-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
166 lines (135 loc) · 6.48 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# ==============================================================================
# Copyright (C) 2020 Vladimir Juras, Ravinder Regatte and Cem M. Deniz
#
# This file is part of 2019_IWOAI_Challenge
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# ==============================================================================
import tensorflow as tf
import tf_utilities as tfut
import tf_layers as tflay
import models
import nibabel as nib
import numpy as np
import re
import time
import os
from functools import partial
from pathlib import Path
import h5py
from scipy import ndimage
from scipy.spatial import distance
import glob
from sklearn.model_selection import StratifiedKFold
from sys import platform
from sklearn.preprocessing import label_binarize
tf.app.flags.DEFINE_string('model_path', "./InferenceModel", 'Name of output folder.')
tf.app.flags.DEFINE_string('data_folder', './data', 'Data Folder')
tf.app.flags.DEFINE_integer('cv', -1, 'which fold to run')
tf.app.flags.DEFINE_integer('feature', 16, 'which fold to run')
tf.app.flags.DEFINE_string('model', '4atrous248', 'Model name.')
tf.app.flags.DEFINE_integer('reso', 384, 'Image size.')
tf.app.flags.DEFINE_integer('slices', 160, 'Number Of Slices')
tf.app.flags.DEFINE_integer('seed', 1234, 'Graph-level random seed.')
tf.app.flags.DEFINE_boolean('resnet', False, 'Whether to use resnet shortcut.')
tf.app.flags.DEFINE_integer('noImages', -1, 'how many images to infer')
FLAGS = tf.app.flags.FLAGS
num_classes = 7
num_CV =1
num_channels = 1
def main(argv=None):
print('OUT:: ',FLAGS.feature,FLAGS.seed, FLAGS.resnet,FLAGS.model,FLAGS.reso)
tf.set_random_seed(FLAGS.seed)
np.random.seed(FLAGS.seed)
batch_x = tf.placeholder(tf.float32, shape=(None, FLAGS.reso, FLAGS.reso, FLAGS.slices, 1))
batch_y = tf.placeholder(tf.float32, shape=(None, FLAGS.reso, FLAGS.reso, FLAGS.slices, num_classes))
keep_prob = tf.placeholder(tf.float32, shape=[])
class_weights = tf.placeholder(tf.float32, shape=(num_classes))
# choose the model
inference_raw = {'4unet': partial(models.inference_unet4),# the original architecture and use 4 layers
# replace the convolution operations between down-convolution and up-convolution layers
# by atrous convolution
'4atrous248': partial(models.inference_atrous4, n_class=num_classes, dilation_rates=[2,4,8])}[FLAGS.model]
inference = partial(inference_raw, resnet=FLAGS.resnet)
score = inference(batch_x, features_root=FLAGS.feature, keep_prob=keep_prob, n_class=num_classes)
logits = tf.nn.softmax(score)
# load dataset from folder
dataFolder = FLAGS.data_folder + '/test'
pathNifti = Path(dataFolder)
X = [] # create an empty list
for fileList in list(pathNifti.glob('**/*.im')):
X.append(fileList)
X = sorted(X)
if FLAGS.noImages ==-1:
noOfFiles = len(X)
else:
noOfFiles = FLAGS.noImages
list_X = list( X[i] for i in range(noOfFiles) )
n_samples = len(list_X)
X_test, train_info = tfut.loadData_list_h5_image(list_X,num_channels)
X_test = tfut.zeroMeanUnitVariance(X_test)
X_test = X_test[...,np.newaxis]
cv=1
sample_size = X_test.shape[0]
output_path = FLAGS.model_path
# find the model to read
fdr = Path(output_path)
cpktFile = sorted(fdr.glob(('**/*.meta')))
read_file = str((cpktFile[-1]))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=0)
saver.restore(sess, read_file[:-5])
print('Model restored from file: %s' % read_file[:-5])
start = time.clock()
y_out = np.zeros((FLAGS.reso, FLAGS.reso, FLAGS.slices, num_classes))
for xi in range(sample_size):
prob = sess.run(logits,
feed_dict={batch_x: X_test[xi:xi+1],
keep_prob:1})
y_out=prob
winOut = np.zeros(y_out.shape)
winOut[y_out[...,1]>0.5,...,1] =1
winOut[y_out[...,2]>0.5,...,2] =2
winOut[y_out[...,3]>0.5,...,3] =3
winOut[y_out[...,4]>0.5,...,4] =4
winOut[y_out[...,5]>0.5,...,5] =5
winOut[y_out[...,6]>0.1,...,6] =6
# place to keep only largest connected volume
if 1:
for iii in range(1,7):
inn = winOut[...,iii]
all_labels, num_features = ndimage.label(inn)
print('Label #:',iii, num_features,'Number of Connected Volumes')
if num_features > 1:
volume = ndimage.sum(inn, all_labels, index=range(num_features+1))
print("Volume:", volume)
cem = all_labels == np.argmax(volume)
winOut[...,iii] = winOut[...,iii] * cem
winOut = np.sum(winOut,axis=4)
winOut.astype(int)
seg = np.pad(np.squeeze(winOut),((1,1),(1,1),(1,1)),'edge')
#For the classes dimensions, the order for 4 classes are as the following:
#0 = femoral cartilage, 1 = tibial cartilage, 2 = patellar cartilage, and 3 = meniscus.
#save as numpy array
saveNumpy = np.zeros((384,384,160,4))
saveNumpy[seg==1,...,0] = 1
saveNumpy[seg==2,...,1] = 1
saveNumpy[seg==3,...,1] = 1
saveNumpy[seg==4,...,2] = 1
saveNumpy[seg==5,...,3] = 1
saveNumpy[seg==6,...,3] = 1
savename= str(X[xi])
fdr = Path('./InferenceResults/%s.npy' % (savename[-15:-3]))
np.save(fdr, saveNumpy.astype(int), allow_pickle = False)
if __name__ == '__main__':
tf.app.run()