-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathboard.c
838 lines (775 loc) · 26.8 KB
/
board.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
// board.c -- Implementation of Go rules and data for Go heuristics
#include "board.h"
/* ===========================================================================
* Board provides functions to play the ancient game of Go by computer
*
* The file board.c contains a minimal set of functions that are necessary to
* play (efficiently) and score random games which are used by higher level
* algorithms like MCTS (Monte-Carlo Tree Search).
* There are functions for playing and undoing moves and querying the status of
* the board. The undo_move() is limited to one undo, the capability to undo
* any number of successive moves is delegated to the caller.
*
* It is designed so that all the working functions involved to play random
* games can fit in the L1 Instruction Cache of recent Intel Processors (32 Kb)
* and the data working set accordingly fit in the L1 Data Cache (also 32 Kb).
*
* The main purpose of the functions included in this file is to play a move
* and to incrementally update the state of the board during the games.
* For efficiency reasons not only the state of each intersection (WHITE, BLACK
* or EMPTY) is maintained but also the connectivity between stones.
* The set of stones that are connected are named blocks. The whole set of
* liberties of each block is recorded and updated after each move.
*
* The representation of the board is 1D (as described in [Mueller 2002). This
* means that the position of an intersection (or point) is a small integer
* that is used as index in various arrays containing attributes of this point.
* A small border (1 point large) is added around the board to simplify the
* code by avoiding a lot of tests. Each point of this border has color OUT.
* =========================================================================*/
#ifndef NDEBUG
static char buf[BUFLEN];
#endif
// Displacements towards the neighbors of a point
// North East South West NE SE SW NW
static int delta[] = { -N-1, 1, N+1, -1, -N, W, N, -W};
Mark *mark1, *mark2;
unsigned int idum = 1;
//========== Initialization and Terminaison of the Board module ===============
void board_init(void)
{
mark1 = michi_calloc(1, sizeof(Mark));
mark2 = michi_calloc(1, sizeof(Mark));
}
void board_finish(void)
{
free(mark1); mark1 = NULL;
free(mark2); mark2 = NULL;
}
//====================================== Eyes =================================
char is_eyeish(Position *pos, Point pt)
// test if pt is inside a single-color diamond and return the diamond color or 0
// this could be an eye, but also a false one
{
Color eyecolor=EMPTY, other=EMPTY;
int k;
Point n;
FORALL_NEIGHBORS(pos, pt, k, n) {
Color c = point_color(pos,n);
if(c == OUT) continue; // ignore OUT of board neighbours
if(c == EMPTY) return 0;
if(eyecolor == EMPTY) {
eyecolor = c;
other = color_other(c);
}
else if (c == other) return 0;
}
return eyecolor;
}
char is_eye(Position *pos, Point pt)
// Test if pt is an eye and return its color or 0 if it is not
// #########
// Note: this test cannot detect true eyes like . . X . # or X X X
// X . X # X X
// X X . # X X
// . # X X X
{
Color eyecolor=is_eyeish(pos, pt), falsecolor;
int at_edge=0, false_count=0, k;
Point d;
if (eyecolor == EMPTY) return 0;
// Eye-like shape, but it could be a falsified eye
falsecolor = color_other(eyecolor);
FORALL_DIAGONAL_NEIGHBORS(pos, pt, k, d) {
if(point_color(pos, d) == OUT) at_edge = 1;
else if(point_color(pos, d) == falsecolor) false_count += 1;
}
if (at_edge) false_count += 1;
if (false_count >= 2) return 0;
return eyecolor;
}
//=================================== Env4 ====================================
Byte compute_env4(Position *pos, Point pt, int offset)
// Compute value of the environnement of a point (Byte)
// offset=0 for the 4 neighbors, offset=4 for the 4 diagonal neighbors
{
Byte env4=0, hi, lo, c;
for (int k=offset ; k<offset+4 ; k++) {
Point n = pt + delta[k];
// color coding c -> , 0:EMPTY, 1:OUT, 2:WHITE, 3:BLACK
c = point_color(pos, n);
hi = c >> 1; lo = c & 1;
env4 |= ((hi<<4)+lo) << (k-offset);
}
return env4;
}
void put_stone(Position *pos, Point pt)
// Put a stone at point pt. Update env4 and env4d neighbor data
{
if (pos->to_play == BLACK) { // BLACK to play
pos->env4[pt+N+1] |= 0x11;
pos->env4[pt-1] |= 0x22;
pos->env4[pt-N-1] |= 0x44;
pos->env4[pt+1] |= 0x88;
pos->env4d[pt+N] |= 0x11;
pos->env4d[pt-W] |= 0x22;
pos->env4d[pt-N] |= 0x44;
pos->env4d[pt+W] |= 0x88;
pos->color[pt] = BLACK;
}
else { // WHITE to play (X=WHITE)
pos->env4[pt+N+1] |= 0x10;
pos->env4[pt-1] |= 0x20;
pos->env4[pt-N-1] |= 0x40;
pos->env4[pt+1] |= 0x80;
pos->env4d[pt+N] |= 0x10;
pos->env4d[pt-W] |= 0x20;
pos->env4d[pt-N] |= 0x40;
pos->env4d[pt+W] |= 0x80;
pos->color[pt] = WHITE;
}
}
void remove_stone(Position *pos, Point pt)
// Remove a stone at point pt. Update env4 and env4d neighbor data
{
pos->env4[pt+N+1] &= 0xEE;
pos->env4[pt-1] &= 0xDD;
pos->env4[pt-N-1] &= 0xBB;
pos->env4[pt+1] &= 0x77;
pos->env4d[pt+N] &= 0xEE;
pos->env4d[pt-W] &= 0xDD;
pos->env4d[pt-N] &= 0xBB;
pos->env4d[pt+W] &= 0x77;
pos->color[pt] = EMPTY;
}
//===================================== Blocks ================================
int cmpint(const void *i, const void *j)
{
return *(int *)i - *(int *)j;
}
void compute_block(Position *pos, Point pt, Slist stones, Slist libs, int nlibs)
// Compute block at pt : list of stones and list of liberties
// Return early when nlibs liberties are found
{
Color color=point_color(pos, pt);
int head=2, k, tail=1;
Point n;
mark_init(mark1); slist_clear(libs);
stones[1] = pt; mark(mark1, pt);
while(head>tail) {
pt = stones[tail++];
FORALL_NEIGHBORS(pos, pt, k, n)
if (!is_marked(mark1, n)) {
mark(mark1, n);
if (point_color(pos, n) == color) stones[head++] = n;
else if (point_color(pos, n) == EMPTY) {
slist_push(libs, n);
if (slist_size(libs) >= nlibs) goto finished;
}
}
}
finished:
stones[0] = head-1;
mark_release(mark1);
}
void compute_big_eye(Position *pos, Point pt, Slist points)
// Compute big eye at pt (assumed to be EMPTY) -> list of points
{
int head=2, k, tail=1;
Point n;
mark_init(mark1);
points[1] = pt; mark(mark1, pt);
while(head>tail) {
pt = points[tail++];
FORALL_NEIGHBORS(pos, pt, k, n)
if (!is_marked(mark1, n)) {
mark(mark1, n);
if (point_color(pos, n) == EMPTY) points[head++] = n;
}
}
points[0] = head-1;
mark_release(mark1);
}
__INLINE__ Block new_blkid(Position *pos)
// Generate a new block id (i.e. one that is not already in use)
{
int b;
for (b=1 ; b<MAX_BLOCKS ; b++)
if (block_size(pos, b) == 0)
return b;
return 0;
}
__INLINE__ int block_add_lib(Position *pos, Block b, Point l)
// Add liberty l to block b. Normally return 1, but could return 0 if 'l'
// is already found in the liberties of block b (this is not an error)
{
int k = (l-N)>>5, r = (l-N)&31, res;
res = (pos->libs[b][k] & (1<<r)) == 0;
pos->libs[b][k] |= (1<<r);
pos->nlibs[b] += res;
return res;
}
__INLINE__ void block_remove_lib_extend(Position *pos, Block b, Point l)
// Remove liberty l of an extended block b.
// l is always a liberty. No capture possible (suicide is checked before)
{
int k = (l-N)>>5, r = (l-N)&31;
pos->libs[b][k] &= ~(1<<r);
pos->nlibs[b]--;
}
__INLINE__ int block_count_libs(Position *pos, Block b)
// Return the number of liberties of block b.
{
int nlibs=0;
for (int k=0 ; k<LIBS_SIZE ; k++) {
Libs m32 = pos->libs[b][k];
nlibs += popcnt_u32(m32);
}
return nlibs;
}
void
block_compute_libs(Position *pos, Block b, Slist libs, int max_libs)
// Return the list of Block b libs.
// Memory for libs should have been allocated by the caller.
{
int j, k;
Libs m32;
slist_clear(libs);
for (k=0 ; k<LIBS_SIZE ; k++) {
m32 = pos->libs[b][k];
while (m32) {
j = bsf_u32(m32);
m32 ^= (1<<j);
slist_push(libs, N+k*8*sizeof(Libs)+j);
if (slist_size(libs) > max_libs) return;
}
}
}
void block_make_list_of_points(Position *pos, Block b, Slist points, Point pt)
{
//slist_clear(points);
//FORALL_POINTS(pos, pt)
// if (point_block(pos,pt) == b) slist_push(points, pt);
int head=2, k, tail=1;
Point n;
mark_init(mark1);
points[1] = pt; mark(mark1, pt);
while(head>tail) {
pt = points[tail++];
FORALL_NEIGHBORS(pos, pt, k, n)
if (!is_marked(mark1, n)) {
mark(mark1, n);
if (point_block(pos, n) == b) points[head++] = n;
}
}
points[0] = head-1;
mark_release(mark1);
}
__INLINE__ void block_clear_libs(Position *pos, Block b)
// Delete all liberties from block b
{
memset(pos->libs[b], 0, LIBS_SIZE*sizeof(Libs));
pos->nlibs[b] = 0;
}
int block_capture(Position *pos, Block b, Point pt)
// Remove stones of block b from the board (b contains pt), reset data of b
// Return the number of captured stones.
{
int captured = block_size(pos, b);
int head=2, k, tail=1;
Point stones[BOARDSIZE], n;
// remove stones from the board (updating liberties of neighbor blocks)
// loop on the stones of block b using the flood fill algorithm
stones[1] = pt; remove_stone(pos, pt); pos->block[pt] = 0;
while(head>tail) {
pt = stones[tail++];
FORALL_NEIGHBORS(pos, pt, k, n) {
Block b1 = point_block(pos, n);
if (b1 == b) {
stones[head++] = n;
remove_stone(pos, n);
pos->block[n] = 0;
}
else
block_add_lib(pos, b1, pt);
}
}
// reset block data to zero
block_clear_libs(pos, b);
pos->bsize[b] = 0;
return captured;
}
__INLINE__ int block_remove_lib(Position *pos, Block b, Point pt, Point l)
// Remove liberty l of block b. Normally return 1, but could return 0 if 'l'
// is not found in the liberties of block b (this is not an error)
{
int captured=0, k = (l-N)>>5, r = (l-N)&31, res;
res = (pos->libs[b][k] & (1<<r));
if (res) {
pos->libs[b][k] &= ~(1<<r);
pos->nlibs[b]--;
if (pos->nlibs[b]==0)
captured = block_capture(pos, b, pt);
}
return captured; // number of captured stones
}
__INLINE__ void block_remove_lib_undo(Position *pos, Block b, Point pt, Point l)
// Remove liberty l of block b. Normally return 1, but could return 0 if 'l'
// is not found in the liberties of block b (this is not an error)
// This version is special for undoing move capture (do not capture back ko)
{
int k = (l-N)>>5, r = (l-N)&31, res;
res = (pos->libs[b][k] & (1<<r));
if (res) {
pos->libs[b][k] &= ~(1<<r);
pos->nlibs[b]--;
}
}
__INLINE__ void block_merge(Position *pos, Block b1, Block b2)
// Merge 2 blocks. If b1==b2 nothing to do (this is not an error)
{
if (b1==b2) return;
// Merge stones
FORALL_POINTS(pos, pt)
if (point_block(pos, pt) == b2)
pos->block[pt] = b1;
int nstones = block_size(pos, b1) + block_size(pos, b2);
if (nstones<256)
pos->bsize[b1] = nstones;
else
pos->bsize[b1] = 255;
// Merge libs
for (int k=0 ; k<LIBS_SIZE ; k++) {
pos->libs[b1][k] |= pos->libs[b2][k];
pos->libs[b2][k] = 0;
}
// Delete block b2
pos->nlibs[b2] = 0;
pos->bsize[b2] = 0;
}
__INLINE__ Block point_create_block(Position *pos, Point pt)
// Create a new block at point pt (assumed EMPTY)
{
Block b = new_blkid(pos);
pos->bsize[b] = 1;
return b;
}
int update_blocks(Position *pos, Point pt)
// Update the blocks if a move is done at point pt. No change if move is illegal
{
Block b1=0, b2=0, b3=0, b4=0; // initialization to make compiler happy
Color other=color_other(pos->to_play);
Code4 Ecode, Xcode;
int captured=0, k;
Point n;
pos->undo_capture = 0;
// Update blocks of opponent
FORALL_NEIGHBORS(pos, pt, k, n) {
if (point_color(pos, n) == other) {
Block b = point_block(pos, n);
int ncaps = block_remove_lib(pos, b, n, pt);
if (ncaps)
pos->undo_capture |= 1<<k;
captured += ncaps;
}
}
// Check for suicide
Ecode = select_empty(point_env4(pos, pt));
if (Ecode == 0) {
FORALL_NEIGHBORS(pos, pt, k, n) {
if (point_color(pos,n) == pos->to_play) {
Block b = point_block(pos, n);
if (block_nlibs(pos, b) > 1)
goto update_friend_blocks;
}
}
// Suicide: restore state of opponent blocks and return
FORALL_NEIGHBORS(pos, pt, k, n) {
if (point_color(pos, n) == other) {
Block b = point_block(pos, n);
block_add_lib(pos, b, pt);
}
}
return -1;
}
// Update stones of friend block(s)
update_friend_blocks:
if (pos->to_play == BLACK)
Xcode = select_black(point_env4(pos, pt));
else
Xcode = select_white(point_env4(pos, pt));
pos->caps[pos->to_play & 1] += captured;
pos->ko = 0;
put_stone(pos, pt);
switch(Xcode) {
// 0 friend stone in contact
case 0:
b1 = pos->block[pt] = point_create_block(pos, pt);
if (captured==1) { // check for ko
switch(Ecode) {
case 1:
pos->ko = pt + delta[0];
break;
case 2:
pos->ko = pt + delta[1];
break;
case 4:
pos->ko = pt + delta[2];
break;
case 8:
pos->ko = pt + delta[3];
break;
default:
pos->ko = 0;
break;
}
}
goto update_libs;
// 1 friend stone in contact
case 8:
b1 = point_block(pos, pt+delta[3]); // extend block North of pt
goto extend;
case 4:
b1 = point_block(pos, pt+delta[2]); // extend block East of pt
goto extend;
case 2:
b1 = point_block(pos, pt+delta[1]); // extend block South of pt
goto extend;
case 1:
b1 = point_block(pos, pt+delta[0]); // extend block West of pt
goto extend;
// 2 friend stones in contact
case 3:
b2 = point_block(pos, pt+delta[1]);
b1 = point_block(pos, pt+delta[0]);
goto merge2;
case 5:
b2 = point_block(pos, pt+delta[2]);
b1 = point_block(pos, pt+delta[0]);
goto merge2;
case 6:
b2 = point_block(pos, pt+delta[2]);
b1 = point_block(pos, pt+delta[1]);
goto merge2;
case 9:
b2 = point_block(pos, pt+delta[3]);
b1 = point_block(pos, pt+delta[0]);
goto merge2;
case 10:
b2 = point_block(pos, pt+delta[3]);
b1 = point_block(pos, pt+delta[1]);
goto merge2;
case 12:
b2 = point_block(pos, pt+delta[3]);
b1 = point_block(pos, pt+delta[2]);
goto merge2;
// 3 friend stones in contact
case 7:
b3 = point_block(pos, pt+delta[2]);
b2 = point_block(pos, pt+delta[1]);
b1 = point_block(pos, pt+delta[0]);
goto merge3;
case 11:
b3 = point_block(pos, pt+delta[3]);
b2 = point_block(pos, pt+delta[1]);
b1 = point_block(pos, pt+delta[0]);
goto merge3;
case 13:
b3 = point_block(pos, pt+delta[3]);
b2 = point_block(pos, pt+delta[2]);
b1 = point_block(pos, pt+delta[0]);
goto merge3;
case 14:
b3 = point_block(pos, pt+delta[3]);
b2 = point_block(pos, pt+delta[2]);
b1 = point_block(pos, pt+delta[1]);
goto merge3;
case 15:
b4 = point_block(pos, pt+delta[3]);
b3 = point_block(pos, pt+delta[2]);
b2 = point_block(pos, pt+delta[1]);
b1 = point_block(pos, pt+delta[0]);
}
block_merge(pos, b1, b4);
merge3:
block_merge(pos, b1, b3);
merge2:
block_merge(pos, b1, b2);
pos->nlibs[b1] = block_count_libs(pos, b1);
extend:
if (pos->bsize[b1]<255) pos->bsize[b1]++;
pos->block[pt] = b1;
block_remove_lib_extend(pos, b1, pt);
// Update libs of new block
update_libs:
FORALL_NEIGHBORS(pos, pt, k, n) {
if (point_color(pos, n) == EMPTY)
block_add_lib(pos, b1, n);
}
return captured;
}
//===================================== Moves =================================
Position* new_position()
// Return a position with size of board and komi initialized
{
Position *pos = michi_malloc(sizeof(Position));
pos->size = N;
empty_position(pos);
return pos;
}
char* empty_position(Position *pos)
// Reset pos to an initial empty board position
{
float komi = pos->komi;
int k = 0, size = pos->size;
memset(pos, 0, sizeof(Position));
pos->size = size; pos->komi = komi;
for (int row=0 ; row <= (N-size) ; row++)
for (int col=0 ; col<=N ; col++) pos->color[k++] = OUT;
for (int row=N-size+1 ; row<=N ; row++) {
pos->color[k++] = OUT;
for (int col=1 ; col<=size ; col++) pos->color[k++] = EMPTY;
for (int col=size+1 ; col<=N ; col++) pos->color[k++] = OUT;
}
for (int col=0 ; col<W ; col++) pos->color[k++] = OUT;
FORALL_POINTS(pos, pt) {
if (point_color(pos,pt) == OUT) continue;
pos->env4[pt] = compute_env4(pos, pt, 0);
pos->env4d[pt] = compute_env4(pos, pt, 4);
}
pos->to_play = BLACK;
//assert(env4_OK(pos));
return ""; // result OK
}
char* play_move(Position *pos, Point pt)
// Play a move at point pt (color is imposed by alternate play)
// No change of pos if move is illegal
{
int captured=0;
Point ko_old = pos->ko;
if (pt == pos->ko) return "Error Illegal move: retakes ko";
captured = update_blocks(pos, pt);
if (captured == -1) return "Error Illegal move: suicide";
// Finish update of the position (swap color)
pos->ko_old = ko_old;
(pos->n)++;
//assert(env4_OK(pos));
pos->last3 = pos->last2;
pos->last2 = pos->last;
pos->last = pt;
pos->to_play = color_other(pos->to_play);
michi_assert(pos, blocks_OK(pos, pt));
return ""; // Move OK
}
char* undo_move(Position *pos)
// Undo the last move
// WARNING: this is a limited version that can only undo one move suitable for
// undoing move in the random playouts (used minimum memory)
// In order to implement a full undo function, the caller must save the list of
// moves and undo_capture (4 bits) and update last, last2, last3 and
// undo_capture before calling undo_move()
// TODO optimize undo block extend
// Currently, the block is scanned and a new block is rebuild
{
Block b, bl;
Color c=point_color(pos, pos->last), other=color_other(c);
int k;
Point l=pos->last, libs[BOARDSIZE], n, points[BOARDSIZE];
// Create again blocks captured by the last move
if (pos->undo_capture) {
pos->color[l] = c;
int ncaptured = 0;
for (int k=0; k<4 ; k++) {
if (pos->undo_capture & (1<<k)) {
n = l + delta[k];
compute_big_eye(pos, n, points);
Block bn = new_blkid(pos);
pos->bsize[bn] = slist_size(points);
ncaptured += slist_size(points);
FORALL_IN_SLIST(points, s) {
put_stone(pos, s);
for (int j=0 ; j<4 ; j++) {
Point m=s+delta[j];
if (point_color(pos, m) == c) {
b = point_block(pos, m);
block_remove_lib_undo(pos, b, 0, s);
}
}
pos->block[s] = bn;
}
block_add_lib(pos, bn, l);
}
}
pos->caps[c & 1] -= ncaptured;
pos->color[l] = EMPTY;
}
// Update other attributes of the position (order must be preserved)
pos->last = pos->last2;
pos->last2 = pos->last3;
pos->ko = pos->ko_old;
pos->n--;
pos->to_play = color_other(pos->to_play);
if (l==PASS_MOVE) goto finished;
// Update information at the point of the last move
bl = point_block(pos, l);
remove_stone(pos, l);
pos->block[l] = 0;
// Update the position (correct only for block create, extend and merge)
FORALL_NEIGHBORS(pos, l, k, n) {
if (point_color(pos, n) == other) {
// opponent neighbor
b = point_block(pos, n);
block_add_lib(pos, b, l);
}
else if (point_color(pos, n) == c) {
// friend neighbor
b = point_block(pos, n);
if (b == bl) {
compute_block(pos, n, points, libs, BOARDSIZE);
Block bn = new_blkid(pos);
pos->bsize[bn] = slist_size(points);
if (slist_size(points) < 256)
pos->bsize[bn] = slist_size(points);
else
pos->bsize[bn] = 255;
FORALL_IN_SLIST(points, s)
pos->block[s] = bn;
FORALL_IN_SLIST(libs, l)
block_add_lib(pos, bn, l);
}
}
}
// Delete the block bl that is no more useful
block_clear_libs(pos, bl);
pos->bsize[bl] = 0;
finished:
// check that the updated Position is OK
michi_assert(pos, all_blocks_OK(pos));
michi_assert(pos, env4_OK(pos));
return "";
}
char* pass_move(Position *pos)
// Play a Pass move in the current position
{
pos->ko_old = pos->ko;
pos->undo_capture = 0;
(pos->n)++;
pos->last3 = pos->last2;
pos->last2 = pos->last;
pos->last = pos->ko = 0;
pos->to_play = color_other(pos->to_play);
return ""; // PASS moVE is always OK
}
//================================ Go heuristics ==============================
void make_list_last_moves_neighbors(Position *pos, Slist points)
// generate a randomly shuffled list of points including and surrounding
// the last two moves (but with the last move having priority)
{
Point l, last2_neighbors[12];
mark_init(mark1);
if (pos->last == PASS_MOVE)
slist_clear(points);
else {
l = pos->last;
points[0] = 9;
points[1] = l; mark(mark1, l);
points[2] = l + delta[0]; mark(mark1, l + delta[0]);
points[3] = l + delta[1]; mark(mark1, l + delta[1]);
points[4] = l + delta[2]; mark(mark1, l + delta[2]);
points[5] = l + delta[3]; mark(mark1, l + delta[3]);
points[6] = l + delta[4]; mark(mark1, l + delta[4]);
points[7] = l + delta[5]; mark(mark1, l + delta[5]);
points[8] = l + delta[6]; mark(mark1, l + delta[6]);
points[9] = l + delta[7]; mark(mark1, l + delta[7]);
slist_shuffle(points);
}
if (pos->last2 != PASS_MOVE) {
l = pos->last2;
last2_neighbors[0] = 9;
last2_neighbors[1] = l;
last2_neighbors[2] = l + delta[0];
last2_neighbors[3] = l + delta[1];
last2_neighbors[4] = l + delta[2];
last2_neighbors[5] = l + delta[3];
last2_neighbors[6] = l + delta[4];
last2_neighbors[7] = l + delta[5];
last2_neighbors[8] = l + delta[6];
last2_neighbors[9] = l + delta[7];
slist_shuffle(last2_neighbors);
FORALL_IN_SLIST(last2_neighbors, n)
if (!is_marked(mark1, n))
slist_push(points, n);
}
mark_release(mark1);
}
void make_list_neighbor_blocks_in_atari(Position *pos, Block b, Slist blocks, Point pt)
// Return a list of blocks in atari in contact with block b
{
Color c;
int k;
Point n, stones[BOARDSIZE];
slist_clear(blocks);
block_make_list_of_points(pos, b, stones, pt);
c = color_other(point_color(pos, stones[1]));
FORALL_IN_SLIST(stones, pt) {
FORALL_NEIGHBORS(pos, pt, k, n) {
if (point_color(pos,n) == c) {
Block b1 = point_block(pos, n);
if (block_nlibs(pos,b1) == 1) slist_insert(blocks, b1);
}
}
}
}
void compute_cfg_distances(Position *pos, Point pt, char cfg_map[BOARDSIZE])
// Return a board map listing common fate graph distances from a given point.
// This corresponds to the concept of locality while contracting groups to
// single points.
{
int head=1, k, tail=0;
Point fringe[30*BOARDSIZE], n;
memset(cfg_map, -1, BOARDSIZE);
cfg_map[pt] = 0;
// flood-fill like mechanics
fringe[0]=pt;
while(head > tail) {
pt = fringe[tail++];
FORALL_NEIGHBORS(pos, pt, k, n) {
Color c = point_color(pos, n);
if (c == OUT) continue;
if (0 <= cfg_map[n] && cfg_map[n] <= cfg_map[pt]) continue;
int cfg_before = cfg_map[n];
if (c != EMPTY && c==point_color(pos,pt))
cfg_map[n] = cfg_map[pt];
else
cfg_map[n] = cfg_map[pt]+1;
if (cfg_before < 0 || cfg_before > cfg_map[n]) {
fringe[head++] = n;
//assert(head < 30*BOARDSIZE);
}
}
}
}
int line_height(Point pt, int size)
// Return the line number above nearest board edge (0 based)
{
div_t d = div(pt,N+1);
int row = d.quot, col=d.rem;
if (row > size/2) row = size+1-row;
if (col > size/2) col = size+1-col;
if (row < col) return row-1;
else return col-1;
}
int empty_area(Position *pos, Point pt, int dist)
// Check whether there are any stones in Manhattan distance up to dist
{
int k;
Point n;
FORALL_NEIGHBORS(pos, pt, k, n) {
if (point_is_stone(pos,n))
return 0;
else if (point_color(pos,n) == EMPTY
&& dist>1 && !empty_area(pos, n, dist-1))
return 0;
}
return 1;
}