This repository has been archived by the owner on Apr 6, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphrase_metric.py
191 lines (151 loc) · 5.69 KB
/
phrase_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
import re
from collections import namedtuple
from pattern.en import parsetree
from pattern.en.wordnet import _pattern2wordnet as _pos, wn_ic, wn, WordNetSynset as Synset
from pattern.text.tree import Text, Sentence, Chunk, Word
from util import mixin, mean, casefold
# Rationale: {Egypt} ~ {Egyptian} > {Tennessee} ~ {Egyptian}
IC_CORPUS = wn_ic.ic('ic-shaks.dat')
_lemmata = False
def _parse(*args, **kw): # FIXME (workaround)
from pattern.text.en import parser
if isinstance(parser.model, str):
from pattern.text import Model
parser.model = Model(path=parser.model)
return parsetree(*args, **kw)
def _casefold(text):
return { casefold(text), casefold(getattr(text, 'lemma', text)) }
def _similar(a, b):
return bool(_casefold(a) & _casefold(b))
def _ratio(*data):
_len = [len(e) for e in data]
return mean(_len) / max(_len)
def _mean(data, threshold=0, default=0):
return mean((e for e in data if e > threshold), default)
def _min(data, threshold=0, default=0):
return min((e for e in data if e > threshold), default=default)
@mixin(Synset)
class _Synset:
def similarity(self, other):
if self._pos != other._pos:
return None
if self._pos in 'asr':
return self.wup_similarity(other)
return self.jcn_similarity(other, IC_CORPUS)
@mixin(Word)
class _Word:
def synsets(self, type=None):
return wn.synsets(str(self), _pos.get(type[:2] if type else None))
def _similarity(self, other, default=0):
#s = sorted((other.similarity(s) or default for s in self.synsets()), default=default)
#return max((other.similarity(s) or default for s in self.synsets()), default=default)
return (other.similarity(s) or default for s in self.synsets())
def similarity(self, other, default=0):
if isinstance(other, Chunk):
return max((self.similarity(w) for w in other), default=default)
if isinstance(other, Synset):
return max(self._similarity(other), default=default)
#return self._similarity(other)
if self.type == other.type and _similar(self, other):
return 1
return max(self._similarity(other), default=default)
#return self._similarity(other)
Factor = namedtuple('Factor', ('factor', 'value'))
@mixin(Chunk)
class _Chunk:
factors = dict(VP=0.07, ADJP=0.02, ADVP=0.01)
@property
def nouns(self):
if not hasattr(self, '_nouns'):
nouns = [w for w in self if w.type[:2] == 'NN']
self._nouns = Chunk(self.sentence, nouns, self.type, self.role, self.relation)
return self._nouns
@property
def main(self):
return self.type == 'NP'
def _related(self, other, type, scaling):
factor = self.factors[type]
a, b = (e.nearest(type) for e in (self, other))
if None in {a, b}:
return Factor(0, 0)
return Factor(factor, a._similarity(b, scaling))
def similarity(self, other, value=None, scaling=True):
if value is None:
return self._similarity(other, scaling)
related = [self._related(other, type, scaling) for type in self.factors]
factor = 1 - sum(e.factor for e in related)
return factor * value + sum(e.factor * e.value for e in related)
@property
def lemma(self):
if not hasattr(self, '_lemma'):
self._lemma = ' '.join(e for e in self.lemmata if e)
return self._lemma
def _similarity(self, other, scaling, default=0):
if self.type == other.type and _similar(self, other):
return 1
ratio = _ratio(self, other) if scaling else 1
return _mean((w.similarity(other) for w in self), default=0) * ratio
@mixin(Sentence)
class _Sentence:
@property
def noun_phrases(self):
if not hasattr(self, '_noun'):
self._noun = [p for p in self.phrases if p.nouns and p.main]
return self._noun
@property
def main_phrases(self):
if not hasattr(self, '_main'):
self._main = [p for p in self.phrases if p.main]
return self._main
@mixin(Text)
class _Text:
def __new__(cls, self, lemmata=True):
if self is None:
return self
if not isinstance(self, Text):
if isinstance(self, list):
self = '\n'.join(e for e in self if e)
self = _parse(self, lemmata=lemmata and _lemmata)
return self
@property
def noun_phrases(self):
if not hasattr(self, '_noun'):
self._noun = [p for s in self for p in s.noun_phrases]
return self._noun
@property
def main_phrases(self):
if not hasattr(self, '_main'):
self._main = [p for s in self for p in s.main_phrases]
return self._main
def validate(self):
return bool(_Text(self).noun_phrases)
def similarity(a, b, scaling='inner', split=5):
"""Computes a non-negative score representing the amount of common information between a and b"""
X, Y = (_Text(e) for e in (a, b))
if casefold(X) == casefold(Y):
return 1
A, B = (e.noun_phrases for e in (X, Y))
data = []
scaling = 'total' if scaling is True else scaling
inner = scaling in { 'inner', 'total' }
for a in A:
S = sorted(((a.similarity(b, scaling=inner), b) for b in B), key=lambda e: e[0], reverse=True)
m = max((a.similarity(p, s, scaling=inner) for (s, p) in S[:split]), default=0)
_len = len(S)
if _len > split:
f = max([len(S[split:]) / _len, 0.3])
data.append(m * (1 - f) + S[split][0] * f)
else:
data.append(m)
ratio = _ratio(A, B) if scaling in { 'outer', 'total' } else 1
return _mean(data) * ratio
def distance(a, b):
return 1 - similarity(a, b)
for i in range(5): # FIXME (workaround)
try:
_parse('sample text', lemmata=True)
_lemmata = True
break
except (RuntimeError, ValueError):
pass