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Part I - Principle introduction



ACID

● Atomicity
○ Each transaction is treated as a single "unit", which either succeeds completely, or 

fails completely

● Consistency
○ Any data written to the database must be valid according to all defined rules.

● Isolation
○ Isolation ensures that concurrent execution of transactions leaves the database in 

the same state that would have been obtained if the transactions were executed 

sequentially

● Durability
○ Once a transaction has been committed, it will remain committed even in the case of 

a system failure



Read uncommitted

Session A Session B

begin;
select account from account where id = 1
// will get 1000 

begin;
update account set account=account+500 where id = 1
// not commit here 

select account from account where id = 1
// will get 1500 (Dirty read)

rollback;



Read committed

Session A Session B

begin;
select account from account where id=1;
// get 1000

begin;
update account set account = account+500 where id=1;
commit;

select account from account where id = 1;
// get 1500 (Non-repeatable reads)
commit;



Repeatable read

Session A Session B

begin;
select account from account where id=1;
// get 1000

begin;
update account set account = account+500 where 
id=1;
commit;

select account from account where id = 1;
// get 1000
commit;



Repeatable read

Session A Session B

begin;
select id from account;
// get id(1), id(2)

begin;
insert into account values(3,"Dada",5000);
commit;

select id from account;
// get id(1), id(2)

insert into account values(3,"Dada",5000);
// ERROR 1062 (23000): Duplicate entry '3' for key 
'PRIMARY' (Phantom reads)



Part II - Implementation process



About Transaction

● TiDB SQL Layer
a. The MySQL Client sends a SQL 

request.
b. When a TiDB server receives a 

request, it will reach the TiDB 
SQL layer for execution. 
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TSO -- TimeStamp Oracle

● Percolator transaction requires TSO: a start ts and a commit ts for each transaction.

● get start TS: 
○ getTxnFuture, wait                      BeginWithStartTS
○ getTimestampWithRetry          store.Begin()

● get commit TS: getTimestampWithRetry
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TSO -- TimeStamp Oracle

● Point get transaction use max Int64 instead of a real TSO

● Get start ts asnychronously with parse & compile

● PD client send TSO request in batch



Transaction cache

● union store
○ MemBuffer
○ snapshot

● e.g.

Insert into test (i) values (1);

Begin;

Insert into test (i) values (2);

Select * from test; -- results in TiKV（1） + results in txn（2）



latch

● Config variable
○ txn-local-latches

● LatchesScheduler
○ Lock
○ Unlock



Part III - 2 Phase Commit



key data lock write

Bob 5: $10

6: data @5

Joe 5: $2

6: data @5

2 Phase Commit
Bob have $10, Joe have $2, Bob will give Joe $7.



key data lock write

Bob 5: $10

6: data @5

7:$3 7:I’m primary

Joe 5: $2

6: data @5

7:$9 7:primary @ Bob

Phase#1 :  Prewrite



key data lock write

Bob 5: $10

6: data @5

7:$3 7: I’m primary

8: data @7

Joe 5: $2

6: data @5

7:$9 7: primary @ Bob

Phase#2: Primary Commit (Sync)
Bob have $3, Joe have $9 now.



key data lock write

Bob 5: $10

6: data @5

7:$3 7: I’m primary

8: data @7

Joe 5: $2

6: data @5

7:$9 7: primary @ Bob

8: data @7

Phase#2: Secondary Commit (Async)
Bob have $3, Joe have $9 now.



Get region from PD

● GroupKeysByRegion
○ LocateKey, findRegionByKey

■ searchCachedRegion
■ loadRegion
■ insertRegionToCache

● onRegionError
○ GetRPCContext
○ UpdateLeader
○ markNeedCheck
○ ...



Transaction in TiKV client

● Commit in txn.go
a. newTwoPhaseCommitter
b. initKeysAndMutations
c. executeAndWriteFinishBinlog

■ prewriteKeys
■ getTimestampWithRetry
■ commitKeys
■ do cleanupKeys in some cases



Part IV - Checkes and common errors



Checkers

● CheckVisibility
○ get, batchGet

● IsExpired
○ commit

● Schema checker 



Common errors

● Send request to TiKV
○ WriteConflict
○ ServerIsBusy
○ PD/TiKV timeout
○ Undetermined
○ …

● Retry transaction
○ WriteConflict
○ InfoSchemaChanged

● Others
○ TxnTooLarge



Thank You !


