-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
319 lines (271 loc) · 11.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from argparse import ArgumentError
import random
import warnings
import torch
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.nn.parallel
from torch.optim.lr_scheduler import LambdaLR
import math
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import linear_sum_assignment
from PIL import ImageFilter
import random
class GaussianBlur(object):
"""Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
def torch_l2_dis_batch(inp, cnt, bsz=1000):
ret = torch.zeros((cnt.shape[0], inp.shape[0])).to(inp.device)
iters = len(inp) // bsz
for i in range(iters + 1):
bg_ind = bsz * i
end_ind = min(bsz * (i + 1), len(inp))
ret[:, bg_ind:end_ind] = torch.norm(inp[bg_ind:end_ind] - cnt, dim=2)
return ret
class TransformTwice:
def __init__(self, transform):
self.transform = transform
def __call__(self, inp):
out1 = self.transform(inp)
out2 = self.transform(inp)
return out1, out2
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix="", color=None):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
self.color = color
def prCyan(self, skk): print("\033[96m {}\033[00m" .format(skk))
def prPurple(self, skk): print("\033[95m {}\033[00m" .format(skk))
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
if self.color == 'cyan':
self.prCyan('\t'.join(entries))
elif self.color == 'purple':
self.prPurple('\t'.join(entries))
else:
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
#ipdb.set_trace()
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def spawn_processes(worker_fn, args, mpargs=None):
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if mpargs is None:
mpargs = (args, )
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(worker_fn, nprocs=ngpus_per_node, args=(ngpus_per_node, *mpargs))
else:
# Simply call main_worker function
worker_fn(*(args.gpu, ngpus_per_node, *mpargs))
def init_proc_group(args, ngpus_per_node):
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + args.gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
def init_data_parallel(args, model, ngpus_per_node):
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model = model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
return model
def fix_dataparallel_keys(state_dict):
# If a Dataparallel wrapped model was saved, remove the "module." prefix
if all(key.startswith('module.') for key in state_dict):
new_state_dict = {}
for key, val in state_dict.items():
new_state_dict[key[len('module.'):]] = val
state_dict = new_state_dict
return state_dict
def get_grad_norm(model, p=2):
parameters = list(filter(lambda param: param.grad is not None, model.parameters()))
return torch.norm(torch.stack([torch.norm(param.grad.detach(), p) for param in parameters]), p)
def grad_norm_for_loss(model, loss, grad_meter):
model_grads = torch.autograd.grad(
loss,
model.parameters(),
retain_graph=True,
create_graph=False,
only_inputs=True)
grad_meter.update(torch.norm(torch.stack([torch.norm(m.detach()) for m in model_grads])))
def get_weight_norm(model, p=2):
parameters = list(filter(lambda param: param.grad is not None, model.parameters()))
return torch.norm(torch.stack([torch.norm(param.detach(), p) for param in parameters]), p)
def get_optimizer(optim_type, parameters, lr, wd, beta1=None, beta2=None, sgd_momentum=None):
if optim_type == 'sgd':
optim = torch.optim.SGD(
parameters,
lr=lr,
momentum=sgd_momentum,
weight_decay=wd)
elif optim_type == 'adam':
if wd != 0:
print('should use adamw if wd > 0.')
optim = torch.optim.Adam(
parameters,
lr=lr,
betas=(beta1, beta2),
weight_decay=wd)
elif optim_type == 'adamw':
optim = torch.optim.AdamW(
parameters,
lr = lr,
betas=(beta1, beta2),
weight_decay=wd)
else:
raise ArgumentError('invalid optimizer choice')
return optim
def get_cosine_schedule_with_warmup(optimizer,
num_warmup_steps,
num_training_steps,
num_cycles=7./16.,
last_epoch=-1):
def _lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
no_progress = float(current_step - num_warmup_steps) / \
float(max(1, num_training_steps - num_warmup_steps))
return max(0., math.cos(math.pi * num_cycles * no_progress))
return LambdaLR(optimizer, _lr_lambda, last_epoch)
def get_lr_scheduler(lr_sched, optimizer, start_step, args):
if lr_sched == 'fixed':
lambda_fixed = lambda epoch: 1
scheduler = LambdaLR(optimizer, lambda_fixed)
return scheduler
if lr_sched == 'cos':
return get_cosine_schedule_with_warmup(
optimizer, 0, args.max_iters, last_epoch=start_step, num_cycles=0.5)
def plot_cluster(features, labels, sampling_ratio=1., snippet=None, path=None, figsize=(6,4), xticks=None, yticks=None, xlim=None, ylim=None, linewidth=1, title=None, xlabel=None, ylabel=None, fontsize=20, colors=None, verbose=False):
import colorsys, umap
if sampling_ratio < 1.:
sampling_size = int(sampling_ratio * len(features))
rand_idx = np.random.choice(range(len(features)), sampling_size, replace=False)
features = features[rand_idx]
labels = labels[rand_idx].astype(int)
cluster2label = np.unique(labels)
label2cluster = {li: ci for ci, li in enumerate(cluster2label)}
cluster_ids = [label2cluster[l] for l in labels]
if colors is None:
HSVcolors = [(np.random.uniform(low=0.0, high=1),
np.random.uniform(low=0.5, high=1),
np.random.uniform(low=0.5, high=1)) for i in range(len(cluster2label))
]
RGBcolors = np.array([colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]) for HSVcolor in HSVcolors])
else:
RGBcolors = np.array(colors)
feat2d = umap.UMAP(n_neighbors=10,
min_dist=.3,
metric='euclidean',
verbose=verbose).fit_transform(features)
plt.figure(figsize=figsize)
plt.scatter(feat2d[:, 0], feat2d[:, 1], s=1.5, c=RGBcolors[cluster_ids], alpha=.5)
# plt.scatter(feat2d[:100, 0], feat2d[:100, 1], s=8, c=RGBcolors[cluster_ids[:100]], alpha=.8)
plt.tight_layout()
if title is not None:
plt.title(title, fontsize=fontsize)
if path is not None:
plt.savefig(path)
plt.close()
else:
plt.show()
def accuracy(output, target):
num_correct = np.sum(output == target)
res = num_correct / len(target)
return res
def cluster_acc(y_pred, y_true):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
row_ind, col_ind = linear_sum_assignment(w.max() - w)
return w[row_ind, col_ind].sum() / y_pred.size