-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathrun.py
executable file
·61 lines (40 loc) · 4.05 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import subprocess, sys, os, time
# the data path is changed here
# please don't forget the / at the end
# please change xgb wrapper path at ./src/xgb_classifer.py
data_dir="../data/" # this is the path of original data
data_base_dir="./data-base/" # this is the path of base features for the entire training data
data_meta_part1_dir="./data-meta-part1/" # this is the path of meta features, if part1, 1st half of training data is used as meta data
data_meta_part2_dir="./data-meta-part2/" # this is the path of meta features, if part2, 2nd half of training data is used as meta data
data_meta_random_dir="./data-meta-random-split/" # this is the path of meta features, training data is random split to 50/50
submission_dir="./submissions/" # this is the path where all solutions are generated
cmd=' '.join(['mkdir',data_base_dir,data_meta_part1_dir,data_meta_part2_dir,data_meta_random_dir,submission_dir])
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/run_online.py', data_dir,submission_dir]) # run all the online models. They are self contained and don't rely on other pre-processing.
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/pre-ensemble.py', submission_dir]) # ensemble the predictions of all the online models
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/submission_to_feature.py', submission_dir,'best_online_ensemble.csv',data_meta_part1_dir,'online_ensemble'])
subprocess.call(cmd, shell=True) # use this prediction as meta feature of the test set
cmd=' '.join(['python', 'src/pre-processing-base.py', data_dir,data_base_dir]) # preprocessing base data, imputing, encoding
subprocess.call(cmd, shell=True)
cmd=' '.join(['pypy', 'src/pre_processing_best_online.py', data_dir,data_meta_part1_dir,data_meta_part2_dir]) # using online model to train base data and generate meta features
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/pre-processing-meta-part1.py', data_base_dir,data_meta_part1_dir]) # using other models to generate meta features for part1, 1st half of training data
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/pre-processing-meta-part2.py', data_base_dir,data_meta_part2_dir]) # using other models to generate meta features for part2, 2nd half of training data
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/pre-processing-meta-random-split.py', data_base_dir,data_meta_random_dir]) # using other models to generate meta features for X_meta, which comes from a random split
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/xgb_meta_part1_predict.py', data_base_dir,data_meta_part1_dir,submission_dir]) # using meta stage classifier to train, predict and generate solutions.
subprocess.call(cmd, shell=True) # part1 is used as the metat data. 7 models
cmd=' '.join(['python', 'src/xgb_meta_part2_predict.py', data_base_dir,data_meta_part2_dir,submission_dir]) # using meta stage classifier to train, predict and generate solutions.
subprocess.call(cmd, shell=True) # part2 is used as the metat data. 4 models
cmd=' '.join(['python', 'src/xgb_meta_random_split_predict.py', data_base_dir,data_meta_random_dir,submission_dir]) # using meta stage classifier to train, predict and generate solutions.
subprocess.call(cmd, shell=True) # 4 models
cmd=' '.join(['python', 'src/other_model.py', data_base_dir,data_meta_part1_dir,submission_dir]) # using meta stage classifier to train, predict and generate solutions.
subprocess.call(cmd, shell=True)
cmd=' '.join(['gunzip ', submission_dir+'*.gz' ])
subprocess.call(cmd, shell=True)
cmd=' '.join(['python', 'src/ensemble.py', submission_dir]) # ensemble all previous prediction to generate the best_solution.csv
subprocess.call(cmd, shell=True)