4@$@_YnR0bt|j$9?7agqu}q5CVv)y_O#vdd2L<7d1oMReq-~i=KV7j{ZXJg*mXmn5Y<_i$@F5JGg0e;_jBJkTN zzoo@f?(WnlLEdth+%jWt7kojmxGp&ow_MtrvYj+=M5*rb1N)SFEypm?yzfz7Zz4?Q z(aA7wm$N6QhmwoR4$Ci9eNQjk;oV$oikt2FLx1`34CiECz%OxKW2Tv~m0|w)j6C*Dk51oI7PJ@E$9owh_`Rai`^7^ITPB!k zEtu71hW0f;I)l85PX%&F%)Gw-3gUK38L&S$8t3V=!FnX%7u1cK3I!_IT-utGa&SMN z;IjPM%xz{F{C7&MTPPL|VQ^xj)MK@{=0`*7zdliAqduFtUBkl@frU^DdLICHf=TJ= zBB#N)OM>++@qXE+#~jxi`KU!<@BP%G#gTMHAe81S9VD_4znuw`nnC! zYvK@phd2XcZAs6}7EQ%@B}iu-8s%*(7ml~sn(FQ6Mf|Rl(_%K^0nD^UWqpNo3Kh*! zY$0&1YV3C3GI>b8i=d1Pf)7@vdtLkUx{%>_xv|(H10xZL3ybH}(+lP>P zilk}M&i074(siKYaI{O2!e3?|eQb64jGthk(9Z(;mewR;e98ulpq0qKf`c^f&!Wa6 zHAYh)3?WJ+L+_CogDeBcIPsH}=kn7XKs02Z1DsFCkXw866bi_|Na}R=Rp z=R}o^>NiqXAu-`H8~+2$c$lx{soXG~^%eQzL710s8BT^JCnaX>FQ;Li9p>Z1 zi}6QF;QHSB-V)7!3NC=JN5Uc1bLyC!!?U+!+h&w5b%RsT3}&jruWvjFPMob=47;q=THvfQ#dyplN)3C^f!HVPCnMKE&ERY#z7qeGIb>LA zKd$_VVzfNKqk-Vz2JhxAmxhOZC6gg`z*}nil4tbI*=T8TdCsT-!Ei38WtjdP8_D_csP>~9h!Dv zZRFvJLQ$Y=5^P$V;Fzst2JR6b1NYF`hyR2eJSr}qXwz-$DUgg@MD`8@(2N3TV{&Sc zE#9LLzz7z2t7(aLYVf{@FR;>ANpN|U3?uGvy8qX=&*zrg){jsZCK$8hV=krlIk9JT zRUJ6lltQF`3`_dyOcOxPmW`2j>({1tt(k|Ai>_A}+d>{ma0VwT z@3*Gi)=o~E*x&9#qPPkhH~`grmRA`l(*wxc{Q1aBJnIwY3A`rPQR?iLL?wSx+-@Sxg=d_eVbAohWA+PU;7Z7Z}g|P~l?k^T-SDtej4TbLC{2!fQz-fF*%%iWu zB|AHtXy27t9+isrxRXW0ZEAfw7%I26vol@1B0V)!> z{t7T6ih{7*;XT|25xsY+tp7$DY8fjViG^gSiTm8o*zOBTwIx?K%12`VGk_mI4QBYL zW6{S)O3+3l9J*&5ZC_>N;&>b#C%9!2Zv$EDCn6cjJ>w06C80rFtU*?(bos4_ausdu z8#|oz(aAP^iWX56%_Q+^54A$B$r8N$WUx)ziKF9V zD&~QXYCf#9qb|qj#8^1q*6wGXlXsGGwoZ^Mm7tx-Wo}CEDq=NtU)x}A?}D>V%7q+& z0tiCyZq4y0Dm(tk6mMRy0J>$>R=jQoL&0x-844cMvRm+r;JAY!*52=`oUh!(EzZcv zH?B4>Z3%eHoKpPh`oGTg=zAzCwo-n7Th+B2>)>-SOV5serC86HN7nTEciE>4yQI~# zv&n_iJ(=tdrkMc&$ydHpbPqoGzrMZpeSP9QDORj{V#Us?GzZEFvV(km=3NW>1rwijUhMpVwH3_$-+Zyc!tw;1oKG!_DE7_G z@qwaKkuEaDLcxKS+iUXmxmh^)$O=I&7cvsQO#R*~{KTrY9YPU|q6}gL9T2lV+HSuG zQqM^SG)UfP5Nb(TPoG{Q=o%Zx!wf3ViSw@vqX3=WUcb2{N3eIW7HXu(14v6 zmx7a%li#@i(3YJi$ImA&Wme&>Iv{a%i?glR^6(&wpKP5Y>tZ-ZE-&kY@PpigCkNks ziD4Evtq_=4QELTMkqggMtpQet=shidGcJJzc?F1t2!x=0cDoOpKI*+N9&ssHLr+sP z!oXpoJx%nN=QnG-o7zx6QHNt_Sd$>|tTBQto7%@=eb+oT97-C?Y4EO-Sa}tnMQP6T zpeDas1)EMRC|OPMoEYrNC=du4k5pdDKOQX@6ugJVr!>=ctZMTu7kzcEP_62!ZObAZ zg0$doP5UHPde4{-o@}&i@A;X2OJE45YEQZEz>js>;jLh|2o?U0um3&At6y4fj#5#^w_X}gYIrfB9C3@6f-?oKI zTQNx}F<+9xR?iTVtt~6c3iwBJ2%(btz(WJ`hyVE&S#6HviZsvVL4K&^~2?f`d~YKfao7jPML9w16I7(LCS-MPn&IijN?J zOe+4;T^s>qwmyeB$arUp`kev`dqfKh3sEcAW8{9w4YMLS#j|}wE5G;+tatuSu(=)` zk2m@OjpKG#yJ!ZR`^$~oQz~iwDSq*sm{uF7%UrE#rgELGR`DZ!V~J zrn#m&S2vf}j4jPZD91Z$A3sx9u|x*Mh<#o!C-~fB(Hk=X>Yc&CnN-2*1Re)TrzR9C zno^?j@6_dt9E){)+o9|BG$3;iJ9e&hYu={{)+W1nyhT%8Sx-gbp~=aensF@`ye?y1 z3CBZW(X6k1iTnDFeuksx$$+IwjX%1z&#rQFl|~0mX@T~JcHpB#8_-IqVZaU*pbeHo zY`8K%CP22&x$hf_T2K;d!@L&Slq>UUlDx&W^y_he>?)SS=POKq2@Jx|h{dSRULnq!PYfpi(##aKzZ0-7BgwWQNs`txF> ztk25%JX6K2e&zzyvS8^~H~bV<6jvxF1HN@tnsLsCxEa&9mfG;N$t(Ff&Xt!nK$D93kRlxRhTc(dZyicSnc;uvP7<5CiO1n=ED&3IwL*m0%T01up&o zbI3`@?kEhfTy1U{+hX*-Yr0q7+buI7!6*02 z6X#{99J&|ZOqBX2l9^*FxD)NdsI7cp0qC*wr6`4~r`9Tv(>3rlM!<{(P9nGCK#Ay( zCpEOj`*PLNR18Yvwhg`5!Ixl*wx{+RWAnk5$lh9d4&{oNb9u;bIg!PBe%9DvY#3~4 znocT$qlz;H;QRmBpw?!QYTl=8S1N9p zQ!FcR+E!K&Tu%iE(z0BYSMoS44FE#_9L>Lc_|d9ZuJXspouL^8cU>Jg1g7$RPC6D1 z#<9)xJE@beUmwiP&FJjnpu{N+g*b0HnVm^pkbT$jaKr^mGdxetw7jE;%{l(y3${HF zfQvpMMYfyGK)Nhhoy=mj8^mpGU_s~RXnVs;#0HO-bXHGwYdFCyjy){2NtE|nJxY!f zchEa?=8Pg1i?wJPy$0RWG|kQNm$HBw^Knz=5rgo=b9Ew}mByfTiPL}Unz?w_babtYzBI~j;?8{v zm(Sp!gKRJ)qG|zQ^C&BXhT_Z6Zh7Bb?i-i>)fhJfZD|t?Xb{Y)62L%n&8usS`1}?$ zp^63<2<)vhL~ED18deR6-XN{Z#=#*#wp{aDDj!xWkhJf7s^|mHaWBfp=2U3eYShN_ z0wKoj<&j1e%Q=)ved%sc*Q_x$Rlgp2Z{__M+|En_9=J$W{{$(si z#{Vha?=Qys=f~w;F*1Hv*$#Ht&FbqOpe|0usV7Y56+X5aUfQ%v@?U%9xjMZ!MI${( z%F#gA*WV!g>Ex9N24TPDOhX@ZX3nQn_BF*iNqXrBZEWeAU~M8tl4j()Bg5oia;$Ue*O?y@?FOYX%i zT(QW0_v)?y*Qda=8oMGY|KlF2w1Zg4li3JZ@eug^Jn8L z2L&6c&we)5vdiDNQJOs7m2vpa;&r|wYi>d3cTDd`?~gJ4O0a`PG_qR(qvXjcb8ZF9 z>`hM0GZ(V9Jji$@Qq#wHez01he2uX%2k}Jwl9}WBW@vR98SmTq_V~#gEzT}iv=SP< z&pj~6^R`51>+-bL;#u}q1IXG3O`QqW(+Z;%9O=V!iwga6>HOU`dvb%!O+Bx; z+UY0te#K+9RmO*MT}9v5V>g!QVfKE0MbQYDgU-x0$*ElrovKzwYmA`K+X<>ukCLe! zp$ElJ63L*i#0@HHfsD9dC^#U23J@y|sxR~XAam%u(r6xb?(sc?d=OPvmzhYdLAii? zQ39jcL6f`P;3QCF+!3O`uh2DY`Gw2T@p#QP=0WA+*>b$ui}Q$Yla-`(mZ|!>TP?EvmK<~)u`fOo%Iota8{d<_UccO(r4?&m)NYoE$~Y@ zWuEZ0lFjRvHnSI*%}CuZb?2B;AsMKVs(YM`5@qakIkig%y63X&m0$kFqEf_fLIs>7 z31(~yZ3G%n(e^%?ILGBJpV;?4&5J9ja3Hs0PC2>BG8`iTefpwpQHgE)ud}HB@!nJO zH@2p^>Eb@C*-I(jucB(oOOpe{_D;oma@cw`%+-ocPhG_}5zoV7oyPwbJ?erkD2v~} zlKbXQaeXwkpI`Dv%#8I|JBC+(EZl^H=mO~E+4~h~kW7`~%VI;_cGEvhv5UTIK7bwH ziw``ZArz37rO@E5_k`>`bkKaWmJqY}Ci#toPSJ@#pG{K0GUbrp#^1Yb!Z*DY6Zn)h zGYUgxvqZ9~#~?e(uo9w+K%PsKiHxJR(8SrQHU4&seq>Q?Lrs#y3AQ2*sQhScwpxK` z228`L>aEQ{Mvps)GzJRhR-C5Kpgf#2fQ4t4s)S5rN;#s6Zyk_`}tT0$Vq99R>ZnZ=a*OGoo~GZ0Vb{V9|~2 zy;?@=6WiS!xvI;j?nzxcJN6ITT-3mJ6mCA3kR6S&v;guC@s}6P=BFxw;!y%ZxD<$! zRDLlmgHkJ2C^gr&sLb`7b^z0J2h$4zzQ@z-Y_-&-xkeEZ*x7!8gkR4ct|XWO9i8ar zaD&5&&+C1JCbUN}2zLbVFm4%kPCjUNp<2)nA~SmP`H}mc?mdfXG{`}tR%N!&)qU<-og;LLM3PUGO?o4@IV{rF1Oj@s})nzqw;#O^xdtu+0 z4N?lWWm4X5CW=+(d#uETio*R>lqO3InHX}-4;gcC6?Nh$Th)$+@{5yI4pSW|rx!Ca zL#|fJD7J+0;rKRp?#!aLn>U5^snug>zxsp@rZ^1TAh+5YN3~r4GPeKbTGKQay3^}G z*G*pT>#o`#ZRTxvxDr{aFc4*>-rqaFZz9dAJ@vBYakhPSfVrCM&2fGfm5G{0Mh6l9A5m!o#Rb&j*pS9XUS3{JoFR1fy|@ljpi$rjHKRxS zs2zw1rY<{OfcOZM>0ps6DNweJt|^Bbx>q2n-)W6G#O?w?Ae`mbFt>1Te=}@MA&Raz zb(=O)0$!9Ki(TpY86BmPu=xM}iu>)eA8S~(Tq{zyTXNtBKHm>N zAFc#p$hwdNV#!cC5n`KhgUgU!9J$8Yae#}WhWi4rE-RaR1kGl4ftw<})%E!XQnK#EAEJp8(x0N~?CitHX zHy~PT%Po!$@1r^A&fQ1BUaOS<@Sqs*!oPSmeNOxooPrz=9k59ZDgamXMrj-qKVVH; zH9S=GzU;j;=s~@&B7B+9UFgtVGM*f~k4D@GlbL)96zB7uoku->UPS^VQd7@fQDQ8^ zE)#kmGSw`=RbzGJb?emBG>mPsdXFXv82u#B0#9-5FN(cxYfmF*2Wx9!#FPA2Cv;ZF z@Hl_h*&z(GK>BC~gymkd*-#sLax~k719su}H!c`zyt9-O+j`}R8-&yI!UYzaJ+tWa ztW=&aMKB7M;y-A4p{dT(%}(u&sUa84U}&jecP#|0_~pXshB=~sxTz(cHd#26lOYfknXj%|RGEcdSL zs4*MN_u~J`{W+ub88n;o9T7ASL^5G?h+mJk$IH0cgZ=ZXOTGI8CI%{&g6UKesmzVG z&jFOrBin$VTjPDb8Zn$G9MznlRHjDg?djn}o?rzSzo_Sjw>4#I??CtmyS`Sv1-yMw zL2C?@Ebf9R#1eAeXwFNZJq{(WQ8*Y{a=ckgbp*;KcCKE4w7xR0J;A}jL1Nc8iBLxS z=l!AzYs>3B;HHM?5Qeq*;LwI3KYPg~ENZGM7Gat)zZQ@8wk>h@i0bm3OwK%iAwjM{ zNl}sQ-=PROAoLn=#1~5_n))4r2|O-xA}owOO|$E<8cg+p+^?KlG(&Om3Y&}#PXO6Y zPD7xcO1!0I_aG#RN6>o;=@yN%lPLe$ZuyEs78M<%I2$p`rFz29vLKsn+1^U)sa#a1` z3_9e=O^M8kMyUMXM`KKM2nbg$wAXk~l{AV}%K@u?pQE0>J_))ZSk~V^7U4{vEOI+TI7JVSw&3x72ck{g z4R;-UPr<<`7~K))>$1We(sht1n(6M=$~GxKu_?E8OQ#REe$}*{z7iuhF0^H7UqJZE z#YGz1-93Fm=p7+!W{D>uB5v^h%JR_ow!Q(t$+CfuBbBV+W}v%kyj`MDzFx{hXO?yidVrW>9K1YK&6TZx(>tYNR+;8CSz%l}$2bBW*0-M#I{mk}nB9M9I?cw~_&o z`Z^*yoB!ZbmPx1sRZc_CAK0_OSwVa?sQQ!*6!++aaiTztoN~bmRNjg-G??7)=Z2Pv zV$cBOo~H-&{=h=uM?!UtHT{>%Hx~P;zwZR4Gn6-;4&-X+W;hz zq7m{bwHzP~)ULkPKfJj=J;~cX!D}=Ym0Wi=Pe9j^0f3G&7-;{ui!a`fsGm*7TzN^) zNuF;bM>H>OS{9)sLfAlx!yGftLWB0V*G5YE2o0LZ?c+ubELl6fl`w>zHnhETiheR{MHkeIjgh4V_Ln|toK8#6rqy|D6JPL|v+u@}vPAUg&1pYHo@LuTZ zopS@H{jSmHuaP6mLj&|hoFe{H&Cri_+sUhR*4edumY zcJa``og7a*e%ow@;;lebroOs3%>{yjYMo@V|0>6HDm7d|UR_~hp%XpB&7+ZQ#WMn~3NYw8S!$G741YO93$c1yt>^Gp~mlaR^b6JM8dwN90O zi}voDiKpQ-=>cJ%kGmiwJGmqWemxIJON56FGP8+(DWasxdzuav%0vLcvyYS(%;ifmz5(At&AWem>lI zOA(|IqH;Emqxf1x$cU#!X!$1;{Gn@vio-wC0t7F8cecxh{; z-zKK$rw8fu{nf7i^BHdqD|}#e;U$RKg-#(4U7Plx!YOh@)Nbk#!KT35IoF797-!*M zQQ@gZ*4FYskUR5a+`F9bG}BenAW0qgYsf8S<$zu-57 zAoBrfxe~=S78c}4o8UGWNQ&$tkXtDm5y1A7tfGh3lpjrj%o=h4q{b3lv}7&cy}Zpl z_g@1I(s+1PkK1pdEuwKmOLn#zSki&0+}{a$&?4#tg8+p38tBHLg-JPqG=sns*$@0r zltJV?V|#_$we@Fg>(4uCK~moWL@?W+a;US}9O54+mKKA~)EYGl6CEi~TU3}Ye;LX@ zC?NF|2u*RtSD@+oSz57gQ(a6Yfq%$Elj+leV;H>KSbjw;wg{!i);^}k(lbxrVNAY# zp}2mY$KwRJ?wK-r1+XC637Lc3IPbL$=JBYU_GO{Y$Ju!%#OrD0MSznu(*1%R*5rog zmJXB||1CxJ_;&mm_g{S7-aLm=+`O+PV}ve#LWc`{1rlAgOn_kxTuqOoLrId(X56@S zx+wItTb|UfK8Q94K;WiyTweVC9ep0ZCFfK=U4(eD=Tx@LKr4s>E|OHbSn?x_-G45-SrP;SLl4RI3%O?^|m zq=0`NY31Es94Ab!xrxx7CJo3t+>J0%AZCU!c7v0WTY}5Vz)qhsnUqAK# zqHTJ9U@_f8i-w!HCy#<9d%yMvBF(i;Hd9>4YXLX?8s_f)r^y9UPZCPax$~E1z7{{Z zxnJP(db^7bHZzElJb@XmHL*3JfeTUq@ryQS8;iUQB-beFyZqs4X69;V?jQu26^nfi zKm!SZEpG<}6w=hKs9U-^I&3fr8Vj?-3SBOj>L6*rgWSqD@sc8p{3v15gWaYcrbus) z>AfJd2;}TUp^0q|APrEue68FYx|xKc`WEY!Bp#8959d_z@}P0rbFY0hdH7jhbGpiJ{Ycl(qu(Kg)2pv!MK5uF<7^_0Af!Gqc zZ&HwQM27>4cZu>s#=`n+K5oO}Or+pMU_WH1nV|Tstxj+Q*USx*l-CyC=|UDYt^FT; z_-~faEHxV(w$)T9RP}v;lMja;9iu zkiadmobD?mA|#iVU7Y;*@u5Pstz0<6CDf%y9`ehECw72vvnM2Ksn56V4FQEJepwIj z=ktTML!4xk1sN>WZPe5a{zerY;kam`_q-I$gIoGN#@H}nY-Ac;f}@sw%L8KlenG{j+ZMxUbuNX zW$l91h0FGSadq&qHi6xNy4M*v6%FYP>=z*WZ1&={KM&QsMfyjX8LfYs3F7COV4!gz z@%o$!15H{ajP@X*6zE_Eg_$cR*L@-4L14~3#;&3c5Zs}HV0sX%hMcH`^H4(l9Vq-W zfHHzp=2dbJ=8N@*tNf_oL53o=zkjkanA&k)&%|2r$zVuY&%v1lwWalwR^!y_( z_Kj~`xw!$igM6k++Ti2lqno6$)hF#w>>!*Hbz5&WsP@v6t9~X!lg8UFJa0ySuE#AEnD! zVH%1M{`P96l-8nIx>Fj#IcZd0MY^0!3t*(2gD)P;@C&|vdVk}dK$fAebh9q$6iHT~TWHNhc7#Y|>d_j$$6!1CD>(0PfVKm%l6j7Li{MFTIBq7s!8|1XGbsv)GwBU=i^ZL9j z(cwI7l`?v%B?WG@5*0f+*ZQYVC*NYeudV7WpP_EK^h_-AOyQ<}IQI`$UM*{Dr#L^e(N=p7 zX_6H^2+=^LVL)aT!m6Q(wJINXLO^aP4`+)R)>H1+wx?1qp1K7>^Xpa9#L<*8gLzHU zuW2TabnW9lc63=*MaqbfP#4Yt;Pmx~(Wa8twjFyyAfa>u2~29Z#=0n zcCRwE>^kH|f?W_njM^(0768Op#jzr*jD!wwl2u`CCRI`bN|v8(Y9v-!Snsf#ihyciKEOgL;VsjeNj~EHlTJJ|^ zL5Lnz=B=jVf{KUzWsz`=B19&6NnqUt`;eR9f@nO@y~(c2RoFjuJ*SAf$T=o?jT6T z70Ng1qhAWV4o~`|D58g10!=K?RcT?G6EVjScUD#2{@2N+(&7_BVcLtcEY-{DwUdN*3UD!6tvC)I^w>gpnRgU`2sAQaAyG?-rdPhX<@QU5S`Lz1+_mC6v7bGqUzhRo6zX;d?Qyd*>okR3vg#j4QHf_e&9}6Bc6#B@%XN)*d5qmm#FAb!@<60l4 z@4pCvIqg8dkUkre5KS>@+)Q{P?gbob;x#uJyr3Fqn_#3cdd9C_{Z5}U_Ul&7zb|hP zM(FQWg*3ZA)O&D8?;o>pkJqO@s&uf#XEtz>v(7I}8MOToe05A{_1E)qr+qHiZ){0B zJzFbUk^O&562-l1xdNOQ>%^r2eO^xk(2>R47G; z)W}dB{W8${4(yfta2E7kZ7`1UyLjcKnqloBC=J27hAo$yfYreTt&W{dAXTTSug~ns zfmD!@LlOhpC2;5-q6NwlAfQL8qo7q^^#c?hH8PKahHSvFw9`did)KMQu6F(|Wn~*a zu4kA8bN5^YieIa%OOC?4rnYhtT^UNEk5u{z=^yYA^2kNbd>G=fxYF&OQSgth#xe;U zV0ul3E*4lymXJzjVbQFvl93<`E=-vBUkT`r>aK}*;MnR`;A%^^Opwj=;Lg`CKHfB@ z)xZ04snzPs<7b|943(2|unT6U9f2M8ki0{wr-ex!a4&iE%(S=#rus4JJ;gr0&zxM= zM;Vdy)+|Ab7i&UG2fSn*HlkJyH1jhq;LN|gy+_gwADaSvBjYi{ji?sLgJ)`x0UMa< z@e_=Tb1r+JgM*34gJu~Ya5dDt-CYo1VtZY6;t5@E3S;R zIeWLZ%4P?o&tOsol*eQDH#}DQx9cMv3AX>){%V`*uOHmjPHbDM)Zs28N=pt7#Aw&# zmYsNIs{Vrg!iSqTe&DxvJNvlM(df9Non8C+<92%-`jvctyzV<-l#u&XM z$Hej6oHs_nG3TMe3~l2-c#fHggTC{?=6F~Ml|E`qYmRoD$+YRW?8=`O^-^^-@m~!o znF}#&>$##|v~opVW4f1biO`?evrcP~eZgZKBBfo|Rg15(b~35-RlnX-s8Cf@cC4z@ z$-{MVS5rCte&^7G@Yn~F9nD|vH8+FqtH?6{(jR&loV;m_GnaGLr<{<_dOmWlTx227n>TySsd0&|vQj z)UzV72cnP1jk~2=s$fyj?nq$&DT5z^_X`Dq&34q0?r?yAvDA`wgTA&i{KT5cmm|l#HZ!>Th_g6nfLBtXKzi=>97x58IS%^K zWA7H%WeXP9y5+`m=!+;w+|X^Vv$kESxfRbE@7G88o?bp5rhHv~ms_kV|9*AnfZH8h zlx@|x8@|pRL(6@WiS&*1rHhXZlx3Z-EG+I#P5kQ1*#)BAnSWVv4~7@D8K46C49jYB zbF&B3#E^bB*+DFWcIYTLoC`8Ig)eLo1Qotb=2Eu1iSPl20La)D@ zi=JrYp*Cv9vl1E35nOBQ-FDx!z z#Nlwj(H);xWmIfl;!1aoMp$=>=O?(ymH>h-?W0g;{ z2O{(wox>el_*AbgvR8|VMU;MJr06f!&k+rRaOR~#^7OZ(uQ`G;&JY|YLUt+?p3YJ5 zFhkqbwftBenYT9bn}g}B@f(v={@PdGkgMQvhvmL&X3 zUx^RS_Z_LFt}8e8fqO$hfrYNiVVCGPoO}WjVJg?YBGjWV{OJZ;aGLGJc;Mo#mGNnj zi(6+!GqdtE^%Fxcr#M)y{-GJsWZmAZs%C!m$DDFY$ARL<;?ob|xv^Bgc#Fa2=8_d5 zm1GJ1NcVk5IxYJbYa4_dKTi6-_}!7$hT1GU)Gz6n7UIVK_H=OZ#RGQ4jfNGl?jw3D zDXHSG;N7=dEqv(kp$cjgq$WlLXvmdFBhwM%UrpjsO~kB}NIq6k87{kSec0v8kwaf} zvw_?`#Oe?yn`~#Je`b0zD71V@$;15J1qGa{qwuH(568}Q@tT(tyNRx&f3Uca9W|ksZ+==2Skt?5CFxmD5Tl%3-_P>SIl>X^&;y7r!_1 z8f82VZd#mJm4|2Iwts!d_P6g(e!hPDo%r;Wvg{!iE_b)uV=7P55`T_$Wh{_(dt__K z9ud8}x`T3ScmO&OQ9F)2s83B4vlytf)_=dVHm`+8J3csgKcDvEKicD2s|J{htvYfE zSUYjDck$I~-%QmxxuQx8Z~ta+uCauVg^AZFK?)=eI^XAwH1q6R{r5I(lVg_UNK{dQ zwplAo7`mj+JIe~$yXeBR{!SQZckfY9+C#$QB}It6SM01+pN5MTmX6N|rY35+TRK3K zqnA$$#6CaW=l4gH_wD~lLf?7v#MIPI;ApZI-XV4ML$PF?%i3Cd^QF!uyuW-^rN4$r zg{M6nPUkXog4na-SY!R_?`MD}X@oE)(Q_2<=&uTRGKCt$)Yzq9w6jX z4o_N}7aREIAN46uo`(|{zp*Jsj|<0e3PU#;pmQX-+rX#yvB5>n{4^M*u*BqilqT6YwYgG>+cHgfU#<3 zw0!l&c8yPX{(R0|7$F`^+o1j>*&{4FR{u@Rr(Wqh!2LMv*2;2LdHlXX&B*$iv~=}w zu~F3!FpB8)fwn?j&B&&sGW{dWpiRdXS_POHDZv{Vu?YI@+(JXaJ5>p~wG=sV4 zzMVbC;MAx2b2d0F6c&G40_HDczk2Q)m&QcWe~j?c7uLT{`|ATv@0bU}%&ZjP6BFo4 zPkh0$-0$p&⋘Tidlw0jV#W?NpXE)t}2n|ZZiB-<;J!M5jOC%LdzyIV+_n$I|M?4 zWO?-uPDN3MVfN70 z20q=%-44bw)R!9BA+(l6@Uif$z1R68!}K$Mx)K7%Exr#wEEp-mM)mW^2`?X7$$Way z8aKL&Z`iJnHQs3N(bKZgO*KAd9=?b3AGZr7N*|j3Loq=n>ooo=kg7fElY@+ghSS@7 z?QZvX{&%yAaX(J~PuTNHH6KcnTRH0>@mk$-iT4Uo0jCh(RP*LCL)1lUBiO%bB)uh| zyc?vo++B~78Qtd2L9-QWgr`lq$BHbEuGRIKwnabx?g>L&7fYvPSbhEV=v#L=``!Mn zWG1W-JA8*+pncdJnn*1<2Dw3-n9<@>2lU3?4wc>TAvjE^%2L@4``ZtIS?}*o!bncD z-62{K*^qtu{{*vAJI;6fqMNQnX4YxC$lmM9*JrKLn*t0UTojPtJJ}l&$RJ){tTBLX zqVI%N{!~vOY+J$jv9EUOiW{W`e}?}zAE)CU#kikKp1a-PU!_b2o5szD?hc%J+GIt2 zqF};ZnmKjV&r~8lkZZW$C*k$Z2Dpi1?L}_R9s_f?9O*ONy!hAa5d`E=={5zvsk&C* z$*D~{_RqVT$in-b|JjZGYb({Vv5%GlOGYxaQ>v`T@mYO+U0lc+pAI>4WByh=b+^is z3zp|i`%dg)6`IBnpOhYnb9cYck(1K{hrjC*`}RW6#pRln87ujD@cYQo1~Hpj2)sI) zkH=><$3(h+m9^6${Czt!)$J7#%Bd@Q&lXU9?b7Da)0{EQTtu?K>L1l z^1`WPm%gr7tWb6YRzu$brPSOjAtDMzN2Yh(De-;GIc!ucyZON-yk-vPB{k$i>RVn9 zFCtm?_otNS{xpukxz@db>cq}Rv$vIRY_8YE$UWf)j|ko*%oM6cr@tz-eQMDAw>i%# z%QH99(Km%5%6(o;o(_XumA{NyV8}|*F!P&YXpOmTAMnh({vx>U4{ z$E~Y(dD$vBTQ!Od-488KWj3}UhEF&X82-sScje_i@ARr(hdxKR%ls#lGP1q}hl>j06 zod;j37X5QwHVM5*p64^px$paYa&8H3?*-+&)^CvhuVdPG;EKX_m@oL!hfa&jb5x6} ze5|*5eY{GkSe}_I_O^-Z#6q#tVq1+C8=B$No(e{`4st-A~PCSQV-(1si4%=Z{-*V0nHL9GKbAG40?KO99+ zrpm&F+z9P>DJyeEf{gJ(O~L2009Fw$BWSeSc?J!-v3ngwca)&oVC2;1riIC&5eXp> z=SLe2Mz(iW8#Ow%;9d#gQ+IJBG4pi zIy;}m{fA?CVwhO7#%*i?6tw5a1N(OYRLtU>qK(zRx8!j`-It(12Vn#dPass5-D}(5 zs{7&S)VR_f{!%LoSp1zA2t)}}o^HYNOY@yNT&C>&C`KJ&E;Evl_WG$Q$!%m= zL(3|N_csnH;-k@zM@$XMYULR%jeKW_=jMU6T!pyxL4=lOR2$gq{k@z$q zal!bltLA8|T94Owl?&fQ@cARj54eO7P>Bpm<8MEHl~v8&(^n?kRxcA%U{HjO!UAI? zjQ4PQO=tp=X=`-vzIpr8eowC-Wo#tB&sSP?d#L>$UZ(yec=D4)mSRL0;a;WVpX7;%wOtn?ly&K`@ zJo4AId-i?4%g>KT1uWbCfsFT4l4XRS#Xa;fureHRGEB@?YuSzJVt6Jhhx4Np2Y_>$ z&&xzs{R~?5x@8)ZP73g>szy`1wTS@@JxCZJf(TU5LV^2d%wPKWq~VpVQ6cu zT9I5tpnR-!=G3=o_($RO%q9;Q`)CfPlX-ZrmW|cX(|&~WCRk$6CE#V#j|V5lFa`P% z8D}BFT>)4XGnji28R_ZA5%~=IJIuUsxVl`-lp^c%bbWq&CHd8~Wr;S$hPj@&Z0d6A zx~g8XNZ47>S2BZv4JYE%+*;njajfU+SVnz&-DtIMpapvj3I=`$R-SN2OO#FPe8g+B zeCwOX0@8KAw>JB#a%6i-=ivsldB#Mm*QM5@r;+S7)7u;kQ!qCa{{v>S)*eN zAZ`@5zb-f-*0pxq6)(onI;caWl1*td;P6*qWRkHQ2r{`2=yZr$Uhd^((X+37dl9OG z2Q^SC*}_|eeXWn_wrOMUr`Ca5gCWQ4JtY*{7vv%yhgnTh4lzD=O>Sz!ZxLaDz%}=M zhil$X=;g;ah&@QH5KeIYzq?nzNwqGNuSA=8GVN0dKW@9ITfV4;1t7LB?D__tXF1{imK!BVGUR=Q5Y!rAwWy zQLZ(jxrNCx>!@lw*Dla3Oq`bbifR2;gphq?1Di|I7M^{pGsBpMZYRMQm!CeBLpCO5 z%a&({Vm@i@$nTEk%gVh+bo~g|nq8}9jt>JDDFoFMK)o)WA9uvF8Tr7Gi4{Gs|e?=x>fz<$La|70g;VJk&| z=HEECnZigmj$c4N0{MC6=(0FxVL=U`B4v=u6H)_If-tGO@UBhj?Ee+24)P*eL!xp` zrx6iViTT}9I!c|!kV6z{Cp|T#7G7^!Lm=i!5vqmvO}BUEOGy-m*@kDuOv>Yr{16z2)oFSjBeqT>>NZ(qfT`m#Qtpw>E)A#55xF17DoK9OtX|3g(;&Qpmj z6y+~^0(YaY9vX92Oxe}^@`wcd*K@_sfaL9Xo5fW-q0vH?xZ?{7+gr0;N|t5DZX{h!X$qzQXR_^WU>Dg z0imj%WAVc5y;Ni&YlUkE8r;x5ZAZNI_&p)mDQLfG;kFN7-sI=!cRpq(CkdCX{sJ++ z9s%A9KPR;|{&s-oXct&G;|cM&1>^uWJG;R3g2Iodo9qObJy z=VT?zJX%gZUybhX-$N^(eDOT1Rw&n^Sn)BxPd3ZaNFWac^pS_Fe48c%xuDiIucMF^ z-ZcN!BC9VJCcxcTmZ@HZ$`zdcE4OsIg%{CxY^+}S$m37oL9yqL5R2NoYZu^hS63dt zrFc)M^QlABg#m)EQJI_Lb+i+Xisa7Ne09_C;?A|N!jUJGPmr2|`7$-MO;^#J%??_l z&&3IYe%b<>XE8Hl67(XW(oz1w;@^Y<({!APq98t22RfQ?8UAd>EJ#~Cj;st}Iq%|S z-L`mzW@F%O(dl;OHscGqo25_Wa_(mjFfE$~lBH#fXw}IHxPyf=)4Iy{q-|{|zJ^VO zz*sM46c!O1gW~gL?w}DeHS%l)3A3?MR_Dua4CrHOV$UFgS)^i`TJF#B!JGE*LBTIW zZuxu2Kj9g=fx|>SUFBgPJW{jqW?18T_6c@~qx$wvy1GK{2svaxX8cGzSV}$}tKwo( zZn2!>J3}8j8I$CmQ1>4}fr~GY_%z9Rtfsm}_IsHzmHCG`#3yK{`bk|h_AVAjvY^x9 zP}v5kj~z5$4660qOi{Sb=6+FsdZUNekx*k5wvqn)G0-NJCnwl*^j&ebjUHTaV@k&w zR5|4!Sv=1vpngO}CX5B$E}kivH?OJI_idm|OM+O^vM0IqZDsZCd8e(r%MMcguFLF> z`evfoj&3*1dNdkV$LU86rm1l_mJC1Y8gM;2%~SgXia9+$`*ywjmae(w{%+xz4WT*v zw0)Kcb1_qk+|yZq2FCdD*eGy1@2$cfS*vo3n<#60MGX z{N{OdI{hv8UZGN?JVNg%?S~XM@oAu^&Maa^V$XbUptDPFcD{8QitlRK#mT7RukmKO z;r95yi=WiaUB~ecea_;)HO#Sg8|=N@95mk%*&q;3e1^9X+=!eBKK4!6)HrDY#^f7g z3#c>r&bZCDj#EoRgLR!X72{MX&x=7{1X#PKs&~ptPpyUbq@g40IKt}%@+8r6GSX4n z-%DM#>(#60zk-fRZ&uZ-F-Ebh^YdxX;@*g!6ARysicuEl#!d&D=RDplFl@Py|D|p? zTZllFzjDXM#)DDJ*JKEj5w2%7dS7OUs?ApbPO#=N;`GK*-}%m*e!W#vNpb%vL)f8% ze|s|E)WRV-@55z|Z{o+4-lLaF+6|+M7v7J5Ph;_x5qeLI>@n%tcj2LCQ2}uhwfv@d zt%X-#B&@aZ zXVtFTHAMMr&sfg53(MCa`q6g?V3D01`+RDUKcFm_U$J&WD~q|vp2%YX6!)uYU1?rt2vpY-T6*ib@aS`V~%ihlbAa)sV!QZgnVjJt1js}BGf7$ z(4SUaMgq}h&2!81OJ54zA2Z6bf7L6R;eTujV~(iUl~y2{l;a3J>r_P~=8Wgy>A5u4 zz;2|(P>Lvx)s*<7hgx{gluqT3V>+Ybe9bPc{E;nBsGwZt0|*3a*;xplL5592^P}$n zKUJ*?mUbrqJg>lx=-fzktN_=1QOiEVDWxx%?fp}xp@&oGM{<=YRx-ooF0Wt*-atD~TOy<-y|7qooD6lc}B0Y7= z|Ad6c znTUESlls8V^XWIL(_6l-166h$!#>83NbM+~lB+zY9Zk+F;7?RnnY!O(c(az>w(rrp zKDatrx$rh9QtjFW#<=Z>P-RBz;u2f+A~s8lL77HNnC`KdOlR+x;u_(T6=G5-yqrkg zB8L}>nH}`I1R^4Y3Kd!$9-HR(DeIU5)CsjD?ICHyjamBQ$&=e+pNd$XYfWYx!ced; zC`pG>kpSr{c`wb4K0Zn=kMaJMf938nwZ@A(~kvjMtw490czKfVQKMF%Ge2Ea|8hP=v&O~yPYqe3l z^%-Z)o|#Kw_45@o&yp-^yGqq>d=o{64MPPgIquv=qd2K!38TeFEXXTPqseiPN*}~~ zNHmtgF3xl*OS&ME94AA9GZKDSPb$@o)!C667xH|aZhXFjjmP5}UsbF1dV6=C($w?r z9+ikw{8;4Gh(lvN%iRI&QM?W;|6y*jmMn}^n(yXjhw#+0RjQIR)p{pR}y>ydj?Ik(w&Yg+S1SyA-hRYUiNPN$eP^mDe6N)dKnH zSoOfqTw~)dKR>zS7q0UUgXfBeeHxA*c|MV@K#k0)TAYXc4mc)4WQV6`TpzAIqb*cw`_o- z?KW_Xr&i6WW#RtwEDv`{TSQaJGm;2o=O%_%knc@RDeQ4%H3^fhqOYA>+JOzW@8v|( z6Q+G<6kO-V=>DAvaP#@H?~T?ELnbOCCr?xu3!p7+F9afsHm;C))E$waCYWxL|KCm5 z0>9w7FWMBzQBd*`pXs?#f}&@_Ss6^7VQS4BSr`)d!71g)V62zB4l>(`=J zMh&Zv^u=wrL$%b~!I8X-X!dG5Xe}1Qf_Fm9xUBn&jfr+@kV_ zaH@uy#ewpDeH;V#YqS-FC1!ReR0B$QyS1x{lE!EM`gDE@Ma6?zxBVpO}X>xw_*W_w36#HA?*z-QH9n~7jO0(_ZvrD zkGfJd)stvr<1lpbdCBn3Uw#pIn|O5UzuT4b;^$YBGzV5i<%c{+x4)TRcAE{3rA#g= zx!qt!5>?a?AC#_TyPMWQofqwEaSrx6!>*`2O%3>(Y#TYz_KXk(H_({mWJL7tQ&xrp zz%dKc0a>xq@)I5QI{DMExvd5OIW=ZZ<>z3UM{)X>~Y?{)vKD;ZrV85c#pkxUyDZlzP)0aOblU{K ztybA03$cH4qn>CkWQd6_Y%23_8Jl&@Vz2)^Hg{aFd6?n{WL9Zn{$|66`02}cw=VjL z>h;S9`w#T9rIzodmFK@`SaJO+W`8u<7Tc(upL96Rk3T_8rlbIx3;+dg-xct9|R`kTb+&;!giEHSD=qxk9w|^4wF*5>wW` zb%(=T1;~;{9}Uq`5hLxT&3d>zr%(zOt zC1_rFXMlctKl`+GwzS50G3oK6N4kePrJTm^7mr72yyH0dqC}RvsOsghM^iFHLrwh< z7X9IH{Enb!(C+TU}2=wz;^P?~A=C53Fq`vnY zwXcdp#$?pNT`H(zp$hy75Xm!cLA;W};(M zwWu%!XLcL;cA{wuYlf!e*MeJxds+qp z(`WctuFdhjt|p7kwmEidh3d*7b8lk}p|7{afKywVk4(?lCg*_lk8j4TO}vvgUrb3k z(d32}+CIZ!l%S~8I)344>X4zKhK-5mLbKaQt01ZLjD1Npis2%5btgf4HNyPcUm`nO-w=IVU+M8P?6c5>fe@QE!$x z53V7U8ew#CuZM2gF&j^pJyxwSMrqee`#+xr*ch45Ps;w%{%X8BJMDaT^hVFeE2pGL zODZA(5;x~_DJSOuQ;yP5ZdnzK?R{xahVmA3C@?^-%f%DK(T!Q#nO?#c|Qz-M}0b|CyELM$9Rn_Lw`uj8U4H&ce`j{yn zRZ?r2RZV(e;If;R@)WJ9lfXVd5WpWNC$h6I!wSN3wXLW;p&+tegCqkEiRE7iLxD^MoOTh7ch zN6N8;V!3?(zQSlx8)<2tEnqIhl+u~YoMakV4ARoP4&6 z>g`24Vb1Fvm#2h`YY=aVraA9&p=E!E+ihlyuch98bm-~L@)TUq%gN%EkIOj)X$7!X z+c1I|qzM^K%`+*_n++qGu z0U6E3NxrB=22;rZhQbTiSUlEtDk7<()ZD_8Noz|gk?j@2PZI>4E)wD-C3NyF5>!hG zoWWd=t%;2zCs(KVh(XWK=97(SjX{As8hl-c+NLGNe33j_h86XF^I#^Nb@hMq_SM7H z2r2LO6goM-6t=MulJs1sUede45Aod|4iDYmlh3C;KRmg|kR!PzJ6CLlHnn?Aq%JW% z@t8=hl7>iFt+A2DgVT)D@gTKg}HM*%L9KD%ujHtC2>37nPJ~@Cc1vwHjo; zogKRp(r1NROsS!Nd|cu?JZhk2E5}r@KO@j>HD$!RF9EgbO5hh)x0+BRN*>u0H93Q` zX861-Z=Hyh$7G*QHMkd_r={fKW~k!X@)SdQu67SxIW=sHYR0QPK$(`0jIAq)xpqpcc71*5qyLtO+Pxd2U=Ln`^&tPa2s35`PL&3bkgea@0vY)y^?eM*3*uQ(a>+aUn2g4R^5P5nFJhDQ^ZlT`cANE*P&kn#soHeDUOJCw1XZS?X9HfFNq& zS?TfOvF8UcGk^V||5%s9qfsI|R||tA0UqT&%BlG_7loNV>CK9Ck!h=4VBUwQR zh^es~jUs7v*at$^m$DtdA6Z~`vfivxN>0A8oIF{lB`sC12hJ-+0;iTTe0rj5pU>zQ zCOMMD=Z)geEQD9HG?%F%~ zq{4#`tjo=TW|Fmhml$t?`Qth9rPv_A9=4&CCnD$I3(sv@b?nnz?b!m2%Fb64d6moZ zh@I6#<60IT{VVEoP9;8dGw~cW^w9%;GUMt>a~}(Bw06H!b)I!_ub_Xk6@FKNWnKw= z;0LE)RLSTC5lP=O;H^2ewyKE)lF?bcAnp>)0RCpdO2y@{Pgp@+y?WBo!Pmf>s*S8l z`rLz`Am)wnqI=(m1RlvVsu6FJ2ukzsus3QNsR?&u2D(rg+^qRNx+<=k$Tr2#&u6yy zN7GremmUTt^Kbtw_8ys2Z@edByTDJ1?HS$7DXY-R3LW7W08kNZA z+VUYw03bF;Dzq^}uUh6?hL-4K2GScaZ$h()oICj+pJoPKDfBW{VfIX@=L!dApE>x= zDsY#qc6^Q)g<4Dm@lF^Z^GQhVN;D(-9de-USwU{wjy zX5zk=4Vs(#_8X}#Trpox^KmOmx?C1+Y3?@YAeHN=@dd)DUV7*a&`EcHzx+;~E*Xgg z6;Y;=mCI9M4R!bmb__X*MH{ETzJ^0G6wmmD>K%HOyNp;aX2%LF*(Xi&N~FA&y8bNw z_^y*&$G?9!!Zf227kVpUAR93KN%Lf|Bh!@lLnZ)wi2Wy;9}>wPTl)Q?y1^1RM%49k z)QNwpn65j!?IdozZ(oPQ(v&F5!LYLg@3>jVvFC=t3cbu$vsU<2kBWs8vlk zvGt66*BWTm5@-0q5PXf-T4I~BiQP9H8)nVC*4}gHn4dgpzHF2rt8_C%)S|y5#oF2- zFeTg$0IYsb+F_5!9GXBQAL$k)%v&yh@W6@&a;ue~`&99lJy$EcbJCtBH-`d&^Z#FL z+ZC1QTyI>E)=qE46SBO~e(!fbnQF9q`tZAF>s0xXmQ0bB zO==>2;GH0O3ay%Oi6{fPu)i&WkY=%Zs3WHWS}H2#Y%^=xZ}c6Q*G$dq?&GR*^Soxh z4C(~&Owx+FNSI%A{B_^OX0K=G(-d6nsuZlxH5D&pU50)D^02=J1kBKR$yfU&#V_+C z)YHWC{X+$F$^dm>)yzJCs4eqM|}Mo27te!k`E=+TNS*wm(e{^r((o#msIR*rz{*3#Az9chjB zt@7C66ndXH0K0-)obRTen@Dg*=*4p^8pp6tFZVonKzP+(%RW8!d?(*~QQfrZ7;7Sy z-%Yl|-sWt+1&;A?`H=6BE>~Y&a@NKte(~hhR#yayLd370tHSgRJUW}ayDoLDCn?dX z&#kezc<%ipeY21wph(!>d{@Ka9mTD=HsnZ6jR@D2GaA#N=)q7RsV7Hkr@yG~zI|&V zEH9zkN^ySkLNgrRm9r1IO#3T->pf+J4Mw3A4m8FT8$D~Q+zjN7;~suJBzWpdxm8fs zIG@IkrCl$uovp>=AZR5zrOJ)tK%Xg|nz{U_Zu+1+c`X!GkuS#Q(GPseAKR5JFw*PZ|Nf! zVM$uSynC_unI~ND%gS|>HlegTv{ZXt!3_z+)uU~40${AMK@_ciTIxBrlTOhK2qYyI zE*qvRqfPds)+QNpj$3K4<%b^!BL%k~iUSEu5?7uat>m}rTv{+PDw5!~Sd_U7|HG<%W~*#d`=IKQ-msG8 zZt2y>d>tY;*{ctoeAYNXk+$i zH~GwN69(prG+Hxtx>M3m#;fAn=*p|9qEZf7Q|8N76g2w}SW!K(gg8A2AHn?1s1(of z<}UB!!6%wNChSQzz>IjcQ^yDo2yD9j^69w8_SjSZRy921nJD;6!K|2LLh&UF&|hlo zsXlZJjo6Hge`87C`^RA>-&nwJqOg0PW?B%%_ zdChmIDnfX)Y99!`S_fBOU}SxVHdf&mQDO_Pv0RKlBAS^mn`%j8K0dn3US~CWu`N%` zL6vr=c)VK!$t^9-vGvQ<Odu@Yi_fn+ayFIp zSPD=6Q}8EEou=Gsj}^mk5Q%dYY@7#ueBR!0%E|XKe$m^rXGcROB$hxJM$l|Ef^$h@ zM%~?)KYTeu>(5`ZYjOUgx->Hzp4YK{bX{k9eY+3=YwgiT>eC8b(V4;Uln(krV4FFN zg?(#L1(XIn*RrB=(sB;9#5=~n)LY2Vp82!VwA+fUU-bTzS^On0EjiAJepQ*=ZWD7} zN2|q}`}E1!cF9o)*X|r2L#UQj5QEO)wyRS=HX9scB~=cv5GM(EqDfn-rYiI$&PCikE^C!}|p> ze`lrk6x^mExWl-exaae4XS3jH%P#`C6Tu*7a`XQ*DVuy+a^1Rl+=zxJ=CTdH;hgG4JY@e zOtHy5#O;Hsl7}@*qt2I* zEd#Q+%3PQ)g3c1XnCBG<9vMl3lQ5=w45PNOsNSkAMIFjOo;dx#$iS3OxVxa zuBrr6jKFI~3_1YNW6VMYKSGizsz-%eg0hmMki?GU`swcW!0AE3#(^rKmLPuSbq5gR zA6gSpz%GmJub2vSr*z2Gp07QKqS{T&0c4?yn^qCGGGWuQL|mq>`(;dY@8(#G^jy4<6M|28O>E zqdK{53#-MO#C643Cvmi(yGs*cm(G?+CKPp7l)dhxzy@xT+iSD89fZ@&bDm1zrD84g=(;nv;1(heFnJ zsNYRdy=6rKdSr%IJLl937qQ5CJCaNp2H9Ey;Va98fygY-!wp&GqL z9^M~3zB65qzd)o<)~-|)9NAl0atH|}{qylrkIAQIb`2^xP~;|8M-t3@iDt(AH}I_H z=mvrj#Z$3Rwn(UFK0$a#@Ie1rm@qWRqx7cWARo}ctCf(_1x&AG4x=nZQfDZ!)2}g( z^hPj!F8>&M^)&ic2`5Rf1;Gpv^aI6dU092A zk(Jb0xH&{s_@gY0^P5xlRif}}xRk5*s86ar%y&p=SmwcYA4IZ_aW1&wM7=kt7i<)6 zZyj3cO`mRatj^b1ga9eyNu$4g4ghnuamAIwgH$(Kg18gh1#d_+uxNq6h>CPF>u?V0 z)kg~ON%;o)0^J)M;fp87iI3}sNo8#HXT++sF#4Y3Zx8qmpHx@J2=Ss7J*>5vjNhe- zvF=dm+Lm^qT2qte`#>U^3n?Eh^)ys%9;FFbaE>UhZcvLD%>5Y&B-<4)U4xDXhSXZL*lK>VVkV!D??4h1FWvlOh$JM;8Ka|-z6M4!_J02CgtVP5s9#b=Fl&O>3>fLLcUs&(d#vpp6D6( zCcAA&VsnB&Z9BC(2yA+^PeB|C?7I1>pau9ldMoZX&INI@^Ne7kQAypgZJAI5M);b> z&jUx7p_vS|H~+}_7xyP9 zT3$6@o^=IiLO@Eq$|&r)3(k#uJal8uBnu!pVO{oaxNNar9oE|nFzK9SjpOG&f7B~i z8xTyA5mc9nXb3lqk4#_KQ?)YWg_)3y_eE5efugI6BlM{T$!dz4jM`ag4PR#lZO|+@ zB7BI&nrFGbuEbSSS7#nsZ>0?SRB}+q@6rOe<2?m)f)Z3zB-Ke?_-3$RLTfnJ|rKiksW z{A*xfAS7bwioTGEI&|m|bifQoy2_`grz5UHiO?MJo|mZS@rH&5DWokHw2ei2U?L4O zk-kw#*Ei(-7Z(?iH`CG4Y3b`@bkK^SQ}`J4)&={h`AifT0R*bj`ec@%0~r@I3*XMG zbPUY8ep%ZKneUG41i)-!h)eJ8x~iebr!6H4Q8KXvh_#n!LNvm9#YB?*U5xgoJIqWEqtF>e$YY1$}@J(-wM(4 zt5@T_Elf>r6YGmd>RTS^rp`sHI<}`kZO+}jfnilq>rY1M?T0z+r9g$OI>9P4;QC}} ziMorilPzOaHM`moB`a}0jd!(g07&k!f*bSsQ{GVOsiq3j-s1jU`OD`-d?TQVs6dKt z+ zy4PeAI0YxA9YKv&IghsQgNAxmWolcy?c}0kVl1FX-mYCacHOyHPkW@JCv?v|6~MI%davcMn5)EM44mER z%u;5k!N}f;>s`sz0kL!2?z%x-umcj`eTU!R-raBli*Tr^pMLL~v;q^e-S6+RRd?h> z(APgNoxZHaHmiNg&z-H>+j}xqC?)pxO#sM^Sa2v~g)*9$b124b5D#)70@-0d*BRe% zvXzslTpPB&spHC`>GADTE!`vB^Y@adXk#@Nr6kZ;g1KVO8(g(?0~+0G#44mWZEb|Y zDP}UiR3&SLKQ&;SJI>#K_rI-(@0^H&CZK&Tou(LY@2WwD7^u8sH|z^3Fw8|dg!VbN z>FnBtYzc+Aw}RyN26};r4^(X(mYJt7x>v|Yv^y@Ibj;N7dqgHgX=Xn3gfu6Nk~1w}mmd=>z55V)NN;V2dIGtgQS*<>*; zMTLb(cWR57zLItKAa!-6xFDG6s>LY8`Y{nlo3SrMlw50mucfg+yIy80<}lVdO)?xr36Gi8fD9S@Wg_Q(LwaYNdQp!CbOgAt7|uv|qKAcgUOo6|3Tr z7gE%c!747WF2i@Ca*nQCbPdwuX-1*kgCzql*U1eXnv9E8Npa*+Ef;CosaE{v!D0~m zQorC#LWw|55T%cHlSj#|2x_wnf5a!O)ReldHHf>LEn-8LzEK?M=>dC161Hm9wC~oN z9n^`8>_T@M;{Ac`!)QJZ53fPocaW}cQ+tb8$CYzyb*%zD#%6 z1lW%or-A3?x*_HynxzEhEEmTVkvLz}cUueTn~c~i6@yJ93E3LXN~U8r`34YTW}x*h z9UOZ0>!H@1pN^Ji*vWB!-Xv7SBL{KRq}Li%?tZ{?`}EUP7g$>od>&&@i$|hu&7spa zkg8u)$5pSxd_Yff?HD<6q=&OcmDd{SS*WfbG?kP=8grjcK7TJBj+nl}UCMQ^)y~cc zzN{sW$U5drbAdS})VQW`G0At;vuge3mLTbLXA9i46-g@9yv!|;(wyaa%i&m&(7cns zvj{2If~I?ryHN9_Q(-gv?)K)sD`Vd%lJtsyQOrKRYEYGY1oV1<BoKWU6~ z=sls=eLyQhA`meNUbomE$ zOq38u$rE}#X)4g`m6|MxKLSYO%GeS2BG2VHWMh%QRM;1p1;oPeH-U=|);`AZ#ymwj z8UC^{F>~R{E-j^zrPiiMIUkYLiELy1aGJ)wE)@^yl)AQcQ2zRpU-~&?W?NDN;fz;w3Q|i>;Qds;(Pg?wZWN}eMuHo%rM|S zH=GQ3*4l*4U$gQ1OZG3FXH2BY!(!+lKw$`rcW|=M5;GorI98~}kxXr1UpkY2mvJ`L z07Ez;m}H*6y4?VD+`DZCkgSA zfEL4W>Zq&;{Fdn8)v<3Yuk$(WIHiJSC%Ege4?xnW{zT52rzj6Gq=bAaujI(1c-a_k zG9p6wBEO~5Ut8NW2(_NP1}99fm%l7l%V9L}DIJBPs*V_cp{7l$^Hb=l2junJi6RJp z;vc2)kMhV@8vg52tDPP~g?50J^Ak8k2;p}$Owa$>CaTvfUmE5rvH)&Sz~9ME>@+xq zH3}DV&(XmPosGv}@b&05rde4<2Ztdg`a$nr@a`7=MfLgvK#zwcia-2GAJatb zUtC;94gR%sB&MMT=?cvy?_i>`_#O@(g%+b2AK9dC550|4alidEHQ%_X-_>|KznY3e zyZ`$i{wyLUBV1|u~#&#~MqX00%jPrnLzbaxtzl%qr_xJ6}<{7t*>2I z5gIvV@aXivTfhz(!jC=7XUL)pY(DxcnuytQ= zX>C0}rf8o69gK^ zIXqmNT#>W~UBxP)Pw97NrITn~w8h zjp96xFQkEP@sp|Z+krBI4g38YD*>W6RJbP#^DBmfS)_5pmhivp?&6G$s(mfC3RC_i zh#bEuE-sEZWmh+OGv~`wEpLKZ$@=Rm)@s$L>b+_{FZxHsvx!vDX;z0jJA;fBKmFCZ z%VHz$tb;?<+R}O-|Ktd>+Vz%pWp~1tg6IoX4S}nineTA536a$L==Im|`|{LTiGGDi zLRWLHY92EpCBVr~b-%^^g(lnyq1wgG<(=cpU$2(EVuKIM-LD#)+=I=D5aXL? z(g;R+`{QT<4%E&E$B0jHY%n0cp6<0?ImVQU`jwbM`{3-gRm#8uQ3+Z?q&i)+oa+m% z*%72B8y59%--h49!o$NA5SuUgs%4!4gHjD+V`I;SB>q5fk`SgGId~fg3DO7Me14?C zU2j|}TF#cvVMaWF*@hKkN*=t3sUuovBxW9x9$P)kg_{~iTx74DgC>ucN zc$2g@;r>tqRcFV$80EV%Z2R_(^2w=C_C?(s$dssbV>~andU)<6WrALdu0XX}F-YU> z)VJGgSdhYErHdDhanxCGv zMAJ7~WesOX(l++|lTrFwc%j=eP5fOMIc73c9=jK<;(8%g!S&XFjI{n?brXC~*Yk|5 zdfYF*aVieCv|-HKtW2076dA7u9S&2nSf&)!{K>&hT0vJme3y5MZH5zBoX`IKrIfT- zr$$8t3YS|AC1z%d>#8jeUCOuCA24tW-YaRwgE;*pRaB@_j;MAZQXEj79ME@Qlchu7 zzf`rwG^F&_L7 zSs%Qj7N2J9-};_VeeH+2_($)nD}JhOzF%6t`9SxUa^W!de@>x!1pO!~C*-*ImtExj zlc8AbUV{07EVb!7ZqtDsk$HCb0jH3a_gk0z?$%BHc#jcr;_0tOvC=}!IpbjU$))o` zO_xf%jCtG}UUc>K>@x0Al6J4**N*AhbMM4~wts*2aieuFkvIIzqw}L++Cu#6XLiz) zyF2~v?o>Lw)azJ<_;-R;!}IKH_`YG`x|0J4l{p@Z6G$um`Z#6zb(`DDm76KOV1B$O zHTL#d1Y!UkeK?+X+IDSaQ3|oY2ItozH7vL?NkLzKBQdgWin}LFMKEoiU-tI`iZ3E0^|Ak(CXQK9Fa38yv?hfsR^q28lYCV4c5VJo-9(!uh zr5#f@s2jjGNWb)=w>6v=E3wMZ7fdQl7ohC3oN5cD`QhTtIGQrMV`-0RQ`I@RQ-eL} zn zBf4_0Yb7SLI>FS3%Lt8kF}eNj(7WDe*k1c00*G^u#${F(Cpi({t#y-;l$4Zb)8;u` zK&o!>c+UQf>AoI8K$Pggm5w43BmH60Ob&+Ki^l!UGMW7eSW_p zXRxuVo@mbq#m2zd*oZ2|b;JTwNIUXjet#L3LVw^*f8a(XaFQKaOOBz1tPi5-<+Ea! zUj7y;H;yc2H6XAzI0 zAJ_e#z+U)QM6W2Y?W}5bqEdnjQy7$Ka~vm@40( zprB`_tt%^?ReaoXc5k1lLf%1AmI-ukf#kG??F!g0D}qqKV(_{`3Up0F`=FS!F87DJ zVz0cs`a5E|($d`>)h&Z?K)03g)OFb(ahnI{W*JxwpI2<#{)5l zPTUD7kA!k7=XdvrQ|xzFI!C@i%ARQXeF+!tFN?|@bnNIfB+UL%0eHbxGoVLMLe2HU zfK2IB=>sz#*_bP^&gJQ^b5?7fcqtEV<4M)A^E>hM;ih;;M}zMU7oxy~VyouDva193 z$(Tc&*BbB=1(UWLDxfhUzU$BW?``9(0iqF;e?}?eVx}LrW4To55|m5$5C>w!{VSAN zwobOo-RBX-CTc+v)U>gwsrqOAyoC<^`;kNj0A72=AVu33siuMJd%vI;it+o?b3P|` zDjr14t`RS6WTX8*#=Zlr$#mP=dp$?*6vuH?P!SlFrU(ooqEu%TFajbfU?{<%h!}xE zI-z)u$41qJBGMEA1rm_ZNdR>y(j`LZK|zWHhzTWh{{6<0LF7LF&GXEVpu+dP-&^)x zYwfi)xpxeYJC4+Q>cW^luTO(KPK$6^o25jY`Vbq@$TF%XtlPvb*2M*OJ3BUz7yI@; zPNcrX_q9#OYItXE>o}jl59Zri*!aOmuT^Jot-;056YuEpGI zcL8s%%i3H-rogZDzUmFx?K(evdQZA^SUsVFc4q%^eV965{n)n#mVhK=U95YMR0l1p z142=Q&g#CBuz7yB7H}flf#k)|P(wYNzUl}}OcH8+ssm>qZ&WhM;wP=?D#Jw6Ok7n5 z#~6rZb?El&GMrT@<*Z;)@JoteLOi|0Qj=fUP)?N8BYN_I7cPLldc6qx<@Q!ebDnrW z(p*W&XYI&@@CDG^VoU#tF;&`k@iO~ z_Gh-h7{O$e$tA|KG3dq(!1fI$WAq%({p{Z-BJ8tPjb_CF5gpK zRBlAn+i)pq`t-A}X>nm6t1wXM3eWLICs$vTRea906STA15A6!O%bWxV;E#RX1pO!wSHp3}F$rgDR<=60h<=luxBk3*=6>3Rp9p1nJL z$LgwRC>gM6Ow@L%-upzt*`5Lj5W>^Epg&sgD2)?}AO|CvExdRrCOIAHnM&-ubK&NpDYI*JHekN4zd@p5#zQ6XYqM9|-z7oVMWZ*=j77Ela5c&k}6D$X=`o8oS`rIM$qsTk%Q z95+8frmV+&%!b(|W}bHi(;f@`zAXGEnlUk{%}gdbOl+V#G=`Rau`Uo=bslk0!b5w= zU`Vf|9kS2wM>~QDG$%A2hFOT|=%T>4_CAUI3GJ)9j@^8Z8gM=wCPNnOio?N@OzPin zE}nViM1a;WoZ3X=n4ZyprXOGjynntcYw_*^JT%962zS7WMJ_t0grl+;|-0m zB}eQ&M4CI@(G~NSz-B_fP%gBbEKhwB|3EM_-h}=Lh|OM=B^vj6XT&=($MC&bQT_?o z#k1m_vNxOf)#Qy`loaZ2Cso(qJ`IiYW!|fQxx9(qoCx3M>|Gj>r8k)65Z-&|g+Rb% zdSix2DmA|fWx4WwKWhOJ+zo$m_V$hsTBIbNzumC2#1mF@E?&%M7tYu3>zJtZMjiCV z1EBI>w#BG9Dzw6kAxE|IOBd%Mqdvi$ZEq=wB$pFZAWVZZQJ<-Xlnk(0U83SVrx{Tt zTR_=U<%9YxLJ%j#wzGqkiQ;uhwlQSsa8!x{^>>O1THuFs8rhf6vNj(u$`}}`QuPS$ zsooBurub``YJJBy9G4sUXH6})FV3{AFXzr~tVSpwxC_s*t;DyuH%EN6&BDl>$XEu_ z{A|_X8Ey^O2FbHhMOnf*^13~4Z-a1%Jnz4oEp;IK>O9O&rrXo;BcjPuFUN0WJ#LEr zY6J2xYQYg4sV0!B`o8IAdqr4wyLXmKiR@jlrT={z7RzE7?sD8YCn6)OZx*I)=; z$tfvPsIjGOaeaL~QUFkKCK+^I_4(|J21FBx63|xd^8TK#)CV{#p5YN9#2r!rtmRI5 zI_ox(phRmHb+x)9ndw|bUYvfct5e#ZRy%X|$%E>^srnDSy?T{lfkV~S8RluSLEPkC z-SWlgLzP*c_Fek+RsL|gGeTQ% zUu{~?q3#en9v-W_lJDC1q*TF#3r zX{sEl*SNv~M7;3I(z024Gx$UKGC%}2FW+Ol{%fpe#Vh$m@4MnGQ=7I2nU>z;2kY<0 zP3VN5jPq{z*#>_ox5B-&ezcs@^=>IXU2)t$m+w!BaS9yi$d`67h&`+btm%WKh+Nbs z8o2OivS*E4ei>-oNE2S3dCuKp3iP|9qjwzMq)6iX9zoP3IKJ6(IQn6%>~~hc-yq-* z!-l5vfzS%`AO_;dYnC-Llo5DpO*4@^O)Ep*{Nni??7XCDv&xvl@hKxC<9Azm!#m)} zR`K^|?Q;3ReGJ%g;9Xnpx_CsA!Ow7kXyyeO2FA8}0?+Gy5WXV3Wi!X;VExq}-xE??4;u z$2uV=8SMZE00<dgr^)otwfee2>R^wz77*5^l-Eg7@XaF68u6OC{73#uk@x3jj3-09e z_xcyxx`Au&0UYxWqKW6;E#JDlyCE#ap8t4DOP|@(g#}F{m3ep9F$jP+Rrz>F1L+AJ z#3dXkfP$NunGti&(7?T!m|HRy$3ghTr{$A-rQ3+b#}p}K6D($5k2Mx)&>CiHq=$t8 zO3l_Bw}teqLOY<)S>5BqJ?@CZ`U-$}B|e<$#2@t~wEv6Snyf4MV}v;+eXUAdofl3j2KCiU~Dh=a5r2 zF)Q|&2sHHPkuYXml)St{0Qei01F2LeQ4DgyN=U|tN#$z!u({Y$fJTtO_c;!?W@TM? z@ox!Ac!JA5bhw3|v@A7GIW1GBQo;@SM-W_OYecij*0K1zsX&C%rNfJ5?bSu%;@Wc3 zWdmKfS+f^6-->GmK44q>X<_Lwk)JkgN3v0gk_h2^ye!_Hh7%1m_bF2R_2Bm9`kgboouw`~$KwAOW@% zda^nQSIvpJXU^w4Sb1nHO4=A9}h&grfW~gWeF8uZue`k{v~^ zAur~OZxaexJ9L13tPswZMu5kI@#HYfpPoS*N3sd}J4(#a=ajA?a2tKEf%d2`Uk@wy zE@P)(H3;DNPhm<>dm3*ck|G%UyZ81lST=61HOGBL&^;UwY=pTf1~HN3h+A1Ul@QkqK%WaMB$Bs(uU79CClFh=f-EaaEg~YqrF^TY#CeFso@Zo$ zU+qj2r~>zFMw9x|u}r#sI7KwMerhHdV9geQXck?|Zr9Fyc^l}{^9;)Js7oBesq<6S zDet?ubrV%Febz@gLv(4|%SSD}6P!&a_17(C41Oa-+4mL6_F4(rDp$a|O-O2n5E?aX zCYrY4i#1Fp>@wY5t$h2xGj5hg8zDU zCi{h~$KSdw%CShnVhjbyJXlKA%(yY!odM>Rdh%l79$lS9oN@G5oqf>(YrZ@!)AZ*L zi8L~ePJ(!#3Gy>}XkrQi1Un%68uL>Q+&nZ6D9(28i_Ix;r->FTJ?xJ*e1uG*91!sM zBzInwv@Xcn(XByXKz0WfND|Mj2MS9X4-J$d2$1W;p7F1+ocQ?X#>xlEcw&y`SagHL z2N>$3$II^TnunEn=cq~|sZJV+C06B(f? z|K$$w5X{c9!58x=%4$3|11(Zs!F{ZVM$e=weUJ-0fX9A9upsEKi)GHnn?&KZWR{VK~@`Q6s@%t^F-{Pet6HZZ>C zo0FSc4ypdVBxUGuzU|8^rw^ zRR4JNN@weYTHv=genVo|7rWuYrb<_%e8ZF3VrD>-0cr=pj}ELh%Z?vkKF{1r zTUeJuj79P#Iib#%Aw*K?o7rxFi1kg4MaAK8@a8%-jQ$h)*nRODE{cbkuQgAuZe9$@ znTV$hU7Cz^ft)|V@PTZJ=;md=Lqvp>i-Q;d9v20hE%oV+kjjqe_Jiu+!&ac%NICFh z--g8jDGCVJ(Al%-fP%GO|6QhIXh(wCJ?!Ft6bVI9U)N%<85CNc6?8cZ*2~uN-**0z z6TovSbl7=X7$Qml0?%yb??8t=FaB4ZJW%LB{5K-n=Z6X$mcMx1sopSYyeKGKs?0QA zz|0W?I`S0b0Z8)0PmcaDC=c}(hD@`(D_E)t>r9*-fY7&#ism>jNIcsK3Vw{4bb{|y zA~M~WGpq~|+p>1{+5ZwJDayMz{4sJ5*v0FTaRS z@1HL&k6>TV1HgHgUf3P)_c){IfOr1RzlKZI^^AAiEiGeo_Fg`Z&fXQ9%Fp7E>SCA= ze);`3s)^yfA$?~$R|k=su;`2ZCflTkhK7haIA3nLL|puZDxxGt6@*V0h^I_700_BF&@#ooM%#2osECFPg!lD;+pe8$D$9DjzE9)&_su2|{QMnE z6XW+9D^j;>2cSEYq0|Qi0zygC{iJ4+{{3HeVe$2`N2<)`yti)M>H^8EghTR-5-}fg zdt3YMTK>LpYiPY;o}{Mkg`yi03NhC>_XlI@jLu?l{EM1%oop9oonZwiw#MSAXJsQ) zdjn_V>&V@ic?VD;a?$VW$8~KnmG0ENH1;eLU}EC2xqJUYRtwWI_E%JHbgG7X6L5>s z#s3qjwLDx|v2Pybn?sO8wkSM+!2_#-QPnW0cCAa$(n8yWH}Abf94Msox(+oETanyQwvF~a zIC~L&CJ_hfQ^W_8a*C`0a!2)O5)>%wkVI$g^90w)_r=y%Y(QsBBskUePYv?Lf}&a+ z>j>4S>_Ns;Fk{+a&lGQeEnBbJ6i5I1K9BPEEsOC6agaltVC`&uA_einNtT>FO2P)h zSb(ZqUVW!HTlR1v7hw#bnE^czkP7-sQOk;-Ed%umWBODk+#)g8hgeip)au#o2M^1i zMK4Aue`9IDq67srQhPAchN<;`z}^YPeAC_U#s(jURZNa_kaAGDgM=vj;3?OA5Z2c@ ztUvBEtqvZXm&ZA1X4<;J79I9qyS17Tg4ZSCEKPtenf9P^s5oLPo=!EW!P8yr-Uev?^qAwxG!WkPI`_A=>8#0POw2owhdW`Bnks#nZq5UTqkTzx$ z-HI-Q3In4GtO-)?NXWsxdZ~S4HO|Ic>6+&!%W3+**~~3tbPvFdK6BDD_w{7Lxm^kB zM=Q~1_N%VS{4>kW?bpSEP4q}fA>=Klr?E!C_)}^>r^$L|IQOCT+599VB+z;nXRjM+ zd6cta*SVWHkPx7W#iI=03|3`!@yD0nRl#N|NbFQ86pG8A8&o75`re6jPw5crul?8B zp767$FpQxzgg0aCI}2QljEy4%+YYC!jdZJ0fS2k>9m;nv!>Tmgv62JYC0vX%W2JCM z&QUaaLP72KQkgBCRV&6F%`>;sM2=opEAY2KxbgR`= zv<}lmj93Iafs3M`l@dQ5f^Q_^UR(zegQX<|DF*@0u%)2n9Lm@t$(0EzE=~8^vNTVENv_9`*oBhGD1<#JVN|x{67c1+AaWyO%dGX22af6YI?# zASq7Pi>jd7)$~By^Duy)bs(C97)d+zTp%nGt?Befk9MJQMNo4YSy?4~Kw@hiXk>fB z*RHRe4`RO8klYOE%V7@Fn;R0g^G9*D0!7Xd4MtF=^PP@<@+)${@F2hZ#h>eJnJacz zG;*+#mQi7D3DY$yQqCqq-?==0y--D?5nkHTIU}xth^pv)?m8A%2VS1< zW{3@l=6SMQePW$E7cGWm+~?WK&MDOMw-v-x_K{YK+~G$&S2J1$kUX5N6$JJ3*JrgI zjkS5B8A*_-xSy>o?`IY&0`)~7peI-DSziI)5@apk9y#25xBvba4`dh;uKh{-;Aj25Ft;V4%nPgZ*UuX_! z1LYbzi=gCb8;KQwRPrmrw?{t9$$*~)G<0<-S@mnshY)k2_8^knyjl6sA)T!I z{aa50eX7rR*HsAB+m91>*ZE1nR_vq>2tLLPTQri_(bJC4G+fUogM5+kV>C_~=tRtBBwK@y`l-oh|3Kx!->h`0}XH(VVrBo7V3=(DQVE^3QhH zBL91LG9iW$C*=_Her{n(L$hV-f7<&938a+F7OSIg_yc3bBoe#2@TFgVP8m8nkPZ!2 zfTqjfqgxfIh!aE((G37G{T%YaP;URkx7rh#rGBy*-XHreIpP&2_DQy|aJMrxihj=a zH?Y&TIO09PVlSI;pWmL4tb2nFTEXku56*gc^IEGsMQ=}wV-4@?G>lt(wL6t3?jH7U zx^^a$Cw=PhrK9Nc;Dbz=iGAUxOLhy}i>Veg;U!#{zhB>N_0Cjg#rbi<8G`I8v$gBo z$b{2LCODiJ2rLa4Xp$0tP`e0#A2+(e7q(0YPeU~(TTvk^5hsM|BM(Dq7ij`879oIG z^_U&Tdo$;s{r;!NV6O_OX{=@#QHii+W)uyjod;DB)zYJaC_n%1yGAO7(v%+F6hNn|L!Ar|H(PZ#1mU`PtD!Dy z@^mwr{yvh*6`k8ETHBfNbTy|x!eFSdcG}*Zlc_E)^Pt!+Nz5tjiO76aK2gaL?mmLI zIA;3F=D3 z84rSvl86J%kMH|E;&%Xomi{o32L2LdNQjB5tdT?-0gw&B;e9OC6tJVWiSfXsJ~#efah^W+uVtB9%~hspsxC zji?u(ZQyFif@sI$>g>-3ycXBxOGAuU-(@Cl(c{VwG-GR8+tb zeTp&Ek*GBuO>h?PG z-n>O0rR;@YC)~N*MuPonVNvU*!ZQj>LtvW;Ohacmo9J1oJbr@p-q1LFpof7u)~k}B zbwHEQ^lb1=@d45izarBL`>-8CrPFiwTs|Z{GK!b2vHgKo8pyNoWp5V0?OQ%NA$xl| z(870Y^J729r8N1|@41@_qhU)y3mfl#Zg0bVUVC=$LcjBZ6k38ZvU;A*w*X)|i0TBU zItMg`K?rz~IgdvH&*8rCv(}6x3>T_8rP)wmQ-LfQpn|UIK`Qxt)^04Cs+?K-m_v?% zNOz9JewXlgy+hfp@L0D(e0nN2U|||;ODu-m;c_O=kBr>7ztHqDv7QV^F?V({Fi7f$ zJBxn(_q~SN_w@ct?}xC>x*SosmnQd-pZJy^UmU(%>aX1;yW5)Eo^p7Ekd07V?F7qj z-^5S(UAgQ~M_%Mh4~rk+D}L$i{69wIJvWLlWK)8jZ}_W zD?{_*@$cC!#ZCC7=lSW)>naEfq&`5HqobK%$QXJB;6W5Q7o-8Uavt@NYm02!gl01Y zRwQqd|zWaUUS_fIn*L!SYe@S$k)45vF~kx zM}H0Xb*EkQFyEi$?Wq^*U779D(sZon`s}3q(6F`HRDJ){yX>F?Y-m|sdf4~UK(YUd zae(d2{9?@thsqi(woNSrX~q|a?#}Q12p`X@%Ub-HM-N^-*4Lm z;@10$Hae)}0&wL`s8qj-Bwg8>Wz&l)Y@E7^MowpDWho*txECNPJz9%nTD{0|1Q9eH z{D2+c$%CGj%iDjgzsNBBy*zMhl^F;|rn46(8F~uk@2f~^eQYOFK`x0c*Undire|~Cgvj?5PW69y{MfX`w{zm$Awo%l0a!M@@zfIT zo^C2Q+<$FBJI-={eyxw3S;u$LIW?|!XrH!YtRx6wJX*0^mz|ZbSZFU&+1N^xPb&(S z=1}L?O%Cr^OYjIGRW#`yKTaU*ip;==<{Fqkwlg=s;^-LWtBwAqZf3^xw$^ObtA*5` zoDJ;n)kKt2?1S$Z$dv|32P~dSZSl6+e2ag_ykT1}eu?4y^fa#3IzrMV;O;M9zD#se zEeap7fLeX35Un5CUVvIz>XgPr(|Kr`&0BzlWCMjt$U)}zZ5dhFAgF0-1z7kos5=2@ zO@xCNIF`iIGRIwAp}sYz4Dyi8HBky-C>2)YY#H$1j2=qv`VMVPbuK`f>d?TZwr48-caGfO`svkPvidDr7Kd{Kyzm7k;<2u1p zZeri?u6?rAy`g*8S4#4We>7ZJh&z)xW-s*vXS1jNk;Cw3dc`XRk%Vg?ww1tx5>yKB zZo9W3nm3cpM*c_&^pC$;z%)iRcKY^PzrAt3$jt$nW4$?|hTucAyBEB>DFW|%wf0>R zOyp_bg+(Z21$8*@eHFJ}O_aluNOgqj^;25&<5LU#QgIN5?-h((9BcfE&_!m+g`T^% z6tGGt7~XU2v1z`%%lxs-DEnsp2Ek{` zF_`~LgH6s+|HgmH!Q|4IbV3yj%uQr5O!N&2&P!Mb2Bhwr>GvfElj2m(#i+S<_E}5?1Ntw zXZBZ$aKOQECrf%#)pAOpckFlm#eY zK`BWM`#waoOLkR`bC}%IU56MF!AmC18=N-s^2RqNs24m!gF#3m%Y=1kD$8eR`Ii#a zFYyDaP2cy-^zwr^vC8sj#uWXXc6|CFgh)7sB)^z3Bxa@70@tfIL`5J&Zfb6h@QJJa ze&=DNX%}-Hs1E^51imH80P28jjKyvT=uS`zBRH;TG~g#)V7sh=GZ)yevW6)}Gc%({<;`Kbx)YtL`CUj@j@Q z=6fEjw+davQA-BZg10yADVe_0s7SWrC!)l6`Rf`w87Pq6K*+kk@5otP03$skBUE5E z0v0Y)EPjbF!a5*CN^HVQqB6Mx5GM6NycIMw)HPP34y1RL*|e{w=HhfiC6t~-kf(J~ z$h$FM>QBU~ltJQYJ^1<&#Q9-^kczpnnR2MyB1XkI6yR+YFwNNETrz!;4vJ+(!sPIM z4T48wi6Pqa5bqBg{L0BHb(1qUy*U6 zftmdNi*tn8sSS0&f|&Lns<(chzuY4oB_`&nk^76&e1nR$9-h#zBrAKB>sc9$vI3F5 zLTc^Gp0Lje4iLdJ)5v6f=FqD%@k)IY(rQTIBLJapDERI|wHHX&joiT++uO~Cnmta~ z+1Vk$O3{6&2{}taH=qcgWJ?BvK_pLPC(Q4MDvpRGV-pi0@tN1RtWn`9Z16ge`!4oW znwpyGg0mY^KTo#VC*1$#_m_+F*}xZ947WkVJj)3~2gji+t#@rJ`ES7FPkgquvS)fA zAq>tQeR~*|VT_oM3mU;l%24tS2sb*XNhSxsEBhL-k4^aKJq?#mvKF7&SB>$Co$ z8U_i0g{s3P@C(x%O~{t4UB)lZMPRaB!duu@1LfhWUWAKuZcp49!oYh z%Cc8ClM&2lY6~2ihsSD_dI9hY_GEcWBWD7n-$k%=7SxlT$>hgFP`edHD+p|LVPK@S z0n$!2J(+^&b+A*!(mJ0$eR@0f?2`%va2>n#gTXW7zpx|>$+|tq0hRuiLp{hA z@CiG`2v7j{APhO~AhAnZFnK3pi(^nl0}J#8ll%WlAoSadi~4%QvnHZ*x@+!&2UWkF zZrPJ3TEdx`?dNg|H*IQ=vw*~xd!^HL;ZbAeMSelTfT#ZiILV`wp*(C<98J1a6g+Ea zmm9nSm(GOYM=0cJj>(hYgo<`5d2b%{UDsq>-dq_P+#sf`?yneN*U2AF^m2OFZaFG; zD9KcRd-so(qKALxZ7uvq3?$~uU(Yi-sFGcNn)~)m2J3zYCksIGRH5=_SmdpcdfI$o zBqQHIFPMIM#f*f#5aB=#P~|Pn@katzx{QpBCRxb{-fT;TDwJ^bns?8bpbG5hI#l9| zkZk0Ch$Q^JP#hDCHVP89d%E5eQ6zUje|&)CZ=%}6{t@tk7UzQ%=IJW-3{89AV+aUH zn)jc9{^Dz+c8Upij`_|xH5Mh-Hja~nUw5hbS?s3u%$5qssTI>oR@cNYw4bSW^ zJNhjy2Keh5pBvsDCN#uI)}xw$lLS?$4G+bH-Hum%|qg4jBxNp@ZvGE)`f|+FORm5-;OByJNX^%pm#~e?Lw8!2xaIcXV>p*ul3awH^q6|#kw&tNS<1O zWbW^k;E0ZeMZ&F?%{&g9I}gbD=kf0|q=hds>Y@g$tEX=2w+9$lw#d75|5H3z*8iZ2 z|Ad*1k-dW1n=Mbe7W6v_3%_SA;zarWf9B8iS!O?0$|MeULk>Y(~NEbsKhULFLzi zQInM%d-_e zDm_8S0IL*81=Z#j4Uk-Abi@17-IFQk))CQHk=2)2Eo_?n7pI=v#AtYRw(90FcQDhrYvUa0o^y|JivCd$|A(s(*$Rk_+-Mm%@RQi$BTwwUgAEGJL+ zFA#6Vlvs1E%MyzPJ=3GR3njZmjlj+Yv~!S9XaTC*8z`G`yRRlH$|oYx3}mV(`Er2@ zs&Z7J2Z%#5?n5SwgX|1H?$008pbyT}yQgIG{-Ms1&u$zRAX~-IfVeQUaII5D{<6{| z7k{4|ZmWucLG)6e9nStVDxLyZT`nfUT;cvN5~R_3__;x{p*w}phy*PzoV5Le@Q&Zi z#NBRKeBXDzB}Z9);p6L`4gMQpv*_)|LX^z`3|-i-z{YQMl?ZTwXp#E2gp8`_$t`+c zSIkbc&MX>wZ@F^Lw01>AMM>iUA(6wT@6q$F4{u4Z%>Mn)o5(s*a99aOC5{*kwca~{ zo8g85?A^#>;fCB75-l=@v0Rxe`tMuTb!p*s$<; zc3^*Ce#=2SX6a1prbcC}d#fIAxjo%+e`i^Ng+WY7=TOH%*g96;Y}~K%QKK$LA^)i| z6UA1$MxtBK8bb`M!0_&0>&1ZF68#N??46KMq3YlY@F>tLuAkl4&z6p=DF>=q9893K zV+ykoJq70&)N}$UMYbx{6x^i}0m0QJ4(3uL-${LsdGbO6+s9%|eeD%y2{fJPS}nf`2OMH0O8$bpIw5n%{=LO}$9l4*qBfHSQS zNPdkhEk)r0LO8k;YUi?GN+2g}1VXTU*c9Z=fQt9Cz;&^f?+3BFHRwIKpu8=IQM^A* z7d5VJX+VZhC@5|09|;6JsDM*4YYoI-Rf!eUX_i9;ga|soiDIx@*fZf|1V$6e+0)H6 zPi;3(z^EnfxjA`fyKq=oDnM%ZL(XzT!|VO?4>DC8gBwJy~7EPaK}Xit$@B_&smhmudp@fNG)(ez1AA6nV=c z34B&BDnKoOLZQb{{gk~Oz{5MBbQKuA9tLFbabDhJ=0Y5g$9pv}W@KtAymsC9x9{!I zU1+P^57HqNW+u1kE?}kwbvW4k`%wvZ3p#i+^7PL7Bv zDX8t%8Ry`}+gyd9Ju=7Zkco3UahmL`x!?n6YD1Exi4Ygqj0DUo*8D%?morC6DuNC6 z`VbqD;GrvL(%WKzgg!Sf?{A229_7mk)3x@1H$f#{yf3dx;QwPE>!S01Y+Ap6&Jay3 zd`6*^(Ejs3Lh|4Vp_)Vj7lx{$672jCyG_jZG*QH99lQDcoxNvMY&E67L#5Bn#-@^B z`8=Ry*bbY;;1wv`{;^^1cLS*rQpK<+)KDln*gF7)s{TjSJC{F>H6%9pyO&oSo}aY0 z<~~TNy-3fo^;4hgt^so&O{WXPrKXOnMr-@~P8KiS>D^CYHN+(MR@rj3(F9Os+ubg#g%G8jQc*xCz1ZG+?$DxY)oB63L6*o2eDh1!oDIs`a;ldX^Xw3z*{~ z18# zyWY96218~H9L-2Uiv_*ILnVjK)}OQp4p^xXw5a{pURH7t)(ATx8++!z%*Va1ToOKC?T%ZQbw*-V#iU+7Wj3I&KTutem-utVf{47K{L5-=`?o)u@ zBz0x__Q`T#{z^NJJ{8mOv2E9aP*G__xCRkh*Vg`Uf*Avsn4)Nk^pLW>`>=6lB~L-x-MBeH|*r%+Za9O=|jnV&Cg-T0u6+tcH&IJ*(w zlkZFpZ3{TR8In}t?)gj=!Ku+P;R^8IXvEglhvJ20^XKRLkQ7b3f zzrK!cYHB(TzOaymSUQ1_V($wbQLAcKCMqA|E0*D-9WnGYxTDMoqxw)d)pdVSOngn_*#S3-y1ML9&t%wi?fG0VONI#$7Dfx z9b3Rjm}?{E8lYI&%kINXFT1vz_e*_k=(OZqubO%BKWE&-48;yS8(hVKam^V3HkSg9 zpW|RRfx(UX-vSGLD7a39l1L05Z2vH-qFoS1f?9fVIGS8O3ugRmYp5Wr@W-P$Vu>LiweALpQDmywi3~GdcfU6-}T@g4K_#k_~jy%UIA9yY( zBmAv%e*EP!kWTI2hJJtifdotU6ciTr)Hu&f|GU7OiO&Kiac(%dk6YDYUs)C~lR4F~ zeNhxa#r^v&L;wVmo55|`6cF&z-^l3S_$9#O^V5fl{s(I5p9kWoG!^z(avNRQ+q3iS zYLlgH917+z_E4XNMgd4bQtlZ`0;?Mi^zD2W!I{c>YV;U&JkVpxri^ycDv>FhU{ghn zSstU%)>(I)-J*~^3B0WmKI$cSUB?fPl|UuOeMm!zf(7&O>&R$SCRFQE=F|)CTRQo^ z+y?Ji=Y=1|r+B?CePLF?Akr}(pXT)4epKB1>Rwy%N-P}R?P>il&VMDr`ClDqflf=_ zN{#Uvw?n8TkkJOET4eL61>A1YI;0@_bh8lLZG#vaV+JK00&AVL^mNkr$=^YV1*u~=vy(%-oqo&1M+{dU`#Ru)}6*=JG zc~JLz_GTq{O?4m78ezZ5Nakc>gRhpI9eRWdu$)W;T+iQ+@6$Wtt1o7AVNi>tv;Tz) zmhWZf(!Qz}ol_Q+JDLf&Hr-q>KeVNQgCfXR2Y_4Jt~Jvb_Lqag;KS?0iIaUOv_lme zRX)ffkC^Lm8~}f%4{$LR(AedGL)4k-hG{TuBjv)?c-XIkI;kaIU&k!J4kQMM$n=U& zR>dAj(bQ>fiSSuzQVKuen(cB_>4g1gB9wl9g6LP=_qF;sTQm&VVJKhX;LZP)df zZ|46AlAN%34T2Qs2cST`v-h0v&HzQf1RgGGIAb)fSSBymZY=vFT&yjl%W_;07)}WS z!(?2t3@nyPJMryit3Qb^wt8r=nrR4?Guf)3JXkF%I4HOYz)z&{?#D$`oPt4KEbWj? zADt^ij&N0GsG1PGTBX_UTb{)GTn3$zl)ynD9+X-V6j5a73ee4DyDZ$swqGtBrJC3; z;vmTT*mBU>F-W`~8;&7(m5wSp9Pid|r;#$I0}IC9+$sZzR(@h%G;L_`ozdCmZNM*vt4C1Cu$?8_s?D_<7yr?ARq5~L0 z9*Km8N|cw_7KgX^5;j1SCvR7@oLIyE19|lLXqTEm<%>$|E_f=tjxx@7=g5&Jr(wPT zA}2M{We~-)=$xribQ#?=8}1WP>sAw0334b4WJgZ1he}X8VEgO59Dc*CP()n4N9EX zQ481M+h;O~cM$2jzJYG}f4Lh10gg=&UHosyCbsWt;WkybOGIdsQM?shM*5yFZpa66 z!$go&V~~4gW4?2@1SND3+-OfQA3&NwWlrt@%UIq;sFC1Z)J5Y$ju=t~R{a@mdO{?G z%T!yABCz719>3f^bcdLghTS>PochF!mrNu$m&Js{oGf0!#iK`c^y>1nakxkr=~c-? z#Gv`fGz@Er%lqr8UaP+X7l~0t_!1=h=t==r_oJGm;bDdW!bHlg2oq0$S+@b!GI*f4kESkv8IrF`Hb0GcX=I?Zk zxIY!@ggoDVZkxQlf533t{HTA;`<{t-{;lYak=W@<*Md?p4*zZJSoELXrF;pMIS&V^ zu0Y0bvCM-qBo9+=*0FWv?oSTtXgjp{lut)O;xV0|CEC#eRisNR@2`P?FL%$i`1tJn z{MqenovayAMYp9z$6J{2tK{eJfBtGa0zP|IR3_M^0a<(nOt)i`&H|Y(uo>uSDCSkm zR+%C4jB1j#1KgphOk`@9>rn>eIe4MKV+T7oNU4aqP;5vou=T_I$2ttL)Em~f-4i`rP5cA?;I`*&mnF_gtD}kCC z`*`uhrsh(A=wMU|mZ4u<#itKdTX+DX{q-7-&sT8{idvX5;W^nHbL2^V{)5k7-Q3sj z{NpHwKZ7#| zMpAI1#$Tw5iRsC>k$I63e~|7RJhT|E-)`AFIMY5gePpxs1xGNEC$`Zk8qk4(_mzh$ zx*CbI%LkhvlyN0wGIYGF;@9Fgx+@Rhhe0ABszyE895g^PfKe@%>T?g-t|WyG(rQ6a zU2cQstON`;#F*0fWIA6hEh|gW!5Pf_F@$o7zFdJU6P=*n_>Z^pT8lKUuOHGW+rIgh zEn{Tp<^+3tzTf5FhFdbhD4$r^$CtIK$(vmLs*S$5>Q7T-JoQeAhAheRtIJLY$|VRq zM5G)vkWDoh#z;`Cso)c1OF@>L5N8UeFA^-mhzpP=0JKTD9!I&O`2=D;de zv1@+5^BZdkhribKhMp+tot^dQ(AOYHk-*FuV-Lw#)*tU)!j<#D0a4;ZczAf(6t|a@ zGgSlTupr4o@-}1g8JrDb$(f<5(0eB_DMCI{VJz)ZSAjBV zQcHg)aop9>^WYP2@PZ-EfO*fr%F1yxPrkfh%NA&BV3={m0D!Bfo~z7nVbrUP$^^S= zAe_HPwaFla5+~-Mu0hBZ)GU zYiN|aOLe^9eE0+v~@xAHlMlO|1;z;vsYaW1feTxLr4e8_R6mXcrr@1<)Z^ncWigI8PM{z@oV=P*Ip*~^))7u2-p zA}-w)mcsZOLuvem9S3Ew2(7&@=i}}-HyYs{ons#?`XfXOzyrmpXBXiYMpM%NPgmPV zsfr2NP)t(!Y8RnJ3!Iif8cWROEXLcT@?S8QD zDDK`4V~!dlN>D(CTqdx*39Nz|cM@5Uoe0Kw@;c0D=EAKz#}42!o_;==UICIYN&E;IS7G+Ff@EsW*(DYo)($+f4TbXKkV>sZb_U_$EOD3D_6obCuCQH zdM!vefOh;W7o-+YF^)`0F-%qP-2m$=dq_G@GJOQm9y&F5s(bwbGg}p`$%(m;^F_fn zgqn(gdgBBGM2Nx2G0XuT@|J9IjXd={r-rw`7Hx8=fW+F37Nc_LN)_R^6jp0%ZYE?( zD_?^%-!60d_AnUZG2hp{AheXRRy}{zRFOkNF6z5rOHro-7{e7`%!9rfwrU-eSlFsON}GD9x9R1+~6(@@mFg2)8= zEfGi-Oi-y4$X=?~f7!7>=4894VfW;h>d zg+MqHb9e060gayzVx3J<*_r|4!{FfUgt_<9;K4>fvS~nW44C-KmrpWb?aAoCDt77J zqo?G+|6sI9sp1D@upSZRF=85L8ty)_n$1v=rlIlYnBbbmYhtc*WlRhh4~F6g{8O}b0`Py-h5tD(Ujj=FhJS-|tgLwpbBu0TP5LX=EH z#I-a9-V+m0uz46G?TiF0sMj&Z3{Ga`fQnotu31k!55iklwQq>dF?8Iq#kemyI*0Z+ zjh8W><{DtSa$&$f(6DUrzx;OwVpLaSPEsMjq4jF@L(2nNziC4%L1ZE!FcJq4P3!^I zD~TYx52ZfQLGghY$4Ov(f|QU~x=S>$ndd=(R4GVXqImI~P}JiTGXPS*JC$OD{TNxp z?!^T@DOYpq#YP#|ExIu` zzvZW|TBbKlss8(Z_{TY?iS#AC(B~oOYC}e0NTxtU;fyc1JV3qTe&oV0fN6XJ7Wn}Q z+|9%b6ZU{;-dcsS6uaL?;+kHGcdqVMEPnTPmx2VWe9M zK~GyAYiDMJbr)0RNt3}@YZJS1AfcnB`w?1>H&jzmU$o3>>Qjzo+*e*;aGBS-&Mc3b z$Kubk{^P}|;pvc0AQ z(UJfs7%-t5Ng#^0*(0F<<5mDkbw9}+K*LIO>Lo?oLgG0GXDCp?pfs<%e|^~gIx?*G zN71>o^xqyyu(aN4pyOk9eTnq9H;Dg-<0CG+#1T)Y_m8}X#3lD@PU&bF5@3M^3C0X? za+gMJVMzx&NATAWc#p9C`jrweOzTPmD9#la{_?@s3b{GQk)!hU@|(#f6d-=$#FiCUV)b zEp7s1(1bELH^8bIT7Mu2kSeA&0J)KVI|10M9w0*v+lN7i;fQp=+Pb>B)Qj5M+Nkgk zs}O-6t3c5XG?23d+inC(_d*cJ%H9C|-9xn&rUbmO^_x69!rT;hYjn=7mWkl1Ju`L; zsl=>Dp5U9Q=ybY;{uNULVJKnmd*GD+dbJ)AU@(;)jZubQ1!Y;_LVpMKgR1gDEB%uT zx1IyQ{erGpSZ6Q^x&sKJ8a6D>6B!+GSPlti$B-HhR2(Hqb@gt4)!fA7KtnlXgj7sC zbQZ<)C>O!t!OR-9`#^V3#6y5q)28RH z%-+3KNd{#lewTaRzVHL{#HJU=W{&%D9<06&4;dc*ymemFI6)xjs^?Obz4Kj8uY!7f zER93zPsDP20^t7F3VR8YQ_!dytO=B`NJbkB^%u4p9ynNRu~5{Fi9seWs6!~SBhTsB zF0cbGh5m}t95e~^S^9m@aodN=)Zlk+UYu)Kj3r0iK>j<@(4b^+aPS0k7{rCBZOo@t znNnQ5$H~{$L29I!aIOsYQ6-15fH>9PPeTH%N=e0At`hRS_WL5nC@2r`QDe2|$N|Fo zkoEPB^L&vBOi#fauLf2VbV(5?iE;|nkQ_zeHo*dXrx)sn^q4j+eyGDA(x%iQZ3@y5 z3&aiBq7NxC)=+d&MdN_*sR#K{vJC8c%I=_o$xjaU$nq5Ma^x9^G`LVNBr)PYU1Jpr zK$oN=%(pG1^*D>odQ7KRN%L7LzZx0i9$;b?@iVity4~@}$2rltp?d1|EZ9_jjy*ol zT=@EB)-T#Zrvpr3Z-@OpvqN^3b?Ry#=Wc=;_+UA}NeaqD5Dlm7*^G2)H$|LIw9`?4 zCBWw#NS4_UR#l)NhE9XNz^EXi2a2inSf@si7(Es;yvD}Hdvre#UB3Bg#zh^tc% zlAN?1cAdiS2#0Z?B$9s=7wx{w50*Hk>DB#IX6#$fWw-y=+lTm%Zc7wG>-B?~moO~# zKf2pxdSQ=91t0!^#y~8L7yZGb8pvcZA1J3Ly9(l zX8dov=F>AH6|BT=iTPZb1A;9a1IODQQSsF5OX68g1ng=h{*hS!u^H>R_DJu}HQNg6i8*9P-V z?W7zRI#UgdK3TV#eLP}}uGHUhcSucQ`LnBdUIcH?A#=;|2A zpUuv9!%ln@-3RyQ-rtJ~Os~8zcsTWlbE0!n?0tUAV`M(7GW}?e+Y7m|MC7szcTds= zO`e7=Pxoj|*WB!ANxn`Hbu&1(z^qvWaArsc8`URzM0g7C&qD$yOh0EVdSj4>8-$MS z$V5QiSQI1w<+CF^*%a-CPHi2~{-u#EWHKv`t6&4U8FX}9x>oE7t+SbJW!ekZ5ZUGT zZ&n`?>Bc^LoHm3l;pFA@3O32&z`V8<)H;i)xGVtCbh6P=0A^sQx)iMc25e!T#pY7n z`%gmBLEy32>g&tx_(69f0k~Osgh23t8w@g>OVU8|zFUdb!_*DaXaI-Xtd$&S@%MC! zi!}*wka7Ch+qwy0XR-ATLh?dT;XXNR8WF~x55sM?8iP=111pMG0eIl14%cWJN^sp}-IbLxEuS!}v8r!X z&$NbY9@xy2S#y?pQ8%VYCyt+xY6u(ue#|xHmpNy)?VF;&e~qTuprwzy)AhwzzMQ9I zb}VwN>#N^oSBK+1OFy>sP8kG`)C>81d?p@AxwYNb^}MsoQ*b9_a+m=5vSpwP*b_D* zq>&Ev_qZW_QZn=#|5tVqS_&FDO@KWdx_e~FdqWXS0vbmHr-g7X570k^kse1Ih)7U# zRCa_w{-+Qrxu>Q|Bv?^4kT(sQW`j#r7i*}SdUH+bTnLxLpn13(%Cl`|M8qy^y2A!= zXvf_>J3X$AomAN1to!QjPv~#!%{b=0|9v%1Xj0q5Tz_uzAAsb$%Ed3)^I+>t?G`Pw z7ik-T4TEFbNv4gnb>qN9ytD~l-X*V*-!K2o{&v?EdPzGMmdOEAXAvYkoB|etyV5XF zLGgn23JGkqppvoUAPR=WP#0_+ugn0@VZ_VA&B5+rM7Y&Y8P3OSJF?j^9=USvara&1 zyV_hSvFL#P*rTbaxUt1d14aO_+>T_|%s}M`FsqDcx*t)(jm9} zOg?`&Ujn1K#UVoGRPtJwFZT)zO$CGv#Mo-XhTPlOj#L6ITG-46ov0DejE40YWE=%_ z8e~DHGK+$Zdvjzyp9hAq5xgThv}CXcis?wJf#l-nAVVA-nvHZT3p0J~0B!>V`!FA^h5nUmn)r6#B=L%XuOS#6FkYS?+_otFq6xu#TOD(bQON zL%!p)Q3+j2jC8?lG5*_)U!VMzsL#O>Gm;dd3OKwhAf{p!X21LX+iTu-wCrL?O z5JHHo16orQLy^umFwG{0Kr`|}Mkhi5ta{il$zcy=dw=AIf?FlVnJrsOSgbX!Ku2c4 zT5wI=ps%JFn$XOJob|C;1G9oKw))y$<_Da7hb}};Pmptf59;&f6EGz+BOC=FH?9u7 zMy_BKcd%);tk;C`kWl0$a(N>*)E0Cu#p>wZ0WbcwuCXK4CmZ`iUZ+$~)z=gkH7s`D znHnfF8Vv(1jI|V|MZ3nQF@^Nw%u&yDUVb?t#-R6=v%$&OZBy9eT&wH3-0r5%y$Oj?tqB( zAK3&P+8)F_*;lrL=nQT~^6}qp#?`;0{A;GmfIPdh4}!s}Jk7912eL}okTK~iPtEw_ zV}S|7O8f7#FW_`GBw`SvpRDLg8v0Ps{_qy7DKvUUGNNO+I6eC04c&QJ`Stl3C#CvRo=t7c z)L^N{X;tN*zU7(WW$A?e+Pf6R_e+0wVX6LH{v@a*{%MblfXD{%=!6%mtwL$@a0we5 z;!!}~K~D7D=fEUS-F1Yjpm0d(!y`dV59?`rKG2gmD}=g*!V%hwWXh=eXC?-MsWK-& zO0Bzq1%Ladu|Et_PZeRJT!Ygkcg)`B0T7A=xH?a}+1QH!brx{iy~_wpkxK<_x57|; z`jvM-$S$P)gds4IMx2Chc5WQ}!%i%+;vsW%@IgajOhn<>4ZY9EF=hs-q;9b&gExS@ zO@*FoMR^e}0@SD%h;X=uOsRBKA01R<_ zqLmZ4Zu?a-Rhq3T{+N0Rsx~FwT+2sGRrxkAGyi^*#oC9-+M$&nmY&9!cge|WAqA)9 zsL-mxhg1Df59?D?kN0 z4sc)Rbi)@~#6r!6E5n5HidrQIw2)4UPutLal6C9)`I--A3%>Ih)t;>AX-Yj*5uTzg zI;L=|LVF{v*sYma*&#C z-8;dDS<>V2$+`w#Zw#&wFbf7n20t+P>ik2gWl+oYTJN$@L4hYfW z(9YC)8>(WQupbwpl8s@B!IdjOS}BBVSD2f_jz+4#g8~dC;0`g)Ctt4<{4sCn1}_!c z1%~NuD>;Orh20I^aI_~yAQVOC0OFMFVV#|1?25d#e(BCRl;wsik;3XaI*W9#fP@PHc z=%nX*&yU;i{p-mDkDIwhfGAdKzjNiSOP=PW$=urLQ!}@%ib`7xX2wsh=sRQ(M!;_k zKyAnIRVvm2Gy=S_KXdGuufKmWf<@)eb@J*$>D&x}l)J_5>^uw8u$ZgT9d0Ya!ecR_ z2ZD23Zckc=y;Tm7X!n4L%spr!1i^G;$&{jM?+)2PEXlM(1niC%Fnf35)|QreCcaB2 zsnkvg-iV2XW3VDJf-k$iT$``?x!QFEs$FYW-YtXX&#E*{NY*5@!sb_wQub|@@m|qI z31yxqE-uzmlJ?>6bY_T?}`J~JQy7zwN0gIkGQ zdNAswgXuktW$(i%6Jk&Yh{5=a8)iK)BZ@vH4-?*d!y}dY5?xu6UUk?(E6K5@xI;ci z2=3qF8$FsbJ{jzrnvVcs_XNW<2RF9|c0wS=@H=4i!%=m!#resSuh)xiP!JnGi@@YP zwjcoRcQ&yXqgR6CsaVz@sF?@bM#TV_8SB}&F&QEtfRkONvoJS}=-Y*mcVI#?=q?dx z&(H1kfXd-E)BJfW+$9W; zpye0<3nBpE52HQ^YLlULun?pLZ~x%s+8EHH?lAoqlH{FeLdl) zF(u`U$mC2k8X=Zx2>=Xj#fGbR&Fmu(+UWqk5XO<%rGQ@vDMkPj?9I=|F9kmmhpI72 zvN&t>+~q4I;GPNwetHaFhF@=o))CA;QxQ*&9Ro}sQEWO{OtlusH4E)#xkVA$`9wu6 zX zErdg#I?da0@$!~Hac?tBk|!r8Zww9&K6vopMzA$^U`(L|d_NuVB+Q@*dJ5dDg=`AU z{84A=LH&m4}7;d&kSp|H-0XX`Pa`zCZMKv}ff-A}FBe zF&wYI^b$8y2Kv}aLdz36T9hNgR`!A5g`XSPPKPp?*-l&ePdu5v)W4(kUKEkSk9fTA zOK0`f{Q9iij`I2JlJ<9Fr(v=DcGQC8&+I{cZwbSLnUztOi1Bn+K^Owb1Wd`I-+tA;E=@--T852F5N>b97 zC5ZZc)IZK|-a;$cM$o-32y=QayxqGp#8?g znfQ3)ONP*XcldI;8u8gmp*^%>!RptaPA$lcn8ck{Sm{6G4V^!{=G&%W-fj`q##IyY zg^DHmDQQH{td{nf4cg9L_tJGVznjx^`Q)CJWhcDwfgM^--N!Yw@<7F0&fA_{Y)$8Y zang!x4Q@i8eR2Co`p2N)|2qbfTQ<`O*q|Y5E>HxZJLo8`HTkl#ab_Pz%DD!jyF3eD zl!g*Muv6biH7uKI7yHH*t&vM{2mR>j0YUpbp9D}^$ybQVp%Km5EQI`*sRLjwp&NXnOp~t3U=pvyEoRy*#Sj7PoUfa|dDTmRAPv|I?o2};C z5(~RXps@mP=&EMnm;LQ^Y7gzLE2L+Gw#pZtlk9JydkC(o|C>Yb_X}@>XGPx_6j1)n zAvh~dvjIQqL`d9rqa^L6WbB}43vM?38(Sb*M=Mr4o#tO8JZ)mz{g2lzqcq>H7#ZLi zfJTvb{CT@%(I@`^DYJ96pQdX2p;oBe3s&2`; z^lZ-3VCVU|(sz6Z>Dh#rukCPy~r?_Jp|L*3am(J#)6RD@A38nV3;*{D!aPN=yh>u5K2zkOfh5g4kMlP+k$?rn|(_S_CB$imp5*_;!+`p7qLMeCmP=dK%0_xmxZd z@02eWNF}mgF1Km4?I}Ifi6FPE>1y07ooT$J%Lj8qLw+8OyuhgWvF4L>9iwA3D#2yH zy)iiH4VP=_Nvu5jo9X$MZ3Y=cj`4=mzF&IPVtZ$L?KIRi72rWV_FgdpLA`HAaXbRy z|F2)AEjdId8RG{nEj5^Q}G+p&X}2z!dC!KFl^${-#`<8Yp>ii%QCPUiphpN>|5c8=pN;j+xsG=*{j z-TEm{!rl8BQ6dMG3nA(t^b4-$)1Cn- zs$Wod-&HMvp2`|}nwIuCIIuI>yH0-a4dEsXs?dsUOzur?-z+yf#k>m>wqV{XV#&a&bZ zf7Y~k#sq@XG1+I!Q4;keefq;8Ir&S9Mp7vaJ$*0M1~!Nc>A1P4Ji%947)|IKj#%wB z9LLG#mvUj^ZJwZzh~{gekm`NdU%nv+wWc_kUQ%JGGdnMfRbr-7XKpG#J9)13_!IRC zE@lt41m#{L!TC{#c9*{C3sxT{rK|swzr(BGY_y>=q_1$&dBFsHBfZKyU)!^{l|Bnh zA!^uT*mzL+OQs>_cYy%q2#I&{U`?Xw*#D_(b6v$H!!6+&?gEL4zG9u$;Qyde`B&Fh z!6%^IlFyl!45{cZgPq#1~`pL~I3nNGqFwBw8eF>2td{6ZX=%&gf zwXA2=heO%&StYV9a{D3HL@_9h7j z{)*g8jS1h%aqCf!6m}YsT>iLtf=1mkT2dwl3rEm*KA)lJh?bw z2k9C;1){Cr`G`hax@S>CGgE!m+o8H5biBM@DS_qz?fL@xeeJ9|?=bWl$9Dwp^B%LkX&v?es7zoJ-qZsz(w z9;>t&_3KlE3OvQfoli~pN|YXV-mp02EWipR^3W|2muAo_B*=@37cS@fT~a z9GMRwd-TQi(b*Z=WNt)%U6IyE7kyzjoc|c$mR!Z=3)j7tDRH}7Tb1}6omHmY4kc*# z9aaPPVm80OMb1Z~Teajvbmdr%!QqG=zU^i0zxHNqk+s@c=56P$yY=_Ad*98Tz50WS z@=X@0{c#SfVy?X0snqcE7Ki_QFaDM96CquZr_UKfEXw4sNGWF?jz~TnwCxDj0|u4< zS@#J!c4dh_Pg>M(9dDjD*-mW1eykubT$qV-X6y>v*v8wMb8li|y*Z)S=stP%B~}W$ zY-2CrXlKfs(?s$6AooSOXg;;gm1na>tBVX%YPzl(b^komWGzuaG-tu!8MX6E_ntxQ zWx?-FD>B{2{MhAhtf<6Nzu@-hHfMoXVn5Y}FFK~?eJMkH`S!p*Wx1RV-uXQ z?#Qb0IiiA3Oe*cA9<}7ok5#gn-m;!;IYgY|lne=XuwkG40ibP3@qM0rrsGSYNAB#};~&bMGS?92wl{Pa8wd=D zzN-||-I>AGAHDuWcqgGbERmso?&VcgryH{luA@w3hYsz<<*j&`nY1>QiCuVPLOC)! zyW;;s;>pCddD*#oVCXc_GkDDN?ms;7NjBE5umh*zts{)!dJKPEp&UQs4S{W!+{QZp zLD+}hAAkqc*kn2}Ng%wEEt_c`QO#L=MALksheg^c;zSEzuq2IHU+iuyUm*J5F-*K) zEp^~a{&`t&ovBuz<;!5g3l*x}H=bztc%vb(nMnNKpEI10y|wh4L$~4iDNr081VCr_ z)6p3^31K1lG?cdm&pR&tCe8aP0b23iO=)I~E{K>i$yYC4f!9O*t^ZjjYMhiE9cbp; zt7DrNTH()rjaa!w(JHsd9iA_PTk47crpLjCs6xfya!#sBCLqsd|D^k!rxsmj_q!?& z5&SdjrmO_LY4g(o_r#d)u3Pb?k;q>zes~$(^dbEUeDcMSQ5`Y42Q$pZOM0%4T~v z@-1{NAI+tk!uJDmdGo=!&6|G7T{!b^%tI0B>Sl8Pd`efN)XaSAN3_1_+bW};WthLCy_3(M?_S^b z)zZoT@p+TLU}QwZ)L^;^yZGPf5UIcLywGtrN-M}zVRC!VwAH=5@j5MH>AWI0S$1>j z`%Z1DgKcmaS?y+MY$#4Ao6?bx#1$#A5bE|!e=gr)veV7bQST?Bd3y%I3|i^>F80H| zoCdn*o;6e;QNk}Vq^~1v*yx#Eq7V70lQ{8ZNi>%|-^jws8kO)tFvmWD-Z8MTXylWc zsY#Lu?`o{El($RNjFgz3@jI-Tc8$oZchNP@(mK2Z)#I{b<~>P1YqX&N4qDT9#KvjJ zK+Mrj$dS^Cn-cB-?>#*=vUH4|3XRdLN!;OH5bS2o*ArM0P(XA<85l(EOf@9JwQ_U9 z?2D5+>dN|hJo>r`Jv4?hGBnEZzyR*JZRZvCbp5&9WfQ*iu<`xDcdn28oQ6E&dS-5< zH!F(QkFPfBS=IV92>zMSufKa{|Fz`~85cv9wI{%2CvBqRS%yzfoSdoZWBPRUg%kC> z@lkBKdH1@S_?|`6u4C!*;zJq*^0=X8c74sPfHn9obe-3vqGwh!!`52ACW&T-*}rxk z?(G~OYp3Mg-P+wq=R2fnj_AqM%$w~N7MojhN!;xbOUwAn`$d7)FlpzBa;KRE&dSG+ z{H)6~vVU!L?razf9Lqv`s1H<^K z%?V?x@-4+fLrnFXu8wQ4&yTZdDmYIyY0F4ez0M%gb5pII_RoO*?9*$EIvM&Qs+^J=VMlw}@PB7g1Ubr=~>p8Mq6AX}^5=b8Q*Pqv}`|ujn)3 zdqk3T_XMrHM~GyvugNDje+LdRy^zK3$+sY_)9F5j;~g4=-p{LO+H+b(@|bFW$Ps0c z&=mM9k>A4LGV_kPINyw3r1)bJO%!zhc->WIvgqQw(puG!)$}%UcGaz(gzs|TlEjYW z-!7>RF0pyR@Tuipqxs-cY)|nSurQ_kn3G*KTFg!Jzm`58mZROnU^ob4Bv|Bt2rHrW zeQQ(qUvj2qm}&It=zy0*T3u3$R#6+1^Pl-ZQ1ef5U+&rK;MJ=oos^;@UA8n~+Viw0 zH-|yoyPJAm_C$SAIEKf5vLoyT7*7$p?c8n^L45FB=4j=y@noCL$2t@CEmEAsE`p?E zb8}w!%}ncpY^Ge|IJV<2M({Cu+x1zVx0b?=rG2NqAJ)X!T|L1!F+}}4LV1{`z4gP} zDT7h#ooq2NVMQlwsg(siCJ=7xAjHl4<|g40{L3u|U0GYQsYgphMLv?q?`4p5#HV8( z(e0@Im!*IDi$N@{c<-${uwe7CCOV+{b=wuf(*?)H=1=Fl~tb1(tCrvHc;z4KXm3t6;Fs8xkT5 zLDCobqWRfV>uDvNd!h655utY)`n`@>qmj#z)j zc+o!Xt?K_6@Wlj_zu1=}BvK<2P#OORp&-uu|f2BX&ArL2b#051-?II$_DUB2A=WnaO`!g4HgeNt&JkVK~Lc)|?ekoV}jD-mX=k zU1dubM$OhN>j~zN85j(*F8_zp#PeorPnkjpu}AdR6@D_vMx*W;>Evcb!T_ea|WvFpz3T6JVa()Sa?19#iRp9I#Pa;k`j-RF7 zLglsXUbn?1K-Cs*+iC_Rt{var zuzhzfO>Q%PEmuO??wUg_IZc}CO-Jf$JrgcjJaKas*hSv^`xBRQ_YPg(aQ@EDH3E-* z{CZ76^MN-Z5*6v8soAREhqpSwL{xj$)T+*DTSw;thb@V%6K=#QIiA~#0r!zMrDkWCfwx+vj#l@h<{FdxruGiWA;h|%erRUKZYXv%TFksMF z!<=;1SeDGq$t_J7&^9J&kd~vc2MMtn>Y+J8m#<21-n^MkHT|vC-0(n9j4@!ks4J^^ z6XxI3G@l{G-lvzOx{_)-x2<{YdvQ8-zBFz>qc}j6+`6s!t=HJEgm?4Tg>pA))ND{v zw+1B59U8=IV32G&lbj)JYu@qR`&H-ngmpBR49iC`{Sx5L=UTMIN0_;oK9CK ztW~MWTcGUQfZe79Pl>@;o%ShhRZ>=BH)R!mpkl$hpJ3b&cj&=@P4r{&*o;A$e|St8 zw2z5fEyYTGq$}oyBb|c2f%^W@q3Migzu(@tYFwUpKQms^KB8okzQmaLSkI`wjG{85 z%)Jz^f7(}7C6JOUi(yr%Pt6HiJKkn&x%8#3mQwq!mf2kSimSbI_7N?$RQ@D=kNw=G zMg+L8P+jU*icgRybB#`Cd=?uU4%Ys!^f z(^Jn)>8Aa)<4b$TC%Dk-}a^(qD zgH@}>J%9iGcV&^~w9)eQ;e!h)Q>We2pxI|3)%0I}hnkji^j;oL?X9x)#zy0*+KzF1 zwVd_!*R&*^hznm!d-0{ul6^6FR2%Y71TZ#dsuMqiiB4nz{rs9HH8=ktp+0o{jP@2ho+sAw+=06$Y&3WP6_(~c5S#IdU1nny{TJprKqs$_ab^?MClC%mt%-rgSp zZ=oMXQ_TQQhe~Ms;K7f5vMv(HzeUAw2Dr^4;9S!w@norb`*s7sfgt!gj9Q*Pb!tOV zQIYe^>9c1y!(^|=S6_cy=E_WY|=yEP#3$U+sLp)l8TPcO@o6c^%e#AOuTm^@p^n`d!y z^A@YucI*DK1xtUKjX~>~Y99T&;57j1AS%y1aNPGTt46#-$#Mi{j9@b~w> zH~{#ni0sD&Q11)v5(~R_?gVHNCLB}_0aRnNYH4;UKm_s*ExA=6s}$FU$b8eI-6a5! zpbL~3wqi*DOo9WcDJdiQb8`q3fItz5yCOasScy_IlGR=i3lfTO_lUXrCR9XVx_%a* zY3FMwQHvHZ1zrRQipq!X;R&T3brF93kehTwZ+>g)8n(%^zs6P|4qp~O~j;^Ak7w}CqGi*QWH-41Bp4ZZpS z0RblfwR7{fZ6!DXjmU<8A)C>=t}!3c?{QXovenrccdSncMurh~DgCk%UI3V+9eNeR zU7sjM#MwMV&aJsabuenBSNhyDv0rGISd!Y>!-^i#EpXUObrf0Bh2Mi5v%@J z7L`CC(AH>_o+R^&KVocHC$q`iRQ0z@ZVo(@cA57&e*90n+)l&~=gJfjuB?+&MUmkxkW zs#ZSqcoG-qhB((=h?CS49nPA+FrJheHuhUTIadUEs~H7MGypVyF9L@E&W&p2i->-+^5v5Ir^S3mjze*OOf|7bDLK3RYjlZ85?WJ7yL65q6s{@>t$-vwbAKmW*bN&c1*zT(+e+OhTzWc2VaCfz9FOF+dmjg&6 zm&Dj9NRthG&KE@i-bz)W^eh-!q!1sz!Rzo7(qD{+IHp+iR8Ij~@J7VpL>2L4(x7JA zksZN7sc;87f`Z!fS`*6ch-x?t3~Z9-=CWs%qnyL!8t6nVlC$2Q^#_YOJo~x%)oz5}lx9cJ^K~cod=7ww6T$Ss(dR=<-&b}rS~-A-hZrX%z;hWezIh}Puw8*% zVEW<0j#jHCW7K^JGEP!dD+lb?9}q_l)khzPtr@U(6(Z~haQ&!4HQFVzEB@VPb*m$n z#CF}`7GcsEbd^&jYFL4}Xh&)Us@g2HjZNZ#3b9+eBtDWQX#l_~*c0i~2Ea`fux4XG z0hAZ+iJStO=)m#KKL9j!cN>C&I97Ny_Y|o`QcWSPXV-tR*-RLl?Sh zzQatwuO{`0n!}mEa6JsBOQ{V1h@sfWk#Ko>q!VxO-7|B2 zJe23dJKA4_8~LPcn1(=oZsec{uC3tcv6uj z5lxZO4Qgr+@HkW9Uv)i&_9D~d2>`}IGHcKRn*iGqV8mDuoY8|xpcny}5NHVSdWwMO z(XZYZV9>n~0anXtx^o}Lu*=svk|@&p!lUgjiM+4_ZVYeeUjG}PUXVtC|U4j4*|YQW_t;-Q@|~K zd%3#{i1&^nt|W$FIpOK8PP0XTn8t*-v3NJ%uH7*fZLb1wwmP#D1I}62^TS@wb2Yhf zpiDshjbs@EIH4Ip{+0mxs&BnHsA+Ad{D+o{T=i-vJ0=5bGAD>s9A9TcPV?2nKfyoJVqHY3DVwm*24$qJIQv zdAE;3WS6uMBp)g))m;%vg+Rrv0YJIMG6_>~5g{0~=?c`>K^GV}4IRoCeGoVr`4|xN zoLu=j+Kne`9};)vjAvU@Sb@UZ6Ev{^lI`T%C?E+8a$N7+iCBt=BeiQMo-qWO!gX_< z`}0Q#rAJc65!4hPMTKx*d=3B||ELXdgicX0i)!U7w=GOo$H3HeT>AzUHNoq>*jdcR zFe}ZFD~Twt8N@ZNectK$CWxd%948u*^((`2#!3JK8&OhQf!kRuqN1@eDSyFEtMXMe5MKT`2+;gF zX>P8rZHPr5ubnRrvJiIvz=fAu&SEG8NUe@kWeEL?kacb8i|-mnNAlj zTtGQT+XfstP8&d`E1FandjKrd4KXqybl>PaY3&@4X%2w5Te`!YoyarOX@FccRVZTWL#UW%^zQyKbQ*CwZ7$A+}Q?9D5_056Y)O1RE#=*Yt zY||}OO7e($Zy8)B`n^o+3lodQO0(&QW4@o=sevZsa|gl`8FHwgnGWJnb&F3v>lj#U z1)yg(gnviAk1WeR|FjkWW7b|635Wm_Wf+j=`zP?0zFF63+AV{qOHGjMb|z!P#vG zMzTBLYwkvxwT#7V0JtteU~Wh*$&s}H8>`u(MhNfHsZon{N^pT|B6u z=pcW{nN~fBYXJKu+qm1qc{;%P4tT8{El59v96 zpMM2h4^{)Nafw;`RlN>lZW9QVO0!$1E3Dg2NX(obG5H?SkW>^f@UFcxoq=Oyk7-u{ zg5@FHv(LEQ=;%pi%i7bWLH6wc$9K6Ihy|pB5w)-#sW_<5Zr@-t+|`-pXNsgv zE5#K4Wr~mdm zB13F^`t<30@g;dkWe_T2z1LVi=r9MW`^fTIS2wqaoE%X|mwD|Or~uYTaD;u*0vq9! zw^1np%Q~-}{>0Q;8Z?XGbY?|cRCXI{0dihdb8|=^71`C_WPH!xudO0xZ8F60Xl_t1O%oi!?@ zYBHveCdu}uSUVf&I*LfJRVUay9zA+=u^fMRb}-v#eB=W{nL~(u5ukJ__6IM#{NrNo zW~ZU+Y=vOAy~mL^7+5fn)#mQ{Relz3tWr17Qin<1Fgq_@AFogNyoU78E)|-_xCTQA zdzjL+m%QW!4eJ)mQZ-;s8h(F$Jwlv&^D811CVFzEc7VHhCqUatNYyJh6OdeOkbv=s zDF8zPkC1fZn`nd%pUj)gjVwpKXviA{D1k*(YApc>3i0HI#|OxOIcj!ZoR@ayMf~xq z>S}MSH$CaR_RT?u^GRSri-vyA-5J37ijE0&K3;_RkQBN(9{(kSA&V4Hfqd+$l-{@` z&yBl|@9vA57!6+(MHZ6r#QcSsi`)}{PC1GyPnE(KK7A6CxutdqofwTn+U;U4&_tDh zk@FcplLh=07|Te z6)Eb6`nPH9PWiwEG8prsC(LiT*h=#pE!HeOnLMgBQA2kWW7AT*>9?Trr%IgXN-pN2 zA;!JDC^k_6cjG;gnAIB_nM*nYWeEgPP0@lx1X8X77Zxx@6lq$w_{Cd;HZO$a7fK$o zi%_Y2fP)fhZzCUGeQmEV_7krsV=cX)CRaW0!imF!hVuVVo6P)Nn>3KX$bl-n0?k*C zS`0MutMY0?No6Z?)p{#qngpU*>1rJcH@K&&eaLSD+4qC0N$HM=k_x!cyZg%V1~~nC zYNAg7&zCpJX?9>+y@t7*x3V}e+&}H~SN9&rglbHD{7EQXyVM?EJ9vM6|JaXbXm)h@ zqf5qkfXEJthy3OfmfB2pW|2r!$ma-8yw5W`e`nP_qQWvmnv@?Vv?IO^ zIQH|;KhsH#e6ILO&b|fqNYJ^~Ddf%o?XdW|9pFP%7G1c-;vbm~d1xERQ+lUOy;n}s zVu650niPzD!OF^*{k@o=6sNq$C~63Sda3NTGm{iH^p3rijihapxIZg!l>f`!?i}TI zznsyYJ64kQrP#Q<|4DOFlzVyeYa6L^4&oa;!NL}`)<7MtRds> zyC1XKpR(W>%OHLR8ULa*HedERW(8^T zJx1vnAV@_(ICU?w4$cq;BGvx^f0yxXwjj^Eb^#{9^TaNkTk}zqZsPT*o)YLBReJgF zgP-%?l1-BUD7@Q9E>xIbm2)+C>bKFgkXFOE8SsI3bCdJYQ!?`N_up%z$K9D8>EJP` z40zCJ?xf>@g9`nJ-3jrLIg^j)upgzPpuU)edDpsLpKdK9frc5nI0-~)_HOQEqgnb2AaL|Ey z#rAz5J_;G_X*Ke06`>;RhI*Y~Iz5ngM_O(5HXf)&SRrS#r1)m5*F|0m68p0@XC!47 zS#Z25@`(1jE&mMa0yNs>%f}&B|HRg<_Cf0Z;G%l|^f|lTn1K!rul+k6k?x>A%ORpp(Y;yi|6c|RDMmF<_a|{-YzW+cEMA7zE?$B z4WqrIlYQF*txs>k;bUr$X(Ni4Sr=DRW(y8#oWap$d;=;7KWC@P+ zOZT08FJ#`e+X(hG&%wC)r-MDOzEZ8U(ca4<^kd$U!MmTm$i-W^BI^@V#n+21eEij) zyTPAJcRQ2n)^C`8HGb~@zpvNw6mIa|@Pq%QZ}op+`jv0@Z@WW}JlllnDTAZzHII*) zG)nKdzk7f|_ohoKW6Is}n?>$=TT_|%{JD8kk~_XBOG$6eAIu#n*C}&a*X=hpJ-4=X za(aF*MR)pc)!&m%F1yZUKM}}nAd`Fv`_ziP&O}j@C=cE_&D4ZHPUp#+YD-g&(hKc` zd?w~Re7By^hq%Bn0r0vb)AtVmTj8%pdgS5ckG;LFkUD*whUs!R`y2@}B8zjQ5qWvy zQGV0<;E?&sJ~_KZJL{4(m%3nFb;O)}+13hIUd`0qGEuQIUWCT@Ipu(;=ntWqjy)}& z(|pyCby)FwK6N^FjQX#e>z_ZD6otADM}m~w)*_$=Iin_Z6&$n3bO=zxqtXRaeB^~W z62^hI6qgQnWSH*(x z&d$y(mk7ztBo1bog4{Bk;}p2DG%V)YDUm6W0)Y*1j%MK&QVV<$W08prIBo! zGy}VnAuqznxsG{C=4&wl6>3z zt;07ij($CG@Y&<6>h=}S8UNv`FUh1=&NPfa>EK?a*&suLA9|lT8oV0CekuWjTT(BO zm>O-7A_YziwlMMLj-8Ql+a)rPR`Uqu5_!sf#kWlUrb-na86yz{tufZ>X2oE_GU6oe3E+2<)l-ffIIsb#nHn-6g|9nbL}w_EO{YGV^Hku`-XO8aX6ogoX><8(K><$?S}o)- zbrp*dpuN=W_g`7e$M7Q^< zWBic!PWlHmpl-g2}&y)lwB1JF^v(Wcs8&b*~zQbm_sWa2hBM`p**@#Dumv-vH1Yp0+&C-gwwaH+$s{=^7AQBh_l0h5zx(I2l0@8yx5jE&+x4e~>X zy$O`RwP+n1#Pd01_T*DQfv$K7rYtWM`z_N*KqgzQCgp3Jx0dNhWV)a*=88ffWywK3 zosevIew;>LgAQjq%BrCw5OBLgXC$bWTP>Dj{ZPyQqL|)s)CA&iW%<`15S$jTR zEk#E=Vm;B;+hBj-2xU-#l2K_YgE7;JSG(eqYO10%36#lV0D@=?}5+PkbqlL58}l%A*o9@mTkF~6dmKAo}o`3{{KUunW0 zI`6Pw=~Mfqt3I4-!vu&|BGX;>_qp%dwd;v>WfkV5&|+ZXqq?uB=MK7fSiuBi0dvB9q7b^;I6LbCz zRp%&Wzx+M;pbEg=po+x2u}deK-0AqmeoKCFD)g+Tk-&?GQ{`t{92ORqwl%^W7>`PT zb#WVP97pbNzx_7#>V)_Y6x&MsM{#kSQMO!2;a-eggQ&}Dg0L493jjb{6F?Hx!Uyx= z!v|l|v3Kg=#h%{ZImiAVdlVDK?c49H63#BG&bwwPO9-kDjPUi(-=7lA)>HTgg{!@! zaEHgn#v;?9zV1WXANz*y5|pPW6RmSO7oder46+W@K@i}3@>K}#T4>{4*a<29dn7S$ z%<*Ftew&ufg`BZ!S;Ll_H*aEP9LT(*`1#(cM<_y@3M`$2o4RZplRmOdl)kfFX0pi{ z4GX)9O5%<$cb2~F$>N6(Atafdd;I@xeN9b`Pqm?e!EI<1^i{rB9wsJ|fa%P%ttDMZ zK8rmyv2k%VLG$zT!%@7B9P;AR9aGO&iEjXw#q~NM8wrcf{Y{y?R31O6ZJL{bUK)!a z#jjrds|E(sK{5U#@RP0 zBo5UFO>7ZEVl}uU!xl8+NQ#YRCai*E6inr0hU5iu8x;e$>4`c#F3_j57vhXf5}-rd zRPtw(n8h6gjme9bk){jE`X#_Q{kmF0E0E&Z!Y>SmuBxet36ovmghv?MEh0x44qFq*O8h{t9Azdnli<-mH>f-NS+(g^hKU&_ zz(D~|Suc!lbV0~T)}QMR5C<1SdV*RkR1N1pbm#|&MeYDgx9_-61aR$bqS|7pU^xJF z=xqDNY@<&`*oW#t+SgV4Lxy}mAzuTCQe$-!o5E^LhGNBUA(T2wMQ6uQqOJvG;fuh8}ZZZY3V(qq~Sy&w%`yP zP&|HnVRNC04A~@gMLVKS0>;H<1yJ4E8cvFR63ECVK|Kl_`O-dni?D4A{z!&KUYr_1 z3cg{;i5~;q5LGhkfsNi2n-Y<>lrkPS?DBx-O-`{h-@}R6`*Khi(s(t&(5k2aZrs)W zyxB1lC@yIVkGdddP_%+Pq0hu{%0a=j$L-KuZ_`Huqt{+Ux~*MH?sK;B+_&F;Tdl^= zzp1@F`i(iOsLg?dqF{`XhW#^h_CT-s4=pV%*h{2h7pbkNq_hRgWH|%Irf%4*_i42| zKCO0toBjV7BomjNe0pltff|f+^YykB-sB*5p623~V%f6y@6W5nJ-(#lFn1XGYSTz> z-=0!)8)0H)^~5Bd8Sv~C&ri0pVIy4BiJ4FcLy*8P*>1e|_HFDwZ~vNYN)o9iw{okU z{m|p-)xvLQ1)j5R%gwO);Wz$bJuOet>&$v6mD0r9dEiJq3hNb9I>Nf?=(4cFkv2>K z8p9=R$Pte8jZ8S5HrJgh7}2aTzcE%gCSD46WwLHp6X#Ff!7n-a4bqENl@| zt;@1$NhfA0DNv*8BJ)Ry8CirZ2q3A(Ha5G3vuCQaSw{6E2@^(l9xf$}{2xAin5GPB za9RC8^Q}4-=Bps`$ZWnQ3r(`ms&_@HW?LCMd_2nLit|1LnXRm=)-lJ7{Ti`!kj@=} z6!H4_J|5Xwi0SA)ZYJviFNm&cvRRDzYJ!OjO5v%c+>1Z>h_JTu!l@~E+R}yzxYn(< zkZakbJ@s;18#uwY7Zw&|ycCsTw&=FH$+JC37CzP7ExrwF@(@<3*u|srHr?5uI9egX zoBIrhC-a@1LHoH>sW#OysoRY%Ivuf}>6p5%s2>ITl;Fk4M9p`S}S)r9;cYQy98w@6%qiqf*C0hDpY2 zOa!#Lz(%WjVCwV-2&K8vcBq!(Hy#kC?(L-O9(F0qC-)^~RLRDVM%d*ZXMpr^gDai5kNts^WV(w<=I zXf!vjy=b{+{dyIb|_iHyJ5uNg9o32q_WabQLrvk|Efjqc-mg zE*l*VzY+06JD8bIQVnz*__k`y*;s~yPOFe}&#vi3o#6Q6#fukD$4Tl`7FQ@3D#LnS zEv=_Fns?BhDqqo|g4|BdCPxW30UcJ#^M~)=rb^^CL3V*K9ek2`$zj!bl9(uOw07OP z$Da*PWwI^spSE3Rn>#-?ITIKxEB3+f?Y{1~@28~enpX$`?mXC7{aUGap_1es1Dpv89Z|6}Y+;Brpa_dCD&&G?-$ zn8r?vrR-(0RMNtTBo(r?(}Ffh`|ivP(jqE_C@Rvfv}k9v2#M%zFN%^>-uC_dU-$RT zoH=@%^Y8OH=P+lg@B4h8=YH<{y07cHN6k3TP{T4)Q)#U0G*G>yZ9eSUP~eM%FHd;% zt#AR+P@6-Xk86flt@;%I@*eWeIbOX2(gF&OiIK>wf+otV9#q_=1g0yXDN4fHw62er zdkEij^*;kJl4j+9zcln~O~ke}*N?Wh*E)eVmwyR&K}EqA1iu8nQ>_VzVEF_?T| z-n@CGgMb6rpzq5v^WX9Rx`4v%jgJ299!?B!^FnG5`O5Vk)Eq4QLw#kO^I`lb>Z* z{-F~1p!Zg8V3{~*|19~#)G37;!9%!EEGEF44VHfaIBvzqi;wm8xJg>c%Ym{4x0%Aj zZzdU{OO@hG(g9$d(=j4^b;GZd#kX4s#~~EmA02FM1hC{8Y?-qGWv#{#wV>^>{v?}y z-JW=NED4XT%o^Gh>u6!`l$LsXMu(QH6wi8-??DCoPh>WGf|k$DRbPODL~4|!pgk4L zT9Ne3`beFEQYva~X4vzgLkm)d+U;{UhCpL=5Xu_UzJsa|*Dxc{5vpeq70NUd&a)@ zwHQ9GKU7uTa8_aXuxXc<{;pAWu*f0e+L zFS(Cjb85TK0sEYbb=P+*EEkuJ+c423iyPe#SX`GD0*iir@GfPjFvuj?m6i8X8dSOPxJ z>rTz`~DJ^|b0q>$`MhANf-j3(+C{N*wC?%TH&+2js0kZb`a z0F2kyiis);^2?e_!^A(dwyL!1B8_BAxpzsKWJ^7Qw!yG0dLMWkMKgKWswhWzU_bhN*iFC>4adLw;(!HEya8G_am;!fUUjtJ;>G!8-mt zTN_J4{_GeWDG5QZ5%*JfZ}g zNm((<7UoFAr9tu6@5|};O|E*<=_)~qZ0-8CYrAYvCmPJZ^_g&-Lp7#TDN1li-y~G>Jcu*nnv-AvL zmbWLySMvVsbCiIj^Gb_)MP@ViHO*}%(6yo5wJW&Z8#!A53w*=|OHQw)hSnv}x&-wH zOM^_0F>COHlEOT2k4&<6Xy>>%UbB9_!6bWQ zN7mXn+vFs>aBxP5yyk3P$?cdJDUw-LlvH4{~c2;>Kf)X_tJ2PXp?t=5N=guQ_b zVi!JkI*al>EKQ2@^sJ|dwNweH#c{|#IQvR+eq-nARbHu!6W^Er{%Eo41c#?Lwl;tx zIJ2$mC?%Kwf6rN)u^!DL=(YgyIiMrq*fE^Z;m#Q{VaT9>FiV}bl4MPZ31E;IvC#*+ zos8?zwtGzp0a&}l>s_6+fAD>0zZx-J?Xu(s1)iP(4=%3(c4&soY2q}b;m?=c%(UAm z^x*NXG(V+fd^Anr8f!3IVK5vu`D+%dfXKqEr&(R$hwTNq^~{@p*=j#2&7QdV;4P-@ zG-TME^RJ0vpv(9F`YwG4uS(W~J3)ZjZsvJXptek&#i{-L`2-9BmfXTx&+Ndx2bz=( zbRH2YB&Sbiy?o5{OqnH`n((P&HggOkRpZauXT8rGclmOHvz>jDGUEFbMnmM*KKNmg zx95W&{>NaMk5zMD8ro8ipso zvp6eWH#nkK+J3knvZ@2p zeZFlG%C_vgbL@cD1xcQlZgpVg>h+?Q?b@$4$OJe~<%P>$P#e?3%!mX~AlicaOv%vD z5KrL*9VR%Q+09wy=!N;Ed^b(#TI@b=Qc|J^rmV$S2Ei3Z*~~0r_y_KXsxYrgCf^~y zi1*Yb`sJ8OQDMM_(*v1#MJXnuIXu}Z4^k6oL9GuZMDvuY9~$~X-_JKe-J-_gKA2}Q zIvjpB(7PERpn_|iO{xK-xNoLPFVKuRSjJ*4F%!e(rP(?{8f>TT4;LePtVZj!z`Y?E zo$|`}9W!B1V%p^Q{^k9!4UTEm=i3ZV)L)-q&SOPytm9Eb*`X)V?`kvZ_VM(tdeAF2 zMo9I1h2}y?6lu8*b}O@1>|d^L_@vLxEMl-- zE5pVlR_oH}k6{KEIyY_@d%!0(1;5&;%iLJ9!&>xPo^wn2?pj<)v)P*b?v;J3(}7#Q zypWRWlraweGBs$)^po~O4W6`L0$t0|pPmM-RxjN#;MS#wrZ=dkXc#2zPuwvuPa~&K zdvV#(<)I~ov)F{-fNmCj%X$aQx>m21zpAbc&7urhthwc zZ(G6X$qVJaNE}h3aPop8_U!}}^-}EmV=rzPiPgoVr*F`VfqotvZr|R$B4%;AnUb1x z9#&E7QZwcb=$$%SPSt~z+S-6M@5eV}GBJu;7=NWszTP{9m-xg_Uha>dt-gl|#Zs^`nwgGCE zIfTUe?T@ZsOb_Up(%N|Qbi&e(zyQT-Hk)jDDpBxmZ|7U)2(Ap466u)w=~B}(UN_h& z`!AY<23y#&Ej5!v+Eb*Je~1W4;3tX1p(#P0indKBm_?!*C+zh^vi=FB23 zbTd@B2N!lbNi5cmo-3wkVUp2~a?HWu7IpU>tWILBm})ewn-#G!DfRXO-o&I-)t)J; zMZw?LwF53trCi#T$3-u1qM5g?KF8HR8GzF)VilFH_->l)=S@j07!UZTR3yQ5 zz$gwBPMneysAP=d5FL%;;%wnL2EEU4?Cjt6CPZSpPKAP&)G;0&2QyqOp6U3FZhFyc zoG$HD-_G-p^6{Bxew<&bFfA?KejiWwsZENCU+$5#M^iVhQa*|fnWTkL*ma^oA=DxW|8;;@mT68+2g%tS`#6&5q$|{>Zmz(HFtPeL=@}7mKu*1>7Hq zJ9s|f1%CSh8im7YLD|bamO0rF%iws6!TSaZ80XxSsx(XCEoY~ymO7DeGDlc*$AF-$ zL7s;Z5z?BwBpi<$ZmwD?{HCL3{3GI@43}LC+CL*gJ5zh#<_uo{#+X)cR}BGLiY6u| zek`hXBK%VnV4+4v93pYx9f>QSbw3UQfhvn`H129bUVJsSXR`q6-y$vHppJMrTZxzr zppU!YR^V-Hlw^!C3m3M(l6yaxZ6fzqltCd&P&b2&@;s{A_y_J-rxcxHGABe z?j?aRN@M{4WVEbi0&K7xd*31SzW@16ba>Wl_j$Y%2mLasb)uH6p6DE>HG^Nc0KA9Z z9=kNACe804h9_$f(s}>bOQ*|X4iu6SQzTAYH-phpCigdk!QdZD?D!>SGsCHwPaHLf zwz4@3P?yXe8R}CnC2l#@#>y*Kk~)~lC|bcU*-oXfhlfwFRzscR)9*`#{wC7j#=m9I zUOMw{wyV|`!5@3*kJ&jFV%MWBWE8iGd~TTgX#L4|kC&~+?cEUCO1CyZrF#a5u0>Ay zNAPEI=@E&8I3CJ)<Hb`aF+CX{iXFPzdWte#?c%+wYBMGZo^4L; zAjf4b97$h1;mP{=uRevT&+#qEfjaPlrUlFVFrU^{tBj;GQJbeXB;ll&Vs6 zhZ^BMrB+&nJ^;=*Kjb;NFf7>$69NAoqN^d)T0>PTVkQWu1su8p(zC+FM4hYXAsdNO zQ!^5{CMPG0n2=oI;?scxpixAydpFK+9Q`(7R)k#VsjI)*@P2$d?k4Yz_SA_N;hE6f z*f$n>&F63PnKu(xlCl=jXY##fFEvTI#rO@hl0Xalz(}sHo=hcD=-DfhO*E495-&qD zk@fkH$wf}f>$|1_LwUY~g_!nYKT!wCcp|9|jyhLJ&DvMuzMf@qOt~(utxRCkV+Wes;eWmngaN@{ixyu&hR{bBAJ5zQEI zgW5p@Gs-r&IB0#PQ;u_&J}_i|%38j%o!g%w=fZbW7l#x>B5}yw=KOqU)0Z2h8WE)^ zW&O9j`A&D+oGi*R9MYpu3QTm(J;)q8kDA27UZtNS+dB7dF)2@zSb68B6PUk)wKADF zA&HQ9h{QeoZBijs0ulMF`H*>))`4SpDLE(waQ5YOCVP_f&Q28!gI-m$OR%G7FOJJ)#RC^{`+mgmsht2CsV?u|8oVBdB%?u{#QnFlRft! z%ha)XxwXg%oj^~DR+pgF zr^LdfkZ-p(d#`=&0qk$RW(PD4-aW15OIvT*p)M>W#3;6p{G5&Dis_xy$O|x3kFv%CB3-=EIM( zb!~QYkK!s9TU*&Ks-)H0o*LvW%^aVPe;$>sX0p6xM_MJ#JqLVRLcO%hGgt6*)_>D6 zb}aM5Q2Q(z?fAKjc5Pc~wE;{p6LGr~kgp8c>^Ur)aTcG9u|$fMI{N$?(O3a|@q$Qf!^sWMk#jHG}ynskxF0m)u1-1ZWu z&#>OLPn9(U8$Ur}9kNtfqGRGcflT`rIgw==`C!p|=3+PZ^!q;S(&K^MaIPKAWJ>sa z^M^^765TXZPzxqp=bg}w>T#q0u2r}y0|ElfM=zB$FGj(RX3}(8a&STl$q|jRTb9N` zYkK-mh@wSK#K_!9+T_)zu>%U1M_&7h5#AI3HyjRbn!eNGaem1&AfnhsUN{^sx#$Nk zX-hp#jkn{l40%@zuz0CsSNMwM%g+(txyb2s|M~5QNo4}tx23JNA6_gJ&-|2Rga}4x zP_6a6$rB_+9VPd4>AasZ*kAu5AS?ap)HcJk>({pOO8#bi`P4hLrm6XO6rYVs)g#|E z((f|z!kc_f67 zEj(+Fw4NN1OVJL?nM1T$@Vky29uE83f3C#( z%)?tdkLY%Y2fI(@HMeWmc5b<_Ny1ca=lakROZlBC5fMgRDa2VS&*@Ep;o*7WXB>HU z`C^aJF>Bg}qa#C0Tg7mBZS$VP4;P#rtl_&9@TM>cvOZYL71I~~962@wVn=_UQ?GjAau^QF=GQpA}9eo{gZsdl& zO%g@TUAsAZH2ww^5gW6#^we#A7{#AB@N*ff6_vUVv82d}o!}yaKYsrwk>gf1{}Q|$ z=#Kty!))bXa*!e$Dnc%khc*+Vl1&CPCe{caR!^2kidb~M)PYyu#izG8>|+4-1x`L* zXazsvrIwL*5z+4>eQKmg3i`{t5puMH?(k|>aOusnLi0FaYx*T`K;}*js_#2Pjx(JD z@=`wt1zBl3c}7=Q6$<)G{)4X~C$9SLayL%*gvgq(&scQObVjaHcW^|lv;Bb{Z$Oey zd(6ewe5KYjjpF96;At9S%a>QWw2>}yviSW4pdFC&E}=28OSe2EqX#wAbP>hmAP*F2 z1`G>?{q5>Y$PS$-%fp|JDyURhAOWU4D|p(W+tM)Fl9#{+`!)GMyv|(QpyoP&Vxgtc zx!~+FhYYJIeTxTq|JPbW_!YzHN$;-P3JO1;ke4b4(|t*vR-lJjinQf~qG_uL9tfEn zn)Ka$G}ViQ{3alv3c0lR92|LG@UE8Ny+Ql>@d@ZDo3V@I@eU>jbu>}_1pIqkuEcCF z6)qTX%3}9lwhSxwT=4OX<-ofIpv<;8in{CXb(Y=1t7cMv$$FQrV(F&Kh7CjY z95({JO`KIi;I1?Wo+U(XD?;|#n-=cQ87<0mv7s9v9689hCTYpZdF#t{rjvCzm=%!= z`YNO$zleCR*X&4Cu)j?l|LNh8btZwva^>lT6fKeg5)h*1G?) zMw+dMqX%5vx(-LfTr)TUF4?P}qf1B;M#8W_5qL7oe_=XViXavCx7XIvYCxjoLDLkd zKlX0K!-H}@=6hmdykJl$@96&d%|qs*=w-UaNy55H1Z3%;5FV09Wn1bjwS}J3>63jYS;OC zICQ^MGNj)}29qe{{reIiz^=emMnz#o&iXh_;c2T~lt`0ThXeL4WzL86jWR z?IzO$ia)>`4SS$4cI;eql7+6#wxAj2`@hy7CGjoNJ!Y}$IV1HX{u6ub%1Y1|M!X4aAh#&W4M^EW-kY1-dyXH_ zb2J9ey8YW+byJ2qjytQPscV2qrO;;aCchg{{Wuqc;pOK^+z?W|&5<-eC<}`3KLc~h z$sU%xCpT9CHLSlaKeEHTB0#-P&dB$AxN|d)CP1>-SW5r>;bIiT=?4yocCdQldE+?! zN@FM1H<BN#=yeW{4^_YDCbPrQsvrR%-3p^Hc6%S%Lw`Z_Boa zCKCgNiioOrdbrWpsB5HpapP5h+rf3@Lu`LJ(T4Lf zAMf;&g!CW^lYi(vbS4K9tI>hxw4&@i)rcPe_}V>?T+fWig@NaN7z!FfaklJpK|6 zmKSShEYj+1$^6E7f-chVH^z(|>?z-SE~6YZ$zyWcQ+l-ILwyNIBh3r#8p3`^+e_09 zW&qaLR68>*4o^dFYx(4&N3Fw$?OimHrJvnM!$J7@U!tu;_DR&N%dlzr2|U;HBuX1o z5WGa2qC|ek9I-a)Q1ECSvE*nHNpP*N?-BTqd7$ZBcw_T#2AJ(&VONiojeH7)5pY}; z6$36^qOl%fSRvXU8$aFM0^dcrvD7kfIjfUtF(?{s7r}<4@#%1G4K(n^&2( zpDHAlsE5E@W9lwovDra&TJs6_&lG%O&A#HAF~0oSB`|i2_22oPZC>+t9W*}9c1>o+ z*CFQ@PM1v;&Eu5-Uh5t|rEPiGVPQ<*1@l>HI>0pQgDYop6ui87;SSH>|p1QRu+ln!vckwQEb~GM-UyS>4qrLg;Ekm}d<5*{hs^5&k z6+@cCP1T8}wMf|}>YDR$c5+MD2l~_Yj@5Gd=n&DtBbU_27ZzG!zCr=)7?Q3{)_za7 zBMokmvHNtnC*aqO=qWZ5VGU|%7}o!<{78#>A&FyvdBbJ@<-qGm`I&&khbnTU(sjh? zv)HVW5hu`?_yCH0*2RmI{Rwl{tmjLnjDzeL{^AJZ*)A-2HW}-|W-w z8y>mMGDADYm+BU(u;5q629j-*F*`MaVlUotf4Tce`Q!JgBf`o6UsjVJAI$;5d;S;f z;0mZFbih6#D}T)r6KfdNnv(8NZNvM3*hnKLlfYhZHy^DGbsKD<`mF+o;vQ{dJA=+^ z#^{U4-dNHVTKV$(RsW`>?(^ri&1U>YSv*{c8!jEtJ4ZIDC=HVb zE|hvK^L(^-v4K~xRstnDjO#mfK+qti+(V2k*}P{z(nl7MPl*e;i+zIJ8RKkr!Eu`r z1Cb{?&iOrz=)qc1gTD}2L3s4XM)wyx(T#1S!e@A}Joh|OA!E6v8kE>zHjgZft3wq5 zpeKcN-2}SAQ0z&+WrORMW~rDj-JekXqr1*$Q#54DSu@5B!hUe}3%rnczo?LMzzST;fanM6+c1Jmmju^fcFoU^5UVofLAf zj5^izKsxF2CC?X{^mD51nQNE6kG*872xZxx7!W>w7SZRIj@(GMYt<2{*zI*S;bw(* zK30hHED+y}jPWM&O&^^42c2Y^u*S$VfO=cVN32`q+3<6jM@0h;1u8fOS%Km>l&S^- z<*B9ZJ$nni$p%>3_>zZOMWP|irD#>=>;e!_gVdT4wZl0L+k~Hb4vZH*5P87UZv1F? zE3y3Llh7F~K;k)_lt?t03tQ}7$ld^^Xu^at##kB}qoZ=o!Ykl%N+t*lL=KA@ZV-Xu zdE+``bnr74o0)w-&IV<{ms%xhFF}+W?oLzyvc~NGJazG6$b$^K#QQRwE2&0#2_j$d zq)VwnI#+xC6&>e1>ZZ|}LX8J1R-rk@*a?@#3V0fh*U z?)gc^PaClRjRipX37)px$0JO7=lVsd_oI5MF!qI67nD02&rA~*qV5eGa4I+Wn}6W~ z7-d~BhH>hB4b1|!n|WeUy9f~M>9S;mwB+kGqB`Ii`IDGI^BVIT<-j*(`jAL5z$ z2vo&RRgz`^9mr6VWMkCfq=|}>oTGZcYcP(nCaaOU1ON?FTEPG5ckX*;=FQ=RM@5|J zNHN=MYaS&3HMeS0@MmtH?}nIc-^Y)~>h3Q8o1P_W88?WVdx6i^2(XR;gbA%;1V{)c zzHqW30kD8voW`Rh~2J=ryZt-a>LRKuyYn+ocn@boFILOqe)_1>=f-g;-&wOlyrijet&6-FyF~9%-$1+E zQ-zABJwt&3??x)mhJ(&hNW%;WzNGSzA}+=D2AEKIpgHw$b}cm!7xnc zSaW43CP*@ajcDW!<`m#%o|~>Fy^z6&WF1Zr^g@iFfO=8ET8Tn|>9h4+tOzHzNPxIQ zjE1rR3_FKmrCae^X<@&NS_N>kfPM|QjUQWEY5FV5F*N!j+SK9vObh!3=c*n>rO%zN zi9?QNSVaHxY5J5dkQYIOGU8bn#Ck-}0MlZH^YjZLgZER9{3C`<%upt`hVg#Cy z5AqMFI;vOb613X?`7O1- zlVcuiZov+r zd-qH6Z*H4ZYDcolB`xa&7*87-5lEv+*unL~O90Vm9H%I_>E@Fo*6ha(AG3^ng*8Kh zbpG;G%pbq^t>*U0|K;TD>}no6w18c+d*-ckM|p9gKgI0i9-zgLA!{=k1qj81bF~+fh(l{PrsNPKBA)=$k-;7>;*BK&qua~OhTr9&r)PM0J ze`SlsxA=GeXc*0(SgsbAkd27Tek45lGdUuWsa^wGPo8K;18}54S{407rM+1x zKxv8pXy1{q*Da!uyFCx-uZoRTk+uG8Roi%{;raNFK;QUf-QJvdh5gwNMXmr19VXBX z^}$?lv@GYZun-hib>5YdQqq1Mui5Bcr2~?_MiN2NU@KDb$vN0@6Tebl?kjzBLJ~WUfU7X%-({JZ zD}f@_x$X5}6%uJd0xYlDlqwVYO6&&#&_0$+5fS&zuECL3%fj<#n)0mGTdU>N+O2KI zzo}&REW`Yp% zjy_zt#hql^`|H{^mu34zrB01Lf@Op6Q^REa{$H3I7Y_MbaeZ=^O?sV>9vxJ#ZGk-2 z?EIs#h_lFGYft9O3O`j@dm~P1-ddg^M`=kL?bZkJG}i@liIu1~K)E#T{sO&1l~=E; zj`m@rm7&m@B31JvO!2&_fk=4R<0JmUZuAisxN6(4%j=4fTpAL*+_S$%>B&zeU*B;z z8prOqsrr*ww*FM|$#t)lKz)q%_@$+vIJB612o7}sIx!%B8ybxVEAK`#{UNPCS1ftg zcl#C_1gQbwNvbp_6pYMMw^H@Ubm$=XD9fRrC(@c|92~YGSVgw))8_1O^*+DxA^1Z- z_mrM`RPqO%Ql)*}J4c)q>D#~hI>p^=r*bV}e?@a>>4YLi$dOrByKUAw)i_tXj@N@) z_{TcXt6EW?=cvL^B?0)0gNtuh!FP}E)NfKpt@i1iES$2sL}i?k;_U1+h8A(75kqnk z@1Dd$g|FB#LA=%H##_Fjco1O-a$cR&Z$N{+fifi!23~b$hxS>O$;P|ZFS2V1c>11( zHxTwfQ+{a{7x@>EKf~At``OaMarLYOb+_(&+Cgeoqc0lAztA_I-*c-)8=d*B@*ZLv z=l%3|N8kzf2uT0TU<9x#MbY1go|WS@aEF`)SF37pW9@#3#4s0@Gn0Cy=m`ESgeosJ zlu39#7c&=B*O~5fi@i2Bi_ZV*z3`2_!1Kn3jddHY=*rB@zmOy}K`=`gdx^hkpwUBB z1Tqr|G85P543>j0A!M=TR@|dor`Oz>$De8Q#(7qh=`0{-S;>W@T+N2zye2HhIcvwc6#YyRQmb%$~L zY*>sN$Tkh7Fqiu7i7s{NAICOX(Mm8rD6^vR=#@#v%osrE!z!6uQ)}68xSLcW0ZT%6 z!p5+9X6F+kNJjyP^>tHydT*l*Z}ay#7L6cUgjp};s8HtfA73pexJhwUkl>VJ_O{~Q zJZq(W0ZT%7Ia;4su*QVBJvz+@H?Fow+e$|g&=^fg{_A>C-9oY9+KE5@Nx>qYSl-MN zoqD9Jp&}`yyXSh)C-&keU4G-9Xy_?7v@UZ|kuvu(7ayp(IP+G~*{|O;eF}juF=9*j z{rl2Hg(9?aUL^no$&0F{W;^0bV9C5NIkN_ef4vvOZvOKBF)ArxH2# z7Nvr_ojmsSgNI{F_I)`M!Go%O{HUpvD^4w`oX=LK@RPAJSVs#r|#w6 zk(&-n!^pjX#*LGU2k3Pex-C1dJ1)aOg!i5q9AKC+7T<&DKo zCmmJStvfosL~i8wQt6y>{_zKYQ%*X!=hbrXo}-d^f~A_Q{obu64OhNeF6OV3#?r(a zcTs^6!N8D~3{@L-oT=qGE_}gtkecBxU;&&5M3+wn(lqONY{@(~c+smouIQ+D^6NMG zW|tLn7H_yB58s{MlYKBNM|@Un<-FCgbpn%F=05qYtp+2kKHP1$bT8%_FafSM!^ZPr zp&*Z#gAefFUmveAY3_{^*8xco2tc+`4KV9)XWBYovMDKkS`$$vbL8q7rqUr&7bV}Y zC149vsOt~HtU#(@RxmeZRpv(v;k>7R+&`e1{ zV@T%Y^Qdiy3N85~g_q=wxw?A<2l@w_8zTkg%lUq|>hd$Q4gT_95zm`|Tz66YZ3t9(((B>k5U-%L;_cN8WdgJo;z0!5>#@KYx`Xqb%D!R8o z|Jis))Uug@flbb2`%^OqD}3Xw?64N{P7eE#Yj}i8WR}s_RNGBAt(kYRz|q~QxrBXs zsQY>gOGJia-5-n(>hCXWTdZ$0tz z*bOan9x)#Cd4C~C{{3JMLM-D$FzA%PS)RG;Z)c$0LtbJ(%=vi%K~^2P9JePH6p>2H z{fhG!C+vGK>Rj`g*A{Z--Zu{(K0RV>)m*dQ>Y+uKVbK|jC>sZhN2&MUq&i9%wqJdG z#5&4GT4z=C&QW{W=&%W{q~FG_q!$v#Yp(n{U%ghh^@OQ-kXdV$%$-5vbP*Lr`t9%2 z8*T?5_r!)tZl!}7(eyq=yRofp%DLvizE86vLtm_9k3%btm2iVlh5M9ZF?Nc+xaa&( zhsE=P??u^}m_IMzI5zn74}RME@bN3 zL_#+H_r)EJ)6142XLThscd7HQhvYhScWJMr%wT!J-k9j<2AWRx15~6TU~Su|&>9Q; zBD^j&Z~9Zoi8sPqCh>Ui(B#8^ zgsqanDw#XZCUWt&nYS($C6{!(qo4oP*QxVjU!GeN4y-!X#p`#2ghNxz0pqsWN~iRs zuojl~n)XSQvC2v8JVrB!WQbl1I=B!6d-34=aj*>E_m`^Uxm80^hI3t&gMp)J)%xC| z#;33lax{At|MD;wP1-vV?BI8SoA2%FhnH$2b$W0&E+GaoT`uOe8MeOc*B&2!d=%w; zZ^*eAQ(|#v(z6rY3rT&D-Bx_wQ+XD(FMqT?fILY`V+K3jw_8>AYY2(&d!H}QI>3&! z9~F2NqIuoUXJk#=l`{JKH9H@>j<&X*-6?Iq{Y`yw;rFov_D2e6ULszDURN7t%^Y9g@Upqdu(6Wda zl`>`C46;vS_@-n-NW)Pn%>snqD%5zB|Ki6JAD=Idk8_=Ri`7>v6EO(kLjfs9Xl}|v zMk#+`wY6T%bCvdfe&g{?i&N{;+cGSshjtv2aZ-xX^QNt0}w*H*=p zA(Mp5<<4V%Ezf*u(@$gf!uO9rFyOBrWTpMNw9O^;hSDjvKd*~pzs@aN>?2WDs}Kqf ztu*|6x&ckg@f{t??+gP_WuGv>v@y_~c#}KiY z?dvSN-n)0&Znrh~@%zI&jwZ}}AM>nQTi245eBTqb;!)o&SpMhdx;-VOqj05V*=^m$yAxt#e0*#>B6Y)SAOBYncKaS~_l~cKram-+ zwc`o4@HX&R6!XNxZ^o6*Q?*D*69*xL8OOrxvyDrKF6ASiAmL#m&;$H&8)K3T#fff) z$iS84sb$*~zs!obceF%p6%CYH5E`Q2qh{`$yPRFKxlm~4mM0lY$5$cBC#r2bxbgY> z{IDKdlLL>vknp@r==Ml9OP)O6RN=pXwwwIM-q}<&G)IZzK<>nI;F3cA-E<|V>%?0; zvu?imBKf<$+RhjWpVIRIjdC5^vVDms-#_U`XX;04_%?hKy>TPyX5jv%M;^d#7z|Ac z(!RkBqPKdoN1LQ_&#gCOiCm?g+pGD8@?m*{yRUF29N=K$gvsS)Y{$w5fm<6&DV>M z7(#$C={gf9EIZs@%*b^gxt?XD-+wWQ2P8atvbyI17xalR1_(i~==@+#=i%M&Q}foI z4Yc<~BbGOOw|&o8=O)JtgHy267^?T9GgG{14j71aeRI@(Jbs;{R-3K@k}_FGjDjLs zK*J`gjj$GBiQ|6`pm&}WnK z$6g9j>k11prj^F;{%i+0W&ZlVYx!*|9XmR`@gOcxdQA#UMBsdKlm|5J>>asHaq|z6 z?KPtQMR{OiG$QpnN8{+EV50&|VtC=%u&^)?k(fye?9;1VZnmwJyS%XM`Up5iDk4l= z6OK-G{c&|doT_Y^S>#TgpOY=ex6?kC-*0pJz};l;G}@efu*qVo`Zo3ssr-SAZBg*q z1opQ5Ge+$#u{7hpuD@bZ$xo)l>?JZAU=ec=Hx?Nr7>1bm+)l014oXT&qUU5}U-)x! zv|uu^WniTABQ}>hajc*U6aYhQ((skE(OR`zkPb<;2(Qi)o3=#9 zh3;0&gEPrY%%$*!lD0XV*5$!J(Dacwx_iP*NAZ4})*WsP_Iv%>Pc`!wz4emzpZbD+ z=OT#{wTw5(+o&;!xWIF=;~;NqiodBA)wB5B=PHZ6LsCOjKys6yhgXwniAauqUyF-! zwgQ;&h7i1Fx=fv9TI46XZ7){!)UWqWzUp=8x-NLGx%UH0R9?P+%lJI`RCWC65{vRb zx*=@JhXT=%G#_N$o@A_&h3Q0OTnfifVlt9xA*eRwRMg#GyAe^3Q8(iKE4l?;2tf8l zJ|jfvLEUVCBx=m`bho~~F!WOx)jR`wLJN0KFRySUDpoaCh4~P}&L-LpsWIBpQ0fm0 z>dF|G#$Py~yAg|Ke>bTTunl+$6F0OwZ*s{|;3(i(b4Pm;uxaPA!J|>ii(eddT0X>y zl;B{6G74uR3+-#WFc|4R7)kvES&XO0quK1r4ITWgNfJYSSggTR=>#-qiKj6~!a&g*id*J3m3MJ4T65)p zwI7A-PtX&jIYKa~NFD*TQx%2A5{=iTh;mP2;B8b2+0lB2#hL_;T{Dvl@#>-9t$iozs15 zbw2TDU*Flie7#CJk&sA?l?4Idr1cRQsDytHW)|mKpt-n^=7f#22X9fr^cGu`Zy^Un zW-u2a#KgD>lmoxaIEFmY8nUsxbEWCJ7QNA&uE#NmHB>m_Tc;-D^v6I zB3pJRM>@Se;JUobdc`@dm8rY7inVP1)n%oZvd4{iim8de?_AQlbIsb&dSP+3o@4nA z+0AlmkEgYEDwQ>lIz2l$&$`Dco0KJ(#4TapUPH4L7B8Y!iPeLDOv>A>BslY|z{%~T zM5}aku_}hu0}Z+*ERyUJ>cCmvS)z^iLWVQI*hUiTIV6uE&w&be&Pe0@`u=U^5SCnN zUl0cu9ume~)^sO|0LWxUtVw)t8l8@p%6I(p%E!ud3wPJh1MmO%_^w#3ZHM7mvCQ#& zY-~F|qnoQbXo+70!rGF_MhFHWP%p1gSlJ@VH`49CF&GHG2+n!-xkI&-f9bu_`dwA3 zb{$29`>@U#E#Cqn4A>LX;|V|OA08bZbWSwir`y@S|NZr_Fn!1IMk@M0wA)#1tZBQN zO_K#lYf6(w$fBp%trwg+1E?}y!mwU?@I!bb`HBEa%+$1hF_=Bj6wFBeXuE)&R_v^% zsQ3(vNwXs8XUzEibcKDrtKqxH7l{t4gkES@NMR&3*9bDZ(t}UYQ2^(Fi<-iGr+izr z>o#QAEb}U}?Qv9BjyF4-R1uw}QMXnr`N`?BqTnqY{&((W zOqF6N*l^mPv)*(s`JsE}8_e*^hqKGThqP(#`g+sujJ5@OOcPQE6NrgG#E)=*?zjQW zj*&kUZVcYU8m}9;CpmpP8!K zZdY6Y-_iz>=EbE}t;pewbQHo{;aY150_FXY-fBa%T+dN{fTg8jXyvNO=7_Y+q#p!h zL0mny!!T_21lO-gu66o)fDlMUnUxnyt66g%IxbRK)ZOc!L}e~1^Xk@uVs&TNvU8iW zGvCWCp8ngQjkRxU=Vd8Oi`6oRfW3l-krhuyDBOfmjv?kWP9k6lfHI5E-D z@@T2N%dya%8UL|P_)D@JcH9tl91FF)Fiqbe0X+Cz7y7QLuY=}B8biSi;kxBbb`#)! zhxCbPU7(&T_WBI++RDOY1;>(sXZW5Ui7i=!Qwd?RGed8osEe(a70J&J(gu0dyu;YP zQ$M)eQt!K*c%yB^<;_ahjApr;TVwR@$=4lBUE-J)=I+Sb_i+D{P9b{!xY{hoE~1E& zK@yZ_=R7!$my<>1uFYfT_Th5LBi$=$1qJLX4huc6{y!wEG-V{FC{!ObxIfm@4+$-C z&mC5a)vdpfwb3D_J+ZAxcf4QOG3}bR!Tg5fq^Wg&K>$w289DM6@= zRdgA?_&TuL;p0*Z;+>Mk6}8eTjs#nDUS+Ll!^R42?Sj+7IYxNn;?`H9c~!a3BK>AO!XW z?4)o_N^NOq#2Ufm_m+39$qzV7Vn>W<3FrgCbj_MreaE`#Yj(fPwQ$po+AAKbR#$Vo ze96mj>mlAkzu18H4ECty4>+CV%#B2-M@hLYk0ZOY%1=nmr~jQC#@jj*vJF}HecS_E z5SUZIVlElJVvyMXGSnAsqu2hl1+E%ZMrSx28Fenoymi`7+I)M*_+P6fWuJ-ne;Yq^ zsDXI0kRE46x`-2hnm#TmkM1M*h69=IP+s>Nz+ajK-AEq!vl}`ZX_6{Y`)M2#We_+i zzYwrOQjw?5fF0*nA+UD0*GWX1ns$ZwJv)%rK3Dsa{d4DSUi;JU$~fK&%MDegr~UdX zPDQhhj`)pRF&G^|(>e=$g@p+R_wZHl!(yn9REzNoe`wHC{+`(xS4 z4u;aBEZhCdzIE$va~xUn`gN24uVMsBW?!g*=G_8I+rN{G=G`P}cvyqt|WsXF+`8 zSORQialV0sxO4xdJJC@PZthvy{!*dipJH0BTMV=A-v7Ip5IA-e#L8e~I;XMF*O#`~ zlS?ZXH@FKaTPRP9+~(35a^0?KIUoZ;GPl8TMufC*C5#Tl=GZF0XBPGX+I`{45S$Sk$&{u1(FL2_)KO9RIegnN46A@t5;olcf z1MD#O9E##RDL-$nS7(Ud>m#}{d7FPr zeTJ9c8;(ct!z_YW;lBjz&|J5T*5nGj3B%#j8X)@htP zps6{RnbHC&od)%qJ2qI9(#3=7)Q)b>$J_DBhd<|}vxh2Gu*x-$6MB7mjZbGCO+I#M za*V%JrtK=Pe+AnrkCQ>u^FQ7*b|gdzswI4!ZU~y}r8r!&I7+Mq1)O@_E2!)l^AbAF zVyP925=`{xkOcw|&Su{q^g~S@NAPPn?2T7mZM@5@cDoT9S_JY~ zVt2n%ZNCCJ0x7Zf{Lh8QyyuxVz!CW`jIt?xFFNRV59ROS_Km_Xy zdDVn8Wdj@9>L%ubG(UFCyQ{-ZUMOT}f1QS3>#qGC)9pG!`@Cl*oIGsX*>rdG{qAJ} zE`!395Pkji;@7c2+1U*xY#s!DhM>Ukv)M{}v2GOvA8+nF=cL+2~m{VTBmqSKq*yPhT*_nmhv zImTWwd;e0){oO0o>v+i?9&2&m`2uxy`2izL?Cc8X)RYRtsI0>LUNNKH#XVaH0@?NQ zb+k}gQO&dV7y5m)Ey~Q!u=B`Htz0!uYk4ZLs5bsW9c1}JWOiA%_9SLY&ps>c=CCtZ zQp^rY+pOjn|4WS;Dk;Z4q#3&*pHv@2A}2MAV~I%*36epaW@6kott_d$mRx7?kSiR$ zI*m0N^_Mv%C0ZG2W~PQMp51*P_II!T`_Fho^w<>NNVKs+m;uG4lp)Unvw8Hn;%Y{$ z1CNx-xon4)i`UNB6x?w9!1l(gX7T4}2v(OhX;#TY1HGjJBqsB4R~ZHb1%ZVt7l!{z z1SfZlA<0}uQur$lE zICX#&Uu4BBgfrzkVmT|cwl9}6@{E)IzkHjzv~>>%habN(bM5SP^$D-KP87Ry*4xd0 zv9@>4eG?qG*h;Txf2ql${96Wl#|tNE@xJV$8@C=0q3!AZd;GywWRk=Jo0!-hH6{$7v<5EB$-N78wmH%#-bA|HhOi$v(QGWM7kFW^;39P=a&l1LkS38LFJK=* zLT8Sy=PdS>A3Vm~Q}>?Btn9j16;0yU`8=}@ohKw81ppjNbQ+-wQZ>%e)`SHUS(XUKjmIf8=w3wCMo!m>J2#K znide2Mw#77bZsKYVIxaL5z8FG*K!y(kv_Lnf(l4aq?=)*oYngcg)6FQ{3Tmzu^u$2 z*~n=dS>#fVPq#buUP+C~_$z1bT9!vO7Iju=ds1_vpWG);|B_nbJi@rF>N$(OT3Z!O zJq~j8pd|MvXLnm&@2ta4S$7?_)@fWVPTFT{Ri|qmb~EuZ0%O$4-L{=awsLNd=uGWsi1R;(YV1{c|Q>I8*n!qn% zE2op^sFG7nyB<5^Q}el893FWTg-wO__-q&oIj%x`mHOy-T>IxMX;U5ZGG!h2Sjy=< zzNGEZ+1~MImQVO(+DeO;)OVtEuCpE5L;*_X$j#r96GvGBnVB$cQ@|_A)r3eBp$o`r zXtIhHr(Bfa_Fuy5>+aC-~hApdH+$Ap=V)PJ&EzR0qf5AWC1ybPLu221%uCz z)CBtH^d;*Cy5P{OMdfM4U7P$2X}jTj5}evHNA;rOgvhK}>La$ASegJw6*Ge^TO_DZ z?&1uI(i(jAwFwnBwJILWeps&%LY`V=CwW%LX<3~^qYoJuOzFLtaKI@$gvjIDy3}N7>sj+*P7pH$u`vx)#l`B1P4l$9R4?b37yWIgvK#ai!d# zwpwE0_nf3d=&YzNX`@_Vbhufe5JZ7BE$*`l1*~_%iFX^?6H7*jwT*~?rGS(4dU8;b z9OxqC6-d_-oQns|DW6ByTYb8Jw6VCa9O=PluKg$A=A%p?)GV*W$|J$~G|!$!IuGMxd2c}i8(z527rHo_vD|a8>%6R#KH3V*_jD4 zxt)?D_m+IUH2C`si5;5#l$TN$jvBnI)^;Z8COd%ki&R(`l^ zP}7}K~{rGvs} z()FWu_m_lTs)4$?ev%3?lq&eE%g==YYKF53iJ!?&H%W-mLX#BdT`ei#$n->{e z45rUbmQtO)0m zomaPgN69cu=(bQc%f}~K_1o&b#-$@o=Yy5{)Y{gJnLK3U;up_%I4Z3Fqkw&w4{-WLV8sZ5r*W8XI( zOTs5V)wG9uYb8sf3KJfg#eNuWg&dwqWT>|e9-s?EpmT+GQO$W{t3#BjaaN8wE<)eu zZ3dh+DfNFJGg?V}-Dtz*rAU^!MOuO~HXeYgHp11Xjx6Jo z9o|B6J6IB^RArG16mTn(wJN`TH^q~5e9y({(me9!&^qPMg*aFlZI+A zM~`+&BBnrVmI!9;>$`8?t;hC%Wap`%-|y4k^H{ebM!V0PH6^s{N!6fq>-kC~%oq9s zbhrRtx_a7&ig@1sr#I4Pj3K=F^$ORtR?Q-P9V4!XYe)kcExP1qv>|~~rBl8`BcE^%3FX@aL872i;_dwAAg=3&dpf)qdt!KFw5v?vQF0KP5L7vV+%I$}Q!L#8~ zqn+ch;r8s9T-RWmI>lYPT0%E=J=s~%9W6QOXR$cRo@&UxS!ywB$?N*l&=&ne!Sk=Q znc$gG_Gh$hi=ti`B5~uxfWs8`t|_8U%Zi@ueYUYYV&nX)dAHApi7Q~on#H+E?D2a2 z01AnUPV$)$tfCw;@}91P1Cj9}alU8pvsd|#zFw&nmZ36KC$t<~wz`?8|E8O`zA31b z1r4fv{DY|F?$FAw5N=ixyqDyP=XITd-8)G5=HL*f zVCjeC0@I3_5Z?E&(cXhP$pI|U3VJS}z9Tpx;01qJLw>AF&vqorF19eOiPk@oS^dcN zIVrDHkXLc~T}N_-Tp5(iy5HaDYfEcsI`1dYFlaR0!akdKe`h08MtPQgiDQXgC90@cSAO)F|8idiOwg0 zP@Kn4UN0km{7{hziGTR8=RqeNG7vK~0o$z`(*v}l+zuh#K`31-+(XU8!@iS?2A)bC zditUHt=Z;6fy)-;`&(_pKgQ4i3IXO*FwGIwb%FXoWz(-hyJX2~xuM$+wM4kPb&6)R zsN8BCpt}oDR&AF*xEj>7O$z!PATR@3u2n_*(PI6n1KE>fjjVr&-$f^=E7l7cp2%p6lIDE6V$l ziHcWa^6e!|Qqk?8)GkFAd3%toB;aY30twZ3AfqHf{~es`C$wOfB@`olIanpcvI3G)Jg`6^Bbvz&^neD^MW8X&A&- z4%ik(yK@r-d$FWR<3J<3043851me9R%8&(ZlZc6Fz&A?ROv4zbjZhA1;FaVq`HqwS zvwumS0_XKV^-8DKJNgFuKol1y;MteGOh1 z>;ZV8A1VAHde)>y9%#j*YugUsCbVr5tCtf8M#nlnSe?GkH> z(d~F^(zJT~0_$ILR%;)#+bI-2dG~tMd0YK1u88#Ap}CA zfLLX~+TF_h7E+;rV^1w`iehMveYX9g|+FGlZztX9}Hm7j*ANT28MUX5k#DNk&nAG1?{0;PWEv%0$BH0A|_ zmk{oxW}qp^dGO1ja>rCd+3pV-T$ru`l->l;9FlN)|JtM=xU;+Q5$O9MDF!3fAjM9Q zazm0b8hVWGhv-!qqO+vMiOX}H<*CxM&7G~3!xt30gwN_;S}c43K(ex9XVJ@nZ zqn6dFh$0c^?2I$(Zmxb8^@Sw>)u^U}K<7hFi=YK4tL}w6`Od?JHc%mu=znmHy720Gxy1*7l7)EvsAGSlOs7p{^}QSygP-*7!i!$@-Sz3}Lu zkRfF|0$@qd zf){kZYC%qkKUp4ip2!s7gp})A<|C7rvI=S{WMP}VMIlhk5TaxXiWkjYMHw5)Sbq_C zNE8>%w-yOtPF;H0QlwPC^X?{@(|Rw5%nh%+b{Mr;VZ#SuDR50XTOIQZY-^a=)pL=| z(BxabBc1@-{UjDsO(q7rQ;+RUKgW>4RPggxatseQqAvJqxjWl0Qcgfp%PY)W8Cn40 zvVt;~j%y@ZLDBZ^LpH+9XgQnFtYcTjaUivPwazxSgftN&dROIXu2rR%yWiO{Xfn?Bb%5R%jNCG` zAnw7kFMl##GH4l@F?Im_<4lqv9Oozd`lrM9O_Biv7Nqoou8(!OE{?1O{R#j|xir=f zaAX^{B!}a1#AAH)sBxqtXWX`P2p^B>5roibeOBdV(i~t z7ca|?lM0J@bs;2`%x5E_7nHB}Rocm#58II#*zFpk49a;ORkR_hCDg1A(eD3xUGfEd zW+T)tt*MQmi@P0?jT3bhukcEyvEM&mBScBFg_;7~Ex?yCNzRX((>>=AsCOO9T_`Ul z=;?v+e6wljhZPv#{_r}s+{e=y*e(saIQsiB(L_Y2JGE?BBH|0~xFqw!wLmieK zI%lRz$hO3ui5aP|(U4nJa*9Y0S;??tCAi!{0 zHT0AR1!ba7r%AFrA;q#Tf|RtehYntTkK3xx_ExB z@^(kH%SgY3S&zU>Qp#xX55t4HSg3onEv zG7JMZH>S$JvZK@Q-cIKKCnPvgGWcrLuxV?1)6JQCC00Jt6df*^{)Bz7S(5xm+RhL8b(c7lVoTOgiuf5 zEj&5G#h3y$3$QV``>^CO&%rCd(i=e+A2;s+r5RE<)So5kiZ%ld&{ZxJV>#A;6GTlx z=Gg7oao|5ovQlXNHtKh`ix*|m;gPqbiFi0xjHLBTN5Fng(3%hrVKxo$lXU zqXSDzjrz>vv~zx$ch3Xqy8nlup!&(9p0j~$+;+a6Y23LeC$L~wK^g5BVCM{NmY}Ia zs?c*)`tK#O^vPk06sRDZBm?EfBspYP12Y5qeVo`0Izbsz*AQL1Hqs_b8ibHfwa(%P z4D%nRSBmBFzsoQ|$1DI%0a%Cf*DdIDBKERU`X_aUY8Pwgeh1rr3)f>1%bO|42tO#4 z-m!XX#__)XQ_l8eKi3&{6@z3o84Fm%^BK1Hk-wsr@d@Fb9&SDR0plXxH6I7T>39IA z#kbF@(o$`ztU$W5xag;MQLWRT50ERl0hn9VYiLi3Yqjn&2?Uy{nZRiYqm?M>=<05T zj_K2NC)u169dH8EQ%xa+B^?rN#!@{Ps$CxIhlpoPdYW;J%PZv4n^{U%6a482Rw|sm zGJ|zHM-I6&nsU@RFg#V{LG;!hjWuM{z|Gmvqhmb7!!q|ceUdn=z8b{7SW4)KH}7^2 z4&m--7lj*!GNK0O^LMdi(`LP*Yx7hdV*&NESH?b80mlFfRHP(8r%8|FNYnO&eYvlC zHn6<;-^l}Tjs0{G-OU5f`4-{C9XHdFrHO*T@{qr&EzE)F?G~g@5vz4~YC+zpZuaF;#>aO7yD*?8y9-1y>HVV9{jCdS8~XuM29 zr8_X3B|(_e>6VLx8PXxl#`hc7V2rRc0{uZ^}5TqAVcf=ZKW6lLQpv2BLciL z?}xT>9d0y8(cMz!AG4j6l1OQ^o1Glmz==#V|7oZpj?Az+EysDcT}jsRF@$%HTKbWW z%*acZM9e%I`=y8?$bEjJ6P???a6iI>a=xk|xAeRY*EFW225Q*2i*1kMICN+z_Lamz zVJewX(!vHp^vCGdYcZxkZVf$s-}s7!wvp40hxA_U{8vrD&;L+8a^$yvoc!OjXEv`j zJ@f0I0$#M==m)(j{^9e&`*i7xSdq2={O0++|K;UY`E^IY|I+>~I-T~v>*!Pk3;Lvs zr{}4^cKmj`uzzy)(fG9H+3$LyS<}(kM_+NY2V_4krzZ_4@EBwY9an;6?Py?_fOp>J zKlp`v$NSpR9T(^-q5KrY<*w3$2Yy0|J=j?ZmRCFg9VrF4`&-|zv0ya>T#_Gn;GlPi z)_p1+P;}9S*7C9~VRodg$h^(DWrZ=!R#dJH_vxuWUryD({g-KHKSMm#hfnF?WWqn5}!WF2R{SA8_USJqK$ z;oD@mZa#Z8?ZfsPawC*~LPUgZ96*neUlumG4}h*xByLs;#Ld{kB2XRxXVy>UR zyl7e``X9gft6oEgfnRF-sOG7N^!2it4wRNUO}!(7bcj@F@#Hly zL~}Bb+5}}WATqx;54qKi`Gu`fj0T5M2}H!~+r)J)vsRJ5GKrLPV5jwAK&A~fsm4GX*OLb7Ul z%4l@k>`>j)i!E(5%HQMr_(@Mkq^upa2bmSXPlkmXh}3cs;Reb6f@Y8uGs0tl%0@N< zvZ(o!B1Od7{`+-7dyQ-&ujpn$o z2z8Gs%BKr@O#Qjiw9{O*`fib+v)N*Yl*H3QY3DCe%o`Kw#P^-Y(VVf7ws&~!I$H9e z1IaP}+z?D-!Ik0cxl(NXM;o|UWqi0%shP6yCJ-)-d%0W~-T|av@0u^)`^uh{NRy+vqcZKd#s_AG4^2^dtqJHAtE7h8C;HnTJ z)X+F9cuCs>YvS?%qmk$}inBv+!C8k&lSk>5Nc%>zfGGluwE!R-^XKAnO6pY1*;5lU zb}eI*oMUI8-&;Or)IqUa$E2Y)f4c#?y1$<}w^Zr4D)WwgOpL-InaTD9n{B!M0jBNd zs#SLlTl&3i%-deh?AcIN{r7?PaXG`s+~`DNbsUaH>N|pKRPnt};hnFS8gK!;nXum= zZ9z6PWKsm$9}l=Q*Wv!$i!J$1E^k_Blxr_ERx(Rhz3MA{w_=!TkN^9>URR4PnPZZz z_JdELozjGijB7egek+(=qs5l1t7|zKoUl&4^cJ-r&SaK?;^M+33Po6!a3sgZYN*Jr zJ0Ki`ZXpZ9oeQF*MtpjDoio~0TD~kyB$DlT4d4hZD?{M?31AO44z1lQyCNKwcuI`= zM`mvoY&EJIojqo+b-dp?(m1o>j_vRd#@#Ps=JrY-2wmtHV99z`XpF}6`vvZFcMY~L zJGCD+%?B<(3?~-aD5}1rQ2PUTv}5FnTJV335NlbdCZN9OB@+f+mdEB;-~EGko&ro> zTaW`YbED3+0IjF{u5rNLcUxq@N)DPILfL2WcN{XY=bSTKQ zR|_CJxS(l0kr2>gi#y&;mr6p2UJ1aG0)V^msD}nr)8d^sx2;3s0;Y8T%)5qtRR{6J z2k~4|2lixQyLpgFZ#i%ryMc5qzSkJE{%VUn7jc_sS+CTw@e5noSe)*=wY#~*U&6JV zl2(|&<~8h0dbDqHYm<=jszl$j*9VP;Ue0W;%P!+7@~D0;UZS-o|K*m3#R^*%-@4A( zs`z-?+a`0B*57uktnq`h^N_W(r3abg>~hxFZLy=jyH0&rtI@rq+V8uhAaiXU?cx{z zbf+%UAjgU6`R9iSXoomz1fwLo_hP}r@qz{R%-~8Oa1I&s`9jzBFO|lY8_^^f($G0W zg(6YsjHnRDUWfk~GalxP3`63M_qSdoYH$5RXNEXN(yLmo~`v`JLl{wd;dTEvVLqj_mtY z0=8`dIl+?hMX`l7n zt9&Q7j)C)?^)rsl6r0QbW&OzkJc|d!3th@Ih#%|sm^t4zUf(tK*F2*PXP@+VO385M z^=aD@bLHcv$M3)5bhNmQ^G$l6y*^M;$f)-85Lg%w3s`K6e&#n#p_&J5s~5VQ2;Qq7 zGn7xK;XkvEl%Zqy&$JxhjHYd|()yjyl+LC~!qbSnho#@c{W+eKb?0*mWe2yCXcsy+ ztf?{x|H8rXrzNw-G>cLw3V|kB8x}O3mVeT@6f?9+qe>)#j{w;Vq;5`9nIQX#g^0Q5 zN^?iiT9;&|g3NL3LBZ~Ps_AL~>QSi_W#Z^n`FK%ugBH}t`x&T-6OL5Zeuve(UzJCu zYz?2&PDQ8Q>$Ww+>ZR*bX{V{P#llJ5k#f;Kl*QRzerLU|iR%uxZ1{4_K@e>+r#370 zQR4m-g^QLGBhh^Y4V`vx^clr%8wcSKkqeXXv>L0jeLfIm{>6DazO-7`plJyT4;(uN zg>O!N%9%a+qca7QEyCyuLZ2A)K_Ud-{9Ba==S8eXdoxp&IMC&G;Fa$Wc*$qgi}OXq z*#G{}I;tbH=5w&>&k)Jh%<-_{a2r^G>LCrle-aT+Jr^y}n{Hm|4(b5jJl0Py`WA`L zD*zSE27PdBfpm`+HPqh12!v)8$HN#z=N-yQ(%aBf97)rl#i1G!wh3J?BVhm#1Ay%) z78&FA!eZTMVMPfXT$t^hdat#ntYJ+No}lLXdvA@eZWk4sEB1cKTATG9u*ALj+#Rkp zbI6_bTg?|Pn^{_02+tbWWLn#)=0BOp?8)iA(IB)Oje>E%@cj@Z9^Q^pkpju$aL@u_ zU+{AJFggWfIaNo9=ZJFqqRZYR8WLH~NaKkmWI&Fx_kS3DH~SEGa`WBg%WuC)7DXD4 z)l^(><_iPFME+7xp(Ca|w@k~YXc?!Vh1&`vRz0v(^UB+EOiTa$L4o_}8h zN#k_fU{{^18N{L4E-n|1GakF5G^b3Xo*cg{ zFt|z7AV)A8IURCmpjjha-2I&@k~QO#lhwlWpgvESaiUfQauxz)`|e_6w-LxLpstf> zjUIG65VTR@l&8BC$NmT`h8Tbkd&Mz4wqSXCBMokMpgciB9~+WKP17z=rG+>F>q4lX zym4cS=C@o~ypRu0z1uBbwl-*CgSz;I2>Ymqg|77mwgWdE%X3S$S%Z9hYhl&F49YFg ze;El+iyxZJC(HIttWHVw=bgEx{$(|eO53L-PgeUnkK{tg5D=C(J7Lwh%p>U?_i83)kt1uIA(ZWSu>}WM7`{c!}%ul+T0t z!{5X7hQRc`0^yMe8JpA8259}}mvs&ui-dj{wUFZ$0g5wkry!%)h7GZ3M(4bM*Es4n zVF%-`T@aukfcyRGZJUvk2D)?DTYrt!fvw|&Qw^AwprH&JU_glwJ!s2a3!;GKv5IliNTQEn!O3hhVwsVxrR=${xx5-c}8nvj2dyZY04s;+@9TQkc|r2b!f3i15ZzL@lIu_kAsQ?*anPz&b7X$sL?%{kFUIzti6)F1yBF zx5EJ`nyx?oI8CBmJ_JrUxXIIl`%g{J?QMrh-UzlRK|$qpY&+Xn0P};C2=ETmY;@1U zjvd0&67nczEiGojz9Hl-!J4*rnn#{KYW}T*6!Jy3e|7SIFd0%JJ@)7IfxPQuwkrHG zxKF>rE4SsY)6m_!SH=xvzvY|FH;>S5>8diU_De8#-{aC4%$Zkpb(H|7WRSe$|1&Xv z{AXgIXaAyaWBxRq0noh=)PBhUms|f0gOI@Fa z<{sZ>Uqj!?$^9L-k#hCv>#+6Tla(ex*2WT#X)n3L?vdNVLsUOOF50C zoa+Qx4&n6!SR-vPxEej$pgHQ@`xz)Hqh1Ue?U*5M*HS~}JG9NM~Do*0KNun3hB^qVoiku|ZG)iTb z#!5weVM7W@wo38ArVPchP~`wz8jvrlI@bgSh1%1k1b(#w#l?# z(||TQ$kPbZeLI;TEtZFJ~N&H$GT5Dz8 zY&)l>3|5hK-qjUOrnPr@MP-Z6Dr&^&uFFA9$T(Cp6+tJ*}9wyQhbk>F-Y14oUI&zvsK|wa=LA$5kfL_7n#O z@~xkDWd^&as(Q-EnTcA9=q*$cQSA17eN8QgdCtZEe#699e`Zxr9EZ=cETG@w1$XM+ z4L{mkcr6QycQYjY1G=q|Xlq*r5{yN;o9$KOp8kxCp?epkvop-~@6+IeDWTH->96)W zZI(q*ygM8&4!Ow55G@UjAQ554xoFAW@yBj6lfyii3!*O^daNJ{fXWSIW{VM!X$a4A zl!JEy2cK@}E%k$Nf=03Tfp`Sv@Kq}aXIY?J-P($Cfs)P=cJjH^-$UQ=q%61qg1VBHXkoVcJ zL)O4KYYg#HIXy8k%RlM&5A!hx*CRKGUtHJ*EA=mEp2Eq(IfLGs zO9)k=t>JM{A8fpHNFTH-(d-D)>d|J6nAx`eE{&KO&1c%d&%ar*?Y6ufRG`ZxzuCdk zZEfkElZ$zGE?sWW^_s7q`odwqZ5hM!@{yU}Iy5WRC|Mr6zy{#1-FzX@-}a5C{CZ~e zFL1;x7DP4hgd30etSTQfkohVco!=~Nod)Ce$|h_o;h^bw`tS7Js9jQ=oTVQ#*CUke zq?UHxt$Upx`mqC4xfM{6ge2Tl!8EuMVN)gMCQ@QP=e2ni!AdHGmBa^)p#PaTJ5c8> zr@y^`1xetfZpS~1l1!-oGI-MS0pRN3qshlN^YW$<#*}c!(}YdC(0&+_%#`PYpj*X* zS!a{?)$(r7n_N$%{sWQmze?3nn;QsTQ|x`CgRIkR7G?WVY_vGPVf2Nsa78Wyc3>%E zvH#A&cYksOD&4OB6>dVd$zr@5u2}9Y0^_?av~ejuf+Nq)mznQz(fru47)5s@;0lt+ z77hO8$Zxn`%#s~iCQuqt<13>)>rlIbSVDy5{Wrx#=j z`$qt7Zix5n9gD2A>N%B-ni+tJe3t(7{&c2c`wEFl&sa_ z=GvEXgZo-De0+|al6N@uQ~aR8WI@VPPR`w&U)AXOTgG3R7FbWME-=d5-cY_QVuq1& zjXl~$sI1?<1Nt9{M+YI$fc-Z0dWBNcn@UAzR}@_^N^5$<=A946nF!YFjMkr}RuzhU z^Epu3^axgq5`Ys&_4M@UK!r{;Av=eRMedDJ>P<(DXOPY?hB@(pJ}iEeNJZU%#>}iH z=$6`sy?w}dn}jw!?B0k4@0LMb(^udSgdsP?R;$h3z`NHUdN_!C8|$8i`JU7Xkn?T70emWY@9TTbZ-qxGdmj2IfTU>>bP0=jmEDe zcn_8mJnfSOSL^_oycPaF_gqZEhl3`6>$%R|E)9UYJrHqWYL>j7f#VS;@zdAKTX5j; z!GUu>Ia!np-b>6#^0@Y1M%dVNPzOpyVr>^ij>Vus>ip9y7vVAr19cZSKr;N$b{CD` zcx0@ra?f4uobBLrfr=qSEqE0mof$ye!-Z0CqVjr@Z`=Fx?_2r%RKs3AZ-8S>^naJx zB12OYJLJZpv(lZ0A04!*(5US&5ZU`UE?FU(Tz@ydVR4I`W!_f;+zhKWBRm&ux}o46 zaOD2WH*DO;>#}ynb~7^0>^YWp{@Sg5@B_E?Hg5dAiSlauyIXTbzi>!$zC}G%@(6zt*(T6p>SnYsytfXW2wEF;}AR{7cuL=&C+z*y4=>;z$*?+6@;DL9~=VpEf=yw0k`NWS2S z1aRWR>^F9F^?cj8Nxe#s*K^9V5{{JT;xun82-F;O3SDh3zc`TFR8L)SpM83f4d?gg z!-22IF10=_!JW{7j$c5-Fg#ZZ)T5~QRjI9@{qg|B&(Z)@mJw5SmnktC^{>3r4=P=7 zhMt8hV5`y3KBt^MH(X-_l=byT0kU2AN z_zb+$j%NF=8OnFR*~qvX;~{3FZw7EruqII6=S2c=CLJ#61M?cP59shd)#lB-Gh?YA ziR1Ub`g^g#!}-9+Eqm(X^A{=>%)37{*)8LFeL1B1ynOVg<9po8sxb?2#3|@u%Xv!0Kq&U(JLT^mYkdn zwHuLMSq(+cLw(sr^H!1IFP3KU>Jgo#g@(_{e%`=&Dg~=YV-SKu`uk=G*^zw>*DyL# zL-c9{K_C7Tlrx8l1uDiFfmY#YPmp>kC|wwXmZvFe7MSLx*zt}A;DCW94b9$3EGSSw zpd9usZw=ub-rBj~@Jt&v?@jYfQfB)1MIg-gdr*9w={G+O$!xv)z`TfgvC~RqafG`PckE|>~2u#4a)PxLxplV1-NCZgO zA#e&%g?5$#w$x+)AQ9R^6Z>(9j5_Sq;G_lcQ3c{$j9nl)TIiDkLHj@`&B*|^P>8+m za69L0V;k4T9v^+P#`7S4y9o;W6?Bz->xEAHL6sx_Io3bgt~_5=3lQADlOfGn%@BiI z?Fji=gPr|G$bwT2x@cDE)@`=avD`Cg5VSpf{p^S)U$^7%Vzhyh-CyB7y!(D!`{1T! z=yGQVn2#N)AJc1;03r>-p>j9=2OF({bbS!vj3r8D@7#@2Z@gtD9RlosVo+;6UuV+J zK|)UjXY}Li+J3mLD=nEr_5ehYwg28>uzpO)mSHH)j}>1mwyG|u01}A6p%LoAfK=K+ z(BO`Rl&E~{<|-b--W%I339MhluaoIYNhY z1@E;pSYX!+oSZbOG8ofsl&UbA>|(|i6aZGd5MUssg=N?WuGwP-Iu}Hg-G&1m8$msk zGcmJeoXO96Qs$*toBn9u@&glwc-Y{MV;4Vs(i5zzIi6H+o(G}W(vnI_N%ZdSP&xq9 zv#qG}c6`d1iu%V{`S>wQ>f`wXxM@g3OH262gtEUN59Wq&lOfZ~K%NXXn=k4RpgT3l zC5Tlj+5pG82<`U>_yes*o?LuRWu<}r^Hh(J5*lN;jSZdK=v#8|-NPWG#mSpj^fO$?(Kyof*$+Zku&-;wdND%W=u+DK=eKK4h0hyc zV;=&tsCfgFO!c`a%W6e&uc-O`7$~+yKo$I|LHTqmB|GlGO`VyJC#C>Ls7kD0 zz81)a%4I+)2;w|H(9IUGMr8Q5_ECM#R7;sdWv()*M&VjEFsP!xP{H`s(B&McPJG}3 zEFI**MMZ`nH}WA3C@i{`f+b)`8hPMYCE2Y3K=7`Ds{^LrBs)1&7$a0Xv6~qqySgFN zX+iyo;o)KUfy)pipj%>SFyVP`4n-oOD6ANvH#VBCp96KA%H029)j9@j-I6CWAvUY1 zMWl}Z2a+eSk4~Ztn7M# z49@A`y>?=xvb%E=o=*1utG7s+$Hf;K^S z@p^SXP_-4Ro=0~&?3O_-&QswL&yd_fAeh9OnFYN;i9${ROQ3ql8(=YnzQL3E{_`!E zgG5?S)c2+cX1h6?Ls{}(m_-U`2Gg{=eN;5+pXZ17f=WG235`CuL zn5(Fm9^W~L>A`=!On}zn21unIM119RRG;}fEA;GyjD`;-GN@(-u;WKjF%2XTI-5_S zEjSjc5Xg9#(>Yz^hO-}H)Lgz6I*ljXE;8> zi?%E}>($c)fx@e;RhO)-79$KJBs|r|=1W&42Ojy$?TaBztI_^F@cvsLf*mHcG4yJ= z5Gw^feNOoht67TPV7-*9QM#5*qgehizNQ_&7G8d*m>@=gqeioPAD;s{{{wwMVx-d@ za8AI@N*C#99_y{dZsU{T&Vb^Vez)nu?E~o-(89Myj)hVs{A4q@iXuUJ;;aaFkg4@8 z3}Enhf%T69Z@_JjBo2in04v~gx3Irfv&^z)?29e5OCY(>wnIisPm z9?2m90Vt6B@EAZRK5DPkEpU|0e8`eTfEa4WJ7IGYq1fX>1&ArnXuG>!8y>gU>YVA> zE&=&eGbd-7ky`AjI6lC$nExxg^n8xue7~CUP3OhWQ7&AnmaZQo39Lqu24$?bRa_6ghdp{ftQm!Z%aThQ4PTa8`K3z=<-30%-4f< zR60$Q5$!mMrrV${Ock*~vF2(iCV%DNDNv8}ffEnw7JrD0=XK6oXJGK=D((ReG-Z(8 zLXL^*G9dJ$UjGlSUk9Zh7OG4nCRF4qlP6LVeEwo*l9~6u1-?Xg%lcAf)=2MS!8Ci( z>5%nZX&JG_`9jl-Zxq%9w&9ZwI$KAe^*q;0Q_yc)3SaMJlhI;!Ct?$iXLD*a< zWd4zQ7S8Q~lQ?JK@fs&;?QZ$cMyZ9A(Y#6D7F+KJ{2xmoaE-~p}#3Gms(uB=vTUx>ZC6dc3m|p?gK6z zk5s(a;E$%YT8vClS<6)1mmGko_#qB5UsfQ%!R=VTgo}y4L z;bn0{wfdHPuNP}S1kY|5w$W)Y7Dzghg3Upl z=tM|K=M41muZ8tPqQg_oLmy(QiD@zr@<7Auu80lL?nZ&TAXMop1g&{`7&;4>Mndbe zgu_r1UhcU8kd|V}fAh^F~hh1rz#fsr|xS9UOjsTk=EvJN*kbSd*dC zS}o*`PD0Ijs4KxOrAjSn#k7h}0~(4bG_6v5O@~o;6Hpo%atG*W2a60wq5LPDseoA_ z60TbRJ=ZG8Z6+&Z&+IVnEp6XEDzJ zts$gUd>B_2E zD`&q*$KGKBkMR9sbKdxlqyb5r*NlSpYci|;v1bSU#V)-Ad+0wXYi{uOIlErXPx&Ul zK+5xDhRkAusu{Y(_h_n)q`scx{p7gQzph8 zzNuvoR1GTgl#d;|W?{&yv3kqTuf(?TnQzZf(cBR6#_Zgu^NXK{`!%QZLV7v&68I7( zWMOUEi4d&-)M|5r8eEV`Ts|wGiDfqvG9ulmno=peDQ3FL+z7z(lhjPCOo5RGl_rAJ zR3A{-KEQ$`)^s>H&3!E8c71}eZX^3=+xM@nM;YBKdi0HNS~Y3%0q4xTJH{r0XHdqf zCJ!R>Wv|0Qd;2~xNMAlye;#TUd@{}noIKWNUDWe0$cDRCy&e;Q9da_K3?m(X-`sA~ zKg9@|^j8s+<*!k4yK;?nKFCqv^IseOO}c(1;8nf%Z8{6f>A+YB7D?I`mtPpniQ?n} z5s7Nb3l!vXdIbqeC)-fEV(eVUcs)`d)&MD^3Fi&!U$hJp8a}JIUUaT?wGR{< zP8v)3<5=iq!)SSdyyT@@HBrCpDV^*TU~OG>l@%mjVv#M+O_8yz$U|7|^Vi{^Js*er z^7!w7KkV9tegr7M)#NP-O=vl6MVVt2C0FqulF!ozhM%$$Lc=GjRyW*{c(hm};e4TJ zYN7vTiJxy-nK)xJPfW{W6-})f*0LDd?V4F$2n79=M^O_sH}?>!5lB`+J;6!GeYpiH zw_?wtNJj$5G!R|nWOy$~KjJ6%z6E?hEd)272^nOE3KA=f+&t<>oS7%O9@Z9Ai(B2_ z=kxp20_l0I>g)lAM0m^5l{zI`7THd;&J5Y*=5jcau%xOy{Md6Jf-$+d=yM4f_Bs97 zYXT)o36Hs{`Uc%hY~se+1iX`zap$h@-U}X6}^t&NS9Yl+p7? zGx3Qc%4!ilO*vWnTK}RWNt35>4T=HVxErPFG=&zaPQFCO3S5h zHf*vfi}|kB?b_fOD4HG+Ih|wSP;Y)fQbu)+=!K2_^IhV$?WE_`ou5Y}I2*bdMugPX zjy0>uu`||?ieC9m&{DWWVHnyBej~u6W+!$sdo-ym#FX0Z7}|1h{?7$i24c3a@1@{J z37X^MCihU?O4-kcexejMJ7Ag4TVOQQNT`6G2Pzqrb~S?_r6-KYvZUbLHX#G&g9Jwb z_CqSTPM)H&LAA9Exqc?!aNQ0Z;iYu7{cwFOrFKt0uk@Z=M_PH__gh*$1I0!?S5pd$ zbXe|VaX2N;%V@$l!WWtn9~?(-Lfm~^ty(F>9145io6Z4XcY=KDgq^x5aotxmGt3Hq z9+YV?r@FU1T{wHzvMHTt4#8jY@ii5{^fW_J@0Ls~XVW_o_z=qzXf(fnUjJU8ysH3O z7jsO=1WQvZ1uJyvlAo1j{e_oY0T3&wVkQN+IrxR^flXmUa@K* z9KM}5v+!No+dDGj%d%*E8@I!jo|rfqKEPSU>tP5rigO7YP!%7ng-l=4>|NkQ?S^;J z{3b4|bzu&`c5F0l1F2T79saqiBD&2bLrtg!s(FbAFCI%hwagsrbvt&fz^aWwy%=&M z(qPVZD9&nXZ|ELijPPpRsiwGFYMDx; z%nU(ItS!xa)d54;A&;UDisZ8D<%^0so+K!WO*I%A+sy|krQ-?v`Rmf^aOS@;7dvqY zTtZ;aT7{;BoQxwhk?7}=96-es;n`!wtHrb1$HrHz*>3p*p2KIdJQN(s`GpR~g3XHu zvTW)z5?=80eE!=zAUhc|%A!nf0oy@34X|2yvbL-V!v~P*$Yyuw}*!Jr)aZ8<`*tzeuuDB#?rWRooc_>R=a9MTn zi2^*TO>odMK*5>l8fyeC(rEt2Z4dKPkbg$zW@Wo4nrgx^`i#lT+fxN`}A z$%5X$XCjdzmct&M8l5N!GugCq?PK1TN3xohUr;-T}WKa*XxA01ai?9c+ z1*sZ)HlR}$iQZI**F$9@LeN?%=M0Pq3Aj*a`7pwY1ens9OLS(B-C$M)63 zKWyLLwszKWzWLyWLtuoUzh6sY$fAuy7ON1JmX?jxi#+9ZNgcX;o=yXC`O63j_z?KD zmV$zJ@ecw{QpX!oJ)}sdDHExSGpSg;_V!j5%}{vl_3b$wjEGNk-FU|^4N;i>b0N$W zzwzno&lSLh@q`DNjlu(!E>Iq#n%=pNB@UEsgZP$VY1o=&6=a%>fRA?0NoRjBsVS$! zfcP5jY_y$F%dC= zAayue5wLO6`mol z`7qzNxtWaQ6}`qIzM|tfZQbG-RRq%r-^!;i-N#E8yA5h|T<^>q9&13?PB6v|ianR~ zJ~P!_lw0h=Q~MvRj>3k-=C-LfH&vihcAX5~o|htZIxcK-tk#PrO?p`m8_&JA4l`M{ zNL7F~pjhQ#r3g686BF`>G0EeKMEMDR3b+{50{@DioL@vdGNSQ>b~V$aoVs*j^mf|_ zHx?(^*jyU3%gaa&*n9IQZ;MRuB-qpl8qft;buyJxNi7(`Jd zCp+zCZ4Gm}Jk0}qbRVO%H;lT^W{3E);`oQ>e`a+J1k%a{o|WseAxMRG ziU0;2QRtz#p+Pqom^xxa5j82v*Sl1-Nchf4m?^>^5Jbf^H{#(yohpfpOM7Guv7X`F zvCjAu+81Iyhv4QEwda=1zCmcJC56~yuvJ;{92`Qnpd}#H1oicR8x+d#yQYzd_Rui` z0;LRC5>ucN6)qy)Td;!bo;=MUZ)ab@l*?G#bIuU=EAef7>T|7cY@sc%yY7~2Y1(ra z<gP8bz=Ys%MVFABL4snpb&Ax?Y|$n|JO>*?0NQHXtV;)xrd49l5@NGQ8jzi(_B7= z?_ z_N35#RH1ZpO9nw!lNy<$R@Gj08fp(3yj2v{286NmH#g}IB!?SS|hY}cR-oxk#1 zSPQ50p6quvGfn$BX7dx(u?xC4?Rf^rQ*I~N^T_mn8F0S!;fTL?0Zp?}B6DqR{PCDp zv2*UwriRYCgpSv{rfr}CqE9FSsEQY4unVOf$isvw2Xz}fM=wnPC)$2-w-s#OSaQT| z+N*H+L4Vj70QXht`g#EV zW>_}G6*8}sIuANs$?gfu*lx8?ck*&~Vnv9%`=>i=>GQ*b7b|wb=d+y!aS&b+9s!o! zQ1kK!{_3$~mijZzXW*%eLf(hczR2Bz9qvCu9zluygYWoav<%wWrh4SVkdUyrUD!Nd5 znVyerfaUb5OV|M;LIFhtTTo0x#5JKv3@q+oM?cT_PFS*B;nErAsjC*ems>K18cLH28T$h3`l=aA{w+ zMP9AgD*=)r-rmV85A!_G+*e>6cFEn{9i1$Ynuo0wQ18vEHSe(kH%;5;t7M4ImMN_K z0o%FFrCKkgNFrwjKjv#vN?(>go+ziHPJErl`x09%}=?fby|I5J%;&?0SH5%IHu??f~m4#ED2Dq1o7jkMm{X zjC~%^CniV+BhqPC zJ|xV&Z=t`kJvV=M!@59G)#KSB-1N?`j{b#}NKPD1dtPv<8&@eL?<48RDjH zECNDP(x?J6tRkchO^i@>Qv~tY9lsZ)Cir$Pm>w5w=4-WjyjkXn>KE2VcykJ$e{)K* zIwVA?AaqeaMsScIY7Xi(?S&$nKe%M_ld^ z&cL8w3&kn^&cXEypEWjfz3vc*+QA;oChAwYt zbp0?4a@r)#eI;<<2KA4$=4o8BY!!4COJ=+@5FK~D9muf^V}1#}&p3T&>5fGvFjkJy zmJYc^$(5%yoH@H1tdu4ZOh>x+)L&~neg-Ez2~g-o<7NC&Ohvw3vHDbQ6T3Ycj8{-o z%oqkX+OM=Ii#oV)B)O@SiMDsTD|jl){kMEYag2$;34w)>*XP>4|TB$GL)-Ory>Bi{;plqyBfTQ z#WmU|yCLfJfq1tJPR(o&phF3Q)y6vP;Kr^L^zUJpK}YX#V22=c7(PIAEvRyM172z6 zjtW^&YFh6Jf*9F_+O+d)eYr&mw_#AK%WDtNb1CfXKev?P4Adu}qi9tPUig>d0iW#d zy9tne`~BSgib}bTUpVcg()Bx=O;s73*$bBeg-V6Yr39NpaMI~j;IC8ys*_#De6#22 zRizk@bpZoWHG~Q24iTO8)?R@Kz<|)J$7>)AMd%5jF{{Q+(u%psgS1=2oL@=YtL-mZGlek=05Lm*8=IKwGm{CV%b z$852W(>s6rFq0U0GtS#HuLPH8%a?vM%L^Z_m{f!KI|VrIgu-ACd_p1IrNNR44O>ZO zN26eXw%`aNP(8=-T;u@n@pL%pIof(+lk8M8!z1K?V>8{9prD~92Tn-cP(9&&U7=G* zEsyC(a@QkI!~cOImc_V^AY-VmaNlH`)#IL=41>ph!|OkQUFDI79;tUMYkk4xN!|Bh za>B2pmLxX2Sm_UiWkTtay>WCgG|_t2g~L!CoryO$wP^h=5w}2)I32;D6LD~y_`lj@ zPHle_`?KM~v7+Tgo_l-4hA(Fcv$Vjkc5ympG3kxgg67yj?2mbFd(mobvAf^ zdT|ecv_v5ITjZ2;Cs?QLhJ!9&@og2&%GD6thcTX$Bwr=6!Dn!u8pAnYMs**05}h`9 zTIvgVk_NC7F%?!q(gEfK7Jb++j!xjsE|aG}U6N3ac=WS0cgEFhxV1})_L zb+eU{TF~VuS@VM56`qxS56uiMODqyzHmycT7-01@3*ib zRJfCU{3Bi|@hoK&)>?N;rsm??$Dxmp^uSd`E3V%N#{2o}aHUZTW)?$Ude%7t*xoJ$ z=aXY=2lZ8Os=Q_1pKLHC_D2#Oq&;?o-}(Eqm@9rQc6@OidTJzEGpBR$?E$fhB&n0E zOBgD-fx@z1b%cyibw_j&NTf(yu8&8~Kh@k2e3&G_YM>|QK!;=DcoZ^4B+FBl5{)zv zc`e598*BmN@nW9J_MFY$tmx*1(yn1qcIcE1g^d_8bg)l5UxCartmH`X({J>t{m=Fq z&m6Ni9XGJQpilM_A7To9Ikqg9VkP_m^YF455WX(Jx_aff6Z&#aWyUo*{A&Q^wcxsS z1P{pGHbl5z&(B*;hdcG;=t!1tS9(hMsU`F17tTO2jggPv*3FjC!zDdlz~bhtx4qlrr?kR1r$6Kv06!Lc8o zn#!2Sw<=he860hAdB`CCfC?4Ztrr&60Jq&!_+OHhE4X$j0le{ljC~1Qjd|OD^LQV< zGq#B+QVmfk#h`r~qKGz2yC^BG(sJ6%W6(lTiuRQDO=*!fMs+0Z+EuhDtxo&i|GMr| z^WdE3{okL@j82_%?%(}euKoIcqsw#x#7SYTArY2hZ8N^-A^2!9_~##X^@a~d*0M3T zh}Ct{G!Nl+`7L|Vq|A;3Vq0uOri zcHe0@t$>VO$f1ddJ>o%D*hV7!>CX+nOBsMhB-+W*;s;B`8|m$QEfLscqRqu+wnl31 zG-2hw=!w8KS#ATMEqFlg!=sf0FJ^7cA7rr?s5j^qtF2_Rl8)-G{Rxj?|G9qDPo zuIHx!+@~bAS0ULcP-Z&yIP~@Q>Vg5bA4*>)0UCKT_Ci1D*aXoKAp4b%)_q zOwOWErvPWP{(I*c!oGr3L(LOF%&N5F2rl^D_rncFQt1ws?c4Y8dRUAZOn5~mhcK}T z)^=-mb0x&{6`u`j;em*ME+koLuS*fX6LlAr!E?|IVu=feniFfi+EQ5`Ok@o>^#Y3) zQllVz)8gD7Tp$&XfF~8yEd{QwOW(5%KYp`e354!gA+{3@F@)!^U<7e6^8DJAW9bgC z>^f<=%#ATIVZ#*$ztLC~weDqR7qhtomRJ$a0;I4~!TU!RYYb}!Slbi+F9PizYP373 z0NwcnUJoRfiy#Ua*#7~cc(8S8vdY_;nTZK_Q&XXm^C&c|L_nQz6+}r5A$p%~+AJst z;60!KkW3r1Q3%FG|>t5W^Ov~)B}&(q?DU>yzwSg(AmWI85Kv9{>9QYJZCnNWY0oICs$HvX-D$HT6Yem30p zOy|yvyFmv^BnMobmDN8L5H)Y#?zqYqj|Qec!H$yv2%pVRklS6Caf2{E0en`^8 z3Wr;)$SHik;r7wg9y^S1{&-cUE!G|E#a?9WlmcMg4d5(!q8-?gWcRo|vtDP9pDxHr zJlWW07NIt3h~H%>S!eoTtB_Rg4&Q!-4AXYYNP7d?fOuEAN&Ns|)me)IOHezuUBJ=G zO*j~Ud?pqUM?4CS&v5c#uC2(x2HQXeYSiIT>t0@8p$8$mP->IwtCan$$nPuH8>CXtfc5JCy9XMZQX+fOcp5-oN>ez8;Cb{#uT=E39_g6Kj3$uG?kNFfU$V$j0I z;Ce0`tZMLexGUHpf&u2ds2#uKy{7oL&#zR!5gzUU<864Y?3w`%p;KF~L<{`5lJL6H zXfY7Xuk4 z+4)}VV#SDEnN)usKzm51;JIB_&a@fmxEJxZK~c%%r@RQ`+r4z$ne5-2YfV(Q1I9K7 zXiX%7_^iD%4z}_nl=`vO1LFr|ZaTGZueO3R?m>{R&nMeGBh^gujMI=)YY99H?B-7bQ8QGHQuNWo&L;Ev~kwM|?eMV}Y6 z==Hu|kWFtbS-_S5Q(1qKGSO!gxb#T z&g`d=E3Nu|Es(S{(Yn?N&9Nqd-OROqMbA4SbVF93Aw#i2Q0GY)+tVqm&WsA8(dY@8630`B{ae7?wU^4jc2l02bkEsRv)- zdhm1pr2RYfVSDbz4U(D0{Z+LpxHrDLCih*=sSdZ5_xqX#?A`C5($spY>EKM*eWP#k8x3XUSo+pP(-HE0rYw{`uL_zqKU6MhEc2ktq2k%v>CE9Y$61Hhg=&;CI|}DrU){nh8{-_y z-D>u3RkseFlc<7}F@g`f7FZ(Y|ed z6*w0?r!vzyyl(5*?(`dfpL(PND*d+({8;4bn*YX3bvgq3m;iFK9sM7IhZy2;#{fI1 zPA@MC7Ye&WAroRz7g;Hfh&e=zsi{7H6S}w`Y?@861}l*)x)a47nqjC@-p{vz7^kS^ z=kN40JK|)$M_caj!my*(=qF{1s@t+fUU{ae_I<5tS(Yxaj#704;=kS&6>S^OyRqkO z$B{@za%a_%_TZ``x=qh(^xl10;c(R+x6TijYr9hD82;{MUkE5ObbJdT)x3d;X=Y-` z8<6xw&!wDauMi(OY4YJYHZw7S8QiPMAttdgTZn zS0odH5~xJ-PYmHK>e-KXQa;~4w#F;)4?lO(wl#VRoUHg?n25O*bij~Ubjht;l!?s9 zD(6IAFB=`VmD&+tnlhx|r)vD_TdfPXJ=fg&^KHgXett4u^y& zW!U4G4lXbM~Fb8=+p~%icRT>vh7a8-OLPfHJK8oRUhnyDP~8st=mua?4EMu zFJ221e0$wHd*&YpjFS~{ZgJbqoIZb^12Uf72EK(Ktq6ND#v6Bp;<{6g2C9sM+U$=JrGzFIL$GVvg+#Uz)4dKp7r6j2b@c_ z02>g42$5$Y_q`ch$v78528JTjsaq{^RuFP}LRU~Rc*xq-{hfXu6_oX|Davzc^f}>R zdv@XZrQSzpnrNn~5{g(JNx3*9OYHXTU|SK~>xhIyz`>ZAc|rB=F@Qz_3C05k88bUO zy9HFNz3CoN23rA!w%@9!5;q5ek`)8E1(d8>K))#&axqwG-ZA8(BIG#v6>;6Lz(Imy z48F4``q@w&qzg7SCVL7Y!+}4;5!(Vg*xk#^%h22$U_QosdV1Wn_*vjaJm+DHC_|+t z9B1H$Hwd=9OQpYTzri_s;mo;nmnTD3FeoLSOEf>8D-s(a9({*B(3V~%hhZ20qDaU2 zsBE4!8XIqDw&C*|XNmUqe(S6smyRdyyX)g!I5#Yq0Kv9Pb?<-0TtYM*2*V&ecwHn) zxOC1wkLXjVk424TMtMtlXjtlruk`TT3q>E)E2XMd+b!pusX~-?qX1`Em?Xa+tTgRa zIWqr3-+Ze`ou4hq49M1LOdI@2_+%$le-kf+>?WsFb^Agy&on&@ak;!Yp*M_npW{1w z>`Lp06r#jpl12T90(Si6x0jOEFjWKMFDo@6Af}d^);L`|lcL4arB%l~|U$rM_m2rsdznx7xRYcA``d z9&snJ^~P_Y%cjUsv^$K@Jj8eB6@~B$Mb+hBQ!q86k#P8q@b09BN}m&1kMozC1jlbD zfh{+E<^u4w51wgaQDEJ~DQRg)D>?Cde`71H&)U(N*sHUt+nddQnf<6RmH2ndY0nzx zv}=||11SgTm`(VV@c32bgNF8ThbV)0j&nu0WcxlNe*eS&UP?8bLxG3as9nywbaF~q zW55Xqm9i`Qvy!>#Z?t=N3(V#mwn{er<3_VxG!*fxe>0XcZdxy!^WyXs9g!Tt;VG@< zW`b8R{YkZHY=S}*y?`qNbByDE#n+`TO0ovCvy`N`bmNt03k{<0oQPV3xBKzBWKcBi zUl`#J$+qvKk(QcvCoDDjCMRiQTvxvn@ez{S1-SR*4V$E1>96bhk2G@4KiofkC z*Th-pf#inlA-O#RE_oMBR&TBpSZ2f_U45GC&DZv*Zelsfy4-Fv`)0SjISfG~F;&5s zYW~vh_R?qEPv{@HG|R*Uv2&&-r*g&g+P}u`5|CeJrnA1C>Bm=ULT%@}R>Y+Xh)&#L zm9UatW^ag9m^8C6iivI*5`3@9)B2+!Oia9o&Nsp$?dc_bI3&FEd<){;Y0n(z2G6{( z>@!j!vRuS3zx`j)-f!fC#6XcYqb{yV(=+b7ZtL!D@u4p)-_&_9j|bLy#d?5v;$B9o zeLGP5CdG4tG5;WWeiO@Cmq{KG;FQZn5llhXiRMz;@~!moJ>N>&!C^bzb*70^T<_{T zaQ~K>S54l!tS8kWnmQpT=xajfZ}vjZaXiT(EjQ0Jsg?))3I_NxyDVuVo5p(ca}T;Z zA~RlZAj0@GBaYhk?eum@&!kQkD4NJeNf^oL^NEtqEH_|0Kn=xpg*lu_>>Pe`Z`c2S zeLah!iRTgakht^$apS|Iyd#SHX$Azp2xpea(bMUdy2eKt{4m{H7)0+)(qG;f{M|z% ztti~o$UZS^C%N?AoN zzOu24j?n?bbM4>TR_SAF+5hzV{);ka+vznFFoauuqxgR_#bgknpbOHp9PK{;xr~M$ z*H~v=Xel<%(+c~89aft{U;B%Gv-R#}cCl&b&LuFOzT)yZw`%{jtNP0RW zCDrA29{V>tPp&zHH}JHvj!2AP23`B-ULGOX#sx~rqwdRYxu``~$z>1oFBC+OLB|Np z$`pq@AnmaL<~cMc!K&Pl0v2XZfB!rC(UV=*vKz9@bvmzQC(5GPXa6`uY@DnUIPs)9 zR8@!Fnu{@tRwOEfwj>XEw+zYe~5u`2c25&8C(RotsRug`@*A1|G&HDGTv{QBPg zxtR$vv|n;SE*-nMi=m<(Yf|sPkg}Yh7P05m&z`dU4?Pb*{^+&`Z{R=Zmpus-xuf0B?l?kz`pC zX~I3F;NglmubcC}ud#RLrC8(qM5gW4f#fqy-Cmp5!?EC@Es=TGz=qE}xD2fvdmEyBsUo%mrZ^W8gD;2&v18;O4Ma##cQ%!ZxK&ing zH;C!cp0Xa#ejD6q_L1cCMt2W#9C??Npdh(q@O^jh2Tz6x`_fgV65<)iiirslCV;_+ zH5U)=HN;&eU12Cyw-FRT;0cGGm(CWAvgIdfC7sjV#re(z?OGT#_x9R;y=u3@obPV8 z_(J;19;(FKb=hHJ@Gexs2qI3CY@sHnqO~wCaCrCJbU;XzeJq#Xc(;@&|H|W(X=t>gu^_e>@m}^ zD|BY?K_jtd%t3RefuCq2dxD|>FYvq%wLjLOT%pR*PA%yvlcXRbw3=CB^CuwE>E;*51 zaa2}T7KFds|B_Er#eZ4S?T$|@=Z{B8Soc>7yUaeN)t^f7)U)SN>#-(hgSmf~<^GXG zCU>H%kLH%u{?ud8Qx*zLtwd5OFR$gNv+zdO^MlFcK&~WNAuzZeDX{+d*%J`Igx^W0 zfs`C5Tq0z+(!28?toNOlsJsth^!(*)(&kiZ3TR8HFBinFkb_sMcaM1qp_It~qMDFJZq3vKTUS^QW5{$|%&20sdLa_AM_t>m zJ)KiaY<(ew(bJ5A8$XH#V$Ti9FFi;##FddiEg~VIPlBCKVsnbbzH7N+Q0V^%@W3%9 zi40Q^<-=(GE?!=TnwgQQ*_nB)`0CYmsQ{7&Jt%7DIgg#e7$wCX(+03}`trTArq8z~ zbV#)UeLVs>{wf7E=P*INP8qmG@)HtrekCO}1)p$`E=Zf4l_k>}Ual&7Sqa3MQ2J$l zwmP(@Utuu2*aEC>cbpxX%QgS;qRbRhPrGy+lMERvuy+hWN*-!mJB~E;TiDoiNcRrP z1I`kr8lX1Ed|Cryo>-ZKHTaW|x?vWx>34Ih=RD&iAeGWlAoQ^GD2W6eVPtlK1qEuJ zH$YZiV$7UK?i}E7p7(2b5wq8CT)*4fy(VEghQ@~c_EFB6G=$h52=jd8RJWWmZCi97 zdiJj65NAbxq6pbj-kh8FGXH`hSjZQ%=|Y7G1;%<1sBpZ;0$0QjMMF^we@=hebHE|f z!@u@Ft01!Hv2k%g8uRPT!=J1f&nnhYCZH*#;f1v^#(^>SEVHfwC2ACA5`6s1;?hU5 z-4+fc2-4ABTXMA9z#4{kD~SUZM50=ok1gqKLyca~%lTy_V*a9USgGj<)}Ob(zspwE zA|XV z4822OS^f$}O~TKJXHN}L`p2z8w>b_6AJFapdY#UJf8Q`*KTJI&t;QXLM<~PdHTsfv0nX@n&vrN2T*G`+9d?~7k99jx+ zEN3n_9ihfc!iAm#e`F-kY;12Y{G(!`W3s9e)*d@!kV6t6t{%R*lh=aP|4?^^47Gev z6mg!!I(8|Sau544k&q=7+CAQ1#@+2vU#z;WxVj+9a^Lu0Kfi8&ZLpS(PmChyv;m<_ zM%O~*Z%6Ca^R-gtn-A@vZ*WwS7L5S=8_*Zj@xK9!oS*nqO@Fi9d4lh9j?P8l;T#D9g#ij&vgMN~tlJki01U3Mpfg(-yET6fWUB_pba*lR<6pCJbKDG2>v+cGNu}7$`X49;w~pPU@~(E^IdKzcgUz zUb}W;$YsEy5|Uv>*tP)@FGlp-aqJaKL}cxm#){DDZMEp3@&H9^L#C;wMkES?qn!q) zG*v`4u`yW`1vkCvR-E6ATYu(&%vE(dwmOLP4a?8?b!l8WLy1ZX&DXjJK z>g6nB3+ib;ZG2@Wvok<_)Bd5q{ONOUy!@)NoA6p5#ARg(K|WWj)}rG2boa2hHx^)W z0bM23JDgCbn3_Y|HG#NHsdt&HKg6!m0$7FJ$ZVB(AoHUu=7SHmgE?J>X?Fe8jG$f36aW)xn&E6zFw03Uo3N=k5+*K`G#*pK+2q)IM?BcnCrcSbX}&8Z@fxGbV4g6-8?^t}2=D z3?6A8-Ou$4ZP)m*OIdw!RFTFEt7lqrfX9oSX(&K&za5R&3J=M!Z}!Yv;t%?buw|gm zzQEnhO}ru@a6syFfWCTqMn(}*UTxnan24mbsCVPn#;u)YA85%D!dBFXUYug!1%=lOama# zZDsoEo9semWeSh7Xfs2JsrFlq*Tv5*IuHYUyvk+W_&uWqy%BMOZNuKd!7~=~XYT`C z&eticjSr~mD5=rJ5f5(9(JqCmBY5MJXX$y*?tMtm)cmCc{dAh^R@jL~{6jb&l(TA` z8d3KzLR970vagV>-{eAJaj_WPHE?0IV?Q#t-j^l zo=>vJY^1HHz5CXzewgYYU*S`Kw%6`+PE6>gy&I10ggz+Z5;yi7UaAG4{$}a_w_?5> z*d_IIr;AZi%b4CuK^!M!S7%Zl8{&d3Q~faijLcs6V7M2b7Ij)G`1oi_9k%$jB#*r! z)+x5kxOswXEVgz>MM#_IPCM?UyMFucKF70*ySgFU(f}KPx1X0P6j4(LjGpfM`s!H1 zhushnd)BfcD;hM#WW~1~Ss40lyDpS^VKD`DU+-+r?YkhJX=J&rktM`Z!|_60z)c!J zBI(Gq<_u?Q1Smtjsa0LhthwL+@HKin+VxZ1;*Nd|F;%1T$;#W355i00s+yZMZEkLu zE(Lxg!z*@k`{Wla-WxggX||ov#+Xj*hBj@A(dcN`%}Z_0V|TVWZKC=1*8wm|MZ_er zzSwD;xwAst)XFk<;)6SVx;WQQ2}?tPG6$n_tg#q4s&GFvG&GGjxDr`(u#OsqL1`Kv zC>?-^EUHV=TxEp&_3lTfIV7Qk3%iS1J z8(28fMfrn5A}n-MtWWehcEk6-t_CcdgwT?-{+bFV)Nv#gCEUEE$l9_sEZFk=wnq5Ww(RfTwD{uX z*RzWz!9^$-IuckqBA&+QNy_Wfc4ym|kd>9y|I3ZxI7O%U-T=PR?G+tH(iu2#9v43-_g0Ew_!57Prw6 z0|SFoBj#CL@etA3mGf7)3>F{0V)5s#WPfU|M`i^E#X+dr+U! zm|e4qR*`*rX;wc?jr6Q;y%oaP?pF>K7tI=)KG57l=UP%@!nR*8oEkwkw9}o;jX5Oq z#*Hhxpvm(NGNNzap2nA8?+m_9950@qoodysn~gI!jo1~F`GbJYPw)lp9%fw&>!U~* zvoAmHy)wkNgEYVV@&0=yr#l z(NW&FR^@2-JtXX$tJiKj*mo4@G=_?k1`|v6N0bDpEspiOe}0n)QiP{t^~ahlb^kSX z&Tk*={<(Q|d8~5eE%6+eh50{Ec_2P=JV#jfRMpVLP#Y(dZc$ezrcz44A?j&=b4q^r zQyRU^$`4DTLtT=Rx!#Oq;mVdEaafkq3ju!@seC(_ed6Em59laRcz@|DG{lH>HbQwK zkBLg6k#}r<6*N|DID~7Wkg-N=U12+mv#Q*9RE>i7M1?pV`Npd7%|P~=!rsVA%2>wy zb6wPmt0g2P4wXH$kg*0l%p;*K;K2OFT@(m4@25uK`LB53z+*mSg*hIY9@b4WFR;H1 zI`pLQx6gw=ujT^TDnQ8AkDdOB#~02Qj3rViUhaB6G!*5;XJurTCLy-#w<|ItvS*-< z4W1w9Ot|6sp$X{y!2*EIAQ+`wPhY9OK8R-dFC~%_clJ~6lR~uRXbhIsLjN5^q2Q1x z>wxCO&WaEzhZFQoC|75{G!*;Nn~fwQG~$A%v)*Inqj<&bgE;_sT4?Hlob*Tt=jO&& z8Xu}t;Os=uRJ`2%^=nOE`^WpOhttewUIGcsFb~R-@2-3Q0oheb$S&d3sDY51otYV# z%ybE58GdE5=oQF^k4v+&9x{4=Z=KIEnXRH$yDkR33J|v&zGskS(&+Q_I0e*@(BdA! zV-@_%ZLiVdg{dKHkm*~+wo6(}r5~n&FuEWNCP6;celj;D>~OM|iAQOS;t3#Wq;plK zEa_r69Y%oy9d1St-K#x7SS(dlRm#$l?FWT~)?MMR7y->J+m0(CUFAIdA-W-d=<2q{ ztlWiJRuHEnbi#K~y>7SdrZ4;dI-1d~&$M_?Ibl^-YxSk;}}qhBslwQMa(Iv3#?b zuR*!VX5jnWFGye7zmzUpbid!*--E88B=^A8t&ld>tbt|`Db9K=%Tr*bGy*yNsSz*C zj!DloJROlv)N0!(VDf=oz@&*?z^ruxm`lMvVNPX74T|3RQ(`&|PzHW`y}YWMWjvQg zWaqrh`$CUUz>D}N8~i2Pp@&p&_bPxs)E+DVTyIc@=FlyDs4N8%Tgtw=K)Cj}AM=9J zYhE}^x5o&Wx!(@cV5!K>e3s5ZN-yIZFrbNtaXkZLn|iXyS%ix;^=vs8i8VHRQ5OR5 zdHulxDCs?TG#)^kSY-V5nV7&6=(LlJ&7LQNqJDO?PX03V)E+AH-h6;t8Fyp&7EK#Y zkK1AAS-fYjIhnN8Ya2a8z1vEf-yCK0?d;&suE+GhnV~NbISGiAJ)>K`T1@H3$t2$1 zzBE7kp!GiRGm4wol8=C{CK{~}vIW`|w^Tbq-p|U~y6DMq-}OTB##hHet2HquOTd32^MKtTXL<0}NZEsb z`*YuYhQT&+>D+aPxj3KMlTxs^JT0+z3X&wz$p?2~(~)=uE`TS!Zz1mya`t>5k zrX!bSPVeN+`OzL@ILHSg%y&_Q$=6wJ@)2_xe?Z^eV`zdV7wtz2ov;P69AngghH(DQfo2~Ag)ni!=r9rfWuymX$t1{z;`apm*_SsG z0P3x(wKeob_3^TR12Me;*Yki!ffKn-)OW{WZ_gnEtS|pL5Ep=K8J@#qHq)BYUU1HQ zcg|aj7RN5T{q{1a8)@`V_^1CmT|#{y9E8uAH~ET#y|j!I|59@)T&6O>R4W9%+7H(s z+MJ7kE{He4!~{0w?hZz&$v@tnD47M?JrAf9I_j@a-s+rG2NE#o=|&h}<Ano?auThItpXZ7Qxe+KCv7uIVjxF`>Xz6$`3?J)Y?7D6yx z4|OD;a7E6Mk1urT%KC(hqM`tW71Sj^p>xKbnaBAqx%lwLi!SK8LWq!5`?@E@@-mNDVeE@%)t-zol zuJ*ANk+nb<8>6DS}fP;8lR+Ti=%DzrwRO#)BLk<8VfM`l$_B|P!9%|dDM-VP! z!Oc=J>e3d6^EqFX=hJFcrZaPfFmvk`b*cT#u-bSt#En(Ug}I9Fm@H%Qd_A|QQ`4|5 zgFm~|C*Ip;oO4wrdo<1F3sBmqh8haw96OsoEaQ;al9|=N<-3`L7nM)@Z88Ww*4q+)7kWCb zbCpPYa;5qPgraXii zUT!trg`JQ9_)%N6BIO8(q)WhHU{~P~p+d1hALU7PO*6~HY+nj-s`s4zGWf;QVPUMk zs#z$#f@aXJzM%FTsUDA}=8I^E41!QxPUv_fY==9nHpUjQQzNDRd*#8|fj|NDi8{+M z%FcM-{cOj9ur2K|Qgc^+TEl1#EkqV=P7`OXSC7jW%{k$8k~N;s)~aP(RBb$Tt8;2i zj_#*nFZvR@mKrTEkZ%HWMIq=QH^1R#`b@tJ-_K_B6vCMrse}MLQEK$m{E>K}Hb+a$ z4Y+HZ?MA3v?6Z>fezmr1S3g?|Bs2~gz{nUKQ1j{6$ClKG8hY=|Sw~MA`m`id zlTdk0sY6$1?K_e?vqucFK>06oaQ==r*MI|GQF z8WC@sxMK^c)qJHyi_m><#~qj@%k6L%heU`4z~2_Z2fXtAkL>@Ntq53un8l1I7RF(n zR31N}4V8UgOE^(p>m<@sG&^#%sf8Z)W1UR{`wO$)@w~4S-RZOo=itZdla~ z6C@cN#388dua6IKG^#yvE!;@%aZZc?$5hvJn(+>d`N=?7i;jTb);M59#ID~*LMp`9 zz{@1Q5Znv}`YzAa-}yb^yZ7~L1K8i8G6AS^Q1>%^Zl)z)rAAQWtQ1YlX; zh}Ix1jWEll6eDCxWKPaZ&rh|FIsW4mi7-;fah$(WYFM%g$DLaA>*aK3@?TS2bUvui z5m$0HIZZ_I*H|=I==uX8C6+0V_5*sh(XwM*bXyyfvp)w$GD^%Wh_MpB8HIC!!dX>Q zbNWnPmQ~5lhlK#pKL2JUH@9&k^S zN0Yi-dtY{oqaEn|3C~`^#Mje(Z-EeOU8q@N_m4I(!`NSDs)V!+Z%u5?g|d$!h0x}@ zrsaI7eM^!y1d6*TtrPiK@i#(OaOOZY2$n=K)hhJDo{ksM`?#$ZB6C=Tfv7%chT?f7 z3LpSOOVw`*PzsCCq6F1XIG&2TcPu4L;d}mjeY_M{N~EgBJ|bA6AFt|KyZKMI zIlZK&Bc)C>7+#(4RGi;IfB-=h$D891c8__zCo9$kbAVTmJ(0-V%(cB8L0RkS>YfAO z5P>uU@DZ#CCQBlb=jUed>A~M-5-6Cx1|^JLkNVx@?8P&rc(=Ew*C==bUQW_yOb> z=B+3BX+QoIo!BeB#r|}RG00U?#g7DJ1p>rJf+0?R6OtiIDU|;{8~((4=QA}lB7v}7 z?Ep%bVxPQl^$S*KKmZTH{r=Sy(!i4c^(MZ-ON399d4+cf$I!fW&^`z2eeS$aeGCQ zx-VYQW~G#|kg%{2($jbMfcd+`+Lzr3Vn_y-9Up?iGsWRz&0rcYbA)mj%~p6&W>()u zjb^;fn9XXA6ew%%(M!)zIL?WlB+a!?Zt>{mO?F7lcWmRFem5eH_~C_jR}KM4xc$LH zhmOhw9*Jk7M0do_HS)~ZCp12o_ReU9e(L=|8QM7o-?>igu(@&gVc)EBj?J1DU%nFSOR zMQvjx{({-zN%&dk&8uo>bMZU&5h)Ru)NMu&6+k6bJD^_e?MFZT<<<1ZebW76A5Poc zJ=`zxVFO#vT6)_Nv?0%BLOwI6fY^ihSczpDY5vKhefBcLbTihjuND)Yy+wc&8xa+? zb9;Nw#rH-MfTO#c_iUH>!nk<{z`&7YR_D1$uuTSIZVy_D`BKriJ{TP`lT(_k6dS_0 zWoGKf$&yxw(5X3bKK53oKGWvZ+9-t$D%`mo7D9>{OR8-TY2 zA`7HwDu9K;`S{?*#MKTm*cobtJ{!gyt6I>4)D_S^6Y$ihqlM>DzQ(bOR;$|FJPiM6 z5*6y-Z5u<-4~vmiR(@(mX8EY@-&0f)Hvc8;oWy~zJw~D3XiP;Vp7BFeVXV)Kl$B-s zau5ChF$V&(3?R7D`$gflmG`_x$3c)NwMg8ZoBeJa@FM)=e}}TxKl#haP!avVVxRW} z|GbO^^Y<+I@+Lpuez_u)ohgO$H}-zjg$_tXBLOW|NmYlwCPM|@B!K#o^}KTOL)JJt z4dsrMV-cP_!4-ekSmw0e!sb_RJ{LPX|2QfoZg7FAttG2j9M-bC8`P6_R+t)_icHVb zn6CKYaK5EOm<`w%w;Wv$mZtUe^?4S|7-o)|Beh% z$v7-mo7wfRIL}`P`io*~PHa@sd~z=7%%4gLHpBZ~E2tVa|NDib@@8ed6XXRz`4 z{Az0G-`j%*(@#sy&Ud?_2tHLC#|1#q^I$wEz@gyC4Jh@|2G%%BG@=9ZiF=)@Sv`-#4bk z?5M9fdv}eos-FanP19QY!DjEn=46;UtvhgJ^EQ-qwipYI7YCl@^&$NzJ%|b3w1?LL ze^5#U!jOS>ss{YEiqHf=1@^gftV{9 z>uj+sB)wKIe#oR`L>wLl%!a)LGf+c=T4N2|?PJ6<)49Mj9_IFz=?Rob-(4PEnY{3e z^sKy&vcoST@6I27@!j8-Uaa!-lfa)1?`kA%LX^x7^qC-!GUrJ?qd6DeyRhH@r+%+y zW+AXhY?J~cU+=<&@F<)$*DTZKr_udC-+XRAmoqZ-V~U)Cxxy4fiH153#X%)OP8sD5 z(>xD%(C>8QJ9cgy#}S@^Bwa+uQrlEHDWb{{PV`;}rLhT#;J|LX)oa!iVOJSeBtlV2 z!o4OcgZ#grFY3KWFqI-HK=P(Sysfb!3~0>Rt4 zAabBngbxplysw7lNyrolAA`@|>x`x;trhK(K44z}YTtAr0c@5lU`|scW z;CXg0b-#vEea2L1uLDvAp?0K~K-5r(7I6aJ;`GpLznFJ8f9JMZ5{JB#Y=*{NM0kQU zE;~NO7~oLO3E;EuAa&n8LXkReKj*#h@pp^*HAnOnzr7*xbF2ObqFZ2iAi$8@{IZ{0 z(5=3b9GbV`FO~*a$pQ6B9e{l73Hm@_`}XtDT7wOUMAaU&5Mh#itH`w-pW&+21adT_ z`$Npg<}7n>@a6YsnzwNvpY(7FG0dxdb+397tc$A}YxEV>)ABV`Kcrbd?ce<4AYSG? zA_PFCy4herM-Y!n%XH@S4uH#Sgj97m~=13w%taaJtNcC=#Q zplCvApNl|G;$@1?!mI>`FO6`5ce|1vFF5yP2uqOo?MNn1Lg}}@Jw2mNECPPN>v%>~ z0T0KdbY%bLRl_eCx1>fDoEu+_fBNwXXK>&NylF*RTfd5apBvw|y+% zW7n8rx^J*0JDYZM<2|H*0%ai40h&#!tex%VeGo7^YM`gnXuffw=Y`dGw4d;OAT;P~R+V2@nhJ;Evf@f|N!^!5KXh5T<1mK)6u zv^00zP+jLQ(M5vEVs&wt81ETO^p~Kwx(vH2L*e{?2Ib!_!DjDE-vCfqRK9p~K2Ggg zuSxTTFL{)Yj45}@jj|V-|1db@$tY#3KRZTlWrIJfWc@fy;&svVKtT2+`E|<9p+VL` zPovvB=jlDO>v*UAp2aVC`Wr0D%&`==n1ySycUF%+Nc$9cH;*!^Gk6Do%a`zgrY3;+ zq+y7Q_^d{-r~_=;#N{N1T$Bc(PIr|;+sI~1OUvULEiEmnP;NDyLy#o|urV?71tAw90&*GmGfo{Jnp(`KD@i)A!44>nBQ74fWun znHm4el`Gq!Qu4SxV!)%3d|U&cp|s>vBw2IV0d_AXwNJ2EM@x$NhVi+~P7;kBv*1IB zb7}SQQwM#8QeO1?^b{24(cQG+PKzd|zVOwL(!r8WqQ?=1i9-o@2fv2z=>s>%Q<|-= ze6W741j=I{$n3`jn7sS$n(QFtGgMRs)hiUjIDJXvW6P=I-Ai}G7S-+BBUIw}UO=4w z%pN~mAP`U~!^csx;f^-&5n6bi`D$`Pld;3;h%p)holf7~7G7MSEZ+GkNf*vVgPhAY zBK!U0`&`e&6X(M9_mc_=p$nFw-K(biZ>~!@50nuW04&YZj1T-YI9S+8@Vto4?{*Uf zA8f4OJG`K^fnB34sm-#l@u*x@R6UfOmn%fDsr-0XhTo#7a$M;aG`8`7836+|O2r+` z(yHz7X4kIn%2CRjk@T|G!Hrd_eJ9yy4yBI;aWlh=w$K1igLQfSxjA~z1DOArL&DpV7%-;1huTSrYVmE`!!f z_>G-<^v*RONSz$wn!m@(=+K^aD1ml8i8)j$rTP>4!hjsjqF z-bd(1>E~)i-P{^ihGd@ogV2{YqH5dl)gd7v@@9xm__IGg7M~(xi~(0gji5u0s*H~5 zm$qi&VZZ%f(c=D!0-vX|tTu!_)v2etll~dnerfRxJ+YOs2B5m7oA}niD%_n9jXkr6 zRl|?=Gt{d z*9f*$sq|jE4c|Th{w!BY-Mwc+9j3;Fo$de0G*No6bR=6_TXzbH6LlS0@3>>%zqJaMHDxo^= z>3`+BU*6VIb>Ds&862^+f530KQnJRIKn-9?DESi5S$51t5i|hp#`|q)_8Shgo@~|1 zh~P>Fbu>)Z_>sO(HLj#LgHx2-S=`@mvh)arXQqdaX0Cou=a7w3*TBQ(@}So2TxS&+ zi8;F3R%gYQ5fvUwa_MUAS=GJS1S6Fi&dJl+t-+zkTTMpm|KTp{W#Fjz60~)spcDQ}e(V-{ODQJ+85{tXNuc7)$TIyY7WjwSU$49YvOE zcH`0I_UqDuAAzjnSgopTXt$@CtqiJ_=dAzN##&T?O|9-=Ek@_pT1>qdq+L85mum#o zB6UrJc$VJrFe$JzBB&dS{P?p;r(M%!^9hgG`WMy5Xyo5tQ~}GZZ~r-qlCUsxZg|iz zav7JS@|Q&+$Op-@kqAlExHAx`#stR(0bCtJmko=`g1(sAzqk$3NV)2A;Mts~@Aico zF5L#onv|2yakUTJR_=zTnh_T>!Jz&7_ba~<#HY47wEs|0u84T0FRcb-riNC+cY(K4 z5~N+rXV#F*Ppgx0_QE$VZfSLUd;4}^7Ml;bt;}KsCG9`6;B=)I+@K0y4cd*Mw3RBj zwg-oZvCQyza}TvXwbM@2s=7}fpzZG&JPF~B^VQu26L~{BHHe)pe)41)xB1$2^t50R zRmjKz0NwEAT)W|u!(fI<&d8e`*fF$r9levQOO-oMGD*3QhJHE5HnvQ>F6rK)CGoz#o`rM%>up#r zJD1OYg@ptKc|!GEn%fl|oN2d`rQoKohu-Fn+N8MIC-Iun0LbnNrk*V$2X0uohdNE{ zLDT1W=tt+$mjre*=Kqg6Ek0sxit{0;R(WWP2Tgh=;8Ec5)~$mnN265e!~#6J30vvj z+p5OXlv!SLkQ#!$gJCoh7>8e~u_(ZsdwL8_+VUla#lt4_cG!i6EsOy4LWes~=q@7+ zno2i6dK7r7bt^~Daaxt3K{W(_^PBU97$^i_mzz@`>YO&c!p!L3Plr+HY|HNTDa4Tz z0P|xRtr~7kJ#Q+6T<`CH(_YM5w{w}9T$EIXjGWVzx7(4$%PouZSctcHMa9At5Y-?M zIdd9DHN&<4VW%chEzhTCEW3vrgsM)q=9$$*Rkf&}qOWlc7mfEyek30VagnypUl*4@ z@(hAx$Qp$Xlky18{0ZyfQLU{aHrwq;bS>U=e`43XRLT9SXkMJU!2kjT%eqHNi^9JN zA<8;7giXpovFuQV*5tDog%A&@Z4xUFKE9wvlgZIb~}c} zbt=309p%R4b*5Di0qfs;(fT*cE1^CpJ?Y9pm996NT)rCeeNFh&ZnNq88oJOz3?~)^ zP*WB5|05U76ex|pziyx5M7->N11ZgqC*Xdrbs!Fw^ESGua#qbvqNAoHh*xwEWqz*{ zt-Vb=t^T6BG0@A_HhBz#2=exFV^C-4i9|%m+_dpI3b$~zZ#)nq+W5Kj6!nyT?)Z=` zj?n~C);jGi8OcV=7+{+h#e0rMs_xNQD2Q?ckZArd+iH=-%wiy;z8D~*M*dZg(t#Pp z?XbA1Wm)`2`gW!1E5fY5AUQuFRj^UkKoO$+%Nk8@mjqJdTR+|ofHim5G|wBGeH}aE zbaD)48aRq|$ftx_n8Rj1bn9Ne9R0Btr|Qb7lTizjk^7Z`CMM8z{qA}>OqCd4$^Dzd z_#qgqBJhMJ_<^5LxO6$EAN+-i;2Qqnco|lIEe}8x}@{ z%y*y)8krxYIrlh{3nGgfue1brIsxepY-La@0M7fnzCV0dajH0V@2>^6&fStD0TqSd zYhcNZH{eRJNC3z=!v$sT7z1A+wiOa|cH<272t2QBQ{=dtZE5#Umc~i6(_9xyTk{yN zsJD?g7g{Iyuf5^_&kMevwuuh%U%qrEZ8P`Sm8{Ov<y2q?GY00 zq07`m!z)+Zk%0@E$hROYJOql)jY{BTwz_lW&83>^C=Q$HIh~@l@9vqG6GarxX6mxL z?ViP}xyf%SKS5uYy;0duz-jMez6)&@L|N7>g{%kQIm-MG+p3PnGnu;t7-egDf$@A` zekyE11S{@@`x2k&g0DsZ>;Od=R`N*c0^y#YBM}i@fO?_9$rK&^9hTE?E-I@Y5T`Yn zSl0&=QIZFxU21iyVs=?}!wtetollqX7WmE@5D%X=4v6?+mGv%Dr8-`y_3Bb|7Ccue zx4CDXe==QH(AL(*iN#`xnpuMn^Pw4vAB$kd#>SL&bU3lO`~Z|eBT>ui+v^sJ!isb$ zf3_OOPW8x21&;mC$|}U70`@kjkTNGA_$xvs(7O`0=~o*aA3p}@C&4yNSCB{-i`0;9 z3BMPy_kpP66T6N*M38^DbUtlYo2+s3fO=C{<(#;-ct*2L#`LV1s$kE!Hl09l6` zj#B%T8`GeWoM0T#$k_8zDIyE+-{oB#* zDInR!&jC#qw$K`G&0{WDSI=!uV^-d%XiPp5_6%d#Z~jX2YT5YZeA5}#`}Cb}|9C2V zr5&YN%T=Rfjd`BZSW?)-+j&a6aWG^K2fk3p;SyU6OwNxu1Lqi`Y{2^QBWZ-2n{daS z0|b$YIVNWWBo88)I*EgVHmTmK%yal0Fk!f6En^=F4o8Z zVJ8=1c_O5g^90F-q(oA(Luxv#HR{{UlLwoFA4<~GLMig_50W~lSG>u?0%nBrNHkzz z5UEk`RcJMdPdPkphdK?E}A$TcAfVh0ZZ}hK-;`2L~D6H zigfF0;G0&q+;5$4$V}m}%d*g-CuTw(U%T9^)F{GA9AxQpp>5BFrdL)k+-d!N+1Bszi^rN9Fw5xMIrq%Fu8H`YHiYClP@e4HfBF5D z|8oppP{~Ws!Gg$l*$kcfZ|uu+GB1_*JOVCrq|1G04<`M~@ScX+kle<7$%6F7#G8V0 z6;i*j?LoUN{kP9)!`}G3uDQD|6Ef8G^lRWD-^4ljl9AYsiXz)?ujBM8m`*700JeF4 zsCx(-+X^4>=>33qJ)=V>Sb^Wz*;c(K%EL-C`u$n@_Rl@WA}US6)oZ*DODRGwBSJ{P zM+OqDXQ96D5YM)(tc(Krg3Fk94A&KvhZB8jEQ40bo*;d>1Toz!@MHE=fd1AOIg&dUue%sBibZ zRiHQWY>DWX!>*|5^wqAB|VtbkS=6D!{|d2FpZ}Z(!~$F z@m+fGDQMX#99ozkA|p`G*n>Z?Xbfpbu>C+?@%lS$i=vHK!i?hQp7j66#+Da5Q4)0X zaN(Wk7t1`o`0mBs-G%fUB0Y=8grS_my z+^zai?y;%{(Z<5?c{(-0@Q7lw;Tbw_JN`(xLn3CGKtShlsujZ!tOX3Aiin_>7JAr@_svQlyzrpQ7Qrz5M3l;-61>%)Uwcbdi;d>dFp5~gh?oVG zKq38@9&8!&89Tu3R0gU&;Arz&C6K!h2~XYJc0DY`>UQLoBD^^?PA_$X8KGMqEP{AF zyEb`lv|HH;pVX||0Ew7RIdd12=6c`U=H-P+GYFH;vi*^_ijEq1(+PUvl)njDQg2}H zB=WqxmjQiflfF_@zCA-jDRKo+6FmqxT|lfR`B(vXDu4j75Mc@lcNgkJ39eCq;f#n{ zXam^A_Ev|XyUpeW5_W9EhR{G^0lmnVpcv9sMsQ%z>zat^$mspo5y>{TO*BnD_f}D@ z?ACHnleQO2^E+GC3Dq4vTQ#%;2m0gX>Z?QDqxTrQt~HW>o%@ZG*s8GpKBTsZ{D~r9 zP27yoQGhGJV_MKHG31WrxSoJ_K;Sh!83>y}sAwosOOj(7M%a=*fFj!QUcL83tI1Z? z4LAR@O7BPK>*FQgv8gALR0W-%^dT2S$VwlQW?(OEDuNjCa4dCO+{>r{c4&1)*KMZr zvs07?J#R2lfux+E_5&w6Aa||}sQhFB>qpC`Q6JE)C@fII<(t?7EjBLGF)mvGN#y@g z_T_<8=j;FOG&9{hO?6F8w4kY^UD_yFnkk~9T~3w;C0mk0mYBLzvX&(+ma=CZdu3}T zOHv6ricm;6IFWt*y`Ilu=FWA@e1GSknIt}+_wp>S=k>gv%gx5wE`=AaU7IDedc=ZnDw{l?}NY zw_pM@eD^uy;0;<4@f6s8_O&M5sxu~JmlmW$@J@))QTqPQm5d=Pd8jGoBpa31!UK7r zy-7~fng(s9#5=5{61l-HnLW@EXs3bOnq0ycF}h0v_vT8b2R-PnuJz*`)gKSKL)ynn zIznxp2m+P~C^H?A*Sna7zZggKNUOFtHrF$df`G&tkpi$B$D}~Z9^*7S=N|kh= zM23Xo8qHA4L5Bt@{}$LnkiGzHkoq4OOKzcM#@}FF(T#^yi|4kgRGS&i@#AlGuV{?= z?A7b2JG#Bq+)>u(6WE*1G^kDG7MG3DV>2M8W14|Nz%F)6Q`2QaZwhQr2BX2sJ7vzC zIeK|+vkR~Z2HeJW#E_ChVF`TKie6pu9GtrL)wZyG&CB>#P#=ek`ZeL3B%z9%uFg)U zo{QzWeX5DomyaJm?hK*8JRrW_>uJDT9!LjXU2oG;pjt`FbpA0t1?uP4U^x>3bib}V z)cnWY-cVJUna(o5FX^@#bF|`D3j*W1yh``Rwa4(np{8^kUYkZ;an> zbhNk=VwX#?=+{MJKWmZTEIdCKzgL&beN_GgvFs~XR#iW@Aw0vPWGE@GZYS* zR^Q4Pc$fDeGVYWJF_Oo9PBx!h!2AWbBEY)(M$CH5Q6nKSO!Ql15)Qa8EeFGniw!c- z=$Q`!rgzuds%9?N^OC6T5=|~3AZI`hi+RtK{s3?b$Ao_^(rJ*Da#VMoocxu)@{fVv z@>0KtFA~w^K+SE5)o4i*6w*GuCsD_kNXdHeG6lA}eNQyJQr=dv@GbblLe2P;l=YfZ z1e^wWaqq-Vqr7Bl`tp*@)2iCr9*kQK`oh@*qv8G!h2_BO4PpztCGx2e%OF!#1|lkT z1nnkP6DN7D^ogD93)cFWVqCz2rZdf+Tttf@Ho8F*g{3&b$S?yHvNkj;dv2c~Doq+Y z#25|yN)YMec6K`WyfkdSz}A=9o4yZ0L7@j$`PGrT@|u+~H*D|Hz;pdg2AOkD-20B| z?}(-q<>$#&i&b`aE#ht{E1xK2O?J>#H?44x`OAD@`Dny;rw$s4R>aL!F@YD9vg>YH z6ssB?7w3T(WVt5y*U4gTk1mz!=6s(0{Lyp;|CX8>XXn(^R0E(r9s2rrnfSGMVN?iT zPf5FQ>Snyl7x=qj@q?)xBNbOv346iqE! zX%oTNnsD_XQ6a69Tj*Z*6*I0dD&C!pJ6}AuzBF-ay0^5+MGfUo19^-2mzCj(OZ4w(y`6fydbta3hSl5xV|V{bL9# z?<$#NO5#yCD)*3BdUcZKHciFG*$w~zmp|C|$-4`t;agGwL((>1cf+*@UedRkCo(%N zo!wJ&YJ=L`lnMWfRqlV2+}e>t)R;x6KUY@xDePd?j0t{{Cv*Y)si<=KzN-=rJ-pw&?( zmK*CC$9tv^xR^Qrky<$Uz2^9b!dK4j3*dSE4sLtCm^%9=M0pbr&SK_sK;B#|9**~4 zX*%}pxumB|ElHdK{##zaG~QUtN~%4?2#YF!G`$p5C5H-@bcTF;WOLb zr1UC;q?yn6p1N{h-q8sf9ygC67WRjc3HhjoEsCX~Fc`=l80s5_lv2WErPjUGnp3Ky zFbF|28lw|VJZK7Mo+LtF11XZe!vwL=?z597z3(kQdaE{SW16^#dm@~QGYAiB2dKY?v&k+(Wip9+B4d~SHPJWxsfm4Ozyf}wR zv@L3L#vaL<3WW@lHv+)~pS3h#q8$R9GKtRAF8M3)gZJ$VLc0PH|{25=5iTLv)jQ;8CsIdzdPqqLRH}B+Cq|T{u z&fe>wsD1rHF%>rJ!D*w!S%X^09TE>}Yiny+K3h-0Vtr9@-B7}r3F{j4J9f{`@9(c` zxKy6g@mx+*z0dcWb=&1zVmdSM<)lD?5ULWKUS9a3iTH9(>-?< zCwEaS)Ud>x9v1nkhS~HtMR<3Sva;|7(?iTPOZwxQNlobCb_>#Z>g+l9O`&X$f!zCY zR`q=e`L!bwQme1@DjwjsTu%PWMjh}V)kPBzLSruRpyyhg$+ov-ujTh7 z0$*+$^?CK>;FWo$0Kf1~=~z%ED}rwQ4W_TIgnl6?$ONv?^7JG@B#MjFMbcrd5hU`@ zCY?HA&1+D)x)Pe4i!AdnVXf^C&&slH09|Z{s@~wk_N_`0`odC-U zJwp~4Rz|a^H+Ilq;HP_zeGQcJ^7;JN6M)k>wi)#(&Uj!j%%WJI8gn&mLTvj!eURWl zA$d70bN~|?iXb#R+(V%ud!o>=sb#axx~$zwE7PAj);cvbVM8#@r$df0%FS9>}xS!Afq#@s2X!j6W^FC zFBdLPQ!=knWUp0woRIZXZ`+i^N#mQm=s|W%jpn3R)B)zHvoYpfmHp%v<~A$}$h7Op z1GaD@H21Cv6S>pKWf~qnwk>~mO~?ynrP&^4ul2GyUDn;$I`^?HDq!P3irdC~qdcVY zzSE3G-9U4>`QEIWz@qSGP9D zuYXnQu;SX_X~PLF>9XKa%&vYP7;;|E|MRaIdWi2-SZ80pcyT4B40Cu;KsQPhjkt!1 zg$A)WEF?|g)ur|YPz>tG2YmR0X?4a%iW3i~nqH>0L&?*zT~JU8Asdu8_e1`vL&$Lm zvLw=rcio%`pVlooym@5slRieX&(5ALaB^AW3aSixMDrb}z3j+Wcv2 z_#}bB>4?t%D#~1!%H>=}bXjPtv^P4n#Z|hyC+D@k@=^Z1QSC#vS?4mE4k-HixzfpALR!-tBwLHFS?NlSEd z*UNn%Sz&BBvD)+yaY z)Yy3{LVeIHg`yaP*v&VgP%_gs7oJDv9UEk`87pe{zk~!`465CRx$Dcdyko4_oc;JK zN;v->8X97{tV!H5Xk_q19mWNDP|NA?VA056=m>WuTsGD2?)#^1wB35fEm|aS17Cjs zqEAoe;wSDF;Hi)iEkk2~S2AAYTIi#@M=`@Q z;pDsD3^LX2YiCG7bKXF18OL3^+8GiHj&4val8k%M9A#5`St2+)TY;mA$h72sG(y*e ztPK;__b4g4-t`|B8O<8L`K3(CDB__wOc-NK5bCZ$DF6_Eem{1{2RtRE2PF9k2@?IHb#7yDXSJiKbgPg8!{b!g+~ZWoFAn~^@LQ#So}3+e z^{bfspwM?YSF@uZY46dR-S%V9n3j|HG zQ+Vo8z!9#4`x2ms*BT3uLT^wi&OlHltgIXN^CPTGmTcd^x*5cXFmi8p?UmR zXIED)2A#Ny{!1Y8hoMQ2nx4I{N-7=KiLU5yDwWguftU(TH$IdV4{h_@y)VA4N=$j= zd%I$Nemf};dUqyM$DPTHDA{{=f2VN9t}^4Yc-^V!<6r*A!|FFwm-bTh#x^!L_k`SP zSXZRj^vxd?{ZE&uv|~KShjvn@Z?wP|iZvVLXDisAF}F>NNMD$V%EF&NFC`4q)p*3B z>o@Z9rq7i7ewVwu`YbuVF}GrrYBA+dikXoIqqliJ{O;6Q<5qgMFjPVPQJqmUDoX-6 zCz%bAvr^W&)T>vo-s@|)RccFM4#iZl$_}$<&%R7^1U$^oeY!VzAoMU0rmE?SF1oC=|cq@XhRw1&%%L$?qfv zb>lNSR8{eu8lk&SU(e&~Ll)!THfmSJ6A+9>>jFy7(pwYt`>JGJg>%3F!c% zSO5{p2jvR23>$_^@A1yNv9Zez$;@@J`JEjko(`wfdoMX|=LBGup~cHR%3)pC&oPQl;TuyMC$Pj`khduder~ z43_M%4AxrptsMW*H0l&{;RJT;!ejffn;RRqo0KIzJ#(y0!MzF6mmcsj$<>fOC}r)` zC8}#J;of9m_BGzGT4-_mW~F~A>vEjOwKwBRo%AGE+HyiRVOJKH+ei!(#j+##J6z=H^K z`2GVfn$pO_?Y5R@t(5^Cb@HXBUE$>X8~~d;LthqEt?mJYVpo%0`4c3`HwZG#ASV}tbo}Pco5sUgs8m4qZWhE%U26uP)wmTD6wr&*ndlC% z-oPi4@w!>`Z$YVb>t+h+*!)NmB^X>9UN2{21j6MuPfV@iFoq#a#O$u}!)ze!Ld*JSVTu@Uyx=}2iE_s&whnpsGDke15 zS54;Kf0CEX1jtIp8qv{&~m^apaPe&iXwG!{OwZaRy+JZ?fB#>%Ga;nUi^gT#uOcH`1|iPIk3$4 zcRPKkzrVkPWoBlUfEgE9`x0D!0+}wtMX}-&2G6zRE&!N-k$2R=PB} zENAgsc&EJmzuU5(CQUA3`968t+i&z=Cr97LM&<;x(~_$JRtY0LQ{n8IjB&Qc#ORg> z&0h(iRdHR$LSk;4J8%v&%AE3j1?qW^A8+4P&4}qrIyCKQe_eDgb@9;MkCbm`_T|h_ ze`#9uk0Vj0mA)g^n(BXHxOU45W%pd~4Vr$!vwU$!Thw*qmA9js*0MoN2X;)Y=Ge@Vb#^u{qANg zXtY>t%IT&O;!UwU^+X&8+Zo2nY(xJ&-osdWdq{)FsLT~u@;qtM!lq|OwfUU#BmGPI z-@I)4h+i@p%T+$aZgQ=w-)8A5T4#2)C-{E*;Rwm4MD!m2ak{yTXLDX&FivT1pXKQs zl--gn+8t#7{#3Pw(u^51cn=E!MA)BqBoBtfDy$0=ch?B*k-kp!Tu>E74E-&XcJ)(L zTo0aYv6;Ya;Yus_P-(jdh7sd>gPof0G+OS9c(m|0h9>+nUUlEb;f{q8+boaTYFkuj zEzQ@pudhG8OxBSaDaL({oB9UhJ<*Umb^3H6x$ocQ<>%|8k<@&%4(hHp(0Q-6AxwgN zElp*f8{hZZb^r9P?@RaIorzPV8n$=vId@Qvs75W_4>* z+xGEBvXO?7CW37RzP~uW*`_d1n+`ZP+ z%G#Iv)ZK~jmoh{HLM_02A6Wa9z?_F<#UB3Za9ZKGNG!yOj~9&ZsV_aBq&?!!Q16d_ zo_(g@%cdpYt~O}6{CTkQ*&QDOWfabFI>jf5SyzjX+T)#KL|-QqBx~@!B#}ht67`I> zFu|t17D=1AmRo=S&r#;@p9$SP@j6kQM%NNa&|Tx#!$zp=n(W%SGc=`Hvtd(ZMMVi~ zrz2dZ#@Ane9m=yGFC$R&AP}F~Q)R7dJVRhfUaB_kU0|EXh2in>*pcv4 zOut@NoYtybA%*@n8Hc`%VC6pRfGm4dLqoV8r(WNP@TWdLTqnaot2rAWCT&fx%l1>)w zYPELkvDVLZ`S$KJ6p_~w%e&%pfpDF%7#RWO|9p-tw&3kYXy*NIbkpl!_P+QReEs_f zf4kbj-U{&uB|FQo#y$V@uXuk9-_HwPobnR&a$TtWUmG;i7gTp$-=pvDl)WQz3U*hU zrL+5I5%3AxrT$0kLqE0J{KI`iZSms0hT}CULbWCDM)_9}B*B867^hWCnz$%@DIzOX3PTH4)Q+Mv3T{?J}i9`FtR z_WN;Tc9>UL@_j-?4rK;YO;BqAfm)qWZkHae`Bf{F6??Ge-u5nj^dy}uBK%ZjV5|4q2|Ro`XKoO9z_WL8 zS8<#97`&$jqle3xsBWEjuoTO_ur^k5ue)>5gY8{(>XM#sT7L1;CA`asGHMMhljFyi zAY52ee&hbgPF>Pa@9gP`=tA>V5L?goe#evL`=Fvfc+z;fz;#xowP)T>#wU_OQogCO zgjUPA^TA*ZP7e}dq8FYRdKuMQAHU*8Vvp%vpStXGjrV#R%(Er0op~0R*fXxLhkjI~ z^4Lq%Q1nH=b{_P^1uc#XVU+Ra{>Bg@3+4Cr+U)vJUvv8O>8Hg-H( ztz6_f-#RzzGi8Gg4bM(oF0wzOY0u5}pB==?TzB)yb9uh+u!MKlSFdG|xVIOk=OKBR zD|pH3sxjmxX|^wgzZKI|whmUtKLfU~mxbC0@F?lcoBi3F20uPR9w9cmykOeUf-=aJ$kzWx zkg|JK!;>dhhwbB{bmL8ET6jEti;}W(sV&v>Or+!j9Ebag-@Nf>Q!L4vf>Sg^0or@M zX~?-i=1MQA@c1>Mv*EtPQ_oAoZ=c@l^Ny}n@E>$7*0OlEjNd~)EIM_H=#i_#JmmWu zDZ6_LlGK7}Z41iEgEV3f))518vY7oZ*A{*w2xh|40GeyAey+pY=b&6ADpaiHCfplY z48lY#21Y=1#yIAIEXfs;L9GnSrzmFpgOk0{uvi?b3+fQzF4*)W?Ht_{j zoRs#CdbI}4L<1Fjv?@E+eO8wCV0#KHHmf}YF-Na^O|QGKsAycD|5{BA4GoqFgl`dK zrl6XX%*Iu|!Pe_P3!G99S+-Fon$lWsOGbw$3_Xb-RAq5sfYiZP+h=HMzedOY=(^1G zjA%aS@52#Zx8D-@Y zDRbPN4}onp_Nc!1^H9i+NV$HFNeNN-pz$-wqNSA(4j)ctV`$EG_Gbd&&%3KaEZ)AA zKQET-!B#z8WW*;t`go0Zq6KxT*IujkuX%lQypyH}J-%+#h8&B-_?=~x|D&tHSJk|4 z&^Todzzn!tE#M(E54_AaXSNAS9!9Y!;)SO)A7IZx%%fMGadzp-@Syhg_ItzqoKo8l z{+4RZ+@s-Xg!-W5xQ}iuu>!-B1)T1d@{k%bB_GC_lE)1GFA!ew{0>(4{Bt&cWK=O^ zG(=c!i2ysdW~izrv%O}r<<({m9v8qv&}CQ;*WzOtm<=43LS%Awl!m6s(>K=PL6n7( z!fmpSxw$#ZwJ9DGx;*5%UnN&l#hTW46f7&}0}%^M&S!FqonZ;>1vY0+I~rT6nTSs_ zxf{A++{@7N&e=0|3|fJV>)H?2i77M|?v5^Np6eGYKipeK<4np(~!`*d{?nrwqa6$yXBzu&P%-?upwcF{Ig#7Rn zDl4+1ly7hfv6g=Hyad%HR};WO;lJFRM2 zvjIu(1iQU(G?#n`iYFsa1L0cHm!E0|GcY2R04S~K;$tz`>TTc+sYauW8MZH;c~BNu zdD!CjG?;^+F5Z^sS=3)u4o|^w#9P>IWAm{qUs;MyPpV7&>GS(z{$hD@Mdtn6Nh|py z<}aK_a|%rGL?V+NTYdl`>aFa)TlGfNCWLInZY6u|v8g%okE`CF_ldGOPlaIw3%4%QOyrW+B(043YfEEoU)IzF!CzU1 z`%#65GK#UaJoW0wOJTpSWxQkgN#M-oEf@L+r~PRe@dw4$jZ|B4VpU4rlcbeg|2Hf7 z@qz2A2TP*Lnk#KvrL)@I>y2b^WlC8nw!^X~;VFF7ARU3p;6AfT3z@)j3`Y}n4@+6k zJ)f44kbrx#+m3Of$hP<#F>{_tj|>yB>nM`YeewF*_(MRia(wHkskEtz2jD2yVSm9ON>_+KeZ}RkqAqn7H$+s$GMSfZCtUiBIb8gOlllakC1CQD0wITNDe^95A4ZrQJ~cl_GZ zvbv9zxXe?*L`)m1Krh;2weNBCbcf&Tsu{^)>Xy`o4cAJdBt{VJd9hiz%y`~+B%n@u z0!+NI0>=fro&-ESnGL|@8W|sxfwp3q-OtRdk`D&ksqrb`I$1yEJ@;=OzYY#8o;C5R z9^knef$A1*u5I~u+2Q+_Z9@!AzkmJpDTEFn>cxJ|{VtFx1CjH+wXkM{PP z;~+$zT>aWGNCcSjPEPT4h`I-|!Ff?d{FYLtu-dD-g)dI_@%gCvd6i)JmxerY>=GT@ zac#v}<#8D?&r8jJ4){U8>Dd@t6cy3@aX;S{qQ~$ofNfi~wOCuPnSk`)ql5 zJP(Gp_YZ@k5S^JhWR@9+L>8yZJK~+c<@3t`&3)L^)>g8#f~I<)g<9Qcs5ySvSoKoV z9egWM)7Xdq2q;RyPp}`TtWo1oApmjN?bLqjsS(nC)g8 zZZR|&Z%^qlZ}0JSWlAY;4R@)ji82mx>wk9aH+hRnpmR^g2f3xOnBtxXzM*%?vXZIN zZ?3R60gWqVz09UKqWz6!Q5X*=T^C2)$4uq5nku_Ek7ixd-3aOD=Mn39c-)Qd)*!c_ z77=wbtJG&M-3_WhR{4BxU;X_#-90?ATFX7$+!m?*#$h7r2WX%yVQoX|$jIn~tw$0| zV-)wXc1~wvZ?rPyf;|G87)RqSQqZHEDVZ`^;3Y~YkEnFQhs`7~_JCH?-2c)QYK|Fg z(^IF`kkJqnEHm!9qC0|+^{D68txTtYNfpL%7{xAlb8etjYQr_lf0V`#RmA54XWNUF zymRLc>4)$rL#M5*!n=;|^px*E{>E`+$S4#2K3mb}&6*AmX~qKw`ILGDPVr)K)4y}w ze>^Yva@@u)l$}((Ka!!myiaYTcvu&Bk9pJ@SF-Fk<`_NzK3jsPq{hAO)4v3*mypU>%}|^5J{GKyD*=4C*)Ph={n#vE3;tv=VIkSEhwHj4&DG7$HU1!` z+6n`n*C@@G9di`+Z7`HkkJ&r5uk?p9m{oJqrc@f+v{u67J*SptS zZ@;Q*Xl6~>Ipx*H0Ka`7+)GtcQd{mdXNYvY5YTDbQqLpQ9O=Zgi&Qu$# zmqkU_7XR?wOrL+LtX}ey;)yFY!;QszqE}u~@0i*rC;FlOq*`asU{4viR{M%Ipl#&v8LL@CFfRZoR4uNSqW97R{rk?X!JVl}R*Xdt6{CHwk zR#&XKxJdve7)fE8t%00Us)o*4@j#$c2AQOPaO%ERqG(7F7`sg6AFLXKXZG@9RQpA* z$m(QPYTM3gf1Sv7%W*WChyUauKYJ?^GeI=Hvnq&x1NQ2hzDF72!V%pfg^|JAI^1u{ z?(ADKlW3PJEGq3+nx%;wP4z?n-$L>fyeHFiy=o3{zkqf0=uy%!Sj3Uqge+V8!tmOz zOk$x##>Vaf;D1qVhaDQDEPpK;&vsdOgE4^HV`Gyf&L$bzpW)v}{_yz0YfJ;1lfw|I zb*@^gtY5@iUv7T!0JCDfQ;dsmYUq zsV-)-XQ4Q`F|vG?Yp%01t;NR6Ju(;#8v-CiB^r}xh$FTr_D-s8S2NSrR!t*94e-2_ zKwt>v)tEHs^56?WY1OvN)eu;|%CxgCIf2{@E1)cs!SS+boq@c8|ycHek=aZRpW&43OwoRB?t z84+)A7#GE&X(pFKi_rBm$*thK3*@PrDJDDgDRs|ia-hZPNf?!;XK@%_TTNl8lc3O! zZXg(SzdV|@1CH^clKM!sjag+}eO1%X{Myw@PBJma-7`I{?rGLN5@zfJo|hARzg6L% zN`z>SZA7~ya)k>gcHUSc{_8jAf~KsxH@}&~@um_u&7j-C-qA|!#z=kEXmUFWB|Tlf z@>}WaLT4Q~Y|tVO-OW9knm1zd8_{$kf=&Rn{-I_OUtiw@ObCTI&5=gamRH|S%1wS& z5#@4R*iU`@^o04dna#Mus`Lm%=lv!_|M7PLW@cXGsMXlIbu%*X_L3cv+gACx>Lu8` z5b=wgmYJZRpI0+7R3pL3#KCW$KJsyTf$dW24WYTGi#gwZ^)t=G_U;nyBe;lqx!CD& z3|=Wp(S?%Pn@?o*HDCtq6Wb@hyaw~1ATAm@|6NlMI4ubyNZ|*&kyu6SJq7}F1bd~D{h1Pvj_Raz$a<_tso>)yX zgPxl^wkPU*g+E&m)1RbC*2mwgb%~6NQ)BBJET82{@+pg$&SH;^4c84ai;V&3Fld?2 z(tWkp4xhMOm2Pb)XS6+*RJ;&g=0j*|!=j;%j*ec8gx^H()0muWEpDzB&rj`a{?yS+ z!jh$Xou8gG?jDi#f2%lZA>ZD)B&513k}vtR}Iw;rx4D<0K1XA)?=8{R(Ie)v<6CuD6FaWLEMFm=Zq z0{<(q;a66wspbmwfP+qV%bXg;LU$>pLS}A}$pHvb#z2qYXxLStyeoIoU zy5WL7;??-$NW!g8sGCwiz$Z@5t~-Y$7#bTJot>R=opuN4B?#kq54RKzuXw+C*vZAk zrMEjRJ0ST!c#plE5eg#ciDs3w{lx4H1t=9HWmSji!KxJo2Aq}_w*%1!#W?{`OW32K z;TNOfLTy4skeegnfAV`O5HhkZ8&15r-W4;6*k(1odD69wA)X$@MtvM)4X?V*%&hf_ z!eoK%(Gia38L4I(9c`W8^U=N&n9M^}zD{93Cj;`pej-Py!E=O9$KsX zk_#Vqqh6?l;5M;(n~=6o%(k3(jMcl>_JE_;{PM2FZ~v0WX-%sU1=Uous9(`Md&r7} zex)Ewa<4fmIyfoG@^R38^v2N7zc{#2K+$%ttX1yAw>5er*BFcWp>~`iiqq8`296nf z;Y}a@#$tvUqHO{S;F38GJyk;3T1{&dObS>n*`yBS0>lbUjcHUj^R(@XE6TU}#>Z!_HlkNIXqV6TD$NX}M^6)^r1xAW5-cs$>Aw?Je=k znn^Y+W2n3GMq352Jf;{70?t-_eSIy+7r~25ttblIeD>5Eh(SH-SRpV!^GvI(w{(P% zu~(KO(V+hHdHa@!oxCflc#Sr~LmB}SglrX~25HGkS?e}8Qde>Lc6s%XR>Gmpkq1}# z+4ZEXJ@%9-kQOLSdn%|rPq5HWQoUM4SlF2|1S-TZLNys;g2b~TFsfExY~T>pr_YW+ z^3*drK5NrizpJgZK#UFJ{x(H&r|r9SVlB`fJHzNefVy*i^^f0E^W$?wjx?CP4v3LE zNiJ*;$_DIkh_Yjh9k<94RL+6=LLJ2rP&S>`WZ82-TU!KE0$u(!WAWFOYyaVt%rd3>ydFQ)DdCw`7HV3+fn0|PdZmbvLyzvOKz>X z_W4b8^~oB2K4s$}ilkR)KUmiW7FK;Lc&h86sv|5BaC$F8S0H{ZMdn-9m&YC!B32P) z_#V_=$Lgpa6cs4%w*ZV{aLjAFwOX+0tXao zzoS(q)i$boqrJ0pvTh|}D4GDed7ve!eTeI*K!Z`gF37Wn^I_;y(E0tLf1Xm{e@E@V z=w|27mdC&)n$1r0$k_Y5(i?7?)M98c6leujZ|4QVKlAGh>-OZKEZ-kCRPQ)e+S|-u z!_H~%?yF3aaip^XEgBjgtk%w0PE|r)+azSoc`L9hER^Yz2nrUzc=2z#jc69lNB3X|WC2Mh0gc`X z=rwqian_QUJSdaN8r-VpPz{ZgG3TUykUGVP-2v2tuEXi#Z3V2410-I+I2LqJKb+sy z_Ihr-S*34=Z02r0nwbx|yh3kcav0@T6J~(Bzgos~m2RuZoQOeTpCT`&FA$2wRa5ru z)4tuWLv-m9(aGk}1!GvQ5m1yvI63Ej%bU2r3fDovB$ z{_`)Q9dFQ_F8`S15h+JQTb|SB8#3-M|FR_Oy~l)J;N4pW@K$n3eNO6$6M6wR7hbk~ zDHV5x=DF3986t1&5`>Jg7$VJr?XrFmZ3FjzMTW9x#jJ&Xg}GGc3>xl?m|V3efS9lV z#Pm=fE(S)?<^SWEjsl5%C`veTdNzmE0g!a8%N`lX_U?KPFc7yB(oH>2-k)OR3z7Ev zbn3r<@7|SEcTgzTwywHzdbU3}4*7T^Leo9bLKgGkYuD_- z!fZE0A2N_j^X{6t<`g%xhnj&CtD#K@J*-T!XT(M&NlA!*D1OgLvl2JoP|i=3+2=FH zjGSCz!fC;@p{R-COrP_-%~53MxzF|M`j21)D#!f;10!#9Be*?9J()6H7ls4=Yg?eE z$v_VSp-G4udI<}bK~Y5yEw-9Pv-gt0wufqsCyZoF#FeXvuM;CcNszPaU*PH1Fvc}&odU$3=7Xm9G7zP~XNk69qUuxCs& z;%2T}zhEf$F1IHJ{UziAFV$}hU5oxr8)CuGXnJfJR{t^yG}D0OC6bbm2c2z;USQ%A z7T5ySQ(>QXaA>m(as^YeRJ=oAwQ5Ro#E7g%6F-Z_Jn&l{5Op=mOc_>9UwZ=RL~&{4 zVCJQMcB#YB0Va_Sn0Pe0BTNwM7PU5;w5E z#2(gbDhbn6|M7EbDoQ*EnKEGG8w+gFS_7Rx;#unbdj1Pd^?wLl+|CWmY_CYgRMTht za`+>sEmApSj~)Jh^yA--CMimBdI|S*#U6dHYmsDWj55TI`a!oGX1{7ipv;NS(+(?R_6xdiNj>wZkG$;sExkD|=l@LMNbnvMM=+UGL#$Ii}0qfQ{K zF+gFhY86zO$o;tzp9o5**Px($L^#%kFi} zb|(4p;dZeRsi^4aq`*i2B&wr9EEHTARZ)Y?y{Gd-7>7U+){xGzA%%RaU)H{Db z=XS-*moq)(x)1I2myxPF5PGHPLmi26VyZT+I>`fSs`o334ZO;)y`(Vs<7Q;*Qs~W% z`LOyoqH~-BhjlSW8$O16j$8K@V!0bomYRp?-kJhTQv9Jw?E1J93;XS!9T_SJ8dM=& zZMSkAyOqe9;$$$^B`NT8fv=N(&jiNT?}bH~B=_x+loMP?7XQUIje5R}AP33a0nqTK z6hsQcBTbdBY5`e!W6OzUdYP@Eg-S3Z$#HNr_vq+|QnjCnaiK_NAa_a7^v`H+`&?3x zCRy@tHM9irquQzFKoZ*Oa$WnWg%JIdzFj#N4lbEli@ewc^acge>%u{tufOte>4?_a z%-wwCXi`QQbX47>`XKbfVIoXGUib80>&;$)}eXi02S0TI)~hG z3>a-!s{JDGv_L64Yrt@^!0rm$o)-7=G)z-8Tg4ZxN#;cb|M!iq3n<*T@SNpO&FF0T zhLMwp7R93jUq=A+I+T2T4`IU~Hr8U=ml1;^5`mmrA|M)|5+n_6u-;D!BcEiNLcPgy z(^(01P|9Y;2mI^n@6Vn+I}ey3y+IxT+Jy@sbs|ZfIn?7si$MLP$n^=rs;{|lE{H%$ zMyUb)efp#x0@$1QLm`QYr(R(O-6apQshN{HuLW6sKBDR0mKT zv#E+XBf4aiNFycz28QB;H9Fg_EnB`^ANs*k@V?H@&~5dke2!-8_F~qJ2+EAkB!5q# z6mUdW2m&-hDI8hWlI6=?;qD%P_#}01uvZ3wL&)wWIXEEt$p5AE^W3gOF%MJQ3+^+h|5tlFEI5my%$F8$hM91gB1&I$Kgd6wt>`n#ll(MBlEN zw?7BSP1l6xvyg}H6&W?h{Nxh17cz)VXllB-`e`d5^yiNMWri+3mZ2BP3PmUlHgvpn zc1G$bPeRB9O(otWYkn#8udL)|UM4&G-px@HRO3`t#@_oEZth*d5y!L5DiQ%RNsZ0_ z)RU!}Pl3ie{h(9GhAb}Mh)ZCa2XjD$SD6LKL5F$b@Nn;F4td&^8%Dp$!k8i^imIp^ zhAL9;0;yFZM2Ui>{?w`of+c~mto6y?1*D_D@$HMAb3)-tgCqF0+4p6-)&}+ML}T>e zF0uy%v1)z7uRZdz;#I=(?rAeeK4#kp7*mkrze9f<=zZ}5?{!rwsNQuePh$cM*~g3L zejaXb-y-x=qGNaF>h%kPGcq=l#->D|jUG`gaU1Q0BCy1YdYp=MFKMJly>>K9_fMa< zPBKXbCr4AH1SUm7{53&}@2brFVJZw1F9PC{P7R43rA?@$*wYaG=cG z0q9Nd$4d(HAjJhuAJ_|JNWw4l+`MMa+__1C)WIo!H!O4cSxehHe2R?10sgK1>AV%V z6T?`-iT&Z&3M6&|mNSr}9ejH`rt$&C_uAg!qp(OnoGR%dJ4^@#nXqhg+sB7j45rPI zIhkqKoyV!fM1&0hEXRi__#UULX4W-JyC@D2+!5mmDzQk^)tMPxc4ln=oxMSyQ>ncC0D)RX#rLtRbgWV^-!TWd! zI{n+X4^xu4R9>G*OwG+cHUR0Od)=oA3c_LGD}L{_fB2Kh#8nOYbqjSz_h!PBVkxhr zM&Eq$E!(V$snhWZvFID<+5SJ?w3DDD^U44~N&G6{^b>{qc!=SI(=|`~Umc#F$K2zM>Tv-RMX6CbTlk{%fO; z{Ov~boYKUHF!H|+;V`EvNm{2SRraj4Ex&1Q^n9y3%$iz|c0^8?9R`nPhxFY8=KA?@ zuVi=ctcbZA<*X!>$FH`nsA9~(L^075lqI?>9H5SmJXdHa^Zo%1YZc8we@nABj zlc0qYt`7f5{}i}vFebeN@&!J)O+Lu6Cj`MYDG?~6xn|wEbyV1S$z~rL3iAmC@I=F! z2)w1Vm0)=&$g+SA)`@_RG%aat&*Gie zuXOqSQ{a*hn{dtv%X^ATqj=tj*65cJb{dQmillsszyhx;Qq2wzqLArM2|1dXb7|mN zNNjBDZM!~uc@!b2RzS+@y*U!{f=S1oxg;hg{wMmKHJF5}kj4%UpWcP4C4T{=b zyrCdpgQm7;hjpnl9Q?Y)P18j-t(&%~@iwXXx``>sW10ReChC`So$&lcI~LCXJ&0DbEcoG2PY!3YTuyekUwQ)5d@OX+OnvoviC(>wy5 zorPsi9@!bNX?^uTbx$5R^Yf@xGU)jvf!q^AY-Syf@_93Q_5WQ5jhkN5CQAGH9Xy9R znr61qvVp;P2$$<0tR@B^5~FRJnwm7jkWq+7!o-fS{Dl*ZA{bFB7y%iqRg$R0f(5uS zG(HI^k=QmB6&1=z>8vun+c+OjZ8L&PP)H)!jFb}~IF&^c2qCC`RF18SqJ+!XthswA z69r?0AEi1n+>B2Q!s9tv;Kt#aSJyH&CPuB8AjVW!Mk3L?&yoDor_DSSPMp|P9UB|B zlMmtGE0Pg*rq<1bnsWoWG-{jPeN8|FIy%nvmj>l^HkH<)V?cxE`aMWbUmI|_mW@{+ zkpr5Eh!A})B_sqgaT12Zp;1Z$EU1;u6BG3EU}kE;K6zprvva+)bUszwsm!<^TnqZi zRJbM%DxuPKnT#|z&7QJB6>ByCH?21)i)(s*E^x!BsnMmpvh>_YwPoYmC3Dx!2ak-; z=XUm=UO%St}UYB>Ur2-q}@+g8n zw~diUzwSKD1+`?fu271UCEX{)>ot%{* zch<6g^?=&AREOSu@6!L?>X&AwYSl5b_Xr|E=A(4IeL1`ek&`3u-o4C4nUGlbG0L`w zsV+(Bqy;X&67Vv1-R{o`;05>39X+Kom=1J5Cci0#NEy#JabjrV9@Qu`J@@?^m7VrN z-QhJVYIRI(+;%>vx5O5#r8;8ZGqex5fMasc)zaZQ^r(7AQem7uj~`QImoz%3W6m6r z(~ioiog(u@Xa)IMaxu8Rmuc9f1n@8rxjbn8X~XjX-dQM6u((q=vM&`eL*cs42Z!5Tg{ce^3YkBYO-TrLXEXN+=_@3m{! zdg~<=W@8qfEeLz!9E-+8&fV;~nQv$S)pZ#QJyaF4AKUtfz6OfJ z%rJ)X)jIk{Gza&DBqT_264qP=YD~7vYGbdHrw1xy?Wk(1A+WW8!vQy zd4)ZCi(mAcb&Rkdv-e!(^WB{~@8Yh8JQk&t$VWXuRoi{e;*nHAU-35 z9%T}lEwuGHPeWFT6-B)#N9DfyBJtGwClr?rblKTInkvmq#VXU#eP-(;Qi6gxbQ3f^ z_aqaOR0fE)KE`BedVVHQu-^3lzQ!NB*=ELT3M8G2d1X<`94~u|NS_fR^`>%=`U>T&dj}q*)U4`C&*T9!!eXdZBtVyp}Opl z&dVSQ%0TauY73g4-!J&|p~w^DmW{BsiK1c0NyeYl4GEp62Sc?Lz~yYJ)Em%)mA?3E zfA`9L5|pM#Bt5b3F{PjD9`YnX5d zT6_5G&j4AEIKFOW9kNPqs~*Pmo#ixPY#puIMw(K|=+V>JG*n5=6_VGoC0HDx6a` z9Y*Hj54IwO%JlEPvXv~ch2Bjqi9G^!md~W=Lc&Bs+Ie%`QYP+}vpwB{$clbEA>=49 z5FH8XKgS{OOVBztw3aAH>rL3GGHezkXMj3aY|*iEaDuf6b=}E{t@7g}4eVvIC329| zqbiJ(zoih{ptSiQ3=YS+F*Zqwg<8JXnxQ68WWA(AktArIcb{A{Ap0qPRpVs zLwM8a#>2Xpl<5IWOs4}0C#kD3<3A}WB#ABBFle|W6n$_c)(i=SL62lLUbug7Sm4EB zPFku2$i2(d`2-DE;Krgac@srudYd~AR0_7|ZE=+YD$4vID2s>AGf7(mZ7Av`_=bjC z*}b6?gg%3G;*&}E6DI1SF%-^zRb7=-qcJGQ#FxI4UXI;!{5|t=TGwK=a&x-2wK@@V z?a?gcg0hNGr~+(UFBU`;14G*mNPyKt!3BnVn=-zeI>|7FEq)vH5rb7m>S-o*yyFnZ z0&2nH=HAte(+6*B3zu?2rXo!`gETeOC_OZE5&8Xn5o+$s`xst#Vfab5PJoWa2{8t*j%azLA02}n4_$-y}3Y>;K_Tn^=Ij{rPFazBqg9G4P z=8}vJvJ$tN;qJ6A226)c=)O`lpB}iYU`SwoSeJWi!L5a@oB2YS+oO2q@b)196GW~A zX3^ESyw-ivocQ|uleL|Zod$7lS(9dK6CP6OQ(vPdx+{xXk|u2vze|;^9|VAf`Wba=PqSe z4}L-#K;;bFu%{hITfXUrj9_mg#ASqv%nbvrx8~rCiK4Dk&@7JSQw)l#eC3m&d03lI zT-T{?mEJ9aLoA7o9uoo!&i24=y3tGqM0GbahCYBbQ3puNjS}c9-~Hf~Dl02ncYew$ z8&1;CwVgDn6W(+0m2Nb)&!Y1}ntw>IJkP(W8?l5r$_JB04+k^>12bpVixPEY5St|Pq^A79_D*Iy5`rs*(NF7?ijPl5d-UbN%{}O0BOYM$ zk*HF&F)jch#J87}WtRA7Y&@~`C?ChD@Vd1kt;MQJjsjSkXNxJZklrI}n~Uxv-;ALi zl4~UgBZG+o-c}mK$3TVCYl8|y^@iEJGryJcmjs%5j>!{S`em6R60`@1uBVh_BPjuJ zC=^;%ju1+SjuZ@+qcbp=T==>w&4hu&L0(3)`)lf`qu_XJj+)44eueLW8!3ZqN@XJtnOf)X-S1V-mbEe^ zNnlxr#_C%|vJ3QR{vVi3LVBCAWJ{JYH`ybaUuxGcmaaVzSQVFkiA)$tpd_CqX?q$= zk5t=*|YdMAhSSU`SIl@(kVH--K#!Uzi5aBHJj)q5CpPbC4`I z>dIfF7ojak3{zp29ugDSYjPa9Y>eo^zrCOraIQKZF!K<9T{N`A#qe5fCJN$CdhFs9 zxn}9K#a#A5p|;&tf0#1f|J@$>rE>jT1XUF@;S%ka=dcnaPwcCqb0hhF5;;x^wB6>c zU#6La$XkA-uSkM(mDD}9$p1hRQPfg&Gvn6xK(Pip{IcDsT77l^qEY8Mj@@wwC`pJ* zFZ_ovh2~(+An+-)jS)FT-A&XE3l*g=nxr>u$Sa45KcD=M`6&$^amS6hsugcc{u+!~ z&I2eI*5MngN;6r9;}zh!P((t_cecq@)y2wUBKyL3UbdI73HcC&1Ql&Lt6rSO+wY#& zES-|q-DY2MY+KVq;R6S*jjzykDp;i-%Rf=BT}fvgtOa%U0F^Qk&6y?Ym}8(TiHe3K zC$H0F`h9R+7ITX22-t(#W9TzVM6!mv;w8+&55fu3*FpamZ(W5RGwQe7Fy%eENSIMA z_+#A^-QMpB#^qeKt%qcnm|lUGxD==<=R2WJVxA9E|5eGCPCgsfk=aiEL=J1*Xa0RJ z2Ap+@L6>p1D?kgSty|@TYVMlUY##iC2(hN=2gS3G;7ab5mJjv~bfUX2zvF%3J`ZXc z*mkrvFTDQQO~G%^`TcLOA<%iVD(-b+<(cwM^y}o|#l5>IAnt`~vLD9m65R;Xn;jA< zO^2Ejxl^6@Q0PYpXCseML55&pOhi&R0FXMEw~^ zDv0D3EU>lz_!fR)FYm>}PU!FJIA+E-^B8&6dUGWl)Gm5(?-bP?JL*6_c6V{9ty~UF zL5P~+y}GDZf@xV5mFod{E)NKaPjcTg^K)y-6@@|%3b$;y&v#xb|R`~X8awJl^uE#PzWZ*RHaWu<|94a6yxiqFS< z?3@XMm6}l>YtTf3&M0>|JBx~i!|#0%_m6bkgyhA#|EBcx1b1hGpsQ`gaK4XNCs|?J z8}2o`@Og2^gvu0|SFI0B`alM{8nYf121XV+M&qAoNYtR*w!juz$??Ri-^C6wY{SEc zX3`jL6+4G8SOxh{H;NW<-hb+2rY`HK6C(~}FeHWTTkYRY5_@dxFK-DlcK%U6?Q0o! zP?1DypQ0*f?q6e0)}xq{rY)caD|)LoH|Hfwmo{l!O8WK*cphMxtywVK(bwii8g%oB zdEoNBp@ub+^!LF-ZE=-q~Q6ZQ& z4ej}hR@%l%1dTWrQR)XunkdB+(DLIdm_uudtDM8&;#*Jg{3^tVk1EsFcv;K*9W)pSb$n4>#|oneasO~f zPE*p;_oslZ+S$)vh4-78lrr}gQ)udJ?)eU1`13~)+c+a#+f^5d@?dYif*Ly=8HRUC z|8Iz;=OB$e>2(lkAGIE-xCZpVA>>0B4*eUz-VI`77#cf`-7a8tKBejkLYiG{y!c@P z<>7Bf?QZjr6IR8>?CwF*YoLl9g9?bQuLe>aG4HOfEI5|Iq4n;%|Btcj0E_b4w&eK| z?@cT*)+i;hVZ%fbP>^Co5l{p~kU>B}#bGEaN^gmYVgsdEK)@)yN*Pd^Mg>GgkTM7e zC@8&1ZwhbiA2cxx$(!%Jn`rELz1LoA?VZi_eJ&q_XSkK`#E-?U zK{7p$9|X)S(%HDXDk`i=(&Cv&Eh2Ji_tZAb!ScW{Bdyy8nz#zjs1E4gB2Ejy8jT%0 zyrM4oG!%wryM8volNhZ?-X)aJ1km3hDI?no9aCiof%7U>N;+$}HjB(#C5|5Qo~+Vo zv*6PwJo=}hpwU;h9B@Hd183;np*&0sUQQ5{_kwN?CM$bjR$fn^Lb;n8DS)pM#1*fT z9Jh2Fn7-Z+)%;4lzdPXS4lDBpNDDmY$2|%NpzCP%AA~7t1@;850QgmAHD9HgM7Ig2 zu^R7@CR(O~$eN*j4_qZ{g)O3llq}u=4yqVc8kERjc13TGR&5+}u+ts&d40$mh#o7O zvT`KhMiXOEfE%7$Z{t8fMkszzJ&I?6o{69i-&&5M2$JhFI%v_5&`X&`n*=XvF}s_K zUV2|Bl&AaB(e_-#iK_vI@5NoLcJ*?U50~bQa)KSRy0+qsx_ao|e{<}aWhii7^FH-q zFWi4L4w2Dq$!H#^Vmb8%wbiC?yXPl(orqm71*OG8-F|vrHrYFM_{gT;pQ(t+M1og+ zjFerdSp$N)hkEbGFI#R?A^Q`?;HdF@k;cc*l8FfpUZmS}cf!=Iyhp4@B?WNFjoOrl zu~UbcDfKxlf%63?sBix4{$u`}FoBQP`3MbNf+hL}kpD`*TBE2)Jv}^ghF;+TByE1X zBCh_t|1m$7k%NsKJK_4#J!fN%sIS1k{p6D`Gy1?w(EALCl0Z9nU-SwFtHe577)?zl zIHsHr%5>+z)ru$m(shC-rV@8>gYc+d0MhZ~!h5mV>GNw#Bu4VeUcSNj+IOQUeSAKE zV+>vCP}A?Mn;27jT= zys58VXrPci_5H>ZLBbF=B46{U^pYa($E!8?JLmmVbbP&}vd@L_X%`MqT)KqiWYXX9 zhU7B~+5V_bDbK}}Y%-A7CI4E8uP^^`e4;3)MXl;9&5VoQd6xs`t+zeYjNBo|J~y|) z=J96=mUtD2flNfp4T@CXxHPM_FM8iUvMdLETC0QtDy%hy+Jdg6RkLyM)A}_+t4J8gnSZ~?C z(O3`9d6~=Dih-W8_rT=V$Khpet(cZ)7 z1QeDrkgc|k51$x77x}fu2=H+JH;ilRY8(J^CPkN7DOV08ZPl}d_?h$mPh(ocs$Te} z>FN2mo2vABE6$>mpZ(Ulp=xHR=iA6tFDAD{T3J|aG73{Q{J`;n_A!yvqVWfr-kc^y5S zi9`}nY7tu&ppmk4^JP4Jd0m>ghpR5fxgM|m$Yg7KSQsQ-|0~e<)x5doUQ$YB4itCC zeAIvZkh30gGi^WOwhTX^Sd?DCyz_7QatfH^kXGm=Vy) zpp1AW+B&qMW#Gw0ljjmbf>!MQ2X50=?R$70Nvb8(2RW>nGvUZ2aQ@$jO@BVjblHPe z;1Qi#{3;f{9XR`-kP!8y3OODXgH^|Ymj9f*K1OknZj#Jt$0E3escI{9IUrl$g69`= z?1AbN2}`-4x}_M*4uUWf2_0VOZ=?>Nj3BGNS0_aq&S#;*_vC`2=fxHH?zfSIG2+oU zr-|*x(fW24TAlXCoFeY`_T8}`Fk{NT4|QEw`Sa8&{dZ#A;whWP_$t_=$y2=_QCAl( z>YmiPoKAR`r}nBV@MehTLHXs$?HitqKFk!^uKb13TEikaEV;n#J*>*^7@I}7VE7^U z2JL`s3fa!~g8y;V8bLzGZH>H~{9zfO&3JbA%95I<$B!O;qjukLxtQ2FxB6!eML1aP z1@WNktsfkwI77Nns(w#yOt_J}iC*(j3y0O`atS*ff@G(qS0Bn5%DgKv4HveB357W z@#5i`QrwNq1`EWpA@_SO8uR}Zr8t&R!Xz9lPa96;^0E1f>kuUy2k^{EI26wVw(7+_ zokO_wgfAv-DNyN8vvVMu1<$9D%U6TJrB?8$05!7bQ3Nw$=_#|iD$%H%1-ha#=f$nV z%F;+Y21;n_?d*P6r}6iTX8t_n^6|=BzK;kF4yNn=7N?F!>@j95rlug%xE?8!ySLtQ zuC%SfS?euhQjPPjINWk^`ELR4A?+lSD&Dfi8&6C+b$p8S66NJ@I%`|-I>e9zcqW3~ z;uquuja-Pwn%skR??-kG0w1r-p!K2xp5yj96TuW^!%cBnvvc*C;W$)jMVt}k_7qMw1g0gf_yICzB602Xma08%6GNc`AMSlHm!1}BgSmskOFnepf zHu~`K+HuPLWn>%~m06yO5p7;a;gMTYUNvOxsXYrmX|W3%nn7x0ic&moBH}`Jc}JP& z2mJ><^ZcR=F<f@PZl`{uC11J=pZl3ynQ z`^rr+RsCvc+bv{w2ZOdp*pO$UTu+?GCN`VxIV;@;L*+L^Gv-N4h#+a@uLLwpnVv#K z#QL#Og4X_DZpCuyQ8VNQYyRsJojkFq_36oDz`pY3aSC1KpLyIJj<;#kFqplsIy{nkYeq3tB7lktyx%*giS(a|TCoVma%+>yK@{JDPq$Goa=6f0m+d6sLH!sKd z`r7@G%X=Vcr58NoYgO-8*Ry`y{l%Qx!ND6Mzg}PbM7;C;lump9`#Hu>1_vGGW+cl8 zOteSq{V{ULH+!KvCDhZK_wd4k9nx=>b@tPS;#KETA-F>tnGRVAd28FSK{}v*E!-Pq zDjG{-4XF{Ra{2TMP|~(@2u_3L>cjY(!D8v9>N;Nh^U0T%%TyS51@E6srkWoRy0p*A z-znLhu)%z(`6!@6~=n8*85|P8d|4bJV{NTXbDWPPt;!b$T0(3ESPI+ zMeQQ6g)CL*0B?t#*OK63AwnC74y?%{lB@B<^WQHOlZK0y9W||jyXm-rbNW8rqIl`_ zb!jn+`FpkBtdn#OZRo=z9U||}|q$+v=g@>+vF81vGi8eEK_`Q!TpmzKKmBhom}NmnpRZ=Rr`p;fiKtWO!0KYyub@#y z9zz7HY2T@Ez@a$}e}f-_H@OqwEG*kx#s1b<}dgUH2>#>t$hecSZl z!7U9dbmJFN%quW@yxYDZI1V^-a3awT2wF6T=y_@SR=QL{)Z#S8(!0_GxGOcIeGBFj zvN{U@jY^Y0AO+eAi8uEjvrpK&XWQ7NOi$GHPWTdrRjK|ZybvF2yU<&piu~|g$>LHQ z8L)nWl<{-d26OcaeBtoX_K!EiOf11j4cyEl`z)il%LA=;o!~{#QU2_X%hRWk6zISm z5W&LNSBXu){Y(dI!<}GFN@xo}T9KuZI9u2kh~pM6zxaldhdcQjV>;5q#4v2^b&l%h z|9Uri4vJj$C5nm<=&@0sqIQcSX++SQ3r^JYVlxUSDyn^Gs@RkP#R= z7ZfWp2f2}yBpIz-w+%fYxF!_XQ=g>}=WO)tMQtT%lTS=;_8WUC^tS#CT=(3jElBF) zoX)IXKGaWMT-A#3i^Q6KR#rB5TC8K0-o0r%@i*)vxGh5Mp|f>DY?O+p@)_`zPVqO# zqNIa*;fdN%xL{)9emUdXRFlU-j&J`s40_n+-_^HpDp4f1!yZqTY$mh7l`2ee$s;l_ z2?!kD9v3+aa;M>NOTrvv9rEj$OKABnvrq^)1JmSvanBQqDi!+PP z+ichXco$HcUM2Je6+6*B-K`B*iJD285^y}iE5Pn!sP}mPR9F(?wWWCWvtsoeW~u z1G0^xg}||3t6EC(ii7y-N(F3#BQ%-fBzQIG%eI&$lT`0!iVy|IG&~B1NDkW?qoObk z{k8ks+NryXb();1WG?l7i0oNmX|T_O@VE-2r`0nXay9M`jGbmGfMXF*?nMu@J2pd< zpu)N9`q@(dBbWNGKE5cX%6Ya{ zg29EXpMOu<6$nlc`d|@CE^SaWC~ z)><9NaFMoz*qUkvveGab=xWd((8U{}CWtL`1gTwCNs5GQL+L}t(0%>fNn)V-s>$`g zE~=#haH7yrby OC%=-OU;{DJk9_U+u+lqE1(0dFo(!H*7twUBbZ*TDD^!WKCMM1 zv%mb!7R^_$HIs2SNAEDFu3zIsK1=GuYespJ$aDQH-T0(Bb2CTGpuky$Ss1qf>Ka2T zv!Z)##R2pm+)1ZF6if8+mvygAdjuM74LKuXjCzQ~V0Y7O@eHL zbs|R3*=2Mx?OI{+u8!zk*uFjznz7yVAaQOawy$mB9Z{T#fEHkC?x6IpA=9U!B4qD- zKEn&JUZ-L|tI|*#4q_Ryxr_Z*ue1g3CXyG)--)jh2AX#FTKxmKsk7AK1naUY6XaM` z*(tHaDWlPIKXUuIu})&vXdYv&9sP}oO~(4;9kPGk3Q`7DQn)KB{;vK!Vl(!o>dM;- zt)dK;HVL)D0CK4ituKqeCZ@(GH%ws$TjGED^V3gj3^#O%rdDvjm^9}+Z<)!Jyes`f zIXZfJ^JvT&G3Dq@95gdq(Y=KY6sS72>b(WsCsC@EHvLw(=S`!D{Gje`Y_srOg6BiF zUhzaTJ*MDA!9^J8L@JM6;B*adRgzvJk;{)nQ^6UPMRH#g4%V#uk)((u138s|s9uKC zgJn{#EfinT#lZxmS(HQ69>g!mH?Lh`u?+~e$jzNDl@x70`Pho%_GIy{@(>6LSup(D z#_>sbQuoAh_^3a=Q;urc2UHqdmNaLbohP*tn1YHdZ&njHIOL#+f+sK&_SrMRLO6|- zLDM619=Yh&0LFeEQFSLRfNaMwT;clld+XK;*q_)WX5NrH@bh??t3i03c{eo!6l=0Q zJjyLnqj#Kxl9gQ0DL;yw@^g(H@D=(%|^SP#%alKw<%-()j(s!fg`fIO-1H{cPfcTZe0^ zsYs?-DIO2}5`lSx1Gm5kjfU_FvakmCDY@vt?dPzWE%2l9?Do@Lr7Z2rQ+CCL$a2>O zxm1P4L~JofAu;xI^LFLoO!{98vdIyZDASNsh{;voZg`bPEZoCyd>9g7>Y+08JR0~; z_GU=~u8kq&ED;orzlvm7AIY%b&MNt_RnEe)zDcpo( zheZPq*kUOLNVwPcy*y6o5Bb}WVvbIO2WYjc$d+-I!QC5ns@Y^OgMTs_M@o{=iCo!z z@SPA<2Eb_Lx$97e(E7&EsQlttEA{*<&F1VH=PcY~H8Ys;d{$|Jo9%OLmzI!h9ir9{ zWuJsjXSun4AbpbZWWG_P$8(tTBe^2epL*=KT3g(8zBw<+=0Tvr?kkn%b9wyU^3qg& z)%!>%xp-QM+BoT0kyrQ2nbZ!3Hqjh6GWyO!j$VCVWatp%*9m2TkA0L_57|e-LU{%X z1QVEP$+hDreni2i*BEE(L#rFls4Z9$3x`hCRY&Xdi&hF8-bfvy{N zObd4|_K7<_VT@aY!t8`{?jV4=N@fTzMX3*g>^1tW?g&v5Xaa_k=8Jr#f`ymn5_%gr zP!wu}CFhRZa}A2|osAdV+~70xK-a|Ir!t+!O2Y-#1%-Y}**!{(H;#Lb=61U;pM}eP z`vtn`#IbUt@+#6jZ1cO8^OPA9?VfD$ptRoC5mbHx|FaZ<{n5@P(_+_K%N)$VHU}E& zEQ;Ie-+aiK>x%-@#}EZ7C#CAAQhgK))97fpyU3`0)!k4i8qK`)S$5bsjIlX62*!Z| ztLae~Oh#~YT+zQ{MglJlz4{G<9Y*S4`<`S>V`rSnENazI5}Ju1d%!edH*q!^a%ubk zBs&)>KYy7^8`~i+E5(=35IuU|eoaC;1X;gqBP|fAi~L*7)&|+rfM@hus?TqnqI}t+ zyq&0vB!Zf2K7=I@g&E=# z)fVCml2>YvZy<+^*}7^mWoI@{S(Uc`d0V?C`SnoQoN3Q?>5NnUe%#rQ{@5^4Xa@8J zN{VLhKf6CUd;V9y{e+mZm<*Lko=|Y0xk1>u@73D+Ysasn0k8v0{e62lq^O14(h`1DEd_BwK1rAJD2FL;YLi)y@| zkeG#$SsT7@)WJN?8$~r;UlIYBS_NoxT`Us%Q<4*3`#@coI;8^LzGeyL}=hZ^Xa>z|pTQ5?-M-QW}x_Jn}Npt;E3z7Po0X z-F09``uzs{>64E_FWzty-f)7J)@%O>rk0l5nf)9EXIoBOH&b3=>(tb}9gc;BeI-r| zqSPCsT@Wm6;>Uv)d!pbW1xzFewWeg4lx}MzB!aC!yCyU9Oy)r^j)!N~cC0kQ z^(aj3B}x*hW2QX|-xx^u2`)UNdXIH{v)o@Uzih`gcos~N>w5_Y(#)*h6mFYQp~xjv zfy9M+bQZrweHo`*rn;1n4!;xKd`g)#VeIA;6*02g;oZi0+>!X#>i2K zw@WPcOD@`gM4Pcz+fQwGoR49cmJdi?PtL!LwK>oqMe+=RuLH6r%3ny8PMS+{ct1=^ zRyxHfw|aH|q)mU+v}we1BlRByw-sW6CFRT+LCFpzJ3CV0`#>|bvyjlX(&9+wNwmZr zX&ET0JwN1hBju5@)+euR^bfAB>N^`LXkFXg)lx1+YDSWV${bUasE$?o30ngDb_tGH zI*TlwJN+oTob>JLh3x8%BvRgjY(fO_%09XINkguUU(91snM<7pWBS4+SLD+ZSC`31 z_nN%XY0}aER%TMfwy{}N+O$-CD`+yT&^jKSV)zEqjAQI*!cn=;j}S|mk^JGPTse3a zbdv{E0HU*g1}MpoUrZ6~v$+$3jRpoV8Dj&^HKIhjdGK9-o(nT6%o&3WvKi}D61aOYzFguY)}S8xTYs*>1OfyzFZP34KARjlqYUq4s1Aq>cI?=}a@hf{(h-JHj`$R$I*^_V zak3F4lI_6nCAoU==_Ge?aFK(sOSOFUv_qxleNp?qpYr=LA6Kc54@C=9Y8o4=CN%g0 zVdjOcVj>*T!L1}9`Y@@EX!Kmiw{P~rK0DSnBWgm#JhOU#_yorR^0Y~z-ybY#a+qVE z5YDf$^0E!F$O^h1Nw`6Tj7-CPv!ZjIc$K_mrC9QdZ%Dm+DX|K)%4|Y4$UlWFK>*=Z zEDB5rr)353=?zn-(UJq4y|N*YoFR$Xw7$D&M?*{HK6qs_a|q~HboCU4@2Cm#Qp541 z5Wa?hh?7%01}(=t2K)=xR?X4n@q!983c5Oi0xeOKqbFx;wc-4p1EDOVt=;p-FWz}e zf{92&dg$jkDXVFhHQUKJC>$#kIY~|)phuLJUZ4|r#gp-CiMI#9$9{unlEgd{nl135 zF1E9x^NsQCfp0{31!0abizIuH(?}ql!ds*wv86~l&Qyv>H5n{vh*}+lz0lwvZn+)} zdmvAp-YVo@g8-%6q3R2@`RtmvuU=UJOt8nTA@xS_*duG;0ZlFsZd+u7QhwKgO)#*o zn3To{()V74#*Ac2p^j=cEDT_$N3_c5f!i&-9&l2-XJ(toIIKUmV_phop6y4N6^*9O zcJLbJ&?>z7+1TcbtJGtQ5-BhX%nS7@JAmXs&r!%4T`MkCG*Jq0$~owfgRH0GJ&_KZ z7HN1zbaAp}6{8eoMs{HA+BS1}Ak;L!gqj1UHhLwMmBNfyid~(5Lkm`~D80n4l>*+Z z&iLX6_%e-`lEp@kg0|~``kkgsxBEW_9~e&k*<$S%DX%U!f_7I;sy^t67clNSy>Mda zgW-qg!0js})g~>R;Gw&pwIfHDpy#)XYg&9D5AdvH7usM~j}|B&M!g(zl$K2q6(|Wm z#B6Qj58S2cTBl~nrRpa;fmX_n23C#QjLBf~=Fw0kn%F{2$ub(K%ScesgDSE(LG%zN zYlJ^gMo}xN!bn_cYNf{m5po!YiZe*JXzxJYDwyOHgry?5f>p`jE8|SVep~jT-x~P? zV(Vehe=OI(yu!Z!^D`Y0A%A#P5QCHQd9pSk?dT8!cZhQjkNmp{3_V56QJf3ag@Hpy z$t?@@$METz@M#z9ZLJF@M36wi5y;jy4saZW@b?YDKF=yI^wwe250x_azsufB2jyQs zt_AVs-ImSPE&51?3s^K7y|R=sMLTS5$9@KM};rGTcsU}Mg3Oi^&hUCVF1Cz`G_2XNT zTM(jm<=?C3ecswfHD}HbC~?x)HjNS?Q+(GQ`2jRyKX50vnm<{Qk6P!kKay2klVpx zT-_y#MN^~DE&1zf`|#i24tzko6Cj<+r2LG`CXkbbifEp*wNg^{gS{D5(CE0F8z!w4 ziQnhQIojfJS-i``-`a#jm@+3q=>gVbkHH4c{9O{1z6aUtQz&W9RnZ_A60+gpX0$rS z2DEdB2Dbv}#t*+ZbboStQgV9qV>vq9RQ5it<{{61@5-l?;@vDSwkW9#1I}~z=LyD0 z8T~E9FgR=P^^TG<-((Lqu1}TIK0uW!D4dpuFyK6sMl}R=r);dsaH9E`9?af^JU@7i z2#P0~gD71a-_`q4vsDbqL>Z}0;iAAh;U)I9G3&3Uyb_lZ zR7ZrgVn&x;awg=(``(L1(P*`F^MkGR9*?Z3-#4DjLJLK@0%RBE%OUUfr$tVt_C2o} z@QljBs1b(K*1(NGIbUz+Gc)OmC=5}$_v?EQw=3-&hP zi4mAj^EoUhD6G>h`e*caU^F^){cq^iBPt{{pEuRPnrjr-ciM8Ai%e8XL$Z#`ou|&Q zw6IOLOL-JBQ46_#(Jka%sa<5Kdrhl$CAE;}N`5yM56u78I<>5&tbEcu$rZr~*vm}F zN7E6MV-?Q+bO(bfs1xU)K;O;=jFd_CVKgbS!RH>D$ls!ks>`w@Kclwcp*D89`5(Yc zW+EbOYjY;uAa$RRHy4%*s9VfRicu1c5Zvw$(=Ht zE$8GSWz6gqy2%d&TH)*Ea`SM1DTQS{?zTNlD`H@X&w>0DEYK#vLUKUGFY;JW(4vV9 zhq6#E^G1!Vh+ZA|?zJd8oggC6qWpQweey8uf}uBb(*V?9u6+s-OQ_rmvXKW=`2cc* zY2ZyYmSOXa_$&+?6))P*uZc!8wq#~pzR!#C>HCxN-MIpq`FzzYT_9_k3!ly zsBweH9kYPh`qDnN9E*zn4LEYr7M6-cev7sqY&sQV2QfosD&o~Su zEQ>N1+MkiN`y&f+W8(R!D^3#*sZX$-lf+~mF(5f`>;MW`1QAheHwbsa zHgu;JZZur=OYn}alZzR1uQp`7K<#~UE=iv(@FogD`=3}>-J_63JsZJuHzfP*(Uwk} zn)dA{wUX6-SGUbfr8$+%%nNiqzft=<(eU!6zinqB|L!C z5kE=g!;6A1b7y+OZNk-X0(liQ0-B~#hTGXbUOzZBsIsHc`Vc#vX~c>Zy^Va7Mro+F zxkHjnXFob;st6yqnHKdF5v_4Rsh1ybE1V(_B}Zv*#4Jz!2X|F;qL&UcRCm-`NB7&} z6nS8~wyv_w0VGp+liy~F*^|tvLocP0kkmvTgvUs352E=Ihnn46yVk+P3hzRP)kKE- z#_;Od(&WPoO-CVpxqt<7^Siv^ciUAWMf*X9{1yZ&Yx~|7OBV+kQcZn&EW57%%@xD4 zn>>LtPU9dgW3=rmTS`J_nsq?7XLwdKzWh8}tLoQnQ^Tf+$gQWAMBnplIqm9^#>f+f zx3yEAUm)CxLPi=5qB~%M1aV;jaEZ4}=}O+E{>su9I6=I4W!f%JBTz_y?;hH{y2@_* zkEkqYVqih)0wwpeU~qj$0jBZ`*MMtOd#dW0CaAlGiR|*?KLGCKxeqI@fn;-(7YSND zSw)kd<_l^%P4E*|m!;+k5^*PhGf5A2ApcS5)h(}_mX`qrV7V5*22Z{Z?qfAfJSO4L z-9h;SGsoOp?KWwrSdro3OQSQFAA=VyVJ_aYo!Z^1j^+*R$C2*y(a*lMkG#F9IX z4HffD9}HSjgu42r7n8Z!5!|L7ej5jR&owR!RUea;(V9>3ioS_|oZmy44JrMQ0vSU} z?14reC}^vSx0%_BAW?zBLXakpf$}@-hAQ!rJ!yODwOyP?*@BiJ6u&yg4IiVGaBba_ z+*AdUf1aj>#xzTZ@^VcUVVXv(Y)mxPUHQw+;xybr)6cxMfk8}yAq;M|vNNDJh)eC} zVD6(*NT8{kg8+!snH=z+qrSqSmG8AC8Hd)C*l~NaS)-@3nJSHcC4*NQ_%P37b5D

FF3OnUEM2*JTyqK1{;OiZ1ICg zF7Sg^AbMqi%ON?$3fy0x|2s`999;LAz|bA0^^}!THa4xr6$uDfMvc_Hcas{?bvQ)| z1hQ<+gvn=0>8fJ$_G^uifzddrkb}>nmB@5iQAJ&}{Rw}4NxGe?c90Z*%+~vKMGWrf zDAji?4m`DRp`9db2o^Uj3Zr(N%9&iTT{pjrmH?(etV74FCpLy^^xd#fsLnF1N+1dq z84hO3zq>C_pqD7;U&u5c!p3tRO%Nx`t<0S|`ZH+3yUXX(2+u`S_ zy)Pr0#M^7~)+s;y?ZL}s|1DX0{k!s3l}+JBzwcam`g%3%Yi`P>64T6xwdUNK{ifz< zIYh=>d{&WC+*10&BwDKG+4x0VFWXY1g=X)apFK*l^&#v6PayDv9 z@^EA7S2FaaIYRNe^3GTwu2Ut}NM_2+OIp-6C2S=h6S9L-o2}mz)Ux7jR?dKZ*T8~m!sYjwJe^O|NBNSZr?4MZ-!hneqVG? zMBj&?;cyp z(Cyw0-5^=Tke*F;!f}pFFw&4RGSdmEB}jVG>({TtxggbW+VJq6;_ddq@u3cmM?o2&emuA-X|d&$uw@=*k`;N>xBB!`CX=e)zXq+ajPpSW zoRSz@&@?;~%e zC8J@Ybh7cPPhaJ!ZLu54B8c3w1&@~~NVZw3RA&mZV*6QQbXHyn}3_LoL}GA_o% zY#~S7OmyYm#&P7}kAM-pzyru4C>zhmst@GRXXHa|c zq=%ARaEX214VYp}2JBfLB6kLRK^60_m>97V%0D94gDPhbrJpKU`m;r;nIuBnG?1Lm z5$%W24%|0k?uvJu-+R8G#Uq`%pLyF+{I+x7n)q^`o_)|KokkyUEoFv`lBEo0@FH;f>i%8QRFPy z^U=HZ^({-GZM|q5kMoajxu+SHRi~+Y3vm3c=$$IqtHYY*RBxrj4`lR@Wkw?eJ<^Zd z-tB$yqH{Bi{KYBz3;=UI2v9R-%y``(gj`>t?&i^oi?4HkE}qHfJB5C$h8I zzSUgDUCvIXh`T*dm|97+trfAnbNpnN7dn}b-B@@XcPpFbh-%}%D2V#x9=NeRQ0`gi z_CQBi?Lu|7VWaVmw1mBS9j)K%5bRTk}+zO=vJ~<#tBAD*zG^=9Lk0B zhHew^_-(vuFYq81aUcoZ+}m2=)m?T2tTiZ>^PCNR0nrl%40yyRQBPg{YihAkt3Wwb zAYY@{EMj|QvxctcSRWT$p}^gM{hf@QhyHN%i{+ALXY{w-4$6&R`T4U{J$Auj`uCrF z&J#n#lS>+-D4*^0E=h)>Ozf;@sWxp3#fB`=JO3g^EKtlzB^abi40%Kof+0&@~|GP}p67y}9g6cbkOU)MZaTq_CPHXndFTeCm z1RUuTwIUTV`>#lJh^D!ra*yS^jaRlV9_lt6 zmY^O6U1L43h$m{<6SiU-e}TcCy!d{GJ4KJ{AH$MBQ2T6`_SuwrFJh-7ccCF13)yc9 z8PWPNz?X|S?Jk3lfnn~8M&nc*XRk`XFjxYYqKbJmoS?7#&iittxk?>9)VLye%L~nf z8{l6Drj2&J}|?hkJgELEvoq<{yjGWb%V$|7e_xSphLa3A!Zz7t1Q>QK%g(ik_y)dDtYFoBPJ5 z%X{Z2YPI3S{4YJWzklvl=KSTE*3X^mSM5K!9B!ZCd`({q8mjKN5MZRtA>k+(ZFuqb zsf3R@2A|lWxtBYXKsYuofh`@t7ZP&zenbSWH&Kx=Deg$8;w`86QWc%bhT>x z^0~_(8yN5{;#82G8f&nCrffier_3T*7&A-cjO^eO6S?UXsW#hr4j^iIa?AXPUZdND zHG?Sd6(#A^gQGM5bqjHvV&Jff2}Jc|dro#kKmR0@vz4|$H)SP`#4 z&@rgjHt*fL*ONy!{8{L2dL{M*6L^}#B4XK$nKKtP#W9i<9udl}<9OGNO=qS)k`Die zH{#n{KtEw5DWtGZjzuex$djH}y9wc?TG(AycRa_j3F%QA$?xbs6qJ&W>JQv6pBf&) z#{op30A`o&WbnrZNSlf551Oc0ny~APd9b2Q{$K;a{==W~EQ!WM3t(UuqDl;chHS2M zTnSBt-gE7%U#AO8U(6FhXWA-#GBuUOL!6fD+4&b3WYERp{0xZF(bW8g$n^0B z%VN_yREYB-X-q2MXrwE6q{Ux+-HU*;oFmW6m| z3@*Pic~TuF_b@h>i^ljOx`BP^L=V+HlP(3P7-sl5IHYw(@Se`G@3$tM7Svnum0=n; zu2UNL!*9sW#YlqOb_ed1J=A3Yzukd0*@4lFKy|EUpIN}qWl9|x-3|RoNcUq3;2Ocl zIZoi3`M%XxZs82@>ZY`V5pWymUBPGzsxsI_nWX7PLB+GE&5bjuvBR)W8b&Elru9?X?qMv!Gx zFF@<%D8szE4+hX&3w9eA{O;s2&9*X(jEp=(*3uUq2bW9m&@-f=q@LX@4jO)|fLM@n ztfL1`vD49Iv%yn)4X~&g3&=~#q3pLWnP>mE|2Qx8*H=**->v5*g}Cft#@o>Pw;u&7 zmaU0AlmHg5ZUd-Cnci8{r2<5e8tOmrXv>~inX*LJqgDnjVq<_jnAw*NCs)T!JC)yAoZwSzHHfP#)KNSOjPRB5(zAK6b7 z5Mt@RZXpgRHDZ85Y=K&1zGO+u>68;$LAep9tCuW0^lnV!gsxm6**~sHC6JMkudeY}`4o3Kkn=oej2a@LOlV!C+>FS1hIVcwa z=mAZsf)ZXi)x3eAKPr6MNcwS(j8*NDZ&Rg3KseTpl-(ftv;+55!dZch@KzqF9S))K zQ@ggmX36^=^URfze(Lk{aBiMwI6P2djBGf^o?-``kCm7qy)XBoFE%w9Z7cf`TV=-V z*`nqJtEtvYcq+Zz&ZanGCo?pdti{s&%NY3tdS5ia&C(DO*b6!PJZ=1LpxM6JUGQ7t zTvW=D-jWoobg)@Y5E!m1Bk09o{2DFYY@`y$OL29N_&siEW$8^ZI~#?ad~78IZd%Tm zH7g69#0!bHkx0*xFx86M6*r%qyp9+)eRViwgL0`E#H8`tSapQUn@PTZri0}Ftg-vL z#U#U9Y#DkJpaZ#=(};j`0F7V2&x6{Rcn=tinJqHhmrcK$tZ?icAdMr2Zat_-^lCys zyc*?kvhKEE`9-6{{>;^5G-WSX$)Bg{_~bBOnWEwY81xk|~QKh;PGhORK(z~=@OSI^*`ImuhhSr zQIhV^OGF+o8$XEGNMcN+J!%rYe(&Z+!{;$BfKfi-;8@%yLW6R;i*-cXJU1s>RFKw` zUFbjy3=oV6jfo&}B6M(NUCtuiKsg?GxV)>WM`}*Q6bO>tB~x_(8Gw-#ojU*^BEi~9 zzvDox#kk0@T84vp{^H(&Fxqs7^EXW7_B#o2D@4PekI*&vT_hX33C;IoN>Uz5Cpf+xum>I*~jgkz(TAY3xAUrGoGal+T*)G}XP za}w+A9n3Zy1c6?e+lv(3LbI5Rg4;pX<@TqO7cn^|kahnvl&plLGB*9hdWGh(bjh-1 zrrMSe_Ame>s+(#k#@x}%%7Uvx`N4thlJJYV_1aUlr$P2JS9dX3FK#n;DmWlHU1O)l zRX+6+Zdjpn#>l=sxE-E}f{60w-Jcz$xKC~dr$QQc(IzCfTUIf(Vpbqah%Ys}PMzTI z(obZC*qYo=dR@VPJ48bwR}M8%&9ap%-AM{`K}q=ACSEirVbJWwtyLHd$PCedtFf&8 z1Gw?^B}9sR-~wESkog&G3TYk-Sc}gS**nYt@nc{mGYk+e3zB{fE~(%{)xh7R+@$x$ zF&O(YbLr7Z1G%Qcq*p)AXw!>hCHmBN+oY(7L$s^8R2+P<>9oo)Olardjn;BJoys;h1GZk5z88 zb#QPyLu*HkhUbU21OdvY7B||`Bmsupg>1&`a1B~L%(yo)4n4FQzhDdJO_uqy{L89k zE5w$$RaU6*nVYN$WnK$N`EitdlLs?#T8Wh(_`<5Cj2j1_&FM&NIx~@vc&LsZ8^p;B zfY4JKgmoP=I(`r*G!ex2bX(xN9Y=<1VSj#{$b1@_nx1VM0wgSV3fHZhH2bL_3!A*WBJ50r%Nc#Do6 z1+C;}LA|_9fLl8-3@iV$VkTpX>T;6)K_O!_VM?6Mu!SKgp4KiuF`~7l=?1M6 zqQ%N(4Qs6fLBR-vnNo*SZ|BM2K7k3&CT(X%B?F*7D>$a-DK$}RC!hK-@gnZTo$dsH zB$=dW?B0E~O{3=ufq#VQ0tM<9{!M$1_<^mYbOzSnA*+%q0TB_|dSAD!%IFvVT%i8i zNC}~RaU8?P{Pm+nL`x<>w>#XvGBiCpu3kK;hNw;<+5eF*dwJFvuzHJ(1FUWP7RMTk0Ibw_!Wvj&4CsdW*!6Z;d z0C2aJ3J91-F!4H1#V~SAcb?wBYrWA%lfzA53`9Geer0QjZi!P@UK`3-l92`pN8k5_ zQ9f}n=3n2GCyR$qz8f;u%?Ho4<9A#u20X}sZ+zgvYZBmb^nw5^i03|?hz$nm_HP`# zC9Oy=gIfPOdL~sj&gaum1tPFPSGKb1M&dl80~4nRZH^1fE{ORTyuw%1uZ_Bh*JR06 zgC+FP$3ze&fMJtlxt&K& z1R^PMNTQP~=i+GY7oI3k|G)o&Yvix@x9KFKBS&VC$eKalt&0-|OXv;&Kf?NY2QehU zznDLNsLM_=8*$9<(0u&-7UO@9Uo0H0?-0W}acpiU=|6Gm6eR~6yCwFhO0Xt=%%Gpq60k-J3P|QE-U4qU=d=djH1v`y{C-yYR$I*Ue zu~Ed(uTom!Di9p~cSq zj}6IVb1uThlisy>XGg znuoe6{US{K(FJKA@@%2!HO*yUw;yAnrGz)_s;!setlClQ+SoBRV{`>!TjCCa!&MsB zM$AhP`JHgUEy&{-8F`zF;LDNvyNz7(=4IND;N)iezy)rF)UfJ z!t8j1G!5dyxFAl?F@$t9B;U~}6lBgxf9%7<%3nQF>+j+l$u+H0lcpk)8z3ey8bq2l z=TJ3h(A8QYQ?&r8(S{8hNb$rB^r3NOI6`xKw@|xK$cT)w$M!)O+L4+{pktwoK*h666=vgNzWe^IyB;k zuo+_-p9CgFHq9LdZLUf#kRevgvrJn>C?x{#DHI;gfqCaG(Stby%gyFvFt)856l!Un>^z+b;+r)}|K*5q^Sso(v;B#VOo`2b=uzn=ah5zZ^L20DI6 zbA}Ox68)PhFKR3?Y7!_#8E+**Xe(oF+A3)rBw@0GXyj2r667Quh;T-A3CUdHK49@; z4q0=o067Z|Z1RLD&P4~E-MJ1;O=@?yli&a0=X+0Pl1~BvUnB5X68j;;XMvE6svD`n z1is{(#ECee=*m077o7~-tcU>;5BIG;3~HcgKv*ZaP@{`?E3+gII)aKH@pJiK{(DF^ zmj{c;r3pnL!TgjGOq+&MmI|;;nhZ%OFAc6Csvrt&W2#b;EGp(A*&t2M!vhJ(-2^dy zk}4BYN#6kB2zEiUNw+`}70B|h169sz^K@?|-vSy3gWA`6xDv%qH3*XDa74>sNf{wQ z#{`Gz=&Hn_c|xU!kc>4EeW2+E=~@QcUr|{(r&Z_h;loE;$|T^!aNQ&?Ak~mc7YIbN z4BrG&=<6YT%QyD`&93Hn zl}g{B42V1ir^S^_EO+jzNdk?8$WeZbF@J8{(f8vLGQ?1p4jLsd$8G&fi{#HZWruV} z?`Xxzi8jL4&-Wse3pf&_W(hX0gVVJZQ9ERl->6ZFE7r+l4${c?lPJ;neYfNlif=tUW=T%ex}+po-VwN$e!(Z7ASfXQ zjp;or)a_*2`H_16dIeK~Pn-dd4t`fFFO^4f@R=xNp-d+Ev-R1hbR8w1z>J1Lce}Eh`i?fMLtWNyC(jJH2iYj4$Ia`-y zIpVXg=KHRn{>ft+{ex@czD-0_bDfW<7Z*_%GS%9-aYvwv?#XX4UGvC;ljc){%ZByv z6I=GaPkQ$Hic>{Pj`*0^9kIWh>s(4}{NUCJ3miO6RyMB?%>!e0?B|-a?lXcEuKkDJ zdU4)GmEc`TX1ezzpCn?gqi;YJFrVv0?D^4Q-ia(vlb&PAi^l$@u#4s;1N+O-mcO=Y z@>wl>Vf~VS|H6#^1KaWfVO+;P{Z@{fQBG#~4RkXJT+1WNBwOdG29%c<2aJ7G*H}sV zO_$7RS!b>Jakp|nY2mYff1*_x=^=HqSMI(X_TPz--4#_9vge-kMjPotY5q_QaQOI?Byc_2vJ4-5-skV?cv9J#^!mytUqpZ4-fUsrF-yfmSQGH7-Dy>v z%QE%>9fx(kephA2JOla*VY6q^Haob*GQC@STb|9)qYLqE(lRoU&XReZ&u?3q+>^wQ z9eO>Gd~R`GbCbpPu@6c8tMZuc$4L|sYD%T!MePo3H(6&lmODn@SN!-i&88CA6sEOI zLKY1xU%WdqKtf*#PMtm~O7C8D-4PNN4)8L-kGmhZaAtB#Lyizx{yTh1rtN%LmJA%rY)Ux@HRdTH80etc?-CNGh7>O$@CfxU-FN*%R z2lx|aD{jm4@bC~dz4v=jhqDlkkh%7srjZxLH<F3?}AHp^dGuthO?{&7c@4gEX8Ux99@lfX*GT|{w~`#y32lwJ}D^$!Vg8}o{CyK;c3$d zXxhQU5_FwfEWgHgz13kIy?we%?U;D*;dRhI6{5{jc|VlL;J=>Rzvq_cdaJ!koN->C zsn<-V5qdhmv{bjSbDosNRy@+;4hz*_&D@Dc@NIjN5V{uSHMdx(jtyPsfB6_f;wGix z7`T1y#?`UM6J3?-$9H!XLLdp*VPb6}R-&b*Uf9VMX1tV3S#)O!$&s>S-t_4q#@F=*yYp%L zUygM>uLEPMfgq!DuG~mKTYr236VS$soJEUABj>BL;!oXHIMf**4%doU#?0T*J+-A% zZFGk;ipzcdb)1) zUtyE579Jvz_DNdHHU-o%<{=LrC{`ahNAP0IKv>HfB`qxBwZ8wfgim7$?;8oO&2y_} zPah2RJYdbuI};L>ly~uO7d!IDpi85hCLX-`hnhI4n}ir z{`>>o!>c>%8_9`}hRt+X;1?WP+jMfX7oEv`62dJxNgSs*rX;fcVsp>Jyyk{+^G55@ zP``xwLAl>fmF-ghWwByW&&tmA9-84ZXyEz1&G^E%uSSvpzKQB5UwC49j<|y~%gbcU zx}Y2X_~5-+Q!J1cKkQsD45q+yw6O1KpJO{ZuBRRzauA6(Oha)l9{t^uxy(X>E=MhqWB(&Kiyxcw=!)r^ehqe1GErg!6ZTgISK z-BbT*?UlVUdgyqwBUI=i{4Uuh=;7p5?BXu#&AS+~mYX2K9+P7!m?FlU{E$Z@#?=1e zKHkY^`e7AluDn!(ah~A=2ThnzQvuidvMc#SE9(Xtd`=O(|9L>)#5~D(Y45 zm%tVEDZJl!1GSG0chkk(A#v)je)75dY#;XGbEat7&FsamWc2>+)dZoR77a4tx z)U=FJ)7oFA1Wv|#9s6n27(KcQFpd>TTd?NRj`beky2;Sk_pqHc&w=qU4ltVGT07M6 zq-a*BDP`442j1r&q?DXr+GzDh5+`mXZA|*(f=b7e-^Nd|^gmnzO%W%)y4&UM@AGJZ zWN3yzI44zkIZa!Eb4cd`Q`kJysNJ_$Z(4+lSZg#diO#tue&-zX9FU^lYX2eN z0~dhO^+$gOtS6R%<7F*tM%V2#;-y4PwXL;te%aS}2lL9w$$p2nObn)uyPSb|M+p(M z5%ew#u-l)Nlw3-gk1G@84dsMCzvX1p@uD(@?<2}g;;b5dMEW&@Mn=P01y5Rg?4Ei1 zc#aM6^y0M1kVcGuG9H_g}B)mFzOJ&Z3MHX9SR zt}RK@_gKlKLW+u$+);=398Fq0wp_>W68P@i=(&=(;xSo4L^NEkdt#Cd`WEqDwr<@T z6lSygim&f!8i`AoG`*|=|LyX6%Y3Sd%9eR%wx|U$X+_LNN=&{vuT@S`(=%fVc&=;) zis-qjK3?TKcQnEa)2I)c742qQr(hxx;$gp8as6O(0$I$V5X_MlZbJQ6jnP>L!1r0O z^G?mi+u*Qz?WYKQVKk@WmtWl7ozNoP%PgHA3-4|j$a^B|KVAW|Wx>dKUv#{`vo0G) zUH8Mzw2-R}8zbxjvdR64>_Uxj3TQkwE_wZWAMGpPnsVFh2i|X1bnNg7JWF1R zIrex{cQ2IPG+$wNz|cl-Y;x*)`#||I3nmeHxo5&ZCn7-?MvmjgOb^Jv7p@bZ8a{-{ zY3{@*h=by0VQKdDSFc|66(081fuUfTg8i_F(H(pXX z1YnR^P_|xO0jzJUPt3D$BQGhU#etvOHaMi|_=9-WFkI(|^%=E}x!ON>HUIKznpvvz zTIQ*0aSl;=_1m~W(Z{E%adCe;6#tvx+Nc;L6Et_)#3^T7P=W1esU4?@V z)6=Gjna!M#4(jF6`h_igb~O>b$y|P!&m#x-(9PI_H^n=BVH(%nSWNba3v*DHx|*8V zaYnZOisXHV%T7frkHxi58cJ z4+f`(KYf?*^UpuS^>HVusAyEmt;UGRYOBD(-DH>ati0SWG5aLZSJ$K9YDbrr>ChfO ze!Q(g`n~K{)nn_Ag)~fvCRbRZXy$a{BKAlQP@%&F2-U#^M#KKsAmKW{)S64B&fOPt z1j85R?S4Kkge;vq8n;Mnltr{bnp`b}z}0^tf1}V2|Nc5^3=$uV%t_tI^!p4v3Le1c z&1fW-noap&KtKR-3?mweQ$J_U95-}Kv*7Gg?W1FG3h__Ez^S`OV2ie>wJ*TEgc6w=hpSnds491JK2kS%K!I!vZ0aa%vgquzUr%j z@DLpSxnQG^);YI1LPFC>mLTD|%kyp%Zf$)~ogsc1SrBo}snf0C3z7b3%`UwLH1_L zfJN-ofkAI(SqWBsQ58e4rgXe^!cpHdE9tFv)8KYt7{K&(g~|(oKYux4V??1`{k6tF zT;vNY(;Y}6a~68s&btXB7l$`Y>3+A{xoV?UBMzP`@f=Bf2=c{jo;?3ILwp; zd{e0IyGc#WfziJ)by|&HK;0^wdcLJseX6~a?D*^wy1XsRM*@!ES0r;MYQa_X2BsbE zn-CoS#%?IUu+VVuxU*1e>6LGle64Po)IE9<>p-6NPytK>#UY?GmYNt!Mhsw+A!BD@ zXv6RQ+wUzeW=<1!8rQ+HxkBD&O~T->N7n3Ds!QNY_7o@{J@v9rlc;M5#?x7_=3Y=; zFQn<;aOk9liIrgY7LRD*b2q}pbJt%hD=q!jWq7cPXzEH_%3U1Ki&>tdoP6S*$6~ry zt&KQi&sSG_;}7}N!AbuXn?F1%RZyI(+p|SHNC`3j^tvGXwIW9+aSf&f3qO4_Ap+iQ z%orv}J`E4i0csojCtBWES4Yq5(~nhVQqzl@47#xvKo5ZpMp(rc z>g@D|G-YSuIoM+gO*T$|d4zNP5sfc;`F<4V;0LUP=_KhF#xq~N>)-OX=#lgN&{PHG{}q+da27xTLjKF*;JE{lF6rs&}+a4f{c!V3}Yr0H%d~S?(ct8 zwSv_hbbUkzu6-qKaTFx8zi1Q6F(1u{0 zvwOgPej>2dmJ9Lh5I)*zs)c*i2MoEyKlr2->Grik;Ctod%J9H1Y;!Z(xUs}lUUMmv zYYk!Si6Y9#)%#3ViXZh>f>5UDQ5fF@w6+Q?g}Uirw@2S!A;0gM5YCOomuR>a%sX13}3C zfbFyh27-f>umYDNv8TdAHbz111kyf?kF>N)&}@MfVU;Eh(YmYBQ`=0l2F2U!WBZ5_ zwev%(UI2CC#l&auY4@km1L90p4&TRVJoj!86>tFhX?T%L1F^s>E*C56I|V~1h$z?) zxSvE;3_QDk)ngRe9fL;4!klTaryFRZLcEx)CQPz_C+Su>TmLLh!T~HTa5csNyq6mh z+CeUCgSZduu@haV7&tB_Lkh;$X$fHHA|_KH-Q*gJr7ETGoS2U`bLzXVPWbyJhK|_- z)1nFfAcRUn6O)rIf6nJ}fl=wHyt@@H2cEK%xjr~fOiti*Ka6mk!yz|w=;Y(R*M#7v zr-;;OTAyrCJ<~GWM;o14Thh1MA=67VDf}O`l`+yt?}*Ub39V&g)8GJz2r`z02xwb+Z!ID~EeLJ_Oh zuswKa0&C0vy*#zVyD;?yUI7st`3*FJ5DjiyXCPTFe!R2eXZ~r zh?kmr#JB%$3!~)*dpU?k#~?BLW|(Dgy*8iyShg1J zV?$Et(*377(&7^1wkKoZ#;vS05 zawd#$8k%Sp$6>e!{{E9M?|2M#M~}~oP@ zUMReMz*$)CzuyE0t(^KtAuw1|_;>>c+-x;)hBd?t^~{fo@25t~G8fC_xKEw%9E(_Lu5Xw5tCSpX*@qAHE5;r88M_eh#^p|( z)MIy)%QltnXtgl6ttN*tc1Pgn_R9V9@!@+nmwl+r+|T^bmj^ZaKlopyU38o-?QjE0 zJ`PdTHs5>Uk?_JttXHvkh2`IToA6${?eJ}lDas_-V2d(4koYy&QSt=FJwwmmz?!z2h7< zLsl{|7EGh0zpeeHJx|*^r3G*E4JIV$TQUZYY|oaPVn5uDork|~)%MD5Ae;a;?&3FZ zPKiR_{+UR{W|$RGdf!C_<3@B$?=giekYwh;y{H|$RjwYDYBa-!-fyp!zQiM*tUeA$ zIw_a6g4lL}P!JzOIS*W34+Tv`>wp>DjT_&tl@pt6f^YS#r0b1I3KPBIeEk^)gz>|R z=&G%k;Ci5+C(J(p2**V?s};s0YW~0C2fghNZ94=5wPjLI{0R%qb3unI47Ql z{b+S1{ja|39DLnIFim0NK&pkih?7>Qa_y$F`M!54LpohVv!j!h&@CoM(4I3%+NqW34PUtixwR{vg1IIFzq00~AbB68%#ZO^oADJ54t{lWP zm&@(|e7r83A4{eWH?gHY9(1kcyMoox)tEJVB?S4Y_leC20{7s-0~Z$yp2(q_3hfdg zmCl7$2E*|B_~O2}x;ykX??R9En=9`Zy0}a&R55-fSZ!_1M5OQ!LehVuTf#a3XFd&6 zKl223@BaNJJGZ;b(0uuJk8loIFhn6MIK{0%iBNKwDG>uR`l&O^=Y0x3=NFb%_v^jN z=1v`SBfw;ln_af)0W30ZZYlrL0hV(j!;7)4quhxw?jNH+-AieG*p+#kiR9uVeU*`s z1W0p3$uR*28&*Sy!8bdoY+-$2SMAN{KsY}sB^)yG*FVxB+vz$))sDmM81PaE zp5gb^g{DaXF|q8Ampf}m;n1GjMo6Q6m$abDim!Td>95P1|Jw_IyY%()*+NL>*s~jC zg;#=;yZC-2DL(E1S}6re1##bCrf1{Em7H?>@Fe8PUnRt{G+VRcZkguP(XTg|`=QQ< z(3TpmcG*ipd5vL>S6iC}jg?tcuR_LWrBl5ginOADM1~p$jnKdI5kDb0F27h7>~CEf zGy5Au_jAP~TbAkTz&ST7{J}Ywr=Rn3KOD#0>RXZknKOo?_oSDQQGfePW-^*V7o2w- zKd{gav&TF}*T7&aV$foOANREYVv?a^g+<7KQ0~6iEePDs6f-6f5}W#MVlTt?UVThh z9zo_V2+YROAImf5;lqbemg0R3{Uw-;q}nwQ@>x=e3X?PVcu;0a93PW!skI=oKzeH; zVY9#ERnNVxL_B!7e|YeqHR79tXEg#at*6Q;_w-`7x9aMabu#g@E|d@l!p~&v!goWe zxkrn)0ZU4dx}A8kbpB#ams#bNI&r!4=1na)79ZcyohtD1zr37W#E|Zdf1gfNcXT+! zAx;NJ|3|x7uHkl!CkU`tQNaKV&x4>Kt;+|f-IFn$hj`+EY;FLGK4MWPP)cuw>fReD zneN*H3V^Ak-p(hUH*pVGz_JgQ)mVj)bI)7Oi5eQLAA+(zdi2P}<(Faw-`AIo3esZ{ z1RcuC*y%PrGNN||fc~8~o7$yv$>j+< zRMy_LHr<1g6oyI;X4bL3gZM5R>x>Ur0$3q5u0B@WUI@)ONfF?1NUmKSNzo}TF)QSu zO<8eDh&8(jU1m-4PXBo_KB!T#5~qAEBNwCz4Fb9b?IYo{8+gJs&j#2a3j=# zQMO|>Gj*WHZsXfU9{hWc*BPzstgWtIg_#@d@G=FE#~ox4iSjKNyU=nZ3d@2-mcL7) z9vy#68Xr=1pqj%4jM27u=97;(&{qC^mONxfObF zk;E2riX}ueO?u>tEu{^ICya4hJBaTewc6Qf&5*Obe4coJ<*$#C!AP#n5MkkG#2=W| ztl~LyT0w)q7y%Kec8;$Wg&)&+)(%-nqD==EhJ@G<{zuUl2HKlu-*k5@xQxrSqtPg!;x3~ZNZ=SpoU1wc3 zkINoW2cwG9DR(?PqzcjpD#ovc4F#w9Eug+>yMp9t(A(q+uzNgqc6NJ=&}SDB78F@U zqP?7{nVh^E9aS)VNo;1ak+y1n*v?|3Cx!+F`tp_oH|qaWN!e+k^xA!?}u&>#DPmNeD{$gnS zYu|FbR-6=jB`AEcdqHGfZh^#1ahERj1g(Ua*!}0yLe>x_<=nQl80C+|v9ix!R~7Ki zU@w7d1o{C0Mcm>2{&G{HET;($!ZTRNGXQ19quCB9XT+l7PX#;-yxnI;+B~v|t1RR7 zFFk8Txtf}0PD}+)=B$qTZJin;y1&5!x}5RfhyppA_O)c;HGEywk%fyFADeR;Zrv}L!A;MsQwQtfzVX6{ZWnDyIGl*B7@p0^C-ON|zn^=0rA zg7wc0B7V;Mh0x!UnQLOdYoordr=$wHujf39!d2RLT%PO;;4uH>4pNT5h|o!B4joqo za0n8~AXIsKuF`UN5=KXP)T+l+gM<$(9W@hO+C;18ONwRCqVZvb_bn+xe`hTH$N#RT z6m=JzK-67VuIvHb<@uI-b096tTf^W$3J|O3K!NKRY!brPAudrgvhc>=SqFak%%|GJ zYSqs+(fYd|jn(D$x|L=-on+7q8g~eHAvyD(uGio`J{Fzp@iue?;oSBSk@JvM2tx5@ zjJnXc?%I2*&h_nxXgy+(>de_2D)pio+MA2$@k-cDQ6B`w=xerlfw^zV6`QdG8puJj z$2`HAW3Z$D@A6qgKYg<9asjsv(=^NSh|2{|jn&&mEAd;g%yrI*}X$gc% z00)^KQQdX&%7J~&)3IQm!A-^vk6Bv;UG9moV2jw6EFskXpP{^ou>-fdCG0l#Hd$|) z8EVpcXvxrv=Ild6sB9%w{kPNy-^^ID%0#P*(tSF~Oj~IDz?TVxMw}3YFEKaWWI1!W zbE-Y2yW81_-!K!31-=!Ok3k!B-_lL4O&?UMnf9bg0^}N*EanX%Sb0~3 zG{95n&V5tLd=ltMG(9VBFdzDjuqze3lmWofn{zLHUtI1yv@imFOjoO{DP?#;NwEWw z0S{w}57UN~r@k~z%TSaUc77#2)qVNxWlM+#Cwg^QB=lC!=2zks_i?z@WLle{2G6#) ze)HzdjspR9BaZOR>tn!jhz^#S>1*=bx=FI$3q+v}OZgUzM@KQ-ckk?d&+}BlD_GR< zqgRk8F95;7SXS)fvy9b=?gu6JTIVBvo1lj6tGNn!3V0PE* z#EI#zxPi8mb-+3I;`8KpLmLfWXqO|CB8InXsE#q7r#H|NbF?<&P(m-ui4ftSx7M?rAPZ=AtITEl|I=g(gA)i`A z)4pnrWq`bEhRg^RO-;c^_rYJPE}!2Nqo?_3TOGA&F8lv=Ey=40^|(If6TQmBDp@M`XN}NCc(B95gy>35(S`pMSLqRV>*-%GMPw)As_ep(e zUJDk5$3iICJ9N%&}E#K#_fETC(&Z5Qbv z?g|k>4G&+y2#Rfw(0+kH%j-|Ec$J&uU`fFj_RZyd@eL8gscPh-lA2+y9A_ogvkpCw z!Iw1szTVL2*e=IENh3jG`9Xg)IByjcbz$GMbNS|lakc-+AHHJPp(MECXFcVV?h~UA zyp=oE!Ur|VUJVDlF||6rV0ZA~YAa!>oh3fkPrg$&;<{70(BZE&9=|UP5fpvXIO<_> zbL)*$<2~cO4{ft4&B3MpGdb;LrQE@zX}ZWukQ6+Ugo_3udc-!{>1swB`LXsmeYa=f7-HV9J)yFJs4>;7+Lb*l|KaL8nFN@P#m=B3Qv;Gl z+AU!zkK@i)JBV{5FkfnF>H(Np2nCGXGa_)$2otL1`1=)P@}u3)NQmb4&9z>PIGZ7< z$<|iDSg)~Nk3}Jlwmpm}#F@Q^S*sSnb~N1q2(Z{0B$ckgRh}QYWC_s!xdTNC0i z2B8>MpLV4ZcURT+&0uggcmJDkec4hX!!>UC3R&y>)t>hCn0Hg?0`tn5B#n>03Q{Bz zjbYzEqTXTW{KlExhceR4E7dEiH`L zxv!u5ZysAa5w$Pm>=MotEW5NV-5hlQ!?k<$a(S!@J4+}*mJ!sa8z2l9frSHHq3)Wl z%SL@=)vno={^E{yz<^x{7|1%qUn;g?E+H?(tE{~_B4K_(sIgOU#);4F9M+PcIjd=Z z{QuiHOVINh3s0>J)O@I)df)XSW3C(jsGRm&B<86k;{Zf&3%(|3NVNcJ@gqmNp@n(< z!f*gN+K(Ngur&gJ2fw@uK7H=Azi{kwkJxd?PL7B0<9#LqlSj8`^XfBX8gK<1g3PCk zLTD?94LN5}pJ8c?oMZ_=GGNnsS8AiqxrO1!h8tplR^zR3SG0kNiJOA#!Oer?4)mAv zMP{A$3C%~_-MNGgkapqY{PS9WmTu%fRwSg0488G@XL)M1>8JL_Q)GBd08kUv90%Jh zz^q*|aC1XtL$S0qEoip>9#0DNvV6H7&7Qb!6 z?fm9?d4o`3yT_vI>FVPFlk_M4#dI89R1X)Q+?Bl?Feh(cEb%FXMvjfm9`og`xwpmu z)uD?E662|#JsX;mvJZi1AEPWTG+cIUU*W(_ch_Kv(aHBpdn~5Thw4ndeEOczhH%jR zzlEm27xh2AnJ)*1%MSxw!a^6geNLwLi6;b^8SI0s=sa^`5I9}&|Y;>LHjvQ%Mo<&jqowFe&GlIe;AhDS`?!bkQ6sH>=~LLgbt zUdTqPQxkta5`$DWQZtFOiZgW7*oAsFEj%`{>{y@B4n6LwfD8=AzPV0cqq`N)qyDMO z&d4l!$Z9rlPCnGv$-0dlPD3bqfNa-6u*m-B^TRRs$d=`P|KM*VDe&IML+K(p9G-JS;pU>XEA<1+k0qz376Hd=XlyLMk{EpG<03M6pdO=Q z%e>zo9jV}z6{|F0=r%q5j=t-i253Y-tER~^xL0_?U)|_d{Ip3XcuG^}MXAtmeg|JS z^e#b0=?Ssf-Jxr_HP%UtDM@v5OkSw_8u`wsGnrPJDT8ok-@MGER}ltWLb)tTEWpBOX*I5`gqr#W1NigVP#7LG={N=xi4vLX$-J zv!(~Os>ln~3atvZyKqX_CYSMKv(b0>2;3Dcka)~g;2D> zuug<7FY87E+s2yG#JIZBOyx8$24`6tSp?8x^A)f)REq_k_~h5()W~jT@1X6s$|ax#xcw7#d0|;em;GOnNq2Jy0{WR-w9vx6iKR%d?Rz z!@Ffnw|mcLLa)4ccmLmnIcrV2hH3TXP9#wP%uvGl08H*?J-D&tKF2;^W8K>PvL~?# za*b4Y2GiJ(r~zmu z-;#lQ!Bd;W$DXqv0~i2QDo9xOYy+&rGX-jF!5KpmI@Adj1r=L`r!uRTj5>8|4&=%T zZyX%g=oBWN>L33v@Ao#k6a*1caP|aCmBt&Kfq$2!hEfm#fU-FpIOzxc6e7Tl^g9xY z;?S4nQTWjMc|y^uvx>&7CjO8(f8Y>BHRnsggRA{ckzN0|KmEt z8a9JrV;$jog}?BwTVe@2a)Mzo_Vkxi+4ZISwP?~4#UHK3ze>bUJyLPwDC`S>n^X7Gi|aTm7)HiC!ql32YoC_TH1U<7x#A|ywr4vY(ijVp zMvc-EnG%?A#YA5;#meGRL#jm_O^$>ZL7n5f?+5t!C4vfPW1AM7&WtcRo9HiL*B;65v6Z+O#F#Y)|M45 zk>Xr}WdU87dBhp=f*4dM29u4uU>xOUaMXkdk6&kt@ld!_LXN3NZb`d^`O80L1WaDI z9Qf2fPxtfP`GxUG1<|=b3@4#Xirjj=v`7-YYrk zFrH;7a9&ZNs)-@iUHx*_Q?a>NlKN$v{^WG}lkcfk!!`vXqMJ!g`=hF{3=xiyO?e&m zFzQZ?4Gch+y)Z%s)Ay{u{zEno|FgD)FLf0P)HHs(va`(%_t;}6FbDAMb?p{C^$|Go zHWs`zc9ssa`Z!@&R@>Q0odk^Z&h3uwk-g#(b&ZW&v|%~ga>PJB6)Y}>Wb8=Syfh6Q z3+LzIP{jUa4wY zBatYOS2f8GY*QglO2##|hnhs7b%PZq9{nYcRDaIp;)bCHueFyT`{7Z46 z%hMa=Tn1z4xtVZ*&h;A-E^ZCWh_mu_IHqXw%H_4Sxsgc{Q?vwTK6cjwPJUgNfuT_* zJGobUxNfo*L5Tqz><)N@MPbtSn)_yY`*ceE_C*?l&CYYKXslhas&VAVeZDGE*K0v{ z_t0W*GVS;O{|+Tr&{e^;larqbpP!}9ojq1JVnNRqwfSmu$w^FKMI?0ydLBncMwV4n zs+U)nclBN)ynM05`Y z!2eY>!Fl}l`a*Zq^YW^5BKf`-tj}&8l-Ed9719c1vUhiPCsOZy4(%eN!s>qNW^oci z5fk9W7fOi_-UXlX7P9X^wskF3Ys@X+&JjCFq%yKi^K}^|l78nid50Miml6}Pm#16M zU!VTSr{JUe6y2tPH9YW$-Ek`-KOq!*vtaP}DVS6nKB%s~U}S$p-K3g|ipmGT4=~4h z&1dE<&B#WFBo^kzu(IQQ+QF)8g{Hg5$+?1$BgJ#}lkApvb&+QPbnn|s@&rA@w6$}MLz1oIlUL4HvhJfy*23HtC(fv# z;y~VO0xtxbjtH@n%(c(ZJ*i<;{X=ycv6*f%P3#GEsL&CcN43PBX_TF{z?VUTzI0FWQJ+{5$PWv9!7vR4dOiyJ|<* zv>)9NSG?u%ZGKnYAe)T<;i6rDNZ5e)?C9=8`KwXO(K3qO6-vM>agXKA*8#VVKs$kQ zKV7wuBNexszsePb5yo6~YMP#m_*Q;VTX`nuWA#?LO{%M?s15vH3c9j{zJF$v;f{AL z$ZR$;GD6I5AxWVIe_HW5!<~!Cy^S%WNdVtijCpcOw3_+Yr<=vttYHK3fI>Cuy*E2% zIy%Qbk$t0P-j3aM!%$>naGVP1}knwM;M(Wz#)KDp%?_=Epq2RPD&Caj*86?my?yFhDDPZ zc}Di|2JYLdI9KubaWFY5d6M+xY}nlHv9ewrv!;B98>Gc&M$BmYgP>Lbos;v4szpuB zGvk1(qt8M8)pvnK69;Ue1R&2vX9EcUXJArT3_66C3PIl5IakA8Uq!FFVQ0A+!{H+wM%UiKpL zh*K&Y0qnqO20rLJsKj~22X5H_iRd!I?n{_WzP;iwOexmQkE)NFp=7o27Nna6pJs9{ zeifmo+cStv#wFI4Hk)o~Pn!Ua2PptrTZxJ!St*K8Z$QB~d{9-L58i2mV|U7E5)$bG z&{kXlApGlezK=A=kwln_lqW<_OvCmY?c6&YN}gfxZSzjkgDpiVqB5i_wf9H+CXr2z zF>`}}Pgu)gpm3~lG-nlZ$1MNtx>%8-vH9tJ8z(pwrvck*1;XSZyF7A*Akf8COG~;= zSwfpAs2ih{1;x=l-r!ZIJaim2nYoc<`jNfV-My`tWLoQE_!;8IWBaT0S(HpnUeb^5 zHXsi#1kN}vV3-#8b;UZc!P zrqW|pNu&AeuAbI_9ZZ0!Ih)}MsTLmY@#CDA^M0~lwh!I3g+AkLA zjvw>S9ru4vEb!2N>pqtSrcOJc^am2iD|>K{tngq6IhP@Ymls6eMj=y8eTZNnQ_7mNw#}} z>igBJnuNz=<`-+1`6)6v4mOT-o2&g4;@_b+2~Ubx6;KFOjNqou#5##HqgDIg`4_p%j}yeXU*L3 zl_2E{kb2nP@uqZ!U{Xy{0TiV}_XzLf5A521(8?Z46<4&Js3I}oSUb}@lh|lavT^%; z=CKODPp_R#uSj0a`)NK}W`Z0hJjiZ4JfjEFr%rMzf&=gT+_e5}5M;bs5szk@u33N?*E628!foOUbzuPUx*R>fVbzyij*;F+tKX+!SHF(9Vl1o9tk@aj@x z)69+(6uGT!!Kg?2F`yT+=2_-v*`WzU%241uCC&c0#6v z%tTnj=vl#QwR~sOj>@GEPDqUXntb1NUb8&|z9{i{X0wUP)!mH)?$!vA37A9cuqcQO zy&E@2(YnX+$5hSh$~F8Dm{6wQ8m38Xi4{q9}x8%?Pl7B;!c*Ry;P)V(sR2 ztiXA-LWARQO4=kMrXXS+CtyG!fgSo!I*|2^jDoDk>CJ6dHuI+sy|OXQH&!BbwWe`# zlEjRext}3cL}n)MTt!agKWnKUX@IO`uH|dlSS&Gg?awuedcQCEW9dH1JimW$z2)!P z<>e>8k!$^N1*`1*q)3ylM~i$-`(7rkQ2*^Wqm7k58~==4ulo3}^&6i)+8DlO`Q1-@ z1$V#sKrB~_px-2lvWW(9}Y z#g^~e*TIcF$m>NygPeGraxY(OEUPuHRyH46bMqL#ifR)#gKhF$XN{wv$f%t;bH;%hrR@e>K2pFa`N68*qyor@JscyFJ-HR9zZ9`MnF0hI zQedy%Yj8T*tV#T>_+&RaZ=ukn(A5Et>#&%ln!MfAVJamn_+6qc|FK0KOD@K^4mmNz zh-_{inK)%>aA!N&$V+H+E1wK=-s`U`oJs@2RU&r-eD8>``RvPMAo$U=p01g%w4jt% zY+~YhSsZ3kV9o)F_;dlR>kig2a9HsURuSS;l%pfvZ#(T1>RdZWqPQq5cE2X<(?(nW z&AY>2IK=4tr>dx2waLtC2j7qOZz|^S;)9zI=0O!mW3hJyE6|Wa=bk)mxMBQb#d|sX z)0V&|W?pZSR){%ER4GW+i*EWIUszrL=zEIEt)V`WfU;T5{n4afsdap^65R`Iapv*c z%XuAr_qJZ(Ba`pp?)_+e4v9d;gb>^<3B_Eukwog)oz+V;Gp>%;+&r1Dpf|tyAZRJdlCY~x-2CyDl$WgJb5YX>L|42XB(JI-fsxyDSw8X@5!$;#g*vW69 z0)og+U*1P5Ae)!~bfl=}Iyn}Vz_+`&j8Siw=zNGy8*-BMS1ueF+8`EsaY)aW@S(oB zxAW8dhFJKQ<$q=Dq(Y`$rc$rubNW^@C06Xl=U-jKIx<_09kPI9oP0)2Z4J7=Q!NrR zExh9L>IUK+e^jy0)S*v_4VV~i)uown&zrya4w7$oc6KHPK+s=)AzM9Rf9yn@FD&!S znSz*knZ-eEPnfQ^^@e;L7W5APn{e@#piAuve`N zf@_04WU^4Pb+7-jeg0iTP84gJZSDcPTq`Con{DF@6KL?#aSP`9Z#>weQzeLzxW5IRj;TKQ&@xH z5I38@+U!fzlYqfe;8IQe)?K@3HL$P>IJ{IyhPsnzqogt$m>9@&Z+j>a=em}gw6m{0 z`BKpBGl%Vts6{nr1v6xZ+0N2WM40j!rF&VmkD~Y5GNw^rDb6pvO6+h=@s7~-#RGV~ z!C)kg;>dJGnpqP&H;>y`$$VH0uUN!y;0CGlQ51^{+26WN+?WcchR$fave2|+oP-of z{||WQTav8$>RmfE?~PhySZ=>f`%=BHubuH* zbDj~Sr7=ngPq)}6>8i0Jc)Y&Zmx_NKvYXT5jR0!Dh=>Rm#3Mr5S9Wd%w|^7&?f$ss zt=h`bQgyFUi@N0P?!oLGYj*kzl}xHJ+&f;3e(&6H)02)_NwHfDlP(Tv+)vvsTgOn= zAa311>nSYv(X^`FJVVu{?VA}ZmMB8HPi&`#o=#FX5wUfzUKy*pR%N=n#8x6aVrz5i z9}T)?gO$vrubyr%#y0guM}ep$m%6t-$th;K0E3_X^a)+ORbxKqWyw372lt>Vc_3cxRDYJeR+hR#YRi;O_2{eaIL{_k+ZPRpf1j)dcnIIYyD&b=& z-5oN}WF?5741?&R&<}n5I|%MbU>*f0Q>e&&-C7_pkVCYmB}=#zH^&jQ?2ycF0o+Fq ztTX^xWoTmJ6@Pnp>Vzhz$)hkn9}45U=I_r)6+XJj#Q`W%pNv8x&qDt#mijRn^+3eh zGz&0~kY>`PH^roWKhEypUlLrX;*JwXZZ2N8l>gU|NOGK+O9{8%Dzn@)fj<4|p+7T= z#~m|Tr#Ts98#;UcKw#wuB??T=YaU(~5{CusK^eXDARB66R&Y{vY)o^J;9@t8w|y!Mo3K}t*aU-&?NQ(Y zf5!~i%$fm?IGCvt#Y!O_e_%W>l$d@eakPLY9yIa%8kt*^{9CXdA`|22-XHVVEeG3m z8y=P)=8)4gxmq-#-}}^q-5Y*g%()r>&TkVW(vXR5oz_Ur1!`|vq5eJY@o{{@Xqu9l z5Dc)p!CNl`kD5!HHc{PzUBN&v-*aUI8&Zj!H{jQz#1{dbBnImBZI{@r77Eg)Oh1f` z8N>MprE-U(lIQh_+svYXy({Tkpbn0?bYu5vWj_}B_tUH+W-tX@%R2oZpM#l}D?svY z324*NfjL=M0At9tJ-uS44k`!DSpSd>6fV5ztGN>3gx_41laZ160LKJH{U~6J>Ad*+ zKTuf;?${F2e=1OTA4bWLe32shd||@y)F|-79>Chp7pMndWBx;u&(EjFeBvO2Ak9V) zv>w`%0};AvGwh)BzrCD~y(GL3nZs>$ovo#dFK&M2|LrGce_I|j>%gr$39Jb%&?0a? z3y|UlpxaIy38~?za)aykT$jwH*arU4ZHVm;WL)i7ig<~k8N$=Lr-G}oWP#j100w#h zse`GUA#6xHPyr*bkbqyN18FU_vhlT+mX>HekaSuX3>Rh(qIrKh?QGPQS};CZdTUh3 z^zEeDwcIR~g+r?s>#xiNvljrVH&BGlpl!Cp$eSv{o80;HrUHMu;$B0J*lT z8AgI={Q^}k{UJuns>;iM4?X7Q%CDJGfUw*CLS}F6Dx0X#{Zu5)8@QY|;PN4S6I}-- ze{F;lzgpDhGAAHe3IMofbo-Ph(C-p3>B!~EbL@`6^57JCs6*_O5MxIGzs_Ny81UBb$Y^H>n1pe-tCPsAJ5RPH6K$p_pXRA$8p zyZq^_v^{+S@E+!f7(dunqT5_>3#pN%VESX`vw#xR_idnqdo=*^xgdRZ*S6pi#NNhJ zg*o#^c$?AfY_^KPK-?Z^t+kNzz-}b z;x5Y>(0XGt-C#4~HmcL>HLCl{ek~*qKILmqzIG))>&(@9JNfkSW0(40Ej`3aPBPUP zo9P-O03LQNcl!4Iw-#S~l0#$k{y_!}HqN>X27Z1*W?V?J4D{N?$X5C-MUgch?GH7XjFxQoF^THLzcy+PO{w*1aF1 z!#63MJ-ZgN_D*=(%pn^AZsE?vpnv7<@i0y8NK_y}boxqjWm(k&^g=fvOSK#auB7%XW zE`>eQau_esb_dr%Pi*rp$a}5=7s(CSZ}i1}aV|4Z&~y|XtaLrl;;!Ekara%b*ZlTE z&9bZ&W!Wjh_^6#tnK`NaLH5R$cl@bVS!w4L8q;RbD~Q+4dBDU8a;AMI_yT(C(w86i*1g>Oa%5Oq2JfFjm^RJHQDdk`A%c= zR+{}D{+X%|HckVb(Y%i2wK3r7h=KF{NucUyC77E46=R3)COl3RwiID;n67p_BOe{UsV8>c zADvqBN@?CgD8(iQC2H;j%J`g-l(<6hfRloL&ZDUgzs*>Exj1Q{WgE#=#*zxw?v2yc z*S?R9iz#Yl3=hFJ<4WlML=d&WEJ(0yViot^r^mf{`bvt5%eALFRj_joO&L~SIiWzH zR@NLBVBKgdU_00vt$*QhYU+L>bqo9!i9tUyL5XthuZRD!LB>tE9;Bhq#=k%F;qPUon%3GAxXS>&H0;!=WniC z3AhL6KoGaQE-4Ak$`U0~+b8_o|aZ$``KLv&r@LZIDMLBV*$hZ1#ZRp|VsOQ!}vIL?K+(jV~^14* zkUd@7&c@WQdfifYFH=v9(HzwLMjXYOobBYwrhSdydExIxy9ieyxO&4)PA}@eHtI|a zcbG$O;%Dle#%%jyHT}R9Se%EA`MiwO0C~x!keWQ%4XY)(eSjL__a#ffFTuJ7b}5Ta z_2-{aQu6irDdAYpP?MQfHMS1 z(W^*agpJ#)Vdxdj(yi*5G*EIyi-bOS`tD!;SS#DE5CWL{)H^YQ*fEOG(cza;G|m*5%*&K29;}QGXV?b(hvm`Ml&WKg57+4xCsuCVzWu~nMr8;e z3pv+Duc1h`fEH+nAc)V)TEx1S(?fLdI2PdSM!Fv+XJdAj9ZNKEYv^+D8Zg;)VRp>ca1=y<=-5R-`?j_=>3VQL+%TgIDsm4&gWni(D?ouGgZ?qe6;wp6hWp>_?!AgB}+)%vJOsS>Fy$% z!G|IbZti8gvZorwFrI)jSrMn5+uGw{1g^#%E-_(DKg6h~oTzJr?1}>d4P<0wglVQ~ zf+ReC^ys2&D?D_qJ#vFFW{!M_uTldEgnL%)Fm)=_a8;pli-Q*S&m$C| zT3_-z+1n5v@OHJ;BPRpcIqAAfp!~5*kw3lFE382-358%DyXfyY*3o*!koJrOZJAga z43lA-seWutDRj#viFK{153{IOHg8$eu+f+AwH+i>886A_QPE@~W@ecxdQC50I2Uz6 zH02H+QdlW%s*H9AQv$B8u3lCWw=rNuc|t}wFDt-R5w2nZX_@2#~}_eyQ_)HzWkcaUqU@(DJ5yhQl%WL@i1CN zS$U<0#EcE+m6sb{`PDaT&$MYbkJOvV)dlP|lt))s+Mn&n)RoU?2P!M~sg>1iS+rCXykSdziKF%18HI**L<{mZ7$c7P|1#bG3lZk;KOK3YfaK=}stq z3`X*m-)Iww1e3kIYV4_1*u@E9{3|=`%U-@>#pbTIcgWxXh!N71lC~=X=U@E&r8Y@F z@pHTR^IujKjOL7Hhm}IFtSFG9+}r3-QXx! zuSL&yvN2yJOCMS^5dd#=*xI!>8q(Af*o!zFT5 znO#x4{8<(5QHfD277C5y`fKvl(NI#z|FZwVpYm_=8mC;U-GjOfvgsCydfSn<4*7;& z*`cF~jtuNQ1&ezSGRjayASH-}@gJ5am!9ox3A9X+_J2}X`ZzlI zfFX;TjL)3rDuEVbo!9rby|TmOfORRgT`AgA&8slCeIXkrkv17Wr}#nt0d~u)^+8*| z4CQs&T^^|-_<&b3X2PNM>6Tup-{y`d6bSe*x#vY)xkL4La3svUsBC`ZZE=c4WU8Ul zuGe*BYKj2W`!&l4m@}L=6TQA;I77Y~&MT0J*lY~IQCeW%RW^0C9R|QctguRWQIWYA zjby_PjKTx!a*bRTV8|^!o#2pfu z(N~+66y*8-nVJZtn$a_a9rsi(^ur`w8_OhJ>YN=EMTRj#FxMWua^b#@&z7#Xl3!M7 z{EkHlFJ%z;4|ZKK((3X1z!wO706HYG(R0J$$IqS}faN+tIE}M&UddKXj-$^$`x$#B z4{n3;{hetayrM@T@F{@w-h=4*-?g<<-nsI0LDB~wLZ*ICYv@0!vnbscSd|^$|WT>Lh>#s`j_(enDdC{Z7mE)vwlMm zaSiEF08$ zKDcg(j)(rwMdHuLA3X+LZsC#0(jc9kGf0ckAns60+$3!r>^O1@(oDRDCcB_QYF>NM zcXO8;RH)Pz%mkqm0|m2tRQjHpg-U@n5(Xb9G%UWcwT2y~t6wJ0kLFPo|&jv_Gp0nLB;B+D8B!BuQaCLm5)3O6BDQXF@ zN1F{x0}cu{g6MAAIcDDr?e7<2Afs29_vbv&)rQj()B*pdsV&k`V3yFjY%(-4Yntx0 zzLx@ipFg~J#rM@h1$=xIJu#kLT537_JG<5<1~H^ualNNKw^JzJFSeGp4qE78LC5f?y(>;OHLdP4hNQyXRb571I<=FAPH{~A z{F(~IXlWA37=i&-{>hv;EYHDU2B1yvC1WU3162sGIHU9m9uTsy&5+GMUP+FN^MFZAVx3V!mtNZ)(u!$(rb}|fePp=m zb%uNKxO29^ghVAT-Z5g9G5#|_Xfn5uxloJ*@MIYGXQ;yuzlz9oVW7x%T~TVf!YDl z8oemsQ0YSXOIn>x<~c;UYH}~5WGqESs)>dq*wuboZDtx*=G#5bTl%z8x?GI=u3Ywx z>R$dY2eu{ts^+}QJa+#n>oTAJ&GmzK^p`$V{EuZ>VY1%e$NXj%3Wnx9OgD&(+PIeA z%QO8i&fk~*zP_gB=YJjK5ZO>uV0n3Qqf*=Z=avr^MBTi~J{;y1p4F&Hopf|2iS;E? zl47!-qvV@!e77Rx$0TaSm;K8v>yg@T3p83ODR@b_+?l z=t$dCudLbB&eT}i?Bd_|`Gx;H>f8P;->i1-mvO$=L{Fh}7R;G8Eihgue06KI(o@iD z;fQh+M!m*8wSMQ09e*c(4D|8wsRRjsVFxwj6OgK8?}|x@XsD{H@)oB?%3V)>y)yk; zFt}s!EA#BCD>8COUOfgT+w7Tk2sn4&5z@zIrMUfNu!TbPggE!yF8uSqdG_WVuZb7A=0`6wZhUGgPAzEOP= zybDf>x>+XQps3ZVyiA4V-dDR))oXR5Z=Fr6mOoQ46}fQw*m(*Fo;v`nX2Z_o+n!WZ zRK!!jHG2ptvt@8N-@SVW2%1{I88$dg_7J;!1({;s13FzLzJTNN&+*jQTV!`Hp%eu5 zbPcgsTJekKD;c7K+;!bX#?mQojSQITWarPP=U(mvB5+i8^z_I8H|>U)fbOPTiD*m6 zf5xv|TMx5t@366)vX+D6H{*tX>%R?`Pe#;2S#xaO-#0U2AYOKYKF53DWhp8rdWX{i4!G)_oxyL0F76i7N%LK#2bPUui;_66(dlF#k!?~t;$ z@@Lh)U(GsCST|l#sMY;DV~9uSiNBDww-|IiGG3BaMI08NN=;ZQxza~-VmFMAQFID` z{>LlJLKl>;y1M!y^}E&nZe8GGcR(k~f4bHkyt1jvC?&qp?VR;A?PyR*@6R@)y%PPO z5~co4&C~4a5@lQh{L2|)5wJ5hKX`GrcF+L_vNh7Pz_=|eDvHmsTbFx*;ZZHK{jr!b zEPeClZz`}0<*N&wc%S{gp&<~u0G3p~F2#~NB{7q&F`HyzOsY$ajOi9QbgA}z(Bg(V z?GdJDl1+^xbI;nw56XT2W-jsNoUVz4EnP1M;e>{&G4u+ZkNJQYtzknjI1!eRkl?v; zZS~8S$5oA?RMmmw7OH*6RMpi_?8+I_Ic^M%5OkqmmXaoaq63=y78(B(ZEaGuak^ea zTybRe2KUB;59-KHMoeGcn8NJ7>Hl!wgzZNzsp9=$fk%RRu->bB+pQhWWyeGPp#OA1 z(DMWkUnrSNoPfzU9F(&s#jf!z;C6R_6+3slr159fz{$Re%SLhgN9B@xV1<(;>ZinF zrtkA5#Rhdn`8yW&Jmlc=i$nw`8T2+#WL0G?&=^2!_cy~f17e90#&3)E3JY^ki~x=Z zc5Xpe!`8c_<$%!gLj9m?ohI6d;N>V1!dg?=9;5{YzNA7I}Jm$2r5JGVs8 z%2liK?I4$OK4$GsBWsh!tb-{jDc6&)tN?xBI{k*N=D6!)ubJMc$;#)NXJ2!*Xy70u5hRqc~XwmoCP;A za;uKh#`rY0#^Bggqlufkq`Ts|ym4j0ySjViXqUTp$*Y`A>1JVdiwM`I{2i-PXgjB_ zoB(_~UwwLd`g{zi1%bi3q!~cJxbY8b><2v|J9qAk1lrE9i)KG%k$S3phI3~cdOFM` zXanz+caHLYNHw}UGcv?2M;rRm6PaBn-^qa0N4(fly=Z~8jooqo!-io*BpaiA61)@e zW~fx^^%Q>X98QXkqyNK)(g;?r+V}DsoH=us(qa!Q!G z)V^fq{rDCG_tkO7XKoz}T|yyO8R0t%5*(aJa>|Cm^bUQANj25J=kvKw0g_*|%CDKm z)NX#~EE(D2oPy!N-l>-|9e-wu2Y{CoTt_bSV>0;&U+(O7LC1(cCc0q%WY;?yBFFnb|LM_qf2Q8o z?4*!c?{8*IW9>^0XxGk#RO4WB%*U&h{D;x0d zF6gvyGz8!9e0E}uW|Y45Ppu|8i?lA-74IZm;Oo{*ZSe7qO7H)p>|5ZWPTTjj``hi^ z?X+#BqqLn>=!8mWw}X&u6dB2Okj5lQ$W*l3+jdYXhe}QrLt-dq$YE$ZkP0;zAu5VA z4hbFP@W1XacJ(&X`~Lg9pSRj=o9{f|=eeKzzV7S3uHx5QJoyvkaB`hhdg}c9xtXGw zQK_lgG5!g6oR_Wlltj|CV!UESch+eepK6|0|J9w+=goU}Clq$`QI z&nqymBbL=&1=zZ}YQ_`-<&fO9d_I3doSrnF$tEF9+f^3NF1C(N8thv1``3MM1X32d zd&pChfS?ner)nhi#~VlXU_GC_(O>_(x~$FFwl8f++!E9SzKS?L}} znbmF|sjO^bqWfX<+6E9im-G4j4Wgch02p|8Y@eq(fkEd6Ile8FSIMr^k{tHj;^tZA zY%6nlG*fyi$$M>Wd)G#@_8bp3c_BWzC&aI(JDF8zuYq?=nSw+tHeKu0QVo{y()>s?{T#<}RU z>87`=txXZJi3KGU)f+x}!QH>vFT8T)TG0B?fI$u(=P9kz%uL9ax#aJg7DmzR>VD6S zU5~K+SX}7%ypithmNv_lExW-A4i2sXIc0-r3{DnpIBU1EVdZ-v40H+*@?GbHo`_vn3(vd5P8TAR*W)X22jOwUE5$} z(`rf~@$ZL1<$f~|&Tz{yy!3s;S84f3A$KRlrRvB&+1Fh*9e-bace}Jk4yN&7Z%=lq zPT^IE3`uggm>z37MPSJKPpCodyFmnZwkzgpwXuarzTarf*HA96m2Mv-yKLN1wsw54Z+6mOiPhX=^M0|UCM zjL12%*I`l9-w|%;(#ICdyu7@aYbJrmn-p`q^>u}pdIS{f|7;;mt<_PhZ~XJQw^p}# zt@vnPCueKNj&{7IXW=Rr*ggN@?_&ov;RdVclj(xfJw}<;(TmHO0`SGH?w#+O-}Ede zeY^T>nT5>S>1Sf^{|SIEWV*~MZ;@e7YJLXl|5qdwNT%C?z0!}v?6IvLc!U}t9b48m zz&xS`V^IU8e}DE6x}?%sd*qbc(#)c#$?@_5%*;9K3$!ZRLIM zQlA*ZXRmuVZSUSqF7902wBn+&v9b}>rzu7jgi`A`<^3iz*q?XrscY9S&_?mtYl-vQ zn6qt_xXl2J7<|vn-fLW5FE5y?sLoJ}EVA1eI{oACiKh$7)(?!|N?JZt}1wDTBHE zo>F~R=2_ce-IJ*B*2f(Z!mg$#m`5fvr2>sL2|zx*vi?N(8=gCVSm*fsFKw$)3D0tV zmyeFE?#`{U`XVUUEPrTf-mZ?vaPRkt)k*1e&? zv84hRm500ncje!w2q`?3{-cdeOb+eZIov&$D;g`g=+30f*l+m^Mwxsx&8_RpR;&wQ za+5EdAv(WFh1zmp@VSva$$=5i)PTwe%)Jd0XO}fM?^?@&CFKUybNTo+7u=#7T>TSc zzDtdCmgMIT0s2R&+2J{}{%dqrLv)r4`u)A9^-w|m6pU0D9}ZcR8?04DAyqAy`H7@` z-o2^3(%i;3)C4UJPJn2d1I#zVzgcAHo8PEDyDr-O6lRz||8bp#UI2oom5JP9s^^7& zsF6zh)y$YNBOFA#>EZqf@F%8%D$rlm#oFCXQM~P#i_?==;|U#EreC#+Gy0iF-x1=A#Nx}N_c}y?%lw=H;96Yt)l15 znd1w9?HATt#YHhkP#c*W9|I*4b7|Xko?=lUF4*P3z9k+xqwK|8HSt zR@O~c^3jEx2tx3xnlpR$kCJIe$D<`aBj!vhi+>v6IX++V>XDVgRW*~mgIar1OXZ}( z;d7bWTz(P0zUL@}lCxp=I;<%esg2DKI@K?%xuMi`q#48wqQ!>>9xT6?GwxLy0{u_H zK}+kafSsY~x6I9fJzwO6m}l9r%~*-ADhGgzP2FXyi7t%X?U~jSa`n*J*uZBt1i+mU z?qzIU==Zr1lGBws7tXj?e*r*mSBbrISaP6V^MyeNg$kM}MRryBcMZ2u=A`+V1{Ces z>zx|96no`^IsYsReL)F0WC*%;`k$-To~Le%5c}YYV$KVQ z1cBwD($#pipM2`w$+DJuprcOAi4+OXcFJaNz3xmYINQ&0VDm0{VfmjgesQW8{qJ8` zgh{h3Ex%*Gc!{Ct4SZ0_4hpxbg@uJ};FFtbU0JGDOwo$*4Hxe0(biv8Ev>I#X_d5n z0K3mgF_TkrzHkwaMm8k(B7Cjib1)+5Lw9Ylv&+Z)pQ8BgL%NR;ErY7wfX^S2l>PTa_w>j5!MPL~=onzaNL$5-p&RjF0j6CGJxVy0|LgH<+` zKAX8;a~OhKg2j(=X+?60YvnhI%9=%<3litgTnL0;d`yK#yGEtSLA0wf5Asc z^Q$z@5x<_}f*fNq=RKccHEYZpah&cbLLD; z5sSB1olo4?=t=HSB=g;cruGmBJAehWr1p`S@^ND}*tXxW4`5*~f2|(c!v$d0>68C! zTe);i>z)x@|DkfG`5vV7@a^uoVA^Y9O)Y{6jmL%;`lNxKVX(m6-F?;i^&#O)rO+Qe zwwb?9Z8)^G4JDkM6R4f%JwLhFM_?+-vhsltu09^p$NX}`V1?QwVTzi2g5Z&y>@;c`;&*FSf2svhhN-d%Adn?<--yt&a8$0zAz*y$r6f*j_}4X}hXzl3GnEJC8H zj}Z^w7FGhrSRp!NB4$B)sTLA}2GKm4{qhx($m?cRh4G2?vBu@K#mVF34AZq^_$qXI zX>|BhIe$Q++D(pU#X@*s5=RI8`)ro#U&IE-^ritzr89`F#Atn>H5y-z;c8!D$sem5 zqB1ixNesrv+^8|yrhS^_J-gwHSXP&%K3YcF!{xjv+H%I&azFm}1#7{q5k?Kqgo7>~ zPoA#$px2P^oXk0nxkgJb$p)h4vk;%WA!|EXD*Wc=p+P1R!w>5nzcUqu;Lgd!T-eF* zZ?1b-xfM-zJgqofj_A)78{0Ll&bE90m+hqqy{?HA6tlo^2n{d%k>(Y$Szw(nmt1^N zn&$2djgzSiQSu=MDL0D}pOU%D#fujw^8FfGVnh%jC0&n+d|wmY`B1G2?S8;Xj;CE+ zWvAhboG+E8swZaHgyKM-RK9&MS3zcd{q#W3WSH$}4g1yc5`08Jj6aVw0UJRYn#3M} zu~nQxUmSxSpbBNd1lp$so;yA_k0@j z^VWe4q$PLSMa57yVsXBuhxU4!uq`L3iA`pUKznY)^v-0qEgLge*({Pri&s>ALUUp_ z{~W-KDHurXIi~4Jrs>rQ@zCs83-uNsiA~#Wn_EQR6)3zHsTK;eDZI(ipjfinoTq1& z7~}lk*K02vPK+hz;8YNAuISoOt^~TFx{rVaDeyQ(;)^b4L9UHA$As*14q+_@9k`)Z7A48?t(zI&^odHd}<4610mY#ko_{TocI ze6oJszj@S9Mq|hEY6s9~}X z1=QBvEW)hNQt*o7*IPYLkiLT&ns1E%o4jHB+gMJdvCJA^nRcx+r&$Vt+`p1l|J9OY6&Lu?16>jH9h*DJ3~gpfsCBU$e1-B-}BPPg9c2Az|Kd4Ql6A>rTpsGOv3y)Ej!nZnHF4 z^e!8h;%x}WgK0auwV2EFN7K-S=;#twklyf{!~mM1^}6kOo-QgDax56;FeM7vEQPjmNf}Oxj#oc9T6T}(Hd-J$-%A-fNj8f8 zpta}nmp*_WAZZf#m}3!0SH^(V_b$eah5(H*k_1AyiViZ9Jnc+gw~kxG!)YmldQliu z77SSAAOXYJiEO2*B7HO$eM3%q zH$HK7B*h>vdAaD;o^#Emp@oMTo}Clm+@6l3EwsEr9I2no}|LWo5XjA9c> zAmp3kC4Y^7v8Nv7=%q8(U7KkcH=nr4USPaWX1mmtFn*P|`wltqV~xsdcw$^ z+f!7eXZ(^!&e<}NLRpnDbR3ca<4^u{~$znNeHovmg7tdmnwRB-vcSHjMDD{Esx_KsF}10%L@j9|fwb?bBk)v9~|!xVLgN^hZvHTdZBn z$UXZgDkwWxxghJ$%awmMt){C<{#EX5;{ek{%AsyIBpHmjpG zu5*E997!9{4wpWBQ|8&({_xSGvoTt*j@`^Zkb_~Z;h=S|kff3lF%=VBl`Sp_}N1&JH`08ruH(DVQW)A*%5hB>B;UX41V4) zi*O`O>p6}&v`=HQF-Z7HU9-`=W1x&CYoIgDSc$oY@#Q)!&PU!B z`e%#pTj26)C^HCM1^1tgP#ZG{49z5`AaIaOB-$`%t-L!uZiOW5g%uP(x8Y4#I)dAt z&FULX>Sd5iJsXpRUy&Rs6-ky&`OxrlUbo|~Z)l^$xC89a$NV_0`xSmFlKDM~@^4|1 zaC}=Y_vT>r?30ybq(_=5mX2UmLIB6^7RG@?Vm?%-K<91~f`~yNnGGWco#-Hr&w(Q^|F1v*^GY%wsV#et~)ruP5mw+DL+rk;LpHd1ulLoXmL(nM`IT6sNM}^sAER zIb(y{AIoI3JXkj^`pb1u;!i!-USwMv^hYqOC-?vvmrQbFp!B$;-E1A~y&B^>TjLA@ zF#~N+i)aui*oLx+3@raiamxRy?Pv4;7qUq(2qcL&Xu;DpEv}yeb-zSLBpB)u#^QPm zCH@$!?FL22r#DgBAuytZm$RFfINVHsbTv|!op5cYp03%+P&ve%(o;RVzG$Rf5Hm?x zvRBGax`_CusLJvad~|}$2;)vhbHVH+K*LTbRF`1Y#cHahxCX-_A|_ip(zGjU$zy;n z4*?*C=Rm7u9A=D_FgR*d(mszA0>`*LcDjm@*6=b+`er@P_C-$leru^~5tTP;%VnqG z<2D*mM6#4yJ2>d~Y^3cpIY4r#Y-gk!jS#J!mHx4;A(IN3M7_J{fK$|lM|Ei0zMBKI zZtd^$wT~OScuQ_jz(2{;*uivlVgygs{heNClO6#Zq~|fkvC{@=pcC}9GNU3xM#0qC zRqTqing%Wi(-8E#uFpAfZ-tTEWaaRsONO2iU-eHD5L%qL7~(A3n-gwDcH0(T%` zJtX_%;K4vXkCT}eOpLCP?(&-s^nl63$E2KROS&IqA@C2_lH~z3<7iW^wz|6;avf6n z%_LDqnzAYPKK!0GDG5@MI0nt8zw>;3K>5}xeIJ; zexG1jJ$KpDK|N)Z#F3;?TH-uKmL-G;0c*KM=Y?p0s6F<+szOCy`RC~EjBzz_*r>4o zgQvWD-MTTD!8?kh_S}J$2zRr|97qFS1F_7v<^6e5a(jqrq32~t$j@qU%t@^!Ho5BD zdwf=VR3P?(7bQW5$>4@w9g*7c*SeCUDWYTX3ruV}!rUf2tF{O1>bzVNwB^tTi2+<1CPE51GcqUz0bP8wf ze*Ki>*%`sDpBDeQ1Y8r{x9==guf9bJb9g9HOuG~lvm(9G6UC2>IL<~vH-KO0Ldzhp z9$2!PZqXUjog!pcR-S7;7=2KMt)svH{(JI5a-wSy4W@H-^I=?n7*qMv>re$ zqD`c(VOP4Ks#`+)KUcfqSlqrkPEKnO`ka}Nm76erJZ8DUJuH5iADP#nn~DL)izz9s zZlTsRMPC6To`b}=(~2~NNn;wC@z3|`4B1bW-J?XxDaPpy5B6%CgHfcsbXPT}5;rqDd@_t$^6D{>rt z(ZgmFrcSH>pbAU2fbee_%#?b({Jf&uGeKdi)d{_h_aymEHV9IczK=XR^Noss{=CkvAm2F?($~^&=lbufGevBk}A%ng}gOE`68ROS|b=8hH`+QA7 z?W!`hToag9EFY9ioX~ywmV~SdTXq||UKh`wABX3V5S$=Y+58-xGjC+~ zn?-2vPUbXblk^Lu10iGd^<-=eGCqT+UN)^7M_S)JJm9pe?r!wNWIflsllG(E-aetz z0&Sdw9~uMxXbYD;dr)$^r{o9(204V1k}xP`S(>n2fz>dILErc5mk{#HGE_?yh;l|< zDi#mU|D4U;I~zJwxR6GY8HdE|oHZ(H((0Urw3rsJAaOO_mWm$(WcD1-&)*gW$oC89 zb6wA6X-z7hm>yr+P%cUc5pN^a8FHHa zVWs2PCbkgRJN$^QGE0{Hq{-F=__L+l_Df|Cgjy#>B|F0^aRv-FJJfb2OFAt~8L37f z1B?`gR7IeW>RNXcnxqq@IJ;_CDtf|wFQ(fZ0gA8$6@tXfhx91OxT`TaZ=V`;4ck2b z3mW}HV|{G1-QCmva`BGDZuH>#Uq9*T=`n7l@wWFWE`^=A%gqfX)#k<=M~^uqzkQ(Z zpj_@i)mxOqC2E!}-Ao!ul8St~4H*4QNOkFN*sww3+%bc+7$LwoqaLy{WcvVF)b}=k zeJ44-t$n;8!$u}JDA?t{rY4uysVqM`@b1YD4%}m$CZX$A5!(47Gz1wl=v?dbZ?w4t5L@kf!t&h`qyaL#2Co~ULB0O&(D~>IK+%?B3V0-ANNbRUQ2vC z&ZEFqV>D7wVv*RMbiQC_v^gI#Wabm4#&A@^;qhr%E=87enC>y$jf!+DV3p5fTrrF4 zeCneqw>|B<%GA`SWuk)aFTlLF0SYOpeV{hndO@Oz{Fsiy<_j^sCpOL7?SJ}oCQTbU zrhnK1Kh!5jprO54M`iqY9IoM{JwsBZlqn!-voyJQ@Z79T%i_(|&UgX6n``M^H3x$3 z)Ztl(El&y*q&glSGIa1@61nEYCQn}P+1_#uQq&b!ZVtT1{ZYYliA!DirP9)~g5t1i z<7g4&Aj)wUF9Vsfkc*5u7`xxu4xy1glSkgp9H zT@HG=2NK^?a{(JMITdpL;|P>rzul&w8_X{R)T>%o`%%WV;rTd3XAfcQjmS=J;q`7p zHhLAn2PxJA#340Gx>ad2om@QdNPStVK6u-eSTiq(8|tIVlBoCbutQ-?8kfU{4I{%7 zU=XXI(+T)|6*4{uK%o8@e(>PIjE`%6{q+YN@#BD^mqKCTVob~o5_|Me*?UaYDv_+R zAUHppMgpOTcMRJ5=&X1H!CHpL3d1eBz_oS+y+C>n5{d&p&g{Xx3MGe2{@i!f*<_!1 zi_->=y%E=i7iD~37^*w1jHg22{B8Pfq^#!zDZnNB_U)TtoidjcM~T%!`l0v=XPVt9 zu#ko^j5|gWez|y%&RlkAq9gPwEltjU^Af8-nyXHQYb+q&vXqc5vdAVIfwacV(FURZ zp`nbq3)#D4c8H{cAL70b&r^7M{ZWc`U0&kg!2pnDIp1s*(bz2kyVRYA{@6&eDF(2l zmr9rz2^9Zzpl=q021oERZ@&3v6}~a$;XPZBP70~}pi1sG)i~D}{eLCr;^X7#+9J{3 z@#D$TU~TeFTQc6IPas82D7j=}r&p3VI#L|kVJLN$(hdW7K*%VSLc4&cLS=09Atl$f zjO!R$79(I}HB?b?OWU+Q%QqOgFuBBk^kv6y;Y5AP1$dAWvtG0SRlTye&fB#l5R4D? z5ki1r6SViqN|9_?$B(~AO}uU^WpWN`49MF%xwvWGZW0%y0*zd7NHS>J^yz^u?hsO? zi<*R0bzeV0Tk#I{R!B9McB+WmVlPqZ8;untEv);YdStM9wypCW*4E>luvzch{v&=M zWw>Lw{2A{lWa6zW6iOnFUd9FfcA8WDJelW5S-rcCd~HB!Ecq#un=wRnUmsC|C?2Up zkATz_1ZuZ#U{dKBvahrAFG`c0?G{2>-U&K&sU_v8?b)D|2 zM2>l&B=7)kbrhtdOwumH%30di17jpGgEu>yttav{1bm>0?X27?Z@C zP-)MCIN*B{0mXL>s4s@P=40f^jb}VRoFOx|`+7!wwk8AC_to0tq9(7mT-WWNfGzO! zw**@zZI+E2ZFQ#@<=Ld=IYfVq(-IO{TxDkF+Y&y=66cPwh{I4-<`9#Gr;r<+#oi}F z-;0nxU@WBP;fk|Z&`>1@8G0OYhLJdL?SlsJ5Q@gsvLJ#)O!Z!SQs<>@2r=YJ z6n@#1VQ*9+>ZYvjD3krenSgJZ;S5oO?mkWF^GWI0BrKvaqXXF5XO9X9QSHn;H) zp(XvCr0ZxC67+l3y{RguS}>v$Ueb!8A0JnfTCb(a2j9Yi0>)et*Fqz}`^`Fi_bWav zv#!bWQ=KlCy70;N5*HKXaGA45KWfI#a8SsO{*N;FFmB-DE zjK@7m=pwyq$k>nD5eNMtuf%Ek0xMMfH|_jjB!?k%R;P> z8hBxsFHe)s&t8b;w-b82w-NSGYR^Hx;4qj|SxkjZRX<-{Hh=fOCw^=4&AQ)a-HE?4<=^ccjlpk=8XQaRJmbE#bhC-` z^nX{KqWAi7UT*FEeS?Bk+azll1wt7Q!r1m8(j=T z9m9vf44p{}emATIjC2fFkr)~E>~G-|n!Q@3@bYJ4)w-IT%+|}zvO9fz2Trh`F6&vF(=e>X7&nvN1r};B=7|`YeB7yqI^P>m^-On_ATjYY*KhqMWP**j zN@hc7?uj41+Xo=lO0X@NK&zy!SMBZ55L=b0wgcjw_ZKa9)f-r?&H*;7ec$?D8 zVi`LRYuIf3b+7Xzeq0hzzU`7zfC~QAr$4UuEv6!rkpG9FW~kJt<8pJL_6)|({Eoiv zk4SxwBZN>k494_saEvygEPRMXg|gofvN0qktm#0UPDrF#5L!G@SDK^`V*jpPyKbSY5{66A z9Cm5+(#VD@1WYVcG>g4++R&r8&5jIKB;uT(zkkakXRiyG0iu+ZN{5G`yDzP?&BRd2Q1w;P=P1hvPqxo zyjp%ZU@wa5L0w;(NF45F+~2j^*j7gH*dIdO(`&%QkG38oUmHf2pF}00+t?}Xv_LzB zOyRJ*$>q2bdVv@kda3)j9|$}mKN_!& zpkFThKrOc*xN?%S;Uf_J%HQSrojF5AT^Q~;(m{kwOPgm0Dx1WOcn$7Rm2m2r)|zm%hI}4iNi&SE2XF$mWej(Qz+JtRDNL$5V6@`k!Bi8G z7VO}`4@*i$5gm=5yb=7?Wo~Y6tG0+x_%aXyj%V1^eF}z-#zq|h@n71<+jn$t*q1+d zM=)!dQ9*ztWgf^eo6xsiT4MsZiq1^l!lo6}z@7!H!ul1q$?edNn$XOQwtE@3=!_Mu zb2cWd%e|zNXq(5;zfYg)@TLq`KCzZB>e7P6;wmNef5!4w9YjMi_X`*FJNOH;wMc!N zPBZ@DHfr0inmY6yH;(kOsQ|%Wakd^6<+b*=rC#FLn3!Xv&PmlBrMnx!Vn}U!hs1aY z)m&7L5v)deluu-PCp|ir%yB4x&>}XU%{Fn=l+2gIxKT2DJfyk%YI^S(Q(ADUWV*WF z?JIu`i;{u&b2G^(0{KTx8MQOv5Yt4qE>s)~b?}PcOEWs8yOEnz00}X0=!}exOJ6{+ z_C-N98nO+yEYjcjUu@}%Vv!CE<1|JbueS)!7j>k1`{%hd(0&^B|XqyFq4cO^q1h`$)qj`@|*SC z(fh@(9;K+3JCvR)iQ$j>;lT91;j%Hgm#N?L7!65mqVpM##2?mgt0_5M@_5tor9;2B zm9;QO8%XklS{F5CgovJ2vu5~e`K6s@@TMb4cW=s#NjS8m{?)6a33-&1sXp zGb~9NaFF!A}x^Z)1pS z6POrLWrPINtVPMhtS9YdPnPQIcYLs?=2jb=zK%mot@&*%$we=O7dC^)h}z%WQ_n*A zk)L||0iqx27n%hsw>~&jK~~uym(CWZhA~A3F=A636LB1ft1B3*z)RY)sUvUUaTigw zol^Jr`1B`k#%C{bfN+hhw|=ym#OKI%Jt~L3E7=|wROOB$0~ydTsCbra<8Zu)hr!oB zLFg(8MwW{pd|p9{++3~2;QA2$Lib1WTRnI~^0d63!AQ`9l!o~hfN&Yq8U!MCjWCP3aB3n9`R{4-8VK2{9R z7y)F*f#v8%@YGmj{g-0yYfq3y>b0{8rsZeVQ)Rb}gudou9QayCtJEy87`X+NrDQM} z;W`{z^vu4RLtM{_h`{ZJ(qZ2pJd6L1!XH0bn+RIhz=JRgB%_LLPttXS-z{R#b=XGn zcMVU*w!+K$G}LU}Ubg~!@Y?;)8;Va4R8Vh^S}6P^bkyN&Q>hoxGMk(u8ewQSh%Lgk zPmU8}Zf!blDIH-FzVvMqk2k&quGT3oM#f9K*9wSbga!`QCg2Qg(MF=MhKWQv{CCt< zidY$ZPIB)xMP+jL6);u^Ky6n_`{38_;T9hHJi zYQR|o@H7v2#faIPm$T;FgL%i$DIvQzve1ZdCy-JwHg!9xf73*wrX!4(sI<0EI6Dy5 z&+p$RWdxV(1=?x4Cx9A!=+Uo`D!CM_Y9s+z{u$fr`}+`iE4;%hjlLrkg7|&$Mug8p zRZ7>|$SW!udKVQN%OY}{w=6z>PljfY?!PF^18OspTD!mSCkG6{`b4_6PGH<6qJ``` z1&XQL34DU)r9>ORCh=1Yr7eCLt0ov1x%5PP|xJ8K}JovHPWxh z=6F(XC$C{aIdwKkR0^+R6vqmw{BajKG^F3MdRN8|AD5g$CeL3Xqc}O)Kv9`fhh&54 zl=3b5W0Jxv<3nJEffQKg;zrm_^I9HhpguCGvxY%Jlqkd$T^ZWstT?PGTpCVF?!}Ye z39ddd7tIAHI%oKsXk3I$%Gjd&BIW%dMdiZo>ot*qsPJ(n-Xk;c6K^b{X)ZP&Iz?F+Z4h&H z>Im&bjUp(=g(7BIdLa2A>W(Q3(`VFx;R%jL{W|p)=xBbDJ>5peCel6+5+vK{s*r!C zdq2P4)`k*AzET5E^U#2(V|`wD)P0V?Jt!?h;JxZ1mH0_O%wbqFhS84*Q`c*IHYlG< z>=T6C@RmpOi46Cov*R6GguZaN(C`AjF;!23a&#~AStCtQ35jdR>l6r5S2ef_0tg;G_QH75yqH2H%BouJ@ zg+p|~0Ldbc1aS%ArTgbJrt@y+?t#4AM&#IR5siBB*GwahD2oF?fX(ku0~?eIs_=pS zPar2PKXa4p#~kzxmB=gtOYSTY;LvKv$1adjGUI_4Ju#o!#XZ7r+JAQD*l`msL`;+M zhZn_CU!Tl(#I3%1AAG4QF^rC+Bwq{0d4h5!x5uX>8>`8wgfB$?l6lRkQq1M;M1xBo zGzLRLSh1|8tdZL@+TRK!g#E2qqa4%JMDY^;n_$XiFD;pxJM5M2+9yZw zY@h$|Ti*+B=_}Qw`%gAD^c+O8R56Rr7e$5^?pk8{k&Lv_N87Q&(?GH(anAEwV_>_yx z90AYXn%FC$7<5j{B?1pCtF(F$=;G>{Nd(Z()Qx^P`kAZR*H$O;i#!q_@=NW zT*l%c1z@YXK1O5^vuON`X640l0ewgWDH0>1nd6?E+W zTcP^t13oDrz$Hp%n64&WHx9AE`D?z11I%IXz0W78@Civl1#iZxy@qMsNFfS*U&%D# zec|TxN^6p+qw9$coN@+T?BZ$u_eEMw+I@g4MDTRJ2(9(bw9Y3B39ypL>THPCph$<; zPsVa~p+u4iUqVwBZ!Ss@fdncG`K;Qr0DuJMC>mMO1@K_ZX9YCuwqSJbor89X4QB0l zdfm@FikhO0&jxwU;|X^>yFr~0!+!fKI0&AjOA{kBrI-6=o!{~z9@1CNs0vCs= zu|lfwGXJ+Hb5XKNT59xBQc#7mf7X@9aeI5P>VKjYm%QyGg*3Z{?G+=WsvHQODPAwy zDB(gxL@|q(h;~17gohEw7baX2crFw-!DPVWQGBGHx8d}r)IR$w?Copl7PW|!lNo>P zl?B9EJpmXwX1$rLq-~tOot+&qxK#M4erKX#9Uy)+Koz%e0wjL5AKFmW;=(fJ}lK{sV3rfUFcAsC@b>&w=dHGd!uM5(q=t~!57DOQ^ zz2>z*G;jeg--2njV#>%>V@pOxxSp0KU@3U@_586MlQU(2muYoqRz})ea5JTrf$4(O%R-@s2Xxzb0_w(7^}}vagiYd()vH&B3&@#C+~@qY zbDD{fUnn(mdoN;aR{)fa*qkF45kL8?75Qi z>h(F9(I~Y6<@%8|(dIk>QG&%a4zr6|+M4nrg}Xh;64kJpXou+M_?fFfTqMH_S4Ox1 zzFLTWGm29?u0e!lZTen!dMe6jyMl7x0moh)eN!O2k<`ApSM+nq;Ugdo7W&HqA6%aR z_Y9Jpqh-VD&2!pF`Hf)q6Rn1ZgwXbFhIU{K5jhPHmjgdSo*D88+OzDsX?u!3-dlG@ z)bG5TRTtW0B`ZYGsqmco4|b5geIKQWe;t(3suzg?fcQwx;W6+uBN4D_ahkMjN0}XlRXYS~XQH2O$t+j%v^c=c_ zRhL@D9&!|f{#w)PM3ki%e;9slpt7l~bo;k=CM=7 zu^0ej)0KMd&3+Q1wSd}&EM_<4Kr4`?E@ua0a#bbRn&zzDqt*`;kAle>GGCs68yK^1 z`uGa8?F~46P7=QE{v~{UP_Mk|j7xe_S5?>c;OWszBc2wC{<$`KekFQH=T<_W$BItM zURO$XKLW)D#tN{8+BQ(L2@+2`NHkED;6eLdE+(t$aDi)~XIqx%5(Id|X!QmwXlN6s z!|(Jydf^FIbwu+o%MCQ0zxG?UpXct%YJART;>SoxMNogAS2&tj%zXcr z+~QeGH>hGr=yG=1&U>n8Vfl$)8BmLWtTA~mkRX9b3On!Yy|(^!z#`fF@~NB#7T7Ag zTw#R!uSF*`0+FSnTOlt?{bV&YlB#Ux>7+#n&YbD#!uBj8yrJ}{Wl!ugo(8p zC#Qq96)t=wz7BN6#f#W;owxOagr4<|p#U2bj-uFU8*R8}Uh5bl|+xA<+WQUXE` zm^@mhEQRO)Un^VX-)muQ|~=IPZ%Sy=5WKCy~APx2EWx62tk; zyzTiEJp*>jzlpF+ERS$OdTU`^CWKW^iA$95Y<3M_y;PP6c70G z+lT=ga>5HTbJ@NP&_SyFy-wqq4bkL zUbm9wsM&RDdx}onTNjE@^NyA8gUL4e{r--hs$F{;d>#5ZfeWaIE)zhnO{d2YQqCfI zbsR+majsPOnCOYXvmF|UJgx9lF|scdhDDs zdJRk#7p+%oMY$ceeXG_-#YGJT0z}T@wbcvdG)Am*zpLqvI&I#l^24vc4Ghk=gGpO1F)yr=uWW=KUqxOgs4^7^T#{Xi@R zlYOtuNM0twh3KoGJj{Z!hhWRMA0@de>gwL;^+XD4trSH0C8yh(Hvf-{Y~fIrsMB$U zH(h9Hp)>RHx2Gdz65BeHn~d4>#0q%mLDHHalkqZR}eZ?8s+{ zEG6Yabeu1??fLe%cXNeZJ4fENpxld$VbhXZMM1Yj_T`0X5xwwTD6Y*Gh^(p7o({vA zJ-NCcYiY)i+VT&}%R?k};6UM4(4x*VktZ;EeG6D<1yS+IiW_|FG&4F8yV0%Ng#48e zvtq_HVU}`Ev%!;TDZsClr~oqzJ>6_QTx+ehBY^^w`3_Pc9aFBt^R=Zu@8;b1w3m-B zdiL)XybDu|gKKjB93}fgLDvHQWT(WJqoNFInq32=xLY={yvm$0i(8tIs~ROvxujt zTh#g7EVOks;g+C0aG$%UUIagdZ`)AfPG;+bQ1bg;ueZwgX`0jSS+v$hZkQU;i}Q84 z%J>8Is$^mkkM@CB!sZiJYwmbDIrsj%y!t?7pVXRCgYqDCKfPLGh}8j#3h3V{m-329 z(}9^zbe{|Fi!(FK*wXW=S(3v=Pasmq2T*YgFHY3h55aueM8G+R4ZH!$GBmiF_% zud-eh!p!oJ_F((B#g?ZJDQCQ`-R_!qqyD?I+u|qxyZ_4lh6)>&Pb^sNb=YC(uhYNP zA8~u&ua^`fX73lSDS0rh@_hd}D+1He z7uV#}=O)U^5)V1<*fEoj=;|-IY!{Fh@S!8yrSbOgEL5fy%9z=`xO!S4H^^WPVjj~X zrX7P$f2ySNSYVlk6U0m_U#V8(b~BqM3!K8^oMnA4{F{2Ps%6l?NG&@Tp)81G-d^Zy z^9zfM1O9#%iy4ZQWHJiAm+JP^y2O_?HBl|g*<_>rq*ao%5mG9R#d#i@-yaN<+Rseo zRKS!Zv(RF!q2pV>pedjCCGb4gpRuF<2G)<;7cJ^I7*S^JAghWSXanhIj!cZ zezv-HRUhr%Kx94>F1dpn0corG&H&xqOMn3SX_n(KFazn^! zjZ>I#zk1B5QHC6+&7_Xx(eTbgovOTf;C6C!as%xVz;OJuJfPE}M>9t}(}Tc=SOqBJ)`jCQM+fPJROI;DzY2F|$GlRcYv>3&+;DVa&h_Rn$D)aJ&V3}Z9C{l|7lU!36W)8*; z>~$nR^(?07#f9cAdCePTkoE9<`=e~_gZ{6(=dk17Era?;YNcwI%A(FZA2D(yjtjGf z%yIFJgF-hQ+xO+~(ueyS@+6hvC15S?ZOsooLE=nQkbqS4-s|PdmzP@BR&H@Ke!TjT zHPEN+%rT+Kwg|UAvs+Fd5(g%v%0DV*l@oX4Vd;4%Y{QYZjVKG2d8Bv3>>)zPVnt*Y z{sN9E61`KW1d8r=U+iQiF-YBDn!h1GD_}KE|1vhsupqhpq%G&ktwIYMB_xN!u~OAy z>mgdhT#GLu8i)~>*>{WJzLNJ|N5j?NF4m7 zka&lRa|w2v5snO!1|X>)r({t^(16LuN+Mwy@=T>pC(f3amtRA>cq1UVMj%WvlFGD6 z-8--l52K zYFVh@Dlyi*6&j`qlFEYnm{MeNEz&=LyDkp2qph29P}w&R&T`+O6#DqqbdS8<7Wr$J z3J2C|)T+*>JGcp{_heyOEth}2lREGcgq4M_EUTO~wa_Y>w~G{5X=Jfcz4MK_a4b)4 zb#&p{s~eY+ZU?pfahGZR{V4bRo2zPlnl^vl8^DLp+uJMr4i;(7^D7T3EIus*pB|@= z3W^2ypspv`lI}S$2Y$gf-xoyc4)Zs(6?>Xr`1LT2NK*RBa5KRLA=2tus6G^IVLGi7Ad)52$+gfy;);C&5=DTL+NAQHOyT4R9l_RXT$u8!mv{{3wjw zca9`mYtmbr1%S%n!~D)t%wko5JA2Hgm?ToA(v2C%YjDroV_I5S`1tV{n&=@}1*dzeNlS3L z>^)(5+xXWYkD2Hu`IqPnbuGFDA^YR(>JY4PWI>3$-LBH>ar5 z<;2&RIrC&s>gkRy%v%=eF#UPRIdA>PO0d%qM21)3iZ`koi$STx_pdB6M$t$x4c`gd zNhVn>qwUQIB_-p!m44mXak19AsX{Ct*t!Xb+cwg_3r^*$!(dBI;P=4wG49f>Ce7z_L6ZGsHkVY~gffOtWB&o4TVQuUY*jl_=Y%{-eVR4A* zEE!=PYj?e1^`(Cbpa{<$^F+mE#j=jjxFR$J%oe=ZIiF|N0MdxBY1N=i!X98yR@ppqW9s7mtvU|f_CQ$0h`iw5w)a+$YK^n#A< zb9w7G^wYDj5@$gui*0(R5F|wL{2fmhwLw4AfL)l7o}Ml+m!wuFS>e*h4HYhc-B$%L zlOr3io)t$Qqz48N79s)QWrfC!-g4#<6L5+tr7p21#$}Ddj`!Sq2!q96*nbzgWU{cH zbI*1B-qz1pUQ!JIN_3)IT6n@&Yv72(;t;h=mC!16w6Q`2<)oI9g>lRfNwhy{OXflp zxSO;!N_`J!*Ikuq8`SH7}7r zN%-9-0h)fZC_N-3L||@XW5bGGZ>w8L#BEmELu@N0coXt8K(c#J1aUuezJ``o7K99Q z1my&GG7Qh-`snMT*%dCRJ{HdP-c8!(W#?o9~jNQM4p#wV|}I zgl0Nuj)c{a`lNk3i<1`b3N4FN(*-RvoV7xC-1v^IsxYuD{h59L{%gzvvy|tkmRJSK z=_RbN?!BU|egDkIhSkehY0ev}?_F)*c|(f__A0GnjS4mWgTmsnZl z7Ox^kW=%mf(NVkEHJziBl#Yi&mQaNctr?m~H)FNDgw&V;r>mziHsHz0G7S&FU;AE` z`F`;NebxH{73159#BIes5*DP}SYDk{A~ax%K2kvV z7ey*|VHl}G@`a!(3naTYdn^uk;;M6(n+|RRi6?;Da5G=)R|BA7a%<;Lwzunm{ydcT zvf!H?0#cAOj5Lk91&It(R?AlGQZ_%v4VxTHB{rY%8oWx9-vN?pz=o5}bW|(>;!)oB z9k;@N38$7UvPeUkiDjFrLr|>jF}yABlK*rs{q?N5DkfGYis@Skv0ghC*|On762OY` zTZs`tngmx-E#Hc+7n|=Ul3L?mf-qpm6Eb5I-09S^LHP4CpU}X^z-1OHTQgQb#&ld! z`v?^=iIP?xsR;6#XL zd&v+Ka)90N*Tl^Zoz+z4tuLwP;>zFn+i&A|YaD00?W}6}USVKf?#@Y~`Kj{m%s0L7 z%n?ARioQK$7U-aQ@TI+@fsCAUraQrH0tv=aanzn;$Sq?da%_eZGMY>h*nEZ__i9bm zoGs}e8}GE9My#TN4P$m;;QiojZhZ<4iEb8-7;`y7(_3!~OOT`~t1X4KI$P2U?O0V? z>^XDbv11XMIG6fRkg%6A+MewUNs}d*el_HPxsSxi_rp4}m0)>kl_c1iu)tKY#H-YR z#0vnCRAq1G-KwTa`6vonF2t>)4ZpKPP1X&hpwP+hRW#m?{R{8e&CW^&9j0oY|h9{vC+V5m4fJcl+ zZ_E#(R?ZhABd74bx&Ew1wYt+XRer@{-@CwiNEJ&^;fr5B7h2pOmID@^*#g|r$ZnGT z%yo(ZtQkfkp(NE`+=+EhGW7U`=rc(!TLk2-jan^cRZ_(|5Ba4j%ks%?onq7r%}7iH z@gDk=^1Q>@|H5gs>J{0KcF<|OFT1DUE5)>m8;gSgfF+oTBX6SDzROUG@z)c`y~P{f z2nB)y?!OI+2vI<&HRc?rtw7RHJRvU2N1{D$hSBSpAuA!x%qS`xicA6u{e{Fr*t>vw zq;b;o0^7|(_FEOg>_H#_Z3A!ZDH5*}JClRNclYL{B_m0clw^2%GO5reeSLjO9nzx! zymgISTpr%psN8u97LVPT&X;b&Pu2^^F+VV2f$YE<06}{q4y*79L|(-=$8GZ)Cdt|S zcbHm2vbc`$iZ#>x1?Hlz$78D1^$pP62l@C3SLY5l+G;dBJzlZ_+>hFGR`uuRw znOL%R z<@eY7iYXePp&;&P|F{V|PK8gJ7|5|f9!rwGe7T$>!UP-kp%CmKCR)UybYGjYi*3lk zy%5z9c6zqkYY4-ilzjE{br;Z_BByn9(-j>Z@R%}iEUe>+(uP!O?ITSr> z-fClq^t!X`hvny*+++u}_l~`?)PEsVZv?hy@60m#$?&$MKn9&rKa(gI4Iq`8v7oP; zSApaL`Ggo~OrV4XF$k8|llogjOjdA20AjFy{vVDp8JqEvswDppIYoD&Ge(o(Mr_dZ z)k!={Obh5g{Y!OIuYEUR#HH1hi(KXkQG6<*!!HZ*IuQi+(mcKkrkx{%_8ZWuqRAzFErfQi12EI*(F5URz%l_0AXKr~K zs50!ke~k8*qh9X^?mj3oq4DddoWVtl5Yniu~e$rB)|?kGKkN>_y4fI&%C|+2+ft>JDS=Hnz_P3 z4pLlJBlE5(HkcATlt$MKIn*)5qVNRv&v1sezKgSWI#=4!eUkU#8;uSDz4zut|R4li52>Ctmtxv@5GYQm_A48 zXugS_&Pwe%fuDpr*)(FvR$|jk5cPiqG>m`n4^E}RD}!#VL{2nP2--EU>%g5n-vyM& zzKqMraRST&6{f0V_Sym;#(`P#;*8B$>NM$;m-tM=U=k@5QqyU@h{oJ$LYL~BL4~Ap zjrcTho+*$PQWRgo%wVEY-B~+h(3fuJ-g}g}`D)}`%=*Zi5-OMg!~yh_NK%pa<+G0EG0#aTx97(sPa|oeS8c=WreNjEG%Ahes2Riar-lU2CA=+PuidP+ zG)bLDne}aG69kCA8fRid2$|fTac|iEXKL~|o1c+YB#!zE!|%S5)?ByrA(#-46LWnX zFk$BecA%dG;K^vaAg5)9UXA32Vc!5X{pEFqC8$m|7G7S%7GX+fo-`&w%spg}`=F8J z6!`C`C&kw&riLHwE~#zDK!tH84IvkrBjj{~&i3yeT3h?RQJ-5^FB1aY@x1+^a{DT# z?BE;nek9WiLry#i7%`j{z8jjgk-`xfm~mo|3JOf*buU=YZ*Q^bbQwc^mUkWRGW4hi z%{?@sDR2)+*EBe9BsGp8RL#@V(@+Y9CvSQgyl)nT{B_~Lta zg_8Jz#JgFKq6`62R7u$YL{xY!9dFb-XH$#G zaW)+U^enj`rL`tK*~e{fgrr)>{*k&6+@y#)IjGam7gnF zh)FX;5;C2osd-uwgyt5e)szjSw%0(^%4d;lTLtt$R!D7OIPaCWuily2rR!0}tb>rQ z3XXAi7yGCjCcxptpM0ICJ2a;C)i({Ctz4K?h(M3A?bokED{30EU^39Ej!FNOM`5-r*R&R3jy!f+`yM&NIGa3dW!-NYFrPjTLy9pYJRAdYs9Bfr5Hxnb#l2QjJ_(CNq34bA~*~ zQgB&W4S`SEwvglkTht#f=kSYrkn6d=h}8sjf}@n3Z>qq_sGJk}VTHXj5E4d`1{bes zs{RdkKLl@^* z)ofoA8>pP|nw#_5drn$h-k>e}N7}{GW}g;zvInEzpT?0IcAjUO?NgEA^0|N8fUyhb zky}Q14vDIO81Ae2?iO)>0J#`RMnmsn9Sp6qxoMsj>ztMr6ckK!NCX9xawyao2C4qL zAgq=JXw}!vo92B1=J>jqG2LsL{11sqB9We_fAqTuHixCN35n6tr4NFHp(F^U%dxRK z3t)&O&~z~I46VJCnIgxL3>zGlT3tWJHIyv4mmO$4fG6t@$GZ^+4caljEi|V^6V0Rx zYuVI(4xdMw9tMHL%=0s>uPPZn1`)K;!n4I9I~Aa`w>P9y$hl*ZW27sl0Wzy~-z8H; z`Q|OKmXV-JXQ!&H24VVL`a4m04%ufqp|7_LfmK|;M~IY%9DAsg$UX<-&%<$;jm+jM zgeOHMXuCI^&n%Jk!1z-C@$FK?dRt4@HT*22bpQPln*H>Y;W@hHO0A0*BPiknIZu6TEJbUbgT|CCfi zr!++DqL#HyXN%1g2eq|V#_1x(H-BE#T=uBPR0;pll)Cj0+$U!!!FP*Tfr$+(%EuJ0 zJtNzZNMZ2c8k?T}!K1uw^)se8YHIk&^7VV9MMe#3*fZfdG%`t~Ir2I2aqaZ$MkX2E z?h+-8B9Zmesx@o;1@}Tefb=_tu8*Z9xBzAWMI`aYjnK{>Hovl+EOkjI$_X#ky!P1W z?bm(+O>COP#1?c4hQ`KjBF!R3j0#}x#JUa@0v?FXj4qImD+Uk?-ru*=^~Ja4@|DW6 z19Oho%ZAp^&;H)BrvrW`H8FPQn=NLG9b`E@emp@BLPGX}Vhkq}Oht*sVRQk)>+~qF z9wwDN@=cuL=vl|H@q*dHV_DByT1f*(7G{^qv2Yvp0dKI&J^Q z&wS^ZX_m?~EmUNxnTn#F5SsSLk|kRrlB_5DzVtMuh?)1}ud_HD=|6b4Q!KBZ*Klgnt?`yfQcV0SlWG=^=scw1bG3>2y5432xtDhGk z(I4sFueb^(8RKlWf^^K7bHjysD5lE&N}W`JLDgQXsTtd4MLzoAK*e%v=r*3+;ve^^ zYc`}mjH>rf5OI8Uf79|P5?0W6CYPs%QiEWB(A3bkf%hjiKTi2L4GMV)>77tf#c@Hb z_n4d*^&VWm4qAYlKo>oMOC%pJp=C(ItTdeIa?9qJE=+vG0ZvMN*Rj(DNYmwB0y9A~ zQgebhy9W)*f-m!cJFF6UH+Xp)p~x3HUE8mD@;h5PfSV+t-hK7dUSR;?tx^c5$Vc)>O z2Gx<^Dj=nUQA^PMvw`Yef@LchNd9<81bfOLC4d7_n|UGUqzf~emy1L|5)nHNkuF20 z^3e%1NE06hfN`kAK7zGNo~u=QEEGl~pr-{dZhr297+n{Jwe&pTaN3jw5G4<$VGpF# zR9ACm16xfKj=@Jm15;n_X}3*M0VbQ(==mv!F50KQS}e_5_=pgVgqQPqUBPpKmSYI(CK$C)_lH}a?pOm~QbTk%{%#;O4jmfKg3Kn;}z?C@SRC2 zrN{MPz#{9qfGpSzXgoefXLfaYfq%%w>jHR55^FCogkTlUiiD)XWI=E?WG`_9Gjd{L zkp=?40^zI*I7U2%<>FtvTB?g#Z=iY^N6QfRthgpGkDqCmzNs%(nAyWC?sUw5{S}{w z@{gnls-oJB&@|QrLtx!;OdF2xjI)5d4Xcnxu->vlX2}xPKrbA`2Kt5r0MEl1U}(L6 z3)i7>rV}zkB!&y*x)OWe?mTd1;WfNEh9(@EG~XJvVh@RF>c`tD zA8%{GP*raW^VM@G1=W)uw>%2}d?dw+qyW!uKRHXZ3Od}1k%Zw#=mg=q!(UYX|SppFYe__}=K>7G9dru>3;6VHlY8vKOg_O-^_ zRak5ZHZ~*aHFQsK&}f7)k?q~v$l_?k6bf8@QDO~g_Z)`GiIwdi!e$!u`XGP6H#=S-iesIrK4sZTG zcT3yF0tYK2T!x_#h4zJ~ZIH4N$7(%#{J7Bm2WAcuE5R&3PcXF65golarW8lo;8br0 zUjd645r^+HRyt?`o*L_woV37kmoOdrop|lrxSfEL4i6Hy?8%F;d6t@%lCBTM;a3#C z^sHyXUTeC6H?y6I5Wm#ZGO}#3~JbJJi z&*rR#iRMSx)o(fO{e6ucrO-05#AAhkJBw2(Oa~jsSOe#k%m-=vc7S(AzLe&K3fUt2 zLJ7RW)&r(4_xA-nKK(xK{L6m8p1haX*u@eS*+aYFh8{K~!zAf5xSzpkX*RiD=G5|* z?zNX5Dn$d^<+Ox;@x|4Ke=Zm(6|%8LarGlo*;jtYyf@@RLJtQk7XvL61gaRm4Z&;` zF2G4@r4RlO?(?t+;E*x-#HNny(z8es0103nz=qIX8y^&3&1&#QOvRd;?-Poa#rAW- zMjRmvd#uf2+uj6-5xKi`QQfGeXmK|jlPfq{zeS+0(Z(;w{dkFx+zL(GztAn@A zY+MFyPHg%xnfd@}QIPj!2=WfW{mb|P#IO_}D-k#yTdlN)fn8^;i)xSoRFf-s$)cRc zxtiL}%vPA7kCjLCW31Jhw11MNbJvi{sPMoL+ANe0eoBHcvCAeiH z);P>!9maXb(XAO76x(59Y=)M3_Z*=@=~vHdP?64^Cp=XOv&^q4-bF;V}n7i{?7U z7B7}Uym-vv^5d&eYI0ItK(OTwbe!vPs6Qmhi|k7zuqnH7a=bAgst{bkaNGM?Q127C z#xV5RFPj^(y=dxjp8p?0rc6AGPmL)vvhu}OrITxCo7(OAPs&j(eI2}o+&K6SSv}x4 z_`|Kcz+3DxfN+Ak7kZE|Dg;&~EBNon@D4UM%w2;V9FC5@-5)TC(~MZxGLU(( zzgmme)6-K;?*D#?qj`aa{&OCkU^C~+8u}u3@sSUR7@D6yM;ZfY(C|Q*Rt-~H5TVk% z0YZQ#;1FoMZK?|eFf(Y2J12h4NgmE?tg~^#1VjG`_(lMW5L^ka~y!cIJRU74q6z(*_oKv#DS6kA^d=zi~p?d zlq8aCJ{x3E)=+`BOr>8Un6!~0hPRS22tr0N4RzakUy~hK0wMrEtm*ISQz?r$w zoT>ZyLxGxHVI~GSVC^14W(%thDS%9y;rQ#LvRmQMdw}0~FC-^3hG0y=$}k0k*uX{m ztkwSk;ES;VQ56%-Hr`z(hTWTlzL0Fz4@?=Hhvqa;gSQfn$jQl}=Vh%K`aPSFodgQ( zeHlpKfORPBvAyBcp}QS;Q9_*tB%zHDTOQ$mJJ+ql8|o~F12qUNNnS?^A4GatAs{9g z2C`VcAoY3;=kDQ@bGQ&3GgLDgf`fFCf^O(9&a9u13kN{JCYZnwhXg-(aqCzqKY*$a ze;&y@0!{LGKLH2c1AYwXTSysjf|(YL8|&&nNf7tz^GDs8%gEK%tAWCwV7|Bb`*zT? zf4}r?E?^}ca4buf#6fTAd7wN1|F{+hVdITgOrb$%*Uvcm5N5$2Og-fVq+f@?GQsfz zIz*I?g1!qnE>SpO-raVyrk5DU!1R8-G2exjIMNaZ^5M1riS9-u1lxQvnnm{mGvAiM zmSEQ*4jqGw5BY$@A#y$f8CDpbaRfdM6a}_zJm&^{9!?yF1T%0Fec*M*N%RtZ4>)ph zYGYzz*B?cHA-snc7OYTSz4{jVW)YvCwr>l=H^F_y8Rwmyorv<^0%K8MU*AD!Cxt}g zOJGxP!fDS)oC5d7Sy2K^`9K534O30cDo-34&iv+Wsg)Jeo#!JxwD|pjZx2PP1`=~! zQzn(S&)Lx`S`{K9c_KulJ*fOj%TMV8by7W#uI~ZVQQGRd@o|r;~|Rxqe-aYlF0sonixP>axWqN|_Vl zYm5y%nK1gi`DXZ9hfZU{4;$cR^EM|2pJaXN=#r`B7D`!`YdE=@ljz^PYxu-$GRjuRL)c-FQHY!>i{Mp_}{tNRJ_)v(zY zAJx}!T5#^=uPCkI)eT=R|SA;ap}&eVt!Fp`1~^b=^PP4FCC245Z0PFaYkUeBU6`EA_`9 zkKEWKeesVj2}4x_DNU0Soa5u^BrmY9ge|x^;-5bMIW*;asN{dWSv@|e=Slsfj?tKH zPkXdJ(Z*12TCj`LGcDh+pAn-~NS!4>pfx3&jl??Vx&( zp&mhaJRdZvS}u-lC7cfLcC z$L#lJn>x^T(*0U#CO3Guo(?2i_v8OvH@8G65t@Tl-PA`@#Qam`Sy0@O7V$ADNKj-~ z5SzG*v2)MO;2RvsO-i=@&BR%|`#zUaU-kvUG!5Ng;#Oi=MO|?Jb#aBR&KqJur~S#6 z{fO=HHRa0lZnqlj?-tt@&uIN$dy2vstX*G8w9Awa$Jtj|n)97prD>#*it;dbZ~lPbF$bNQz&s8TJF7CTenz zt~SQ<+-W4dt*}pT*<6Z3*d!2A6fOUo_?daZeWx>1veq-cUmmBE^L%XDiOu}w^w%#c zqz0Jo@_H0Y;@)0GaSB_W6@Req+jbj5VUu4;@Un!#GTfM1(+?)>wr8MP>7%Q+7X_9z zW{WXMBC5L#{}ie?=f#4IyE+hmYY~Az z`2AN=_u4Ox*SFknB7Il05P_)&KX-WZPiw2a2M;@EB4b7Sd#sKRd3EiglkV23$L-V6 z_y?8lzxd+Pvmp5synD2@U3jPd)&Kl|8=I7baly-*3fmbgm!Ht$ z&%5(A<5>`)knfXaf2@fn7C?#X?_i}e_?JCy$_ZKZEa=1%-Zc$BUEZ%u+xb7soci(A zH8yV)8iPWvq($b9^pAL&zP8_gXkjIj&>MbHc=awuEAhAV@XRXq1@Y_--wr}(_TkgT zVaOO0{82j0rh#R3EL90esFByWUVE=Sl#ndOHN(H}#nuHo1nx9IC9{=Wx^%9i~uv|GWU z;?R;%Q=PMVp$-2LcxI6GJ16`<=U1PX)S5_m{_W;yYhy3Y(cXWbD!A$U~1_kl9VpbqqIWth)87^)ey; z>99(!hUjt|dWweq-zFHb7N@bnZziezRKSZfs{5SyqrZrAv(+z5g(I@ZLj0slzw3EX zH&||3z4Iaa=FEP7>UvSq^bf%mmRXCbw4BqngnIohZRmyApkh@+SF3Q8schq9%Q)F~ z?yqxtFdcrplisBno#Wqs{|92ccZ$=7+F#x{(Pk8;f2yD{b5uReAxed82R5FZX+U~Iz(h~Fmb6%^qW#}X;kdCHhUtR6(^|01aP9{bQxUB0=$m~4-A*hIFw!_oU(aLfV!OOO2rtkWNmY)N~_5svav zDqTRl*}`tJIK2&imMWbU1@>>Wi$0dm;I*U|1?GVz!g0l7Is8K3vH#Z0_ZK`r)*q7` zrRVg0syflemt7sAa->ba(czAHmk&u4cAHH_E={S3GKt)YMx}|hwen{9uE`YT7ymek zA2KrRMh$zMPPXaQ`vhl_2->TUgQ~Q=c*;q#>0Pj6ZJd&0hwYghUAKciXJ<^dH1v7! zI=J5x?va`;j(>*oX$xnpP2;bdmAC%<2kBm+pQg zD;sxH;t#RsbGSIIM%vQcrPc3??ce-JtVRikN&@>rs4lz5Kj*vL0(sARb;WHkNG^M< zCxrFiKi2a-Bm5Ls#^yPtS`_YqN_CP%sgmr%)`Y^S4{BJ>iAm|vb5+G{%tig8~90w4CfmF84P|WCTh$wmOfLthT8z z6?Qq(NW43fk!+7=*#`T!WM@$3;%I&k6{Xd*Bh+QcL%2d?Q0wT{%%_~IXWYRT8{=B~ zVD{nrDguM4<;}UG38~5H-liufo)Lx(SGV02$nmFUS#BO5&f&~S|KfQwKXlv8Det{5 z?~09W9ga(D_i_#F|H47e{5r)%NJQ<5Fvs91@v&16!kv^J&e){26K-kBJ@jzSS{764KcdGGjb7J_nw`by>mg+%W;t)O$?7$G~@M{Ebn!!j_S zKZJ@<`{}&(s(>qkOJeCbjNM&Zp0t;?xA_x%o=2pYK+S*<9;w1F#WLW zQ5uP7OA-|Y0nQ&CCq6UEDWzF=aKAu8-05DBMBN`kjNi9fi3YwQ#AW+5c#3boFYbB7 zOYAjVJql+Xz^)otAa%{cDB@4wx7sO5Liz?L zzp!!+ZEWyIghcL%%FZS&q^{{=k_ghf9c-s76d3y#IW|lv%a7Nywb)B4C|^7ZVderd z@Os~K!~f%>`k#^@)`YSTA9iI7Ym=HdJvI~9VVgCdi4)2m?yTr5_Y#fnTwJ;h;fZ#~=IZdo#O?B_dY-XH&id6&Uey(hKoUpxved$b!#Xt%G&2x!cL#`Y|nv87ZmKs7=1@7!zyeLh>U`YyTJpM-L$VSvxQa>HVW<|;@;}%otD@nKQE?P`-P^ZFXMINFRvD-!( z#hlwAwurihT!0_XDe2N_v_$4^3WkR_$jIJ)-#`vVzIe$V$K|z*7TL7SVD+uau_W)>jb!29Uq6dDkBV6ZhfY)}BL5!oloQ zjA;Hh4{dW?4w*5sV9n$o{KI#1LJ}?#6r1C3^DU_*=AIwSu|MiATH#A%DVp>Ch+X$` zcaoUYU-r-0OM^9AY4ZW4;xf>95jv9u27mD=FMw~5!yuKBn)u$n;NXBOHXKLDK=8r2 zl*O)M)C3w?j`Pii>TE{cY!}iWpVUiY<6Kq({f|c7MH6a^#OC^4!dXX=$ zU=C3K)ACq>VM-%OjJeNePPr=f2E`t5NcApv&i;WIS|t=CoU_|Q1~PwL2zk_X_12tX-I}uGWR}px0=?EeXUeu|1*|hA#Yh|EN=hnX zCBzpo|J@lBfE{52H`%((#eQ`{<-4x$7f`$Z%_aXowk4#;N8U`GH2Oi!JF@b-{|o${ z@6{iA*Bm$$d26`e2mEN;K0c{zHIqb~F)fOpM}tdq>$WG=IP!bQeUvdKZld_Vu=<&Q zDR?ZIH^<*Z^9pga7=E^b<9)G~KS>sW@~1-A4EXg6t>gL2zcXVYac<&xK^pI0{zWZ< z#7^*ko^%8Jq5TTt=egnY8k1y( zCiDXG092DSIyaI82}Z z^Dx_m6CV;bxi>k3lbEd;vdhNt+;i}mlLO894>M91GYNlZUjo|`KUwSA#>W&9CuN>1 z8IQDfx0s(G*^GC~*vv-L8JF*<&QHi6l>`D-MUsU3;x&Kc%FbRfY47~KiQwb9rkuoh zLg@88n~|Ikl6LA}Jrduu*Mi(UvJ6N#337PO7dmHXe@8<**gLP#p4v@<*C?`U=M?Gt zHG^*5=QR9?ZH;T>5Q8Bd$CCv?Te)(Ni=^{HVo&-!l5KS_a!eOelX`a$Tjy=d{hhy~ zPK;G(npt#;$+1h$?DrEpZBI-WDDH1^H-$r`m+F%(@vSlFmAM(2HYgsOQ}+Lw3SXH| z8(40I^aQ?qM`wITvJ>DJn%8Vx;Ad0OH=T>$7bgjlnTdV)Yydo@FO=cB; z@XFVXb9VfJDac7G8o$ko#!VQhM9uYkuW`ONKb_-{odpkZkaEXeGFZ#K;l0E8-T~3& zlcPELBx%zCg~FLq-!I7%2C#koTgXI&fg7Tm&<2*0_%g){d)Ii#Nd95tVj@9iY}wZ(-T_{STyDFEcCE-su71;! z&rzK_UY{N}tKID1jOov*=LZ@KA2^a>wg2`vgD=)IQ#qxndD&(LE3!Y0@{WChR-@Z9 zhEqv5?r9C^ow6d?t5(h(fryif)8?ccuG)Z7Q}-G-2C;xYSBf45PxYA0!(T9*Q~H3B z2x@K*S6xPMsm`S@-eBg3rO#OB`mY|w0z)PLf4yGftSjCp%aOi4!%mA-Lb?a6x6r_{ zX$q1-s{r*mC67SE?Hoj=1AIfRUGmo(8~6JM7y3UOwj@b{xLO>YHQ*om=10yi!dd#s z4>Xu$$uIUpK;JhH9(`dCIEFknU|&}yNbWfe(tUgC%nf!USCbfIQcC6=^395z39w}h zGUxe?f9Fqha$Cm!B*kQiGRR}77xUXPkvWHMZs#PnV!VQ@HoC~ascT>Zaf)HvH?h?G zropXRIqBpUlKrVQ5}vH^vZUzkFEdil{`L96v7Xr2+~n%yH!U1CyzabRrU!^q#uo(V zH0u<=*?I8%56+Bv4ezNrtxw(C0S1CR;M2x%mfU`@Kgkj-k)0$dp4VpKc~VRC#gjlm z$>W|M=8t;VMZn{&w_qzv|>BUKi&@OhNy2VvtYyVrBXB z#dhy9N5_jSdPb}lng|6KJ`8gDjs%g4usLJ9x1Mm4WC2Tt4NIwZ+Ylp6%ASZh3%QsI zLf&Jr(Bx!tb#BCGQe9w7h|Glr;aPXD&-DVZ%Q$@h#nbEFYp`AokmdQAApeWs*XE~< zE81GrkOmy=Yi;-kQ-W(WB(>ys-R()dNiIkfw;} z={ZG4J^5N-LyAZXBUS-h9ZCcmE$OvaE!K!c|9M~+`S z=^xg_ih#(selBqmP}gI-WleA%3*Q~mq?1${!vDdx)z8`6)`8Yu>7LK_3r&)GpQWUw zk)(k$Y)TumI02|6*jXtrlbp2VB#uj5x!E5*ZyE#)0I0%nGOxsnc#i7##2wjtl4phF zc`8E7nv(yY2eNPRoRC;B@IXl8??F>^4Idwp2+5aE0wL)o&B|ohpppubW?$Jnb4koU zC@BO9!YajNXvTaNuT7TH$1`6!RXcFIFm1d84K}39Jo8ptC~lqPGjd73gJW#TmdcX` zza9NCGScPZ{s;d({YmeEpMBYnKW29CAG2D%`S5`_`5&+S_oqu$N)PX!%}b?S{`jXnPP&E{M|jn$k3I%nSXex+T18=6{+X~rZR2=Z2ezQ5aB z#HH>e<{6^sZ7Q5eG;T9(nAnz?x=lrzIM=0A)81{^Cm0(c6yXt>qBlr54H_)YCg~Fc z(}u^@j4?3p^7I1fzhn+;rBmHIE1ob2hmhP~6_7GrDz29Y3c-+cQ7MxWf`aL=2*>6;>=>MZd;+=cTA)7|C2aR@A_<+-i$xwiuhP{#@^!0 z6CzSWc-Et|FxbGFAZjRa9pe6$Lp3uci@ZqKIcm~52Jvju>0R?EK1{r9N}+`Bw;r3iQF`s2;L(Q zySTzXCYAJcZ`)YO%rw22}+HD5mA zsZ%5l8I-HlR)z|5`v03ZO^IGCtYh16Z)m|Z7J!KZ3M7wAf=>>ltJ~Ye)f^=@7yItA zokdY9n3kG*QKV;KV<#?nLrB5Dzw^+R*EEtBkxycK_i|01Fky}OMB?My=PS_vZCmkx z<9c@;{!GGFlP`o%uxOm6XQZbhOT9@qE)^zI|Np0z#VjoM_i$KEtcR3M8f^Ac?KJBx z`^nzY3I(spk<`*{p3^TuH1G4AfpMhpQEC#ol*G*GLyF~SNZ&alQW<{Cs1^>1-*J?g z)FS6| zJL^b@NF?D|kBuX3L^4y~8k1Oe?Vs5^gzkJ z{D;l!JV37__`0fs#FAKbj-1O#dUl(x89?U6zI;zpmpgRhVj78DDfhSJZjN*Av^VT+ z@lVR{$~#WLUW5m=;SigesiK;3wzQMH@MHD)0fqO&Imz2&IlpUs%<}$CV_w86O*!t) zX5`+mkOZmUc|7fR^hx~A7w`D#i5J{s%vE|VY#2#cZFl8o^nuN^CUs-%kBbrFGI{y2 z?66^cs>OzIkH|{mj`b-soJ$JD*mv&aKY&GLl~~Oi)mu*;1G7Tr%h-2MBPLz+IEo&r zsN`MVYzE@TdWV*FGXJ^l*qq85Cz`tW(CfuCNXQeFlq1lJwvrk5JHO7UMp7-R|2%-Z zYRW+UyJtZb$X+93}&b8;;FsR!maH)ESVee_|z| zFmh~i{MMW{XvEarCiAUfQB+PPy;A9=qwWS` zfGV#X8xx(|a?TWR=?bxPNgof-fP6F|vwyVzVtcAoPE_?n$@-%vLN+v=x`bd2!hb^d zoFBPsm$N?-p>h0f4YJ5gSzqraJ;Q`b1_Qjq=j_u-aHbUy?2thUWr2RMt@E6&4BP2e z&JV(r5uTh&CxeL3L+1jqr@m=`z~*^JmNJkBVA~AXlr-!kYrj;;l(fvZ->8Sy4#0W$ z@}3ECF$H4ZwCx)EGfgE2n<}ner5O{EaDgbuA7aJYjm5%;oJK840L6yC?;hz%EN6i` z@;LDrTU4>x3cb!>r%2bP?|>(fN-81eHKqc^cUrr-7B&IHY!C2}AB?T`I33G*>BTRH zLrz4;#^(3+S-yV#`e5ei8x83;N8)R)U%q@<_0*~Bz}uAzD5@rw!cb~{enee~VqG-8?2Pt#zgs>D{qq~@-xF!gscGM=O`vqqcN^9~vajN9!8%K7an4UCFiBZ9Dhk_3N7IQ!RRc=W00E*`_o| zJkDiuf;I6kgm?TrYx+IRv21R%UqHFD3+zQxQ*Bjc3z(rKxzWibvv!5;8<>%WRyVoR zgv_$dzSo#mgj}#!Yp{z1a&F}z4fNak`r}3%ZaMgd0TNE4tXZ1}Uj~UgAn(%k18$3R zVH_^bfi@_;WMd8!W%tnGqqx&mX!ozeVQ^jebdRH|X!I{Z*L{K2NW#tCa6 zX*}0aDq;TND7T3DukHQzdtvG+YXm9|!}hXTAnXM!&O-%q&ObL!P7Jbm#*B@PeZ(>wnf7E>vlPQITO? zD;K-S>$a$nK1thc?h+b~MtK{b89j=L|p9DQc zI0-#K2X<;oHj6+9CmmT6iB5BCJ3Ua<0Q<&pd6Q{A3uH^YFEi#)oCq; zlRj;M$GtG9F9;6hWzp7bZk+9o#8eW!cS~Qw1XtC8EfiaghN;92ne?1D0B<)>gcUh$ zwJ+$_)Yo5!(awT6gPt`m_^^GG91W_3ZW-= z=D%Yd`jQ?TE<-szaB3+Xe3a*t?N1;bM-E|@Tb+bBCYKzb&YZzxqdnYtFq0I>K!y(2 zC?>ruFIV8+bKw^t0M_ymzkJIC#IzbXA#7nFsg9mr7`*#)$xoQl&J-g>$EhhvYdEW) zgbO9h$>nBg_7g`&l;h8)k*!h%94oSl!B}8kUvWKY%`{8C#cTF*fw|i3@WXGZwmmvH zVYa83>bw&Y;6*`SQ^qd!dos+Np9a;|XX-kxV=3Sbmb{7Pn96;JaQ^6R+P4M1(IF^(HT- zOd6DEu9+`n=4S;7^XP%vv>rUx)74!s0fZ6xK)O;GwBsZ|gB~DH%kOE+_`fp&Wf%FLP;}V(9Cm#!LCSz)Pcm@owdtVo}9Y&Bc~vmhvs78#_KRwI2Tv; zp}@Nb2E3a{C!@5Wx(O;4Mgi>RPx8f(*d0vIgRPZ~S1u%^jO z^51px43mB->Irk~Mz+Pzd)BV)+5g?9`wv15GdI&-Br-HDqiaoywlKnylF}J_yy~oy zX+1PrRhmiW>)I02C=C^rPTL38`6Z1!5;MI3Y5ZyHQoID*pZG~7D{cR7%dHDbe*XE^ zK67W6v2!rXI!4)UW9zR@d(V|{z5g(5=al`6+qIn=X9aos8>MIWrtSl1TjIdrQ;t2k z2ki5f9N}Kl8ek!dL%4xO%dc@b}p%Q;C5YH~R zsW&?^Hk2>v1@x301trKcvQj@_35Vp^g=IfnUMq6xGtz?~+3$e?ht^D(0KI+yCQ-w@ z_`|>|0Rw|~>LfQM@UjcbKCHt4)`epfYovPwr$&f z9oO{|+3+NLV&o1`?ku)~0m4l}B?n67{HFocK&u_EU+M+FB#LA~cYtQ;8ns) z74JBX%S`n^Z2LU^QENgEhAD5zL^{AcBnR8mnNU$)2cWMfG1f@{=Vzw?fnhUp9Z5D9 zZjQaaRBrF~#UdYW_6g-g0XG_OGs)!w|C(E001)ur*{Lt>4D#Hs$)~efg>DPS;Q2%x@&Jmt|tW)zh8Bk^jf{ zOUvuBi;x1&7WlIshK2o>IEv&kp2GAywP$S`%!>rffHYv?v2-8{L?RZ|EJwRj05P}2 zoa(hAtvNWW+ObVq%N>Y@^MU)i35hL%Y9zTnp7QSNwomOcR9WLqXI|*+GTpY(koJyxHNtJ@Ma;)2;m6fDw66N+Y7X1PmX3cxA;?KO_2E8 zEO)s|sF36%AjGl-E;=-8(nbS)eMn7so2F~qH#o>LjpE|skqyA?vKz+!2O&1osn)cS zG2w7q@3m(g#>eN4j69HpFRn;1-N)f)N=8(_#>hjZLK7k3WfsIuzaf50`M_-ri*j-dh+~(b!l>VPU;{27_s6XnH*5F4 zbN#w0%zX2N<5c|RG30W+=Gpo zVwsT=B+UfAPiBOBFH)IdSQ(QHln(iWK&6#%`pSXDBEKRrYr^SBC3hr*jmdvwKh~4q z4EdGgCTqYMA=h&*kg6%BQ=X?YKDA3zVb@4DB}B$SU(2{b=w@v+uLjT3%p-(%bto>b zvwLSzrK}Q`2xK*gF}6F84JDkrjig8za)tJ{lm_zxgV!;}_FW^Rqs?Qzr7&*Zhea95 z;@kp5AGZ4|*FhS+#ve>wv9-I&vf4 zzqD8iC|-fAO2<#r`WQpgqIkD~z?D21;f7_gnFH$TObC>{Fc*{O#p6%=55+m#>q%DM zIg10^i4SF4ZS>nWfplYo$0QlR=SSsd*Mh88F^TzW9A2sbw_^fbo@Gve3s8j*&4>C6wZsKHPZ!z)*nK!@wpUcyr z=7VbdIhohMnH@6-@NgqCU(iMS>tICesIs={Nb-Jw8#D|fJ^ZMT(Ox?ZW5sx z$Q{KExENS{-{lxEJ5Z}C$$WtK#TTIHaq}wr+|I0A17twRX(weg($~hq*0B> zFU4qp41$4xb^Q!*kYXUe0@b$1iO=NluB2Z&uYW02x_$V%FHltwgtt)eo?n489n-vgP zZd6dGJa?<6|AS3F8O@ZX%2LTy`^2G4GawAivifbd)2B{3hEy(0FPQ|VoR~V zAFU~8w96)YHSkx~y_W@E4`8VgISX<`Tp2=jSVuvNmSclq&@jyA9Vr zA5Oajr7R>2GlH*^L#ULSd9B^_* zBv4#=DyFa{xxt-r`ecd|I-@wgF#uxM-`IPr+z?0wkxDX5Sr$pz)fqq_B5Tz1q5*iJ z;=rW&&>DfmC)^S~9!>%6JvnGff)J(n_V@k7R*y0(mHYIN_}$XdGBg3P_n|n|;|9JJ zfQ2g5(Qc`GaC8CF%L%F0SL<(F|9bJBU&6kjbfip~cU=<_v$3m2VjEYK&_Jk-#=UkD zPq|HDRvrhCOFI!kZo)|spxr)QR$hLq+#V3m!|ZIyu-pZ`;EP{2<$5TpgJW`*T0nVK zRyP0pdsk6SJUcIiRkr*w5*JsILaLp|rnM9HA?3mub)nI`XQ#b<0A0zCOcCc+5j;88Y7m0~a*Xo#NQef6+FDW! z%wNBF@xo^XvlL8`fB8yDXGdHh?m>QD*8~^WmM|fR)*}h`!L{rW%emWE3=!K3%JpBT zo%?-raR|>0Vt_F=JdytpZMT)Rbshu<3hEh>y{)BkZLfpG#Q>#A{fNR>ubc zHTR3npSH$efBwa51K06}u${{qrsr-asYx;U#on(?Q=AvLuS61uE2c}9CaJHB{wjffmZQ) zMYmPctxcq&;HAS9BX`6yflgV*sHY40q051hHVz`0(1djpOcx6|iQ%(*A@zw$jukl_ zKwi9$l{Gbakj)qQSdpXk&TgZVukY>N45&3ZA@d*-0Ao~$wCt=*wTIT&I^Zsw$da%D zs00*w!&yP;fVT6YKGTfB5Rzc?j+gP~LMF%htmyMcLVHx*tu#gy{G0QX@`oNy#t`ai zce-&W?^R*p!El?w0C`ed79Ktok38C2OXUTE z(PJV^jsge!*SAs$?^sDiX4uxtJItN!V7_&Z3Yv4R0Hlzbt5211jD5S+X}4(#|>g& zsbM+kU{pMUf`WX&x-b?@1YlVbvY#n?ny#*AQEAiZbRPlUJkU8-R@7Toln*I5u`C^u zot<(pDa35Chzg8O+uvNRkPG*Df!S zmOH8d2WziviOu*d6#(gTfTTZ9c5_Vr1k~qS2Y;3L15gQ;9h>APKFFaD@xn4K!~Ii9b$L5lw3;{V9$-TCCFac9!nl ziRpIRPY>J*#TRI+#xPj?vHX z4szpI8mt9*VQ%N4_hxNjeusfbu{Jg5Jt_u5U8F{=l>Cv)d242$LIA|WX26DfNJB#- zwUx5aW1xf%`$k7iFg za9h7UgG~itfhvm!8(mzu9lKw|oiBT6E_Y^u0A!KTpdh=bd>0?(z!UV=NFGMwtp$?$ zOm0|drZN|4JaWI2B&|u(@O=33?3s&-iYkZ#dn|fDpOe2CnVQNPLHSA$_ER04i+WUK zWLvUxG{lWq{oXU)SD_0$j0XC?70?aQ{Krz+tC)j@G)s}V8_!d4Nqd04wi)edRg{XK z!{X;RSxNVK(wM9gS8-%|W$xQmji!XtyeR9|WlS;lWb1*`J^E9qkS~NrX~C2Zedcq>oFDOk{05wE6t$$XOJpCLZworq8>b08>ZN{Bh~_U zOu$*u!NEZtib}waCLN{_;4(4XQ#v_TYA`O<2Lcq#O{r`=6lEyEX-to-5 zlyVdzC`{~=>WoY+&1PPNt1wgZDJ-w5^8IqpLeTOkZ&?9Nevm-%ii*t=jS;)G7g9P% zt_z4kJ2m3wJLcpBv)R9K>|ClorQ@mB6FTIp$(;@B5FwH!ji(>az@RNaNGoHsd)Kbe zM1Hjvt8;W0dRaw#5_I<(d-mQfNhk%hM~oAE9K(=fyk`Y zOsW6=GvkJ|-MHTs>b_fgMRzhKnTTmRi|_8-NQb1e&q+l^#j%>;akT)umb)w-WkW;y zXi*ZRhZQ>#DrDmjtU}^=aJ6Kzeg72Wv({w4mTtkV-}px9MM$NM^*gKt^L~!!F90d} z8Q6KLk^|5~cV~~8&hdaf+wb}NBggLvNMl0Y6bccTIP}1xKO{Fopa@QTqPaRsCDscn z#FN*Ol9FtpXoambUL_?Z&rVmPw?tNGEc59#eARu%%JO3t{m8*x!V_o4oCsTU-sPOH zgEB@yl96Vm5@$I{-c_M$CJxjCVrGMwd-o)-Z z+{Vk%C}O7s9KZL|EjsO$kt}uphV#@<(td)TXxOp&kc*r9cw4qV)X}yfT6t?xD(=>C z-P{nmD&!oSma@z!RNq$Z)GxUX{Jc*0567uq*NNkT3cSU^g8;ailYPj|IxOT zH2ZgJc2~k;W4FdAEB3nee2jR_=m60%>hXHrSS@Dw*B{@THCR>WinInSt*WXzU|j-I z!U;U!Hm9&St>V(J5~uy*ziUMzqM|mJK+ab6srK(m%F2rhR^~*8hi|~Xh&|A~$FkZG z1ubrit(XKO>OQS(l9RoXHvmxMKO5_Ile~_7vQTDob3AbHpuWC71W+5DLFn>R%$l!! zeElH7wx`Klj&kM15tWI?kPW*@K~pYcy4pspaTKnC8HBA@ljQ{d2NoNnT!2STTgAn7 z6gB|RGobyeS4$mRcE(w@mG1%b1@ztaswGH--i+Zx(*nt%-*@fWwXk3%v>;t)Ix!s% zl&@I~X%qxg*v+ilkY>f|)%wlv)X&gMIrMZ~bbRu0RFv*OM~zvd(_k)E)o?D(g)f~g}W?}E90cGmeWT(~ea5s&}`NOKlKfH8b||JtnHK<3Nw z!A4&14Kk|+dZVC71C7d<4bAUst8n{p9fKTDU9n#~AIK{!FNf&a7+XNg==3!ZE_*}G2)z)BK zTwH86{LwGpefeg{bO&AC3jHGJ63k2OwV)Q#gk~K34j}m_`k{54cc4o=scS@HXedAb zTIX9c*OzAB{i=On>66R*q*6j3to)DJ_m=gCRln~H*Hryp{@VokP3lKfv>$z3_t;84 z!I0;N7_QK5+W-CQ{-b50+kTb*&To_1#hX9M9_<)1?P!hl)R(JX(B#-*VLoDi>}2Rz z&xCVUqwaV~SzO!%0NJ(yt-P&#|qjkR}VJW zXa$%T@*Pr}blGY5`Gaj=*^%ayW-kxujHn#I{@av}XGJ<7(K4OqhFEtn=-B4(jIRO|5V zLz`ci7RCo(ei&(g^ytx1;*^1phfJVTS=mk~`>#>F8oAVvuLfbW-Xc!`BFly=NCSdBs> z0O~BpfV<-zTg4jr2EJ>{>b|`7CA0)JaX^@gS>5%|@~~W#XV)6Y3672D&xxZBfPX6d zkMKHKA{uJb)Xq0HW*(!;-jxp|4qi5K#+U>`H|@r%!w=pCjnCl4FTQrWY+g210+y22 z)6-Lrf|^Z?a^a4_yLJE`D4SqM?$k9Gn4`?2Zuu!-89fWLbZ>N%i2KPP9QHxOR&Nke>=%d z!l&_bOMGy1(6C;e zcx>wbto<-ag}?R0esoB_Nv<1*Ovic%2#&z&^mLEN*~gphw<4DG`==62+mBO$*pj6G zM_XTI)6_%`pWB6ng$cBo)$QyZ8-8^@$VgLDbL`U*$y$TcMd0RzF+E;87U41y@rlWl zGxeu`!qhXVpD!oSiuB5`cx-aJgU!Lxx_;aEpIPR+dCeG9SYRIz^=mu?iRwTIEH*rTNq+ZP+3m-1z0-fAp14C!g%t8;b zT=s2j##`gi5m&ikU-%*($av(9v=hfd`$W(PHX64dXF|imzc^B}=De`PZ@>MvTs>@y zMeyC$(j$i%r()CEA9IOWcRY&r?F5H=9eS(7`-2=m7kujKl4bN1@L-w*QYYaykXoYm zZP<5vu+E{vUvWbv$@QYb7kOUvPwk`I64f-6S9ju8-iD9^(ac-h{cWH0Qp62V7Epjd+6_soDT`|f0x~yUHjG@Knq4rJ7 z_{moFFfnFlCJ&a zr&S?(Jx#d=G0Bb2VzgMTV4CizCSZ`rOsqa8F1UFH&8x-dKkku8e5z^%?Jjg1aFIp7 zY^#B;>rKndvxM3q&DQ3V_S&fnv=4mwj`CJ}nwq}nd6!**kllkEeIU)qz~Gos+&Jb4 z@_B4dsZ&1|`o=-FDgpLsQ70%NU%wsmGLcYGK89N)>74`xG0?^;4&)PKb(6&&1FSna&!rbH9-MEe^rf5JBQ>dWTNPB`y)nWv$+Q8=LRJvyA2ZSm6rWTC z_nW~8LfJPokz!p5-mCJo-h*`;s+7Zs ziGm6b8KI?)B)8NLXDqciyuO?fI8FzEE0q9<0s}=j-WBe(ajt_Di!Z$%dJ94z=FZgk zfpwnzgN)}T4^vY`ri5(8bFWVwJXgU~M-~?}M}^3f!v0GaITkc`7HhUOv>dY{K2ORf z&KZx}2L0qxMln!jicxmoG3aO4HI~%U($d!gMePdzuyqzxP0eABNZrv+I4*-2$V(-_ zQr^BTgT{*hQi#65DA_Xq`8#<-3mr}64h1nG;)X@a$58g|xdF9#AIKSJ`j+!4v+85T zP=td5gFjrOL8TP3fqHZ0X+AKKI_gpB>0&Xt-K^pcWMX`2|Mzyu>NT))_;}B_{64tW^A@riit3o31B2^xl24sgd4!Az|>I=16jA}9KjOQc<-I9tMK4@+w zKBt0vGMdl>TtF(n8)xL#K=i}S1Lf*)x57|8sxku#{Ct71jKkQtS~hU=TB>xGh9HR~p%bu&xP5;~ztf7+DPkX0h)q-K{B+@6;; zN=!%q*k1sa9@{7QVqW*Q*oeV(OhpH%J49wG+)7P`wh$1N>YBTQ&-cah$@Bk%I}l6H zy7zxlm$6(m)XBkh71X07 zt9!g>v==&P->+V_Y5D5f-bN2{KiSbir`IpPbRf03pucK+mi=*4;wwCb$7ffAWdk=J zYgH*DKvP(GDChreYex5eb;i~8UXWQ#S5{HMt3&1X(0L2yu>#fkaZHSi(RN2>_M|fw z!vtgSsK99s{IGn9cb-ZFiADb1NMju$o+bPSkLaZ9WQgzbc)-{zCiM-6;$ zLE^?o_Ryh2+-5JA@CiuJPaNU#o%XAh(OBx-4QLEb4J!f(Cvn?;)J{nomALK|bg{A} zw5RHX8o5=b$w1Pg`50+QTrY>|%nxceI^2)=?a(kAukPs6A1JXsr!x#EnvKY>Qyute-& zhr|%BMi;6EAl4Qw&Cq`wERAvQOSpPaVIOuD(!0}rRJq-K{r!-sH&Ty9cWouWq6#>e~l^E^tE(bRH2wiP$fP_D=7D$6kO@+E+2HbefgE%^v z<^Y8%h;u(caq{?7!<)dB2)Hl?QGtRwn29n3mS~e|!FMQbP$G-{L9pg`_2DzV%p`cU zzEwe#hld9TDug9Sy=cB68AQAH|55hk0X64s`^|V}yfes{v1^&J7a>cjBr}$@QSlNXtsD*3U8Nme$&g0aH|Y+>k<&%)oBxM} zDS!}5l~Dr@aaPa+s~Wpi8;GSIrzzM#SHq^`&O?D97p(Y`CDvT-G4#vEq-o}$mGp!l z3@xLuu*T>Re$&|*C!`wCU=(%2#kOZLfDsW7BC?W+S487Y`J3O{*mu+pAI~RJcAB9) zxbwH*^&(2jiLqLh=_Vt0xf)5@iIQm&62}L+0|sF4eD3v0kg1XT^#!VTx-F89_vA0A z9)4Q>s5s~&!QG?B{L6%F&J)=?C^6}MlGGN^|1zM21IA!LDJSO-K&&qt8Z;QrHp3&C zT+s&E3~iMGFnVXl8hlAD&@e4pO=OyRIh`bJQHMgr#-&)nX*JR*9K(_Vxombr7sU7E4_JP*tv{n9c z$r(M?K&O8P6LZChb_>x%Zeiz(_B^lNJT4Cm7A4+_Ff;VAyP`u!pEGXUII1`X!!My0 z7+i>c@>*0`HMx^Y0S!+@Z9%7r;0-RW05W0fC%sS*q_Zu5;wnd97pbXH(Xiwlv;?Ljc-H0m#kC#k%HZ;-fJX6```9Av z@-$S}G`W??y<{TI-NF4bC)bfh97CKu-BT(#90#W@%~D4v&-;bXdoF+uRo(TPK56#$ zV_;E{E-uoPY_?-jW$yZiQv*s_wW1H}{Uv#j4ySuvoc8IjQMJ_OjswKbORowmnJxzr zCp+qbhwNUA{#ox?#g$(hmRgjb$n5%)0BMh`aoY> z9=764Igx1zedd1w|3`S~N1nTB6O;4b6xA6JoFG30heYO4@qPTN_BEOS)>=`QyD}58 zZ&Gm8#vVcX^+}*A%kZd)pNMtAlT}*p?&x=*8YQ5JD>r#fN!hFWg*ygT{CKgrixh>Z z5jU-hnyOI$`a_VDJsfTH6Vc1ZG3IEu@$NP{EqtIr(t)EWE2^;3?Yx zWKgtK1(yVC@m5+55dXlzN@5!!K?M8S7ZA%Wm@FxRqrmVwpP0C?(^<@!GnBya+0Cig ze53c}J(U2Wep(hrOtVMBqIfzI6sGeZq{?|erkvp8(_g{9mbjD3QVFN|3K5@C^qdax zsYX1V8t$p@+#I4;Uj+F@;f_+VPCuNQ)$~0)mxe3a`%?oK+V1r;pfs=_FBNac`4%9B zHUY{9Q)&E*;U>T`sxuO_r0V$`Ot;p?e5qbKLo8rDV#Z?xf8*K^^ zihnr!+sYN~J$r~|4LT_0LA~$Fvi(U;4Y&dyUDjF+Q;^FNdl^l$KIk&&&K`&af%~|m zio))3haE1*$#q>Xn=nCVoYTM9I3FLM?tG)`UsDHgLmx?E_%6COzrHXsykv&VNi%ou zSaI>e9#cfH&YCu}p?|S~Vud#Q{(AdbVmEQ@V@%LV-T}AWy3cCQp825*jlTxIN#Vtk z$1l6d&=C`+)SW&d#h$|MU35f=sf9iS&ZG}CCiTlUHm;ig)qF`Ns0?BU(w3A{%Q~aP zMw(?n25$j^=VX9-L;nYDZym`qfS6x<>)3uknt8@nk&}qJ0Jc&*Z**`HQJsj~jMMia zJ~24epabu`B|w4nH~<30D)cedG!>8=<+;1HaP*zzf86WA)X%seQgNBlW*7mTf&psaQ z?p#iUIz|WL#WVG%j!wQJW#r*tATok8jm)UsQsHqhHm_OP~T={wTv!h3FC z_LthM{a(dPcuOsN5vYYA&Yn6i@__ym*E&B&01x#ipQQ%iv@mK-L?Xg1nt>;1W#VvW z4yjp9-Ys=l|KYU@3$h-sx*)O`a&ai`esmROn%qf7CMN_QL>jr6a0xBqoGf=I&$oAX z=r-w`UOH#dm71T^q^?pof0{t?dWRo9;}Z8-u_zE1!rK$Cl9LKPCY7#ZgqO=e#*$Ke zvTyC)ip#t`%Z^_LFN*X-h#fKYME{iR?i_kqC}Y;*#z=53>%G%Gn~2HvPVdV9Sn!EyJpWt=vmnV zhG!GWW^~}VV}(l*ap#~qeh!!{?=9)134TOZ;tTF6fM4i!DWESnA}CLvEn;sN_g}@%wyEg);P^bQ1mKL!@HA zU`-az1ZTXXVXc2u!V58W%=)#~j(7S**Wh2BMK+AVG$`4{9|8pyyF9xxs{QaGg9XHa zCayE31#eRN`l<&Gk~h9kKzS@FXOv4^0{`y{vO)_Y?h|J<8DdW60l}>(QTx%Jk?4TA zjR~kP^62-R&@^hSdi9N+p7$S~DUaA@G-<0vZ^J*4n8PIs%a>2ACS^l|Gw-%gGkkIN z8IK*8PW(aLEodkp(V}9=i8b#(yty4eD+l^+(j?lhw<=Ln^x;!Eqi{uET6D z9Rmz(9`K(f7X@k0cXWk`PM-?jr%#ckXa(7Ei%G~UGTj_0i8JJJLIe_*h#f_GAP?%t zDL(lM(bWZ=SCUYi>3HGQ|AL!EHXBWF41xCaQ|bPv(#*qdqr{ZNT;8<$lah$NS5F1n z)+dr#>V=Hx!p@BDa}9Sp z>_+dO(!JkPjh8BbVC+ zibCEGOM;g@kr=iS2Rk1}JE;9t{OZQ2@wXtS%Xo;+`D=bAolbciAc+_yt54f{H&o8o zIMp%-oihf_o5eP4VW6q2KYFs(3cJ;sD{X>LI%N$EbVZ!{@z-gafBoe9eVcwTx%Qu1 z_YACO&U9G9-%_$qaZ6aJv2EYh^T*1oDngAz=bknXCsp5 z`@QSNE*o{T*S>l8-Ac9gH*X79EDgxxIF5e)*3ERvO_ze&T&GXOJW_fSnQ}+_Q|D40 z#r06L4N`zep9ORpDT@cKT&KL>h%~^u!6KSY4K1%aAy8-0Ui0UjjAsI3q+3Ng8J5&j z|K%<32_4TDdnrwyUXp#=)95rGnkB$0SCB0g(B zlzBB)#x35C<9{Re9g( z3`vA%3u>tW2F5_ONk&YGvLn8*L9H%ffmRT^4%kk;&@)2D4Xu9S-q}2j^ygl+7DlSn zk@@{@?XPq{g1TnSBwtkPyVxI!lzHeX2+Q<(uvt9^GJh@4Ow03#IR3Ia+pEM9T}!04 zBERSU@5ErEsDV3hMpgL0K;He$OCr7jf1f+gDgu2^B=Phtrm~7mEYtgkrq$wT^?<3X zT=$vm`|~q~N;>5HZ#TRJsYxESRN9kh=#$DjJiFa3O!A6+-4>MI1jk4H-5kg^+PKZg!omVRW-hAI)w@*Z#Dn@hkqS$skklk||GSA3C*Jz~`(IL` zIxa0&RLqNqVhHu_rA7r_1%LVqT5szzAY&#l5DV<_SgWbsU>!*;gQc(I1*nJ3`X_J4X?yy`6z)&5KKL3{bhH-x+3D>f~ zV>}kxzXO_&q&T+j$Fp8P_xw?gFs_dJ$iRC)<1MLDa^2Nd*!YkU@*>mH-TOjK8XaiI zKN;V+Y?dxwYITgRC!5u0fE-i%-Vq!PK^(yD(u}RSSIG2V5ep9%5tmQ{#Psm z8#1M-DGcXJVWGgFd_8hKQWs>X+~^365=z{DaDH?2Igs&;i(J(Sq)oQS%SC>a8dY+Z zVa-!#AOUWP@nW-6JrAyZRo~weyy4Ixvsa5)L$T&NU#2p&kQ-4?kE-?l$n+dT5$k!3 znoH}GQz|ZYxNftEeNQTmbtp1<vgORpb$Vr<|EemA!9aB2w+}zycK@?co zeq)rQyZBW+x4aw_3?!(DMfV+Ii)tqBA>aX3p-Hng9QXc4cjb4hJCg&}yScs1utt`f zi}yDjx(or}gD-?>`eufr-Mu?i=?i3Jj=@^5&py=WaL7a;xjJFN z!vA%7BY5#(aD%_AL?dA`T_!~0k-~|GXInST2vQuqC3Fr8kb~X65p`)v69ZN@Ps8o8 zzz0D&Or2;W4$g((QPiR8>j&qzV&+Wuu2#ukMvwPzt;|sGYON$`1Rq$(M-Z6Y`{ar| z0=!AoI*Glh-&?Ad0asfG7W%G?NOe0?;Fr`xa7x+9y0DOL_mMGEauMj&p@%5I+Z)$- z>dJjP-?UUH(pAQ-*}QGrRA8OO_wRp2l`rzixVIKPoh?cgok`DLyvW0Oe?wgSj3}*E zq^57Bt3AXdO)Ep|pA}quRr`#EeCV2V9l2{RY-wuLiDTeBP~T!5cyR_2KqQTeesV5D zBs>)y7QwQr;*;0k#8Q84N>uULgP=GQ97U}@FgL6JcrF}wCw!Fb-9S+W-RRVyLGNU^ zyo@^UF+I#m(iqACDA}|) zBPfJh%>h;sA{_hmRoYlY(0AQGzmd^d9~$?pAnJL}o$!CYopv+g5Hk|>FJ55x=lnWe zT1s7F|2isp?uXz-9ufda==2BRNJ(phqzjV47Ttzucop`Bk(5R&q(wp43Z=@+$X>di z%~P93BG}D91(a0BD2EXO43sD(DtWtNm8%7wl4Og!W!WWDiK(%B0LZ~(=w z)ZXo^^3AtXtjiQ<+Z!7Fi)(F6T|^pMQbBmIDZrGLd}uFK=XA&T_JPV6W4&%(AQG+HI~5-gnP5CgA7aoki@_X7fhrJFZxVnpCf5PKNwefJaQA`nx%ZfJu&^t1U&6q3E} zz4uRHh&6eyA)Kg6j8_Df1sVgCX~&;Aq#T7x=9QP{d})Ud?TF0G%v_0fUS>)IZWf&& z8J1&Z{YjKxlXhs3!hv<9E<=*1#zl`}VG_EbB|Zb_q>}0jKs|mGcS8)8vI-yQyVJ!D zbViQ>HRN{yWnYR!>YMZ@4qD9si8abI^hv`E`lycXpRZYjP$}mX3`NGr48_Tz$gfkI zLZ8vno=fucJA0>S`=J4oilVy~YsS-XF8ai^y7BVzdG>}O zCug&S6gN~JBOD+U^G=45snb@{tU|PSA~S0NBODKI`f>Qtm`aixqC7fAr~7xH8FgfT zQ>x;j04Ls;d7sb}{MR5Ck2fzT0Bku%mk_5L*j4R|Sm6qt4Z=wOzyA8`Ss%T9`Vh}d z51S^D|PY%&gGOE_@0k>9`HqSq}Tqf;sM3Is-HsSVs5(9JDYTfIu|D(a>W`ci_aylPA-9>?jJ6x39{4S(db;q!sqc90V$j@b>RXorJiu ziAJCwCWe%gWu;6g$OZAx4C*nX0+(CQFC=Yk0h6@ZB%)vG2z4N$;d@Tor_c0TnCm08 zn=MYjzTBVo%!=uSJ6w47k3W_`H@htd`p;BD%6Bj9(TBmVMniussiC2-X1D55adU|1 z1W@gR=94gYQRfXy*!urB6G2E=HaWeWMyT2;IeXPqzAdy11;q%nl!{T z9@ugb1IsREje#o}xEE<3x1=6>Mm0O_a?d2{9tA9ujAHFv8wDgcl>hEh?fxCfOlabY zeKj}8?gt6=Gl2I-gZslxh3LIJas`SpOYCHk+%o$2!eu4+M#yAb#C3r~WwKPwUWMqMeo_(zNxgXkwFipcz5~WGt!UM2 z?G&lZ9VDVlcGbAe@l1~i0-iZdv8b<1CX}Saa`WcRbOn)r2B(FWQ)QIK;k;@E={_X$ zi{G@cZ68ZAMr_-ez`(%n&h%_a`hjF7Hgh;(!Wh%(t36%G!F9mt5~heeQuzu>ZHji; zWp_q{sX3?%(APhRr%3&bC1=%aR-a!xUUfO;<%F;?t-OfB66byL?AEmcojc)K`C4pY{Z1nSL8#*= zrHW{kkiy=cV)i9MW?vehbjKZ`>wZkQncMVd&k7(UyLdnU{4)wrV*-Wxs1TcBJLlT= zquQx1fpgRdzxpb6@j)3XsKpde!5Ja}K?+|ta5=3NLxc%}% zRK)Dp0j*1odgFDVNgxLd%N$<416lTW6eGje+;un9B{3R8iEd%K5~T>_Q>pA&8xy4K z1BbR-wQW=bB6}0mu$jR)RKTR>VR#iQ)iK}34|J80KfZ637q*%dO4JS!=-Hz@i#e>xYcd`eUt1=yx796QxLD?R;JKe; zSTf;9A=G$91+-mR1WEk%-CEqz47e1ck0ryx&(0zrOabU@IoBlmo0Jr$n4x7N#c&bH zLvY(jmUZGp&nr;_WiY8%z=*1&5?M+;#9Ql#=_MF-JA}!UABOCXN*MP(w))%eZ3aIM z1}!ympMCZj@x;)TxR-?X0BMk&Cyz)q4M2eNRFmwhuahoQj>f#miSZE*np=#F=C$11 zPLUse;&D=!LXuZY)2|p{22HhO_I1V#s()WSrs5fzQqae#eku1HMDwMRJo%ue)fWw)7RKj5+^E^m2 z=>FNYbr`4d%Ibd(0CwS+TWv45O!5g#`~GhqnEAsazi_*2GR6sB1N|MO19Qjy>V51X z^MIjnZX8%e=@}Wxu@WnnXpFD&MY^-hIDrsXbm;HOdO%_#1h=GAA>*DRJm;6lB$fI8X;m$goHXd3DvIC_eZop&FuM6qmzqF%^&^oqx{}Se+;~CQgLZzm>_`V z&5`sZTR*%=pMW?=3VR=Y1=Q|1MlIwbc3_|g`)Vm6jYoE1^4meEA78u9bJ`vjq?nNJ%T|G@In(mw>N3(Uur1-(Ly=FF#^m`D9oQ(ObO#m`SAm1Nj52zj$D0KJ{?8-Z&JLOkfJH9J*ptBli z4p_s8J*##cHo0I*XHXd}(vABL<+WI0X3#Y`#2%`5)t)TA^Un%(&CRFCEt-y;}9LT?pX+|5q|Ni?F zGY@Ln+G1!pmrH_b5JU>c?mYuyqb-mH7)25S#*2-}nCxN%m$5WLa#IZRd&c}WCP7gl zr&Dk_rXWkp_nZg!B%1@nj=j`=HCPtF*X_DhPfCI_jklUbu-$k2vL{a@NLIImfD|+- z&F1pc5s98!&V~J?N6Fu5M6LM1Lv;iy7_mZ);#eXjT`>k*woC->ty_{`PJWV4pj_f- zzm4HjvXHPq6bAhJvO7iYSR4Jip>m<3Bm(PWuY}nvq9*+aM2SG^SfXq~W5F0`$!rva zp%*S?a&tb`XpYj;9e1M93i3mMyHi!Qq!Fp&vlngCk~C0m>^q0lO~VG1Y7J$vtNJ~b z?}{#bqMFYZ%wkQyFMGT!s#ly@pICD-su7x$iRrRcBhteGpr!~Q-x|nISwf&L>ia=y z)EYn$b|6;BybWfQ7L$BAkkr&24k1h_h5{h0=is?DI5KVWYZfisQGM#8wn<|sNyplp zEGqHg1T-AZZivau6T7-;J6^5Q@1le6py5~BT=?$S z`aPA8L(_1y5os(ve*?`#B?L2cHjk{I4=R2|_mzPI2lAzW(d?4zwn80HOCURczBh@& z7%x7F@?Bu!R^&xkR?M}i;I66PP6DpAq;!TFa!g;UHHIl=WBCjgx?PMEdPNtI5~T293| zH$Pi(ZkuQrevMV&uo0c`K(!8_ULZ9^1s$l7!@&|AVop;eqE`Yt63e7e(mNTGill9Jq(4pf z(onw8x_Hf^2ZF(R%3PKV4V$;dDrm$(!j_S(-OO%ljlnWY5rCU<3itO7wuLrsHq#CO zMnh2Aw=>Ow-l8b%zbgv`pk2I9hZ~=ap4~wCal?WCP_++K!a0naW44U0e&VHtS}cYM zOFLXRS8cF@i9ckd4qbirJ4PZDcQ}M}3mWI^o0bCit|MjilApc3nNy@@y!~iSnA^lZ ziI8Y+0~I!@yFDg^4^r41n{i0}jK_RC6j6(|t*Ikyf9oK~b#XrX1*4V$4P|I7A4fnv zhwC((Ssw>@M#|(!QiQKVgr_Nh;;M$gT91P06vK-}e3 zwI-N*QOt}9O#BVT;A|e4Ci5B&ESE`Y0=q_wRut({b(+l6bjCs1=ur<0K!5mp6uC8& zjkTO4@d*M@ywZhQ8JT!CrN8+H7mp;ER(zc^Mv_7VwWYK5Eyp;uaFEjP& zzdhlaGXSI=-yh}1U&SS-BY7nEq8Moe)-v^Q+;JyL5!v-7emwF+qR$4VL8m(;CWtCM zG}AIiLg_e33BJk!VbAAPOj9CvV; zHEeAO%P5A-N+2OYd@K*P`~(W0xd4uWV?tgXDs=;+Oyn9Y7-aR)XG2fU9$oWjEq@XBhkdH)(YnuL}j z0J$cRuN)TO`D~Vka#LAS0OEe#NF(YWk>@Y!=K?hPCz=@mF zFji{S%GK|R18~sK{-R1(I1+u42=ntngc&Q{X#_+Fm6wnytccKdqP^_mVRraj8z)@7 z7LXZq1m|AkzZ%sRdG$LoFa!fq?mkO^0C4x&TxLcMAs4*P%Oq!y(tThWoP8jUcefkS zOb+Llu*I)f(97c^9KwR3T!9q@tdT<)rd0w}8$F!oT&~kPFwe9FnodOx5e)vk6;L@1 z*H5y~SHF_U?h^(q?9ucs`ehipiw=NSf(H#!6X^r0cX4Sy8 zX^BgT@Caq;lq!@MaVdYM9s~_5kYI=@x*kliK(kA7JFc%HQN!6hyl2uEK0$jpu0X}S zvOcZor-CBim+5-k5*FSPJrBeGdLDs_9_&S|HS2BxEePbJ&=AB|J_obB{?MT?qxmE| zuW_`{3dO%W8~_}HNR0nZ5T5p9Xw+=3oawdY)Jm`p{5vd{TA!%(4KGWt1U(2%MAiDR zpUtINHWQ~zp4~ek*5de1a{LjN9fJ1mX zhT58DODdm)jiCwl5s6(8%~7Btno!w?`U>;!-VI6vlYd7J>GaO#nb1I7jPsMDYVX_z zMgRfz&2-4pkw}Rq4`_6^zMICQ%NC?ig0Ti>qI3c=`0xDhbF#-6I z<#~csdqim9AA>3g;rP3fL3Ve|!}m5BmWIh$H%cdHg*x`iCkie` z^5qKU6LgR0PN=weU*m}Qq?Hm2BdU)&iofWOe!7Tb7yK@_=~|)Ns{UKuz1LTtaXozN zS5znb%P=l9hJWfEC5ueMO%fyccB#MNOux)(VD#}qg7{ZLpfnmP zx^w5vE4`M7@fAz@Uo9S3dI*Je6`~`gwNAm)qHL2hzQ(mepmM4zqO3evL{Qjpaa-ei z53XKPsuotY*XEKIOK^MRJGA6*c{KElxAoG}qEl{N+6PHag@;x{st<9JOsLhH;3ujv zaU83!AMBu>HLB<{rN^{Zm1$B^{zQ^P)B03mgJ^4O$MBQzZEu^Tw*BRF z1yOQ+*JMLKfCVR-TW4t47usE58=%B2SSAwc73U$D!3{|TXDCe&rRq__(WWsb#Keph z65Dxko0Id-K{bxg6cqs57ZW9-mT9kmwzXc1bP931K=_zK-D93mdGL)? zaf$0R0;dm~aY5&B9nXH(!cK9ijkbnU#>l_8_3Hz6E30kwF!p^Uv~RX*Uvxu3PQ#bVMb925u9+*hJ8F9)q5Ub$P1OeaydxUK!; zlsU{ec;-UjOsI~yA24+;ZR!Pv*8nkt|V)zgmq&i!Bn49QAq{8Eeyx)I4Rk`iro%g}zEm`0 z>QrwGRnJ4_70~49Pn^a{5PmiS=_KZXf!HD23U?ev3r~k_Z?XBO3Vr@|y>JkhLs?Z; z)~#!&MSr(fL5^oqNL_Rci)hHRyo54ufTF9sZJw&YGE~v56V3TZcIi zLrQwj7ru@--Bt8p`RdhDv8qBBubvq9U4Xm?GP14W7`DCer%NE6UbC`KZsvF z3H4-uYC;DkR!jAZ8r6!+F7vYxi%z=@XzMU+ zFED<&S*T&e^W%K{{r!o=BuzulnXW0UOJ7fuTD~E!L+N`C5r)8yUM!q_cp|QKvTe~C z_w<8?qBn5(fw^YfxpU`b!wel;f#DPj%e6Yg8qf39zA=5z1)z61_)8q-SJwvRpICmr zalO*Awlfzlz?1N(1B9aWCY=?`cmnD(MVVRFmzdsn*!u*r=`rcz86;wc|v9=WM*l$>`#XjoPvlc*=a?e`*dgHo&bsG55Tz z`)Kx=(7Q(XpbFuefEdM!FcGHv<;y*s1k|~iOQN(ia6o)noIjN)bMx{_2Tgaw@0;e| zqAu`UdgMfl0f+wVgCPGs$S)X53yB(_4sChig_wj3V})OH!r5E}j(JI?PC(MOp#z_^ z+ogJsyQ8z#LALiOK22I$&t|KUUVz>h5=rCFojVuKQ5AeI2;IXCQt2JrdfB6^m1!0S z>hC9PD$9HJY}bW(k`MhQRcaG<^jQ=A*AK{TH?Bz^g#x{3Nc<6SUZ}g&nrkiOHU8~- zW8=MMXFV2}u!%1nUdycS;lt9p(jNxxRA_vZyDVmhorw`*Kvkq5>>`OBQF9K_cP>3T zQ&3!7Oaqii`oo9FBM^R>!Vv5*HF2?U`QhbBo#Jtd6;>-m#v9>MJCcXCQ&v-NV2^t$ zFP3$X)lnvxxtI{27k^~XAjl#1=JJ01mEq5D>@T`uXjUy%{z)TRRv5emeyM}Hi0w$% zoaT2kqfWruSs+ZTYeX$m&mLKvul$lFzg2y9=pb|SEj&L_HorA4&uHkz9`;Geu>Z(b zic76JCAfGgO6tsHC`f47=ujYbN|`2?Gg<^~-<;`Qhg>5@80SO$0P?*guBxf}{7P6v z#BuV+^sufpUQDPZ6^#f)t+7!~CN%Ue%Z2s^B=G&PSyMdWd{Kkpbf8zT2mZObR_O1Rx8>S7Uw*Aw2fXSJ~;|O{MZ4=WTu;I1gP9{I>ECimoLbgj8IfL#SKfy&kJZ(uuZ_ z180op3JMYqFrEL%gOdTV>FddyMlf=VI_8P=UW;jS`)Of8Em>)X$irNT3brza zooQxeYySz6&QwBwVf{hzJ)WMc7&~MP)Lme1O@%Z%E?zon{qrY&$<5MSAum6H=DXIR zYtI$^AMpRNmF9yt6EK;}W8f zQchi69qtC`n4tpZK@d!prvU<8pZHi>#6&@4W;4p6wBDGWz9YW-CSNr2juXS z?yj=JzH@x@yT}DQw^c<7nwpz2E$bZ8iDh^R(@7Cwe?t*i^?0;(%xpd|iW~YM0ZHuK zIt+F5+irJt4x<^wj9H-BBY0U2MZ{ONK;p~L@-POwZPczu*Z+@C;o77$_)Iq$y1!E| zp9wyg1D zv{UYz-q&9b8@~}>`KJ$?CW%WQbLux&C@947k%^TIy?wpi%<-C=&*Tj%O2%HLkPiM_ z*R~Mk+E!$~VB3vG$CDhtuSps8jXG#E1Y~#nW^c3~D5&n$S%u1agX!Teb0!-xvoS!} z{btdK<}rxMIC2?gxNGDwzs9a z-`3iZ+Xd>o=E`?Qukg(6O zW5?3!i8=|cDv2PZ)ps!R7YM5#l)cEx+edsex~;s??Pj(F%oK({6fx>p?9kca)ahtb z1Av*!D@51{%+uMtu-^0Q^N^Qe5`T0~+)JAr0vZ>R5g2fqPusLLkTN&oBMeG#0n_ju z?^!d7TTs_297_GM4{55Oj0?oWxC}vvw|;kHTU!7q8)`fk;X|YNK5e5wqCX*#4;I*1Tl?^B z%BU|oRN$#bty_cI6a&pg{R?614Z_8;{cZn04%|eqdZTsHwQb&*agBfck6-&{6TMZ_ zYM{Rl2obsmucsLbDh;j@O_+v{H8J9+TQ!KuJ$1$mttLqG*^&ZCoUlrd`U$Co!0VzR zio}kBmSB=aZOyJ`SI3oED%m0(L+=m6L6P{hsgePIj{4?8fnb``=7p2l;;4PIK|Ya* zq;Lndsn@}VN)>z?BhG@R)(a*Kkoeh{$+u7kgqbqOS(E%vym0l~J9@eB+Tnr)N0JV< z*z7Oo#>Wb;L(wCzyBotJYPMx1+piSYme971y1(t4dCNtK@g3eVB5C_hbr6|icL9M6 zQi!@NOp-O80GCI)fV}n3-AH!~Z-tvh9hhe~ZEV`=Lue-Q5`7K`zr;z5Pt%m?kzfSJ zDzf{w(+X{y2+}OF)?|-<#j>{y+n}{@PK<|Tjea*Cs#82Pi-+q4k90MERUOJyfr4|d z;Ll_E7G%_l91~-ggE8GKN97NyV(uM@ZdVAyHjX&RiCClC*ytw z8^Vu!cBY;IF6&GDX`YZeEs;=Sctf7~c7RB!qA`%}*b&a9q*O7mDx%VaZQ#Y>S*OwT zK4NM2JmOzbK*WrB9E?W-sgsb$N0_;?AqKj+&ufT~Pbzh>PEg&Th>YfkiquV()73z zcj_60+reCJN?=b4daAmvpA>w$a&m=-V}HNX6}Qwd5pckb#Us}>1jvfG_E3gN6M!Ft zpEUoq=jkrp-ENp`Q+q;P3W(*05P}fQW7n@=4`!%PKnY^E+7XJLCO~tL6aZJQ>R}g) zy|p`=yWj3}PtW3u0#keSN7#>shPwkR9k)BO0u{`bVLtpx98ZXmzVdTx*at3;A}#*; zg)~rxQt!d!FJu>l0l7RX)dEbyKiEZmYN$HKr2TsIXdUSyXpX6=Ebpk_q%9GlZF{-! zykGshFcBzyyW!tof#{5S77dIi!BGL}9RO;Q;W?xs?oJcH!IpBigffS#uC7jcHpsMI zA-j*~QxhWsw)|Dqq!Y~%Ys>8<#~?bls^N{mbvGgtwNBdReQHJYBDPTi>Zt(4f(wD2 zQ85_{dV{z%hM&?Jk^c(Kz|=`Igh6ShA|Xl>AdWgCkX1kZ;%=r34smORl`U^$9 zC`41E$4eb=sYs7cLw|ueiS_av_~0v~(FTVJK6O(UG`q1@hTsjeID{N3Z&r|2_P`u z6X!t09r@+UF&6^eCY*#4kYZ*HjTSPZY!JMiV8i;#QJFIa3k9ML#Q)DO@v7hP&L<`5 zacx2OiZ!rXTEwTYadHS1Bzb&Xf1*cll1iE@(iihqfT}>*i1G{EK#7(6zK#8?U3Ww7 z+*-fBn+=tnf?QG2?ubX{?M(nTg_5ieaSvS|8a~UTV#)2>8#NOmXkZ?f2k0H^dJ0OI z4~2%h!!?(ZvE#?b^GO+u^E?sPjR&QvU>MUdNqg~}XS?iP2Zz4flgKOdW91u&WuF_4 zb0N&Z9q-Nj6m_9K@(dqi1z zXp?}hvH7TWUFv^L6F^7>Pp^jhX8U@&;?tJ4oz8D32{#ns>!suBl*-nZ;%s-@bHFbh{sb}f}A6F~eW z!jK?g3zKv|efkvFe8%+Ynl?-_E9P(ce?>4`husR@aA}>ENncLjEwg3|@7wK&E)!b{ zO?;A-PiNM3im@~@0 zY3IjMBkl;_oJaz$jI;qb1RK=VEf6%y5I`O*enVxN@)D_xcN_G>kNj}!NzkkQvHyh7 z=)U(4412)#`WruqEWuXsDC`6ttIr|G74yWX6>PNlvrLa>_(AQ4P1C@ks3X0*CQ9OQ z^&$lcyO5-CdE|Ha`434b>=eLeZX|jKWhBwxk%ju<+n-L4+q@&_wF^pYEWc`A4lnS& z%1Vk(*}aZS6ZM6TKlpO33~!2=>vtH57g!=2OKQtJC$y2q@aKEc(D+^qtI}z5a(0g6 z%T`iTF^*J*2_RAb*XKNMq|uxlniIwQY~S(<@`^9cJP`#c`Hv`Zdb}IY)UMbb!@h;g z9lr+n9CIS>_!;(GZWzw^feUWietMzUPrIFJ$#sdSkyM#YuOucl(}&6_v5Su`+8u!Z`A(*&3p8zzudgy0_a1jh)M zwn^6PVPcyXe1$l6-K4{_7JQ(=tZBPJ^@yvB*Z|x-Ym5!&@(4)f2@knbQ#e{a^|*Wp zbHO);!R9l`BSxi46O$2DDwebgH>Li-~Q~Ssy)BNb=Z+F|S{d)PM&wrUb)pV2dcSj8K%T3ab@W1_S z&nMrj=-VcavYl0tU!w8F@8go4n^Nv4m;AKhr%6td(>__ZLEX4^^ACHHwSHG}_D{;r zF0XD=oUrk)inrwvd2934LSOY}>N+?ah}l>@UaUP=bNzb)%GB~RE`Pq(JKz$`dcUt6 zdadY1O|beL0&h(-oMY4c<0#?MwIPBA`lw6Y@9m|oSOOH80ch(W6US+btcB#ZCe_St zK}7}dl=iETB+ofKC(wteFdiltwepm-^iYWSv1>00`cy^EoEB0Kw$cE=*i8VFDS7Lfa_p@D@3W1J4_UYYAy1ah7?|}F} ziFrFMNgk;dddl{iHoJDsCSB}c!2u7*)zjoEZWgJmV5_^Rb_-SNQg3SIwfz-^Soy&EbPKRA7+pbLI#}Vfc zh5}Eh3zpr<*iJ+>3~ijkALoEjNE{4k_bu!>MmwJM#l9sOqiq@r`Y&0tno(4eujm&K z!PJLy4HI7M*iu<(%=*GAgm?4~ErsxRsXIw+JVCz%H)||_nEhBs4z?>wKm*{SDL%-% zr?6thBtlF$U(cG)2=H1Z8=`6bnp`QVLR~0`eu^~xSar8wwKsjsfwbZMx%qupX_@!^=-uSaw>S8R++Lg{di&n(4Pcl9HxBJo4 zRM$`tRp`KWL`!=G_I-vC&gEQg7KugCBxYu`iC~pJ=?T%S0RGz}i#@-~-(57tW;Qc6 zmY<%UmxmxF&1_aTf;!1q{eGb(6^2N7Mt;SLkgCEoC>L}CjhIRf*u4isl#Y?iN7k5q zOGf>|e`D!YCNIj)6+Bn_euz?9v*f{sc_ravlx5le^6mT3$RuuORJkW9Xswlgw`nY9 zayyUDBYq6g5W~t>5gh?MJ1yI#sn961p(1ix)tr+iUo*p8R{TszRoeK&u?YC;3m9j%r(Eq&ic^joBrF8@@LS+I*e1(X<88oP?o64ine`i z2irU-7QKbB4--hXIiyJo3E6OIh zI*xeJHs%hp0CV)iU)QH?xSA7N^!L|Kf4aAqRLFtM#JkKx#DdC6$4}!uzrEfsOp1p{ zGl3$x$X)IbXhf(@Lm$bKFdE~FmQ|n)SQ1^edQ4zLPR!j8KH}1`^}dsJwtJzFO|u@h zp^1_iodLRlPKB}kGcsVk`ANN+495?SO|Qu~yRRZ!63}CP8sucNkssucCrZo^8_HPUS=ZB(w*IO~l)%xN&tbTu zq+ip~l-=Ky487v>53Nfb1eilWjhCdiL}O*1fL&1PP&m+3*>=d~38q$*9umJXpm4=& zd1skpcEVPUR#e|Vbt37cKHE1aPbnt0=@jSSO!#o6tdmynDNpn_27j%IBMlJZIotx; zzgn)3R5zp`$9781>yYQ0XlXxsmc**e%F42T>!FTH6zTKY4|Ljhq(l6VCbC#@6#6NU z?tQqUZ)=1@zD%jR__87}C22>vSw!mot*S2bDgxOYw2D#pZRsHa%6*tNB8Oh|$ zi1|Z_3W0z7@kZ43^oo8IQa+Eo)0YeoT!$1*f@(&`c9x9j+BE5lPng09W{P+D28{rK;lYGwh;@_cfm*N8F;t*SpO@@R|n{CZN1t(E(6pF50)htQ1>*sWRySvooTMG><>=Ll9-s zqn=k9t{NG_x-Ico1w$PrB{JZ8(jm)sK%R*v3}{bTJXX zQ2n3b6ZOegOyK!%_sWZ0a3!nfx>20s`Sukvmg>A=0)C1!aoTB64ym<4S=R>Pnn!HMO>IOdVKuQe~~Zz5OcafH7ns&Dh6YmG?cWUPm$O zAkJd3!KqImZ8ZfOsncYN_5o_gNt3c~871AlhKTs2ly-iL?D`_5i@K{iZZV_M!0*^0 z0f2aY(I?#l4CK&LZ^VYwVBt5;p6*jL9Qp*QC7@Zlr)H!kFS^B|02B!s**P?(%N66t z>OjJhb1$60MGp}Xu9yxwEXX(N=2%jcyagLv;!Z3%oBc1b|4$B->M+uL>!+A*c@x1c zL!?YJIc8=NQn$31N@DhV=!!PCT@;mMt~HQ-Pno=b%39d*#!}Bpi7n}0_UGc>zZTyj zNn*+ZFrRdy>Wkm{N*4F&_x5BDc=Q%a_iau~PoJWCblNU-XfQSJTzI%}L0x+!Jm-FB zi{{Z4r&%bzQ9+mVFWe$UOMEgDLGGEy+})LCW2fyMkq<38^Uk#!3HgwW225RrZ`nxBUYcue@Gg>ttx9jW-I3cX5H~- z;o-GQ<&`Ea9y>1HWs37wk++*GGkjq>%ivHeC0QNny)9@dpvT1YAQHaaON2+t`8zNn zK>DF1BrM&D2DBPOIMnU!+cv9u#JxlU4gYn{>fZD=w;~Vv^qO2rbV`itxgI`__MVw8 ziL#&>x&Udw<>Uc4n6Cp?z1o=ht}$VKQO^Y=7c1K`U)Per8qF>OY1cREKl|31m4gxb z4Q%4o7T*57d^t8A0^Y5}wa{TO;DQ20)FM1^oDH5T{RAp-O_h}NV_FRmVs;bFkFw$i zO~MDSsqL$q;vXhiWJqz%xGcx$>LJhg zhRPXrPJBwMT~&a%$Y=wB8DYeQS!V7y1ep0IWvdKDD_^^Kt}4zYZSVp zCc7SRE&|LD%{df4;tGJk^bHCI$>4X;+&yzd!Nrx8rtJy;vCPoFFp<%P7l3Se^zkCG8J=c zsEZgh_bV@D#OyDk&yIvvsm0Sb>eD4QgI+GfpA9G{H*s_rR)=BOKrbqiHFAe<*}G&3 zfrd^6|K^)@XzS|a>^r!M|9G?AF(q5M3oNRk_^6M~ckWr4^|)HJi^K{|NGYxmE$_vxntC(>$Y_|iMApmu+3FN*k&O6r9Cyy%+qQ1+_~{c-xF+$ zjk!APTCZY9hk1iq?_*7;Xe8mFEhqHpO`1q&BIgkG+z_QPEMC@FI<|H7w zsUklu^UeB12I7DFW_lk%Yp}9=pED@QN8IVE5$-fzK^akfD=T<_Z)W*RB?Iaii9#YI zqDF*j27|`sE}L<|ojZML_38+f0XWn=(U)LqS{PS^byPJh#AIE2~;n91D1 zT9!|hg%(y;z`e=UUQQo>Z%M-!Ir#xa3L;W@G6?N`(ta_DJsBd49_=Gw%Fw>S2yYHs zgolRA8J+{`H$Rr0uJjynVRnBcJ7q4+lpT^9_MIPjWFxG=LVhuVPZxF8;1f$L^@CX% zf5`J&{^JJ|J1*7L$FNT_KRjzhM7yoC3^|R6j32wFoo?^CFw3p>N$2@Ag?JG-``^x& z36Vdt%9a^YIv@MUCq~$np^t1O>NHAQW=#92u~#1vQVw1e5g{e>K==w_Rn6f$M8&5g zzuA6m9i8>CE#--6q35EX1hN-|PmSyJJB|cS^xeB1JPeWhBOR4jS`ktX;D8{t;SO-z zl@GsmDm+qL_0f!FtkBGWZ|%J!nosq?Mr}(ipZr ze46~xtjA%*tBW=~vk~Pf(TltO6j~2nqRsS3z*v3|FkZ+8Fk$tU*ACJr{YdF=S|GeKS9K1ZbdB(Q#dn!*>6~9h ze5>ZGYH=_6rQ@I8`7UXc%9FPY=kJme~FH0@h`#-MWC*@E;kC0_P5arO(V zUAeaOh@w|ti_W#{ukOwH@SR3}p?&P`pM!tCab}%LL`la1aa+TLnR1hT@3ZnGZak0- zTb+5eI`k=Pm?&1Wd&Cx=wL98gU+F$gM96k+ZRt@(7mOifAHgt#-cawz!iEnY^?z80gh1;aHmE)ckWC%t4)FnhdnVn&3sUW-T7`4*ry7KnavG&kBYlWHroA@m58T&_~c!S z_ZVS)l1fy`KINkd2@jWk?nbNZjH#2%{ zMZ6L*vqc|H;Z*iD$-lxMio9^fl~Seql#eLfO*d)~WEl-Tp1=QgD(1rl-r3*ij6+Qj zao2a|ONC+IDnhx*+x}NX)H8DH+LEz2mycYLco>cfQHJB&4If_n5-%s0u^(HPxXzTS zC-(X5#z5?=S^u?R>7v&(UPrp>iS6Bg`<+}w@73U%{@r&{`BgE&X@Ur=c=7eyh}Elw zPb>Q_i*hdV!>{RWLdAD!E|F6jD#FvxvYO<>GCjSkV(JKBUg1i_5a&6X=Qe=1n;_e(bPC+)4nXKL@H^1q4+TSa~96vh`+ zh_K3Hx9$u-(H6RA4@G(v<~w!$tM9~X{S|LhR^;1sZTu@-^uw$jb}Fw0Y4plJZqq77 z1`GR#&(qC=d`jgtQ9k8i!vS6CGw<44?Y4^uCl0S1juSE;R(@5LC|J+#%ywQ}t=iRa zVD(XjY`N;V9iGCuY3!c(R{rqr^O&%RFXC!yKcsW~$nO8`J01O)Wpvtet-apPK-8z) zHu6)pd{uteH&|i!1Q997(47bu_0AUzTa2WBSIx?fiRGE5lNw|fi+C#ro%atsEvOXv zK$C|L^zB8)t&1>whhw2Wcx@nERcR~IGLHP5d1U*W zMA`m}FhLCxPZAB+%lbCeuwou!U&)Qwwrev!=9zFUjwrf_ev~6TaKguf#*54a6B#t# z`rCJ+2!5*ww;$I?XZZivd-HHA_w|2#?Xyq2v)k?3?FLQKps1v+C^Nemg))>PWiBLh zGM+s&5p5X?p+QO_OOzp+5Rx%NiXxfGnA!JrKWk|?hy6L{^S!R$b$x%=UVpF*>v^8{ z{l3T7ec$hUa7?>f^_daZuwM_#^NdOPKXnJ>KZOGOQpn;~-1HyoN=J$5UB(pcBcGVw z={cBwkI;@6J{Dv6f@;tCRO&@~o|!5x9W=6@I=Z=GeZI`jmwakcLF)no*;`6>x>%3e zE*AYL19rUkMs%uT_S&6qM(-GzzxR{kSCNymgTpCbNqFMfbWQ-Kh zJuMupw*E5_IBL@OXF4PM$tOKlKNR!bpY4RCXq)}su@#y2XYPv12QTwKdn(C4Wsm!Y zpV<+c;nLsNT9l08M%-6t98cFV`Qu*}_&pXlR>(BX_R&(YS3kUX>h3et5IBbG%sMRb ziQ}XP2TI|%j2Ss?q!?hRX6@Sg=D2X7QBlp;N^c@Y@Qx`TLaO;xZfcHYoKDT7Kyyrg z@wL?_9qW)7UH)f*SpLQOhk>s5#taW@KHGu9Ng17O*C(4F%DPjZ^mhZ(^a1!cWg~`$HKve#^^Cj;eEr;^km17^_+_2JuAlujMO??E`Dnm_PkD4);&^LI z#zMem5Ss-8Z|cCuJ0 z8%jP}<`kz_hZTq0Q(d>D_IvRaxH=CnNY=eMrvH4m)4Al;)vfMn3zJ8$4b!gZ`UvW- zEa8)t4X+%mom?L>-2VYSKvJo_a&1T2i%}m-zenwr{b0>XKOWP6uNgd+EyN)1D`1I@HvZO%1<=Il6 zk5UtA_kVL$aMDGCg&yh~75_HvZ!_YSiX1q&f`7@YnWoS0=Iil@%}&fq4Lxvafr$C; zU*}xjG^gCq`J|4C$!?{v2RuLix^mhBBfW3u@31+x+BorGwZiQQLB=k*64pBX*1@^= zQqH!1YEx15FRQS3Zo8jaRkAWgzjE{~IjZW*%Oy&u-yOLgK|ATe-N{FL9!EM`v!8qF zN`EktPIX;4@2;hDq;}%r;*?L<=YEX7<*k_2A63|lFQ5JL)7!kuigw(e^5(o~KHrn0 z)cQF7_>d^_!Y(gT9tr4`uTQFe<6m*o&T&cD=q`m>nf<7Wg!OFW#}$ZH8kkD9I2_cK z?oZ!fr?@rlMO%k)rN>UMpc5C?nxA-c@F%HJtIWnUmpt)0hdCQSb-%ZlN zeFt)rWvAFn_bCPiA2baAw9?PsIV~B38uxnz%eZTlx84?iRli@~QUAl9&9Q2-g)MhH z)4Mae)3FYzQI{L~tMll9-)kq|Chpxs&x6KyYp*+>c9!l+wM(@XZ5eD%F}Y*RR{QMv zKD}M|FlBULCy#fr6!+guuIeOJo;I#L_vBg6j$jApg?7y@Yo$gNm-!2ul17awSg*FT zNAfQ3FwESm>H*Ir1LGjy@w(zaSh&95Zujq1k+}U&8Ds5EVwk}Q-k(zta45qwT-W`& zrj%4oByD{xeyZ=@YBy@~|EJAkUiA8>i?U5WJUG(z{$!JfHM{lw$H&sp!@6O~#u2FRYw<;^btx%x7O-i2KvKnPV`I{GCtREHTfu zR~0KQn^kKFSrr&MDmeO%oYNn3M>Id~h|#%&an;vT@A+TIpRUp(@v>v`gHdJ(SxgkE9L&UFsfWXozkr{>L1)BeLnK@ta-!P7n^>I zI@(k-B>9~Q^DE!zhwJCcc^VqqJP-agqv}apVcDoHfbt=+W9(+pCywhK z8mee(`fYcUOi@VfsFVsAlT!X4DfQNI@X7JAZ{v>IUV_9cyWcA1O4yveCIO z&m=W?RNH9c>GJC5<`U~s=`6o;=|^o81@+rK++kq1X+?Lc>ndoG(YZZTWh~)oQ2)qJ z+Q+>@Jk`$LZ1ULcBwBWAQHI>J(RsbkXAG4Vs{B#?Jh5%6R0EkL?GjUSM`Zrf_T$~# zn6b9(lRPKLN)$d*zV=+e_-gE^c|SKVzV>v;9>-Gk1uUpxZ$hxuOr z!Ft3jZly+le>`GHmT$CcoXHqV$OM!ga6a%;MovgcWy!IQ+V717M!N>fIcuzogb(dq z$JMndc~#L94F!r0wrz0@8CABPjO9CgPLtDKo{t~CStfOP2G7KuF-|r=kFLw}!pG7? zw#z=T;f`0CEQTCI|cKpcxlJ7^B{h#?7 zVY7wWUZV&8V#J-OsmCLJoc!{x>^Ir+|GhVKXNDKYaJXs3Sk;e3N7&uGF`d0S#RuQ2o~`g7gHtw)$thBwB8#nI6CXbd zT=Up(xt~G!fbO2CT|Y`$y!at(qCxlw>Av{>A6-=Y(er)MPUTnAWiKVxoLb!W-aJt6 z?(C<^quSECePgUzT=x@0$NzD0*}R0otkOg~A*rxO@wWPHPnvh8KT-9)Fsc{v{`^=f zv-a{QPj#*K_vz6tw?$ei6D5yDyfjUR*bMI3nX%HMVkVYwa8$?OKF?T2Gw8-kLwydl zLXCY^{ZJl#PdYfEzdUCDz$Kq!-&gabt+ux~*<7-BUf9GdqF<18xKpD6~nw-2;AmsMR}aEs*@3v0RX6n?A;aoxulh zJ=VcP%9Y*{3hrsVc*H9A4g67dW2F}Ru=t@0>3Mgw;})jR$Z72x9yOMEx@N3J_-h!B z_#yX9&GH9I+wMhYsH9qNWWr^~UezXvBTdP}_8npF)$uoWKJGG2*Soe%M{rb=VKQT^ z+wfffs8}o3s{7vEKbU6usL#C`zH7{fytbZ>8{?}cx2`xb8I2-EHvJv0QoHo37hkq~ z{z6H=nY}UQK$?jVAMg3Jkv5%?-C@4FNspzNa@9VrZqTr|ZVRq)a(U|PnAfk5Jbn7~ zai-Uvwzl*2CUNB=uYylLSoMR((wKb}`?T+dp5m)aTuKLUT^Na*zqsR>v0Re(2Q)rH z1eG`*OfUaQ@~&weV??Y+PmN(Y&Xs@E2VdOxfB50TU!VGnLVr=?Gh(p*qQ+m;_?!Zt zzyGgzV|c&4=K*~B2bOvFZN2=DnT_EW$XejM7)}z{qvvLR@X-b?*IH#XEgrEt?jtJp7URwfB*HH@9C&q z1KAr%e}9BdOQIGt}olSR%}%MJBxMrO<@{7Rgjl~uZk)>xcQd# zeE9nMH=LdZ4$BHFa~BpG zUYclY+VGEQWh?Hy{E^0!zKaE`WHda#F?BIAc!HBZ+t`1=}yrlhg2pHqXy`v2BF_)8glPW}I_GWg%Q%75wa&uP#4f5A(#wH)zx&L}!MI^qoDG#nyJ zQ;IM(>=NebRA69%_|Z-inunKRaMtXep^*4`ks;quq=+7d0k59~$v@uavSHChu zfl1vv*b&jSYcuGeV4U=d@ee=Z1Z0d{nzGqz-suk&jw_FTXyJA4>pY3Mg)_wu@0&PR z{HJ4+`R2ia_rR};QsEhQ3gR;~j)ffPWQ-S}Bk_AMQ+=wGeTxT9P8GL$`y?|2Q;Rkl z8XBr=YHq@ify-?6DvAVt9Y5Lg;`-yk1G8kEj(E%#TSil(p43=fciot{1p$~_frMSt zF0;xM84Pckf&fCm71Nfc(j8rghfGXO-7!5#z;m9=(e~QX7=3}a7IV zwBGs~LcdbGn!l6Nub2_PT%eBPzyqaIK_^Z?iBU>&pGSkNY2_)-{WSk727`o5OiWJT z9NtolRCjRI1-YCCs`<@%Dj zk~SE{+@RN1l@?=G#s(8EZ|GRIY?4Yamytt!E@=Hcj$v@gXck_S0{;ztTRlvMBTHdq`fm4Ql}Z0`woXe zT;wgw>}qT{w~E(E8t=Fc|9+s3&iF`#=Z>!N*S1n{!aPC` znz1cA+?$($v-f=@3&#BnRLHG;HHKuKle9g!J>*St^?6JHejM%6b>rMxi@i9cTPo8^ z+xEFeTi*J~X}1p)>ec04%(Q}nNH`~De~9LET-Ud8gi`U6uzq*NGyf)|9k^_rxTrsh zXC9+MK2ce^JSylkZAwi>yy?;I->B_0BgM3&)P8WjGb95G=~>pUJeh+F9RBJEj(V>O zmm54VfYZrOLQ7xqJSzgtd89p4K)?NMW;**TR_NB`w)8pMb#-0a9~NO|Tn1(iD7Kqr z{LQ_VR0_`UJ}2X7M+4AogFK*{(rMsks+xqzO&wq*zZfIl8{E{Vdwo{}XQV5v$@cL+aD?_eh%&@>6To(GflFon+&I4jIfxwpD}NMh`q26GEry-(rv^zb|^y$+@Y#WMb-?c5%rZcoWz@cRXSxHuM2vz3J7weCz zc_0-D>KuvJk(fhPZo;GZ8|Ed}7fCxf#5M;oDp*jcKT1cxQiBjw7`}@OTRTBvddaAQ zb-?|P)l_7r_kUOD-0y@U zY3va37Bty5-kKooqxE4TI7I%Otn*QFX*_W=zFROjM8JWe52;=>HrZ2+<^Z>0c;?EK z-W-cf(R=Uh$f%#vNroecj-02_97Q7Djg_gc7zHx54U>^bQ#FXc@+MB9oq(d$_BNJi z?O~YG!l`EVG6as-REV?UY6OUduo(JyHjSdpbSDOlZsDjpG+fu5r6iDIN> zCN$FAdQdjZGvAyTq^%=lSUROMY-N~d0i(p^q3w%`i__snD78!1@-D*s54p!4vsROL zYU|Ts_vrhzk1_d5A13npWjwEfuxfLF)jfF)g4$W)Y1GoDI-y&qjgeDN^PS~UI*i5H zUuKuXZa&I@>-);%I-9-)_1a49n`ie&k+FmgneY)8eXT8o;qix{-{v_x9NYk>!jY5< zW}XGZN-L4>%Bp~Iy%ZHCOcRmMi5}Q7an>q+a%nNWOJx90?I8!9FH_a7K7qy#keNM# zIl4zXx7ciWEQcu;ccDD1L3@3oyU%rUlJ{a7I~o0nbJhr@bltS@Z5|gfWeN^W@GQ4T zm7#fL;!Zt>!BL*1TYMhkx4ihA#n!+zD<;j8J}0ScMULd*hnV%J$^K3~TL<&lq}!h? zYO7i4ny^{7bn28CP`{@rTy}cuK+Q@u5)$!6Bz~;<*$n9>cI!CEF~(zmDMK(Lx}xfY zc%4{Mr?3BB9u=mq0&bfBJ=bnHUi;iTdToYKfZ_kMAp`ujKEKQn(c4h;{P{+B+O$wr zJLEv7k>`MTA>4DvPoCq3hG{y`66K(o7Ad_(4T9s=nifZr3Sop1p742^^rhldHI+xb zcG;Efmp7&TGVZ%7sLgG>VS6ak5_)7WWO(MpCj2B@ZP7xSHs>b`(EKjhj`O+NXBOp8nL@*xX(}F^ z^gkrw!x~n>t(PpBMT9(*Sbvq=hz7yTdVO4B8GK<9Legdpf{PhNAwUB$;6DXRZqh2f zwSWCf*c+a=zspRSf+2P5Xu4JYix&ZO<@*X>EIOt&tKWgqKpF9k=gaJ5Hj>=!h-qfj zJM>Q`=^sw=3g16?f6Vthd;9*)Ba!_Nf1}Zc4T2kO5eSi|jExBc%~`5`enMJ5PF=F~ z#Mk2|UGdzZPBRu2&Mry&W6@?tnJ=WsGzAl>G38`{&(VIKk*&@LuVJyTCnf#j7H}$5 z@9Hn#{kp_O=demn`PPj;SqNwTe#&FjbcK7_MdhzVTYs{@og~|N-mq{*c5}?sCRXBSz_E(21J)F3u4J{ zr0G`_&{4!h|1niS+2iM5ze#Ja$&RJ}ct4!<{^57kj+OniBeR{iQt-dSrp9+?I%X@L z?Gl-=iHFwrx?_g0_DmX~MjN-<_?gH0NfP|{-8m4ffu=2jVB!dPd^pRy;?Bg5_fyO4 z{X7`hu!$Ji48$E1qvjU zkzRkCqz!Dk^{5Ir&1N>xu(`}Q1mgj#=WO4()4yx`snhgwHSZ*34D>NBd;p2Z>q0=AcB@bi&ZG|^&i(wk+YIj#1}_6`iOE@0zQJEu=MwOpd^{J;Np%9V#q4|V3rW(}5Lp>|JhgD;(}*i$ zLyh|}fU9~=WzQzEbcr_gJMun2WnA0PnmX(<*RFJbTmELg=>zwUcGgWvYGNyOwpPjk zIMBa*dQD%XYy5%2cd;$K561I71~KFsLxy`Y%oFmY$(oIqr~M`y?@i`5toiL(70+m=n&mNYhYXy3_-$f*89LwD%;zi`mGCYg z(rbG$0{W`J$^j#ajmEh~f4`=5J`K(;g-&JGp1CB@sW|P$9Sc4_geu0)O_+2)5a})h z?<&TozTlVO=6{Z#cY;Q0()iV1QqXfR|C@04QpQO4;4B2D74Y|WlNuFU2qroZ(;VPQ zqV+aA-gJnb$7B}tN3hIAUq;T-u6o_P!ezk7h>M6+8`m>C#JV3&Hn+d|jxKm0d0(r@ zzWZ(jugrDs%y*Cpx{ZIO$o|etD(IkVN-Ku391zSi6pT7Hw_!E2Y9d*X!(DXT*k5A&2?LUCu(;#<0VV&7Z zenKY!11u+Sg@Bf-^Txp^!-J15GkO-J^?v-_Naesa=6Vl*ySU;jXQ(8W!iJyKzl{O( zF@5mfcM5!ae6hLmF%-qbVBq{Tp;Uky`LV{i8j_`(=9o{zqq)P=+XQd;GN6-uIM2B* zv`SlBTSzAl-JYOBC_+Aq)Iqys%;{>w)ZR4A`kG0Q1IF75jFakrVFr#6(NFiNdl6^4 zq&4J}aQrgb(}iUA0C}B;>u-3}(`q=S8Y9;D)>a(Rf6y*vQ}+W#gCCj5D=FIj%DytW zC1eEzzH%|wc%2S%5bpE9TlO+9c}Y4i zk6miFVv^&!8*G8UgHmPoIj5aVu2MvfS3q>c#h0lv+=>+UwxRyk&9rG1$qwT(`GE9N zbhUlYo<;Nf?C zWm|HZOcg?PzKs|~dbUOuaTSe;PNNvs;C#rP`m2FZd8@Np=s+!l8@n#t0E$I>yOFDE z^6ywwnqUjPn=oEEjR1)13@PDYNo{i(R^Be6e0%m!w5?;`Mo# zb|VPhV;-kL>LeZ)Ej^UfOfXptW}()KO$>5htmOB&v%Zi35zE$lAJXyOz0aX^|8d?K z6b0m0ME_tDv$6oz=9-MT~V{#tyOBU4)mUr9f+VEqK|S70b{2!Hj{)wv$eE=UPv z4??rgy1eQ1DGDGmSII>~4`Pu0z@qq4J@;SUe$BdH>)>|qP*(F-5s9Tdj8#%iXiAC- zCd(^0w?E1^lec)K6}&XJBD175*v6~*c!Yg9W=ZdI;~QTvd%6m?O4@OqF4-tIz1Y@( zIsH)y+&wM0eo(O1Vls?0UU`?uk)W~7i*uXHVvPxxvaGv!d`a$55yc;uH+y*o9!gy5 zUWg58Uy4r^E}b;-%9H>Fi%y40Hz8>7fxzb&JgYC*0;z4tEaMX=kmd3Sb&w*c;LaM6ne?8gb>&enTt$~!kZHtI)8XCS$ zj;Ct+oHI&vU1j1cUHW%H>$Nw5rKDYe@@+uc0JS(sn z5X4!Go#t*_z0|2hJS#+trHbzT&o(ZDw^+=YHqHkdrz_!Xv72YlYG?_!b+OGaq~qa| z5_ag98E^WgZ0hdS1e;Df>s<2Er|`qHt{5@S{<-Z?d#)N)IS&>Ruh5MN7!OIgi%jd( z?zreQ3)lW~(n0M_&w*pOOs(vFW>16m6s+%HRRr+qY=M?|%yw}*2zbCO?ztw-h$Q6E zd#mnu+Oe2b$WJL30tE_QB6E}u+*S8>TT^dGZ3cLnrV%OxJC~c^Nki7e8;2jMp5I{? zb?8-M8vZhC{jrHBp~_@Xs&)45yGF8hnBpe|G0^n+Ao<$u>j^`$zhChZBiA(ajFt0= zgW<{-^t@!c8GrMeNpojPHQ!ddeGmf>1k4fkhYh2ux+!~ENiI)}(Q>ye5{9c;Exc%~LrX)j$D`fC*wm`Xsx zGs(usq^GFBEFfu#JI_i_%={D~!^NMQQg_L{3eyc$=scwm|EjMdP#ow1*$9{TVO+TT z%?o6XS-xp0jW6gF0=I{^T6b%`+;1L4h}RXpawncP`1g>~-@32S)VqHY?$5C~LmvB$Hu0$kt#-jOxq)*6QB;i1-H z&!uWtHvpRQe)sI0$RhF}t^kmiw{-5iRYYkl;4ibiWcy5ncHNp!XaflsTXye8f=thP zZGe%Jx~hC(_w7IGPMiP+!_41?DpCv{e8e~O6FL8H69DXc(XON5u6m_wuTnD9p(QHt zGJ+jj&i8(;zG&ej>G$^u#~8pwor-{gf6AcV((B|@ff>#JM3BoXX>$VU zrVo~g3YH8zbq85LYx`jtoP(u0k(Nxnt3Ihe>NIo8*NPD5lBR@5FU0M4eZ>--4jE)O zCo(9~mHp*$mhn2n+nBw}VPx`P5XEhwKX8`_(l5P!5UHsreO%m9J$}lfO^>0ryp2Gv z1j}MAK9*K#TlvB%$x22fvKV2X6f~0TLMl%fAV5 z%7{m;o9Yr%akTL!&g4Q0DlKPiWzgGu&MOXg?R9L9D>Vu<*Q+lG%UtEy)i51WwCk!& zb5m@tCz1>+54`)3Iy^{lskaeHX?wFax30(QA%H zvIr_LHE#{9E6A`4Crc>^xgun19!AbaXxu2Z&XuVq2Y4>vD)OT|RQ%HidOP&V70Hkr zikaUF2Mg-{$f6hV=6lWzKtLHcL;cisweWP9*cq5wo7>n$26K7T-GwCa0BaPju3Gh{ zR6qRvJN+9s<4-|XNol>K*|5aUW*A7Hxhk-MHXieDm)2L7lmO8tT*bQv?u_efDLb>+ zRO=Fqqn{jP_7(S*EY(>}N$=7L__|_T8E19(QGgU}^OgtkrjpocCK@j+wKJD3k0Q3X zZ4y3whS6fXbF1m-Ul!Cio1j@iC5d%j%}tq_8k&MLS^DpLV{vK4p2v!zEkK z{Xm1by$yvC!n?Ge4dKs*Lsn3x=e|M@d3DSDjXY_Kyrh4muqGL0#mvCn1K}5Dz*qS& zn=e?=lA`qbEuENjI~!2R6B~ZXg;g)Db5E1d9C!zt)p(>Wjpr7{lJLOm5PGX|6&r_Oz2kQ6T8>I&vu#Ru2!<%4J~n-l8~r?b_DFT`eTn zEJ4?99c$*eAVq)Yl7iYvrY$e`k3;enTJwT=i7UnOq4hAAAsiTG_p0)!wEZfA_LSsu z^XbGhLDxVKuV4F85Tl4%B8OhyHE@96Z$^nO1-}w)6}dqhic}ECdA}ui9Qn6P@$qXE zkb_lE9QWM}id+La10ZJ7P*Z$J8Nt1sgFKZNytlQDb2E7DwFytl$?EZm9_Nye&sPz` z$d(I4Vm{4hsoEu^A{5$p%#=QI_@!OBd1m`0na;eP!jK^!p~>)je3WV%pj!zcXoG(w zzNXCJ?7|C?hXL8}(m>#!+0lqK#p|z}o#3q_*te^Y7MSM*Uqk2TzQUHI)_G?IRFs1Q z1B8ohh-+(FB4eK&EMBh)wi*(DfB)-63z;ee@CASEvhY@^6w11H74OL?2va)yR%7SR z3?MyxNL#vkCr{gSdiHcmk+G9`?MfHWoN)wx%A}P-NT>i+M{3Rb%>G?;7vtE!nw%8V zLQ1r|-A0)4js32`XM_m_z{u_9!a{5DJ?1L;$Ab18$to;Eg+pi_eZV=gzLOY$6*{el zN0HvJSgSgquw?2VsUhHNybBcMY)#lL#L8)yx$P$ujffS7JJJA&_xmrp8lErr1TY4! z`;Pd{17oG-$Z|k+I8ud3H{4evIceXAQjL+Z-kvvg9BOYfsI4zP^rGxVAEF-k!1+8{hLTEjDsvUDahOs zSjY^fh7-%5?fCAzaTSJIZ}9`fqCQV2vYsO!y4^Z~&q#$$gM75Vo@82>09Zw+7RUM?)>6@@(oR+?{$B-=uM7g zg+uM)?7tz{E=ETF?(k5*{?I@#Wk0C~L=UYKmiNCJKdt%A^=X<}Lq!O`X0A5c%1$mK zI1QxFY)|*%<0IB(;|RcId*GTgljrqNkz(0!J>0L0{J%pe8N$YI3zkC3z}xe`U*bHc zo2biRqizN~5%aunZK**qA>^LCKLX?b+AmGAg#?4yj<8Q)!0RP=b; z+E?n{lbcTN>SbM5T6s@Ys{&pI55?H@7@<~mdc7o6tk8i{d-HjOkexvmz8%J5h>XSj z>E%%e0Ag&TUH4g19+ku7PO~{+bPba;&70e|Ylx$8=9_+I%58dU`~|XKn8oH)6{)Fg z^V|6ka$hJ%li3bkn{os`B>5QfVG$@5LyVgDWaoKc9{zf$vdV0C8R`hx42$7iGyUPU z?U(h=Zd;?^=g&_48t&GM+XtqSmqVRF&j3!>6=-n{G-fUk5y#}L3MSX(4D$6s*( z3B^Jv638LVmo|<^`;4eHUk1kd;YfsSR;;sfd;X&|7^@-&5hprS{tZ zR__8U@vb>NS7H@P@h%8O{{U5Tx2_~wmn}^&l*uygHCTcxp-`CfMX&6yj7x^=>m++) zJS$YfEa`>aHY#3WwZrpupc|T$F{z4+?}++tPIdY@Ty>%q@vM*33SR2L4ju2(D5@7~ zt#V)K2_v{Td$|v}!8?)8;n({9`|lY?JQMMa;7%&!Kp7f;W&^;%iF~rs3YrUS>+%)| zC%=Da;6S>Y;*HF9_y|JC%X|6nJ-RgNZq=zeB=3qdmL@`dtYKWM9H+sql4{?bdldq- z{?WIqPlBB;mPaWB9dxSJ%kqnPKI5B`L-JoADb2^{sGv4BNOkj^P zk+|l7Ur3%skDHeaP~}b@8(_>l$8|ZzOv2!}Y_U@x7!^z$))2`(b5*_uHs6#`YXvsp z$>M!=m(LnZ-wkA;`jWe_qTgDGngP>Wl9dA|xf=FM!OtE_Z!_tsn&}01kWr@n_Kt*m zb{7?XXAR)QI*^wbo3jRJ;d#mC+l6{aux}0Mt-I{CBu8l*A5(YZqYgJHQy?TrwBvW4 zy;}nOe-Wl+&;42*6flY)Vo25@g!_QO`K7n_9tEbQhf-4oHY#~$P=lGbhR{;E@%O4drM$a#LuVz|>ych! zy|?JrX{Mvmr~N7w$zc1%1m7{VmPZ0UkdwG#WX?-w0a*e0HJu`y@WZ4xB37153EvvZ z_aSiO&wK$#v>M4172FigY};kNK|!qws8b&yU>Bi5F9DiovMGfLdRY~1-@MUlo{YCa zPOwbUTfPFIx?xR^r>b}`G8>49o*lU^FN3tCpcn(2>ZYjGryTQ^M|j$nYhI}4(Jk9)e%3kYPNB+ zP_D792Z<{}XL7iLrT9;X3x`x!P{47(MuZFpgPD{~C1{#bid+QDFL$jEhZuqpmGJB{ z*_%A)&bqlfPSJ0t5Guw_1B_an86fRoH2`#65grChRd_G_za#M2yba7@zbv1MWbkJ$ zyNc4(jL9zVe}(QrB7`jjy(0=!d5F?Zne7x}?}|6mf)?TIgyM7A{-(1+rl{}AWber1 zB;tyog~}pb4yVsDeoPL^`wcawU_VQw2lz7&qRz@=rpQ7C&6o>TSxYn7q*y~m5=#|1 zT(Pu2iYW`8ki)A$!`~SKXma3hYJ?d)+Z8A!`PuP0)|WZ&^L~V06?R;=oPrA0scn3F6gb|} z?!?dZD$-fws{sEhdUth2yUIw~Hu&%_{|+dnf?v&75#XX5ie+a#CElHbgcKuNDGrp- z+h7F%G%CoUr&B!%Z5n+oO4;7GvBqCl+0XYQHNw#toXMsvve5EzI%bQBWfhC_@_vBH zaH^R6$8}Vef}4b)g?|i*bgI`|9(VBhGH4hdep84N1G|%5%sR{6aMlKtY)W%-fYq^m zzU1Dx6+j;9x!K4qkK#=aao_Kr4R0TW`FD;ec$LiY_1!kT#6DoBWZgu+lWMxP9*)i$ z1vaH$t=~OWAj!xpfI5((GADj5%9WbIBT-8 zb<0@;L#Djs)XzM7d>Kp?YhTM*`E&l=hH)aD6CR>vWSo40fr`s1D8rZV4w_~YqrrgC zmk8*aWgPU!hek&vt9i5!|NL;OZ|b*GmprE6+kn^d@st?&7yOx7S(LWeb11>kI}#~` z4CI)7_#v2rE4hnhT{G*}Nqs_*pZrmXLKa2Wg5QJvvEvM$jL0GC0w>Mr=Jzn(v<*1} zUk0Dt)rseUF~didK8qYCQpqPJGZl&{hlS8j!P_?svLUIZnY945BW`{|hH{E!Ia%ULd7)}mVKGPLhS?K53^?FQt zizWDtbCWw6Ehw(A&m7ZZTc=)DST!s)n*j@f4KU*OA+ojsij|j zaY9RCBNgF1>+hmQ6{<9Ob8^}G2uCY&VJRD;pjpi5{XA~M5J63u{oq1|*$*T8UmJd~8cniIFge3zD{qeq^5ww15@dAm?8GfWq^z zVqMokeu*5Ul$rH~L1C|@@F=Ihi=rbU<+m#8v)(;DKb6dbcO1lh1M-93k&#q}jOvFF zekF<|hM?D&)v#!LZ!kFDd|srabBUX&BpzQeZ1S0HW!iTmFwZBeeiRrpVcmOUl}P z$>*M+p>FmIf>%*FZ0j9~`k;j<`y$swKCB*&Av`+$f25LmSnUZfA~`hY(u#WY9s>qZv+W1+OVMs zTfZHdOny@o4k%bL{6UIXK^gf}Bn4zapN$c+_t4mKZjJeFZ#X;iU6=Ab3HU`e-iT3Z zo-lw*GMD<2HaDdpK(*yiO7A;L!6D>C@{U>+u=Nrn2OI%YYv zbF6DPRJ!CTqqQWVwaznD;Id{(@pDPaeI}JhVSP8xlh|BmHwW-Kt}`{Fut<>K*(`@E z#EU-(u}>;(kybHU)6N?D{z5q`^04?#8;Y(|>Xz&?Yef!)2KWse{_f^EfazSkBX>|` z9;{Va2Yf1Tsz1tPE7p@3zhK08HkylgkoZ&fejct80&c&^$?VBXI8t-OX1TuY716B# zYPGF%#IR(o9k#y#0nT86vK#6Y*vVh4<4}nuUlY@sXvFw&1&5E@HgilDyZME=3XVSqUlqZ%8DE6SNblq>sG(!;;;0WDF=!}VDf;&+vY}V3TYQw{QlB_Zm&%QEp zZm~hRGnKg)@Lv0cF0~hBkNjGLeO>P8G2+(>BN%(Tn%Y^8B+Eh>a1);y+{7o#MAm*+ z34{7R@iQ+$8rGDNH~t=r=oSP#=uYIRx2gfox=3QodO2)^k5CP*6tH zd>Lso1$F>LNQ#^?D_g3_kooZP?1x5Jz*_3hgWUR|m>quDa@f*l@}%6Twnohcj~JQ4ku2O!7-nx3vPy&BXkI)11wk zM`7+eR4ug^i{jU+IWlX(!sga4GPMBkSSAWPx)%&uHv>}SrF;otCqWp439#(vM@ z?1RG2k(MO12Cb;YQuL0cvKZiX-UedFg^R_RMN<DiOc-hfj4g;!Q|~&ooU0iRvN2P) z6&}-nON%O1@7YQ$jc8XrOQg=~p2sZ�it5H`>OcmxaVx=7I%N1%$XG(D$^1118S zwsdncBdfcriE2-ZQP@`vgkr0=ZQjr07iS(2<|cA$jF9ze15WpDu&+=>P6py1_`WbEJ0=Ir0!xwIy4S^XmiwwLqQbzUGLR>jZr(_h6JoY zW&^VRz^)c&E)%2GobeX+V|tBP%g`Y6l4$~cf}Kui(?ZRm0RpG$k)0OBPAhYF+7D&? z-#D&Ipdu=_A|wfkwQH#5q+a0!%VIN{yt5;1x6_>|-T7iMM%4!9EqiwT$lld})Or zOO;hC_9D~8F9CnW^0q~#tb*oJMTfE~#JQf>o8<(O$zNA`E`#2M7YA<`XoX!xd_+Ot z8dKF)wWY&PVO?L6CwAAe+PlWLV7+=5hk|ELqy9mFya#?Qs(++PDg{mJdOhaR1W|f^ z+MT)uK>>i~C*6e;1>rOM3;QLJBaV!CNmCFot_@I9gi$=W4rk>i%7Li7M-LT!BGg49 zW~xaD&nc>Yu1a&4>%Sfy?L~#9Np{VgGE$r77h-E(*%a2H=+F$+$}v<^_%6_59yx%h zGFsNC8*Nahm%!0|t4gW*kzBNa-bmTCjEmOBIOQDbS|O!inYil^nRK>Zd7KSC8B1l8 zVWimv{-utpi#v0ttUnQuh{DMw#ZV_31R~6kZKn=>WaSRnJtJoc`5Y?K<`;(z6U`L}arzNSWlxGz zk-*l2q*1YU(BA&~N9xx3NF|k``I$^ArT%mW8+I=58=l%YLbUEtrlVDnBSrZ;)aoI;hTsOg#U)>+9{*pIvr zY;B0^^2`ga%OSl_LWb~+1o+)$VgN?(u}-7WNQ$eSwQe=<-c3)l2u~vs(;6T%2B{z? z-iDM9haGAFpR4Z-@9k*;KB3|bbC9>=N<#?hF+I1fDdShryslUl-K7Hi`x0WMha6L8 zyC)i1mTJ33&kN04g}eS%#Zm1LfPPR;abazP?~_RANKK zZvqcx5*WhzFvftcc^8$5Rgn9qO>>c-+)WHQN#gAps!pV$Qvv~~HO0ty*$f>ads5*n zAGu*oZz;xP^;#bnvuDEMD)>@!bRq!>vsk;3;fAmVkfjSf2h}~#{w>4$s>)4pMfkG0 z1$DRi56n0RGUK&RY=_HI7c>hf`e~fn9d~d#%!Z1$Z~Ko3JLHwlM7SQh_28TBIyx1) zH@A+^hAB9>fd&T4Cku}AXDj{8z3}h$D28FGm{9tp?C0=YV`myuO0aSqcL^)plX0hUMf2-k6WcO{!grVT*WM~(2 zG;!kTx50@i?1_X)It63if>H~n@L2;@?U&uf7`H8k(!kxnF&shdpE(y~i$yu=Mb+d} z+P7T{jk#d?)JWZk9fO{P^bI$GTNKLzEmF=4DSa>tphy@>$IVLgV9_-yZDc1S^hZGX zGnWnp)E5!t++7w!6{%E*DC!6{KZRWUngd1?5_c8SX5SX24kpv6ge9#dcT7v7w4#l> z2v%=R?ojp?;u6c`CGg_8bjXAmE@p|qEdA0(ced<~AGudysSY(It>IXvtJcTk4lu4< z+WvAed+vYSf~|j-&y|arkc%ab>likXZv*{;MyEm-YGeemtrlE7utVqXSiYcbqH$pz z!Yfs(%y369>Ei5itcMDuwDwNu!;mPq+oUXM%XN z;3f1dvppsX)B!B$4?UvqV>DZi1`YDQKa zK8V<=!YUZGd-Rg$TQw}0GF_N|S24T+Rb@xNe4@LnjEs!s!*2zyJfnVWwOYeGeZx*D z#)&W4hS^or_2%^cS3VCY*F{u?%P0?gq&}JgBc|1x+7k+ljq~&jZ{u^1G8F_aOq-0X zi<_$pswmx42g_5pNl!_=oR(!{WAhk|cRP#@;Nb-CIQ6!RzdNU2g`xuLuZh6wfBLlg z7DNia@x0v^3V>T$S5e)U+N*)G$2H!;Td`xw8yj z+vOWKmcv_FU8nT|g@b)|C}7Wkt5^6ACq*m=hU33xr90;q`%Dq{yQ73|L2;DM96CH= z`f|<3eYi)Kxomd#4Ma{6ok?bS)^y|u4#jytY|diMbfdFus4U@eZ*2%)wBxJB z+0H?FyCZ`@5|-OLqg2yb{WRz}t2Z*mgMq|!?UMWoIeV1z@KA{rmwb0`mB+ofy-R{2 z-)xX?tCw#+WDX2-@3cuLEAFQ^H-%_6nj<7OV%OpnM)Vr<+C; zo}t@XR#~R2h!pzrVXe~ELcJPdN0#W?ex2-6ror-=aaRokF7(|hx828~zWn7fM5i3O zg*G(V-IQIS`Al{J*lkk3j;qoqTEwj#sXq}7M-|g1JZ4tp)0H!BvY&qFMNRIN9EjO9 zwsDB_8gsuPp~6?McpFQiRnCLEa`wShqNO{leit>Ihg#-$l=CZiXIP+LL$aox3s0p= zK(1FI2nB18^!DGLu{=BtmrJB3bz-Eih6m6KRDHWpIa}(7J^6YygfzGvlz^V8USZ*& z^kUMPi=k;*Bv;t0?j*mCNaU|WgK`_PsQ`@C+hoTp&XFzoc}Y5fAz+h_%jK28t>*RX zbnRLy!B=wKV*CWmmfnd~(pQicXJ*_*o@C6|~rQ~1T4ks^-(wRe1v>}_qsaw4#i^{cRn zdCNMDB?eKC+AEw`cc}+02LX~D=*|GtUb@KEXbE?D)wa-PI5$8KiTAeaD$WN>o%7Fd z_bmb(l8yj|2l6`ey@&n1Mja}NOJ1KZutHNA>Rn#!6(AKtE{^oohtF~LX)YMy*Oj@7 zSq_?b4pn7Wzd`^wXR;5KJiwL{J5Tg@6%}|O#){PbR=cE0eB4Dhuq)#d>KT>4@2-i( zN3m5#%&HJ5Hpc!vu|?@&2Dwp^$jzQ_do$Tp+}3Dh|EdYvlwBGeU9Toce4#AKwSB{==6$z;wZsct0ni#maR4QPuV?u!<&ta^N9YCa!#590>m zNqaC2Tj+DAgV5$U2g!1F2X)E*#*1sDDew{u=ZMRb{dY_!aXx#$8)_%jsK>cz9k@Yt zBbL8%WGiDU<0MA5@>=({qr|c-*0GyU<&L#BHEj*lFg)K{Xh`C%QO99_E3=n(MJoD= z@6b-2llv|-S{(Sm8z~396kc_IXvW;@4mOFZc!MQ<1}JXyF&O`B%sc)&xIG1PNR!aibg`)r_6PDJ5G`Rbht~N}RAZkUG53 zrN6Zl^@6fT9UZId!$Ul&l8u^bsi%W5e>%5~(uQ;TQmB$KV^2l9ABydk<4B^L7me$= ztTP&mJcxx{`xd}PsJhxE6)SVJgaK4}4_7#H(p^f@^EfIM8>{W{$$TlFcbzDwx53mY z(zjPuXA|hT`*$vbWT1znjY_}OjOj244{Gu z=Ff4C6y@w#=)s}-kfEi>$VNd;KR!9Nx^k$w@<)}&-CQ|&6M=&!D8!{+Z+-HKP$98) zs3~_y2vtN{qTz5jz`k%5p<+(#Os<-~XV8L1#sKH(q8i9{T zWNP1g=F|-8kCKeVv*Qqe=v?LS(Uty>5Tz5#Y44@SKCb+5e#a zzQ8!teBP!!;fSG}8N{5&75pJtz!_EW{izuMi7v?A+1t5Gf=urE=sS1TMxoRDNQP9! z6e?v$0sA9MAku65c71)7^DGg1DE1?iY!|RbH{++Mp{W2^BoKURgj5j>>V&=z8&s~# zkl)brkSFB_@(zzRWvlhCg8cTp6_A_dCEdP78`WtssMnsH*%+mpDoX`P2s(SuB=5b+ z)wryj>{xHBU|%f6r!b_ZQvmiS=v7o|80UFr9<@t4goB^RQ<*t2N$2=Vj&A#DZfR>G z_$p^Tr#|M<#?QTp0sS7$1dlWSB8B^2Q**!(Bq`*s)f78B^)={0>@(zt3$!>PqO#GUGf?#s#H z<6P#43}l8pUK$=m{oB2p ziKC9Mc+ggn!<3_P(99&AwPd%h`mkS()B=E2MEzjTxVrY&{dXGQbIBKx+?!h|yU+)Sy`kAGGR1 ztCKOE!jQi?;yh=IuKhyi22v&K&pG5J>qD$0#$P(Y{p%?l8*~KW$xJ#*N}pQmk&~Qs zBVLkDfaNieDh5f zWNI6CM@|k##l=?I_K+z?lg;7$ijNUn(3(Rp&#k$kA-u=~MdqZ5;EvwN<1nI6V@r!C z^^VZ_d_@V=!ONUu2QV`H8SjLnkwNpwK`z5_nsh2^o40>5Ke=<8_`<|7b{iKkPS)??Af#DvX|I=@Jd^Zm$MMl zfq;siT_q)wC{bPBVR4uv28iJQ4|{JOmUF&`k2hz|%$&iPu@i*Y9l2T@95otjiX{MB=lC)^=d*AQpK{4ldzUR7r*Y*4Tah~g3 zXG+iWc|M=_@_N6P`*q*1Ljq42%i+07q#mVVxpje;WWfEj%dH>i1<|Sdl&eB&aL!-1 z&-p2=aQlwG8<2?#uAF2G4G%-zKl_Frv%#g+q%Lr3$lB;}k84f~M%AM;qH*MmyH=Bx zi)6}*r(Ju!T_hLQ#Y}u$8)_purvc>NRI|BJx*%mMK(M0sXxqIdpSCuTL<+PwYfEqI zo|ii0lk=H=gPA^~2Y8xU&GIagr?54H-a~HIcT5{z`|Q{k-4#erAaxqyJ77TL(W|DCVrXWf6Q zL-+4U-ef@m(Sil=}_7CaS15m@@6 z;a35PJ>aoU&3bwgK;x>zuDgfXy<8@ZD$|Mpl6MAkoAt6uC?@o|cI{f*n?leUv9Nv6 z@b*!`S;(H3M<{+(ff1q0^V!9upkSjEyZDQcFCQ45bHPKhWKG-|d&gq=JbV7U->ZZ0 z2$k+mD?WI0<%Dlu-Vzpe+4?~ZDf2~7)$d>1kGHEM1{3wNopIGZm5Y6Kq=p#jn3VZ?Y=HqkPt^e>lnj2mTYjgi=ptYs{R+R5$0 z0K?V^ad1}FwRi6P6xj`440e-6zOgttr=jqB?`hX5k}F&{VzUhBz~*UcY68rJ=*F(K zlAbFG9N4WI3bvVgL^Zt;$DJ+9+qrXRQOZ!)gNw$+410{=G^h5mnlu=j*8pHhPv9MH zz==VBD(H}p2lkk-OzPA(HeLTh`5Rni-`94}es~_C@+KyIN^|E`mqj>?h5gYA#wL;Z-&1<9VUXs68IpSBzxcyzsV}Z=BqV$vRo%zW>!)!{O=kbw9*(tx@ z5%=4jpA*~qJ~sSy%ebM~Di>x;k_neA2oc_mcvaoEiFXl?`%OY4S(fosCyA#uI0wgB zUqL{P_EF|2uEr&i|H5j=js8V2ITvp?uaMl-hO;_gy<>Z8*GV0t6KJ#%I)7|iPx{o5qedcY{;&<}H zbdHV9nZHTr*nveVzIP>3+IpxLoZH$~q|iEqmBhYiJAUzKo^;*cPrj{N7tVgBVjlVI zNVRK4A5SkU`)cpeVQaLc(LfMGTXir~!kt3Rs)$a}5%oErzkT$4fVhj07+ma=ckf;g zO`YwlU)<>~88#$nKT2Um8AY4*lYCayF1KRFcAww$^r|2QyOC9M45T}^%Qg0U zkW=cuXCYD%E1r7%`#pV0PUP~L#*%q~5NqP!JZ#dX!tD?L{$cZ3aWJ}|6)~KyP<;BG zLY4NWO>py}jW?T2lrJ9jn`CtJa*l3)hno2g?lYoCNv~P^CfT7mSu`*`2B!B+x-z=9 zi*N=k@?9%Ern-30(j&z=2u^`9*fPmMlC?j@|7`%ofC0IWpu5dD?Y==VV3Cj3=zs72 zc_U3Joma<3Y;9}FWBaMVJCFuXs`?0?EOrX_72Ed3xohteT{z*Iq55@Cq`9^+JTU1c z&7Y+a_s$l+dwq6Spp+mw&Vl!Ln-Q%hecm4e;1b4@8dqVTZmhLMT%}zlZdXmZocADB zo(S%DS3GKnR)p;10X0(RC8O{B0h{L#i(p!PH8!>w^|!^|ntykaw`i$5{6prtRl98L zDdfB?B86?d9+g{>|48z)jI(}%S)ugKK3K{iN??u5H2^8&BNNZOm{@p5;`*nQ4{Fgm z4G$2#6221w)s+1UIhO-u2||H?^o$-~gCIvyQfs(07Aso? z6&02kOvW_nM58h($u)Jb+BvKWmd?bjj@)|wCHVFhdVAEyVyMnuz0-QDJp4THK`XV5 z%}{gL8%!7oySm_nF7$~dSp#n+mN_;=Gu?02rubhUR^yoi%F zfMu0vmg&A6abo=0e)!6z%{Nq;~F5>f~lhUx>ux^xs|5%xSt^%$)W2D*_Ekx0ng$OH~R z_P2r7YqsIkyITOuDCwW~wX0j`v(|8D$Uz3eN&Nt*Z+_~~YK+AkltxTtmO)(pz%mddSVY?rE9%;GBII1Jaz3`AjR}iEW`g>q{K^eHCeFd9mHyc%!9d)sm3;(vhcJWTGQ5iV86Q+g~CRTTJB%AR867TRwOmHj!Cd*)rw{ z5&9@vJOkn^`rkiDcbp6b!+iGb%+xa^h0+e7AtWX0zQ;Ae z3U#i!w}S4885es?DyBHRpV}_$=P)1N^R|i}ISSQyNo`t27U$UoX`NcdAlj@9qg;-D zLB~xv&=yJN1B3PA!h6eZTLC);C-tw{vrBjFMxxnW5!THwHPX0W#g|xDSAk>}3_7eX zZhwhFLotk)6FD`uzx>fpQtUU0BgZG_ZK7F4{^egwN>b|)fndSo0gZQ~ zZoGI#x7x`tHFSPb;jeLIu3u+1AFX;P6|I0YGmY2;Q^u62jEQ}#%awyqMJ_{nSEIup zPVtql_A0D)H_6ZScGj^`y_(_ zU#qY%t>$?csdYI^y24+BgLP*{+v8@}wt83cdSkmshwRz{rGiDCD-G#~oc~KSnkoi& zTkj`(Dp5`P-0!!!QivfzFsi|bz)+N8?Ow*&IJ)epC^P!| z$u?|V9%ra?S>*RjKJhM^Wpde@GUwiuKJvhI5 zWW;$jOttD1^wcAjLSO?8!DSZTWipz}ZN};+jFyJwL_Rrc=tY~gNRTEn=YO}%K?#?S z{(t|t_J^O+b%tvi2@mzz%a`h&C7oA6S3={+gYOBNK(sW@P-C@W-DQ*l{az5!a~ujy ze#h3dog%9PL2V>0eevk81+EW7ZF$NaU@<@}=QT0-%$X5XN^sXg+OC4>wAGVAvckl7 z#xwn8DYIhonMF9em*8RxjnZRV5o^AE+L@!z`3TeXDS%$0hekCRaYn23O3YfK+A2Uc zW00X*`ZDE#sNQaelO{JyLrIdixxe;(g1b5&nfH4}vp|+%8gX8}y2Y^dF&wqMzuf7H z=HB06zYp^vS3d$st;#DWZaDI~Cnedsm?v(6QvK0iYSO3NJ^md3njv9f;iWE0czezF`J#bDH~EHu6xt09)8Oj>$` zTfQhQkN@%IrEL0Y8J$pJmDLWh7CYdEm|Zc5TG-Kd;IjnsYBLaHx_uk$gOlVV%LRuy zGcV6`B6$}Vc&=Oxk3|>|7_be~QpyLnXnBLAmLT61s3ECFkv7##x7v$M?k^riMMVij zk(KT3wMbJM?+me~{XWmKKOVd`cs&a9(g&A;N0v{ZtjvS)nBhn*z>rKMkdYS?3=>rs zn=Pp-|AaP@3L-uH^5BYYdpn!IiP_BO##TM>K=>p?dB8wzVub;x%uciSrE}eiiVA9v zxN8B-^ds}Gh8n$M4&rU&fAk#ao@cx|0uYrQC`_$1LSAevxQWCQp8jIc?(u9?+ajlzdFt=oGs4aaD2Qc=Jn z<1p&QJn00~AL_yNc|^I1IperD*D9CzDm{{3|LjpRwu0*U#KbZ*8o*DGY z6_D+Aao5U^Q1rY8+)F>!6iCTM4(I2Hdz#AYGk#NcSB~!YOfrIJPoj-0=#DK2iu_Tz zGt@xI%!0P(kSTgU!%)CHeP>f?@3rWMWm?|wC~x}ren_b0hn#AiS#BeJyG$h3pP4YY z*RRLi(3Z@l2At--(kFcp_OLcu`tA+B%Pb_G1PTQ3Bow(-PcFcjEb~^B6I6_ zvdEYWgeQwVi64J?+O@2%fv2Vs+}>j8b(YPtj%__EnNXP_q))hEnkT?;`D0r05@=O{30n!PdVK?*i<|Q5?!4RRgzsy7($=W) zkx^iB)KW2j2M4JrTVx}N=c^d3p>5tI*6NZ27QVaCw7YDeu%xmLpPiTfNvzB0bOF)% zy;`fKPOykgg5x7AeQHh{s-4JCBhgf85>~NwK7z*ciS{`co@4YR)x2fxkVuw8=N%N- zhLI7iZyegDBF(v~;v z7WO2clnCI)@*e8bz9Smqbh?Gc&JYJNlcpl$D_bRZUOU8rHV}bbl%3Z4{7Gm?&qdD^ zhfFnCJ4|nGeh5r>P}-=V#HgiMb~37E@X?#f!7(V)cc$-yH==3WYkvVS5{ZrCVD-Ye zxcES=csC%eSd8D{3wn#lwo!VDoXUEigl#6`-hDctfUd;f8)|qM=*)xUPxWW#@pZTJ z9okx0qc+sgIJ5c|a*afIF7Wht&;Zl4ECGDV6!s#W?U{6Yq%QlT{;iIQJ)JDR%+CuY zi7cb-*4Dy5C?l*-=EX)-cEb=dzy>AtUW=qXk-Z2PVV}C_mKLr7*Del~kz=z}cv{F@ zNVd;u%_Bl`{EnBG>LkyM0?Y&dzk6nV-(_vW2)%$2GLw!uhHF$iBUFi6(qixJB4R%O zGc)DLg&v(~hVpS3Fi3%S{(%ozGO&c?i;`t~4@iJxP}^AY`02 z6ywNgjA*|XYL2d1My%_}massFS~D>}S;h$!7FGuslf%QvGLHVotSAey&YvUCx5#@6 z2uCB~`{qXRf&6sCWj6v|BX~aHQws}w^iINM0z&Q?0T%gC@!g~YeE=t7u&YwY!_o-A z%=Rk9>I5%3VBsyyQ~L*3Zu&Kfbz0S0*ySm+vQ?yZ*`u9Zjz%j|B4I5P%c%1QG?_BI z2?P7@%7NPv_@OTI;TrvzA96?6ERq1pbTE3kYmp)Ze2`oej@?O^#@0HLVJJ5tZ6)+E zG9SM@|3LM5Sp0Jy7@@T778(KZb5y@zuSl@7t8j}`G2hU!!|mUY*-(U4!|Xu_wF5;xCqGojDL}E znyp_9Zff$#6f4T2l46tG&JZgxrNW8!MsuTwV(_oM%Qz7-FP=Mo+I1hSec+ukYM!;n92$;IfPyXK=8W?U3P_XU9SyJYbeinH#%52I%=B&hoOrRl4}lFno|gRj zk0>_Onuf)5$($V*3l})Ck>lg2V&J>1@ZI)C`n|9Qg96Lo{@$I^z7c0zon3QS5OAi{&@@B@d;Le!bC9)ig;4>D2$>HbdQS|_WNJ22%b`}&!GlNHCdRkP zlwL#Q;qwS~4Ag@%w;#@l1-=EFq+h-2p4Sw?Qa3V!+9A-t9m(A*?%eMr^&62T9vMOA zB#J(!hRnMiS4m5~;gx;kJ>S!J*-e64M3$bIQkjga><|zeJ_Z}!o33RSO*qeAYlm3z zusDB9q;JF*{P}g>i2G9oGJYpMrZ_A6EhZu8{ld>CE8INjqNRo)qrPk8R@n+Bq_DtG z-c+}aj9(WUVs}=SB2}A2XqUT|vvp!G&A>bT0Qe`dwQ%=)BfH^5d?D9IO&*~O zBJ_tsSx~y=>Ye6hl8sL)KJO_2b46->dMYtW%-qh~o5J>$#*8@jK(CufTkj=)$~0p5 z60e>N7W3nN%F+X_7B|yw3>qG7EbtOzFdt)}plxo}ZVWDPd2Co)-Xq_O89Q3Nx}~lb zOQcq>U1?%UIgv8py*hp8DgvHjR#7}3EMPem+x<4O)iO7I5j?X>R-qFnJm4LE{6imQ7&#N%G+$HOtJb};}z2Zy}~hOd@eS9nX_&B9G7@&(hi z?+7;l82V@o&_d||waf5rAAp8W(}=xIdw!i_mVI-zrjEx%(8RQ*Klb^}Rx79MQ-}2N z{Rcahf4<+Xx2%(&{9&h}f4w{xQ?l3Vw8=PwO?&50QqMo_rtSGfuk>5542phMO4XL% z`?Kse)gRVf|H|!ObBzp2QC&T?@TZOOzLjtK8R=du^9oM5>N~Zyq~g`1r4NY-b0d+5 z`AgEDQ-s7Vq^dYM85a4_u+gJOHf>GSMd;H%99a9l6Ac#31TN%O1ZoMDq+*FQ&zop# zz4eUi19D!e7EeJX0_;@|py>-1v^$+PV%`p(oV9ECEiWiPQVn3Ch6art$(`M{BT62D zT8d*SK^6zF*T-u;cKqa1H^Y+I(ksZ6$A;>Q^GGG`hW0TAwYiUStqW#8*W1qS*^C`| z)-7l&)?wG?CFQzbUkHjmXIHx%=X=R7C_akWn?3p+O{kYE^S@fzs7U&Z8Qqz#`mihE({Zyc)UL60|HxXo>7u5KP{8NV&;Dmzb2PJq|McbtY0Iy2vA^CUZr zfi54p5ws?mfAh$Y8=nJSh$9AR=TPHo3!N$^e%YoGlqW19zJ$89I!PBn$J; zpLKRKV8t*K3RUE`xulF_`94aOoy4AelE=2(nLv3^r|3yu2m~Zfi6!81)r{;v3#(;k z_gVV`Ss*%%H0%?L-5(%&_r4>c-RZ@iZo`7nd`g9@VI=e_eSyQviO^y#T~kw2(){0g zy#-V+LRC?wTb)juhorH)s%x3-V;;|2^&W1Ah>&=PYO&$N?KifCP2u=#&<8o;MrJo; z2Q`J(o{`)dmVuW1`&Dp^s%N*tiC;0$+EYUw{U^7M95EmT?5NSB1xMuMUepjFC*`f3 z==Lgxg4SZU)g~lB4-avtShn(QBp^jELo+hTYA4aqTS;n1JxB+rom`^Rm@CVk&&leH zMH>%iU?*E5UsYb3IgOpb)>Z;v9{(axSbx6o}nYB2LRhuJR1 zyr1>*@)Bg^MqMFmuN`IXIeAi_tGTjV`ZBM+l=3&ePE!goqk5}j+8#*qfYXlC;FxqP zs*KDy>;=7^1Wv0PR8X8eu1;sFvvSm4iTa1Z?+zYVN_hGCk*rgG6{0S(4JuG*9a#Ig@TsGIKj6mlLCaniNj+?moype35TSQAnq*j z0XZNkwEU(c#c$sWINZfvwiuxiX^Xy>@_BAAkIiSGmNK>S(oQi7puau+gZQi8gop}l zm8-`&@b{(ErWv`pHU--xcLQ>cfN5n|vwWH8&ainofF&ij5DYwJ=G{VO+ah`?MmcEV z(WmUSa7;h?+OQs)PQwS@ANMPUhI#wAi<|F(gBPTD+Myj+3?NDG?m1h80guS>x zP)0q&s$>7Oi3_tH^pm`_R;=g_BEM}}cX~>OQ)W$ae6ZL+vtM-$7OBBz^H{}MlCf}x z%3h;H%+Jrh{7ceUIwswWH@oqc|Mrk`(OZIGzlP~3jvg^|Mi&R2I>JRJ2~d!>R=5?H~ejnaf-vWNDU`*Uo+WdVDZ@i7qz1{ zR9m^78V$MOL7TzNJmNO{xBdPiRqQkqV6zgFhKXwo9{3RUMDPi#w&Y64V4e4%J6^)nBC|*H#9Mas$ttA#r7rto zx69ZCSCG7QGbnjTxfM3F9koH>g?-&JCQd8rPJ@3@4$0voV-$SHA>m(-5C`@b-V-?= z#45T79iw6*Hz@*WYYloTJ?0e2osoXpUfN`T=q_)b*f1ZyTk-}Q(= z$vv3sV&*ZA+JMr1&hq8UNzuM!)SMZ&0l%%TdsJY!hGY!^<5hDYSUWDwvK0K^Zt?`wOO| zvxC67dUza(R0cs!%E0yrtad6+wG%G2N`RG@=v`m|E(F{{~5G945B6)aUjw zBWoB&7YzFt4=%UOSZ>Z-ZVRA)RPA@5gu^yi6YNQ##}ZsiG+a{z{Z|U;3G6~n(G5cy z!>rvP-baIQ{Y#q!?=e;g4~53MmaZCku+W(!ce@Nmhn+?weV6eHCqp}o%8?QTOodK4 zy1T~W%^c`Bh*;fv&3#Iv&1Hw9nj@N2>Co2nBo71y+;HfCb69yW@CwWAs^z1YBZcJC5kiWQv{7$*x;CO}=A0EeYCmIos zlmu;qlvpBaNFcdKBej!7RNin>Bc-L23IWFR0MaBzc52@jfRKAL$o}V`ko>wF!@M&h zHzFfZmb`y5j;E7h+{MZ~3lVO`6Jlhc_EznGV9E)yj)e*me!+^HJ8jqOugE^;*po-= zlDQI&K=~6%4H_`Ke5L&XE8ky`c-l}noxC(-6!yUCPlL^+y}dP2;abg#A9V2MTF!#d z0V}zNKBFq=&km(&Ht-yIu>aI?tZELIOa(a3ITe0z9PiGozQcZDH)G&Vr&CXqkkZ%Y z7+JHvb_n=Z5u$N6B;+9ZK$y_3o&H%ZaO#Pu()1v^;>iMp-qR4i9C>;gPkE4s#uNXu zXXOd?gz?!iXzU(B0*U)Fu$D{{BN0 z^3FZe^A_uFi(tMciM4?(cO6|x$<)WJi8NV0z@fPc^fx|ZunfmJf%%sf%FmW`i14M7 z05BZD$JK{K7>555@epuLUD>Z?l@4O0heoxVm*|+^qaByY*p>&sP8{fpIH;zI!)gK8 zX{v(`Sj>QZp=jl4!-rFLapW`l=Jm+mMtZUZkQ0)v)1d$|1IKnDLo_Y_^Ru<2dgV%k zf`puw(GNP%*5OtU^n{79a6fizL>lb4$qO1fFSF2vUJV4Pu<0hy^Q#G^aH6exx7`gr07f3z&;_Ts!jWMM^kk_!^}W++J9^~E{gnSSEd?~Cn5oY_o%;+=E9gl;I_d-o3%p{Wq9n+F zDD34IBV0Wof7HDiC|S)m%0N%=BGUX&#~aD7Ba`2N9`_(v(}!Wo{2H!4aa-ipHcozs zKgbfX&zH`re0=SQ@sXp-8V-%P=RMqR^8Hq0>${?rH zFxCV*&=6e7!-h*0XjJARHLAfJB5H~a-B|&)Mi>IaIW45lD3rhf#|LxQt~DgLZS;o;$g0rZ$VckaTixVF~;7=kMx@D2zG z8DsjA{q`8$J5B%kJz*D8K>8qaJeYW(&xkZYlvZ+b7kB|uP`w?g(3?oMR6mK~a4_8v z*7Opd$?#crA@)4qJ6TW%q7W_5%eA!nAr5jSD>5PpLYlOEqn5+vsQOK%nIV1Wx;Ov) z4b*5L#=hIMbwy_43(6kJtcV5p*Iz^eu$p%%mKKNn*21k*jaZk$_a&3otdt?Qx=Kq8 zbuKS`$ASb-prN>KFz%Ptxk9Nt zPG!XUZDCTH(}qixS2qhgwWWAqc4HNl2F~SL%OL}%Kr;nN)~lw-_=rr1`SDq&oW(5l zE|0Z5VVAR1qC^1>#&@$cct{cT2~o})p0*CjZ#L@)-AsVQj~F=|g$px*x~h0etJmdl zErg~l%fG_b`uH-lI9P3YD0^V&)yHZ0tJ%)*4lOpE4^_JVubr}x~oKi%wIGaojY^V z3I1iA$}WIi_c4&Lbx_}QHFvMrZpzzW*O=pZ62nRh>f$3>A<7O-VH>!!n-R+=Bk>62 zaMir5@}pzdCJ~V)KWdbk7Xpu3AsB+RhB#%YmB~g&cv5E6Ow{u24T0OjB5(p81ijoi z?mv=tbgnDs!k}{R&$AS!=$PM-xB>Q(8GRu~01kc?Z%LBo(4coNtxPvF-39EUfBgtH8~Vof-%wGW zl`vcTIX97r>rd~R+0_Z?=6ccq`M~tshx)-1ZJmrM%SHL`2oh3CQ$c1O&CX7JP!!#& z9y;V(a1_z^B+r0tzkep+5&fC4;C3ET6ZRF2gUMnn?O&J(hC1IEp*~NhSr`clC6VNa zse7F0I){{y^6ReBaBHb(l;;|XuQ0b9M528mo z9(bO4V74r#ETxCZJ>MTMm7pcL6NwE^i_IKQV!cTy=ke9K}bVB zs*%qoRU@HBDKS_zWEab%O!AeNLWOa4+?|=2Etv8rgjHxCv&cz5P2(EkJL^=f*tYum zh1;RQ*8jAm7!atr%G-4+LLt8Vej;@v*&QCg{sQ7ZY{?>2bGf#**UD^=Z?MPWAWy+o z#9hO$UJ6yT$iImwqNwxw`q{b=Wp~^To7Lltul>$!WAmu1HkIFY?lbOAs7RfwzB9H7Nz>_u3=SzZ!4Q}2yP11@t;zmIg59{1Ph~P@!Xq}cn|;I@ z3H_Utx2x^vJ!eqUWIHU|-OP<~+^ibp)o{G$1D=O*U2 zjU6}61%UxokdVhoL^h)*SqOVaeH?Wgl7ee?Z`MtOV&HomQ({EL9? zVM`_H9Lg%P@y0FW^vqwbfXY6}$e)oZS=+CQ#2 zlHv$NbV(kMDliOW<4QDFt)d9wH$)%cQNHE5OX-Mh2s|L#(i86Hc05f^!~T71P^V|{ zz|3KUFkq<5Q($}_YxHcEN!+!@!^5KrSsTC`$A&A*eW_D^Pht)pm&axsvaZpo+ICu> zw^#s#WtJ#-6ca6vz}6~CM@6XqPJycmEi`+6)c$f^VrX#q26siO-#HLERBUY1!ebCP%glZ~l+_2pJg1a7 zV@Fc9l>B7XjRTNZ|7y^(w6xNiPavL$shV2(OAg*rg+%NWYP_+f+#fPDX1{%-Xn@-7 z1aJpY(v_l#uJCtDYVQ(j3k0ex<9s{dg3?@F&z9zt)^~gGFT3*fWW#^5C|<=se;xW| zzoJU5q20XhS9533VSJJ_e^pr}dO-I7^ywG#u-$ciA>8IW?XO>Z6pdcrpjK1yaH@8+ z<+aSVbj%P_!v|4COoF`_h?Z?@U8`~|OtOqeLF^|^`3polBMJvCvq-f@L`}w;NGOMt zt#r#u%oZ-J3^sSJ4McDL05@!Zhyj&yQoO+W*??L@3unShNyz;b2#0p^*HJoU=_fO0 zFo;MQ(G>cXap9DybQ@u8Z}fVgSeq~laRFY}jh>=uR8Z#u-tP1BtO#s?Ok{;k9!6P2 zVr!D%m>EE-uu;yQu~9QLgPdWH`;?ysRK0BrKKz2;=dYTY=FpPkkVwV1pJ!dXa%Gxe{K>yu zmOm~VUq#-K{5Mae`Uc~2myrDR`MopA2uQRq8N)Z&UGKQ*M$O9tC5D+Ms8D5}d9p{6 z`If=x>)a4}qeqcOgHH+%79TkQ%>o6HhQ-NIX@C$3G-l zdXqaa2*M$Jn}t4Nms3-NX+g}oWaYao^eZj+%%ZWu-NVDsPVM)BV7=MgR1rNN`O@q& z;sLqM;f~Sq%|6p}ovp1c(=a5kuN{e{J1J1e(Pi}YaCawOD|?sOSUw}9*D#qak zOH)K)YByV`*k2BwcTtpuPT3WvFVKc_KA3aK- zP+>@t|7gVEtSqOdriLtKAR<)kOcs-+o}#2UAnv9#y2nv3N+z69Jdea|P zatDe}wkFUuoB*hxQB~FbrA*wwU#5YO8C)1gE1)8Oz2MjyxoJW zd;cKjDX4hLGAM_~V{E7Pn37CnTc9T-nVQjK*G3&=8k=oxNEpU4e&8vMf5Tki23U7c z4H&=Sx+77n1dM3;uK0%cq54;^K7Eqe6onGMHMW%wmKoi9GBb!L8sZPDAZSWRZW$Lh zvutZ8$~hsMd7Il#ra@RdE;&qQ()B2_d!mHxyob_GgBQKaktCgd7kX^aCmATYz(~4t z8zVa%EoJ&pC{2602T{3Wl0UwPyje_9;Xt&yYF!~qKkn@ety#q2KYRrWSSs*mDW<}l z22xDli?q%j&2{TUzdaq(<*Qb?*G{($gARqzGbfR@7?*CuIVQ0}0HMTNjqZ0O^R-=s z!X4)85F}g0czq|t+rl@z%|4hMbb2Rr_#yxjB!F5StOvz`TkXh&9>wQc?O3M2pp4vUnX zGy^it2apa=L;$4^2k=g#`w1>DcHoee3aL6Hp6Ay;=NYaVZ-L5R6{waKVOP2lYM1?V zvPf{M{xy&c=cu;NhY$sxPh`z~;i%{0B#cnTt$SU=(<@Own=BmMwqd><9mnP@IMBHN3BgWoIInQm}iT;VY(B2CC!;XWW& z8Mi3h7@ykdxalA4pGK%-po(Dg_5sY);8*&2d&}eZO*_l;3Pon?o3yi^-d~IJXgAgS=u@M1c~T6F zKJSx!g6M1PhnUv2sHk*mj56#XNd${QLFY^osIsk!oq1^)RUMIFAtnGvL{G8TVoj83b(VGcL&oif$yl$KapH~lg@`d4d z2HT@c`X1ZcofaM$ZfKWkJPOVs=?s|?&4o-^1iWDxWkZSxz*|UU`V6{VFl|-_b}Mx0 zkHaNjIa+?7;^=lkZUM6Qz^alQZy23)%w5xI%Zon&A!c*LK(ipblP+!}V|jA|-?KNFNw&E#DqvwIlbjot1S<;h=Ea_5bVB^D(Af z2Q6#4Nxgf9tV|7xEYWlpdZ$(2nM87*1IRNNa9~49hMsSDa6;L?@k@FXSv!eAKvkHs z>&MX`A5g!`=Bo!lGEFPLbVKk?(}^L#rgq^H0n=$7J!tvZgJ_=^j+$mKg2tftVrZvM zrINi}2g)*gPrXX95o+te5RweWM}45mnI+!=6hegZx!-ZfF~LOv^Q3O`2Xqrh#Qi7j zxAc~ch#Km2B18x%J5)p)t8pqjuFJCyQs$ukxjxT&Y!^{lcd^q{+#^W}E$ch?a_if; zZ^<2``ijwz?aaCfs&PG$uT*$e-2@flU55O*iu!Gq`M?--49FG zrzVe3KuXVw@?6&$&-}m|IQM&B)VvP~x!2dlRAwP5ToouFlCT2%v%(&8@fq0!N~^Oh#z2zi1Y5%=C&1UiL-v5byqx>9ToPIKlxmT9IXzGw1od<~A z_mvw4N-RCaYcK1V!&9mP!gzR^0!k&i*LGg0(EH`{uU>B+jx%)+OH&n|i#R$s-5P&YT@!;4HRsXj)4YC~7V}QS{IqgXTg))QNBg z!3PsPIP%Y)J-d(MIlpxs=#K#jL$a58(f$~U%xJ4Zpz5hR6C2g+Pnrtq_J}#ctdUwQpr$r-_wuSrsuy@E@6Q!Uk zg>Oa|q&<=Ed2U(He8<^?drq9z_qW;K%$ch*WKQPfxyv$!Xs_6OSmQJAfFHcv^_MJu z7IUMvtM38bUA5kE>8{D2hR3UpRa9= z)|Zc8s_79dSiXNX54`Y^6YFPFQC@zts7UWldOAC2zwuEYp#)~ck6(TYqGI^|53T1k ztl$48`6*+UhNfmQ(9Kl4eYUI@=jjMak#=$CsEIeiSfY3n;KmuBq8}CoL_p zwA9GDwhCyso2XUy;S+xJU3{OP)dx>#y=e4D z{(DL-vgbFSJTVxfpkRFF!!HuQ*Ypxur+0t5ZaFFs>8E!u)rh;kDuad&9lERTP1Yg> z!?q_UGi%zwOOtUUO?s`U&*L(L#8JS=0au$n~@@)PG3#OoBT;tfP zIB8N3Gc&V1Am(JQ7hbw_=^JSAtZ4?6K95zgj;|kXiM(Tt!UwmmE8p?f9UkW9?tA|H zd3hIn{?E3^xVQnx6gh$0&fw$0=rUGZEdzzE4iB;`$e_anv{W)7>pj)V$e4HahMBF+ z$UoPk1{{uZ{0FbSCq*LXnZgGnaBWqG$j-6#4Vvqd?%!W!&GgTYU(fIn^jBeFVTXM> z+z+p>D(2qNUXQ@0_pe;Dj(cVU*tK>{0D(;pQm9#Tf4x!x$aXl;Mu&aA53jAQJ?`UU z@gy4!4tiU*gdbk}{#ufs#)pW}P<6OesrIXQkazE>)9AR~`gT!LQmR77(M?pGB=_9B zA7Fvw-rl$G`h5{{@nSNbZfNxI;lp>UcDQX`vh_R3=r@(ez8=(ZsB#x|3{3kDU>oah zlolkbWzaM0*v&});y-`0R+>MNTsZcFY1Pv1uvV`B$*X|%Zq2%NchtE7T5mH6iSET+ zt(GI@D36mHZMB}ffzFT2UwpK^RTV@7mCQ9sP5<369SZ8W!@C@1vQ)H4ZZ4W5nUh${ z=>98Lu8eI=Le9Ael&TYymA^%wmJ4Qo+KyKnQ0o75!i*VLgRMTYPhC1m9>NkLUT} z<4xaHXAb(X5t1>h9H(=&=X!LNhCZ@qA&+n`=z%8z_D~`g@yQikQq%)UfJHhh_8_Szr6lEK#~Wc zu$gujA9FmF^L$$oaAy`ZrGT6jqZCv1@CkW`=<{~#?Ut=;uyjX-b}qdsKy zL}R2J6`|;0eDM0wN@6t7RoMP7stO&=^Ysm8(GMpmDS7+w3J~Q;S2iopuCL!Q6AXvW z1s^T-KQ9VYiQ~+U=D|^SSw~Cy`&67I$l9k$7Rgrh+$LGhLYs+m!AFMl&&QH$4){;k zjE;~0_TIgFVquTp=GE-@;^xgc`X75pS8T+U2LIM^r}*`8fA7uI_u2JkprN5%=vVdq z#;p1zY|htey~^dk`E{TChE=M|hdB8s$)8O*vpKK(qB(@OM6BXLbt-?To1*L>2e zvtPIGd(QS4GH}iedAq$oc~*X{vj1D>F0WqNzPYn5M?2zZxUovYuBCYv7h=eel)Bfx zr7;m2F!x+I#)fJuIZG2P>8T?4dGM3urK%`@tb_C9XPz5w zxQKYurAj=l-1|L@wsK`-$;4o^{Dh$hCP#kwjxR@@Gvc^%I%dz(#=FIQOrG@0*LGfFKb_MNqOZ)YVN*!IhrpYSMlyQ{Ggf_ zhK{2v@QbAb@(0k9-Mv>w7^U3=DcuLJOS@|53aD0Pc63b*4s0>);1YzdRaaN{ul^iR za-eh;ZbKzd=9L{v!As4vfhakiJLZEc%Q%M55ku|1_&?pTbu5)(*2O$&{pYDmm&U(D zrRZiUZ&k${ypQ|S&Z7dU7xCfsWm3C~Ib1gJIgxYkU*U7NRLH&mRYvvPwmTD&ZxX^f z#~6qz?0Of5;czraz@aug zUcLmDW9c?TT{5q9dY}F1dIn!eZus@H4{taovV$qey9lBX>MIPNu@&?NRcOH(A-UgU zadB}sjY^(88Ag7qjxWCu$t23T{-?z^u^Ela2S%+vKTJ6S1D@%L3ti7~TSsQGj<4${ zrPn<0AFnA|gYGSvDmP;*%EuFcpP2(#u8hojAd%PROMx%#u3q0J9bNzbFuLvo*e5gK z$LpW$zZ-{jJyb<^z!?8YPf^59pIN=w zf6_-=gBJ;R?)cdJw+)&eAME9DiXu=aQf@{yQ4eX}Qzg^Iw|96Ae)z%E^RL!(KbU^G zMSD8+BK&>--F5N1ZArYj|E>h@-Qj9DA{9ICE&kb2C(I_l{nI$QJ#`u#x{okrK(u^v z?*RWdn6NRNaSnQuKC!<8D1R}IrUO7&j3L6BwQuSdz}?Wt(Q??^yFZ{)v@5yr4Fk~k zvHaYMp!!=&?Yp-@gsB^uvni-e(t`OoqyyH)Y%whiJeZQ6PCdKwdTl!f$@m;G(xj{1 zvUTgwsZ*zR>eR^}hHrV0n#WmuX4M7lDKD}w^#4kB@;+D^LOA-t0xW7Oz0{voez!qvCK;wZDl zLl1(DyOZ@B(Hz9#QaV|t8M0==`Bmp64OM&wz+vWcq`-gT1b|W^fpT?AQm+90Pt_JZ zv}2HEfK+&dvVa6XculmW4%w?;S6A!fs@=M&)L+rSfm1p2G>`!bqclTLydE1M&$k|* zVy1Bik!A852eex%>5jImRyyMAn^0_1>d@AO<5Aeux=VLuGggRAT+S3=9>to$>PSwG zUVm?Q(=1nlI?*fdJ8)28Tw7IztL&6bHwl2|S_~@=fbHbeM_MU%+%1Rpz~BV^WS`@o zS?Oe-6FxU#v{FE!ht8?OUW0c%#};nXxvkg|8uVNHJ-;CRamRyD?IgdRu-a#EI`k$b z;GuR9k_XPcAF!L^EdW9i=x@;O5rIigK|HWJc!D=QD7wFLsWagmK;sls^uxeX7E8AX zmt*6#XklVsB95gwMuULCCMOnqIZi+(X*sYbb4uMp&=JXoc=X(Lt3rptP0$xQ?JltD z{UQ__0cfG-Uwl`>IW$3Y!U^D>He;;jV;dcDx;ri(P7S+^s-Urzj3|uAHHxdtj~TPL zIRq!d9PEc;iaWEto0!(s=T|Lk9^e*@QQd(Kd3~%-O16Miwb3PL!`!O0mOqdkAVp$f zY~1WUox-qOhYdaA_Vdp_3+y%m0MQZv4G8Y9elbhW0Y)>~EPD(|p-cc4nQZm=(d+4s zK3wDnWv7fHD$aNJ>xJO5v^n-NAVF)#HCPT@?8TdLR%riXci63zbJ}3%rTjZV?1a7p z)0&87J#mW$p4(>TQcGN#lz4}a96540Lf-3QeB-EjuHO#ir71g3)UA~<;4J-;L z!#=aXo)nO4SeGL9Nx}vt5^qiD_o`rxu|tiAk5o`lAP*g2UQWb8VU4;U-ikKX-k*Nn zW#1>Cem)2OU!-Nh3u$j}SK? zMu(G$BMF2Ne?Il=%f=~w6;m8+55f9(DtSa(g=TJjw7hidM)x{#sYByE?y+?sMOY4N zqIc{2Ok%ur?Hfu2tQU#DM;A(F&-J+PW|>umlvNU$buPxeR^z_QzPNt1%Ap-Vb?O86+Rv_Q zvjz1hNUxD`>W862{IQe?gSzs}|3DG2>#jIF`YdwEG9U*tbF{#5_vUhLZf=eonuvF@ z{hT|fvbl*|IT$Aw82)7RP2xz5+}Ekss6hAb9aq_cU%1FJ{@o(;#{!FbZZlR#IAGF` zs@A2B90Mz$)ZWoJbOPI)Y=1qxb3jM;?B1F5uXXEy9=wS*B#&IJZrx_>syj%Px=hc+ zplJzpraNIH0a#37CGqKvuKk{ZB zUXn1np`n2sSAsDfeIomx@p7xq_8N&Q?nBq4#w@1qB>c@>V4pn*?! zZP~KLA8%#r8fQiiPq9>KMHpq{1yP!TM)&luJ9X|{j0~s?Wz3jD$&I($H6+hzr=nak zW<>v4#wqTE9c34ydA6F)Z#)Sbb5rivy6$WY*sqh(d@P|^j!5Z9eFJA~5gz+lE{7k$ zU+zI-U8Q*%sWoNKh9%T3oH^VwFIFw8~C_veP)XsmoM>z zCAW{^akI7IZPrv4sxZn!Pr*{9yOyKjFPzwxwJ;NI29>e>VP^MVJJx=YU;&lOwuC;< zth`zlUaL5KNrG7>R+nz0&VltfPoLS0RjP?K8qpG3ILq7ZhXk{#jLJrxMjadVgtCM) zg_n0cvq|gH66zULc)2E{eH1G9!-sxx4sv*&J2s>9zlFRxaEeo1h~>xD{}z4f1~Y+3 zJU4Es^FE3Y(ru`hk|M^+Y#r5ZJuN*oAc483datHY%%B+F| zG}qG7^1Q8DEWF)BmM3`Ob!bS}3Y$5lsLb~l;*^)8k>c6oYrA-&na&@T2|rd3(_aOk z<4kU7G|t~mEjib1y+WrZP{tB$x*S+dE>`USUZ%;TCh;RAD1Z~mnds7QV&Ix%XI5+p z0r?GegQqM7()hca0 zKtO+x z3P?NxxVRpy)+A^>%O!FV9RQLD+z-`JLJ$ARdZ5CyT-?vYFPe{M41mp?V3Og7fCu(t z9#3aM@`R)Aeu&m2@}m>Qo(~vt`y+T9#}ZzHH~U*Quj7gTp+D>$mpy4}1nPSCH*F z46HbMvzom3IFZ96d#rj(A={Q<(YLT~R?GKtAQe5gmElhie5ZCm{${6P2vtR+Vd-&w zX5*JAsb`NKGv;7IYwbm0VqTmNCOw7e{QRLYF)>vTVt94%7nko`g% z$M}{|)%=>+-q^z7*sjmdh_K4TAJcrOrQN^#7p`ufppjeqp@lDG`)x_8+#BOgd-m+v zjL99Y__e%`qUEE$pvW>LZvr6xhpkWOyoU3XOnQF`S|z2U!A6S>G-P07IGU8cC>6U? zJRX?}V9)Nktn|l*pD(&YFxkhf-3#aoOheC|*lMtU7~UZ4L{cn>b}AgwfdfY@$E0S$ zjWdB$u^SfEGMZ`x|txAme$1OpeYYi3b!bqdRF*h1gWMDO!qUteGAz&Y65W8b#QQRJXvn$~l2 zO$E3r&*0gx2Bs;0bN9;#)kS+KNjlgCUNJ4vABQ8)6n01iAh%aB?cAt^l~wKYLD-3N zk*0=|D2;@(mL`mj#on9CNH`WpH%@b$+HenB7cJcBiawpUulTVsM(uq~zdM3Y6IxP> zww1!lZd};=l@-!o3f!3_hRbpZf5KRlK&OcEx>nIQt3|E57}q!@f}3zgL8r9onjjnx!W z)<@)xsW}WkEdWOmxqq0-$={r^0)IKsdEAx3bato=rKFz3tPVK20x;b|gS1$t+--YV zHfb7*rzSKw&&^OFk!2>fl5io=CvKX2>o^SU4tV(@J;It6=BAisKP;%JAo*QawEpYL zJD31}g!62{cFzy;2jAI2_SI1_kmdy&yW?vj@|MdUiH)L(W6rWsC$Cqd&d5$Y{+7a> z!fbqe{MCF|ve@#z!2>bDbj`CjR`VjkI(oM1>1?Z2 zxSeRbfYnChPfDFfgUbD}h)FV9L|#>;PFjM?00Wnd8100$yB-yz_||4i8M!3*t89Jl zZP>bxXEzCgFz@V=hW+uzk78DErLmJPe%eRM}N8|;s>zGc> zI)x@nRAXJ|7=!ZVH>b>>Dj9Fn`Y?!z3>apFGoD!&W>|W7+mhy{HfQ}H4D=#%qkOcW z^=vXd67N-4AkepV*$Q#YiSHAkg2>Z!pguhEQz6!G=CQZL?l; z%^4MEmf0)h<^DiSP8slnh%!$P+%u*wWvJ^MxSPy3n$90-4NFSv#WPLpR*zvRGg$%nMp%+i{D-Y^4EC|}P7gejYwB|$A)zM4)6a$WRUUrxN zcD~~oaj4+KV}BOA{+KTIpG1~5rmk@8PrQZ{YbLV8DQRg-l+=ol!03tYtA?z+r7$01%zR+F35D&uE!tq7K>qS z>C+Nw=-ociIoSKdvc}GK6&Eq4QXVj5ZBzvtpMg#=*(m8=i)9IB9yEx{-E3raZ40x#>H z?Mw%LbX*1NF>$W2#`yo|L4~zVI3cICgq9z)&#Alzk9KHFsL~nn&qpoVM=Flyt3N2x zKHq{Y0j7UScOP;$9(xhA|GFyzxpnk#kVePNZ6@sy7UW^Ki6hUsR+txD8r+O3@`{HmHf95CqdT1gK+}fJL(u! z$Qzu)S)I&GI%&j})Uvg%?cB~x^UJM2gS6{HX5X1sH z=Z~H3iexOQ3`M}PJX{^Y^9c}G%31Dz!R!uJg9}!8(7+BATDYRC8+CpPeCKLhlMG}b z{6?S5%En4mbi?=C=lEd#;%A+XFoK^K?rZC>N0G`R*2ftC+0%E0d~&-1O+Hx zdGo+wmJ)f8@I^TdAaCeNO7}@UZ?-+8;ow<5C&^Sxh1$7h7`V}-$Oy%E+bNv&9X!GBf)lN;Ly<_Yr=+* z3J%er!qMtctImGI%sR?ka!9W^mE7^kySm+M-H*S2MkWg!lbc{wHd6``CikApiXqL7 zISDQp0$gi5v$&5O+FCfSXlLzovfsZu?}+TG^`vRy=unI_ktL_+l@ zhz$Bn*>qp<1>jWd-D}jU6t6dPI*z(y)*=l1Kj|wYQ>}DSQkjZKh+K5zqU81> zz2wZ?2-1x80lrhwSbYVDs6O&V`+cr~o?{-?K@n+K?_XT6@*?NrAOxfPF&^`PhYi3b zQCf*8E~`QI{3c7XC^HgTk;H-t66X6$8YVELC94t^wdRSY6O~7)@`}g6D$Cw$j8I(0Mh*mwc5N*aP&+mPY`NL0QHR4yXS!@g z4J^*6MpAnGWZM4M&!-W9lecet^k^A=-g!J90q?-GmqteRA>1Y$0(oN}T-+7VOy~Pp z9HyXbCbG$MtUfdABH%IC|UOcr##zSxd6xkuZ=v)OwRFOItz}dy`}WfGe%YZc0Mw8MR!vh}W9hGiI;Mc48;+ z?`=LP`nu(;_uzu{*Q5-9NDt{F1blgxdK*C$8Xw^kjywIn%|$9o(yCS~Yy+M+@pdL| zPBddo606rCn=SN1w)F#6qyd*cq)q_vN9pTO03LUPNQ#keA)q*qBG@V?c7gxL*KVYor^y z=Lu>rsG4-H6-KHafZhevIBHhen4r+8GtKTYW<|v^pGR@;{vmC*3-EFQZUI#8-KBVuES-S`^262|_4we(I&rwCzU9 z`rWk2)`WOi&i)1>Mho#v-mzV92YuGw=2RAw{Lt++ntWe;jpx5?XV|USyfcU6QuJ-g zSE3y_(=<@NuFA2GtZCAg#{nuUGR)^}dJ%Qe*1!5+XsCiNy|tQ(0xR9WzNX04zAI>cCEgnL*_XuKo%d0a)S?M@}5gvo=Z2xEX zI95PB_9efnBFWG4Cql_6?d`EV%#8QjXMTj`=NE*;1OX z6E{#D<^Q8Tn@`P^J)o_I!-1vR9_ymW<~gXGu7z)APvTi7Ixh zsa!;H8%gnZCon))!kjkqXn4T;WUlh1QKtT73P+uY?i2~d$ZBbBR(~x?P9H*(TpIKn z!l^5Y7eUR?>dlM4%+e=5o{l~}PBaPZHN79kXUr0^a-Dy7chO4Kuhl`-5JZb%mw zip6YGZ=CpIsTGo3GI&_iPIbCA7Iq_Z@=PlQ+gb-9F>waZ0WLvO6_;G{nuKeLj)T?8 z(K9cz9{>zKl2xNHS1(J_9n%L4W0O|dNLGCfuwp$3F3aqoXy@<}s>~qeMu8QxmXf_E z&4?Vsa3hEJWm$vqrL9_Y-y-CK?mY*_2dQ}~m4M?Z)s4B^tQwSi)5eteKD7S|r<96H zD-fAh6dyT!7ZvD3lIKvj^xum_YlN{4JdQRO!DkK6A&+K{U;1-XE zN=wljGX(B+XJD^GplBha=vDfzQG=Du$vzAxh|NsWY9bq>zpthL*5gSTj^Oj4_p-Oy z?nSNzBxHq&6wv8NJjF?i<73#aV!SI5G-$SjlCEa1MZa*eqz@=Aee!Qg6Mk{V{vXezTaegpf&bNT4`M`?8(Ol%w8i{$B zbmooepJXMj3)jvOeLDBveK^z{NY(7Xi0(L5yy0aLdEoW)Nfu#v17zxj$DI>d>O zo^3mZ`PsD_+Lpi62XCIArMU+n(GfJZ0=W&ZfEdzIWekyHaH^^2!vPVE6HuScv9`aC z!6MDF?YDbfF#}Y0ABX3FW+MXwc@P{nLEHS8!llgl!e_>?M$inW0u?!PJ+=Ma-oCbz zCJ8!4#H1hk1!-t#>;mDCR<+zy$-moLcK9&jb1u5iDa<{bEux`1k(`pX3l0au{?SX< zgQ92bH*MUX;tx%tW)^|muGcNop=akcgQHs#Rek{~DM)OQ!iQsX>TdJ&6pCEq8|9w5 zh=`)YH3w1@>rg|^z0#|vg1L`CmEiB5cn2vp{M=xF+dIW{vA1;QDq1)h!lm<~-x zt=+Ms2=$5yscba&w6eJQ4a)mG%o^%&o5eSKQ0(MD)?Q`);>}8!s-i>tN+3d7-U-?o%@3s$go@R<0hRBmlMX)^o_`EV4py3W>!at!YhGJtL&}t zs{+-i4vZAr)#2J&Z0GMHz^k~d#Zbf=%a4;n&N{Q#K$TPVtZBMy;XJZiepYujZwF$+ zbM>E6&)TgAo=qSaNTD(kvyO%>Uq+ua=YRY6eFoYSQU!1tPQPOZ7Z< zfH+6tPNJlo=GCIZ&G!xR;7;u?H{esa~0^uorP?hSkRmoHUkbI77~4(*56P0RbFq4 zuu_~n4#k`|RGq*{LAEJD!PCQiT5W=DYg*9FRU>+I(^gub@kE)y2jmtLKy@K{3!)5%5Tfb4_C_WUb>8g)&FT!C-7<~EFMer~-VAcMg9!U}={hMFh8 zi93rD-H5{;>o%H@qGu_-+e4{c<_Su>0rS+JwAkL1j~E6w0rVQ1F=x)4mz}hWdE@#+ z6ovy+?x2o4S_B}>ou1~xXCEWO66y@DkkmEj(Oqv=ER;AJOs0K%t?wwoIlhmI6C z9pN-Y9BPJVrc;{2NYq^OJVLfg=~sX1&PcU~~sKPygjO zj}nr1&IeLPekxfpdLn9c@Cj9YnfT?1EE4kj;?>Kd<)lTwN`3RVf04 zfDN3#jT@Y9h-C=2E6~%FNnf$~8892xJ$aLz5>AGB!YA_vorc@*N8c$c8&5L~Bb86k z>d;j9JaCNI^yM*^F8NV&nlzw&V5|u%61lm#k$HpAe4fz{uwW$%B9Os_+91CtZi!o1 zhe|HVcIpN{P!&l#XhpVD(?7#OCm8^%{~m4K1CK0K2LC*ntGHcxP%!i#a7)9Z2@ZXK z<0(wU=dz#jF`s%FqPqfjr2RhKTc~6S$Dd8A3l>~`<6Vg=33R}|Pnoc~Ryzv{tLRih z!@6HanrS=XDDT47Ea|+y()BvTeHcgyUFx-BJdi_UKm-4?PYCy;v((YL3f1CW`7)<& z*q*X5@jqk`LLpCT@De7`>Yk(1sh6Ytqx@A0#d5Yub=o`U4Zoz=F=mygW@X@cQq9)1 z(CGQPdo}@UI8;AI)==|g>bGMqeA%W`Lg~)!+n+Moptp*uE8d^jf!~%xEStDlu{0RZ zJ*dKuLjqGtYw_`1VbyWv<)T&NfaPilhnw|b|MV~P32QAsMrCpT zO~uu$34~L9`xmg4=d6r|P-SNG%gW1h$ShSz`o+reIk;Me{yB@vcchh@_@Yo+U}CYS zJaT2{7AOn|-6l96`u^U)YVx3Ru+_i$L-q``A$*b!R;C}#UA=IwF4&*aC&dKn7ppCA zF2w4Qzv9)T75phQ$pMzW<)v@rw$pRM_RRo-YUtlgz9EqYn#Jg~s<2}vAz+hjkg>jh zKgWTHpj-X79}H%-z547THLn-nPam(PuXh&2T>^I(8_61aiEnMvytt&%49xpFoM<0> zJ8iYsgn6*76lG@@0FxwM(Jpm6dt$JDA{GfscP5gr3Mz+2~2v<-zkaTb_f6S#PV3;wF=gEFghCj_0{B6Pk;m{a6 za8|~6n1Lzhkg5YHX;pC;=4k|Yo}^1yM&ZS9|K`TKQ??tn%gQW3oO^?0xk2SB{deF& zHRYp^KEhw03fiC$RABw$5JEmEYe5J1Npr6~j^t8{kqUT@^}pbtStH4>EmFG3dX=3+ z*{GLf)YV-$y+dETx!TE|CXuv6moppuqVVf-UEC#;E{o0JeT?mb?NheX9>AuPyDXgW zYSy8ZsKzaG1|y^m$yOS_BYenBlO7&WkMq=U%RAJa-8Zdg%2r3r?*KqRN}Ippukwdb zp{rv0nl7?*gRITr^T!v(HCH+(qSB9UcmNBgSoiW~(mhbNBtM=Ptj~)^$4ulzbu~92 zdb_Zaaly{+4fZ@jLrqOhrA#gM7fio(iV`woi&Z=T>j!917tSNuCF~ZRnDKbwsolCJCYL^v4n0YZ- zJDlY>?il+Dag~^=c@3!Eq%o`&JH>M`itfQ>g=}Q#WQwj&zewqKu%e~u^Yiqx2bj;u zDaA*V9!eh-ePKJk%YE1@+K9eRck^R6XF%L|{ugRH#^K@su|VnL>A+pq9L@nMoIZw;B$g7l zR5)FM*@^RnDbA_u&1>Ms*zyK&MNqJ5Viu~oT!bOh_KAt2hES(mI3tFJ9bgHA#B)0A zo;f3qux$}S4ftlnzSxlE<^YB_oRZE$bwv(&biJ`JpDG3SBl99w(-MqMjwP-?VR%7= zYX6RO4(?YRop>^AF$R1r6ZX&jwXuq@D^17mSO+eDRri{o9fI0Y47H9sPOb$8_@?z# z_L<-XU?g&F(0uD=UPX#umlYB*5?K9(Gw_P`#`-=(=Xi(xT}i8X9fn+M#ML-;C8A;P zBn}kx2sJ$OqbxM0gL{Hbo9|@mz&j}hX?EKu1MdWN3g1Z|wp!l)6hp12lw5oJPmB^V zeH`11cG|$OIMt7`dnd>i+eLmmJswV3?w4FfbSNf1Ug2H`CR5?d0bLaAy{^dBY{we# z{!fIOI!~TFnF8{peBn)|@uuxb-m#3faP(z}4M{A&e}5|QSA!w~p$4LTSGMs7&_uw& z9h|e(;<$H@9Xm$j&Xv~I)~GFKlS`$lrWS2ifiMbloAbC+h)=J$!NPnQc7Q7;Tyt<8 zq3w(hel)zd*?zg-dP(FGxBGY-u_44~)hag4R7=^$tcqNM6{Myo-;guuD z*bvszN2hAcS4;Vf{30SrshKX>3IKv!Z%6u?Y#* zNBaDlr%g>n!>vn`Iowi6T#^$x-OL~vc%a@%Pdf9Lw-D<34jk*fsIyF11KMJvDFY5 zYNkhb1vY2qTNBSrq7^3ln>*HqD=?LCrk+G>2#19f1yD;_MZ&`N%fG$*B%LxR#s7J8 zmt%J94eduP%0Xi>fiwp5txR9wVH$|zm$6t;1a>B8#;d`>kepefK!j2Ddg)tM$PyH% z0BXTygdB|QAOKyAubqA(jIJQJfnJdKsTh%mBSaBKSH!hI}_6?d{6<%D_t_`1yOlTw*_l1x=XLhkF#M>+U2dY@d^QiCn3O3 zk08QFH%dN9EnRC+oC&;)*4lc-qqc3|epIDcGv)ETg4qY$8{{sY`Aq1>?4r$pHCtmk zBWG4rRK(fIMVqu-SRqd3Dx`T0=#D45>^}-}1k~YRhMst>*xWxs=c>a_d*h)G`CxQ3 z!a4@fN~ni)h%t06A2{I#VBX^)SI_4|2AkFyFM=C_JvT<>g0v)Y6ByILGCsgRf| zh(q8x#~}jjy1is{wB1&iK;5~2{|q`W@M(VD-;2Lu`O>9J&9_EB1!_iXqc!=M8kw*Y zk~0f(1g7tc2#d!jdmhclJQASG3Q;ttJ z(zopXqoREPI*hUnM#IO0tO4__GK*oRY!zY~te4*fj5gfAbaKd;-AzqR4|$@*@izCi zr>sdp@RKv+Wz7V!3 z$wMf>MAYLl30w@isVKFerd^59LjPk`b#+Ot71s#4E!zF~MDT0yqol5AwsF&u=v_Tm zeX_8EaIxO_8n!&5ZSfqP9n69rqs82HXQrVY2j*Qaj{%IU1HeNNlG9IyJ7}QXlMr3! zc%Wh^38b`ERB=Wc>pO++->K1&K|64a{ZI~Q$uyB(%FX}}?_q6!pWA)Jbq9BFcvpTn zZIPfWZ!Z zf&?1}NsKEv=ZjG7fHC#h_z5PHdMH28{?PCX4_1#x<}CR_-B}Mcq?OUz9wP{I^BOFJPw(hR zYg@N`LG`xtOs+b7^vgG|ijnB|Zr3wQkT*NFeoE1*rGTGkp2wK6$+B-{aqFgI|pKg zuG($k-!~(apllgbm~8Z|?lc{|7OA@&are3vuB<^(CiJj4h*?$ipMqkm+cKN6e*Exs zZI7Lv$oECiB@Y>;_zKCNpP^q*{`~`m@meeLr^1Uf)_u9+e|!$VDcb235L^y=2VHba zTH|t%!8W)^1Bv<>EFpc9XpKJ)j^rJd0}io`q)oKo7ww*7Y>|u!&;>h_P$H39Z6GbK zEB=pTC0Kw)?eE!=fXR)<($*~W3M(MkMZ)@`9E8i(vC-yMys;FfdlY?$iSh6gS!%t?!aq@?GO}?W7P=P zU)aca1l(Ba%Brhnj=Pd~BxWFcMaIU;skN=t>00l&Ri>-vb(Rzmz;#7j$}(y@SY3_@ z91Bboj@vnR-L_-LT5&fF*G~i+E5ZB63SjiA{7`^#PkT4{3sgg7;M7dkI!f`OHrEx_ zU}DQ%tH1V3p7EsakAmgSE^<|ZMs*ilsBVLlJX#jJgzOgVa)yZAmER1g%Nmu1R;N4C-mJF*V$Y1hVY zW8wm=7;U2kNh3LpARC}Hf0xOHgsaLj|N7&nJRof-s@4PSGHAv2=eG5D&8KNnySHO) z<}B{?mx$Cso!x}IiF==qg8gTI6)^I-<-S2=KBKJ<2(ShNOKPU$eCX+*5i`h_&&w#m z{3SHFgUyiA|MVmP!un2oRR-h0?(4F+CxxyA+6B+rGfK9iPDYy2MR&+3aBuDZ-1_gU zJ1Yk-Q0gvUj3tc?ZRChe#QF!mfi`eN=Q}f_rhrSa-|j&78P>5^nu)E;X_SA3YLk3H zUixR)yNq>52er8}C_3{!GPcX?jAxq7qIjw_Pxg9oC){5mD%{1C99Pn$pdqve72Y^+_ zy*ndO!LEK4shF+ay&XaTsUH>|*_Zu#G3{zi$$LmY=Y+F%amJw0o5+_pJ7`T#tNsvl9$%#xas6ESvr@0Jizu+_%U z!eR$7NKog*ojZ5VPI9)os%q5SKS<0gc(r&wuN77@OIjU0KN46Gva~s zhn>o}ATQI;zsz0!Jq7!143CRYnREz$wTw^PC8bA0a zZaa@n%{fpA3JGDf*`S0%-Y=CBziK66@Z$F z=xXfnht?Ef`^Vg|rVfe$Gh+?5&{RG(!7(sxylkY0@414n&mU9w`SHgeS^S8y^XNBS zmg#t+_iPtx?h6eg((G~i754uiBDJbiUz&H8&z8RaYZI$z_}ldTfwz{P*!}Y zv?J5x>+#IV(x9ljev`zzzyHGpQ1+gLI&Nns`1!HvgYzkVT@EDq(>q=V3_6I8RYn8) zM>j+mARI~A8Gy`Q)I$3B&mH{hInBY-8-k5h4a+5emaYXkqCICFIkAq?hUSvrUnzX? z*B=|&2Ke$>Hm1AD1SC^=g+(Cy{PvCt_6aHb8MRZ{suGm?>|ysC5|(J z`|Ij_cTAF)edNq6Z}b)i?dhLc(3Yf%gwS4yUBerIMx-gyQIazF-Q&5$9q}^N72qk( zMV>);vo{HdyVS*sYk$5ujN3?jD%AYIg{Ieq$Po}-8p5OuN*aC@oe{yf<5E`05hIHO zoTlAy1vPJfPv+$H7vG?>)-Q@59}-@Q-*76}IM&hm+oyPJ=W&UYT6TJOZ#J)xa_2=9 zWwi!fLfTCMA@bs*OmF~^NF%P#t!VJYN{5o#B}u86BosmFTn~{Z>IukPAJgpEkKZ{Q+TrL6uFwCN$usu9T?T#Bm}@NI!DLwW!HE z=%0wm=r9nfaB7$p`w)!G+UMci7#mo8+|eL@qd3Fez3uH9KN zWrEh1W@@Uc9M7BxHcc88Cmf;RXx-`g`%O6O{`=9`y(AX^HVGc)HE4{bAbO*RZXCne zC&i^43aNb(GmU5^xHuCKqin(g7Vmy+xIt_$HK(n3qrRsJpwFuh4@qrZC2mVI1MqDjC8DzVK~aeQ2alJzDh7_xt;QQI#o_VGIsfg3u;o z{T@kA^v3p>*=TiHxZ=6WV@DF5To?MgG%T9UK{5C5PtmoF8(J10?7sp6buOkT8&syF z84&t}(DwsZ9I*H>G+j3hJo#AP6$*L{jb$}bF%a2OL*cQpeWL9G;FGBd(3n`H7uqOw9Z{I^oXvlB{St6v9InKzvCsi;Iam*+poGNEyo#CGk zrNUy}$>7)SbaE}r1m>cqcF9~#UH!tN)KjD47?pS990Qq2DXcFXJC=*Sj$73xVW#I; z1LjX)=;*TJ=9?oz-A(qc?ORo$p%K|`Utic=3yKG5j=&x5@aa=;Eo!>KlDf5tEL%>p z2n194iFUcd+>q;X`Im+X-Wy_D)G(vk$t_kWWUE~Us@0CTE4Lzza1BqlXEXpv-v|YY z#Kto{IA9y^W%v&U2V#_lVJ|P-xxPJs>*8%qL01iMz=dO4TqTT>WKO0}OvNcf1u?tL z)v?7OMMdg}NkDUWHxfLu(N4gK*+y-OKX$FEFp6OD09^qikxy!YeEfK=cSceAeM6h* z)M5S^t?n9$wDT2Vz!z*AANg_L44spah&mVkDGNhhgJ<8j-ty9lIWt-;V#{9lmvU+( zvQU^|MG`S!Pr<1cv5ynUdE_$h!zyaQqQTr>oGV?8$8LwJ0Y#z7XApa(mmOadhl;j8 z@$VQfoT>Fr#k+fxI=OYv+dAkP?&>MpIq0B9SWN>Xl|;9)LTsCBfX@1J==+bJfQo%* z=Eg%P%B8fvG)6}_7fq;0S8ZjiRE*u+vrj;pVST7{Db!YJl+R(hK$nVqO3+ENu&**$ zR0)fClm-61DVrlcNHs~+Dpe^ikc{z~(Uh>|sjH~la&oy#zm79X1z)XKch7IH>`rAM z;w+a=)mDUT0lI3SH45kAv*O0L3v$Beul@)}=D@&HK<`tn&15$DTx~~oxw+I-j9o&x zsw3z4EF`HmMKvzEwzOCIm}7c>_z)_9|88E^oLLHQ90}dhF`{k~+S8G6c zlfEzJmYe?qP!|#&W;gc4=3(AM>+O zezL_mt=y3(TY@FJuQIF*uN85Q?_%;`SmAgo8WyHdbeFR~_5~`_7!{ zOxg{a{XSFuE6|={RovCpCEC)0Vb&4+omv>xYz}Txx`k^jh-gw;3aXVzoO!cPZ~u&d zxHU`JkJRt}8ZI7IG#KMKl}R(Qulx=NsmmfivNi}ns2a+L2&1wR6^m@A`hiq9xE(rZ zBwJi-NG;|%qVf%ZB9%B=?9qb*P8p#-= z$!N8A+?knLg@u+)?eC5Myt_L-IQW%kSYiKhI2v=+ZJl_e<4WY>vjGa0vBmjbqvb6% zYJ)fs`vvSR@!spfEMf0sG_?yQMlSGFN!DKAM*WvW#$PZ_>X9D8^pKD+UW%_PDI~HW zd|fl%5#j4XBR}FZeBB2c>8(%PmJc0W+%y@Ase@y2?%Ws9dJPW+ro1y3r}QlD&9-gZ zWcU9N_owTO8If29L8o3xl*jmv3g!CQPICzn;P72@b-{av6mjto zXwZ4Xu&-_)Ld%%P+E|69iA=A=#u+R~ESItvPtIP|rF)XxA>jtW zF6hAI0g#+VO8xYnKS#gB2&_8f(|?ZM!2ia`f)e~^ietJj6r@5R<&ucBf$y^MJCu=& z=a>Q%9he-x{bRRXhNX?mvv7fTp#zP!gA0=mX{TkYC1fvx{ySdl%dh84^(q0|QfkT; z+^sRm^sf&%ucc`COo*6<2McR0#%yfU`To_52k!)0;_TwLn6%v=@laPPoBRwor#_STlBfi*eKxU7>N{F7j zQ2Si1+CQh)BHMo8B~}a>Jo^rt2}vlCLY52iPH1SSHyp;fsCU8c9bFAfI#&Y1!sPkC zASWA$&B?3`y$gy|vIZ4{Y#AauB{nV;6a?HkWD`KKstnKRy zObeK}rulf7I&Rx`m>heuZ+PdoAKwmdV zf9lzVWDPfmAk0kFzA)O#_S0&#*^ zxPfJt(Vg>A`@sZxh--Fi+TOcgprD>i_AXe|5swFt2Jn~|>!395zHTD+@DUkw-8B>{)nA84^E>?ePqkmyuu5Puy9I$I(ne+&xmjxCB=jAG zQN<5m8jIgC7PlQVO4d~i9~CE2Uw=S!CB0uUk@W*Ge!h@o;2SGI*}O9|`ZTswxco!d z_!kJY_(~5cJ0v8wK_ls%gY4Mfe$LLY1n1{E2GI5R_hU+=elqMNTu!CrIQe`b1K5Sc zuV6)OZhucgsYF`JP${vwI3hh=L+z7@>$^;n@bePYAmt?p)S>%H#?&8RTX+1r{V27B zsm^w^`P5;ZpfzlIcl$VBY23HBW<;0^D4yYtTLnBwX+uiPJx<=t8qRurvIGkR7Rl^C$ZBtw9rV}Zm%58F*ga@|k+fbz^z>-$ zKQP=n@Zpgp2Gz%VhPSB|EC#vDu14>Zg6?6qYBrcMxo57ZRDL4=!cP4Y0GVxaf(RSMq-z^T&A1 z5y9pAKVeL$z^V&kTSVr-_ebUO_Ny6M3`4OZ)J)7Bq8IkOKyIFn@hso+29*&J<7+T$ z1OT`(P0_Gu>#L7n%tMkgi}>dm%-Q_6o()<3dFT{{U034TpyrsjZ<9;H5QQTmL4RQX zFeR!8$XtA&t5iy6d<=x9FxMR=t32=^hHQjw{At(~+m1$c=+eu0HF14nH=G=M{&qV?_dSwK}@IO0n=jS zqAfyyKWFiIT$u`fU!n^2D|t+$KSr*U6E@w0jSEJ(SzOz#SF{-gjWzZg0RD9#18v~2 zOvVXSKjtZl-71%LC;aJa8yz3$tKn;xB7rs3^{FUxvgusL5(YzK11+wRe z0uZO2F^x|Lp7ZZ-K3HHhtOj(Zl5?KELSkU3I|a<3&wz9G`90|3_)4GqFC-6Fi3_&g z-%!v@J_v#~>f7HPXga*qDaR@N6azPN#|G+R2yFkT zy`Ctcm-|ViE)}lA55L>=HIvnY(yj@E%ctK}AQWA&9Z?P_z{|mmyL%Lytv5d3JStB3 zf(6KX1&DozEEGnBu zdKdqCS#HM789v*7*c^2vLpD-ccdXLd3kQ9qD_y?$y)@D;^wEx!Ar8TjM-)QN@9b&bH{PtF%`>Z5rMPL2MQ^}<@8@HcfBwm!<+Y#p z8P$N+`okkn94h;%Mn4Cwrxk{j`K=<&h{PnUwc z{QUloQ4wX)J=z*G3i>|X7fXDFlE!9X)4fFyKgr;xI&nniT}tXtCwGtiKUuc-_me?@ zarzYe{PaC<-@Wjw$x_`(;}>uC(3Nb?xbQVL*Nk6Tl!}nwHodYCpY}A>KQh=DZ`H;5 zEpO8uet;YqJbMvEqe66gpR5zVS~$%?WAA92zi>@&W_&rf2Gp9Uyd@&-Z?0k{Ij86V zcC-Q-Mno%gj3{^M-6J!@3i>p9pTz8aeEW+~b>~pUPa@{Edb+sB$HW|lO3Pe+#Sa{C z9DVRjsKxaV9jheRYWJ$Dz~ z2{(TS8ztE7(3YsaYbn|hxV)87?z}3YqXU!5bi9k;3gWO;POmrZqV|q4wM!HP9&)`&Fk8cvunAsJ(;Jm7{?DA7gLl&qJ>b_!7F<&U{I@LSE0 zhb|#8SqE=Tr8{ZJTT8}U+xN;MxkcZarqBQWqrP_d*P4WOe<}jLo(kE!xj-iU?SijC z1ZI{vE-`UUuyG+#f=mU8V<$$&IoNpW?m>KA7uxvW@h^0Yraw_^92v(L9ol$M{?{&J z6BDkI4}7;b3CpZg0nOyDS@2*yAsS(ONZI4BF(KKV=+tjO%woRxu;Nt~2C`%R$ZE<> z!Jh7KSx%E*S$u0``}do&ubmJcwC(6%yVPIp;|nwX{d)L?u0Hj&OEQsG^Wae7ubNT@ zuO&@0CfWeo2`QZApvain4nkL>#TQa?$SBD#m$$OmSnnUM}&4c zt?PBw(X|e0Z4?t!goar_{Yfo+h(ZcMlWQ()bd#?LGOvnf3;N&!)nTI|S)ErFDfYE{ z9`gKsRh#w~zCd(gmeV5GO}2hro0i#$CpF~sY5&jZdkTDqnnZdkV4_cikq(}@{(mbjlT~h-(N8vB5wJj4>~9t#hb=|U%!6+Nk!TquMIYK zph{? zvpP6!E}oJfCOk4?gU*hT(TQMcB{SBD4`ADhGJg53`uQN!1*q;s@L9(%O^ZamHjhhN z%zNH!Sc{7(sK%iLTZut-K;tFzG-#-Z*mxF>M<&3Qk~bI9ohYfAiC&XJbD(68s&SF(sDjHtvim zD12nZBexY!y{)(td*)P^kP){%Tqno1Yfk5>-OVv^N%F>qgs5^3ciFloI-wP{l-~d9#28%(A{w8~)(}&~UN!K1ScO ziU&go_@X}+uOPxIEEsp z7;7OI8xPJYxS+CMA$rQofXn$E**{q`f-`~=9$hR~e_AL{DnCcvc^1$pO?gO09%F=eQ zi**12f$BJVWd8@uy7)8IDcnsZCMQ={S5p+KHEI2)X=!Pc__T579R(F;wzyjnsl>7* zlU;^`wBa=p^rPH4D4}?_gWbH%DRygm{`$mwRcJ_8-hV_J5xU$)t?Iho%8CiABKfU1 z!w{)bs8uIa443eEI4DybvNsL?c<;MzML)hh#A|SPw|&^0p?(yH_pGO>&$phHtqm!k z)fWzSRIZO1R^ga|BIsO4zG_J!2`AXlt(7TKT#o%}eg71go^WN$Kfx*$U4Beb(k+Cl zn_B2TaB~lH$nNOq=wCk#h-JR0;v$ydaYhcz5_2I*T=$;FWiP7M)5b>#2;r)ieul2o zhL;e4nN_5TQI>zhl3*igXFe5?Vu2WSLzrsuh@z4bsJhT^PL!#Gr?uYFGFXv z{<9HNjTm@OERs3yXYgar#ZX7Pfz6w z0|<*51lOl1pMFYNO?Y469%#C|By7FD2=~Adf>`9Wn&B+AS)m)wZ~fefFjk4?=#7JK zD(-5+z-bUJ`G2~TPUmJR+}?E8?ZNI>7IN@_mV5W_u!fWI_S+V$8CE)p%Al|M2DTxm zRWZm9;ePU*B1JVGhTskyWf`%&I(3R_CLEl98H)m_!RNFlos7l00Aan7Lhidc)O7VU zdiU9vWP+YHaPddRA=uMFIVvP4=E@ayE;mGlP>q1XD-N@5VlhI_7fm&^-Js@BGV3@z z@@(AU{cxnV_qp3YSAy#>@(QJEbfLkiY&Og;`qzHDTD2*!EEeGSM|_H$JsCOM`s;yH zfNFAdcM^&>4U}O2etq3^z1KU72bZ4XV=0FR0im<1ZRjR6jVjcYJMbD_B@>I@>?NSQ@zdmqfzR&ynFJz zmn~nuT$G6?wW7aCf0;1ue>D06DH*Dth`?t`u`!$O_2z3_1K|J(i@2y;D%P)@7St}$ z36k0bDx(LFHmk;r-WuG})xlS{SBY$fuN3#6@~muc&PWQ!lQ=QC`{QuW%5`XYdOjIA z7I)pE_uX|vxP*(~&pkV{3V05oMhk$O z>_X6R!reZKSWThKon<dvLn+8+wkTm-{V%3N|SqNEVJ$1=D-0d|t7 zxdEE5(v3@^IZjlDgKlG{rlyuJlGP!d5Zl~}W;G~p#!;a`q$w&#Ke!OpdqBMsN<-Qw z*|?ub!-l~eF&)uF!#UOc;w-2AuPiFzD{r_8$KyC2%Dm*3YYxpB-yul;gdmAV3E|;w zM{&@_XjqE)lIwdC~K0@mCY9K2f@Y~x>NbBK2&}PMdCkNR#Bl|J#rpb zDye1X&;WI?fClFn%9=P(3{cpL2A}6b+33(lh{n;ureozyOa<@_Fu#e`Ny~(AmXI00EO3+E#m>qlh zx@uU2s6%t8)Sc9XuPQrhpe(q37ZGCND~rD@n=_0Q2TFp$Mf?BpBx2&?1hE^32JTu@ z4h2u*Wb1zoot>R2Sh6p6bVQ9zY$`$Ui!r%mL z`L^zcgwm{{3?#3*{@(2VQ>p>Y#0K&|UbJ#qVVKrpegd44XyAjIW+ph&{bMVN%14wR_V#Rf zcOb1`s-R-F)zj1S4E{C*(+W}nCJSe0?e$jodKmLuFt3R%?`D^8H}Gbe~C zWOn6sZ2rz`s*Vc$5iE^GsKtWaj@dvKNJPu%l0qEm*+us@(bi5#!(7Wkq+WRcqZ<(M z4AgAHeD=7SQ^l;}qEZ-_p6E%*qsK7gcIf+u{Ly|81F&5mMvqn176_mi+y?}ur;>k* zz)?`plMCO#i+3uqO_td3bMv>=81Aq>{yWdg)aDE?bPBp*f5+G4fqLWjJYq3_M^)1y zQFYFfzQn;6LI*#idf-ZMUHt8^Qki{}rL~@l!4mM!18gx}+WZn*5i(+NDaO8yho_x5 z4FYu@8rHLJ$EZy#4Y*V+Ky6GSFJW!3c~+R28P3Uqn)3nkaHu; z$vp+wIa1Nv6s$44gFI(}0f1f`ty`$Lf#7nY^`PUj8vtAaRh2*C&h>naoBz2ykLF?i zI$MpgmWfztj*vUMXc`uQN;21g=54ADUY z=y}c~t~fLRC88kkF;J_b(hsS_Fm3hmi^nF;n?aeEN9l&LEPzA_SS3(K>bC6ft?i!% zoPTv_Cv8-zDiIZ8BWQ|IV%(ttBN3{)BqQ!erJwj63*BR36@h|A$f^G?PY&@$H~Df) z*Ao=@^}l8{U8{0Cw2p;?d74k`;Wa%YFYuSEcI!Vd71!K*BwaYr1nq|UEn zc$Fy{%voK@mWbU{q~%7C=4*&@_yAK?ci(Z2u6({gFO=MO0FL3Ze7@_s6Wr^tF@s0a zTB_ohN!L60DqT5@ja8XqD33WkWTtK1Qqm2j%g?JP7)r45XhPeYAK%E3J_b4P}KlH zb3lVS&`Sy*MumJ7RQ`1gx8@+4IuQ@kAnd_JE+V^|9xSwgmvqRZt&seYdCiI$d2>9? zA7@v=+jecL^F8%|?XrOgQ_GEw(I^J~^rx&P-Ss>OoP~8GD=r4~7od4{9#+MCLGyiN zF>^-Wo=^LZs@z%?wip6x3!kNy7PP+pX2G&AbRh25oZ_XdHiI_@iPBz_3GU@gp$8w< zdh=u$pebE!E+>`(tA|>Ge|M!_n1fDO*9I~YL z$QCB;@8(Q->}1((Uc&ZZA(fPbmzuI0b9+Iqi%;`QK#07YRO4^7u>GErXN*RG%2tPQ zUz1y&{*CGzO@2BT7axD#yT30PE!v~1Xh%GTT^vMG8P9FP&HG^oo=?Ko_^PnYh@Mnt z0NHX@@vQ>7u!t@DTxPF~-VBv+#*fx5vZ+82AA{2>$^?_-dX#qQhBI{P(CN%yH$R_R zr4OkUIlC%)8$LB{AmQAu<@2;f%sD)|{3J-Nllv$AJMMEIXpUm45X)>J@quatEN@4nwCRHLDtkPylxZmX)IP-)?2 zL7EFRwwh7_hb#oLNHNrci~{>Olp*B03t%dJpZr+bx$pRZj`A$Y<>lr5?RD^kl54%X zgUZhRp~%$^n#EBc>FBh@>gf9d++<`APw#!aa=lqdpN`BWTokIQ(njP_Rjd+h7aSpoIyvnVEQ*;!!f--sqjJqxKa7eqvH*WI0n zXk5`s2E8H=`+z>rUGYPv&F`M-#@7W)V{3>yg*-atLtx`$jYlWgVm$ryzCc(5i1GuLtKdjes74v)s{IE!waUz7*&)A7ONN7%Cc{lb@>R zm5i$*_#PY_F|v+KFS^_d)%mDV7+D?2S%6{HYEdJ60IA+sh{;z#&v$@)N5a80|n(&f`(cKs97W_#>v#kCOD5DMZfUqs z<*4NI@XAc@PQ;Zm!K^d|u5^5r4agX8!&rU7umaz`nlK_DlA??idW)f-bRL<=p#i;~ zHJX{1#7>IVd<}1yUHH&>FyeZU885N@@`9RuGbyl%2vD3+ke7hT1UJnDwfFp5EM!u* zMLcV9G-f~Zv9b`N_XqpcVWK5DlGUqs15( zSF8`%?A`sGX7H??sGh#MbqdKk3_3Sh02kH}+@L{nNd3}t9nje1&8_F%L#g#C*7Mf} z>$yLrT42M1Y`w1H#(u%Kk-{=K3PrQBf2Pte>1%fZNz`@M_IqWbl6N;Xzl2T}QEqW0 z+Q5)U#dyaw3VMSDa-zo}nd=pSvyG#`7HL#u)JAGeU5px^%A^8^g^-jmj*Wh_6{21A ztZglBxnO>NC}|fqGqc3FJfO}<|R*$L{e``tv#4+nY54MR$W~`ZGr{RVCp5K zos|SB=tzr4<6^v@osTTW_!R=A&JkX{|& zcFcb-R-|qHH*eT54h|v9&=DzxJlYw9dy#{=^Jf?<9>~OqBz^CQ!-oL`RYzs-0KZ|L z&CL@FQIff6X}e(Hlf&wQ+;_X3Bjh{qHv&B`Y)?!; z8%NT-K**xI4Svfc1(SrE8It4A(vysX0W&Y8G3H|Kl>j>0YuA!c%y58oeViSyHUNdf z8u$pUY0xoUy7f5fw?`pkq~;!_ybQ`>LH3WyVpZR}^?w0tJBmeAyRKYXwgYQ0ID^pe z66}1tE|XxsCI;JftWt6zdgjXGN4df7Ug>y(@Egn5)wP1cKKvAzq5b>1IlQIetH4b` z%oRMRG1MWE*DY<0k)`GIb=sXaRJP@Co}!T4pAjYrSJq>cLK_#s9*pBsO>d~8Btx%8 zrg&JdeHZK%VT|{6m74`_Ixh5t0zUzrC;=mctdIvtzzdFfR@T|n?)hU#6%;tEFN&Dx z(X_eN2lLZ4>A@ zyn6-v7=+_VsUr)j)bDK{2cV|vQFb4R!GfkVP+I6que;lvavk;0E~xwEvU9=2G~{|I zwjO9AJYQT~Kt>jDyd4cKv}<6pBt%$;VWKarIqduFmeOB=j9w6%?Y3jcFL>pGBVUK@ zn&OPfZ;y_sN#7@kqZ{&sMj81Xmu2aD+f`^)FtnQtN^?~6rG1Qzx^!cg7l-T zLtylvZXT1KZP!+Ls^yTq#Kw?IK4)ACcO-z~ZejZ+;u4Lk?Y!kCWXJ1i zh`*#dS)p&H4&J-AkTKM8`sUqVFHVBi6QOimOOc*;FJ6HZ5llYUc_^58(P+JPWOJVZ z;Ef(Co`AqI;gLiUDDh4HTHm}*3GY>8Yez}AhMj950!*)SUTZ1|Q6F$2^h@w`divW+ z;Wl`KdUwT|Z39kCY_^5SKT0MR(RtpE`@aaAcnJO>*Hd8mL+n7%uEmzN!Y%Z0eATme za!3KY;VC-(oyBCG6g@iD-;`0?yThX+-csr2<`X{wFIGQ}H%~py3oV=yBZy2u0)0KF zZxhh!NZ?fKjg2P+1qJ2Tcp%e8;$i~DN#G*=Ms9$mTbh-G$uASzdey( zfKpBL+oS~u?R3bO!IlQ3Hn1lGzXpI*{n`0<*ZM~RAYhm_BXSsPJ39k;zW!(>T$SsCpc1Z#F= zGfG}Fo>I7;7dsNsBmEV!YbD({UZV4yPfY*GX7=~sR9W6^AGY9g@ED+Y)HebKYXS`R zv}Ywpo(11~R;o5S+&l7sf2%zEPk=P4!ctODQqgR zjN${MXpKfjKGoLkc9MTYA$r~&id3=0V|DJobSJTzo|k^!tXdY(6JiC@)AuT)@n=a| z?RoK&&h~F4f9)>^1(_>NRN!(nyhYOsET;HU3tK3L@2s3YP4HedHdd2;&9W5YoH;0` z#xjY1FH#p4&>>zcfA>Hv*l4-Tjg%art@SAPlnWPTbAljLun-I2y6QworLkaPzqb+q z%zRI8=4sSL^aG&)HoBgNKxYcuZ_f-o%_53Y$?W$Vc3wv}DcoAL?{(ZE0Bo}ymZdZz z`>24-CH}=Pi8azlyYppc|Fg?~eC&%}Ci1J6C0nyzUvIJX((Op0zY)CB!Za(#zRI;m zu=Yh(`|rm(JuisrFRAgM&I1zOJdZao*bh?&2IJ5vEVokO*-?6xT6O5PeL__1X%-TB z?b;%KaFp`5+8>ucw7r&sAq^ep zq5rE!BLGgNQN@WC|J-GUa6E-AmnKAh#*XEcqoh8M11U-TfXxW3caQ=L7qL;{C!xC- zGdR%1Y};2A{T1hyj?Qiwtbl+sHhzG7(-DBW9Q*`^O)|=Ezo`<+xIm0h#xMT&z-BjR z^j-dZ=i5W8EB}$@kAu(bwppZfaXwA`;ud+CrckG(BV?SAM)hQ|_>{6AO0~rl%()AA z;5?oWMG2RqUEvhzWqPsaT!7(iN3wSyekI%F`;$|SGc<)&_6^XNCh{_Kc;=8tNozzB zf7Nk+_IIHi9s7w^yCGzmV}CPaX@$pedGto%W-nJiunTsCagj>E@48iQ;$9<{mz3UQ#FF1ghdbgB*7&TWJTq|4NgMbD zWYU>47&-(gJN$jDu&FWO*H?*JVq2A{e$gih6%`e^;1NdRPciDF=iW-~PW~E^XD|DB z=zg!iGCCsSHup!_Lkk(>I$4%n#GzJ`D#!?Y`&6SF_*xX1MJ~OI(wHWf)4Q8cz0pC5 zTg$@jg4`F6Lk{@*A)Sp!*OlU+#`vqVY<`i$Os7Kb300!$ z?W>lUf9!*tcpU`_VYkU5hx%~H6IQ6Be3>s;kTMw4kPz+E%UBI?pNXY!O14^#jfp?c zx18*6JkUVzXMD@CWYgipPG~hy+)rl$fgT69UdjzDsr5prvj*x+!-vC%x81wq%#0xj zsDHe;`NbVSPw-!P`%$m?#v~;4lqK*PVPeV!k#%M5q5R)5`f|Dd&80gl7`_WQp3-TQf-y>|=_ zNa32zsEV*LWwUC~c@9t2o*o__@w&#wbOR5B_-tzJR}susk^aVjd@eFqz0$G?c52JA zj+jExgq6^yl1`CZeMxT~h)7Yo2-#NGJWkeJ9R27iZihGOh8p*MurRlqE(8-HcEoMbC+Fp+CbwNJh=xhKKGA@ z2XXg@Z$G*Vw*$A&?j1c=t2UioPM5}ZnmY|Fj!=k3L{PZWb#rbrPUf%^b@wT?WmnZ@ z^(NFYQ`*C(-J*^J+5xOeI`&%?oO43)67*jQj{e4W8o^dJ{>2FFg+g!gRSAq8*oLVK zL*CC+IAkN^<|YdOEDA!ej9UyMu*mrLz5}}(zCG#bX%EP;VOyR($bLt|QZIhJao zdzM0E>jx<)pM4<||89}Rb0O<%WIshvkJ|r<68{Icw-TUVuu+Skz=7^Ic`M*4_dcD) zq+yyT(|p&!Rj_3%;yC5er7}!Bb4Hdmm->npan^mHc8xIg0V>5*mX2Su`7~oYmEjNY zTVEn0x2;Rth3mqEhGX21S53?V-^3}D1ph1Ki>m5a%f}-Ibl`#b)vZAYP#0j(6V!gK zYzIlvTRN)gLOtJp9gIjsZ^tP~M^9l=GCMplIR%VUF7GGO1S4Dw>$~ki`d${Oi#1Mt zxqA|>{v_R(DvGO`AZu3c0FbrxS6~)5f<@yjOA6n2ChtDS;1v0HXpPP_1#+z> zR)#^0%i0T}xEz`6;ho8gL6eoT#)RGa>z79@NJqFh^6$A$Oy6NicA;s;^WKIAFa%l^ zfAk-@F4xVeAx?v}X2#Yc-eVkiwt5A-2wq|5xS|t|4=8da;>zntWvRX9I!34pAOK;3 zkmtbR2v75w&;(%Np*ZrUgdR^nMw214d2Qf&FJL!N(#B)}IIx}6ipucSZ4hI!@3<7= zvm0VWjSQ!8G|jmUgbCUhVi4*%C58|z{WxG}G2N-k&T(QT9}=`iBXoQl>X*kZVB>Oh z{UxA)XZoGb#9KQ9!8p!ONB1ueMdQ$B#Ai54Y*m)cN8x}tgNa3?9O@og6TO(jnRp{` zP+9%*0d}wj9R<=#s9`a(29v#^kB05-t3v9Np=lPjM3tovTz@4oD?AMl*)!Pov!?Upu8TBDJ%O-@3>zC{P&L`$LGr~MT;SXG7%QU9N z98kPg{WIH}v%6&1<#ENl0t^?L1bf(nJ*fg!QFP*B7==Q@&=x9_-m-GS?`tF5%7~gc zT79s&Y(~ZGiKbvH18`~nZ(HntX$#_5z^@z^^^tes2Zf3(!4{B4Xb=tu2EvxH%MtlC zAqNHFP%Z~3$(#AAe8FUIoNk7wy)}~Op7_loN{h`GfrLb)R{t#T zthH*DCp0zq?pdLmv~14sp;?wW=HvI}-9KY+$>o)Do9VWHv$^<{$&l-|hu_%$S$Y1& zLxG=v_{-k-BQDV{_sVt~z4`jKtFiE@=OW($%cK5cGh~#E%HX9{#i+szI z+dWTpO65~J=U;xf^I3~*+5HHP`S!zANGD*o=Whf>jcfyB;PbLwqeq=Qdeof#(b%A1 zokV*t9(6md@}7lkM1g(iLYe3^(m%Q?h=vaUGkk#P$wjL$E+yS6So1v`ot~l*nggMH zyNs%DkUbwQXRn9tl-tQggml9CH*X z0gQpcESBE3pwc-K-8hd`M7`EZFAkZn&`2d)@ePv@+%#0Z#r5{~D&|zKp-w0dSqIB2 z_4V~LE229+yuA&XxUgmzwb?0l*_WnbuwYx$6}or#Y{h;AkBoVlzCmzs#4g+IEeu-Y z6(XC_HH!K&PN&BdGWTrF$Hmu*H+ph|e?;ZP^L$m^6F?020lLctPhJmG85;HEnn8Mu zP{UsH_6j(jujo(Z@IE6}vcD)Nfy_wxJ47=x*s$MX$`og5`#P)K@b} zVn>IhLx+yJKC5II1l8ynIXPCri@x{?iM|&kuQ^_M6DYRD(@wFpGVbLYmzy2FNXL~z?J$&1@FMB3J_%&gsc@&njW3GMQ+ zTg9y~v@XqiUkdU#FHhBt0Nxe~W~0ekS4Z$lrREz&?fo54Tdvbsi&wDIB?_rUt1 zIhYl(n#s(vhwmh(rI}4!@MR41?~!IAW6q}w$2NAAzIxyqG9Z6AKsx97zP`T7RJ)k~ zwK>$5$td#LM7!4wrLZa6u{Lrh14qqNA&pfyKhDK0Z6jbd`+-A{b^qr1zb=ptI~Cb+ zqKy&-5I2ph8oF1op<3{rg_E!6A3-1LNB88jIH2=0wJH?zo?{X9lu=*B6(bbRLC#^S zLIgccNZi|g%}6Mtej}~CQIh80(7jTM)jq8j51<@uT%L+sA)b!vUe|Co6hapX_WwR; z`$8bRSReRE{s8BqNImx!ZhI|8|G|V$Of(mzvQi9D9#I#?co!-~8VRDX@`pVx>>fsx z-@27Rz=!xNYnznDQKNDo%^-a9vw z;oHhPh3bvnASfC+TrTjJ!uQ!e5es!5nM~;tbUO<{4#2ES5W65bc3*et10|AHdmyZN z&`Aj0iYR}RdTb{5$kq!C`l07-TIbNS(!;|ev*Nht$yEjMstDDtAW-ClH4=>tQx?se zH;+>g+3k6D*pmP>!W;8GhTm9NSbSVpjg3KmNywrAnR?+Yp^NV7{rUO%nc|N392^{q zApj^t_ZJE}fXyT*oHdP)ug%88kzJ=FJFTj-uchA)2DktCbHb?hsIcj~o(8_Yr8@78F_TN6zV}DQ=H}yr^-G6mr^kiB&>!h$;9<*< z^rXWh$hJ+h#7AYgz=-OG^n+P&K<@9(v?C(GcNFT~3O*MLL9UnA5xWx=2IIzELGa4w z3Ib^81&)}QgW%^!q$F{YJY>6mIFu~OVg{_t9F+;MfUpxH+&I=8;H0^~J1^0F=~6u+ z|4hB(jpw}i!H!2U+*yoz3L(Nbx~CeRQvB0TKM6qq5M80aji_z^l1$g`kDvT@cNTj> zdjSfio+ppA1w!x%c&1=)_tMhRHe>{Icc|)3CxhTwNq5@}QVv=M6tpLCH=N zLlOc@h$zNqWo5~>rF@Aftb`N|_kR-vsjT`e!<2TR!=3bLw1K{U3AB&pjI*0aD8|O> z?#rJyR|!Z-=z{TuS+99y&)tSH;0EbPyMyn{?||%*2bn1@$mGll=i|t9f_Hqk9d2CN z+*7$7H>?0@BhnSnmf2(IMBVO_N6+G*LDy}ev#`ru|^Cf zA0`rLnVT>aOg2V66ru{TuT|ZICBF&$BLOmjJ}(YHL}7reEHT1Ui9d$O z!)}65*^BV6e|y-7Ls5@2Q#P^xM_`*KG(z1(D5;c(4u`EHtZ-FiWaMx&kv&aMu%ofD zF-$(oaRXxmqI>?BJ&v=KQ_%B$K-Gj?C`TxaAvxp*hq$@(^9t8AkqIGqD?n>hfMY?H zNVmI9nly=;Id&_!cI_Gz8sGldb2R$rg3YU~e2ZpN%zXt&Mxtp*E$qyxFvPDcr%pBM z_~(D>WS*9&UwEC{zMcmTst-wZ>jjtdtDil4#*2`04?;?7*REyu7Q7;H3$`tlRZS?b z@u!hd%aLOD?{p5rVt|NGzz;%F1TdHTy6QN<;3e>O#C-0YT5Z-^b1DHFy%a~nJzMMn zQ6mV-(L(bes`n6=2Ww6hpjmH5VM)MW*@A10KIezFGsntsem?`(g}|rZ@CR1;0%LJe z{zw0hbacAZpzd+I>G}E7MG#(;VXpkwh%{xVRii53 zA~gpz$`6%GME+RTgX5z3_goGq|8eh#I40Q~22CDQ8YvMKLKMeWA>^(${cst?sGB>j zr%j8;)q@K;0q0ENi&F0O=V$7e)kCiJCS}$@?MhhKijqfC3*ql{UPD%ZX%W??-}wN( zgA*_-Kd%!|Jk6(24_^4&=cz>y^wxgAX%#9wzxVw;ZS6{m@tNpy*!XZH5maPRvV#p$ z{fX1IP7on2_ER_Enx;G|OfEs}nUtK&^Sz-#jn5Sl|3ZRDa|~#^1bDI%giRYxL5@`l zm!`~m8)*x*A#e$8vLz9gY@bECE(4c#$JPOvlMbUDAu6RFZs|DWP?d_>ou$Pan>15* z9m9ko)D@&CMr$tAV_)uXEKV#dyM4pkO6yt?fd!$kv#yn@M62uE9n*ejK1eE`^%>L# zVrvp}Tu7BB+<_1rS`RyVX%`F6kpD44ufL3vz&(q@tRuPO_It0*J zBZ6RRmTMyCN?wHP8yL(-#wsuu$kb62>E`bK=3x{S-pxgJrm!9z_1Uku{1_7zM7WCZ zfl}>5+tbq$QD|_J^vLmu>|k(<;$rj5S7w`btkabX^Sqfz@|j2;Eu8*%QY7t zUq43C(2z`EoS`Uz2?zA?NLNmAU7kflbjh|N2k9j`Gn?*#6{Y1An}A?cjrH*ko|UG>n1R zWN<5L+GFsHX<9=^XV7_Q*<;XoXqjWsd1#qq(0OQ?W6*hMn`6* z=p{#;Ge0|=DR?8?T#IYc`fz{xO-_*(`uC@=)B20SfArEEgN7J1gx1N>`TxEnhKT&C VW8T+$v6Ua&dA{pMxgW0C{ofbmNtOTr literal 0 HcmV?d00001 diff --git a/experiments/xor_nxor_exp/result/figs/gaussian-nxor.pdf b/experiments/xor_nxor_exp/result/figs/gaussian-nxor.pdf new file mode 100644 index 0000000000000000000000000000000000000000..1d3d3626fbe3903862b84e7a12c7d9ff02b833b8 GIT binary patch literal 19009 zcmb`v1yq$?^9M>wclVK$@*FsDXi&OaQd&Bt8w8{zr5i~RkOt|J?ob+}yQM_no`bL7 z8{d2X>sxnST(kD`?3&p#vuE~${5FHKxFkErV=i=tl6gRJ13Cu)1h6-@LKhSS0F{l* zO`QOo&>B?$P~F496aW-6ayGKDHwOp{qnp~jfOX{k%K!;?XDKyjBWF_p*RMg6_IAzy z@ULfOBWGt*M>_yF>=hlT>}YSIX6g*kh4K-XgwAj3?hF9R*g|=V{!xnkQOW@H06;Yh zqZgKT<^agA;aW<@R;DJ-0G|8F{}hJ<1g-eJfTwnL_RdaF7SQoxP*F_npl^J?CXjNp zcX0r~mMNwN0E(NsTAG-uNeb<;~K!}QSWys-ARd5C7Vaeu_`YIh{-XXD9L(%tHv;L@yH zq~lJ5*H@)86SwW8Lt8qJpM?wdt)F#I6k=RW6!~3(E8pP==>V_c*nBuQD}8C@;RI2)16XR~jqPw9V1=Yx#IL^6LmO=YO;rCHkrw3 zdSx}0myP3_d|i5WMPEoh-s%-6RBp`9?0PipkJ-(e=*9xi=(vu#t4FLWN2?a;JQ)x5jf|)k%Ahvsq;0(w3M^Tsno}3x72%Q zrrBrX$}Z2}psTLHc(m1NNN1Dx@rJkVT=VxYx<85%z8qCf3_rD)z0~)0t*-ZEMBY2E z8;-(d^QEuOHAalN;8QC~ITN@ps;l#4degY{isg$wZpPl#Vk`11ejAacaH|S7h*J}r zaCK?jE7!V_k#73ZS=`;&kGF+W_C^Bkn+Kat7j;B0vX6S6Yfq7Y!5|cqlFQX)T=dyY zv>DqaeN7SMqFHZ`yQpxFmCn<;Mi;8nt_sb3e=6n$nuG0%#KRZNEGkcLV(PzK@7XS; z^uH)Z)mE#7I0hhm*PC|DRCIF$tg4B5cBj)sz;Bd29KFdC?XIKty|Ecs{~CrSK7Y9w z+wAj+xMb1JEfOc#@`G1?mNU(aS&4t+;`DdDR*Q48^~^Ne!L;hJ7+E%-a7iwen%m7=8helcqutQE) zOezV4yve`Pn7Nl_jMcdc(iJeD<*DIr74QF|1YkI-`@=4J%7A*$Xl(-Jn@+ty}(u|?{B7sY7Z|XbziGD{>3((Q7 zq8kgIfzWz8pHYp;DjxhDuj~1D9LCCTo1iUf!Oag(CCxyXMURh5ONRn_<9F)}6Ut+X z-vMU6UIf%F@5*kL%080onXdXdsS-ttxpf=h$;D5A5=|qxy-Kpw1wTAH>XkU0wAxj6 zz*Hkk6qa>q3m9yn0ksR-Z13|3F}2~<)_r5?pU$dkMI58)2q2jXQu&PV5Uks?LxYU; z$k58{aZKL(pAV6XeR{-o8FON`X&7x-jiwuEZ&OYMR0RE>Drn{&J|bm!4%}Rk9OBbl zcN$ldu<(y;117e$WR;1$e<;A0X=%_N&8iu|$K5VD6<1g$#Q^8#_MB4kF8!pd67eUf zZ)WAHR#?z+k9zotEq+cWp+k^ShpLH?LtcrgAIF@#HvL1ddQ=3O2dPCNo3D^O9p)9R z7W}j@D#uep#pLKhd*B=`iqiI0R0)5694>@ktuT>ZZF6dc>kQZ0-o^eZ5xd%a>Rh*d z=aXK8fP}*#YBWVLy|aSOXa?35I3Rq5lp(M8fP#Tul5%>E(D;sW==tHn59D?e6!IQt zyS_2Bxu_aRq+;L{6+nm$-@C!JmTJ2V*C<2;ak&SMR)}3H z)~dy5NaE>=G#>XP@w;A8v~L|+T~o_%6xF<)A>m@K;ytLCCGyhQnqPt=;2(D~6=p{0 z_57$BqGU;%K)`q@M`pGNmgE_)i z_v`cCr&8gVC#dIeIgSn~j^DyZ8-#&TnAfNlwAF2ah2M~}_z$~*_{B)B4-}~9&Fr|` zGnTV8Hb_cDWdxTd^QnWhJQQGxFLHHFL7A7qPKjJ0gbSb93G)b50cE;3P>-`E5=CCj1BZYE!q=DA z6$_L|wB;9XtnLOc`7q6omMki!jZCQOD(ZkeywZ`XQ!n8T_nOvH|FjyLg zp`G2FA`FY@P#>{lU6}S}+9RHE!F5!4`O{@Uv)A*=u*AO2JbMuS|b6yiD3Zxa?kJkj*2E#59f&^c7i$1G_)Z(V2Sc z`^sqTJFfFa!yjho4kQoQ=WvHwji>_?gIl6J9MZ9Csb&|K;NuvXlC)cd1Owh&5&aF`1Cd$tM(Xj&+6c7Ixx&^*_5^tB5%F<75j=#S87*e;8m<H_twy z92}&Kz23+se`T?=T>M~G9*q?*0`DYuF&Blje^eFh)eJ#F@?CC2Po&zbKG}*v8PrCT zMT`u&aL|O)vV4KTCK2rdkS0~xOnN_F**;ul>@JgeWcyP-eP<=x!CQQ>UgW)@T0oeo zpk+AxeAr!)2WC%EQUz+|ut$zN8v>JnwWl%$U9h~7Qu|vg{t9YPVdhjjnbg{H4(#Hfa~82KG6M%6tAjj3XIbhX7taou8w{t7z3k;=OIYuVag829r_Sln(Bom`6L|Ku{}^~WWc#s~^T@hw%7YkT z^Glf^+%2osBqhQumaIG$izrxy0U^Jcc6=j^M>I9~Sj5m8S8Me`liJ>FceLq^X|LRH z>>%EUl%Y<`Xj?4u>7@OfE-x-J)W+^O`nC$Hbe2oLIcF>gz=kMxtfRsH^;m=sH7~&k z=AsYog&kan`O(i_wb!4pjrxu}j>R}ARFpDbO8jg{NHV~U7V3GbXB=Lg!$?jhNlHiW zBUE1(pyU&I_Awmq;m_J~$F5lcWTS5VUT*v-E@am1{w|PG{H$vvUq^V_Q#>m|L{_g* zCYdif!rhNim)=5-2tE^ZaLSQ-n8mK6dxMM_h(#_fW3KxL}*H?8l7c4|npog|oxIMH(L96uN`8RGF? z6dbeN>4yZV1`u^!2Q_yqu(K1fsRe!YsUwp`qYd=W*42_Dsj`dTwU;3DyDAgTImqz+ zV7&0!sbKkosX3aCxAaG1q$OQC7VXVo(p9XI#sopeYFRrfg^Lm|=8b?xRMt)Az9nOV zD~QM;zOQ_aZ#5S?ak9my9ZXJeu8#GO8jUI$hj2 zPs5WpUjT-ERYAHCMC?H;+c&wDgGR<2339m%n6$yh2}}`$iE`m`)|Ld;)^Kc5Cpgk= zD>oOf-#%+qn&rd3Ma5_nh$R|u;690pNK+4sd9qp;k;)dg*7q(4o^xedg9MTtLQ`QD zM^~;<_&uJxa|wQrztuE9#JOdq%rlG7Gmc6*nmbhxk$JlpK>R7J24S>3YJF#dR~}m> z0Y{lG%Yq6yZuZN^?{e_y?PVQ=#&PqmG5+5`noPTQhD^#~^5LTzfho^Cb@oU-N3D#F zO;}P-s$P~!OMI9My-t1lT1+6Mi&@OCR@f&sp{#|n2dkrA_!5p)0BK59HZ9E;XevOITW@ybi9T5uV;BAIHX<@}GHEdX}EV=6b^B+YBHC_wd*E7sazA0k}) z^bTj6B)j~Ecvpy|;K-)QXZZ{D0jdWz6nT6MeFZAiPlCk~uslppsSR;QPOE^&VKpLy zhc$*I$K!Q|YHnF{LM&?H3kmjNj_`^D@$jD}oH)f9k{MdY@wM<%3-Qt^^qYBcvkxWg zLbln1P-%eIOjvX?Z*?M{nS7Kgy^0N88BsR6LlUe^5=)Gpn}55oEEqO!O{i z^DEY@#P!J_o8laOfO_z?10sE*1Sd05g&Aa0X_t|*Se!RDLj9A?_D3HK+U`rD+LUJT zS^LNB&#)7(=HQxrTwEU@WwV_zeO8uICFsA?JJ`LJ7!u2{JTuJ> zj2i&8X&MqtMU{V(md#kti@r-1C83~b(H8C|H+W^$Z@cOyrHH+X|53&QlB7|X?|@cl zwIvjI&1fIR>pPT=%A^|iU?%^>SWN!8E$s!D)pabR=3Hga<9GeWwiC`-P4xB0;+oxf z*k0nLz5TIY;?>KP7^-^~5O&4}tW-wSjXh+TjH8e!3cez36H9CNmf_M8xT&)%&%ya^ zyYah*pE4KGtgcJy2T^tddmZT)8Im_kOuc*Bo1~w7k71K9cYn>{LjAeti9Oh-3Fu1- zC$F5+0spgs`$=_av1j`yeXZzgNnU2TDMz$|*bnad=;aOq1m`{_qHwR$m_;x2#yIcd zd_IuklDu%Hvcr5ba5$rBeT7e+O=z-cRBPF*)q%_d&fJz%L}Ruf|5g}M5zo}SbLx<8 z(!dyq`<6_;moK-!T(#gjbWgAcRanQjFVR1EM25(+fBk^u)TVM$@D-ZzXQzDqy_fZJ zjwFrm#S$ttHZX*c2coV^%rb}QrHf+@(CuU+Yw){@UvTcA`9s|41TQI6K1mvi5<(;d zW8EET77CJNS=u#O=eR$N9sWVp<2VtiOrz8}ZZYk+%JnG2MR z$0b>F{2o;QytJiwwCq3{caV0DQYnG7JNs_)zGp?Muh}Sl6h~|Ar$TR$U4Y?}C}}4zWEMc^ zRgP>WC7aW{ot4_yCh*jqFHT}OkU`M@hU{9CNd*r0gdnmIpz42K;;9W+cKdXTc0h+-^tyAD+3? zpXYJczgL5Nm42-!-D@zNeL4DpE^c&kNWpYOBwmnEJ2?0VuGpdEV53Vh7AGn<=@FZH zSga%(YuT;VEy~vPL`?*iZ5*ArHgEw|&6qDabELU;2Vn0CUW@mN#nCV=Di$#AWWNSq z-T-BCtjDL=lF=-UIgImDzzW?7e*Nah1Pji|DdF6Cn1!rU6S#$tQ>S3?(>{3NqvIl5 zl1+kUd+q+GC}a>JqpXuAv~pRyaMM*Yv%oKgh<5sj*dJa*H&rs2j%1TrL^=efj2#iG zAoGboRc#v~^fUV4U2)j80sPK9yE6!ce)&gJg(Xg2{-E;*ri{IpJhG7 zFc!~YG!OGF6V3g2KElrl+KFXMq*fDQQL6af;%BsJrxY^Sn-ugVR36Q2TvWsYht5Av zmcU7@j=@X0WK0PpUVJR0i1eP=K`R{P&VihF+3Z2_nq7&HE&G#@7^83HdhWTsozh=$ zdI1J0T8E^OH=Jb_gNn_0^}^S99QC0#hD4&-H{<-o!c&AQh_|#L(#Qq*o3-%B#8(qo z>UtVg-3;%&mnn$UY%^ENjb0#LyIFJUI&PF4sDp#-6%5i0|p02VfVYtD3jofBJsaQxsQ>o5=&PS3f^|7yC zmd!^C<{ua(K-rt2(`PEj08XRbLZKjuwEALr!*C0qEJEg-XGwHtRNJlV`A->VGmp5k z^}&Nvt}>&o3vqn#-PuFLgwF{N4RBu6zF~FYg^)SVp!o;9M>j^OKql>*EQl&&Tc_>? zhjU0~wihUX+1qO&`$yHGCdc$#Uz((3v&|37iDoU1XtUF&!u9OTs?c<6)ogNZZCZLw@iS9*O zMqsE*V_}|PyTXUpZ{u5+D6GRrAjPdSytgp6N2YjRD(h}=q58ct7wfarBo4x z(W^7}^S)=Cs4vnM2L{(!YzliwQ}(^~D6<{zHg{cB=RuKr+sKThrxWQxIFPS-i$e;w z?}$k^7Te%%w>N*>!*=}$<EDiMkxbNt6t$E5_NH>QC=zph zX2aUxa)2A1^<;+4Z`z9WFyYQ6&v07&8*kzx+Y6!@d24g&=ZgvTrR`Oe11@;PN$cg& zDRG|*F#AoL0q)f|6i(*+*Qr@Mq0XhHakCO041gynKGjK28O;hp3IeyV-KiX<(T`x65D&%)1F^Z8WU zv$Z8s&Cy@93!7GvYYwCfr!DMP^atu1gjsl~r`T)<=i3@kEaHRk!4Bim2^>LA)mIY_ zNS&Szukc}yc`$3`4xhIt8a|h4`=)`tR3q;KtJzLGKw`YA z^wP3TfUp0V>4t<_S*LPNwzrb(3l03}1uFkgvuZnn8n#No+o+aA(_3AgF|`>GuqkJW zi@S>#)M&r%eYCn?%$}YzMu|D&V@r0}zuW$8mz%x5P!Y_?{z|z7Q<8UdNP8(M{F6=| zArIf0QcH$A3DvMii5hOSz&@abf+34;TLJa0==XMGv%HwL!6*V9;yi`qd{IlzZ<5W- zLBf*y3dL*OBMU|V4w|5naSGw7CiKVVwSqF+>Tml}L&>W@_Lj44v@DX7FgWoM7VAtz z96U=onXo${G1Q{Cjo!f)iRo@+>sR}P@-T?}mUvLh{YajKy%wv#3d z*_542(1^9897{=DoX;SY4K}e0k6vYigH*QD%FVnGKTnOr>z<&Wq@)FxAPW1S*vGpb ziQ}$4J$&Gbjmq1;s-X0R7CUt&K!`9l3aLX^QkX>Z9k}`}6^BgG>Lf3OY|jcO6w8z>~#K zev^TBNgt{>)#*#fHCu8`MUK%yeE`YjC#?CwMVF!eysd_FscvnN{hZ4+b$syT!RHSk zqxVvV2rgfFV|%&ESOg+_-Z^rD3N4DYQaRovcd}B-MNqt1dG##T$frwnQ8(2lZLR9n zLElZt@b`VttVHDEL4;sNC+E6J!G)Xo4Zk#2re66LScnF9{5Dd( z!0Movk8Vs8Qmr-R%0Lx;)Ym(ztF-?klFWyWMtYiE_acOvJ13mrXPvGS zWvfXwW%m;L)C4`+Xs2L{v%>Vy6ym=scmZtLB=uXeC(zXc>*y=VAVaD*?V8LZm=2 zQo%pfk(m%*a?1LsZB4O?c}396BHbs6sc((OaM#A3lUYRmOxk#iHg9(uuOd0ny1l5q z#CFIkGfO?_4UJ*(0VgZA`wq9gm%ZvtDhe}rxS1Z4!O>>jR5ITc}yQu4;C%DAMa%Q(vE5#LlpTfj3q^~BlUWeM%GG@c10Lb&PNi*{c7f}YUhs3 z?^5RLdK4ANN)ruFy#Wwi;-2wtxvS{D=M3gnlZI#SiZs=Aau=L=g;_WCQDce)4VBvo zI%YAMCcsJty}Ztt#dPooJ#4!`aWBWWS+_+rIA7*b9cVq(s5at!tZw*29~Tf%)?4xv zZ0*nY2yFCxwdrBb+B~8i6G1F|WBdu@?$E0w$F6n- zkFoK1hwA3K+nCfDvRuTds{*{;uva0;1$KH}IudKolt0ds$oXZNYE|fue8-T-=|3BH znrgv5#4nl^d9}iCWFa0dY#<*&77M6A?3U>frE*#?S7oOA+29s{YfdlS;!ctH@S@{^ zjXt&A%m$_9#8rQx4?RMAAtp1hFKU^~_BcZGfk--DWYpdp_&EB6NgKc+AfxST^yD`qhPOo@g0e>e3dK zn*@Mno~2PWgG3VPsG}E?u|y4+*H4@HRw}Q)AWW;?O$?#1#ci&x?3t|x>lO%t5_@Fo zB+?8JZOwF})8>{ijEwj62)_L0`b2q8O(!oV+_tXEIbv@own^t(b5flFljy3A#;BFD zCg4rlkCh)<-YQ#Ok)Ld&+<23J7C`@(!k^U3A!FDqgWb4A!69BO>bz!APQE@Dbv&2s zNS0#c)c)xU`_ zCz(T$`0S{-WOAPqvnp;il3lGHY0U4U>}`Er@E!x9>uB$ykj}a7VlBrEaRjAwWh(i2 zal+GSJNb9L0^J9ZE#GIO`i32rs~WahT@oZ;ia~#k8J=a5s(~w`ue?uSb+Iu?-RLL3 zHN%*7kwD126#SC|zay`~*-pruoJw%twtM5tE<9Vg?dDb98KSvuN}7eF=SUk3fkkoJ zf($rA<-+^N7~4}#6tCIG@mWPyo>-5{D&3Q6)R3~9aG!qH!%k+8;)w7d;-v_D?`%G3 zxcbvH{V?Q7uw{?c+Ul#EH0g$VAsZ%9Q0N8NSRElVGQrW}v7 zG`CnTJ_E+PM)g!$^LqXhP!+;N3RVt0laDq(Pul8HUNyfqij_*d>$k*p@{d3pb=q+qiEX(=Bfj2g8CYnkHiWi~W{GnA1xYBV06M z1CMc1NjY3aJa1=yct3vf!h%F{{FM-P@oeX0*We~6 zpL?D01OKl|(N8MiXKzm_GloeuT?Utgz!wf5pDjK)cXgI|d!xf4@%im-xiviyaw}f@ zFnnhr{jCY=ez45Tvd-l|C!3DJ3N}T1msD^4js3TH#qnzPG%+{(&Z;;(n`^oyt2TQL zQD*iNLa``)!m22R`HrK@Wz_52)M($vyQIwk>8VdKzMi-!bbB*P^Zjfac+d~V{~>u9 z7}o#h1HU*=z6Vi2AA>I1WW;>OXK^QX)wI^20k6mD8i}g5zI!VUKR%S2j=8bcpP5z` zle9RaSo3+X;G<<0zSwR;7GWv>)L_=Ys{_jTp|}^%sOyCj;K(=4hG9R954Jz!^qXR( zp9RV82w@gaMw<$VniW377%B)9A0*A})k;Xg$+RkXLb<_uG5*a}r>Gg&c^WZR8;O~z z>b#(Sb!K5{S7#Gjr_in9E7=+~?B@Ad?n1_rgC|e?NHBy#F5u( zM`TC{9vk26WSXCeo^UIfz2BRkdTSo2QC`QwxWt*My=#f_=wbU@4SMYgb(mEvX^SJf z^+0o}#7_nuW9cV1(jraczP)0n%ODeU*xYU{7nggUl=6+^x42xxwAEbdPQxa9t5X^a;d%~!Y(yYz21;@-=r^h?s`fsWO>4E79JZ<~ zYG2OT2Dq!~>zmM*oe-41#}>Rqu#oKLo-PqEPE|a9OcUYE z)y@!YfBnf#{-dj4r;Dcv$8!9IBFdvgJ+mgd~gts(7kc$qh~ zu|pbUeH&ecZ?($zI3jN-*$sWUOM4R0rx%4mXCZ1UbIUyEv|~05YN}q?ZLJ3P^W3ZL~HE)&^6;UwDjiI1muZchkPtMv^EPGg= z=x*qC%)rn7?+-$}*(xtA&)+8>W(PSsLWnJ996L&$j$l$t+(|5G@9p+E?LOrZR^e#_ zOiGzhWruLcNj!XvjYo{2oVC0)(v^FY58C_$5Fq*R4C(Mm#q5D|uVAiEler~7-HN7f zk9q{!@jR2b$U|4EH+Y&F+)wS|c~ACyTpk(TJd40$6<+Q5aB95Ks;a|~DWLo5iv8q4 zlQ;bwd5Eo?POIY?t+uJS`%UZo=*1_{aO2Z-!rkxKnE79pk{*gq7h>@`T#kz=jxOkg zDfT4tbNV+svsgcmEgGZw`h6mOlt*&y;#1+^b}_F<+O|{688qCFensX8n_f3AMyoc+pnleR!|lDrgsaa6;Y zH(Bic$-#WGks&UR`1|zP;~nL>F}1{arvhVRsdd})y4eK=mrYwhgspqxjqz<^5)tn~ z7xq%R+@7tmczEJiF3^d##oKnI5Pf#eyx~H8d2Q2DI+9biB@>Qf3XgNv>RkXO?q=&c z$tf?gT%|qcWjW=}8pY)Y-xOTK&t6c{imxhWO4<$1CM? z8zZ|#fQV|VzEhCQw(K=7oK|()(v6H$zNl<+0{GNpS-N_42Q?7+MABJ2tlyvJzhvB< z|4^^>Zf^Xh!&30e*!M0CC*@AQJH~yHWBcCA0PU{XA4rl2(l%S z0PW)TdKV}}3J~V^B)lIz$o9sPLe4K?0dICYBGvAaWiVdvuN!~EQ!B}kuuqw|dKVS- zBFmM0M5NQ-w&@~qjfy~U&&;dnH5_HCp5~BT7oEvMM%B1R)D_zsr%_Qmc95plk~|HM2a%>Em|O06X`rdW{-yL9gonhzw5K|{>2-m$+4q2bqD;n< zoQ+-8mtg{^%~*%2Nzsg)W#SXDdHG~0`&i6Hq<2csan%#Dl31sjvOYBUy??o;n`bm@ z@x5|=81q~*p<%^Jsi$-68Wif^`Snx|&;hYeqv4!q0+ zUe3~w?+`0zuB0F%?%UhR@7KNDapA2{wkjK=*v%)jwH;Kzk#--@9d4(L%E?{l z%|}aM3AqNlD!tQ-^c5e?=Vit+{h8ur^?d@wpM!$Z+~KRMNthA{VuzA^Nw54nb$36w zQ5U;+YJj64JwcG^&ucMWCP+cY)z1)_^49{TBk63Vz`)W;-ud?R&AmrtbLX0*1i+gb z%{|_nUDF)LFd0C;MAoy2*B31`YGg%IRgQW&-Q*cRquL&0iw@{zE(=tw|rsO9@D>9NWJjni)z+^huC$afmSL0lvRXFJB^?TC*6d|$;|u2 zS8rrCNX?y$53bT*DQtQIUIXEMV2B0`rIIflQ0-TjTO`2>B4=H|@8zJxCa zMyvG4df*g^F+s+=Wh-5-iqNH>G2cTQN>As)(zMQ^FNBqPUQ0d&FC?#)GqWD*vl3mn zP@_F8;tJ-m7_M=D{1OL0G;(Q|A+?(MCGTyv2T_KY*NY9|)9|-bx^T|qxuVzBNam4p zQBJPBsa99B0^C^?ewV|SDhL1WW~DDagyE#OKtWX4j^shMpI$RX18~=cT}K$ zf+>oOxd^+ZVl5ak`OT}`M`_444Vg{VPeYK8z4fcks`aR)3`fF~NIX#7f7mrr4(Uv7 zDMST>?5!d&zUV_LwLSr#dcO=8ec3knBX?~+>qbMkb@N!{=wiw5c4AZHw9~JB$*+H@ z^={wb=fNq{9l7bFtfiZE``GhvOA~^gcUoa?!mZbDmTqUVZm;fsWZj*%-d!zu-wuuV z{j9sY&GPfT2pMVp0Ywem*k=sTUc;~}f1oJ-K(XATD_}4T4o(ON{2SZC0YjJkFW?ML zF0Q{JGZa*0>^_4q8?T9ew!tNqba^O+XU^Uk$nlfP;{=mxui(2eF;*T`zHT7qr!;_^ z$WCMaq^{ohJQ7NDHwK|C^;WihCI4AGc2r`)VxDf{h(-K57G1w+(PT(!zLd*;d%Ej( z5oID(>O%?oag2%63pz_Z0*RiBQO^;qG3G#|AM-(!xcPjZL~n0rai(g<_P)*zX1>R! zPQmYI8nUubEKGh_^^Ur(NUQJB{CiH812r;Bq24*(0XW4df_@93nTpiV6Sb`8qWbcm z(Hi&mv_ciwY$(Tl)qi|GIW6T`wJ)ei6zxV18zoFy9C4366j{*Ht^OC4{uLSYe<53V zxc{a*?#K$fHV`VJSAikY06f8YUw+4R9onTu9tmad+D3b3rE|H$Cd&8CJcUzHm6#8p zQD-xsmlkW-8rUTI7P4jGTO&^oQBrnDQvXGy{}pV*$-((|nUwjk5jjxzZo;pg&g=WB83Y;^ci5%e6rMK(ZK3a^VGqA&|T)cWvx65EFA{p0jv_u%L4V;B`- z8N}%W5T39}q8HNQmM?Vew(!Ft5`}Ar3Qlr7>*skg6Sg{J$)046u1I)deTHaO4a5ps z)j~vfYMK1u7d}1Mtj_bx6LB7`Z6Khqz)F=^awpw+@+6l{@o(0+0E}Y|0rPO@ZqX3A~Pb<>T#|UVIW5B+6PQ z136vFCfj_L-%@-|7yprPSv?CiYGAQxJ3Guvd^k4~S^LW{mKD7D+l_$zfXAB=L_EWN zrIPDI-*cyMTP)pZraVH{pqgrBUf2nSXu_5fkwiaPgm>V9zt@vg` zuCYbAh}x*>#w17T+j;_GAP~V>_@Uyh$CJBDXwIa`Xg%VwC9`dC)}M>h^^$puq+)-N z{=%S8?QM~om-(UPP2s1WYn&K64ZeTT)n8$9|Cg?KdH<#=_Q(n>sBa^ADYc`1Ly5Qu zQ|-F0YoEsQ<8P+Mp<{HQ=E)yp5*nwJC=MIRDQi!jr0p9mbNb9+$`IjL-_e+_f`6E3E7ri@fLja@VOUAk{EwYZR|-@)$`I5ebIC5I`Ybn zr&cnXRZN1@E}lw{?MQ}jabDD`Un;8X?T><6_GHn7@N1W~4txYsE4Ingc=vn{CBODZ ze6)Dz+Y9{*KL*2jHAV^i7mBr7c5l999=v;0;1ujc2H2Si4_4hU)-3kJ6tHIl&am~y z4`Ogi7Aj=&y7&4vw>fnZ_!q^)z>fcm;<^7GV89TtI!GB*p$_7NsDL0` z2*w1j3B?{~qlP97AQKG0S3UXQ_$j;J$q-tM!)>Eswfzfk80hkU;SKq_Q-V3`ltIen zT=4k8#Ej@0W)IMrgP%WXDGI9>eM};a`MDpy3e&%uAw3{eSCs2%e1H~iz8Rw#t_&|C zZPEj{zG|ZNe~|@-^88<9;ec@bZHGXE34SL46BNv1s0Nu}3>j!E*MK3ci#FWtz6G)4#$Q8n@z=;(wTM^ssqeB(a6YzxII&`s5>T08 zd&cLIW#jS_E$-*6ITjoYUr9Nf8JtN~9Hb9@ZhNtg9b|UKeBhl%rJ}d+!f)Kf?yI#Q z(fNn+>XQ8RAn4!ug0qnhiYWJQkc*u7gZ^cuFhJ`6vQjYk?D*iLBxZ%o=BjmZ5-p_?2onSMEr$ozV z?T3Y&xCI}#Wtr+!h}?Gio>$d3Wyo;qUPy!w5f1Nmq@1}Wa~2N?cq9_!D@t6FdDS9e zWvuSZSf{*}tmA8EW$=c$dODsor)uN$6-i4IO*Eh@=JpcGO($NahNq5C4je5dU6A?R z!Gl-4;s3=b|LegGdcylFq81FPRtEWZLU$emy{_Sl1*S#!iV`t5t&B8W)SyUdD1_R=$PotUb^>txfzOt(gQAyVcx^#J zbfCDUnVBgJO%26D>jI$r00>1_n?OpcH_I7XVZQ0F?l|&_1dF zX!ZnZ0r+?TKyIMf56lK!xe_pmb7$qa)wC; z-Jn32%%Zw*akYhmXEL+*j& z=1x!r|C0KDSnoeYg(B{u0Dnu9r*`HxrT`EW>~7?KFCbJtE~rh^oK0;tV0?dF2k;M- z0k!@k*k9K1J0N3Zg1RrkJh1-%7oq=d2SfY92sX!W;s$d-eHf+yUM?s>C*tD;@bEz2 zq5FXw%A5yA&|?87A2&Lb01$5Iy#n0ONuYkp!v*cj3l#taeTJ2=b}*En->p2*@vu4h zc=@2^uR2(HzZftNI;?~V0b3M|AW%<(jpc?e{MQ`NzEHmR&tNX7B6#nKn}_ed;(i<5ln2@(qJW&?(G3%_lwZEp-a3U3DfVN4^RPrO~DCW zF{}k96;yKAaF`qXHrMYGYBKcSg4|2R1&vD3W#5Yr^Mk*M3R}~?GeKv9jrz|lFrh#o z^!v6yCg6kc0e%zA5q|jq%n$xf_qvAq1!4Se+$X2s*$4U=dtdJY;QYnx&zSW)WWlZnk%Zd) z*9?EQ|0Oj4S^1YV`Df){*7s-SUr#5>P#?cv1MDF3JM{nc^X+#O=X%Ty=H>=Nw=*{% zG<*H^?f?A+ni>DE&r=SlJ^oBilJ<_aza#ta`&FPq{pY?B+ZX|Se*mWVb$S2>8$m>N zb)tS}_sj0Y8Wqk68dqPjUTgLq!4W4z_N7ptF6_(MdHJxDh#e^lQOB#=?=uiFA_nC8%IX;i zf)*FeGAzqA24DPM#s6QYRVCcOn&X)Fe;;u7x65D0IJ__e7#o>bL#_U6 zJo8_Cz}?Z*3>_NkK!8W(#F*B{;DS#J2QJ|cKH<$RqgFzd+0tms#$uPLY?r}SCWyV^SxVg@Paw{&>0vc IlqAvrAD_PNOaK4? literal 0 HcmV?d00001 diff --git a/experiments/xor_nxor_exp/result/figs/gaussian-xor.pdf b/experiments/xor_nxor_exp/result/figs/gaussian-xor.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8e9c4ca45b0a7a7e00080b979dc7628d1f5f235f GIT binary patch literal 18713 zcmb`v1yEeg@&^h8hu|6{3j~+NU4naXcXxLu3GN}dCb$zkxVyW%1PiXg-fr^cesh(LKqJ0m3%XMh%H9uYCn_$Kbo0HCA|XilL&O5s0BNq`OjsAO(nY+-8# zVE@%!UCz+b#K;-I@pJG$#bIIuF@7r`XlrZd>;#$u)L$4Riis`gjqBF{;*NGM_5iS& z!b$+3h>5F(k%^)>Xll@#vZH~mlf8kXiLH^xZ_R(T2TcT&H8Hj@5VCUzjSHTPjf4Fs zf##40cX9r0F+~$6I~PYIkO{#y`i}|0R{e|pz~cOtSIoj1WFi1i%o=1v5fdXjW01*Z zOl-}Z%>hi{l~DwDbaHkyF|a{&Pm4^KEq9T0jQ@5?JAwv#&DkoD2Y-TQT?37A24P@s zJ}*`qcz^AYF;~t+-wj)*qw?UI?sc@1`~lrcv?Qb?Q{Y}zp!F$k^ySULOa7<5bKLuL zpupvM{{7|MDx%+ygVi0~`}6XR%*RW$`{Pl8r#rjWhq~3rt2%+Z`|tTtc7BiSX16P& z*72=R%YF~{!K16*19b@=Zw{(-9>47Cm}HLA`r#eS`dxiH_8pzPf4h1wCwDe_-!Jeq zDez;*?2fEVC3hq z?{r0PMxL4ZO>1Ywhc>5c*j|lI;_2SLc?WX@ zID^?oKC@jT8VO1Z#CwT%K0ayuNbGIgBab@ghKJ3oL&i5h9*C-BuPSEyGr7jirr0g_ z=24gK(%mw`NUjFU?=s$}n!D8v`Llg=nO(#7xW92l_NeCC86bZ8W=KJZmT|>e``vrA zsd$!eV$)%!?wISxTvb^w1uE>6`0C!E<16-qDDm6RnFan^$%Bxq5N88+*6wHGUkjszg{0HF_*@2^je@b;?1) z(98nMH*5WQ3I$V7il>dhfm=$wA_GzUvaM%D_XyH<WgatVHdnd4^396OR zRmWW~-cXu(1V3MQ)6S3offCiJ`@)1p@ys}PEjg^6l1);Gs4+Bo2=lGuNfc)5RF#UJ z9x=vfyTx)QzM%U^&AGmRc$fAUG>D#WX6G|?->2uxoQ3B{v6)iWvXDA|9FxbL@F+Sp z9h#>GKNGreQMla?a-yfa`*G?Y)jj@g{5flv-Qz+38)6=2R~_3u%p63fx9=;oe(XUl zKxiYojbFm?IM*KJ)na`1$F|P+UJvDE4|OX*=zWz%M=0oU)ZcN8inq&y3c30*z5e-~}w(DCs&A2{=Oe3Fhw)2;*JqoYe-2P&xzXw;>+^CE3lxSB( z9E2GyIt+jODZ26Xko$*2IEW_BuX}HkmKmqZP*6*GL4I=eCU1;BING~i zodgNb$%g-h%^xN6C1<9~VO#(Bfb1!? z9wMSO9^D74yF9lgMJ{jJZb<@N`N$SPGF;yp71ut`^^~V0d*K>`X}~KK(wF5tJ}Pfe zO@+FkYKe?uDP$zb595(-&>lS|$vX6j0-3QFTOq2JUO8x&EYz1>gzTd1T1V^?9hvb==h_#j3HDNFugq`x1AjxUt5Hi%@k3p$tZdQ$ACeFN?*-X$1>txj6 zA5wfH#~}w*e&Rp9^eP|kyz)T${!Xb}A|$sP%d(-0lbaCcD4Sp%AzzR1aXq3m?#zIr zSc1x+=wm@B*uECicV)Qf0hxVV$z>={2k(fh8zP={&xU=ePSN1tceLE%eb%@=LN^PZ)ssgI}xr2CRk-QjJmHFK%4; zXWvL=Q$S*fLy7kx$40~WbeU|H`@L2I}5{i5FU2Xh{x@&H!bgnUB~A#^p^9}^{n*gVbr_w_)^G)nZ^Q* zAc1ny&b1ytDcb8QO3LZh2K1xTB-lZyl5Hh=sgK5t7c!44l80kq^JBY&Gs#Lu-4_#Z zrZ6fmbIy%Z@K^79^*Cs28(!#cqZH|(m6ikXKNx{{hY(Tg_0YK zUDs)C-3b+F$p{F$0=>ld8?_F4JU*@+XiV=4<~VpGYuZUFe?Mq2d zHg)B51iA~j7{L;5NhfJ>c%R1FcXBz-hI_nJr+`Sxb`U9;HEPt_KSCURFYAIP#ngo> z#82p%4u9)`GVleu+(48cR^tXWzk5m{OpZMQ;VX1hCUX`&6kBG@k4OX}{}TLLc<@+`41Rb~Ugsym_kz!84AGNe zUP3-|hIwnCh<(d*$GYiuOzqdYut)< z6i>@}4xuu*qrC|g>|BB+X>ZJLV9bbzn}f_)wpAzK9iL&AOs@r;bJ6jJTJ-bg%fq10 z%_T%e28XSM0UeCLX$NiwjP5{J5NDAKVLETL_`d^2(<^CwO?WM!*i|#>oT^_a0pDH& z;XRtwD=Ofpm|$`h9f_OWP<-Q#3_q1@`cyR4EZFmz1DZ-0r50hx%RqzB$9#CtR=I6) zK9Clz#aV~b7d_^v;nX7v_e#|NS$3;_h2;;Vi_Qju8%l@CYH>?LUmo3wlEGW+Ln6ZJ zFK@j`ydW@SzM>1B@VK{8h_W8$NA+|uui~Nw7QAlTP=L*0(s_{-t?>p0z^_gKaJQfP zCY=ZIktrD&I`eK_7RFZQVsJ8zE+Psd;MHLohH4cXkB-|pt-ks=M3Wz(#G7R3kFmjd zI}H$??bY<&njF-U<`T`Zq35(0`-UqfXARKVlF@7m1iPYyJu>_X$6t3`>{@~-E9qaq z0?fhnjSo52B}U+lR3j~M_3)(a&FK?Bj7tiyM9`2d&Ni@WRV#B=n_eoJ4VS|ez*kk2f|Vx{8hTt5%ls?P9MM}? zq4|Br?f5b>9>hnT%Ha@CfBA@T`^;=OMtaDajrmh*mx?$aeM~xQl$9A=z22&_wb#5$ z5OtRyCSSPaX_9RlGw44RMFQ&eIMEb>*sM%NOFbE85pW>kq|n*p(!ZA^0pw2Rn{L>< zA_yrB{7crTcjiP3zfjWQ<|tQ&hzA^|efB(>F!*YcIyaI$(%E?Gc24DjP(-HC8LsxA z&>;PF#e}9|@VSpdxRtPNYERQheHRIv>vAR^|BG?HQsXDOlj=}xLt?uDno?Veq>~g_ ziKrLth@?h{Ma1(h{TrtV;aBp5M{UfW1iC5TV53@<-0d)mk@_^j$Y4Q0e(|WlFDz1b#pI%6^yfj2hQ3X_NQ3+M@x@-4&PiAA;q}0H5F5ZS zE3ju>q4`ArBRUs#-2f^piE>&={DT6p3S~9QqJTS)aB*{hFz^lRLflcx8c< z%;lYro0jmFw~{YRoo*rh;QRvIGnjA3Qz;W68$A~x1(#5JGxByJH8ofv-X%BE!X$EM zR(q-?W4`9m8YmxWzAe*9MnaE?jtKl1T=@=V{& z^*s_@PH&lzyESI8% zPE1BB=8j@4Fz=RXK-e&yDava=Swj^`b$Elk;zjA(e&Xf zC>bkL``~T|c25Y%@Disy(U%>h?l90oX;IE|4t{hRIlXVc@Lu>2$0gdnXB7T4I15c# z!NsE@?6HF3j9@=sIND(Zg^K)*=7Y>0gESF+IUT$3p}ACbmaXCqJvLM-3lG&n{7tB> zRZi60k6YEsd(BIl0TJ7iM6Od*{pwhX+S7n9=~_dWR7LZ`x=Gx{VfX`99VEQi!qcX& zTT@7lmL?MlW{W>{ZGFHdGU3kMs+4tIjeGkT>{36LY&4Uy`XRg#!oo-8YnK1IQLGIO zbf@QJk~tPDwv4{UH#JQ{JmC=HTL#F%pq3fS3vmO}`S;r|Jw&UE@AshW0$-AtkSWHE z91n)izQ)}Elyf5owint%_-Ds)|9GIe7rExRr*9!TnV?@Vl`DU>Udg{q7g5s`BVE?? z#k?P}ZERR~cU}vr+G#SK+**Sy_M(i^Z!CVUW0ZcdwN2V+E&H|!lt z^MF{!*x;9v*@(4%2OT8^OnqaTLej8$I90#1!+<@cCbe#yMi;7@$jKq?+Cv(i5Zu(S zc+BieQ2hGTmcxRD^5O9-++}m*Q1H>gp?S8jshI%dp&q;_q)rq6Sl!yfpf4{7SWhZ1 z=;$7gQ8;B&7}?Z1#WcedCw3=8mP7e~R`o;pad}v^d>vRg2oMokeOHJ}ef3FU&=AWv zYETXDRvt;s30oa?!=Dp79-!}`F01^gMU*s9;AOZU?}}ko&!DMsM-AZ(Fo)2qE@^Fm zdyL|B>kJQ?YE%=&&0}-;2%X{Jr~y#5Bgd|Wg*Ja6FnIy+)kTF&kyY^ryhAr8^C$9( z59^2uR6}BRRC4j&sc~EOSifYzX%KhG<2|gRw$Zw8IXrK`H#>%wj27Wmbjj2f>V{I zd`-W?o_f(~Y2BL&SHr+hG$Ya0$IN_i`$Kf5RI<9lIQ6o~2I115bzVG);Od;v$R@yG z778gos;aUUa%Z*B;aC3{piT#>bianYcXfxIsrkf;+V+C$DhP!gS*(d=i%|(Br^Mq5 z3p2JIK>pIJXlD@=u*pBc~|% zTI*0;VcC?1pqH4Y=iApc2Lxed90UW)_R$@m>JOjokM_-y9vIC`;b8N z6ABdRNb45stBqyTcuPJF-p|}vydU=8!n=rbb<`BW zkQp=4?Hs6qRVD3uITKK&SUsNj1+L7`F*DlKlVDsdh32g&ZesZ~&amjar7W7!6m#Da zuE*hqC3S-zYWSWiBMB*_$FN^gCwYCXTQ6U+)7#-_1XyE21TbzyxU^MGWg1!R&GQc` zUh{I}eysd#sol|$aA19{s8D7-OLc2R(n9dubN~fA*cLBxBNxt})#D`(hgcJyC(TQJ9^3&8zwp|r_lV9T9)uV(BJoml z2xT(Xiw>@8HeA%L#E!((wm6o0nh0(;Fe3fvb4z~9OpSO?%`>Y6&x>mdkgqX;m5-F= zuV);)KvIW=8pS`1)-_6HET9GI49LA!6}i>zh@^(E9}qaVzN?9{YwlUHNb-3H2Z;f+8km=|m=8-}dop?* z8Hdh@^6rK-xe9~*b)hUJ@Ok~zsVQ3E)WU%Mo>#^ z#!Gg(*>GB$%P-WWG{_9(Mk4K!>f0lB-IR{aZtC&|-=EO1s2tE8qE=U&e%R**Xfv9V zPP;42QeOdGk|aVJ#;eKc7Y-b?O(Lz>Klgd0NOEl@wf7Ox*op?B4h1N-?=(a{3x;?S zvIsdPn>t@U!WfU*si`N9y;e5~wC>p3OmI}`wzBc?+BrJ#k4E3uj zPMWTHqaPmp9NRK?!mW9K`7jH9xddjPAYB>AfULYsMk~jPXNd9)vzPsN9Ku9`H$L=< zjHh~N(QXBjdCC9^;Sy6k8+{!T!?WmJ#6W^YQ}@hc>;c3Reg0N`^*j6*fp#lb2*gwb!{BEld3v^kj^wq9yCEg~oMX2$_uZ`q~h$8&`;84 zzNVb`kUVM5*US>z5neKMBdTd8Y@FG0+$p$U6ziBBQ}LCv(h>Hz?k~`^s}!26QB4)( z(PGBf%%>{(WXav5zjM}PJtH59-qp3~)~<*n5eZ{8(Xw!nv&(apV7jivsQeC(SG6Nc zEya{snKSI3MD83`W9Lz&VE)Aza36Gw<&Jw0QtoZhiat^qgX+wVU`c7w%2g2&%W&dc z5CW4r2gxt1+b5~$R)6cs%XB0|@93k+d27{_6W{>vR$dxcC_0p$kbl>g>m=YBa;9R9 z+8FBhK-2YQD)a8g3k$^r<{~eQ*9ov$+K!21B0i~3>+QNN5k(jVYvHV)=(I#a(-57= zEC!U;9nOqD8JbOB&AR5F!pGXP+h|Dl$K0x!ee$1ZfS@|1f{FT?!Pn$Gq5LuPN5Fsz zPTRiOXr*V2mb$Po~t?2iJr2Tg8+LL1Pa@BR+qR@*x=Sy_dgS050 zPK;S{-^WDj(bd3h77T@?D~Etb-Ij)pJ$ zJ$K&@weaC{E!rrfX}eT7omQ;>p;u93Rx zeove&29KPld7fuQGFeGfQfTFAO06w;>{~c$OAt_gzgT;?t4aU0AiZvWx}c&ssj^ig zST(!WOAl-Go#?bkzB)7q8OtoI!b8?$Xd2o|c^m~!wfp@^I6B(Z9nDfh`1JM)Us#ZOf0Aiqj?E=?ob@&_g3aIAr4mI zLT0Da$Wz!M1~f;hy7x=Ti1*C-&(Tqcu`0QFUh>O_^#*NSW#= z%O}pqM3N2!-HK<}KRQ06&6jLVrx|IB$$5MlZsk90dArF77MYIm>a-bKVkT6`*OavQZ$` zbxRwCMOa}Tep9c)bDQZz{x=fa6bbV=d>ID#18g>1k}nByom9v8MFoVL%$>aDh-lE& z5G}KmBPh}F28i~N)|b1Zae2+UAr8( z89JKU@eXL7q=Cxs{XjEw8Z>+^Fdj?uKx9!f4c&Bs%@3*Ou>i;E6RekP7Cpt2w7F(3 zou8RUF-w8F644h+m5V>RMXgHH!kW%MT z|4bha@qC+5&E*xt7eoZdhj-Q4gyFoLk*}h%xbVzP*vTV!SrH>PAyfGvHEL8o^KNKO z0pd6>mrrm|)kXjF^Jg4X&6_HDkvMzI3qc6^0^CapNrsd}97 zMMh);Ervf3Fs)1H#yyuBEeUEu?;J;psVL(Iv@AwhSy=#^!`|74S7S>*GZt}^- zA`}i6+T4gohiG&KGZ=fGz}GX9oOVaxkgJOFNm%OIA~ED~*NKFfA=GKod7|?oT<31N z7S`&yG*PwioRZ18QUQHfRc2y`+PNp!O|BwK8%J{HMs6`v#4UENwAJcl(_gEoPQs@o zUtzd>seT~W+dNTKEiJ zd}V^7ZRt%u3;s({ecz#|ELN00Vqpq1r)3rNCYj4f-XJz%Vgf~JcS|dJPX8I1)m$cP zhm-Uu6%|M$oq-Ol+ixpnqVtL0fd_k*&TX&C9nX0w2!-B8Hk?+F4u@pZCamZs_;AT~ z!s3%>FzF!0)GSC3RkcKY$DlI&=!*43)_VAb9?fmJ!Qypw7poglhq)F?STDcX6f)43FDBNY`p zA2gU)&rLC5$UVODp&k_}UbKWzQ@S|#aVGMitH0`A!0d&kjL!UqtzK1(60C7K`s=VX9wd94?zF8m&YtW1oxp6{Q zUj5k%_|GHsXN&YCukVT2xL1RsA2#u-{by+Wg^rfbqfByluH0v04!DBOicnWQg5x#p zqGFqcnJ6iZ>7av~R$oyt-R|0Yss(=<8S;Is*2Pao&A;NLU}P7p%su3J_)6Ga^dd)! zlT_L9B!lm!zH8FLh!dN(^p1L6<1O#DD4elf%A5WLKGb7*l~2#P8dTOB&*#qz>rtz$`&6Tv4iw5Ck$Im*&YGLoSF^*`hOh`Vr=bW)gWY zOxFi>K&@d#^SrdjmVFQWzzI7-U1wFq3mFsT!CB8ZtPo#RMDG>2(@zZdez6bzb`n|c zO9haYnJY>n)IgM)dCE*{!tye4E*B+rTkXyL1LsY*1v(?I3~La~$q_YP=Xlo^jK06* za=|x^UBcV8WE-Vc?D{?fp6)S+XJoim^ZDf+SS?JQE+;E7}D9V_MftY8U|_5wZvGh zfR=Dq6${E=50MWC@LfDVf1(8cCwRc|yEu34t<$hmlCF2^Yt7O6-h2lO= zeZDpxsGh+^xsdQtP?29(kDh>GGLuyRAu88?=m&yL}^EG8y~ z458c3ITIx`n@;oR?rmMC9S)&Hbnd03FtH`IW9D;H8Z8*Xyb)4} z8cdq-H#1BK9`m-{TMY*hEw5_>P@{r{a_sh@oHO9-xI@45~%=t1i)bVtwe2 z6VWy;EBWXzQsz`>6zS0!rRm^&Eq!^*Z35MzZtYMRr<;bRdrtB=NMTTnD?9|rABi$a!l{V9s`KeAew z4$7QK&-i64SQ<@%uUD3H6Jq53+W9vN(N!LUXU^MmSawpn4)NqRclM@xOspnt& zpVzLkybB7=XJ09TF`z)Hgp(JS&LWb{>tomD1SXm?@P{4~j&n|GL~rtRdrhI<6vf7Rqg3O5n{(aGE-qW873)q<)To~E zonqvJR(E);Ax1VGx%Hpt5r22Te-78cMLMF>$0CKtt=x-nZwQ;~hC;Lf=XgRMS)EJ- z#KL_&zxRoZzA#mFiHz(*HGyi{{Wb(99=DG_TQHHV7fGuGl8gQ=d_mZKo^ypC+~({xDF%P1>+G%jZ00-5 zOsZJbj$;M^-^7#^<3_8Y`I^Jypm15E=^yJo5ZVYh#zj*vig7J`uPXp5@XI z6M#yVr|EI`zB#M2zSM%D{f?N>UE3%q*arHm9j^vI3IZ$l`zOutA9%%KRj0ZsgK4Hw z(k_Ov@0T>=7F8<0aku2#IYxcOQ#hilty1BRHc9FWdF(9RD2C;M@!zIt$15QQYHYuE zwZS-ZAUWuB0Q*>?%y zS`BHqH@LTnyrz40hq|VJv7f6gYL*{4y*^I!yK+@^RvPyxwI=BSZBK1ioHYxn<*E^{ zdx}=AE+MYIZn4Zntpyi=Z-I|NVtKSpoTHz)RV}U=o=^)OrX7NQpw<-DUSWD>2X{A5 zed4sE=lenVUg2$R8`yPj#_d1B+sil5eumWi z%HhJZ(@uN*m6sty@C~q>od$;m${qNgL~pxj5@K?ypW!HcOJ)IIjUi+S>-yVt$hLp4 zlk>hq^0I@gFg@^$u3V8@_l<{?UkZ}hP2|VbO{?>^bls+J63@(Pu%k8xiC!U!lv8@a zJiRQEE>SK^tjMSZ{j}FmglUXKlHW=zm(kvh6|qpgpR;Jm(a-cQtq#S-! zpNC?viEWf?dS1o&dy~iDEw1X@Ggz0-BeLcw1zKGU>ip`_yWD3*$9N~9*kC9Uq^Ql=Z3@p(Hg{z@C2(D1bzDR!Uq z*Wb{-VN%>U3eOgzyNH>L&Tb!|#J zkN7GAhjZY%6>4*15|n^ZD$1!rlIAxb zPMRxidR#kge>#8kd{r|UZ$^KJHnU#xO_9+z{`}3^=wgsdLxYbOijjNZv#)LFg$GU+ z>Mlt4e9jrVdmhbFpc912xMA+*Ny1JXKAcEmqSSqP>X^!2uQ5DXu{QDS1;t`-t`K=7 z>8OjLlE!}DblYj*70?U4XHs!j{wgcgr@iCN$0XtS&pO%@1P>#_fup*5>~fKfenWTS zu9i)#MqNI-C==m}M0~|jSM#wmxFiLIzHM7qDT0@>H0v7oycKFC2M?q~~x^XFyX< zw?{FMh&OR;%J4pP(lUJpCy}{K`;bbk@LkH7&I?p5f)h?!QLhoMI*vM?`&HvFnr#OG z$J*quhKiN78#Zy~1c%^+?I@PJ6$MqH^ z*&>iR6%~^c=qE3#=-Zp+EgJp8b0POly=T6Uu4F7Jr^rr$xq!mh7g{r(6DE3P$&8fF zBTv?bH{@cnCTa{Cj!@Mq)WGcIR$DbDhpm!qc3l~k4GN<(xn_LuI_8k zSPOLOX>?$>=lNrHrUW0}Z5B#Z6TW%GBTo99jhsWWL+Iy+wAcX?L9XjL@}r75l&J$j zDRJkL+#mu;$HKR20oC~;yh9(By>lL;eIVGOv9$QJ1a*gB`;BKlr)|Q?$yzu2ny#BP zrn|6AbU2r8sCmb-zjWsBHua$J<+f^d;M=wLJ?i}>YUb0$Et2mI@b*CN_Takpp?KBj zaclL3vp_2d#;|@(wD(B_K{!$}YvR-D!?xYihTPNn(~rB>rP)Q3>K{ zjFFQunS~CfXz%ry=jiis>i5t;mI4UTa=ARQV;>h#XKTg}XBLJs3Q&lXF$O4yEzRHL zCy`WrCax<~@26TSV5T`z!nfe-TjU&scoT&=V9qyRkrHyIl&LMGE7OJ0czCEDB1>mY zIN_`OqwDOvlw;E_uO>mL2PSk3D{*DiJ^EN+SzW98znJu|c%uIc55vsF{5RvV$#bDR zV}d_?2)lj#>b(u)@jR8z<7yCOt~!(EPKPfMX75QXj2_f#SX~4*foa&WdQspMiZxLI zLt3$WkaqhxQblMwPTC+lN9Yu`v4n_)v6k&FMi{$j{?@UqlQhTnRgUDOjV6AQC%&UA zG`euVK7wTfj;wk$ANG?{26x!CPcI6s^V0g{$CsCUoo4*O(#_ph1@oaI4Zyyb$rNb> zS=RaS@;o4R~vn=(`FuhLuWa4a_ zjKA^>VP~%6GdkT!C0TdL?7q<^iz~xgSI&fw8eD1G`xNRWGLoGEqcJ`5+!E3(cIVyq zcMRVmusKHhOU1T_FS2LRS}fdN&Uyr2No=lkDz}VqO^-B&!CN3{OjozWSY!30SP9U` zE{+VMRjgURP~9b5fp1iEqm;(;Z9QWo#}q(a{-NNl!;yV}Wk#t+VKwTpE4in4IgpLo z?LfVYTk(D9)wN!}Qf#4;m)Wt!L;ly^JJc9kRjz;AiutcVu>Z@EI641jD*DKZ=WUGe z&|Y%w@M~}p*P)8tcXjP^&;7WYiBZWY?1?#Y$0_+H2t|uSN3+V?lcq@f$I6|$$W6#2 z9P2w8a}^L^1lbYp@yd2to_dn&X^&Aq)Dsx|7y15*wEMs0V`2Pzl;DfyiS1-W7WPVi zhuar%^Kt9km@@wQ@jE|rzpB4vC7hpkw@HD=@ZpgFkHkUCx)K((`#2lm^ z{Y=}nBzjw!9NAFG-Cfkln67nEkQN>!`!VGkjWm88QbuP@=(hx)E>sTI0yvjQ>5k{i z)8-n8!}cyuJk8?sZfv}`sml9PxY4)@*gLl*a#_K9QXAg9R3zG7jAA$#TT0`vqpGw^ z&vb>ZQ0iV(b_iNZeygJ7opbS&W3a^?Mng5OSH5|paQJTM9$#g&1%pkh=yTtC0Px${ZzErgLC_g!{dHjFK37k|~9P4hTKpZac#c;{1db|+e-QcNOK z6wkP9{7-1y*el<&wjA@0MsCIJFZC|PD~{5JyV{JmQ36aasgJxid z=r9wZ+hXeC?Rs~-c!N)TTQbyN1=jIrA5?xcz8r0J{BKOimga#zaf zEPOS$8UDoI?S%Udr-jVC4S4&ln9RK;M|6SDbg^0sHNiqW9xLJfcZ-q1E$IU~wcgEJ z!2Aj}kC3IBe-@)#j|W2(vyF*}m4Vs&oSyEhow?{-Xr0|2lN?T{+hm%KXHqFc)>(kZ zzCDtBX0*JrJt@jM1#Gwde(kFIrgTYWt!vS+VXTpZj^se;NzWzRq=cnRObwo_CSK$F zJwdW;ctie|MFC@R|CdDp9clgwJY`|8mS^K|| zX2ij(D1?1%oA!oko}*zpCQ3R?GJUJKrBrdOoAo3l!FPveow#@+IaWz_Y?&?}eSI4z zb*6G%t|!S5)B2+1kqPW!<|g@2mM}(+Qz%-Msqs@e<4~1xKUB^m1Qz5PCMv0zM{KC_ z9f#|FzlChS;<@{`&P;zbrjUV?$xrYz2w7}tpz5Lo0u+Og#^wf&VBE74fawnyv#2cy zj0NMvY5D3}G1i--r0Ez=RxBx&o04Ip62ms|QpgMqy z0{}DtFfpV2Y)R9J0s)&AB6b-bsQEZP5>)t{aD!<0h}zH0CpC3L@qW)00$={fSH30z{17& zlh{CVg6qNUSwJc2XUW0=ZvTG~;_rGEP+Ks8$M{WbEKDFD1{;8r6-1zcxHthE9H4j5 z4qyXK&H*MiW&kr68zP7R>}(*wJsW5cke_m}g4%L|1YiU`gG+Ed3y46UW*ngY;4!&4 zxj^MF9=QCe3=0P$xC9FURtik)AWsALWdkYxYYb3Z(7ZpNSy(}a;QUE!pq&VQ=HdX! z3*xggF@qHRH7_e@UN+DsV&MY!V+F8*N=}fmz~xV32DfAXX#{Wyp8w~ffei?f0c21_ z@SJR*K0l4}TR3p})6>8+v4US1!6pKW4OR_Yg6QXZfT#OKh-@GgfA$31_s<8AfWL-d z25Ahg0ZRpv9NZo32EUi4&$a$l z4{q}x0{aDcRl%jse}dd!GpINy9)n_wA~*qnjQI0O5y15GCJS&P`1!2^sx<(BR`zGD z1%UaFdpm3aphX7p5J6di`Df(*omN1L{=k9A4uduuKY{XKkI)oejgux2WwUaHWoHE7SOI`;{qkAzrOvy zzkm|p|MhLf1Ty=dIY`XT(dKsm|9!s*NT~nZw_y{*gW(TA7P(7%heU@N@u@mNx3kBg z=dLa+GekHAnXX@pz1^nEHm~ZncN|`>8&Ab3^Q+K!yn8C@Z)FlB2ZeU8&+G*-lM1@_%OZ%%5(YsS^Ewoo!Ioyna?!6s{Oiv&mv+NUEf-&FtQ_jjHVfp zVjYJpE>Q6Q_rc?@-!sB?E})zTIxk3D7=sTHKd(bk1Sj!ddFj`cE`M4Y^gF?y2Q^{P zy&}#QcD5qm8(gSFxS1K585!A_xj-c+GZ#H0DC+KzEz`wU52ADZtRc$O`0izxq@E#Rc6R zO-vC%*@qJm6ubWT1BHH&4**O7|KWkpQQ$v-?H@cQ4o;AJ{FBED+S>o(v4ac;{`*T` zR!)%T|AWT{`u_eG54?B&)(-T-{%;-&C^rAI9Wx_n2mh@v6ASpb_75HhIK};g$Ii?K z+TVZg3yNI-;<2%V;{HF{ae#kE_y>=LiRE9mVqpcP*MGL-VExw|tc?GK#|%CLg8%-s zDJvT&RsNI50ght-XvYOgd;j2p7W-c|U}I(dmwX&t;8^&3JZDD(3u_a{pH~=3+M3#d tlJ&1Zr)Xyf-WxxIo|1*93COvAebyK_I{$PxCQe2U7DRG#Q8_Wh{|6b!q?`Z% literal 0 HcmV?d00001 diff --git a/experiments/xor_nxor_exp/result/figs/generalization_error_nxor.pdf b/experiments/xor_nxor_exp/result/figs/generalization_error_nxor.pdf new file mode 100644 index 0000000000000000000000000000000000000000..896e2adcecbb6b84b381020d2ee92dca574fcb13 GIT binary patch literal 14096 zcmb_@2{cvR`@b<^)~qJbLB0vzRUWr|51|Rgr(-TCQe?i&J>79?ff@8XcQnUPe9Gj&z}+qh5+p~04uJ3;EuG^ zfezU}C;)<|sbK*jHC=-}on6g!z|i2%lI-Xg7~n{D^>Yqep7~OJFc8wn)y30M-9Hrc z3lD}T5~vA`VG1{)EKAJXHPAnZ>*O;=}s z7a(#&S3h@(2ZV-K#vE=KNFlpA`XWLz@~n;gg^66Z=We`4lcLi&IY>&+Je)3X-_vOQ zkj{uRMxvJBQfrm4q4UO^giUHNvG`anlVgZZ!`ILcqIw*?^s()#Lqc~?4^_QW%$%c- zb^b2LRNvd_Ao-?xqWg3IJr$M3O))2j-i8GHpgH}<(LwIaNygrB-#qga+1k0zq1wAA ztag^D$fgU1WV^B*iX)qfM~TF1)_?B4H*2OxF5>jO${!!^(XjE~@A4wo>)U%pay416 zos2BkEF0BHd2~_BSx4;JLIV~ZE^6I7)Z;bo$;5YZr0-ysn^%}jqUGu0PNZ47yL7v3 zU}HYB$~iHs{vieSF70pQwTv}WwVI{F34HbvJ>N@Qf{E za+7v=i8bwb=$07f_q|&|*?NTcjcx8M+1w>U$%tI>rbyc8v0=h~-Lv}fc)dP)y6sz- zqE&AQun|1tNR=G2k!n5PzD?${W^2jsdsSTJe({=#`+`kK)lg4xL>2p7=8uoVy;&xM z%12K8u(>b+Ws|+|xhc+*3{@q2WB1qlJ~Z|iZ4tX)i51??Z1-7KQcyR`OT8`wA;aKT zdsj9?B=-EP8;f@o_GgJ~IsSpOA>~XfnL=;st64O_C7pTfsLa-cGxRD}r9Kk zQSdm>0zbXI)7Bta<z5?-@bk zdE`F=Wp1gWgEbKkm<##Usx12r4a2J#F?xfeebXLXK3>88C&doU4&`kRzUSA>_P)o> zm=w=H!>b3;5Oka?`e|jK4x#JWS`h}PIWKsPMGfU_oi6Y=FU#M!a7QeI!@qt}AjYKf z9z(c!r2aRZAak1ZEdH1RO=B(e=`@s3j^qxf?&J3hb7ZVW>mLfK1;5Wj2`Mw+gvzKMW!puZE4gLw5TMjVOYxO|J!lc! zp8e*g{R88{!OR;~3+^^m3yaacA^o3Xzac9=eY!Y)ylcW(;XVi7z;MYXkC0n?-shQJI5e5YoopJYtZ9pt zREW;q|8G00;llHln{!pxvjT&{B7$r13VWY*v4vZ~78XymLYbCS&~WF+j3P$0QxVcJ z_Npo;&b2f0w9}S%7ZyX~YmpkG6^1Zcr8SG2-a>C{m20p+B(c z>>3>X>5l)GJHg;qvSehY=huj0tNq6J{T@x~KTTmK@tH3c_Zui|GUSZew0oF4L~2{v zyRzdo{0bub3G@2T*}jWbj5cXf-c94DV)tBz=tG-+^cmt~^pWU-Hiv zoV}Hgrk}m&$SmLxP2+Bp>h$t3zIs8dJX^G?(6)8^KmkT()SjqrsD~7{LkB!YIIKAY_Ic>vh#&7(n`26w6i8o#r9UCz|6&P)#;oMY zl*B=gW}f~L|5bJCF<;bN-}b#fU&YYo*`oK1)*s%?)BG-(aX;Ow_^JdxVYm1>+oI!7 zIea!3$Yop$jj_M~h_y8C5`RWJff)Cc&qY_$)5XqjoI9SNb#-LUDA0iT_H(Y@6W=|8 z7s3U}!3-NUS{+!tYWR(8E0p;bEix727Y;RZ?4S$`JvqDOlX8Q*O02={rq2a^ahf&A zmZT@?1}sLnzDGA&c)OGcxk+7+nz?N`|Co^W#Nq=KHU- zwEY%^YX}EM$Lp~G7z}ZRaI}&PPSJ~TX)I*a>sw-h`0vW5gvfnW45_%s@h8{12y6!Q*QW-*^?AFP|W92cS4m6OT1yQhoY zi`G4PG-@VFZY+V1*wuPn`)%jPoL;Uwo*`R$!(u<{z8P$=ywgSM>8g!q_GI1NQ*kHB zhqsl(dzXw+e^)zK>1!V$>v54m=31K&DT7Ui@6Mwnd3JHW{MYQ@USiG^ue+4ZHt+7R zalMKCpW1Rbn+`~i3zW`uY+cxY)grmjBEo&n^T*X&&EGha{H#f9$O=9PtVdQ@to#aD z;mr+_?bMk2?^=x06?^^c49iIG8Tr}IJpIq*NPg}le)*P012(fna?_TusP_tyccX&)p2Bm@>3FjeoRf5i%I6>3#hNYNyy6h3*#K-Z6WlwCmf4wiJ!T@%4UL{65&-y(@`$sC12`fzNB}SsKDhuYtwlEK#Np z@pRm7G22#HzTb|_*}`ILDs2)0gFp6!OYkynzy{4DLNwAQyvA$r0Ur+6!v`9VU8y3c z+u0jY%$jq>PC~YEH^e@&(o@g?Z=Lgwtt>M4qnk{Fl9}dVJqj zD^4@(jn4(eSw`=X8l}v$w_f1cV>KpXP0PqXc*FSLmc3z&w`T73ly5fr)*n(}#Qm8| z$4URI^y{E0o&K#dLZj9Ele9Ix4tXBjW&9=01k@A#fXk43bu#dTk~ zasR?o@z#eo0vjb=B@@Wi^|g6sER1RdmhYR2$FYkK(yDjNah|Cbc3gwM^+FmfYNaYD zCo3j5px87bE=38nBz!qL^1(&w+``Wp6-=x3QN1{t?Z}|CvV0}Ta~sRzqoE-u#kV2P zGdnx(Rca!6+NHa*cQg)YeJx8%tSM7yDr!Jovin$&aWcl}Z2FjtfnXJDWeamT#>%CXo(F}S$oUC$a&fv;TYfP%o1S@yy)&)P zqRf4B$aeOSVtVO>&_(&_!*klt+7gOA#16OENKHvP3|MT_;&w5SS~62%Dn6EV56wC8dKEqkYvVQ$DoiaANw$uybRfKWKeE1S+l}_;n*U zENZ3d1LOt-UpK|~A(CcT?ryW1$;{%7&5v0e96Ss%IyVXnZw!sQ->o+C!0uT>`j?BX zd*9b8@rkljMM;@4?2C!$W0CXUbpD5Y$H8~|_K?mBnP4D+zK`!TTO7`-j^CRWdg^%5 zQ|jNC=Q8Ie*Om~vDVOU7Y zS6XPy3vIvg;DD~W25bU}PM~Q|K>m}o&-TwpGMJ>ex_ndKC#cuxS@IpQ%sOEBzNoA_ zu{ScW(x?2%nQ5`aXahaTZRZbL$ShV!+sTZ-(Bdi49f>?^gd39GrIGB^aXH0o0abbG zIzbOx`!Yy7)B0ww&KMr#wB43w_E!4R7)C{^@Pobaq1p1yk4CQKS$)g+F?c3* zUc9nDyJx~i(kv~p=W5a|rNxA-_dn@RUEWQ7Rk!kx1ypFAb{4zR&KjLo<8A;rbMEl* z%%i2WA2KQ7`ah5COd`xO&LkW?6N6$_a$=i8N!Epb8?wqZ2q2vLDk-R?#O%d7AYjR; z;~anK%k!7n(|N-ayhbOdHU>Va$fXd?WPER5YWZ^SP}blUtD9RdMTy!?M$0|gIgo;}U!i>yneKmnDyyCTgO*7>kmdR?q_p`r7 zD|1pkl#P_WD#`!(fdShPlO5-skuz2rM?`m_r?Ilits_r&jaIi>^4{Sqx_H44+<@GKV(uT~wTG~y?r%QS8QVE9vZe#q-s5sg3q6esTKmvp4TL zpGU-W7C$Vi(z!}Fsg2(uF$QTwhg*+#%$oJPG)x7HO(r``FK8MEUJUX}Z{K27 z6R%f)ecoP5(e&oSB1#?cs36lOl0!rCb&g&Sf0_mr&W~5Ln?CbhE|7(OcJ;a4A4Iq6 zmPn0mFjhXG&~zq1PyPX&YW($K-kSHDpARDiich4!V+m4lHL9!6d@&49Ym1i$30SkZ`s?-vNA(){EI65buxb)=d#m{e`X|3RUy9O`o1%|7v{hGX_a#_m>7|Jqr&^<~GK!|5< zpvgMKR=LKY>&0pq{3;)F#vqvkQkOw9<9~)*LE6%ViyJhx3 zp-6#GK7Xw3-=f*?w`AMyNW@|oeV&mx2mxY8#cZT{N#|vn0-n6 zOSSy&?^~u8I8Ec-POKrv^)baUDdvZ&n>^1^-g^)Ncd%aP z+3dy4vQ-u?lU;|45r`Rxxmjt&4r@=R%N_(L$arkz9C)cz-Bv zly~7}Pinaa?z{)-Fe_H3NOsZlJJLqAqL+?$9+|0R& z?S2~1NpUuPqYaDK$qVKKbIKzAS5Bl*-W7j+`?0-yXPvR~Db1SOU*o+GmR{iO|-Gcqxoj_7hulv#;RSvUp7P0!~Uoo~a0@fEx^>0dNsqw`yQ*rHZZ zm2k;vl>1pz{Z^&7I0<2?UfC_D6-|WQjz4Hjd~-=o&>@ST7H@a1Gm_-1Kvb)$A{JNusFL&F2l z_R~HqXf4~_0_nwwbsfryNI@hPw1w^9tLHqMz422_&*cs0s*hhOe4G4z^9wo@bEJ2SrIS3vC{Y>r`DL;dJz#CxAIjm{VaSH{c`W&^jq(bUX;+tF zJsD-JJ2LSPLFh_?+rEZJ7F~#oKidbkdbw(+(PO48t9Z)F92iF#E0q?ovjz6!(Xp4> zO2&=RR|ed)g$^(FfBZ=ofk8R1F}wAGidB=t5-NaWN8wOR$=Wfhsb}KUZngE6DBK6VLXxrXwFbY_MmQ>+zFP?~KO3WGPh?j@wk=A=_w(QNHM z5QiOTrsm&giW)xswn)*lVq`4xX;&H{H)u*8mQCt6^B(TicDr2v?#8u_<8!+GEea>R zTeR$3Q|sL|Wk=ABN{vx-{a*w{zy8zFTF&$U*|#8QJzdDsuKwU8wxU7iRD(=Qsl$|b zQADUkZbRYL=Wk9fsx$=(MDgE|@VJNkI(AJW^iHnU3uU+d3OmkJPn~nTsmEqKyV^$# zretlJ-+YDo2Kf}#y=;zNL4`aBlRJg+b=CBCbU&8+py~7I^V4|@d&eKR=E~E3O_Qmo z*H7>8xdQ!cnGm~*;mR+b(3h$*;|rN=wJ)!(yQGJ)ThNN{Hy&EK3#j|=Xam6UG(stK(`$6RUig6qN9I2x zNwmQ0QwCtR<}8P}=LJ;?V|y~6|GY7UN>@|=q9(5R9>x66hk3%orgx97G!TChdagO2 zligAiZf?yvkrZ1u&u8k1GHX1(+iS^v%G#RSZM?2&8x20 zm=72FI!?;IXREi`cdMCwSCYZ?klR*wj;LFp&aW|-^^xxlz=SJx$KZU6RmIR;+NS#<_p@KM1qt($xcGD*Z?ZHh z*jp!hn<-etjqXD(UiO&a6#Xt|1Tp+TsNsXYnIJ(tLqxB)iJK{Ahrof>Mn;RE=PhXs zCiw}hGxpu=E!7*Jxo*n6c;X@n-ik z;ZE|K21F}_yM{|A{@qxcY<=kAsCJE{N0iRAh37!(0iH&BJmaMFqL=-_@n4g4$A-$|2A_8lC zumH#I^}R^LfWWjrcO2fdogH|zT6YA00WV#oOQ!Yhpha)rhl-9H7u9WBQkcUETf3wu z3{(^hId96{Efr_I9wa&4mJVg^n9EKpD}D5Q*dah@+rFdxM2B(DL?Jw7C@Np>oO)!F zUUGoB` zDviZjU(^3|_Uev-uGC;a5NYS-XdPq$0_;HKorfbCjspyY(6G-0QGr^1Am|Ma^HWkn zAT>SR++5)xJP<->2LWe^1VMSuAh-|(A*s=MKCW&cW{_GWd%Am2AaMFedV~ddxcULI zE7{ZE1p?Lq8SYBwgF$Tq2|{Xtz&i-31A%xx zq#;BE?TjI$2_z531;Kl8SRjP7g1~nfq%A}uB9M*{3AA#C&?q#71c7>P5YipofIdAz z2CDf$NM8sESOJ3vfB-%mgapBTVBQo6jR9>yY+*RG7x62!^1rDAH9=~7k^?EQcz{@t zu;A2}0uFbgQK02c903cVi6k882fUyKk%w>GK ztb%A!5S;4itmfzL;|ifbpr&Iel|dj599TpPimR_REYIIF_(Nn!+y58?3$Q$o@W&*A!5@IHl_ zV~KG6|CJES&#|B`oZvo|6CS_?Gzu1gJPst#5lJ2*62U##lz1>W5l+AsVn}!dNDu)J zVqyV?mj`-E1Urx@4;Vm!GMvNDu^@p+FCu6U_eqi`fqaPu=hVqyi3m7{nSdt+CjwAx zxGf$`e5nsm7mQ0SV{t$b^3;R}abR$n1RMbY&LAeRTi zf^%xZ!1V}JA;392K6TMx0RkR?KoRhmc+iF_lx61NoT_Q?NI3Wg1&at~8=e}RgG5~q zc(|p6z=J7LTf*}FT>uO&b%6mhhM&M(0nXv(uo^5c*K!V)46)1zl`9+(R010lW*^pr z6|BNUsxpC|;8y?j0yBj|A*j!ObwC2PaXGfdi)dyH7mJ?N1 ze(40P4}T_@FX}z$1J;e@1kap+!hoP7DSCv1dc)*SZ1m@1g->#lN$ML2%%v(3!WN7 z)DSOFGJ(JvQ)%W9hH5~8t%bmHQ)!kE2KJwzo)rX^o?5bnFz_h`&>VqwFO{4j%&#$A zfrMci0yrY-_dQUL>gA}P$H0v{>_Vx{f4NBDI;gjv5SS{pW+ zr~VLFo~4qXE7(6vLRPbUZ~hnB<0LLL-K zfC3Wv`+=N4*&Q?ipw1=88T`udXPW>QH^|A+*&B#qslD_cLJ1|ix*>p>!y$kj{B;30 zf(QEO2K`5a_ZWOZe!pmF3=!Ttt7v$5PpqZ^zqy)50D+u;(SSc)O(Vj%3BLXt7nBKL z9aqt?z|OCxVE__bMMD$hSNDfTqu{-@qCbEk*PvnHy}hy?21Q!k9|}!Gt(FT4Ef25% zinb^;34qvDGz|7HIioh&R;T+$NsJ3KwbWthdk+T zxsXuc$h3+V68i7`0h<2BGe8!9@d8A!dR%~B{*pb|`@rS@H!g+j=;`B1rvAC6=jTQ} o=24x4xxYVbBdKKz&v0<;`}KCfkxZeQ9W(}ThLDuhGSNo-AHdppu>b%7 literal 0 HcmV?d00001 diff --git a/experiments/xor_nxor_exp/result/figs/generalization_error_xor.pdf b/experiments/xor_nxor_exp/result/figs/generalization_error_xor.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4d90af72ad1a5b9c4d7a99403240ae7bd65b42ef GIT binary patch literal 14413 zcmb_@2{hHu`@c0@Le>zyDT&nG?{zI@-}fzra_wYyWh<2|5t1Z?QV5l-S<+_TB`G46 zWC@{-R=;^)=@U8M7LTb4Kn##X(mEXA* zWDOxroXPes9!?NpvAczVt*e6_1tL-h|BoFs3REmjK*__yli~|Vfc`3g6$cOSL|Pm` z!^hLl3xcPqVgeym9S*zLIT&jI(%{L|hwS0&MfP#scc`9}H~I!BD^ z-f-X=_v`+z!)33I$_>6L3qKmN;Fmh6f98Ho*PM(uPOlB``}qm3ydp0#yQzI{>en61 z&U%I29-c_yjhRUS;H6cyazs>%=+tpg^Br{fEyT z$oN@CYV#mUDareL-|F&sYQ-MAknGedjLzQozRkMQ``m_P%=e!~X|Cozj+S-%H}2Wc z8q}PfTxMR{t0!G~AIXrcV0&5n(5@V8ydLfw<;dKS0ZIkqhz0pf6kvHOe!tZ3H zE$`Ris_)I+r>}mRpJ?Cgbc=|L%gA~*tt1=X>Y9_ZX>%oQcb61*X^X00OV_00W+oN^ zT#4(}=%{^3UP9a|429}K&lubwE%Nz7{;UIKsQo*VFP1tICWXm8%pdJLUxaC&qDxS> zva0ugb?>^j#np3WK}4v-H~aDT!s$xE&BEd>GlM&>MAM6~l|Es=9d6A$b>oU=U`3d7 zX|8rMr`g7-q3Gt|p0Dyb$3?!-W$m?}*5%o!E@_Ou#4eW`u2Xv>rf{-A@|_BYwy+~E zt5~p@!QV<7dG>CysFdL;>8@>}<9@1s>Zb4Z+l&rmsfv<4PepsM`{wB>)Uof`A{F?k zONAlUx#CuZrIvtJgXWCgMD3tgisHInOONDVP&%$NqQO`=BnaE{`abJ$=H3J{e_4L* zF{ZCNOlmevf%Wl{lQ!la**amo_J(pA7Be)a@1D5z2A>!X3%qsm#LoOvo3|J-dTC=R z@k;75XBwK!XwyP9_owK767c=f>8}&wyw)X-w{uTTdQ{M|D2Ms!o8&!}eSD&rk76={lfyMfTv|5_ZGKJW-<#6S@;K2r zpd*q+irXDUN4bm(E7*tPvJ!M;D@fdqu349DX?loljA#1iw)V$nk=8WnLuIXADh%$^ zwQ-wf0^A(J%%PpxNeMxgEsno*nF(O{?bC5p`#Ti;@;&xmA`CP zHg+UK*CFd5o$P$s`e0F1Q>4P>lVccv+DrN4ohrIh-iq!Ayi^!KQlj-0#vOI*IjM1p&?8@dlM0+puvtM@o zaYmucw>x$=1fC?M+^Vy9vj-Ju>4LUk&7aV8%BzpwVvV?!wXu;l=u*8~X1&bdW#g0K zIy>WX!}86I*|5KE^am8~%$A9E#mrQh+CE_j@t)oxu71YM(ArWG-GQy9kW6iduM5XM zJZ9gr&`9{&TavkP+uHp*{r=2o= z+JXjqY`;E8DjKwIC{yTpQ0z1M-2V(8|Fk9PvD1xBHS?pW=*Hp{HL)gAV#z>Jf%bye zowDg9ypXucj)^1KS6l969jgeqTUoW6bf@AMR^d+d^XmKeER`&`{k*mL$#+C3``uW^ zfPFPJKPvHxhoI{69iPjcJc<3Sr@PG&Ya57~JKh6*=2`&aCr z%{EFt`Ywel!O&Mh)dDLn8d0=?<%rn0Z-~oZVq5V{ad;JN-#HE_4yZZXPjoKcQQvdiIgp z3+I6?FJ`1vzn?`M$Q!h4*BH2o^BnK3|24?eovM+412G$K=WD;k#hP2Kaqdx2=lU+m zlMLSm!ZvYclY)2?em&=SR@OE7^m$uGF1ttySBpfutF!*KWYLmLk@7r?=IsNy7^(Lr z0xk+o{W7gI`f=PX&I)}+si!`eT(VL=pj*dsXL8cwl%BNPrpF>daymG>usgmzzK^d#ah;|> z8kr{RVXCi9kWa;9n!MMX`~PJD^EdYUU+YK2FViS|Y|(}XC}#TL92~Oy_%}5Tk37sMrWERpGJP7&()*}v6rYcJL~%Uo?L5qG&dz_pS^HM>Sf|o7Q_4I3 z)Kyse8&Cf)mN00{a-IxH?DS~n$)C|*6}O&rM@{!_xBm4qf;QU%y?>-8M3}pACV}xF z-OK3m7+xXA=xK}m@F(nU!nwQBt_MU|J?vsFic058Yb6k)p77dhs=C-)dW>;J6V$E^ zPwV;W5Z`{u(&~2KFOVE0;B%N^gG#dvi)$61o<*qw?}AB&Z1mjGM)n<)f!E#VHh)&A zb=n=NbGQCWZeNsY6|yP5J5`5857*aqtBI#Wo{$ya0Vx?X1#HIbS6bSBlU1x020mJ>#R6b3#AU)!i`R*x7v)r$ORLei{L3pNuK3-+ zF}Yo`U2cWq+n-@8>A8bvn{*RBs_iS}+ITO$7C`yVYbU$a>5l1JZAmQPd2M=$Ij(iE zdi-)!uxiKE490yu9qV0bof1Yur$Tp)#_$q5ns2JVZU1!j8RtD0|IN<=Bfn_A8LTzE z*Foy(xD(Cn!n&`g^j^FhPc!?WJyLr89j%;2uiOO9$2JWz-`VRgp|dgM{s)ve_a2TH z-;9n}6R%G2I7#f?cBnIOOl$n$=a#D+_1=6k&Q`K*_m`jBMH@}tyyP6K z)Z})w$M`@3r@oi%KKAsYF6qa*EEnHz+qHr?clN#zJbYwdywc-yf=QFZk$yW1tC;nY zg${`ckjgOl&c=+_n2e2ElzOBgtxFXKyfKQxZf<|QIe$2c_u2fykHOB)J@Le&MXM|g zeAr#f(h!z=4J;OCiZXnJr{i*r*tX2_{pZN+OiZ>W(Z&-n_>(h> z(O-oR_+-5nJ^(mat|Dhz*Vmz#Ri_JV1udd(iGH>}Z*qHKA~ao7UA_-%$IQ!#nIYHX zG@4Ez&s4d5Ti;PRc3`U+hmrY)UI8(dkq4wY3FFMI$=v(RMmL$$GV%@H(*M?E9mrTQ z^`NIjSnqqkf36OnxHP{OFc%ow$Q|j8A3Foopi(MkNBvkBtRm*oB6a${o`j zXDfxstMIp0NP|T!R|SOxxrAC2n@VtcD1TGT{JG(e_7dmkeogJhG@BpSilW($^h+tu zk%wHiu`G1Ger+rF*1tESz3oAnDw4ZZvNLl>-GJKH;*{8`V%hrqT2#8_r`)vD5qjrR zN2PQG%2_jN%c4e;j@EGyak)%>u{t&DU-UTdL$rJOEy&%~=<~4(A6^v5n;~F;UQj9CHy7}RN@)!1U!QvVvSFO&+tj%1 z^>15vobJhZpSeB9H^Nr{de;{nVLW2H_xdq5IZtV1pLA1V8!JZrnqG!XKvPI;>Zic- zqX9o@-9Gxtts?j}BR4E+x#|Pt1_WO{!Ta$9&Css!h`B5E9xD z5cRNAX}H1iX-w+;#b)c-JMz3DEajmRMhpicg8Nu@d2YP$Q>N|6%z^!+bAkpKh`;aC zjB1n31;w!klY&pk7hNR2MTB+6Y2t8DSr;9APj1nk&j>eI@OL#5$&{igJac zw=YHQ4ZrN?cj6d3uLZGK7zXZUNL@4v60t?m^rx_?i?ey-$G4|Ldy5@v5K?z5Akv0*w|;@d8Sm`E*@N?J;dJy+u{)Equ>P7n85 zdXGwiZQJEUqd8Pr+$Znivl@Pnn)}j7J5&1JUz^fB!eOy3#ptbM`Y2|%MBYa${iE+o zgu8~XWSf0Y`#E?v>4R8Ve`e44UU8$8*q&?g74i!)mu7#_$6ek>z2{th$O0;~MmvjL zZfEt*C~?&SoH-p5o^ia0_G1PmNc-2Zo$-YCj8iek&qkn_39+1 zzKRQ|$uqmM4)B{YYS=}m&-cE_oXj2?=g~VovB9^yG>bwsl5)SB-ZcN<=%vBUX1BMd zhl*If3)|JT^@AFnZ?7q;^Ie0E&Y5ddeS@1FcVnOZs|(mQBUIdS5T<8z$6XcZ!b={j zS2Poc0y9{Rt-pAxG&9H7K$%F%YvO!g8g$rRGg)%n8$N5Ma!h0odJ-$G&^-KP&q!sn zDbGFL{ENwk{I;)uIx|%BQIKLgT9{s*abWZ9n0s}V^McJboXrhSt!?~0)mZzQsLZ%p zrHiH;{q=aH3wYbHO;hH?V%ZYNEkK-msDVb6p^rbl-R5dc(fRm#ACX){0^@$0XX8Rf zr$cunK4qa?d0JQ1_UiiRm%~IAoIG z5vMmFtM&Je|13Z6CHq4D6B{!NM!`WdXMm7oA2z({L-t<#Q$6vQ)Zzg*)Q;j}t_$Cgn@B`nB%tnIx~zkTh*VbO6}6TV0< z=>-+W;zYj|$wUTsrI)>1#yt7tHw>&R8SyEp)b;p$|Ggz^#xq&VB6lW5mL%Unn{_mG zwJgtR>IR+<@=0#rY*rPmRde%$m4uw(?ML~PYT|JLri~<<+Ju|z&zwDJYIk#dx}skH zh4*r>VOVq~4Zg12n_SuZV_20F#)n?pQRv%wkSPQF_xfzVIl$;TT7lsTYriTlNu1`p z_;sb3+UUBHybxj;>u4?=Wh+~S=vuKF2EW3`oYhI7hnQ98GD5c;|1m6|l4|C&FojFj zB^o;7gKWMmuT0Kp%eVaZKPseK?rn+0FuFY@u@k)B-X_OzUu`${kNmD0 zf9+h})uF@jZu2M4HQa0I;jPdoe19jtktsAJlSTJ~-etcC#Wy38K|U;BX1(uxR4gp7 zX32769&X}{VOP4NUvSKO;>X~EY;F4JbGE&4{3*>A)8JFKyn8Q$k@n)=C@=PMhw%1qY`;?OJ5 zv*Dc$DrjbaN?3`f{QPb(TH z=p&PW0EpBeAru|y;WcpzHn=WLl`V!nS$yW z>UgM%vi18$TfNfSDoWd-(qlIItG}q$bV@2><1tN+@nSQP2@_ktsL2o6dKX$SfxNkI z4f+?1*yubK9yKYImdB*qj&MD#uh}a97Pm!6;+gd3Gjaw(j^Pb;v2W6M3D{iXqs3dE zZ$CkDmnAAz#S50_mkin)vWdM@Zf82TEA3j>g;S)ATpMlwZDsL7R=ayL>Am;gMO50I zKId7tXKmr~b`-lyFfYi;uHV&c|{y3i|7mx4j%diq5KF7qHr z+VZ1S{JY{~LM`gX%wmeOXB{*e5mvTz=i*3QNS8hHE`ld4*5Nfig+-GsUU?+Yah#Oa z-kY)W0NdH;%GR3mPdNu~>e^qCzqLWmOM?F@({59teIh}Ma;m)h3bbl1dd#g|(+lY~ z6?fG5DYWG?yzP=WB)QqpRQWDt;ZpGP@2oVQ$ca_vwpK)h#x1`J#-Gt)rxyhlixiGT z8Ha>gu4LLXVj+E$1#SwqYD$ zER&zZzR$H93yVx|DIC*BUm0*z7YteG|MZJ47=yA~Wp--?6)Pr(C6ofkj>4gs64WCU zlg>sdM~m`n($uxR4P_ZQz7M>exFW+;uq|@OdYXo@_1jhF$NyEk)RSgsklO)+#^jQ>!W-A|2mvbZF?Ay5r@V znOoP}!lyO+n`BQNYErXmPO5QIl^#ad$=8KW_s+j$Ypqa4$>kxq@SVsU=5} zi^h4Lq?1!F9j(JU6ViJd-+YDo26^R_UH2Zpg7R+&+!cp$cThb5WQ2%A5_e?f} z^;m;LmJHq36sa0|?bJ56E6}f|anWlS&YXgAZHaOtUjKK^Rwb3y=~@`eIko6^o{ou{ zl+XUjnCtCwfl1ui`fBq6!M7RKr@wjEcPJ%Xy`1!Lhxie~;UJ$6cT@LqH0Nn*@^)7t z^shGY==3Jdr$(nfe$qPg^1__Ju?1S}&=J~I7Gk@@d195rx#$^gvPwCQWE4+6XMB6~7=f8Clur79`UD~ZX?qL^=d{6KhA zKht%kmiUX%bKUN|^yaD{V{?x2_{i!HyoN3)qq^{Yy22{tj^vi6Buu%`>)U!KZ@8T| zy?OGm{5p=?*Bq`hhvd1F-$~E1)tDWqXk5Q1UgxI&U9)?~lub|uCSe8qMe zkrL>Ym|I7AgOq){r;A$8&Mk~1T4+y3s6etiy$u@-IFoh^erPf)eLbDB@uC02%$F^G zLVP4nUd_iFP4#lEt3~cI9p2(&>NZ%iSS}ljFNCPs-NVo7UP~&$@%@XLb7nHB-Us@|;{=_xn|T zrcDkL2On3K)PI^k;9Fdc;=#4VH=fSc$$dH_86Bm~ z-jrg)o}Kkr*y(JLt<1&&ky4?Kp`!6`8}1~SAAK~UUM21vsxfKeGLYoWT}O{+d?)$N z>S{G-<)ys6y|{!IrNs${WO82K9nG6q=r$WXc<|+}m{q2(nIfv#g7u0M`qqhClD z+k%VI!*C8Uem~}dm}=aeZr{D#`W3H>a#-5)CM^TY_ZeX)Px8bU9&{h;xhJI)oDaET zei4rNKV$XZ#J|c53vldS+eI1%MD_i>w!nR=w)s1r;iZmvxy-oky*(;NM9jK9%AWYGfZ0=_Qq7y;bqBGeC4x;ph(7!_} z)jUANARHqpFONW~x;Q#Iz!8if{?HNv&JqbC8tp)2CJI7QLmS;396`V(wdmvG%S_4nCd`($m8Mfu#6*Lg3vI($VFx0|bukNMDD;pf!O6 zA=N0}2{LfDKSOrIn zI{AWCUgUZW^Igd*2(<-~y)Jf29!_o!5DG-Ok^`s=0&(ELBAQSf+|6Nm{x^faM258Z z!x&hArFkrEZ%c@PLjC_pi2v7duxJ^e_-F`6KtVFVViT|g1PR!9A~-8!Kr{%JgrX)q z;1m8IZjS}`DbyTGgxmkGgjo6?3);d79%Cut0bD?%U;)VBKmr4iWFR6DJcCV%2gHeR z0=5uC!XrR}2zU@s3^2S5&{HDVfkYX=01A}h9R42*5{UF7g8uNBBpDLO7wh1hIvFex z0p~Ci@TA~G0E!Lw#e<12jse;Ny3{fj2LvHQO?VIo2A4^|5fDH<0gV9@T%?Nwbn##l zVM%a59E1nC3=kHaQxgVmN1zG;&SCo0MS}$hcmM)Lz%=oo4^=2j%)vQT(_l(C_yGlr z2xc3e8k~bfT@RStVnX1-6sbL7`Tkb`3@#3V0W*gGfw=;l!`)#uSX!>794r}Pi4iJS zI3j2SHYUtItOv_jg)6Db1V(~;{TT&j3WY*Y|NA`v3E0M^1S`U#4#0Y_JW*v0^a9q2 zzYR9*S46Rwv))4Rt>%c0B1PnD*FMuy0{FRn; zVkw7(0@fWt&EfK2iMrN{|HEzmBv>!tRfTiwKgQwjbDkPRjZp-SLLFFUsyPI%1c;Lw zHm?hzVK@u^)rY7dUZ7+EfiD3_Li&E|l8+w~GX>gZk(KfvHkUZeTYp zj^PfJX0gr#0@i@~uO|eSXR+kr0QS#f*$ZgW?-Km&0M#c`?}h*;f4k=2w3poSZ`wW( z2t=fg=?i=B#S+yeyEH#5$ z{&p&Vsm*_t@MM3}{jU<9^FNhKE{Xcxho>L#pMb26i#?2ysGp7)!+>CskHybl{u>Y= zpFblaRlqkG6c7TEcf?JxiduBbzkfSFughem@S(tqmE|JH$bdH?W-!Tn1E zgMuv%{QDy-fE?@o3aP?eI9*axU+SUuC{{61-QIw*y}C9~lsE z;6Sjl9RaqSupi9*)#w9@RM*dwRk)l3F%#2?EEy-?sx~9}3m%ps`?52yt;W19imz E0lFn2^Z)<= literal 0 HcmV?d00001 diff --git a/experiments/xor_rxor_spiral_exp/xor_rxor_experiment.py b/experiments/xor_rxor_spiral_exp/xor_rxor_experiment.py new file mode 100644 index 0000000000..df5381ea70 --- /dev/null +++ b/experiments/xor_rxor_spiral_exp/xor_rxor_experiment.py @@ -0,0 +1,422 @@ +#%% +import random +import matplotlib.pyplot as plt +import tensorflow as tf +import tensorflow.keras as keras +import seaborn as sns + +import numpy as np +import pickle + +from sklearn.model_selection import StratifiedKFold +from math import log2, ceil + +from proglearn.progressive_learner import ProgressiveLearner +from proglearn.deciders import SimpleArgmaxAverage +from proglearn.transformers import TreeClassificationTransformer, NeuralClassificationTransformer +from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter + +from joblib import Parallel, delayed + +#%% +def unpickle(file): + with open(file, 'rb') as fo: + dict = pickle.load(fo, encoding='bytes') + return dict + +def get_colors(colors, inds): + c = [colors[i] for i in inds] + return c + +def generate_2d_rotation(theta=0, acorn=None): + if acorn is not None: + np.random.seed(acorn) + + R = np.array([ + [np.cos(theta), np.sin(theta)], + [-np.sin(theta), np.cos(theta)] + ]) + + return R + + +def generate_gaussian_parity(n, mean=np.array([-1, -1]), cov_scale=1, angle_params=None, k=1, acorn=None): + if acorn is not None: + np.random.seed(acorn) + + d = len(mean) + + if mean[0] == -1 and mean[1] == -1: + mean = mean + 1 / 2**k + + mnt = np.random.multinomial(n, 1/(4**k) * np.ones(4**k)) + cumsum = np.cumsum(mnt) + cumsum = np.concatenate(([0], cumsum)) + + Y = np.zeros(n) + X = np.zeros((n, d)) + + for i in range(2**k): + for j in range(2**k): + temp = np.random.multivariate_normal(mean, cov_scale * np.eye(d), + size=mnt[i*(2**k) + j]) + temp[:, 0] += i*(1/2**(k-1)) + temp[:, 1] += j*(1/2**(k-1)) + + X[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = temp + + if i % 2 == j % 2: + Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 0 + else: + Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 1 + + if d == 2: + if angle_params is None: + angle_params = np.random.uniform(0, 2*np.pi) + + R = generate_2d_rotation(angle_params) + X = X @ R + + else: + raise ValueError('d=%i not implemented!'%(d)) + + return X, Y.astype(int) + +#%% +def experiment(n_xor, n_nxor, n_test, reps, n_trees, max_depth, acorn=None): + #print(1) + if n_xor==0 and n_nxor==0: + raise ValueError('Wake up and provide samples to train!!!') + + if acorn != None: + np.random.seed(acorn) + + errors = np.zeros((reps,4),dtype=float) + + for i in range(reps): + default_transformer_class = TreeClassificationTransformer + default_transformer_kwargs = {"kwargs" : {"max_depth" : max_depth}} + + default_voter_class = TreeClassificationVoter + default_voter_kwargs = {} + + default_decider_class = SimpleArgmaxAverage + default_decider_kwargs = {"classes" : np.arange(2)} + progressive_learner = ProgressiveLearner(default_transformer_class = default_transformer_class, + default_transformer_kwargs = default_transformer_kwargs, + default_voter_class = default_voter_class, + default_voter_kwargs = default_voter_kwargs, + default_decider_class = default_decider_class, + default_decider_kwargs = default_decider_kwargs) + uf = ProgressiveLearner(default_transformer_class = default_transformer_class, + default_transformer_kwargs = default_transformer_kwargs, + default_voter_class = default_voter_class, + default_voter_kwargs = default_voter_kwargs, + default_decider_class = default_decider_class, + default_decider_kwargs = default_decider_kwargs) + #source data + xor, label_xor = generate_gaussian_parity(n_xor,cov_scale=0.1,angle_params=0) + test_xor, test_label_xor = generate_gaussian_parity(n_test,cov_scale=0.1,angle_params=0) + + #target data + nxor, label_nxor = generate_gaussian_parity(n_nxor,cov_scale=0.1,angle_params=np.pi/4) + test_nxor, test_label_nxor = generate_gaussian_parity(n_test,cov_scale=0.1,angle_params=np.pi/4) + + if n_xor == 0: + progressive_learner.add_task(nxor, label_nxor, num_transformers=n_trees) + + errors[i,0] = 0.5 + errors[i,1] = 0.5 + + uf_task2=progressive_learner.predict(test_nxor, transformer_ids=[0], task_id=0) + l2f_task2=progressive_learner.predict(test_nxor, task_id=0) + + errors[i,2] = 1 - np.sum(uf_task2 == test_label_nxor)/n_test + errors[i,3] = 1 - np.sum(l2f_task2 == test_label_nxor)/n_test + elif n_nxor == 0: + progressive_learner.add_task(xor, label_xor, num_transformers=n_trees) + + uf_task1=progressive_learner.predict(test_xor, transformer_ids=[0], task_id=0) + l2f_task1=progressive_learner.predict(test_xor, task_id=0) + + errors[i,0] = 1 - np.sum(uf_task1 == test_label_xor)/n_test + errors[i,1] = 1 - np.sum(l2f_task1 == test_label_xor)/n_test + errors[i,2] = 0.5 + errors[i,3] = 0.5 + else: + progressive_learner.add_task(xor, label_xor, num_transformers=n_trees) + progressive_learner.add_task(nxor, label_nxor, num_transformers=n_trees) + + uf.add_task(xor, label_xor, num_transformers=2*n_trees) + uf.add_task(nxor, label_nxor, num_transformers=2*n_trees) + + uf_task1=uf.predict(test_xor, transformer_ids=[0], task_id=0) + l2f_task1=progressive_learner.predict(test_xor, task_id=0) + uf_task2=uf.predict(test_nxor, transformer_ids=[1], task_id=1) + l2f_task2=progressive_learner.predict(test_nxor, task_id=1) + + errors[i,0] = 1 - np.sum(uf_task1 == test_label_xor)/n_test + errors[i,1] = 1 - np.sum(l2f_task1 == test_label_xor)/n_test + errors[i,2] = 1 - np.sum(uf_task2 == test_label_nxor)/n_test + errors[i,3] = 1 - np.sum(l2f_task2 == test_label_nxor)/n_test + + return np.mean(errors,axis=0) + +#%% +mc_rep = 1000 +n_test = 1000 +n_trees = 10 +n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int) +n_rxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int) + +mean_error = np.zeros((4, len(n_xor)+len(n_rxor))) +std_error = np.zeros((4, len(n_xor)+len(n_rxor))) + +mean_te = np.zeros((2, len(n_xor)+len(n_rxor))) +std_te = np.zeros((2, len(n_xor)+len(n_rxor))) + +for i,n1 in enumerate(n_xor): + print('starting to compute %s xor\n'%n1) + error = np.array( + Parallel(n_jobs=-1,verbose=1)( + delayed(experiment)(n1,0,n_test,1,n_trees=n_trees,max_depth=ceil(log2(750))) for _ in range(mc_rep) + ) + ) + mean_error[:,i] = np.mean(error,axis=0) + std_error[:,i] = np.std(error,ddof=1,axis=0) + mean_te[0,i] = np.mean(error[:,0]/error[:,1]) + mean_te[1,i] = np.mean(error[:,2]/error[:,3]) + std_te[0,i] = np.std(error[:,0]/error[:,1],ddof=1) + std_te[1,i] = np.std(error[:,2]/error[:,3],ddof=1) + + if n1==n_xor[-1]: + for j,n2 in enumerate(n_rxor): + print('starting to compute %s rxor\n'%n2) + + error = np.array( + Parallel(n_jobs=-1,verbose=1)( + delayed(experiment)(n1,n2,n_test,1,n_trees=n_trees,max_depth=ceil(log2(750))) for _ in range(mc_rep) + ) + ) + mean_error[:,i+j+1] = np.mean(error,axis=0) + std_error[:,i+j+1] = np.std(error,ddof=1,axis=0) + mean_te[0,i+j+1] = np.mean(error[:,0]/error[:,1]) + mean_te[1,i+j+1] = np.mean(error[:,2]/error[:,3]) + std_te[0,i+j+1] = np.std(error[:,0]/error[:,1],ddof=1) + std_te[1,i+j+1] = np.std(error[:,2]/error[:,3],ddof=1) + +with open('result/mean_xor_rxor.pickle','wb') as f: + pickle.dump(mean_error,f) + +with open('result/std_xor_rxor.pickle','wb') as f: + pickle.dump(std_error,f) + +with open('result/mean_te_xor_rxor.pickle','wb') as f: + pickle.dump(mean_te,f) + +with open('result/std_te_xor_rxor.pickle','wb') as f: + pickle.dump(std_te,f) + +#%% +#mc_rep = 50 +mean_error = unpickle('result/mean_xor_rxor.pickle') +std_error = unpickle('result/std_xor_rxor.pickle') + +n_xor = (100*np.arange(0.5, 7.25, step=0.25)).astype(int) +n_rxor = (100*np.arange(0.5, 7.50, step=0.25)).astype(int) + +n1s = n_xor +n2s = n_rxor + +ns = np.concatenate((n1s, n2s + n1s[-1])) +ls=['-', '--'] +algorithms = ['Uncertainty Forest', 'Lifelong Forest'] + + +TASK1='XOR' +TASK2='R-XOR' + +fontsize=30 +labelsize=27.5 + +colors = sns.color_palette("Set1", n_colors = 2) + +fig1 = plt.figure(figsize=(8,8)) +ax1 = fig1.add_subplot(1,1,1) +# for i, algo in enumerate(algorithms): +ax1.plot(ns, mean_error[0], label=algorithms[0], c=colors[1], ls=ls[np.sum(0 > 1).astype(int)], lw=3) +#ax1.fill_between(ns, +# mean_error[0] + 1.96*std_error[0], +# mean_error[0] - 1.96*std_error[0], +# where=mean_error[0] + 1.96*std_error[0] >= mean_error[0] - 1.96*std_error[0], +# facecolor=colors[1], +# alpha=0.15, +# interpolate=True) + +ax1.plot(ns, mean_error[1], label=algorithms[1], c=colors[0], ls=ls[np.sum(1 > 1).astype(int)], lw=3) +#ax1.fill_between(ns, +# mean_error[1] + 1.96*std_error[1, ], +# mean_error[1] - 1.96*std_error[1, ], +# where=mean_error[1] + 1.96*std_error[1] >= mean_error[1] - 1.96*std_error[1], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.set_ylabel('Generalization Error (%s)'%(TASK1), fontname="Arial", fontsize=fontsize) +ax1.legend(loc='upper right', fontsize=20, frameon=False) +ax1.set_ylim(0.1, 0.21) +ax1.set_xlabel('Total Sample Size', fontname="Arial", fontsize=fontsize) +ax1.tick_params(labelsize=labelsize) +ax1.set_yticks([0.15, 0.2]) +ax1.set_xticks([250,750,1500]) +ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") + +right_side = ax1.spines["right"] +right_side.set_visible(False) +top_side = ax1.spines["top"] +top_side.set_visible(False) + +ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=25) +ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=25) + +plt.tight_layout() + +plt.savefig('result/figs/generalization_error_xor.pdf',dpi=500) + +#%% +mean_error = unpickle('result/mean_xor_rxor.pickle') +std_error = unpickle('result/std_xor_rxor.pickle') + +algorithms = ['Uncertainty Forest', 'Lifelong Forest'] + +TASK1='XOR' +TASK2='R-XOR' + +fig1 = plt.figure(figsize=(8,8)) +ax1 = fig1.add_subplot(1,1,1) +# for i, algo in enumerate(algorithms): +ax1.plot(ns[len(n1s):], mean_error[2, len(n1s):], label=algorithms[0], c=colors[1], ls=ls[1], lw=3) +#ax1.fill_between(ns[len(n1s):], +# mean_error[2, len(n1s):] + 1.96*std_error[2, len(n1s):], +# mean_error[2, len(n1s):] - 1.96*std_error[2, len(n1s):], +# where=mean_error[2, len(n1s):] + 1.96*std_error[2, len(n1s):] >= mean_error[2, len(n1s):] - 1.96*std_error[2, len(n1s):], +# facecolor=colors[1], +# alpha=0.15, +# interpolate=True) + +ax1.plot(ns[len(n1s):], mean_error[3, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3) +#ax1.fill_between(ns[len(n1s):], +# mean_error[3, len(n1s):] + 1.96*std_error[3, len(n1s):], +# mean_error[3, len(n1s):] - 1.96*std_error[3, len(n1s):], +# where=mean_error[3, len(n1s):] + 1.96*std_error[3, len(n1s):] >= mean_error[3, len(n1s):] - 1.96*std_error[3, len(n1s):], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.set_ylabel('Generalization Error (%s)'%(TASK2), fontsize=fontsize) +ax1.legend(loc='upper right', fontsize=20, frameon=False) +# ax1.set_ylim(-0.01, 0.22) +ax1.set_xlabel('Total Sample Size', fontsize=fontsize) +ax1.tick_params(labelsize=labelsize) +# ax1.set_yticks([0.15, 0.25, 0.35]) +ax1.set_yticks([0.12, 0.15]) +ax1.set_xticks([250,750,1500]) +ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") + +ax1.set_ylim(0.115, 0.17) + +ax1.set_xlim(-10) +right_side = ax1.spines["right"] +right_side.set_visible(False) +top_side = ax1.spines["top"] +top_side.set_visible(False) + +# ax1.set_ylim(0.14, 0.36) +ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=25) +ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=25) + +plt.tight_layout() + +plt.savefig('result/figs/generalization_error_rxor.pdf',dpi=500) + +#%% +mean_error = unpickle('result/mean_te_xor_rxor.pickle') +std_error = unpickle('result/std_te_xor_rxor.pickle') + +algorithms = ['Forward Transfer', 'Backward Transfer'] + +TASK1='XOR' +TASK2='R-XOR' + +fig1 = plt.figure(figsize=(8,8)) +ax1 = fig1.add_subplot(1,1,1) + +ax1.plot(ns, mean_error[0], label=algorithms[0], c=colors[0], ls=ls[0], lw=3) +#ax1.fill_between(ns, +# mean_error[0] + 1.96*std_error[0], +# mean_error[0] - 1.96*std_error[0], +# where=mean_error[1] + 1.96*std_error[0] >= mean_error[0] - 1.96*std_error[0], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.plot(ns[len(n1s):], mean_error[1, len(n1s):], label=algorithms[1], c=colors[0], ls=ls[1], lw=3) +#ax1.fill_between(ns[len(n1s):], +# mean_error[1, len(n1s):] + 1.96*std_error[1, len(n1s):], +# mean_error[1, len(n1s):] - 1.96*std_error[1, len(n1s):], +# where=mean_error[1, len(n1s):] + 1.96*std_error[1, len(n1s):] >= mean_error[1, len(n1s):] - 1.96*std_error[1, len(n1s):], +# facecolor=colors[0], +# alpha=0.15, +# interpolate=True) + +ax1.set_ylabel('Transfer Efficiency', fontsize=fontsize) +ax1.legend(loc='upper right', fontsize=20, frameon=False) +ax1.set_ylim(0.96, 1.045) +ax1.set_xlabel('Total Sample Size', fontsize=fontsize) +ax1.tick_params(labelsize=labelsize) +ax1.set_yticks([1, 1.04]) +ax1.set_xticks([250,750,1500]) +ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed") +right_side = ax1.spines["right"] +right_side.set_visible(False) +top_side = ax1.spines["top"] +top_side.set_visible(False) +ax1.hlines(1, 50,1500, colors='gray', linestyles='dashed',linewidth=1.5) + +ax1.text(400, np.mean(ax1.get_ylim()), "%s"%(TASK1), fontsize=25) +ax1.text(900, np.mean(ax1.get_ylim()), "%s"%(TASK2), fontsize=25) + +plt.tight_layout() + +plt.savefig('result/figs/TE.pdf',dpi=500) + +#%% +colors = sns.color_palette('Dark2', n_colors=2) + +X, Y = generate_gaussian_parity(750, cov_scale=0.1, angle_params=0) +Z, W = generate_gaussian_parity(750, cov_scale=0.1, angle_params=np.pi/4) + +fig, ax = plt.subplots(1,1, figsize=(8,8)) +ax.scatter(X[:, 0], X[:, 1], c=get_colors(colors, Y), s=50) + +ax.set_xticks([]) +ax.set_yticks([]) +ax.set_title('Gaussian XOR', fontsize=30) + +plt.tight_layout() +ax.axis('off') +plt.savefig('result/figs/gaussian-xor.pdf') + +#%% +colors = sns.color_palette('Dark2', n_colors=2) +fig, ax = plt.subplots(1,1, figsize=(8,8)) +ax.scatter(Z[:, 0], Z[:, 1], c=get_colors(colors, W), s=50) + +ax.set_xticks([]) +ax.set_yticks([]) +ax.set_title('Gaussian R-XOR', fontsize=30) +ax.axis('off') +plt.tight_layout() +plt.savefig('result/figs/gaussian-rxor.pdf') + +# %% diff --git a/proglearn/base.py b/proglearn/base.py index e974e2703c..d4221132b3 100644 --- a/proglearn/base.py +++ b/proglearn/base.py @@ -2,26 +2,17 @@ Main Author: Will LeVine Corresponding Email: levinewill@icloud.com ''' -from abc import ABC, abstractmethod +import abc -class BaseTransformer(ABC): +class BaseTransformer(abc.ABC): """ A base class for a transformer. Parameters ---------- None - - Methods - ---------- - fit(X, y) - fits the transformer to data X with labels y - transform(X) - transformers the given data, X - is_fitted() - indicates whether the transformer is fitted """ - @abstractmethod + @abc.abstractmethod def fit(self, X=None, y=None): """ Fits the transformer. @@ -35,7 +26,7 @@ def fit(self, X=None, y=None): """ pass - @abstractmethod + @abc.abstractmethod def transform(self, X): """ Perform inference using the transformer. @@ -47,7 +38,7 @@ def transform(self, X): """ pass - @abstractmethod + @abc.abstractmethod def is_fitted(self): """ Indicates whether the transformer is fitted. @@ -59,24 +50,15 @@ def is_fitted(self): pass -class BaseVoter(ABC): +class BaseVoter(abc.ABC): """ A base class for a voter. Parameters ---------- None - - Methods - ---------- - fit(X, y) - fits the voter to data X with labels y - vote(X) - provides inference votes on the given transformed data, X - is_fitted() - indicates whether the voter is fitted """ - @abstractmethod + @abc.abstractmethod def fit(self, X, y): """ Fits the voter. @@ -84,16 +66,16 @@ def fit(self, X, y): Parameters ---------- X : ndarray - Transformed data matrix. + Input data matrix. y : ndarray Output (i.e. response) data matrix. """ pass - @abstractmethod + @abc.abstractmethod def vote(self, X): """ - Perform inference using the voter on transformed data X. + Perform inference using the voter. Parameters ---------- @@ -102,7 +84,7 @@ def vote(self, X): """ pass - @abstractmethod + @abc.abstractmethod def is_fitted(self): """ Indicates whether the voter is fitted. @@ -114,24 +96,15 @@ def is_fitted(self): pass -class BaseDecider(ABC): +class BaseDecider(abc.ABC): """ A base class for a decider. Parameters ---------- None - - Methods - ---------- - fit(X, y, transformer_id_to_transformers, voter_id_to_voters) - fits transformer to data X with labels y - predict(X) - decides on the given input data X - is_fitted() - indicates whether the decider is fitted """ - @abstractmethod + @abc.abstractmethod def fit(self, X, y, transformer_id_to_transformers, voter_id_to_voters): """ Fits the decider. @@ -149,7 +122,7 @@ def fit(self, X, y, transformer_id_to_transformers, voter_id_to_voters): """ pass - @abstractmethod + @abc.abstractmethod def predict(self, X): """ Perform inference using the decider. @@ -161,7 +134,7 @@ def predict(self, X): """ pass - @abstractmethod + @abc.abstractmethod def is_fitted(self): """ Indicates whether the decider is fitted. @@ -181,13 +154,8 @@ class BaseClassificationDecider(BaseDecider): Parameters ---------- None - - Methods - ---------- - predict_proba(X) - returns class-posteriors for input data X """ - @abstractmethod + @abc.abstractmethod def predict_proba(self, X): """ Estimate posteriors using the decider. @@ -199,26 +167,15 @@ def predict_proba(self, X): """ pass -class BaseProgressiveLearner(ABC): +class BaseProgressiveLearner(abc.ABC): """ A base class for a progressive learner. Parameters ---------- None - - Methods - ---------- - add_task(X, y) - adds a new unseen task to the progressive learner - add_transformer(X, y) - adds a new transformer (but no voters or transformers corresponding - to the task from which the transformer data was collected. - predict(X, task_id): - performs inference corresponding to the input task_id using the - progressive learner. """ - @abstractmethod + @abc.abstractmethod def add_task(self, X, y): """ Add a new unseen task to the progressive learner. @@ -232,11 +189,11 @@ def add_task(self, X, y): """ pass - @abstractmethod + @abc.abstractmethod def add_transformer(self, X, y): """ Add a new transformer (but no voters or transformers corresponding to the task - from which the transformer data was collected). + from which the transformer data was collected. Parameters ---------- @@ -247,11 +204,10 @@ def add_transformer(self, X, y): """ pass - @abstractmethod + @abc.abstractmethod def predict(self, X, task_id): """ - Perform inference corresponding to the input task_id on input data X using the - progressive learner. + Perform inference corresponding to the input task_id using the progressive learner. Parameters ---------- @@ -271,14 +227,8 @@ class BaseClassificationProgressiveLearner(BaseProgressiveLearner): Parameters ---------- None - - Methods - ---------- - predict_proba(X, task_id): - provides class-posteriors corresponding to the input task_id on input data X using - the progressive learner. """ - @abstractmethod + @abc.abstractmethod def predict_proba(self, X, task_id): """ Estimate posteriors under a given task_id using the decider. diff --git a/proglearn/forest.py b/proglearn/forest.py index ff3f71ee8d..e67050dc7d 100644 --- a/proglearn/forest.py +++ b/proglearn/forest.py @@ -9,34 +9,6 @@ import numpy as np class LifelongClassificationForest: - """ - A class used to represent a lifelong classification forest. - - Parameters: - --- - n_estimators : int, default=100 - The number of estimators used in the Lifelong Classification Forest - tree_construction_proportion : int, default=0.67 - The proportions of the input data set aside to train each decision - tree. The remainder of the data is used to fill in voting posteriors. - finite_sample_correction : bool, default=False - Boolean indicating whether this learner will have finite sample correction - - Methods - --- - add_task(X, y, task_id) - adds a task with id task_id, given input data matrix X - and output data matrix y, to the Lifelong Classification Forest - add_transformer(X, y, transformer_id) - adds a transformer with id transformer_id, given input data matrix, X - and output data matrix, y, to the Lifelong Classification Forest - and trains the voters and deciders from new transformer to previous tasks - predict(X, task_id) - predicts class labels of a task with id task_id given input data matrix X - predict_proba(X, task_id) - predicts posterior probabilities of each class label of a task - with id task_id given input data matrix X and - """ def __init__(self, n_estimators=100, tree_construction_proportion=0.67, finite_sample_correction=False): self.n_estimators = n_estimators self.tree_construction_proportion=tree_construction_proportion @@ -53,27 +25,6 @@ def __init__(self, n_estimators=100, tree_construction_proportion=0.67, finite_s def add_task( self, X, y, task_id=None): - """ - adds a task with id task_id, given input data matrix X - and output data matrix y, to the Lifelong Classification Forest - - Parameters - --- - X : ndarray - The input data matrix. - y : ndarray - The output (response) data matrix. - task_id : obj, default=None - The id corresponding to the task being added. - - Attributes - --- - tree_construction_proportion : float - The proportions of the input data set aside to - train each decision tree - n_estimators : int - The number of estimators used in the Lifelong Classification Forest - """ self.pl.add_task( X, y, @@ -85,27 +36,6 @@ def add_task( return self def add_transformer(self, X, y, transformer_id=None): - """ - adds a transformer to the Lifelong Classification Forest and trains - the voters and deciders from this new transformer to previous tasks - - Parameters - --- - X : ndarray - The input data matrix. - y : ndarray - The output (response) data matrix. - transformer_id : obj, default=None - The id corresponding to the transformer being added. - - Attributes - --- - tree_construction_proportion : float - The proportions of the input data set aside to - train each decision tree - n_estimators : int - The number of estimators used in the Lifelong Classification Forest - """ self.pl.add_transformer( X, y, @@ -117,31 +47,9 @@ def add_transformer(self, X, y, transformer_id=None): return self def predict(self, X, task_id): - """ - predicts the class labels for a particular task - given data, X and task id, task_id - - Parameters - --- - X : ndarray - The input data matrix. - task_id : obj - The id corresponding to the task being mapped to. - """ return self.pl.predict(X, task_id) def predict_proba(self, X, task_id): - """ - predicts the posterior probabilities of each class for - a particular task given data, X and task id, task_id - - Parameters - --- - X : ndarray - The input data matrix. - task_id: - The id corresponding to the task being mapped to. - """ return self.pl.predict_proba(X, task_id) diff --git a/proglearn/sims/make_XOR.py b/proglearn/sims/make_XOR.py new file mode 100755 index 0000000000..46b5c4e000 --- /dev/null +++ b/proglearn/sims/make_XOR.py @@ -0,0 +1,80 @@ +import itertools +import numpy as np +from sklearn import datasets +from sklearn.utils import check_random_state + +def make_XOR(n_samples=100, cluster_center=[0,0], cluster_std=0.25, + dist_from_center=0.5, N_XOR=False, theta_rotation=0, + random_state=None): + """ + Generate 2-dimensional Gaussian XOR distribution. + (Classic XOR problem but each point is the + center of a Gaussian blob distribution) + + Parameters + ---------- + n_samples : int, optional (default=100) + If int, it is the total number of points equally divided among + the four clusters. + + cluster_center : array of shape [2,], optional (default=[0,0]) + The x1 and x2 coordinates of the center of the four clusters. + + cluster_std : float, optional (default=0.25) + The standard deviation of the clusters. + + dist_from_center : float, optional (default=0.5) + X value distance of each cluster to the center of the four clusters. + + N_XOR : boolean, optional (default=False) + Change to Gaussian N_XOR distribution (inverts the class labels). + + theta_rotation : float, optional (default=0) + Number of radians to rotate the distribution by. + + random_state : int, RandomState instance, default=None + Determines random number generation for dataset creation. Pass an int + for reproducible output across multiple function calls. + + + Returns + ------- + X : array of shape [n_samples, 2] + The generated samples. + y : array of shape [n_samples] + The integer labels for cluster membership of each sample. + """ + + #variable setup + seed = random_state + dist = dist_from_center + std = cluster_std + n = int(n_samples/4) + + cluster_centers = np.array(list(itertools.product([dist, -dist], repeat=2))) + cluster_centers = cluster_center - cluster_centers + n_per_cluster = np.full(shape=2, fill_value=n) + + #make blobs + X1,_ = datasets.make_blobs(n_samples=n_per_cluster, n_features=2, + centers=cluster_centers[[0,3], :], + cluster_std=std, random_state=seed) + X2,_ = datasets.make_blobs(n_samples=n_per_cluster, n_features=2, + centers=cluster_centers[[1,2], :], + cluster_std=std, random_state=seed) + + #assign classe + if N_XOR: + y1, y2 = np.zeros(n*2), np.ones(n*2) + else: + y1, y2 = np.ones(n*2), np.zeros(n*2) + + X = np.concatenate((X1, X2)) + y = np.concatenate((y1, y2)) + + #rotation + c, s = np.cos(theta_rotation), np.sin(theta_rotation) + R = np.array([[c, -s], [s, c]]) + X = (R @ X.T).T + + return X,y diff --git a/proglearn/tests/test_KNNClassificationVoter.py b/proglearn/tests/test_KNNClassificationVoter.py new file mode 100755 index 0000000000..d264acd73a --- /dev/null +++ b/proglearn/tests/test_KNNClassificationVoter.py @@ -0,0 +1,45 @@ +import unittest +import pytest +import numpy as np +from numpy.testing import assert_allclose +from sklearn.exceptions import NotFittedError + +from proglearn.voters import KNNClassificationVoter +from proglearn.base import BaseVoter + +class TestKNNClassificationVoter(unittest.TestCase): + + + def test_vote_without_fit(self): + #generate random data + X = np.random.randn(100,3) + + #check if NotFittedError is raised + with self.assertRaises(NotFittedError): + kcv = KNNClassificationVoter(3) + kcv.vote(X) + + + def test_correct_vote(self): + #set random seed + np.random.seed(0) + + + #generate training data and classes + X = np.concatenate((np.zeros(100), np.ones(100))).reshape(-1,1) + Y = np.concatenate((np.zeros(100), np.ones(100))) + + #train model + kcv = KNNClassificationVoter(3) + kcv.fit(X, Y) + + #generate testing data and class probability + X_test = np.ones(6).reshape(-1,1) + Y_test = np.concatenate((np.zeros((6,1)), np.ones((6,1))), axis = 1) + + #check if model predicts as expected + assert_allclose(Y_test, kcv.vote(X_test), atol=1e-4) + + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/proglearn/tests/test_forest.py b/proglearn/tests/test_forest.py deleted file mode 100644 index 0faef8eaeb..0000000000 --- a/proglearn/tests/test_forest.py +++ /dev/null @@ -1,49 +0,0 @@ -import unittest -import pytest -import numpy as np -import random - -from proglearn.forest import LifelongClassificationForest -from proglearn.transformers import TreeClassificationTransformer -from proglearn.voters import TreeClassificationVoter -from proglearn.deciders import SimpleArgmaxAverage - -class TestLifelongClassificationForest: - - def test_initialize(self): - l2f = LifelongClassificationForest() - assert True - - def test_correct_default_transformer(self): - l2f = LifelongClassificationForest() - assert l2f.pl.default_transformer_class == TreeClassificationTransformer - - def test_correct_default_voter(self): - l2f = LifelongClassificationForest() - assert l2f.pl.default_voter_class == TreeClassificationVoter - - def test_correct_default_decider(self): - l2f = LifelongClassificationForest() - assert l2f.pl.default_decider_class == SimpleArgmaxAverage - - def test_correct_default_kwargs(self): - l2f = LifelongClassificationForest() - - #transformer - assert l2f.pl.default_transformer_kwargs == {} - - #voter - assert len(l2f.pl.default_voter_kwargs) == 1 - assert "finite_sample_correction" in list(l2f.pl.default_voter_kwargs.keys()) - assert l2f.pl.default_voter_kwargs["finite_sample_correction"] == False - - #decider - assert l2f.pl.default_decider_kwargs == {} - - def test_correct_default_n_estimators(self): - l2f = LifelongClassificationForest() - assert l2f.n_estimators == 100 - - def test_correct_true_initilization_finite_sample_correction(self): - l2f = LifelongClassificationForest(finite_sample_correction=True) - assert l2f.pl.default_voter_kwargs == {"finite_sample_correction": True} diff --git a/proglearn/tests/test_lifelongclassificationforest.py b/proglearn/tests/test_lifelongclassificationforest.py new file mode 100644 index 0000000000..e5d0d10b52 --- /dev/null +++ b/proglearn/tests/test_lifelongclassificationforest.py @@ -0,0 +1,50 @@ +import unittest +import pytest +import numpy as np +import random + +from proglearn.forest import LifelongClassificationForest +from proglearn.transformers import TreeClassificationTransformer +from proglearn.voters import TreeClassificationVoter +from proglearn.deciders import SimpleArgmaxAverage + +class test_LifelongClassificationForest(unittest.TestCase): + + def setUp(self): + self.l2f = LifelongClassificationForest() + + def test_initialize(self): + self.assertTrue(True) + + def test_correct_default_transformer(self): + self.assertIs(self.l2f.pl.default_transformer_class, TreeClassificationTransformer) + + def test_correct_default_voter(self): + self.assertIs(self.l2f.pl.default_voter_class, TreeClassificationVoter) + + def test_correct_default_decider(self): + self.assertIs(self.l2f.pl.default_decider_class, SimpleArgmaxAverage) + + def test_correct_default_kwargs_transformer_decider_empty(self): + self.assertFalse(self.l2f.pl.default_transformer_kwargs) + self.assertFalse(self.l2f.pl.default_decider_kwargs) + + def test_correct_default_estimators(self): + self.assertIs(self.l2f.n_estimators, 100) + + def test_correct_estimator(self): + rand = random.randint(0, 100) + l2f = LifelongClassificationForest(n_estimators=rand) + self.assertIs(l2f.n_estimators, rand) + + def test_correct_default_finite_sample_correction(self): + tmp_dict = {"finite_sample_correction": False} + self.assertEqual(self.l2f.pl.default_voter_kwargs, tmp_dict) + + def test_correct_true_initilization_finite_sample_correction(self): + tmp_dict = {"finite_sample_correction": True} + l2f = LifelongClassificationForest(finite_sample_correction=True) + self.assertEqual(l2f.pl.default_voter_kwargs, tmp_dict) + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/proglearn/tests/test_system.py b/proglearn/tests/test_system.py index f52ecceca0..527b697152 100644 --- a/proglearn/tests/test_system.py +++ b/proglearn/tests/test_system.py @@ -1,6 +1,7 @@ #%% import pytest import numpy as np +from numpy.testing import assert_almost_equal, assert_warns, assert_raises from proglearn.progressive_learner import ProgressiveLearner from proglearn.deciders import SimpleArgmaxAverage @@ -63,7 +64,7 @@ def generate_gaussian_parity(n, mean=np.array([-1, -1]), cov_scale=1, angle_para class TestSystem: - def test_nxor(self): + def simulation_data_test(self): #tests proglearn on xor nxor simulation data np.random.seed(12345) diff --git a/proglearn/tests/test_transformer.py b/proglearn/tests/test_treeclassification.py similarity index 54% rename from proglearn/tests/test_transformer.py rename to proglearn/tests/test_treeclassification.py index 7a0b53fba4..1539b3eae7 100644 --- a/proglearn/tests/test_transformer.py +++ b/proglearn/tests/test_treeclassification.py @@ -1,15 +1,13 @@ import pytest +import unittest import numpy as np from numpy.testing import assert_allclose from sklearn.exceptions import NotFittedError from proglearn.transformers import TreeClassificationTransformer +from proglearn.voters import TreeClassificationVoter -class TestTreeClassificationTransformer: - - def test_init(self): - TreeClassificationTransformer() - assert True +class test_treeclassification(unittest.TestCase): def test_predict_without_fit(self): # Generate random data @@ -17,7 +15,12 @@ def test_predict_without_fit(self): with pytest.raises(NotFittedError): trt = TreeClassificationTransformer() - trt.transform(X) + trt.transform(X) + + with pytest.raises(NotFittedError): + trv = TreeClassificationVoter() + trv.vote(X) + def test_correct_transformation(self): np.random.seed(1) @@ -31,3 +34,20 @@ def test_correct_transformation(self): u1 = trt.transform(np.array([0]).reshape(1, -1)) u2 = trt.transform(np.array([1]).reshape(1, -1)) assert u1 != u2 + + + def test_correct_vote(self): + np.random.seed(3) + + X = np.concatenate((np.zeros(100), np.ones(100))) + y = np.concatenate((np.zeros(100), np.ones(100))) + + trv = TreeClassificationVoter() + trv.fit(X, y) + + X_test = np.ones(6) + y_test = np.ones(6) + assert_allclose(y_test, trv.vote(X_test)[:,-1], atol=1e-4) + +if __name__ == '__main__': + unittest.main() diff --git a/proglearn/tests/test_voter.py b/proglearn/tests/test_voter.py index 1f07849e91..8cd3f9ef30 100644 --- a/proglearn/tests/test_voter.py +++ b/proglearn/tests/test_voter.py @@ -3,24 +3,31 @@ from sklearn.utils.validation import NotFittedError +from proglearn.progressive_learner import ProgressiveLearner +from proglearn.deciders import SimpleArgmaxAverage +from proglearn.transformers import TreeClassificationTransformer, NeuralClassificationTransformer from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter -from numpy import testing +import unittest + +from numpy.testing import assert_allclose def generate_data(n = 100): X = np.concatenate([np.zeros(n), np.ones(n)]) y = np.concatenate([np.zeros(n), np.ones(n)]) return X, y -class TestTreeClassificationVoter: +class TestTreeClassificationVoter(unittest.TestCase): def test_initialize(self): TreeClassificationVoter() - assert True + self.assertTrue(True) def test_predict_without_fit(self): X, y = generate_data() - testing.assert_raises(NotFittedError, TreeClassificationVoter().vote, X) + with self.assertRaises(NotFittedError): + voter = TreeClassificationVoter() + voter.vote(X) def test_correct_predict(self): X, y = generate_data() @@ -30,42 +37,7 @@ def test_correct_predict(self): y_hat = np.argmax(voter.vote(X), axis = 1) - testing.assert_allclose(y, y_hat) - -class TestKNNClassificationVoter: - def test_initialize(self): - KNNClassificationVoter() - assert True - - def test_vote_without_fit(self): - #generate random data - X = np.random.randn(100,3) - testing.assert_raises(NotFittedError, KNNClassificationVoter().vote, X) - - def test_correct_k(self): - #generate training data and classes - X = np.concatenate((np.zeros(100), np.ones(100))).reshape(-1,1) - Y = np.concatenate((np.zeros(100), np.ones(100))) - - #train model - assert KNNClassificationVoter(3).fit(X, Y).k == 3 - assert KNNClassificationVoter().fit(X, Y).k == int(np.log2(len(X))) - - def test_correct_vote(self): - #set random seed - np.random.seed(0) - - #generate training data and classes - X = np.concatenate((np.zeros(100), np.ones(100))).reshape(-1,1) - Y = np.concatenate((np.zeros(100), np.ones(100))) - - #train model - kcv = KNNClassificationVoter(3) - kcv.fit(X, Y) - - #generate testing data and class probability - X_test = np.ones(6).reshape(-1,1) - Y_test = np.concatenate((np.zeros((6,1)), np.ones((6,1))), axis = 1) + assert_allclose(y, y_hat) - #check if model predicts as expected - testing.assert_allclose(Y_test, kcv.vote(X_test), atol=1e-4) +if __name__ == '__main__': + unittest.main() diff --git a/proglearn/voters.py b/proglearn/voters.py index c3060c5f1b..e0db39b7ac 100755 --- a/proglearn/voters.py +++ b/proglearn/voters.py @@ -176,8 +176,8 @@ def fit(self, X, y): the label for class membership of the given data """ X, y = check_X_y(X, y) - self.k = int(np.log2(len(X))) if self.k == None else self.k - self.knn = KNeighborsClassifier(self.k, **self.kwargs) + k = int(np.log2(len(X))) if self.k == None else self.k + self.knn = KNeighborsClassifier(k, **self.kwargs) self.knn.fit(X, y) self._is_fitted = True diff --git a/pytest.ini b/pytest.ini index fb7e62fc77..db82df5310 100644 --- a/pytest.ini +++ b/pytest.ini @@ -1,8 +1,7 @@ [pytest] -addopts = --cov=proglearn --doctest-modules filterwarnings = # Matrix PendingDeprecationWarning. ignore:Using or importing the ABCs from 'collections' - ignore:the imp module is deprecated in favour of importlib + ignore:the imp module is deprecated in favour of importlib \ No newline at end of file diff --git a/runtime.txt b/runtime.txt deleted file mode 100644 index 475ba515c0..0000000000 --- a/runtime.txt +++ /dev/null @@ -1 +0,0 @@ -3.7 diff --git a/tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_1-Installation.ipynb b/tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_1-Installation.ipynb deleted file mode 100644 index f269332576..0000000000 --- a/tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_1-Installation.ipynb +++ /dev/null @@ -1,80 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Overview\n", - "This set of five tutorials (installation, package setup, data setup, running, analyzing) will explain the UncertaintyForest class. After following the steps below, you should have the ability to run the code on your own machine and interpret the results.\n", - "\n", - "# 1. Installation\n", - "## *Goal: Clone the repository on your local machine and understand what it includes*\n", - "\n", - "### Let's clone the repository\n", - "Steps:\n", - "1. Open the command line on your local machine (called \"Terminal\" on Mac)\n", - "2. Navigate to the location where you'd like to put the repository.\n", - " 1. Find a location in a file explorer (\"Finder\" on Mac)\n", - " 2. Type \"cd \" in the command prompt\n", - " 3. Drag and drop the folder where you'd like to place the repository from the file explorer to the command line\n", - " The command prompt should show something like:\n", - " `bstraus@BS-Mac ~ % cd /Users/bstraus/Desktop `\n", - "3. Type `git clone REPOSITORY_URL` where `REPOSITORY_URL` is replaced by the URL of the neurodata/progressive-learning repository (as of 2020-09-21, it is https://github.com/neurodata/progressive-learning)\n", - "4. Wait for the process to finish. You'll know it's done because you'll see the first part of the command prompt pop up. For me, that looks like: `bstraus@BS-Mac ~ %`\n", - "\n", - "Congrats! You've now cloned the progressive-learning repository.\n", - "\n", - "### Let's take a tour\n", - "Currently, you're looking at this tutorial, which lives in progressive-learning/tutorials/.\n", - "This folder also currently houses a notebook running one of the experiments.\n", - "\n", - "In the root directory, we have:\n", - "* `progressive-learning/docs` : contains files that will tell you requirements (we'll use this later), contributing guidelines, and some other administrative files\n", - "\n", - "* `progressive-learning/experiments` : contains notebooks and results for many of the experiments that utilize the functions/classes in the repository\n", - "\n", - "* `progressive-learning/proglearn` : the heart of the repository containing the python files for the progressive learning classes. We'll focus on the UncertaintyForest class which lives in the `forest.py` file in this directory.\n", - "\n", - "* `progressive-learning/tests` : contains python files for various tests\n", - "\n", - "* `progressive-learning/tutorials` : contains python notebooks (like this one) that will guide you through using the classes in the repository and running the experiments\n", - "\n", - "In future notebooks of this tutorial, we'll discuss how to prepare to run the code for the UncertaintyForest class. That code lives in the `progressive-learning/proglearn/forest.py` file. \n", - "\n", - "But, for now, we'll prepare to do that by making a virtual environment and installing the required packages to run that code.\n", - "\n", - "### You're done with part 1 of the tutorial!\n", - "\n", - "### Move on to part 2 (called \"UncertaintyForest_Tutorial_2-Package-Setup\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_2-Package-Setup.ipynb b/tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_2-Package-Setup.ipynb deleted file mode 100644 index 1fe13fa458..0000000000 --- a/tutorials/UncertaintyForestTutorials/UncertaintyForest_Tutorial_2-Package-Setup.ipynb +++ /dev/null @@ -1,72 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Overview\n", - "This set of five tutorials (installation, package setup, data setup, running, analyzing) will explain the UncertaintyForest class. After following the steps below, you should have the ability to run the code on your own machine and interpret the results.\n", - "\n", - "If you haven't seen it already, take a look at the first part of this set of tutorials called `UncertaintyForest_Tutorials_1-Installation`\n", - "\n", - "# 2: Package Setup\n", - "## *Goal: Create a virtual environment and install requirements per requirements.txt in order to run the UncertaintyForest class*\n", - "\n", - "### First, let's create the virtual environment \n", - "**Note:** that the following instructions were designed for Mac operating systems. If you're running another OS, look for the equivalent steps tailored to that OS.\n", - "\n", - "1. Open the command line on your local machine (called \"Terminal\" on Mac)\n", - "2. Navigate to the location where you'd like to put the virtual environment.\n", - " 1. Find a location in a file explorer (\"Finder\" on Mac)\n", - " 2. Type \"cd \" in the command prompt\n", - " 3. Drag and drop the folder where you'd like to place the virtual environment from the file explorer to the command line\n", - " The command prompt should show something like:\n", - " `bstraus@BS-Mac ~ % cd /Users/bstraus/Desktop `\n", - "3. Create the virtual environment by typing `python3 -m venv UncertaintyForestEnv`\n", - "\n", - "### Next, let's install the requirements for running the UncertaintyForest class\n", - "4. Activate the virtual environment by typing `source UncertaintyForestEnv/bin/activate`\n", - "5. Navigate to the folder `progressive-learning/docs/`. You can do this with the same process as in step 2 above.\n", - "5. Install necessary packages by typing `pip install -r requirements.txt`\n", - "6. You'll also want to install the following packages by typing the code below:\n", - " 1.`pip install jupyterlab`\n", - " 2.`pip install notebook`\n", - " 3.`pip install numpy scipy pandas scikit-learn matplotlib seaborn joblib keras tensorflow`\n", - "\n", - "You now have set up your virtual environment and installed necessary packages. Note that you'll need to activate your virtual environment each time you want to run things for this class. You can do this easily by repeating steps 1, 2, and 4.\n", - "\n", - "### You're done with part 2 of the tutorial!\n", - "\n", - "### Move on to part 3 (called \"UncertaintyForest_Tutorial_3-Data-Setup\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -}