
Li Xia | PingCAP
2019/6

lixia@pingcap.com
@紫沐夏_go

https://github.com/zimulala

Source code reading of
TiDB Transaction

● Principle introduction

● Implementation process

● 2 Phase Commit
● Checkers and common errors

Agenda

Part I - Principle introduction

ACID

● Atomicity
○ Each transaction is treated as a single "unit", which either succeeds completely, or

fails completely

● Consistency
○ Any data written to the database must be valid according to all defined rules.

● Isolation
○ Isolation ensures that concurrent execution of transactions leaves the database in

the same state that would have been obtained if the transactions were executed

sequentially

● Durability
○ Once a transaction has been committed, it will remain committed even in the case of

a system failure

Read uncommitted

Session A Session B

begin;
select account from account where id = 1
// will get 1000

begin;
update account set account=account+500 where id = 1
// not commit here

select account from account where id = 1
// will get 1500 (Dirty read)

rollback;

Read committed

Session A Session B

begin;
select account from account where id=1;
// get 1000

begin;
update account set account = account+500 where id=1;
commit;

select account from account where id = 1;
// get 1500 (Non-repeatable reads)
commit;

Repeatable read

Session A Session B

begin;
select account from account where id=1;
// get 1000

begin;
update account set account = account+500 where
id=1;
commit;

select account from account where id = 1;
// get 1000
commit;

Repeatable read

Session A Session B

begin;
select id from account;
// get id(1), id(2)

begin;
insert into account values(3,"Dada",5000);
commit;

select id from account;
// get id(1), id(2)

insert into account values(3,"Dada",5000);
// ERROR 1062 (23000): Duplicate entry '3' for key
'PRIMARY' (Phantom reads)

Part II - Implementation process

About Transaction

● TiDB SQL Layer
a. The MySQL Client sends a SQL

request.
b. When a TiDB server receives a

request, it will reach the TiDB
SQL layer for execution.

Parser Validator

TiKV TiKV TiKV

TiDB Server

TiKV TiKVTiKV

TiKV Cluster

MySQL
Clients Rows

SQL

AST

Executor

Data

Optimize

prepare
get startTS

PD

PDPD Cluster

PD

get commit
TS

TSO -- TimeStamp Oracle

● Percolator transaction requires TSO: a start ts and a commit ts for each transaction.

● get start TS:
○ getTxnFuture, wait BeginWithStartTS
○ getTimestampWithRetry store.Begin()

● get commit TS: getTimestampWithRetry

1

2

3

Time

TSO -- TimeStamp Oracle

● Point get transaction use max Int64 instead of a real TSO

● Get start ts asnychronously with parse & compile

● PD client send TSO request in batch

Transaction cache

● union store
○ MemBuffer
○ snapshot

● e.g.

Insert into test (i) values (1);

Begin;

Insert into test (i) values (2);

Select * from test; -- results in TiKV（1） + results in txn（2）

latch

● Config variable
○ txn-local-latches

● LatchesScheduler
○ Lock
○ Unlock

Part III - 2 Phase Commit

key data lock write

Bob 5: $10

6: data @5

Joe 5: $2

6: data @5

2 Phase Commit
Bob have $10, Joe have $2, Bob will give Joe $7.

key data lock write

Bob 5: $10

6: data @5

7:$3 7:I’m primary

Joe 5: $2

6: data @5

7:$9 7:primary @ Bob

Phase#1 : Prewrite

key data lock write

Bob 5: $10

6: data @5

7:$3 7: I’m primary

8: data @7

Joe 5: $2

6: data @5

7:$9 7: primary @ Bob

Phase#2: Primary Commit (Sync)
Bob have $3, Joe have $9 now.

key data lock write

Bob 5: $10

6: data @5

7:$3 7: I’m primary

8: data @7

Joe 5: $2

6: data @5

7:$9 7: primary @ Bob

8: data @7

Phase#2: Secondary Commit (Async)
Bob have $3, Joe have $9 now.

Get region from PD

● GroupKeysByRegion
○ LocateKey, findRegionByKey

■ searchCachedRegion
■ loadRegion
■ insertRegionToCache

● onRegionError
○ GetRPCContext
○ UpdateLeader
○ markNeedCheck
○ ...

Transaction in TiKV client

● Commit in txn.go
a. newTwoPhaseCommitter
b. initKeysAndMutations
c. executeAndWriteFinishBinlog

■ prewriteKeys
■ getTimestampWithRetry
■ commitKeys
■ do cleanupKeys in some cases

Part IV - Checkes and common errors

Checkers

● CheckVisibility
○ get, batchGet

● IsExpired
○ commit

● Schema checker

Common errors

● Send request to TiKV
○ WriteConflict
○ ServerIsBusy
○ PD/TiKV timeout
○ Undetermined
○ …

● Retry transaction
○ WriteConflict
○ InfoSchemaChanged

● Others
○ TxnTooLarge

Thank You !

