forked from mansimov/unsupervised-videos
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlstm_classifier.py
245 lines (214 loc) · 8.39 KB
/
lstm_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from data_handler import *
import lstm
import datetime
class LSTMClassifier(object):
def __init__(self, model):
self.model_ = model
self.lstm_stack_ = lstm.LSTMStack()
for l in model.lstm:
self.lstm_stack_.Add(lstm.LSTM(l))
self.squash_relu_ = model.squash_relu
self.squash_relu_lambda_ = model.squash_relu_lambda
if len(model.timestamp) > 0:
old_st = model.timestamp[-1]
ckpt = os.path.join(model.checkpoint_dir, '%s_%s.h5' % (model.name, old_st))
f = h5py.File(ckpt)
self.lstm_stack_.Load(f)
f.close()
# used to check if gradient fucntion was implemented correctly
def GradCheck(self):
eps = 0.01
tol = 1e-3
params_list = []
params_list.extend(self.lstm_stack_.GetParams())
self.num_dims_ = self.lstm_stack_.GetInputDims()
self.num_output_dims_ = self.lstm_stack_.GetOutputDims()
self.SetBatchSize(128, 3)
v_cpu = np.random.randn(self.batch_size_, self.seq_length_ * self.num_dims_)
t_cpu = np.random.randn(self.batch_size_, self.num_output_dims_)
self.v_.overwrite(v_cpu)
self.target_.overwrite(t_cpu)
self.Fprop()
self.BpropAndOutp()
for name, param in params_list:
print name
w = param.GetW()
dw = param.GetdW()
fail = False
for row in xrange(min(4, w.shape[0])):
for col in xrange(min(4, w.shape[1])):
val = w.read_value(row, col)
w.write_value(row, col, val+eps)
self.Fprop()
l1 = self.cl_.GetLoss(self.target_)
w.write_value(row, col, val - eps)
self.Fprop()
l2 = self.cl_.GetLoss(self.target_)
grad_n = (l1 - l2 ) / (2 * eps)
grad_a = dw.read_value(row, col)
diff = np.abs(grad_n - grad_a) / (np.abs(grad_n) + np.abs(grad_a))
print 'Numerical %.8f Analytical %.8f Diff %.5f' % (grad_n, grad_a, diff)
if diff > tol:
fail = True
w.write_value(row, col, val)
if fail:
res = 'FAILED'
else:
res= 'PASSED'
print res
def Fprop(self, train=False):
if self.squash_relu_:
self.v_.apply_relu_squash(lambdaa=self.squash_relu_lambda_)
num_models = self.lstm_stack_.GetNumModels()
self.lstm_stack_.Reset()
for t in xrange(self.seq_length_):
# slice input and output at timestep t and get probabilities
i = self.v_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
o = self.o_.col_slice(t * self.num_output_dims_, (t+1) * self.num_output_dims_)
self.lstm_stack_.Fprop(input_frame=i, output_frame=o, train=train)
o.apply_softmax_row_major()
# compute derivative only for softmax
def ComputeDeriv(self):
for t in xrange(self.seq_length_):
o = self.o_.col_slice(t * self.num_output_dims_, (t+1) * self.num_output_dims_)
o_deriv = self.o_deriv_.col_slice(t * self.num_output_dims_, (t+1) * self.num_output_dims_)
o.apply_softmax_grad_row_major(self.target_, target=o_deriv)
def GetLoss(self):
batch_size = self.o_.shape[0]
self.o_.reshape((-1, self.seq_length_))
self.avg_o_.reshape((-1, 1))
self.o_.sum(axis=1, target=self.avg_o_)
self.avg_o_.mult(1.0 / self.seq_length_)
self.o_.reshape((batch_size, -1))
self.avg_o_.reshape((batch_size, -1))
self.avg_o_.get_softmax_correct_row_major(self.target_, self.c_)
return self.c_.sum()
def GetPrediction(self):
batch_size = self.o_.shape[0]
self.o_.reshape((-1, self.seq_length_))
self.avg_o_.reshape((-1, 1))
self.o_.sum(axis=1, target=self.avg_o_)
self.avg_o_.mult(1.0 / self.seq_length_)
self.o_.reshape((batch_size, -1))
self.avg_o_.reshape((batch_size, -1))
return self.avg_o_
def BpropAndOutp(self):
num_models = self.lstm_stack_.GetNumModels()
for t in xrange(self.seq_length_-1, -1, -1):
i = self.v_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
o_deriv = self.o_deriv_.col_slice(t * self.num_output_dims_, (t+1) * self.num_output_dims_)
self.lstm_stack_.BpropAndOutp(input_frame=i, output_deriv=o_deriv)
def Update(self):
self.lstm_stack_.Update()
def Validate(self, data):
data.Reset()
dataset_size = data.GetDatasetSize()
batch_size = data.GetBatchSize()
num_batches = dataset_size / batch_size
if dataset_size % batch_size > 0:
num_batches += 1
loss = 0
preds = np.zeros((dataset_size, self.num_output_dims_), dtype=np.float32)
start = 0
for ii in xrange(num_batches):
v_cpu, t_cpu = data.GetBatch()
self.v_.overwrite(v_cpu)
self.target_.overwrite(t_cpu)
self.Fprop()
end = min(start + batch_size, dataset_size)
preds[start:end, :] = self.GetPrediction().asarray()[:end-start,:]
start = end
correct, pooled_correct = data.GetResults(preds)
return correct, pooled_correct
# Note that both train and valid should have the same batch_size
def SetBatchSize(self, batch_size, seq_length):
self.batch_size_ = batch_size
self.seq_length_ = seq_length
self.lstm_stack_.SetBatchSize(batch_size, seq_length)
self.v_ = cm.empty((batch_size, seq_length * self.num_dims_))
self.o_ = cm.empty((batch_size, seq_length * self.num_output_dims_))
self.o_deriv_ = cm.empty((batch_size, seq_length * self.num_output_dims_))
self.avg_o_ = cm.empty((batch_size, self.num_output_dims_))
self.target_ = cm.empty((batch_size, 1))
self.c_ = cm.empty((batch_size, 1))
def Save(self, model_file):
sys.stdout.write(' Writing model to %s' % model_file)
f = h5py.File(model_file, 'w')
self.lstm_stack_.Save(f)
f.close()
def Train(self, train_data, valid_data=None):
# Timestamp the model that we are training.
st = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d%H%M%S')
model_file = os.path.join(self.model_.checkpoint_dir, '%s_%s' % (self.model_.name, st))
self.model_.timestamp.append(st)
print 'Model saved at %s.pbtxt' % model_file
WritePbtxt(self.model_, '%s.pbtxt' % model_file)
self.num_dims_ = self.lstm_stack_.GetInputDims()
self.num_output_dims_ = self.lstm_stack_.GetOutputDims()
batch_size = train_data.GetBatchSize()
seq_length = train_data.GetSeqLength()
self.SetBatchSize(batch_size, seq_length)
loss = 0
temp_loss = loss
best_val_loss = False
print_after = self.model_.print_after
validate_after = self.model_.validate_after
validate = validate_after > 0 and valid_data is not None
save_after = self.model_.save_after
save = save_after > 0
display_after = self.model_.display_after
display = display_after > 0
temp_valid_loss = 0
for ii in xrange(1, self.model_.max_iters + 1):
newline = False
sys.stdout.write('\rStep %d' % ii)
sys.stdout.flush()
v_cpu, t_cpu = train_data.GetBatch()
self.v_.overwrite(v_cpu)
self.target_.overwrite(t_cpu)
self.Fprop(train=True)
# Compute Performance.
loss += self.GetLoss() / batch_size
if ii % print_after == 0:
loss /= print_after
sys.stdout.write(' Acc %.5f' % loss)
temp_loss = loss
loss = 0
newline = True
# compute derivatives for softmax -> compute derivatives for lstm layers
self.ComputeDeriv()
self.BpropAndOutp()
self.Update()
if display and ii % display_after == 0:
self.lstm_stack_.Display()
if validate and ii % validate_after == 0:
valid_loss, valid_loss_pooled = self.Validate(valid_data)
if valid_loss_pooled > temp_valid_loss:
best_val_loss = True
temp_valid_loss = valid_loss_pooled
else:
best_val_loss = False
temp_loss = 0
sys.stdout.write(' Valid Acc %.5f ; Pooled Valid Acc %.5f' % (valid_loss, valid_loss_pooled))
newline = True
if save and ii % save_after == 0:
self.Save('%s.h5' % model_file)
if save and best_val_loss == True:
self.Save('%s_best.h5' % model_file)
best_val_loss = False
if newline:
sys.stdout.write('\n')
sys.stdout.write('\n')
def main():
model = ReadModelProto(sys.argv[1])
lstm_classifier = LSTMClassifier(model)
train_data = DataHandler(ReadDataProto(sys.argv[2]))
valid_data = DataHandler(ReadDataProto(sys.argv[3]))
lstm_classifier.Train(train_data, valid_data)
if __name__ == '__main__':
board_id = int(sys.argv[4])
board = LockGPU(board=board_id)
print 'Using board', board
cm.CUDAMatrix.init_random(42)
np.random.seed(42)
main()