-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathvq_amm.py
326 lines (234 loc) · 10.5 KB
/
vq_amm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#!/usr/bin/env python
import abc
import numpy as np
from . import vquantizers as vq
from . import amm
KEY_NLOOKUPS = 'nlookups'
class VQMatmul(amm.ApproxMatmul, abc.ABC):
def __init__(self, ncodebooks, ncentroids=None):
self.ncodebooks = ncodebooks
self.ncentroids = (self._get_ncentroids() if ncentroids is None
else ncentroids)
self.enc = self._create_encoder(ncodebooks)
self.reset_for_new_task()
@abc.abstractmethod
def _create_encoder(self, ncodebooks): # to be overriden by subclasses
return vq.PQEncoder(ncodebooks=ncodebooks, ncentroids=self.ncentroids,
**self._get_encoder_kwargs())
# @abc.abstractmethod
def _get_ncentroids(self):
pass
@abc.abstractmethod
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
pass
def _get_encoder_kwargs(self): # to be overriden by subclasses
return {}
def reset_for_new_task(self):
self.A_enc = None
self.luts = None
def fit(self, A, B, Y=None):
_, D = A.shape
if D < self.ncodebooks:
raise amm.InvalidParametersException(
'D < C: {} < {}'.format(D, self.ncodebooks))
self.enc.fit(A, B.T)
def set_A(self, A):
self.A_enc = self.enc.encode_X(A)
def set_B(self, B):
self.luts = self.enc.encode_Q(B.T)
def __call__(self, A, B):
if self.A_enc is None:
self.set_A(A)
if self.luts is None:
self.set_B(B)
return self.enc.dists_enc(self.A_enc, self.luts)
def get_params(self):
return {'ncodebooks': self.ncodebooks}
# ================================================================ PQ
class PQMatmul(VQMatmul):
def _create_encoder(self, ncodebooks): # to be overriden by subclasses
return vq.PQEncoder(ncodebooks=ncodebooks, ncentroids=self.ncentroids,
**self._get_encoder_kwargs())
def _get_ncentroids(self):
return 256
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
# data encoding and LUT costs
nmuls = 0
nmuls += 0 if fixedA else A.shape[0] * A.shape[1] * self.ncentroids
nmuls += 0 if fixedB else B.shape[0] * B.shape[1] * self.ncentroids
nlookups = A.shape[0] * B.shape[1] * self.ncodebooks
return {amm.KEY_NMULTIPLIES: nmuls, KEY_NLOOKUPS: nlookups}
# ================================================================ OPQ
class OPQMatmul(PQMatmul):
def _get_encoder_kwargs(self):
return dict(preproc='OPQ')
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
metrics = super().get_speed_metrics(A, B, fixedA=fixedA, fixedB=fixedB)
rot_nmuls = A.shape[0] * A.shape[1] * A.shape[1] # OPQ rotation cost
metrics[amm.KEY_NMULTIPLIES] += rot_nmuls
return metrics
# ================================================================ Bolt
class BoltMatmul(PQMatmul):
# def __init__(self, ncodebooks):
# self.ncodebooks = ncodebooks
# self.ncentroids = 16
# self.enc = self._create_encoder(self.ncodebooks)
# self._reset()
def _get_ncentroids(self):
return 16
def _create_encoder(self, ncodebooks):
return vq.PQEncoder(ncodebooks=ncodebooks, ncentroids=self.ncentroids,
quantize_lut=True,
# quantize_lut=False,
# accumulate_how='mean',
accumulate_how='sum',
upcast_every=-1,
# upcast_every=2,
# upcast_every=4,
# upcast_every=256, # fine as long as using mean
# TODO set quantize_lut=True after debug
**self._get_encoder_kwargs())
class GEHTBoltMatmul_CovTopk(BoltMatmul):
def _get_encoder_kwargs(self):
return dict(
preproc='GEHT', sample_how='deterministic', stats_mat='cov')
class GEHTBoltMatmul_CovSamp(BoltMatmul):
def _get_encoder_kwargs(self):
return dict(
preproc='GEHT', sample_how='importance', stats_mat='cov')
class GEHTBoltMatmul_CorrTopk(BoltMatmul):
def _get_encoder_kwargs(self):
return dict(
preproc='GEHT', sample_how='deterministic', stats_mat='corr')
class GEHTBoltMatmul_CorrSamp(BoltMatmul):
def _get_encoder_kwargs(self):
return dict(
preproc='GEHT', sample_how='importance', stats_mat='corr')
class BoltSplits(BoltMatmul):
def _get_encoder_kwargs(self):
return dict(
preproc='PQ', encode_algo='splits')
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
metrics = super().get_speed_metrics(A, B, fixedA=fixedA, fixedB=fixedB)
nmuls = 0
nmuls += 0 if fixedB else B.shape[0] * B.shape[1] * self.ncentroids
metrics[amm.KEY_NMULTIPLIES] = nmuls
return metrics
class BoltMultiSplits(BoltMatmul):
def _get_encoder_kwargs(self):
return dict(encode_algo='multisplits')
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
metrics = super().get_speed_metrics(A, B, fixedA=fixedA, fixedB=fixedB)
nmuls = 0
nmuls += 0 if fixedB else B.shape[0] * B.shape[1] * self.ncentroids
metrics[amm.KEY_NMULTIPLIES] = nmuls
return metrics
class BoltPermMultiSplits(BoltMatmul):
def _get_encoder_kwargs(self):
return dict(preproc='GEHT', encode_algo='multisplits')
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
metrics = super().get_speed_metrics(A, B, fixedA=fixedA, fixedB=fixedB)
nmuls = 0
nmuls += 0 if fixedB else B.shape[0] * B.shape[1] * self.ncentroids
metrics[amm.KEY_NMULTIPLIES] = nmuls
return metrics
class PQPerm(PQMatmul):
def _get_encoder_kwargs(self):
return dict(preproc='GEHT')
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
metrics = super().get_speed_metrics(A, B, fixedA=fixedA, fixedB=fixedB)
nmuls = 0
nmuls += 0 if fixedB else B.shape[0] * B.shape[1] * self.ncentroids
metrics[amm.KEY_NMULTIPLIES] = nmuls
return metrics
class PQMultiSplits(PQMatmul):
def __init__(self, ncodebooks, ncentroids=256):
super().__init__(ncodebooks=ncodebooks, ncentroids=ncentroids)
def _get_encoder_kwargs(self):
return dict(encode_algo='multisplits')
def get_params(self):
return {'ncodebooks': self.ncodebooks, 'ncentroids': self.ncentroids}
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
metrics = super().get_speed_metrics(A, B, fixedA=fixedA, fixedB=fixedB)
nmuls = 0
nmuls += 0 if fixedB else B.shape[0] * B.shape[1] * self.ncentroids
metrics[amm.KEY_NMULTIPLIES] = nmuls
return metrics
class PQPermMultiSplits(PQMatmul):
def __init__(self, ncodebooks, ncentroids=256):
super().__init__(ncodebooks=ncodebooks, ncentroids=ncentroids)
def _get_encoder_kwargs(self):
return dict(preproc='GEHT', encode_algo='multisplits')
def get_params(self):
return {'ncodebooks': self.ncodebooks, 'ncentroids': self.ncentroids}
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
metrics = super().get_speed_metrics(A, B, fixedA=fixedA, fixedB=fixedB)
nmuls = 0
nmuls += 0 if fixedB else B.shape[0] * B.shape[1] * self.ncentroids
metrics[amm.KEY_NMULTIPLIES] = nmuls
return metrics
# ================================================================ Mithral
class OldMithralPQ(PQMatmul):
# def _get_ncentroids(self):
# return 16
def __init__(self, ncodebooks):
super().__init__(ncodebooks=ncodebooks, ncentroids=16)
def _create_encoder(self, ncodebooks):
return vq.PQEncoder(ncodebooks=ncodebooks, ncentroids=self.ncentroids,
encode_algo='multisplits',
quantize_lut=True,
upcast_every=16, # fine as long as using mean
accumulate_how='mean')
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
N, D = A.shape
D, M = B.shape
# data encoding and LUT costs
nmuls = 0
nmuls += 0 if fixedA else N * D # offset + scale before quantize
nmuls += 0 if fixedB else M * self.ncentroids * D
# lookups given encoded data + luts
nlookups = N * M * self.ncodebooks
return {amm.KEY_NMULTIPLIES: nmuls, KEY_NLOOKUPS: nlookups}
class MithralMatmul(VQMatmul):
def __init__(self, ncodebooks, lut_work_const=-1):
self.lut_work_const = lut_work_const
if (lut_work_const is not None) and (lut_work_const > 0) and (
lut_work_const > ncodebooks):
raise amm.InvalidParametersException(
"lut_work_const > ncodebooks: {} > {}".format(
lut_work_const, ncodebooks))
super().__init__(ncodebooks=ncodebooks, ncentroids=16)
# def _get_ncentroids(self):
# return 16
# def fit(self, A, B, Y=None):
# super().fit(self, A, B, Y=Y)
def _create_encoder(self, ncodebooks):
return vq.MithralEncoder(
ncodebooks=ncodebooks, lut_work_const=self.lut_work_const)
def get_params(self):
return {'ncodebooks': self.ncodebooks,
'lut_work_const': self.lut_work_const}
def get_speed_metrics(self, A, B, fixedA=False, fixedB=False):
N, D = A.shape
D, M = B.shape
# data encoding and LUT costs
nmuls = 0
nmuls += 0 if fixedA else N * D # offset + scale before quantize
nmuls_per_codebook_per_output = self.ncentroids * D
nmuls_per_output = nmuls_per_codebook_per_output * self.ncodebooks
nmuls += 0 if fixedB else nmuls_per_output * M
# lookups given encoded data + luts
nlookups = N * M * self.ncodebooks
return {amm.KEY_NMULTIPLIES: nmuls, KEY_NLOOKUPS: nlookups}
def set_B(self, B):
self.luts, self.offset, self.scale = self.enc.encode_Q(B.T)
def __call__(self, A, B):
if self.A_enc is None:
self.set_A(A)
if self.luts is None:
self.set_B(B)
return self.enc.dists_enc(self.A_enc, self.luts,
offset=self.offset, scale=self.scale)
class MithralPQ(MithralMatmul):
def __init__(self, ncodebooks):
super().__init__(ncodebooks=ncodebooks, lut_work_const=1)