-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMFMAAC.py
78 lines (53 loc) · 2.18 KB
/
MFMAAC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
#from pytorch_lightning.core.lightning import LightningModule
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class MFMAAC(nn.Module):
def __init__(self, num_inputs=1, num_actions=10, hidden_size=128, learning_rate=3e-4):
super(MFMAAC, self).__init__()
self.affine = nn.Linear(num_inputs, hidden_size)
self.action_layer = nn.Linear(hidden_size, num_actions)
self.value_layer = nn.Linear(hidden_size, 1)
self.action_layer.weight.data.fill_(1/hidden_size)
self.action_layer.bias.data.fill_(1/hidden_size)
self.logprobs = []
self.state_values = []
self.rewards = []
def forward(self, state):
Deltas = state.Deltas.reshape((-1, 1)).float().to(device)
Deltas = F.relu(self.affine(Deltas))
state_value = self.value_layer(Deltas)
action_probs = F.softmax(self.action_layer(Deltas), dim=1)
action_distribution = Categorical(action_probs)
action = action_distribution.sample()
self.logprobs.append(action_distribution.log_prob(action))
self.state_values.append(state_value)
return action, action_probs
def calculate_loss(self, gamma=0.995):
# calculating discounted rewards:
rewards = []
dis_reward = 0
for reward in self.rewards[::-1]:
dis_reward = reward + gamma * dis_reward
rewards.insert(0, dis_reward)
# normalizing the rewards:
rewards = torch.stack(rewards).float().squeeze().to(device)
rewards /= rewards.std(dim=0)
#rewards = (rewards - rewards.mean(dim=0)) / rewards.std(dim=0) # calc along axis of time for each particle
loss = torch.tensor(0.).reshape((1,)).to(device)
amount = self.rewards[0].numel()
logprobs = torch.stack(self.logprobs).squeeze().to(device)
values = torch.stack(self.state_values).squeeze().to(device)
for i in range(amount):
for logprob, value, reward in zip(logprobs.T[i], values.T[i], rewards.T[i]):
advantage = reward - value.item()
action_loss = -logprob * advantage
value_loss = F.smooth_l1_loss(value, reward)
loss += (action_loss + value_loss)
return loss
def clear_memory(self):
del self.state_values[:]
del self.logprobs[:]
del self.rewards[:]