-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcontrol.c
304 lines (278 loc) · 10.6 KB
/
control.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// control.c -- Overall management of the MCTS search (dynkomi, time management)
#include "michi.h"
char buf[BUFLEN];
float saved_time_left;
#define max(a, b) ((a)<(b) ? (a) : (b))
// -------------------------------- Dynamic komi ------------------------------
void update_dyn_komi(Game *game)
// This a simplistic approach used only for handicap games
{
double dkm, handi=game->handicap, nstones, moves_to_play, endmove;
Position *pos=game->pos;
nstones = board_nstones(pos);
moves_to_play = ((N*N*3)/4 - nstones)/2;// Hyp: 25 % of EMPTY points at end
endmove = board_nmoves(pos) + moves_to_play;
dkm = handi*komi_per_handicap_stone*moves_to_play/endmove;
if (dkm < 0.0) dkm = 0.0;
if (board_color_to_play(pos) == WHITE)
dkm = -dkm;
board_set_delta_komi(pos, dkm);
}
//----------------------------- time management -------------------------------
int nsims(Game *game)
// Compute the number of simulations for the next tree_search.
// Simplistic time management (portable if not very accurate).
// Loosely based on Petr Baudis Thesis.
{
int nstones, moves_to_play;
if (game->time_init <= 0) {
start_playouts_sec = (float) clock() / (float) CLOCKS_PER_SEC;
return N_SIMS; // Game is not time limited
}
if (nplayouts_per_second <= 0.0) {
start_playouts_sec = (float) clock() / (float) CLOCKS_PER_SEC;
nplayouts = N_SIMS;
return N_SIMS; // 1st genmove
}
// Game is time limited and we know playout speed: nplayouts_per_second
saved_time_left -= stop_playouts_sec - start_playouts_sec;
if (game->time_left_gtp > 0)
game->time_left = game->time_left_gtp;
else
game->time_left = saved_time_left;
sprintf(buf,"time used: %6d %7.1f",
nplayouts_real, stop_playouts_sec-start_playouts_sec);
log_fmt_s('T', buf, NULL);
start_playouts_sec = (float) clock() / (float) CLOCKS_PER_SEC;
nstones = board_nstones(game->pos);
moves_to_play = ((N*N*3)/4 - nstones)/2;// Hyp: 25 % of EMPTY points at end
// Most often the thinking time will be doubled in genmove
// We anticipate that fact here in order to allocate most of the thinking
// time for the middle game
float reduction = 1.0;
if (moves_to_play < 30) {
moves_to_play = 30;
reduction = 2.0;
}
if (board_nmoves(game->pos) < 15)
reduction = 2.0;
nplayouts = (float) game->time_left / moves_to_play * nplayouts_per_second;
nplayouts /= reduction;
if (nplayouts > 100000) nplayouts = 100000;
sprintf(buf,"time allocated: %6.0f %7.2f %7.1f %5d %5d",
nplayouts, nplayouts / nplayouts_per_second,
nplayouts_per_second, moves_to_play, game->time_left);
log_fmt_s('T', buf, NULL);
nplayouts_real = 0;
return (int) nplayouts;
}
// ----------------------- Is the Position clear enough ? ---------------------
int is_position_clear_enough(void)
// Check if the situation is clear enough after the first tree search.
{
if (bestwr < 0.48) // program is behind
//|| best2 < 2.0 || fabs(bestr) > 0.02) // unclear situation
return 0; // we will try to extend the thinking time
else
return 1;
}
// ------ Status of Blocks and Points and computation of the final score -----
// Borrowed from an old version of Pachi
Status mcts_point_status(Point pt, int owner_map[BOARDSIZE])
// Status of points: OWN_BY_BLACK, OWN_BY_WHITE or UNKNOWN
{
double nsims=nplayouts_real;
Status p_status;
if ((double)owner_map[pt] > 0.8*nsims)
p_status=OWN_BY_BLACK;
else if ((double)owner_map[pt] < -0.8*nsims)
p_status=OWN_BY_WHITE;
else
p_status=UNKNOWN;
return p_status;
}
void compute_all_status(Position *pos, int owner_map[BOARDSIZE],
int score_count[], Status block_status[], Status point_status[])
// Compute status of of points and blocks (based on owner_map)
// - the points : OWN_BY_BLACK, OWN_BY_WHITE or UNKNOWN
// - the blocks : DEAD, ALIVE or UNKNOWN
{
Color c;
int b;
Status new_g_st, p_st;
TreeNode *tree=new_tree_node();
// Launch a full depth MCTS search in order to compute owner_map
double FASTPLAY20_THRES_sav = FASTPLAY20_THRES;
double FASTPLAY5_THRES_sav = FASTPLAY5_THRES;
memset(owner_map, 0, BOARDSIZE*sizeof(int));
nplayouts_real = 0;
tree_search(pos, tree, 2*N_SIMS, owner_map, score_count, 0);
FASTPLAY20_THRES = FASTPLAY20_THRES_sav;
FASTPLAY5_THRES = FASTPLAY5_THRES_sav;
sprintf(buf, "nsims: %d", nplayouts_real);
log_fmt_s('I',buf,NULL);
// Reset status of points and blocks
FORALL_POINTS(pos, pt)
point_status[pt] = UNKNOWN;
for (b=1 ; b<MAX_BLOCKS ; b++)
block_status[b] = UNKNOWN;
// Try to evaluate block status
FORALL_POINTS(pos, pt) {
b = point_block(pos, pt);
if (b != 0) {
c = point_color(pos, pt);
point_status[pt] = p_st = mcts_point_status(pt, owner_map);
if (p_st == UNKNOWN)
block_status[b] = UNKNOWN;
else {
new_g_st = UNKNOWN;
if ((p_st == OWN_BY_WHITE && c==BLACK) ||
(p_st == OWN_BY_BLACK && c==WHITE))
new_g_st = DEAD;
else if ((p_st == OWN_BY_BLACK && c==BLACK) ||
(p_st == OWN_BY_WHITE && c == WHITE))
new_g_st = ALIVE;
if(block_status[b] == UNKNOWN)
block_status[b] = new_g_st;
else if (block_status[b] != new_g_st)
block_status[b] = UNKNOWN;
}
}
else
point_status[pt] = mcts_point_status(pt, owner_map);
}
free_tree(tree);
}
Score final_score(Game *game, Status block_status[MAX_BLOCKS],
Status point_status[BOARDSIZE])
// Compute the score of a finished game: score > 0.0 if BLACK wins
// Use approximate area scoring (chinese rules)
{
double score=0.0, unknown_empty=0.0, unknown_stones=0.0;
Position *pos=game->pos;
Score s;
FORALL_POINTS(pos, pt) {
Block b = point_block(pos, pt);
Color c = point_color(pos, pt);
if (c == BLACK) {
if (block_status[b] == ALIVE)
score += 1.0;
else if (block_status[b] == DEAD)
score -= 1.0;
else if (block_status[b] == UNKNOWN)
unknown_stones += 1.0;
}
else if (c == WHITE) {
if (block_status[b] == ALIVE)
score -= 1.0;
else if (block_status[b] == DEAD)
score += 1.0;
else if (block_status[b] == UNKNOWN)
unknown_stones += 1.0;
}
else if (c == EMPTY) {
if (point_status[pt] == OWN_BY_BLACK)
score += 1.0;
else if (point_status[pt] == OWN_BY_WHITE)
score -= 1.0;
else if (point_status[pt] == UNKNOWN)
unknown_empty += 1.0;
}
}
score -= board_komi(pos);
s.raw = score;
// optimistic score consider
// * the stones with unknown status
// - as ALIVE if they belong to the computer
// - as DEAD if they blong to the opponent
// * the points with unknown status as belonging to the computer
// pessimistic score is the opposite
if (game->computer_color == BLACK) {
s.optimistic = score + unknown_stones + unknown_empty;
s.pessimistic = score - unknown_stones - unknown_empty;
}
else {
s.optimistic = score - unknown_stones - unknown_empty;
s.pessimistic = score + unknown_stones + unknown_empty;
}
sprintf(buf,"unknown points: %.0lf, scores: %.1lf, %.1lf, %.1lf",
unknown_stones + unknown_empty, s.pessimistic, s.raw, s.optimistic);
log_fmt_s('S', buf, NULL);
return s;
}
// ---------------------------- "Intelligent" passing -------------------------
int is_better_to_pass(Game *game, int *owner_map, int *score_count)
// Check if the computer should pass
{
int answer, sure_loss, sure_win;
Position *pos=game->pos;
Score score;
Status block_status[BOARDSIZE], point_status[BOARDSIZE];
if (!play_until_the_end
&& board_last_move(pos) == PASS_MOVE && board_nmoves(pos)>2) {
compute_all_status(pos, owner_map, score_count
, block_status, point_status);
score = final_score(game, block_status, point_status);
if (score.optimistic - score.pessimistic < 21.0) {
// Relatively "little" uncertainty
if (game->computer_color == BLACK) {
sure_win = score.pessimistic > 0.0;
sure_loss = score.optimistic < 0.0;
}
else {
sure_win = score.pessimistic < 0.0;
sure_loss = score.optimistic > 0.0;
}
}
else {
// Large uncertainty
if (game->computer_color == BLACK) {
sure_win = score.pessimistic > -0.9;
sure_loss = score.optimistic < 1.9;
}
else {
sure_win = score.pessimistic < 0.9;
sure_loss = score.optimistic > -1.9;
}
}
if (sure_win)
log_fmt_s('I', "Opponent pass and I estimate that I win", NULL);
else if (sure_loss)
log_fmt_s('I', "Opponent pass and I estimate that I loose", NULL);
else
log_fmt_s('I',
"Opponent pass but I estimate that game is not decided", NULL);
answer = sure_win || sure_loss;
}
else
answer = 0;
return answer;
}
// ------------------------- Generate next move -------------------------------
Point genmove (Game *game, TreeNode **tree, int *owner_map, int *score_count)
{
Point pt;
Position *pos = game->pos;
if (is_better_to_pass(game, owner_map, score_count)) {
pt = PASS_MOVE;
}
else {
free_tree(*tree);
*tree = new_tree_node();
int n = nsims(game);
memset(owner_map, 0, BOARDSIZE*sizeof(int));
memset(score_count, 0, (2*N*N+1)*sizeof(int));
if (use_dynamic_komi)
update_dyn_komi(game);
nplayouts_real = 0;
pt = tree_search(pos, *tree, n, owner_map, score_count, 0);
if (is_time_limited(game)
&& (nplayouts_real*2 > nplayouts)
&& !is_position_clear_enough()) {
// think harder hoping we will recover
log_fmt_s('S', "thinking time extended", NULL);
pt = tree_search(pos, *tree, n, owner_map, score_count, 0);
}
}
return pt;
}