-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathtorch_backend.py
413 lines (337 loc) · 15.3 KB
/
torch_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import numpy as np
import torch
from torch import nn
from core import *
from collections import namedtuple
from itertools import count
torch.backends.cudnn.benchmark = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cpu = torch.device("cpu")
@cat.register(torch.Tensor)
def _(*xs):
return torch.cat(xs)
@to_numpy.register(torch.Tensor)
def _(x):
return x.detach().cpu().numpy()
@pad.register(torch.Tensor)
def _(x, border):
return nn.ReflectionPad2d(border)(x)
@transpose.register(torch.Tensor)
def _(x, source, target):
return x.permute([source.index(d) for d in target])
def to(*args, **kwargs):
return lambda x: x.to(*args, **kwargs)
@flip_lr.register(torch.Tensor)
def _(x):
return torch.flip(x, [-1])
#####################
## dataset
#####################
from functools import lru_cache as cache
@cache(None)
def cifar10(root='./data'):
try:
import torchvision
download = lambda train: torchvision.datasets.CIFAR10(root=root, train=train, download=True)
return {k: {'data': v.data, 'targets': v.targets} for k,v in [('train', download(train=True)), ('valid', download(train=False))]}
except ImportError:
from tensorflow.keras import datasets
(train_images, train_labels), (valid_images, valid_labels) = datasets.cifar10.load_data()
return {
'train': {'data': train_images, 'targets': train_labels.squeeze()},
'valid': {'data': valid_images, 'targets': valid_labels.squeeze()}
}
cifar10_mean, cifar10_std = [
(125.31, 122.95, 113.87), # equals np.mean(cifar10()['train']['data'], axis=(0,1,2))
(62.99, 62.09, 66.70), # equals np.std(cifar10()['train']['data'], axis=(0,1,2))
]
cifar10_classes= 'airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck'.split(', ')
#####################
## data loading
#####################
class DataLoader():
def __init__(self, dataset, batch_size, shuffle, set_random_choices=False, num_workers=0, drop_last=False):
self.dataset = dataset
self.batch_size = batch_size
self.set_random_choices = set_random_choices
self.dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, shuffle=shuffle, drop_last=drop_last
)
def __iter__(self):
if self.set_random_choices:
self.dataset.set_random_choices()
return ({'input': x.to(device).half(), 'target': y.to(device).long()} for (x,y) in self.dataloader)
def __len__(self):
return len(self.dataloader)
#GPU dataloading
chunks = lambda data, splits: (data[start:end] for (start, end) in zip(splits, splits[1:]))
even_splits = lambda N, num_chunks: np.cumsum([0] + [(N//num_chunks)+1]*(N % num_chunks) + [N//num_chunks]*(num_chunks - (N % num_chunks)))
def shuffled(xs, inplace=False):
xs = xs if inplace else copy.copy(xs)
np.random.shuffle(xs)
return xs
def transformed(data, targets, transform, max_options=None, unshuffle=False):
i = torch.randperm(len(data), device=device)
data = data[i]
options = shuffled(transform.options(data.shape), inplace=True)[:max_options]
data = torch.cat([transform(x, **choice) for choice, x in zip(options, chunks(data, even_splits(len(data), len(options))))])
return (data[torch.argsort(i)], targets) if unshuffle else (data, targets[i])
class GPUBatches():
def __init__(self, batch_size, transforms=(), dataset=None, shuffle=True, drop_last=False, max_options=None):
self.dataset, self.transforms, self.shuffle, self.max_options = dataset, transforms, shuffle, max_options
N = len(dataset['data'])
self.splits = list(range(0, N+1, batch_size))
if not drop_last and self.splits[-1] != N:
self.splits.append(N)
def __iter__(self):
data, targets = self.dataset['data'], self.dataset['targets']
for transform in self.transforms:
data, targets = transformed(data, targets, transform, max_options=self.max_options, unshuffle=not self.shuffle)
if self.shuffle:
i = torch.randperm(len(data), device=device)
data, targets = data[i], targets[i]
return ({'input': x.clone(), 'target': y} for (x, y) in zip(chunks(data, self.splits), chunks(targets, self.splits)))
def __len__(self):
return len(self.splits) - 1
#####################
## Layers
#####################
#Network
class Network(nn.Module):
def __init__(self, net):
super().__init__()
self.graph = build_graph(net)
for path, (val, _) in self.graph.items():
setattr(self, path.replace('/', '_'), val)
def nodes(self):
return (node for node, _ in self.graph.values())
def forward(self, inputs):
outputs = dict(inputs)
for k, (node, ins) in self.graph.items():
#only compute nodes that are not supplied as inputs.
if k not in outputs:
outputs[k] = node(*[outputs[x] for x in ins])
return outputs
def half(self):
for node in self.nodes():
if isinstance(node, nn.Module) and not isinstance(node, nn.BatchNorm2d):
node.half()
return self
class Identity(namedtuple('Identity', [])):
def __call__(self, x): return x
class Add(namedtuple('Add', [])):
def __call__(self, x, y): return x + y
class AddWeighted(namedtuple('AddWeighted', ['wx', 'wy'])):
def __call__(self, x, y): return self.wx*x + self.wy*y
class Mul(nn.Module):
def __init__(self, weight):
super().__init__()
self.weight = weight
def __call__(self, x):
return x*self.weight
class Flatten(nn.Module):
def forward(self, x): return x.view(x.size(0), x.size(1))
class Concat(nn.Module):
def forward(self, *xs): return torch.cat(xs, 1)
class BatchNorm(nn.BatchNorm2d):
def __init__(self, num_features, eps=1e-05, momentum=0.1, weight_freeze=False, bias_freeze=False, weight_init=1.0, bias_init=0.0):
super().__init__(num_features, eps=eps, momentum=momentum)
if weight_init is not None: self.weight.data.fill_(weight_init)
if bias_init is not None: self.bias.data.fill_(bias_init)
self.weight.requires_grad = not weight_freeze
self.bias.requires_grad = not bias_freeze
class GhostBatchNorm(BatchNorm):
def __init__(self, num_features, num_splits, **kw):
super().__init__(num_features, **kw)
self.num_splits = num_splits
self.register_buffer('running_mean', torch.zeros(num_features*self.num_splits))
self.register_buffer('running_var', torch.ones(num_features*self.num_splits))
def train(self, mode=True):
if (self.training is True) and (mode is False): #lazily collate stats when we are going to use them
self.running_mean = torch.mean(self.running_mean.view(self.num_splits, self.num_features), dim=0).repeat(self.num_splits)
self.running_var = torch.mean(self.running_var.view(self.num_splits, self.num_features), dim=0).repeat(self.num_splits)
return super().train(mode)
def forward(self, input):
N, C, H, W = input.shape
if self.training or not self.track_running_stats:
return nn.functional.batch_norm(
input.view(-1, C*self.num_splits, H, W), self.running_mean, self.running_var,
self.weight.repeat(self.num_splits), self.bias.repeat(self.num_splits),
True, self.momentum, self.eps).view(N, C, H, W)
else:
return nn.functional.batch_norm(
input, self.running_mean[:self.num_features], self.running_var[:self.num_features],
self.weight, self.bias, False, self.momentum, self.eps)
# Losses
class CrossEntropyLoss(namedtuple('CrossEntropyLoss', [])):
def __call__(self, log_probs, target):
return torch.nn.functional.nll_loss(log_probs, target, reduction='none')
class KLLoss(namedtuple('KLLoss', [])):
def __call__(self, log_probs):
return -log_probs.mean(dim=1)
class Correct(namedtuple('Correct', [])):
def __call__(self, classifier, target):
return classifier.max(dim = 1)[1] == target
class LogSoftmax(namedtuple('LogSoftmax', ['dim'])):
def __call__(self, x):
return torch.nn.functional.log_softmax(x, self.dim, _stacklevel=5)
x_ent_loss = Network({
'loss': (nn.CrossEntropyLoss(reduction='none'), ['logits', 'target']),
'acc': (Correct(), ['logits', 'target'])
})
label_smoothing_loss = lambda alpha: Network({
'logprobs': (LogSoftmax(dim=1), ['logits']),
'KL': (KLLoss(), ['logprobs']),
'xent': (CrossEntropyLoss(), ['logprobs', 'target']),
'loss': (AddWeighted(wx=1-alpha, wy=alpha), ['xent', 'KL']),
'acc': (Correct(), ['logits', 'target']),
})
trainable_params = lambda model: {k:p for k,p in model.named_parameters() if p.requires_grad}
#####################
## Optimisers
#####################
from functools import partial
def nesterov_update(w, dw, v, lr, weight_decay, momentum):
dw.add_(weight_decay, w).mul_(-lr)
v.mul_(momentum).add_(dw)
w.add_(dw.add_(momentum, v))
norm = lambda x: torch.norm(x.reshape(x.size(0),-1).float(), dim=1)[:,None,None,None]
def LARS_update(w, dw, v, lr, weight_decay, momentum):
nesterov_update(w, dw, v, lr*(norm(w)/(norm(dw)+1e-2)).to(w.dtype), weight_decay, momentum)
def zeros_like(weights):
return [torch.zeros_like(w) for w in weights]
def optimiser(weights, param_schedule, update, state_init):
weights = list(weights)
return {'update': update, 'param_schedule': param_schedule, 'step_number': 0, 'weights': weights, 'opt_state': state_init(weights)}
def opt_step(update, param_schedule, step_number, weights, opt_state):
step_number += 1
param_values = {k: f(step_number) for k, f in param_schedule.items()}
for w, v in zip(weights, opt_state):
if w.requires_grad:
update(w.data, w.grad.data, v, **param_values)
return {'update': update, 'param_schedule': param_schedule, 'step_number': step_number, 'weights': weights, 'opt_state': opt_state}
LARS = partial(optimiser, update=LARS_update, state_init=zeros_like)
SGD = partial(optimiser, update=nesterov_update, state_init=zeros_like)
#####################
## training
#####################
from itertools import chain
def reduce(batches, state, steps):
#state: is a dictionary
#steps: are functions that take (batch, state)
#and return a dictionary of updates to the state (or None)
for batch in chain(batches, [None]):
#we send an extra batch=None at the end for steps that
#need to do some tidying-up (e.g. log_activations)
for step in steps:
updates = step(batch, state)
if updates:
for k,v in updates.items():
state[k] = v
return state
#define keys in the state dict as constants
MODEL = 'model'
LOSS = 'loss'
VALID_MODEL = 'valid_model'
OUTPUT = 'output'
OPTS = 'optimisers'
ACT_LOG = 'activation_log'
WEIGHT_LOG = 'weight_log'
#step definitions
def forward(training_mode):
def step(batch, state):
if not batch: return
model = state[MODEL] if training_mode or (VALID_MODEL not in state) else state[VALID_MODEL]
if model.training != training_mode: #without the guard it's slow!
model.train(training_mode)
return {OUTPUT: state[LOSS](model(batch))}
return step
def forward_tta(tta_transforms):
def step(batch, state):
if not batch: return
model = state[MODEL] if (VALID_MODEL not in state) else state[VALID_MODEL]
if model.training:
model.train(False)
logits = torch.mean(torch.stack([model({'input': transform(batch['input'].clone())})['logits'].detach() for transform in tta_transforms], dim=0), dim=0)
return {OUTPUT: state[LOSS](dict(batch, logits=logits))}
return step
def backward(dtype=None):
def step(batch, state):
state[MODEL].zero_grad()
if not batch: return
loss = state[OUTPUT][LOSS]
if dtype is not None:
loss = loss.to(dtype)
loss.sum().backward()
return step
def opt_steps(batch, state):
if not batch: return
return {OPTS: [opt_step(**opt) for opt in state[OPTS]]}
def log_activations(node_names=('loss', 'acc')):
def step(batch, state):
if '_tmp_logs_' not in state:
state['_tmp_logs_'] = []
if batch:
state['_tmp_logs_'].extend((k, state[OUTPUT][k].detach()) for k in node_names)
else:
res = {k: to_numpy(torch.cat(xs)).astype(np.float) for k, xs in group_by_key(state['_tmp_logs_']).items()}
del state['_tmp_logs_']
return {ACT_LOG: res}
return step
epoch_stats = lambda state: {k: np.mean(v) for k, v in state[ACT_LOG].items()}
def update_ema(momentum, update_freq=1):
n = iter(count())
rho = momentum**update_freq
def step(batch, state):
if not batch: return
if (next(n) % update_freq) != 0: return
for v, ema_v in zip(state[MODEL].state_dict().values(), state[VALID_MODEL].state_dict().values()):
if not v.dtype.is_floating_point: continue #skip things like num_batches_tracked.
ema_v *= rho
ema_v += (1-rho)*v
return step
default_train_steps = (forward(training_mode=True), log_activations(('loss', 'acc')), backward(), opt_steps)
default_valid_steps = (forward(training_mode=False), log_activations(('loss', 'acc')))
def train_epoch(state, timer, train_batches, valid_batches, train_steps=default_train_steps, valid_steps=default_valid_steps,
on_epoch_end=(lambda state: state)):
train_summary, train_time = epoch_stats(on_epoch_end(reduce(train_batches, state, train_steps))), timer()
valid_summary, valid_time = epoch_stats(reduce(valid_batches, state, valid_steps)), timer(include_in_total=False) #DAWNBench rules
return {
'train': union({'time': train_time}, train_summary),
'valid': union({'time': valid_time}, valid_summary),
'total time': timer.total_time
}
#on_epoch_end
def log_weights(state, weights):
state[WEIGHT_LOG] = state.get(WEIGHT_LOG, [])
state[WEIGHT_LOG].append({k: to_numpy(v.data) for k,v in weights.items()})
return state
def fine_tune_bn_stats(state, batches, model_key=VALID_MODEL):
reduce(batches, {MODEL: state[model_key]}, [forward(True)])
return state
#misc
def warmup_cudnn(model, loss, batch):
#run forward and backward pass of the model
#to allow benchmarking of cudnn kernels
reduce([batch], {MODEL: model, LOSS: loss}, [forward(True), backward()])
torch.cuda.synchronize()
#####################
## input whitening
#####################
def cov(X):
X = X/np.sqrt(X.size(0) - 1)
return X.t() @ X
def patches(data, patch_size=(3, 3), dtype=torch.float32):
h, w = patch_size
c = data.size(1)
return data.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1, c, h, w).to(dtype)
def eigens(patches):
n,c,h,w = patches.shape
Σ = cov(patches.reshape(n, c*h*w))
Λ, V = torch.symeig(Σ, eigenvectors=True)
return Λ.flip(0), V.t().reshape(c*h*w, c, h, w).flip(0)
def whitening_filter(Λ, V, eps=1e-2):
filt = nn.Conv2d(3, 27, kernel_size=(3,3), padding=(1,1), bias=False)
filt.weight.data = (V/torch.sqrt(Λ+eps)[:,None,None,None])
filt.weight.requires_grad = False
return filt